View metadata, citation and similar papers at core.ac.uk

-+
brought to you by .{ CORE

provided by Queensland University of Technology ePrints Archive

408 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Toward Self-Organizing Service Communities

Hye-Young Paik, Boualem Benatallah, Member, IEEE, and Farouk Toumani

Abstract—This paper discusses a framework in which cat-
alog service communities are built, linked for interaction, and
constantly monitored and adapted over time. A catalog service
community (represented as a peer node in a peer-to-peer network)
in our system can be viewed as domain specific data integration
mediators representing the domain knowledge and the registry
information. The query routing among communities is performed
to identify a set of data sources that are relevant to answering a
given query. The system monitors the interactions between the
communities to discover patterns that may lead to restructuring
of the network (e.g., irrelevant peers removed, new relationships
created, etc.).

Index Terms—Catalog portals, e-catalogs, peer-to-peer (P2P),
self-adaptivity.

I. INTRODUCTION

ATALOG! portals, such as amazon.com or expedia.com,

are becoming a prominent feature of the World Wide
Web. However, the technology to organize, search, integrate,
and evolve these portals has not kept pace with the rapid growth
of the available information space. Currently, users need to
access a number of information portals separately, using search
engines, in order to collect relevant information. For example,
in a computer market scenario, users need access to several Web
portals (ones that are specialized in computer retail) separately,
manually filter and organize the search results to obtain the
complete picture of the products on offer. Clearly, to effectively
realize the potential of Web-based information access, there
is a need for facilitating the integrated access to relevant Web
information portals.

Another aspect to be noted in current portals is that their cen-
tralized and static categorization often results in a rigid struc-
ture that is difficult to change or maintain. The categorization
is designed to reflect the system designer’s point of view, who
has a priori expectations for how catalogs will be explored by
customers. It is necessary to take into consideration how the cat-
alogs are actually utilized by the customers as well as the portal
itself. This may continuously minimize the gap between expec-
tations of the system designer and customers. For example, if
observations show that a catalogs on laptops and a catalog on

Manuscript received June 8, 2004; revised October 11, 2004 and November
17, 2004. The work of B. Benatallah was supported in part by ARC Discovery
under Grant-DP0452942. This paper was recommended by the Guest Editors.

H.-Y. Paik is with the School of Information Systems, Queensland University
of Technology, Brisbane 4001, Australia (e-mail: h.paik @qut.edu.au).

B. Benatallah is with the School of Computer Science and Engineering,
University of New South Wales, Sydney 2052, Australia (e-mail: boualem@
cse.unsw.edu.au).

F. Toumani is with the LIMOS, ISIMA, University Blaise Pascal, Clermont
Ferrand 63173, France (e-mail: ftoumani @isima.fr).

Digital Object Identifier 10.1109/TSMCA.2004.846402

'We use catalogs and e-catalogs interchangeably.

handheld computers are visited together most of the time, the
system designer may decide to put them in the same category
rather than in separate categories.

In the project WS-CatalogNet [1], [2], we proposed a plat-
form through which catalog portals are built and interact with
one another. This enabled a potentially large number of catalogs
to act as one catalog to serve customers’ queries. The approach
is based on a hybrid of peer-to-peer (P2P) data management par-
adigm and Web services architecture. It uses the notion of cat-
alog service communities> where catalogs catering for similar
customer needs are grouped together [3], [4] and form a single
community (i.e., a peer node). Catalogs register themselves to a
catalog service community (hereafter, community) as members
and the communities themselves interact with other peers. Each
peer (i.e., the community) in WS-CatalogNet can be viewed as
a domain-specific data integration mediator, which holds meta-
data and registry information about its members (i.e., catalogs).
Queries are processed by the members of a peer, but routing of
the queries is a responsibility of the peers. It should be noted that
the purpose of the query routing in our system is to identify a set
of members that, when put together, can satisfy all constraints
required by a query. Hence, a routing takes place before the ac-
tual query process. Once a set of members (not necessarily from
the same peer) are identified, queries are sent to each member in
the set for processing. The results are combined by the original
community.

WS-CatalogNet work, so far, has focused on creating,
linking, and querying the community network. In this paper,
we investigate the ability to evolve from the initial design of
the system. The evolution may involve capabilities like “dis-
covering” members (i.e., catalogs) or other communities (i.e.,
peers), splitting a community, reforming the relationships, etc.
As communities are developed and relationships are formed,
the interactions between communities can be monitored. We
analyze the monitoring result to draw interaction patterns that
may trigger restructuring of the network. We also offer a set of
operations for restructuring community networks.

The paper proceeds as follows. Section II looks at the
related work. In Section III, we present the overview of
WS-CatalogNet. Section IV discusses the monitoring/adapting
techniques for restructuring of the community network. Sec-
tions V and VI describe the implementation and evaluation
results, followed by concluding remarks in Section VII.

II. RELATED WORK

The catalog portal framework proposed in WS-CatalogNet
combines the Web Services architecture and P2P data manage-
ment paradigm. Instead of developing a single global system

2The term service community comes from the fact that the community is im-
plemented as a Web service.

1083-4427/$20.00 © 2005 IEEE

https://core.ac.uk/display/10889990?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PAIK et al.: TOWARDS SELF-ORGANIZING SERVICE COMMUNITIES

or registry, we explore the possibility of using “P2P”-ed Web
services as a flexible and scalable framework for sharing data
across a large number of online sources.

Early P2P systems [5], [6] are based on the common objec-
tive: retrieval of a document or a file. Reference [7] offers a com-
prehensive survey of such systems. Our work is more in-line
with current efforts that leverage database paradigm with P2P,
binding a database capability with a peer [8], [9]. In this para-
digm, it is assumed that each peer has data to share, which re-
sides in a database. One of the relevant issues is to resolve the
semantic interoperability between peers. This involves a tech-
nique that allows a peer to express how its data relates to the
data in other peers (often known as a schema mapping). Using
the mapping information, a query posed on one peer can be re-
formulated to a query on another peer. In many ways, the work
in multidatabase systems (e.g., MOMIS [10], TSIMMIS [11],
etc.), and distributed query processing [12] still apply in this par-
adigm. In these systems, however, a user issues a query based on
a single global schema, and the system maps the query to sub-
queries that can be understood by the underlying data sources.
Typically, the data sources are assumed to be relational tables
only. Also, the global schema is created and maintained cen-
trally by a database designer. These approaches are not directly
applicable to the environment in which WS-CatalogNet oper-
ates. The data sources can be in any format, the number of par-
ticipating data sources may be large, and any data source may
enter or leave the system frequently. Therefore, this paradigm
calls for a more flexible and scalable approach.

The PeerDB project [13] uses a relational model to describe
the schema of a peer. It employs an information retrieval (IR)
approach for the query routing to avoid the explicit specifications
of mapping between peer schemas. The query reformulation is
assisted by an agent automatically identifying the mapping based
on a built-in strategy. On the other hand, Piazza [14] considers
using a global schema and schema mediation techniques in P2P
environments. Each peer schema is described using a relational
model. It proposes a language for specifying mappings among
peers and a query reformulation algorithm for translating the
global schema to a local peer schema. Hyperion [15] proposes
use of mapping tables which map data values (rather than
the schema) between two peers. Such mapping tables are
constructed by domain experts. These approaches assume no
knowledge about the underlying schema of the peers when
forwarding a query, but the efforts required to identify the
correct mappings are left with the users.

The systems mentioned above are based on the pure P2P ar-
chitecture, where individual data sources are connected directly
as peers, whereas in WS-CatalogNet, each peer is a data inte-
gration mediator (similar to the concept of super-peer in [16],
[17]) holding a registry/mapping information for the individual
data sources. This helps in organizing the available information
space into manageable, meaningful spaces. Also, the burden of
query reformulation/translation is distributed among the peers,
rather than the individual data sources. Another important dis-
tinction in our work is that WS-CatalogNet does not make any
assumption about the nature of the local data source whereas
other works we mentioned focus on either relational databases
or XML/RDF resources only.

