493 research outputs found

    Regionalization of landscape pattern indices using multivariate cluster analysis

    Get PDF
    This project was funded by the Government of Canada through the Mountain Pine Beetle Program, a six-year, $40 million program administered by Natural Resources Canada, Canadian Forest Service. Additional information on the Mountain Pine Beetle Program may be found at: http://mpb.cfs.nrcan.gc.ca.Regionalization, or the grouping of objects in space, is a useful tool for organizing, visualizing, and synthesizing the information contained in multivariate spatial data. Landscape pattern indices can be used to quantify the spatial pattern (composition and configuration) of land cover features. Observable patterns can be linked to underlying processes affecting the generation of landscape patterns (e.g., forest harvesting). The objective of this research is to develop an approach for investigating the spatial distribution of forest pattern across a study area where forest harvesting, other anthropogenic activities, and topography, are all influencing forest pattern. We generate spatial pattern regions (SPR) that describe forest pattern with a regionalization approach. Analysis is performed using a 2006 land cover dataset covering the Prince George and Quesnel Forest Districts, 5.5 million ha of primarily forested land base situated within the interior plateau of British Columbia, Canada. Multivariate cluster analysis (with the CLARA algorithm) is used to group landscape objects containing forest pattern information into SPR. Of the six generated SPR, the second cluster (SPR2) is the most prevalent covering 22% of the study area. On average, landscapes in SPR2 are comprised of 55.5% forest cover, and contain the highest number of patches, and forest/non-forest joins, indicating highly fragmented landscapes. Regionalization of landscape pattern metrics provides a useful approach for examining the spatial distribution of forest pattern. Where forest patterns are associated with positive or negative environmental conditions, SPR can be used to identify similar regions for conservation or management activities.PostprintPeer reviewe

    Earth Observation-Based Dwelling Detection Approaches in a Highly Complex Refugee Camp Environment - A Comparative Study

    Get PDF
    For effective management of refugee camps or camps for internally displaced persons (IDPs) relief organizations need up-to-date information on the camp situation, that can be provided by Earth observation (EO). In this study, different approaches were tested using the example of a highly complex camp site in Somalia.Si loogu sameeyo maareen rasmi ah xereyinka qaxootiga iyo barakacayaasha gudaha dalka, ururada samafalku waxay u baahanyihiin xog ama warar cusub oo ku saabsan xaaladaha xerooyinka. Haddaba daraasaadkan wuxuu si gaar ah u baarayaa xero ku taalla Soomaaliya.Per una gestione efficace dei campi profughi o campi per sfollati interni (IDPs), le organizzazioni umanitarie hanno bisogno di informazioni aggiornate sulla situazione del campo, che possono essere fornite con osservazioni della Terra dallo spazio (EO). In questo studio, diversi approcci sono stati testati partendo dal caso di un campo molto complesso in Somalia

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Family names as indicators of Britain’s changing regional geography

    Get PDF
    In recent years the geography of surnames has become increasingly researched in genetics, epidemiology, linguistics and geography. Surnames provide a useful data source for the analysis of population structure, migrations, genetic relationships and levels of cultural diffusion and interaction between communities. The Worldnames database (www.publicprofiler.org/worldnames) of 300 million people from 26 countries georeferenced in many cases to the equivalent of UK Postcode level provides a rich source of surname data. This work has focused on the UK component of this dataset, that is the 2001 Enhanced Electoral Role, georeferenced to Output Area level. Exploratory analysis of the distribution of surnames across the UK shows that clear regions exist, such as Cornwall, Central Wales and Scotland, in agreement with anecdotal evidence. This study is concerned with applying a wide range of methods to the UK dataset to test their sensitivity and consistency to surname regions. Methods used thus far are hierarchical and non-hierarchical clustering, barrier algorithms, such as the Monmonier Algorithm, and Multidimensional Scaling. These, to varying degrees, have highlighted the regionality of UK surnames and provide strong foundations to future work and refinement in the UK context. Establishing a firm methodology has enabled comparisons to be made with data from the Great British 1881 census, developing insights into population movements from within and outside Great Britain

    Comparison of high-resolution NAIP and unmanned aerial vehicle (UAV) imagery for natural vegetation communities classification using machine learning approaches

    Get PDF
    To map and manage forest vegetation including wetland communities, remote sensing technology has been shown to be a valid and widely employed technology. In this paper, two ecologically different study areas were evaluated using free and widely available high-resolution multispectral National Agriculture Imagery Program (NAIP) and ultra-high-resolution multispectral unmanned aerial vehicle (UAV) imagery located in the Upper Great Lakes Laurentian Mixed Forest. Three different machine learning algorithms, random forest (RF), support vector machine (SVM), and averaged neural network (avNNet), were evaluated to classify complex natural habitat communities as defined by the Michigan Natural Features Inventory. Accurate training sets were developed using both spectral enhancement and transformation techniques, field collected data, soil data, texture, spectral indices, and expert knowledge. The utility of the various ancillary datasets significantly improved classification results. Using the RF classifier, overall accuracies (OA) between 83.8% and 87.7% with kappa (k) values between 0.79 and 0.85 for the NAIP imagery and between 87.3% and 93.7% OA with k values between 0.83 and 0.92 for the UAV dataset were achieved. Based on the results, we concluded RF to be a robust choice for classifying complex forest vegetation including surrounding wetland communities

    Evaluation of hierarchical segmentation for natural vegetation: a case study of the Tehachapi Mountains, California

    Get PDF
    abstract: Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.Dissertation/ThesisM.A. Geography 201
    • 

    corecore