409

To the best of our knowledge, little work has been done in ad-
dressing the issue of restructuring catalog community networks,
as tackled in this paper. There have been some related work in
similar areas (tuning P2P networks and ontology restructuring).
For example, [18] proposes a self-monitoring P2P network that
tunes itself according to the workload of a peer. The tuning is
based on break() and connect() operations. The network con-
cerned is set on the earlier models of P2P systems (i.e., simple
file sharing) and it does not consider ontological relationships
or interaction patterns between peers. Authors of [19] offer a
framework for an ontology discovery, reuse and evolution in
a distributed environment. Their work could potentially be ap-
plied to ours in the continuing maintenance of the registry/map-
ping information in a community.

III. WS-CATALOGNET: OVERVIEW

We first set the conceptual background of WS-CatalogNet
as a catalog portal framework [1]-[4]. After an overview of
WS-CatalogNet, we will then focus our discussion on moni-
toring and restructuring. The main ideas of WS-CatalogNet are
the concepts of catalog service communities and peer relation-
ships among them. Further details about the framework we pro-
pose for building and peering communities can be found in [2]
and [20]. Here, we only describe the concepts that are central to
understanding the monitoring/restructuring communities.

A. Catalog Service Communities

Fig. 1(a) shows the metadata model implemented by WS-Cat-
alogNet. A community is a container of catalogs of a specific
domain (e.g., community of Airlines, CarRentals). A commu-
nity ontology provides a description of desired products (e.g.,
airline tickets) without referring to an actual catalog provider
(e.g., Qantas Airlines). Catalog providers register their catalogs
into a community as members by exporting (all or part of) their
descriptions. Moreover, communities themselves can be linked
to facilitate interoperability across overlapping domains.

A community is described by a set of categories. A category,
in turn, is described by a set of attributes. Categories within a
community may be interrelated via the specialization (subsump-
tion) relationship. For example, in Fig. 1(b), the community
FlightCenter has the category Flights, which is described
using such attributes as arrival, departure, and price, etc., and the
category has two subcategories (i.e., specialization): domestic
and international.

To provide formal semantics, which are necessary for precise
characterization of queries over the communities, we use a (con-
cept) class description language that belongs to the family of
description logics [21]. In the following, we illustrate the main
constructs of this language via examples3.

In WS-CatalogNet, a community ontology is described in
terms of classes (unary predicates) and attributes (binary predi-
cates). Class descriptions are denoted by expressions formed by
means of the following constructors.

1) Class conjunction (M), e.g., the description Travel I1
Accommodation denotes the class of products which are

3A description of the syntax and semantics of the proposed language is pre-
sented in [2].

410

Peer Relationship

-
~

— ~

- S

Community ontology)

Exported
descriptions

Community ontology |
)

WS-CatalogNet
Metadata

Member
Registration

Member
Registration

Member
Registration

Provider
sources

E-catalog
provider

E-catalog
provider |

@

E-catalog
| provider

Fig. 1. Community ontology. (a) Metadata representation of the network. (b)
instances of the classes travel and accommodation (e.g.,
a hotel),

2) The universal attribute quantification (VRC'.), e.g., the
description VarrivalDate.Date denotes the class
of products for which all the values of the attribute
arrivalDate are instances of the class Date (i.e., the
data type of the attribute arrivalDate is Date),

3) The existential attribute quantification (3R), e.g., the de-
scription 3Price denotes the class of products having at
least one value for the attribute Price.

Category Definition: A category definition is specified as
follows. Cname = CatDescr, where 1) Cname is the name of
the category and 2) CatDescr is a class description that de-
fines Cname.

For example, using the language, the category Domestic
Flights in Fig. 1(b) can be described as follows:

DomesticFlights = Flightsll

VspecialService.String 1 d.specialService

This definition states that the category Domestic Flights
inherits all the attributes of the category F1ights, and has one
additional attribute, namely specialService.

We would like to emphasize that the use of a formal lan-
guage is transparent to community providers and users. Indeed,
WS-CatalogNet provides a graphical editor that supports a com-
munity provider in creating a community and defining the com-
munity ontology. After the definition of an ontology, the editor
automatically generates the class descriptions of the ontology
(i.e., class descriptions of all categories).

Member Definition: When a catalog is registered to a com-
munity, the catalog provider supplies a capability description
which specifies the categories and attributes of the community
ontology that are supported by the catalog. This form of in-
formation is referred to as a member definition or description.
Member definitions are also converted to class descriptions ex-
pressed using the description language and stored in the com-
munity meta-data repository.

A member definition specifies the query capabilities of a
given catalog as follows: Mname Dname = MDescr, where
Mname_Dname is a member definition name made of Mname,

Category Root

/

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Flights

Holiday

fromCity, toCity, departure
arrival, cabibClass, price

destinationCity
offerDescription

totalPrice

RentCars
pickuplLocation
dropOfLocation, noOfDays

T

DomesticFlights InternationalFlights Car
specialService fromCountry, foCountry Fuellndicator
Airbag -
[
RoundtheWorld
condition, route
* WordWideWeb
[Defn] Memb [Defn | Defn] Member
ember: Definition
‘e] STAFlightCentre (Defn | T e ention
Member: Member: ——> Subsumptior]
Qantas.com.au Flyhigh.com Category
(b)

A community definition (categories and members).

a member name (i.e., an unique identifier of a member), and
Dname, the name of a description. MDescr is a class descrip-
tion that specifies which products are actually provided by
this member. For example, the catalog £1yhigh. com, which
offers a range of flight information, can be registered with
FlightCentre using the following member definition:

flyhigh.com_International = InternationalFlights.

This definition states that flyhigh.com supports all attributes
in the category InternationalFlights as well as all
attributes inherited from the category Flights (as Inter-
nationalFlights is a subcategory of Flights). Each
member can provide several definitions. When registering with
a community, the catalog providers are in charge of providing
and maintaining the exported descriptions of their catalogs as
well as the wrapping utilities required to translate user queries
into the catalog native query models.

Community Definition: A community ontology consists of a
tuple CS = (C, S), where C is a set of category definitions,
S is a set of community names that have peer relationships
with the community. A catalog community consists of a tuple
CAT = (CO, M), where CAT is the community name, CO is
the community ontology, and M is a set of member definitions.
We assume that the set of class descriptions in a catalog com-
munity (i.e., category definitions and member definitions) is
acyclic, i.e., there does not exist cyclic dependencies between
class definitions.

B. Peering the Communities

Through a peer relationship between communities, they
forward queries to each other. To form a peer relationship,
community providers need to discover other communities
whose domains are relevant/similar to their communities. The
community registry is hosted by WS-CatalogNet for the pur-
pose. Typically, a provider of a community C; may decide to
form a peer relationship with another community C i if C4 has
categories that are considered analogous, or interchangeable to
Cj ’s categories (e.g., category Accommodation in commu-
nity Travels and category Budget Hotel in community
Hotels). When a link is formed, a weight (a value between 0 and

PAIK et al.: TOWARDS SELF-ORGANIZING SERVICE COMMUNITIES

1) is attached to the link as a way of indicating the “relevancy”
of the peer relationship.

C. Collaborative Query Processing Between Communities

This section explains our approach for the query reformu-
lation. We use a rewriting algorithm, called BQR,* that allows
to reformulate a community query® (), expressed as a class
description over the community ontology, into subqueries that
are expressed in terms of the community member definitions.
A novel feature of BQR is that besides the rewriting of the
community query, it also identifies parts of the query that
cannot be answered by any of the community members. This
feature forms the core of our collaborative query processing.

The algorithm takes as input a catalog community defi-
nition CAT = (€0, M) and a community query () which is
written in terms of the ontology CO. It then computes a set
of rewritings R(Q) {ri(@)}. A rewriting r; is a couple
Ty = (Qloca17 Qrcst) where 1) Qlocal = {(qj7mj)} is a set of
pairs (gj,m;) where ¢; is the part of the query @ that can be
answered by the member definition m; and 2) Qs is the part
of the query @ that cannot be answered by the members of the
actual community.

Let us consider a simplified example. Assume a
query “select flights from FlightCentre where
fromCity = Sydney,toCity = Paris,price < 2000

and Insurance = included.” The key attributes in this
query are {fromCity,toCity, price, Insurance}.
Assume that the outcome of BQR is: Qiocal =
{(fromCity, toCity, price),Qantas}, @ est =
{Insurance}. This means that the member Qantas
of FlightCentre community has fromCity, toCity,
and price information. However, there is no member in the
community who can answer Insurance. Therefore, to serve
the query, the community will collaborate with peers to identify
external member(s) who can provide the missing information.

Note that a query () can lead to several alternative rewritings.
For example, the Qjoca1 Of @ is not necessarily unique. That is,
there could be many members that can answer the same part of
the query. In [20], we introduced an utility function that selects
only those rewritings that maximize the user satisfaction with
respect to a given quality of service criteria (called best quality
rewritings).

In a nutshell, the query rewriting problem can be formally
stated as follows. Let C = {¢; = description;,7 € [1,n]} be
a set of class definitions corresponding to member definitions,
and let @ be a class definition that denotes a community query.
Then, can @@ be reformulated as a conjunction of class names
E=c¢,N...MN¢,,,withl <m <nandc;;, €C for 1<
7 < m, such that ' contains as much as possible of common
information with Q (E is called a rewriting of () using C)?

Of course, the complexity of this algorithm is transparent
to the users. The graphical query interface in WS-CatalogNet
lets the user easily formulate a query (by point&eclicks). The
user clicks a category and then selects attributes to be queried

4The readers are referred to [2] for details and proof of this algorithm.
5The term refers to the query that is submitted to a community by a user.

411

on, and specify values for the attributes if desired (e.g., “cate-
gory: Flights, attributes: destination, departure, price, values:
price < 20007). The query interface automatically converts the
user formulated query to a class description.

The collaborative query processing technique consists of two
steps. Whenever a query is submitted to a community C, it does
the following.

Step 1) Identify the combination of catalog members
whose query capabilities, when put together, satisfy all
constraints expressed in the query. The catalog mem-
bers can be local (i.e., belonging to C), or external (i.e.,
belonging to C’s peers). This step is realized by the
BQR algorithm and is referred to as Meta Query Stage.
Step 2) Send the subqueries to the identified members
and collect the results. This step is referred to as Actual
Query Stage.

Each community has a forwarding policy. This controls what
should be done with Q,st in the meta query stage. The for-
warding policy can express: 1) which part of the query should be
forwarded; 2) when the query should be forwarded (e.g., when
no local members can answer, when the community is too busy
etc.); 3) to which peer (e.g., all, top K, random, etc.) the query
should be forwarded; and 4) how far the query should be for-
warded (hop limit). From the previous example, the result of
forwarding may be Insurance,STA.BestTravel}, meaning
that BestTravel (a member of community STA) can provide
the Insurance information. It should be noted that, although
important, the issue of assembling actual results returned by se-
lected catalogs, is outside the scope of the discussion. As a naive
solution, we assume that every product information exists in
WS-CatalogNet carries a universal product identifier which is
uniquely understood (e.g., in the domain of flight tickets, the
flight number is unique). This identifier is used to combined
(i.e., join) the results returned from different members in the
actual query stage.

IV. RESTRUCTURING COMMUNITIES NET

In this section, we introduce an approach to monitor and adapt
the community network. The approach we propose consists of
the following three building blocks.

1) Logging community events: Any events occurring within
a community or between communities are logged. Such
events may include receiving a query from a user,
sending a query to a peer, receiving an error from a
member, etc.

2) Analyzing community interaction patterns: The event
logs reflect what kind of interactions exist between com-
munities. It is possible that over a period of time, such in-
teractions would form certain patterns (e.g., community
A sends a query to community B instead of community
C. The member M of community A does not respond to
queries most of the time, etc.). Among all possible pat-
terns, we predefine patterns of interests. Each pattern of
interest is linked with a restructuring operation. If any of
the patterns of interests is observed in the log, the system
will advise the administrator to perform the associated

412 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

TABLE 1
EXAMPLES OF THE COMMUNITY ACTIVITY EVENTS, NOTED &£

Meta Query Stage Event [Description

MQUserQryReceived(Togger, when, qry, qID)

When a community receives a query from the user. Togger is the name of the community who
is logging this event, when records the time of the event, qry is a string that contains the query
itself and qID is a unique identifier issued for the query for tracking purposes.

MQForwardedPeer (logger, to, when, qry-part, qID)

When a community forwards qry-part to the peer(s). Note that qID is a unique identifier issued
for the original query.

MQAnswerReceived (logger, from, when, answer,
qID)

When a community receives the corresponding result of the forwarding from one of its peers.

MQLogTimeOut (logger, from, qID)

When a community does not receive a response from a peer within a given time. from is the
peer community that failed to send the response back.

Actual Query Stage Event Description

AQPeerQryReceived (logger, from, when, qry, qID)

When a community receives the query that is to be Tocally executed by its members. from is
the sender, gry is the query that is to be executed.

AQSentLocalMember (logger, to, when, qry-part,

When a community sends the query to one of its members. to is the member of the community,

qlD) gry-part is the query that is to be executed.

AQLocalAnswerReceived (logger, from, when, ans, | When a community receives the corresponding result (ans) of the query processing from one
qlD) of its members.

AQExtAnswerReceived (logger, from, when, ans, | When a community receives the corresponding result of the query processing from an external
qlD) member of a peer.

operation. The operation can also be automatically per-
formed based on even condition action (ECA) rules de-
fined by the administrator.

3) Restructuring operations: An adaptation process is
realized by a set of community network restructuring
operations such as addPeer(),upgradePeer(),
mergeCommunities(), etc.

WS-CatalogNet realizes the above principles via Commu-
nity Monitor. Every individual community is associated
with a community monitor. It gives the community access to
the operational knowledge, such as interaction patterns (i.e.,
querying for a pattern) as well as a means for analyzing event
logs and invoking the restructuring operations.

Under the current implementation, an administrator (e.g.,
the community provider) would use the monitor to explicitly
search a pattern and perform restructuring operations. How-
ever, the design of the Community Monitor also supports
both automatic and manual execution of an action. The auto-
matic actions are controlled by monitoring policies designed
by administrators. The policies specify restructuring directives
via ECA rules. For example, a monitoring policy may specify
that a peer link will be disabled after a number of unsuccessful
query forwarding. Therefore, the complete process of moni-
toring, detecting possible restructuring needs and performing
the operations can be scheduled and automated via the policies.

In the remainder of the paper, a number of interaction pat-
terns and the restructuring operations will be discussed. Before
proceeding, we explain how the events are handled.

A. Event Collectors

Collecting events is facilitated by means of a logging service
called Event Collector. The community monitor captures
the events and sends them to the event collector for logging.°
To maintain a uniform way of tracking interactions, all event
collectors in WS-CatalogNet agree on the system-wide events
and their parameters to be logged. A subset of the events and
their parameters are shown in Table 1. Note that the events are

6Logging can be made either to a file or a database.

divided into two classes: Meta Query Stage events (names are
prefixed with MQ) and Actual Query Stage events (names are
prefixed with AQ). The MQ events occur during the first step of
query processing where the communities collaborate with each
other to identify the set of members (local and external) that are
relevant to a query. The AQ events occur in the second step of
query processing, where the community sends the subqueries to
the selected members and collect the results.

To make use of the log data, we make necessary transfor-
mation on the log file (e.g., cleansing, sessionising). The log
collected from a community is kept privately to the associated
community monitor. We make an assumption that the log from
all monitors can be shared by uploading them periodically to
a central location for more global analysis. Hence, the log is
analyzed in two scopes: local and global. In the local scope, a
community’s administrator uses the log from the community’s
monitor and focus on what kind of restructuring can be done
to the immediate peers (i.e., peers that are directly linked from
the community), as well as to the community. The global scope
analysis is carried out by WS-CatalogNet system administrators
using the log uploaded from all monitors. The restructuring in
the global scope focuses on having a global view of interactions
between all communities that otherwise not possible to detect
from looking at the local scope only.

B. Query Interaction Patterns

We now introduce a technique to assist the administrators to
make decisions as to what kind of adaptation should be done.
We propose predefined interaction sequences (PIS) as a means
to analyze community interaction patterns that may interest ad-
ministrators. A PIS represents an interaction pattern between
communities. The idea is that we associate a restructuring oper-
ation (e.g., removing a link, merging communities, adding a new
member to community, etc.) with a particular PIS. If an anal-
ysis shows that a particular PIS occurs frequently in the event
log, an action (i.e., the restructuring operation(s) which is as-
sociated with the PIS) is performed either automatically via a
monitoring policy, or manually by the administrator. A prede-
fined interaction sequence is formally defined as follows:

PAIK et al.: TOWARDS SELF-ORGANIZING SERVICE COMMUNITIES

[A] [B] Forward a query
/Ci\ i 1/;\ Peer
Timeout

Fig. 2. Interaction patterns for upgrading/downgrading peer relationship.

Definition 1: Predefined interaction sequence (PIS). £ de-
notes the set of all defined activity events (see Table I). A pre-
defined interaction sequence PIS of length n(0 < n) is a vector
of ordered events PIS = <ej,e,...,e, > wheree; € E(i =
1,...n). O

A PIS is matched against each query session’ in the log file
to check whether the sequence exists in the session. We refer to
the number of occurrence of a PIS in the log file as Frequency.?
In the following, we present some of the predefined interaction
sequences.

1) Local Scope Analysis: For the local scope analysis, the
PIS is matched against query sessions in a local log file of a
single community.

a) Upgrading/Downgrading Relationship: Consider an
interaction sequence in Fig. 2(A), this pattern is designed to
capture situations where community c; forward a query to
one of its peers c¢; and c¢; returns an answer. The fact that this
pattern occurs frequently implies that c; collaborates with c;
frequently and c; is responsive to ¢;’s query. In this case, the
administrator of ¢; may choose to upgrade the weight of the
relationship. We define the related PIS as follows.

Definition 2: (PIS,,.) (PIS upgrade) The pattern represents
the situation where a forwarding of a query to a peer (repre-
sented by the event MQForwardedPeer) is followed by a
return from the peer (represented by the event MQAnswer—
Received)

PISyp = (MQForwardedPeer(cj,cj,qid)
MQAnswerReceived(cj, cj,qid))

where c, c; are the names of communities and the qid, which
appears in all events, should be the same.

In the above sequence, c4 has forwarded a query to c4 and
c; returned a response.® If this pattern is found to be prevalent,
the weight of the relationship between c¢; and c¢; is increased.

On the other hand, Fig. 2(B) shows the pattern which is
designed to capture situations where community ¢; forward a
query to c¢; and ¢; does not return anything (i.e., timeout). This
may indicate that the given peer relationship is not responsive
and does not contribute positively in query sessions. If this
happens often, ¢; may downgrade the peer relationship. We
define the related PIS as follows.

7A query session is identified by the gid in the event.

8We refer readers to [3] for detailed description and issues related to frequency
of a pattern

9Any number of other events may come between the two events. However,
the order of events in a pattern is always respected.

413

1. Ci Forwards a query (Q_rest)

**** e

. \.3.Cisendsa query
. o Ck's member

o - (o
4, Ck’'s member returns ~~_ _ 70" Member
-~ 9 J

the actual answer =~~~ --

Fig. 3. Pattern to find a new member.

Definition 3: (PISqown) (PIS downgrade) The pattern rep-
resents the situation where a forwarding of a query to a peer is
always followed by a timeout

PISqoun = (MQForwardedPeer(cj,cj,qid)

?

Timeout(cj, cj,qid))

where ¢, ¢ are the names of communities and the qid, which
appears in all events, should be the same. If this pattern is found
to be prevalent, the weight of the peer relationship between c;
and c; is decreased.

b) Adding New Members: Fig. 3 illustrates a situation
where ¢; forward Qs to peer c;, and c¢; forward it to cj. ¢
lets ¢; know that a member of ¢j can answer Qyest. C; relays
it back to ¢;. Then, ¢; finally sends the query to the a member
of ci. That is, the figure summaries a situation where the part
of queries that could not be answered by ¢; frequently gets re-
solved by a member of ¢; eventually. If this happens frequently,
it may indicate that if the member of ¢, also becomes a member
of ¢;, ¢; would have not have to forward @), anymore (i.e., it
can be resolved locally).

Definition 4: (PISewmem-) (PIS newMember) The pattern
represents the situation where a community forward),est to @
peer who returns an identification of an external member that
can answer QQ,est- The community sends the query to the ex-
ternal member and receives the results.

PISnewmem = (MQForwardInitiated(cj, i qid)
MQAnswerReceived(cj,cj,qid)
AQSentExtMember(cy, Ck . members did)
AQAExtAnswerReceived(ci, ¢k . membersdid))

where cj, ¢y, cy are community names, c;.member denotes
the external member belonging to c. qid which appears in all
events should be the same.

If the above pattern occurs frequently, c¢; might consider
adding the member of ¢, to itself.

Using the community monitor the administrator would an-
alyze which query attributes frequently appear in Q,cst. The
attributes that most frequently appear in Qs is identified as
the “missing information” in the community. Once the missing
information is identified, the administrator may search, through

414 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Forward a query Forward a guery

(o) B—()
e 6.// _’3(\: 4

Answer is refurned
(Actual answer is from Ck)

\ Answer is returned

Stop-Over
(a)

: ™

,/- \? _— Cm/

| ca § N

Y, |

\\7.) =
//'7 : K Clogging Cj
[Ck g— a6 /=
\\, /\=F . : 7~ Overloaded ??
Forward the query from Ck

(b)

Fig. 4. Some global interaction patterns between communities. (a) Stopover (b) Clogging community.

the WS-CatalogNet’s registry, for new members who are ca-
pable of supporting the attributes, so that queries can be resolved
locally as much as possible.

2) Global Scope Analysis: The global scope analysis en-
ables the WS-CatalogNet administrators to see the interaction
between all communities involved in query sessions. We present
a few examples here.

Finding Stop-Over Communities: Consider the for-
warding scenario depicted in Fig. 4(a). The forwarding process
that involves communities c;, ¢, and ¢ shows that the answer
for c;’s query is actually obtained from cy, via c;. In this case,
it can be said that c; served as a stopover for ¢; to reach ci. If
this pattern occurs frequently, ¢; may decide to forward queries
directly to ci, bypassing c¢;. To detect situations like this, we
define a PIS as follows.

Definition 5: (PISgiopover). (PIS Stopover) The pattern
represents the situation where a forwarding process reveals a
stopover peer

PISstopover = (MQForwardInitiated(c;, Cjs qid)
MQForwardedPeer(Cj ,Ck,qid)
MQAnswerReceived(cJ- ,Ck,qid)
MQAnswerReceived(ci, cj,qid))

where ¢4, ¢, ¢ are community names and the qid, which ap-
pears in all events, should be the same.

c) Finding Clogging Communities: A community has a
limited capability in the number of queries that it can process
at a given time. In an environment like WS-CatalogNet, some
communities can be overloaded with too many requests (i.e.,
query processing) from peers at a given time. If such over-
loading frequently happens to a community, the administrator
of the community may consider performing some restructuring
(e.g., reducing the number of incoming peers). Furthermore, it
is worthwhile to investigate and identify who are the peers that
are causing the community’s overload (e.g., forwarding many
requests to the community). Such peers are said to be clogging
the community.

Consider a situation as illustrated in Fig. 4(b). Assume a com-
munity ¢; and its peer c;. Also, assume that c¢; is clogging c;
by forwarding the most queries to ¢; among other peers. Then,
the event log shows that ¢; subsequently forward the queries re-
ceived from ¢; to other peer (e.g., ¢). This means that ¢; can not
process the queries forwarded from c;. Hence, by forwarding
many queries to c¢;, ¢; is creating unnecessary workload for c;.

If this happens often, the administrator may decide to disable
the link between ¢; and c; (either temporarily, or permanently).
Consider the following pattern (which is observed for a given
period of time).

Definition 6: (PIS.1og). (PIS clog) The pattern represents the
situation where a community receives a query from a peer and
the query is subsequently forwarded to another peer

PISc1og = (MQPeerQryReceived(cj, cj,timen, qid),
MQForwardedPeer(cj, ¢), timep, qid))

where timep,timep represent the time-stamp of the event.
timep,timen € [6,7] where § and + are the period of time
this pattern is considered for.

If this pattern occurs frequently and c; has been overloaded
often, the link between c; and c; may be disabled.

d) Merging Two Communities: The pattern PIS cwmem
(Fig. 3) illustrates that ¢; continuously finds that members of
cr. is used to answer queries. Consider that the exactly same
sequence of interactions also happens from cj’s point of view.
That is, ¢y, also finds continuously that members of ¢; are used
in resolving cj’s Qrest- If these interactions are mutual, it may
be beneficial that ¢; and ¢, are merged and become one com-
munity. Fig. 5 depicts such scenario.

We have presented only a subset of possible patterns. There
are other interaction patterns defined (e.g., patterns for moni-
toring member’s quality, splitting a community, etc.) and the
administrators may also defined and save ad hoc patterns for
the future use. It is noted that the community monitor provides
a user interface to the PIS library where patterns are managed
(e.g., newly identified, created, updated, etc.)

C. Restructuring Operations

The community monitor is equipped with a set of restruc-
turing operations which are performed on communities and
their relationships. A few examples of such operations are:
addMember(), addPeer(), updatePeerR.elation(),
mergeCommunities() etc. These operations are used, for ex-
ample, to change the relationship between catalog communities
(e.g., update the weight of a relationship), add a new peer to a
community, or delete a peer link, etc.

The operations are divided into two classes: intracommunity
and intercommunity. Intracommunity operations will be per-
formed as a result of the local scope analysis. Intercommunity
operations are performed as a result of the global scope analysis.

PAIK et al.: TOWARDS SELF-ORGANIZING SERVICE COMMUNITIES

1.Ci quvcrds aquery (Q_rest)

3. Ci sends a query
~ s, to Ck’'s member

N

4. Ck'smember refurmns'~. "~~~ N
the actual answer = - -_ __ '(Mermber |

(a)

Fig. 5. A pattern for merging communities (a) Merge A (b) Merge B.

V. WS-CATALOGNET IMPLEMENTATION

In WS-CatalogNet, both catalogs and communities are pre-
sented as Web services.!® They can be described, advertised,
and discovered using (XML-based) standard languages, and in-
teract through standard Internet protocols. All services provide
a SOAP-based programmatic interface for packaging requests
and responses. These standards provide the building blocks
for the service API descriptions and communication protocols
interoperation, the two basic elements of any programmatic in-
teraction. The universal description, discovery, and integration
(UDDI) specification is used for directory functionality. We
used the IBM Web Services Development Kit 5.0 (WSDK),
which provides several components for developing Web ser-
vices. In particular, we used the UDDI Java API (UDDI4J) to
access a private UDDI registry (i.e., hosted by WS-CatalogNet),
as well as the WSDL generation tool for creating the WSDL
documents and SOAP service descriptors for the catalogs and
communities.

In UDDI registry, every Web service is assigned to a tModel.
A tModel provides a semantic classification of a service’s
functionality and a canonical description of its interface.
We have designed specific tModels for the catalogs as well
as for the communities. However, since the query mecha-
nism supported by WS-CatalogNet is more sophisticated
than what UDDI provides, UDDI is only used to adver-
tise and locate the communities. WS-CatalogNet provides
a generic community service, called CatalogNetSer-
vice. This service has a number of prebuilt operations
which provide the functionality necessary for supporting
query processing and the registration. In particular, the fol-
lowing operations are provided to support the proposed query
mechanisms: QueryProcessor(), QueryRouter(), and
ResultAssembler(). The operation QueryProcessor()
implements the BQR algorithm. The class QueryRouter()
operation is used for routing queries based on the forwarding
policies. The operation ResultAssembler is used for
combining and selecting relevant catalogs.

The runtime operation of a community service is defined
through the combination of CatalogNetService and

10The VLDB Journal: Special Issue on E-Services, 10(1), Springer-Verlag
Berlin Heidelberg, 2001

415

< - ---_ 4 Ck's member retums
M ST
[ember}‘ “--."~~._ the actual answer

3. Cksends @ quer\\/\\‘\
to Ci's member™- _*

\ 2. Cj returns a referral
v (Cjsays "Cicananswer’) -

~ L

1. Ck Forwards a quér;f (Q_rest)
(b)

community metadata including: community ontology, member
descriptions, P2P relationships, and forwarding policies. The
community ontology is encoded as XML documents. The ad-
vantage of this architecture is that the developers who want to
create a new community simply need to provide the necessary
meta-data information, such as a community ontology and
query forwarding policies. Tasks such as implementing the
query rewriting and forwarding mechanisms are delegated to
the generic service, thereby simplifying the development.

The Community Monitor implements the observation
and restructuring technique. It integrates modules such as the
event collector, PIS library, and the interface to the restructuring
operations.

VI. EXPERIMENTS AND RESULTS

We conducted several experiments and the results are re-
ported in the following.

A. Study on Restructuring the Network

Here, we looked at the effects of restructuring the commu-
nity network. Out of the patterns presented in this paper, we
chose two patterns: PISgiopover and PIS verioaded (a variation
of PIS.16g) for the study. Through the experiments, we would
like to demonstrate that, after restructuring:

1) the average response time per query session decreases.
Decrease in the response time would mean that restruc-
turing helps reduce the time that takes for a query to be
resolved.

2) the proportion of incomplete sessions decreases. The in-
complete sessions are the ones in which answers were
not returned. The reasons for an incomplete session are
time out, having no peer to which forward a query, and
exceeding the hop limit. Decrease in the proportion of
incomplete sessions would mean that restructuring helps
improve the chance of a query being resolved.

We have conducted our initial experiments in a simulated en-
vironment, in which we created communities as Java objects.
Communities have their independent states and query capabili-
ties. They autonomously invoke operations to process query and
forward queries.

416 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

l l

‘ Query is received LAnswer to forwarding is |

| From Peer

l ‘ Relay the answer back to |

\ (- — the original requestor
Check Local Data | [check forwarding policy)

I J

>

received from Peer

[Forwarding is
y not allowed]

[Cannot Answer i

All Part of Query] L[Forwarding is

[Can Answer
All Part of

the Queryl allowed]

Return answer to ‘

the original requestor) | cpock current hop limit)

[limit is
execeeded]

[Hop limit is
not execeeded]

[Forward to peer)

! v

® (O] (O] ® O]

Fig. 6. Individual community’s behavior.

1) Setup: Each community is a Java object which runs
autonomously on an Intel Pentium IV 1.2-GHz machine with
512 MB of memory. A community is associated with an XML
file which includes: a local data set, forwarding policy, and a
list of its immediate peers. The local data set is a collection of
metadata that describes community category definitions and
member definitions. This is to represent the community’s query
capability. For the forwarding policy, each community specifies
when to forward a query (e.g., only when query cannot be an-
swered locally, or always) and how many “hops” are allowed.
Queries used in the simulations are a set of keywords (randomly
chosen from a pool of possible keywords). Each community has
been assigned to a monitor to capture events such as receiving
queries, forwarding queries etc. The monitor creates the entries
to the log. The behavior of a community when processing a
query is presented as a UML activity diagram in Fig. 6. Note
the session will also end when the community has no peers
(i.e., leaf node in the WS-CatalogNet graph). The basic steps
of the experiments are as follows:

1) generate an instance of WS-CatalogNet.

2) run 10000 query sessions.

3) collect the log and the measurement: response time and
number of incomplete sessions.

4) from the log, see if the chosen pattern exists.

5) perform a restructuring operation according to what the
pattern suggests.

6) with the “restructured” WS-CatalogNet, run the same
10000 query sessions.

7) collect the measurements again and do a “before and
after” comparison.

The program that launches each simulation takes three pa-
rameters: 1) RLoc, the location of the XML file; 2) Qfile, the
file that contains keywords for querying; and 3) MaxRun, how
many query sessions should be created. When the simulation
starts each test run, it does the following.

1) It randomly picks, from Qfile, a query () to be issued
for the session.

(a) (b (©

Fig. 7. WS-CatalogNet topologies considered, (a)
Centralized + Decentralized (c¢) Decentralized.

Hierarchy, (b)

2) It randomly picks, from the XML file, the first commu-
nity to which @) is submitted.
3) It repeats until MaxRun has reached.

Once a community receives a query from the simulation
launcher, it autonomously starts processing the query according
to the behavior defined as in Fig. 6.

We designed several different scenarios with the purpose of
demonstrating the objectives we set out. In the first scenario,
we tried the experiments on different P2P topologies as shown
in Fig. 7. These topologies are the ones that we believe suit the
WS-CatalogNet framework, since they are not centralized.

In the second scenario, we tried the experiments on different
sizes of the network; 50, 100, 200, 400, and 800 communities. In
the third scenario, with the decentralized topology, we studied
the clogging pattern.

2) First Scenario: In this scenario, we focused on finding
the stopover communities. That is, from the event log obtained
from the simulation, we searched for the sequence of events
specified in the PISsopover pattern. For example, we looked for
sequences of events like the following (here, a query was for-
warded, from c1 to c2, then from c2 to c6.):

(MQForwardedPeer(cl, c2),MQPeerQryReceived(c2,cl)
MQForwardedPeer(c2, c6),MQPeerQryReceived(c6, c2)
MQAnswerReceived(c2, c6),MQAnswerReceived(cl, c2)).

To collect the “before-restructuring” data, we ran the simu-
lation and obtained the global event log. Then, we searched the
log for the PISgiopover pattern in various lengths (length here
indicates the number of communities involved in the pattern).
We wrote a Perl script for searching and counting of these
patterns. The script also collected the average response time
for each session, and the number of incomplete sessions. We
identified the five most frequent PISgiopover patterns, which
identified five new peer relationships between communities.
We performed createPeer() operation, and ran the simula-
tion again to collect the “after-restructuring” data. The result
is presented in Table II.

The result showed that the restructuring performed improved
both the IncompsS and RTime measures in all topologies con-
sidered. However, the improvement was most significant in the
decentralized model. This is an encouraging observation since
the WS-CatalogNet framework assumes a decentralized model.

3) Second Scenario: In the second scenario, we tried the
same experiments as the first scenario, but on different sizes of

PAIK et al.: TOWARDS SELF-ORGANIZING SERVICE COMMUNITIES

TABLE 1I
RESULT OF THE FIRST SCENARIO
Hierarchy
IncompS R.Time Summary
Before | After || Before | After || IncompS | R.Time
Run #1 6016 4382 9 7 Down Down
Run #2 5593 4491 10 8 by by
Run #3 6106 3801 9 7 28% 21%
Hybrid (Centralized+Decentralized)
IncompS R.Time Summary
Before | After || Before | After IncompS | R.Time
Run #1 5629 3492 9 8 Down Down
Run #2 6162 3580 11 9 by by
Run #3 7780 4842 11 9 39% 16%
Decentralized
IncompS R.Time Summary
Before | After Before | After IncompS | R.Time
Run #1 5121 1183 10 8 Down Down
Run #2 5753 1630 11 9 by by
Run #3 5017 1390 11 9 73% 18%

R.Time: Average Response Time (in millisec)
IncompS: No of Incomplete Sessions (out of 10,000 sessions)
3750

3500 "N\\
3250 \
3000 a
2750 3
2500
2250 -
2000 -
1750 4
1500
1250 -
1000
750
500 —
250
Size 50

4000

o Before
+ After

Avg. No. of Incormplete Sessions

| | I |
Size100 Size 200 Size 400 Size 800

No. of Nodes

Fig. 8. Second scenario: different sizes of the network.

the network (i.e., different number of nodes in WS-CatalogNet).
This time, we fixed the topology to a decentralized model. The
result is shown in Fig. 8. The numbers shown are the average
values of three test runs in each setting (i.e., three runs for the
size-50 network, both before and after restructuring). The graph
shows that regardless of the size, a significant improvement was
made after the restructuring.

4) Third Scenario: In this scenario,!! we focused on finding
the most overloaded community and identifying the peers that
are overloading the community. We searched for the sequence
of events specified in the PIS,ver10aa pattern. For example, we
looked for sequences of events like the following (here, c1 has
forwarded a query to c¢2, giving c2 the work):

(MQForwardedPeer(c1, c2),MQPeerQryReceived(c2, c1)).

Once such communities, that is a) overloaded ones and b) the
top K number of peers that made them overloaded, are identi-
fied, we tried two different restructuring operations. 1) Disable,

1This scenario was tested on an Intel Pentium III 863-MHz machine, with
256 MB of memory.

417

TABLE III
RESULT OF THE THIRD SCENARIO

Disable Link

IncompS R.Time A.Wrkload
Before | After Before | After Before After
712 437 550 300 5.4 2.7

IncompS 46%] [[R.Time 39%] || A.Wrkload 50%]
Change Policy

IncompS R.Time A.Wrkload
Before | After Before | After Before After
712 397 550 310 54 2.9

IncompS 44%]| [[R.Time 45%] || A.Wrkload 47%]
R.Time: Average Response Time (in millisec)
IncompS: No of Incomplete Session (out of 5,000)
A.Wrkload: Average Workload (o——oofrequests)

Max capacity of community

temporarily, the peer links between the overloaded community
and the communities in (b). 2) Change the forwarding policy
of the communities in (b) so that they forward less queries to
others.

To measure the effectiveness of this restructuring, we collect
extra measurement, workload beside the usual measurements.
We defined the workload as the ratio of the number of requests
a community receives over its maximum capacity. Each com-
munity’s maximum capacity was allocated based on the av-
erage number of requests a community received in the past (e.g.,
from a few runs of simulations). The expectation was to see the
average workload decreasing after restructuring. The result is
shown in Table III. Again, the numbers presented are the av-
erage values of three test runs. The results indicate that both
“disabling links” and “changing the policy” are effective ways
of reducing the workload. The disabling link is slightly better
in terms of reducing the number of incomplete sessions and the
average workload.

B. Study on Various Network Parameters

In this study, we focused on investigating the effects of var-
ious network parameters on the query performance. Again, a
decentralized model is used for the P2P topology. The query
performance is measured by comparing, for each community,
the total number of queries issued, the number of queries that
are resolved (Resolved), the number of queries that are not
resolved (Unresolved) and the average response time in re-
solved sessions (Rtime), the average response time in unre-
solved sessions (Ftime), in difference test cases.

All communities are implemented as Web services (a Java
servlet running on Apache Tomcat 4.1.18/Apache AXIS 1.1).
We used 30 machines,'? each machine hosts a single commu-
nity which is running as a Web service. The network topology
information is dynamically generated and loaded to a central
controller node!* before running each batch of experiments.
Each community provides a number of SOAP services such as
processing queries, forwarding queries, managing a forwarding
policy, logging, etc.

1ZA11 Intel Pentium III, 850 Mhz, 256 RAM, operating on Debian Linux.

13The controller node is only responsible for initializing the P2P network of
communities and is not involved in routing.

418 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Client Peer A Peer B Peer C
Query (A B, C) |
j Resolved(A)
Query (B, C) N
-‘ Query (B, C)
Resolved(B)
Return (B) Resolved(C)
Return (C)
Aggregate Result
Set{A B, C}
" Resolved [A. 8. G
Fig. 9. Successful query process.
Client Peer A Peer B Peer C
Query (A B, C) [
:| Resolved(A)
Query (B, C) R
Query (B, C)
Resolved(C)
Return (C)

Timeout for Peer A

Aggregate Result
Set{A C}

" Unresolved [A. C}

j Resolved(B)

Return (B)

:| Discard (B)

Fig. 10. Unsuccessful query process.

The forwarding policies of a community have two settings:
MultiCast and UniCast. In the multicast setting, the com-
munity forward a Q. to all of its known peers, whereas in the
unicast setting, a single peer is chosen at random for forwarding.
The exact behavior of a community is depicted in Figs. 9 and
10. We used four sets of test cases, each containing 1000 ran-
domized queries. To ensure that the randomly generated queries
are not biased, the each test case is executed five times with a
new pseudorandom generation sequence. At the end of every
run, statistics are collected for each community to show the total
number of queries issued, the number of queries that resolves,
the number of unresolved queries, and response time. The final
statistics gathered are the result of the average values from five
runs. Out of all the test cases considered, we report the results
on varying the hop count and the size of the network.

1) Case One: Varying Hop Counts: In this test case, we
varied the hop count setting for each community, ranging from
one to ten. The forward policy was set to Unicast and the
test case included 1000 query runs. Note that the response

5000 —

4500 —+

4000 —+

3500 —o—1

3000 —+

2500 — O Rtime
+ Ftime

2000 — ¥ Resolved
4 Unresolved

1500

1000

500 -
0

505,108 0%, 100 0 08, 10 0% 00y 0P

Fig. 11. Case one results.

900 -
800 —
700 -4
600 —
\ L

T

500 - e ® 10-Peers
4 20-Peers

400 - ¥ 30-Peers

300

200

100

I I I I I 1 1 1
10- 15- 20- 25- 30- 35- 40- 45- 50-
att att att att att att att att att

Fig. 12. Case two results.

time is not considered here because it is clearly expected that
the higher the hop counts, the longer the response time. The
performance of a community is measured by Resolved (see
Fig. 11). Note that the numbers in the figure are the average
values of five runs in each setting.

The results have shown that with the increasing number of
hops, there is a proportional increase in the number of resolved
queries. However, after 5-hop and onwards the increase has
slowed down and by the 8-hop setting, the number of resolved
queries did not show much differences.

2) Case Two: Varying the Size of the Network and the
Number of Constraints in A Query: In this test case, we
studied the relationship between the community’s performance
and the size of the network and the number of constraints in
the queries. The size of the network varied from 10 to 30 peers
and the number of constraints in a query ranged from 10 to
50.14 From the result (see Fig. 12), it can be clearly seen that
the 15-constraint setting seemed to result in the highest
number of resolved queries (for all sizes of the network). The
size of the network does not appear to affect the number of
resolved queries. As shown in Fig. 12, there is a slight tendency

14The number of community category attributes in a query is used as the con-
straints.

PAIK et al.: TOWARDS SELF-ORGANIZING SERVICE COMMUNITIES

for the performance to degrade as the number of the constraints
or the number of peers increases, but this is definitely sublinear.

VII. FUTURE WORK

We have proposed a framework which supports integration
and evolution of catalog portals using the P2P data manage-
ment paradigm. Future work includes: 1) managing changes in
community ontology (e.g., propagation of the changes to peers
and its members); 2) automated discovery of potential com-
munity members and monitoring community-member interac-
tions; and 3) further simulation studies on restructuring in a very
large-scale systems over time.

ACKNOWLEDGMENT

The authors thank M. P. Domez and V. Liu for their invaluable
contribution in the experiments.

REFERENCES

[1] K.Baina, B. Benatallah, H. Paik, F. Toumani, C. Rey, A. Rutkowska, and
H. Susanto, “WS-CatalogNet: An infrastructure for creating, peering,
and querying e-Catalog communities,” in Proc. VLDB, Toronto, Canada,
Aug. 2004, pp. 1325-1328. demonstration paper.

[2] B. Benatallah, M.-S. Hacid, H. Paik, C. Rey, and F. Toumani, “To-
ward semantic-driven, flexible and scalable framework for peering
and querying e-Catalog communities,” Inform. Syst. J., 2005, to be
published.

[3] H.Paik, B. Benatallah, and R. Hamadi, “Dynamic restructuring of e-Cat-
alog communities based on user interaction patterns,” WWW J., vol. 5,
no. 4, pp. 325-366, 2002.

[4] A. Bouguettaya, B. Benatallah, L. Hendra, M. Ouzzani, and J. Beard,
“Supporting dynamic interactions among web-based information
sources,” [EEE Trans. Knowledge Data Eng., vol. 12, no. 5, pp.
779-801, Sep./Oct. 2000.

[5] B. Yang and H. Garcia-Molina, “Comparing hybrid peer-to-peer sys-
tems,” in Proc. VLDB, Rome, Italy, Sep. 2001, pp. 561-570.

[6] A.Crespo and H. Garcia-Molina, “Routing indexes for peer-to-peer sys-
tems,” in Proc. ICDCS, Vienna, Austria, Jul. 2002, pp. 23-35.

[7] S. Joseph and T. Hoshiai, “Decentralized meta-data strategies: Effec-
tive peer-to-peer search,” IEICE Trans. Commun., vol. E86-B, no. 6, pp.
1740-1753, Dec. 2003.

[8] P.Bernstein, F. Giunchigiloa, A. Kementsietsidis, J. Mylopoulos, L. Ser-
afini, and I. Zaihrayeu, “Data management for peer-to-peer computing:
A vision,” in Proc. WebDB, Madison, WI, Jun. 2002, pp. 89-94.

[9] S.Bergamaschi, F. Guerra, and M. Vincini, “A peer-to-peer information
system for the semantic web,” in Proc. AP2PC, Jul. 2003, pp. 113-122.

[10] D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini, “The

momis approach to information integration,” in Proc. ICEIS, Setibal,

Portugal, Jul. 7-10, 2001, pp. 194-198.

S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-

stantinou, J. D. Ullman, and J. Widom, “The TSIMMIS project: Integra-

tion of heterogeneous information sources,” in Proc. IPSJ, Tokyo, Japan,

Oct. 1994, pp. 7-18.

[12] D.Kossmann, “The state of the art in distributed query processing,” ACM
Comput. Survey, vol. 32, no. 4, pp. 422-469, 2000.

[13] W.Ng, B. Ooi, K. Tan, and A. Zhou, “PeerDB: A P2P-based system for
distributed data sharing,” in Proc. ICDE, Bangalore, India, Mar. 2003,
pp. 633-644.

[14] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov, “Schema mediation in
peer data management systems,” in Proc. ICDE, Bangalore, India, Mar.
2003, pp. 505-518.

(1]

419

[15] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and
J. Mylopoulos, “The hyperion project: From data integration to data co-
ordination,” SIGMOD Record, vol. 32, no. 3, pp. 53-58, 2003.

[16] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunk-
horst, and A. Lser, “Super-peer-based routing and clustering strategies
for RDF-based peer-to-peer networks,” in Proc. WWW, Budapest, Hun-
gary, May 2003, pp. 536-543.

[17] B. Yang and H. Garcia-Molina, “Designing a super-peer network,” in
Proc. ICDE, Bangalore, India, Mar. 2003, pp. 49-62.

[18] B. Cooper and H. Garcia-Molina, “Ad Hoc, Self-Supervising Peer-to-
Peer Search Networks,” Database Research Group, Tech. Rep., Stanford
Univ., Stanford, California, Tech. Rep., Feb. 2003.

[19] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz, “An in-
frastructure for searching, reusing and evolving distributed ontologies,”
in Proc. WWW, Budapest, Hungary, May 2003, pp. 439-448.

[20] B. Benatallah, M.-S. Hacid, H.-Y. Paik, C. Rey, and F. Toumani,

“Peering and Querying e-Catalog Communities,” Tech. Rep.

UNSW-CSE-TR-0319, Comput. Sci. Eng., Univ. New South

Wales, Sydney, Australia, ftp:/ftp.cse.unsw.edu.au/pub/doc/pa-

pers/UNSW/0319.pdf, 2003.

The Description Logic Handbook. Theory, Implementation and Appli-

cations, Cambridge Univ. Press, Cambridge, U.K., 2003.

[21]

Hye-Young (Helen) Paik received the Ph.D. degree
in computer science from the University of New
South Wales, Sydney, Australia.

She is a Lecturer at the School of Information
Systems, Queensland University of Technology,
Brisbane, Australia. Her research interests include
peer-to-peer data management systems and person-
alization issues in Web services.

Prof. Paik is a Member of IEEE Computer Society
and the ACM.

Boualem Benatallah (M’01) received the Ph.D. de-
gree in computer science from Grenoble University,
IMAG, Grenoble, France, in 1996.

He is a Senior Lecturer at the University of New
South Wales, Sydney, Australia. He has published
widely in international journals and conferences
including the IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, the Very Large Data
Base journal, the International Conference on Data
Engineering, and the ACM WWW. His research
interests include Web services, semantics Web, and
autonomous data sharing.

Prof. Benatallah is a Member of the ACM.

Farouk Toumani is a Senior Lecturer at the School
of Engineering in Computer Science, Modeling and
Applications (ISIMA), University Blaise Pascal,
Clermont Ferrand, France.

He has published widely in international journals
and conferences such as the International Conference
on Data Engineering, IEEE Internet Computing, the
Very Large Data Base, and the Information Systems
Journal. His research interests include Web services,
semantics Web, and knowledge representation for
databases.

	toc
	Toward Self-Organizing Service Communities
	Hye-Young Paik, Boualem Benatallah, Member, IEEE, and Farouk Tou
	I. I NTRODUCTION
	II. R ELATED W ORK
	III. WS-C ATALOG N ET: O VERVIEW
	A. Catalog Service Communities

	Fig.€1. Community ontology. (a) Metadata representation of the n
	Category Definition: A category definition is specified as follo
	Member Definition: When a catalog is registered to a community,
	Community Definition: A community ontology consists of a tuple $
	B. Peering the Communities
	C. Collaborative Query Processing Between Communities
	IV. R ESTRUCTURING C OMMUNITIES N ET

	TABLE I E XAMPLES OF THE C OMMUNITY A CTIVITY E VENTS, N OTED ${
	A. Event Collectors
	B. Query Interaction Patterns

	Fig.€2. Interaction patterns for upgrading/downgrading peer rela
	Definition 1: Predefined interaction sequence (PIS). ${\cal E}$
	1) Local Scope Analysis: For the local scope analysis, the PIS i
	a) Upgrading/Downgrading Relationship: Consider an interaction s

	Definition 2: $({\rm PIS}_{\rm up}.)$ (PIS upgrade) The pattern

	Fig.€3. Pattern to find a new member.
	Definition 3: $({\rm PIS}_{\rm down})$ (PIS downgrade) The patte
	b) Adding New Members: Fig.€3 illustrates a situation where $c_i

	Definition 4: $({\rm PIS}_{\rm newmem}.)$ (PIS newMember) The pa

	Fig.€4. Some global interaction patterns between communities. (a
	2) Global Scope Analysis: The global scope analysis enables the
	Finding Stop-Over Communities: Consider the forwarding scenario

	Definition 5: $({\rm PIS}_{\rm stopover})$. (PIS Stopover) The
	c) Finding Clogging Communities: A community has a limited capab

	Definition 6: $({\rm PIS}_{\rm clog})$. (PIS clog) The pattern
	d) Merging Two Communities: The pattern ${\rm PIS}_{\rm newmem}$

	C. Restructuring Operations

	Fig.€5. A pattern for merging communities (a) Merge A (b) Merge
	V. WS-C ATALOG N ET I MPLEMENTATION
	VI. E XPERIMENTS AND R ESULTS
	A. Study on Restructuring the Network

	Fig.€6. Individual community's behavior.
	1) Setup: Each community is a Java object which runs autonomousl

	Fig.€7. WS-CatalogNet topologies considered, (a) Hierarchy, (b)
	2) First Scenario: In this scenario, we focused on finding the s
	3) Second Scenario: In the second scenario, we tried the same ex

	TABLE II R ESULT OF THE F IRST S CENARIO
	Fig.€8. Second scenario: different sizes of the network.
	4) Third Scenario: In this scenario, 11 we focused on finding th

	TABLE III R ESULT OF THE T HIRD S CENARIO
	B. Study on Various Network Parameters

	Fig.€9. Successful query process.
	Fig.€10. Unsuccessful query process.
	1) Case One: Varying Hop Counts: In this test case, we varied th

	Fig.€11. Case one results.
	Fig.€12. Case two results.
	2) Case Two: Varying the Size of the Network and the Number of C
	VII. F UTURE W ORK
	K. Baina, B. Benatallah, H. Paik, F. Toumani, C. Rey, A. Rutkows
	B. Benatallah, M.-S. Hacid, H. Paik, C. Rey, and F. Toumani, Tow
	H. Paik, B. Benatallah, and R. Hamadi, Dynamic restructuring of
	A. Bouguettaya, B. Benatallah, L. Hendra, M. Ouzzani, and J. Bea
	B. Yang and H. Garcia-Molina, Comparing hybrid peer-to-peer syst
	A. Crespo and H. Garcia-Molina, Routing indexes for peer-to-peer
	S. Joseph and T. Hoshiai, Decentralized meta-data strategies: Ef
	P. Bernstein, F. Giunchigiloa, A. Kementsietsidis, J. Mylopoulos
	S. Bergamaschi, F. Guerra, and M. Vincini, A peer-to-peer inform
	D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini, The m
	S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papa
	D. Kossmann, The state of the art in distributed query processin
	W. Ng, B. Ooi, K. Tan, and A. Zhou, PeerDB: A P2P-based system f
	A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov, Schema mediation
	M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Mil
	W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I.
	B. Yang and H. Garcia-Molina, Designing a super-peer network, in
	B. Cooper and H. Garcia-Molina, Ad Hoc, Self-Supervising Peer-to
	A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz, An
	B. Benatallah, M.-S. Hacid, H.-Y. Paik, C. Rey, and F. Toumani,
	The Description Logic Handbook. Theory, Implementation and Appli

