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Comparison of high-resolution NAIP and unmanned aerial vehicle (UAV) imagery 
for natural vegetation communities classification using machine learning 
approaches
Parth Bhatt and Ann L Maclean

College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA

ABSTRACT
To map and manage forest vegetation including wetland communities, remote sensing technol-
ogy has been shown to be a valid and widely employed technology. In this paper, two ecologically 
different study areas were evaluated using free and widely available high-resolution multispectral 
National Agriculture Imagery Program (NAIP) and ultra-high-resolution multispectral unmanned 
aerial vehicle (UAV) imagery located in the Upper Great Lakes Laurentian Mixed Forest. Three 
different machine learning algorithms, random forest (RF), support vector machine (SVM), and 
averaged neural network (avNNet), were evaluated to classify complex natural habitat commu-
nities as defined by the Michigan Natural Features Inventory. Accurate training sets were devel-
oped using both spectral enhancement and transformation techniques, field collected data, soil 
data, texture, spectral indices, and expert knowledge. The utility of the various ancillary datasets 
significantly improved classification results. Using the RF classifier, overall accuracies (OA) between 
83.8% and 87.7% with kappa (k) values between 0.79 and 0.85 for the NAIP imagery and between 
87.3% and 93.7% OA with k values between 0.83 and 0.92 for the UAV dataset were achieved. 
Based on the results, we concluded RF to be a robust choice for classifying complex forest 
vegetation including surrounding wetland communities.
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1. Introduction

A key goal of forest management is to maintain and 
preserve natural biodiversity and protect the pristine 
landscape (Lindenmayer and Franklin 2002) by using 
efficient, affordable science-based practices. In order 
to maintain a balance between biological diversity 
and societal needs, it is important to develop man-
agement plans capable of achieving these goals 
(Bettinger et al. 2016). Within the natural resource 
community, there are numerous techniques used for 
management, monitoring and conservation planning. 
Field surveys and aerial photography are traditional 
techniques for obtaining information about forest 
conditions, identifying tree species or evaluating 
habitats. However, they are expensive, time-consum-
ing, and have limitations (Ruiliang and Landry 2012). 
Aerial photography and satellite imagery interpreta-
tions provide areal coverage but are constrained by 
temporal, spectral, and spatial resolutions. Free or 
low-cost multispectral imagery commonly has spatial 
resolutions between 10 and 30 m. This information is 
employed for vegetation monitoring, predicting 

species abundance in association with environmental 
changes, and mapping habitats for species distribu-
tion modeling (Taylor et al. 2000; Buchanan et al.  
2005; Prasad, Iverson, and Liaw 2006; Bradter et al.  
2011; Monahan et al. 2022).

Within the remote sensing community, forest land 
use/cover classification using satellite imagery, 
piloted aircraft imagery and/or unmanned aerial vehi-
cle (UAV) data is well documented (Homer et al. 2004; 
Hansen et al. 2010; Hayes, Miller, and Murphy 2014; 
Yang et al. 2018; Maxwell et al. 2019; Bhatt et al.  
2022b). Land use/cover classification schemes typi-
cally use well defined, non-overlapping categories 
(Anderson 1976; Vogelmann et al. 2001; Bailey 2004,  
2009) to classify forests, wetlands, grasslands, etc. 
These frameworks are uniform in the characterization 
of land use/cover and are based on canopy cover as 
detected by airborne sensors and include human 
activities.

By contrast, natural community habitats have a 
much broader definition and are based not only on 
the canopy but also understory vegetation, soils, and 
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landform (Bradter et al. 2011; Cohen et al. 2014). 
“Protecting, managing, and restoring these commu-
nities is critical to biodiversity conservation, since 
native organisms are best adapted, to environmental 
and biotic forces with they have survived and 
evolved over the millennia” (Cohen et al. 2014). 
Natural community descriptions are derived from 
“physiography, hydrology, soils, natural processes 
and vegetation and do not include modern anthro-
pogenic disturbances” (Cohen et al. 2014). The clas-
sification is organized hierarchically by ecological 
class, group, and type. Each community differs in its 
physical environment and species composition and 
the same plant species (canopy cover) often occurs 
in more than one community (Cohen et al. 2014; 
Cohen 2020). This increases class complexity and 
classification challenges due to a lack of distinct 
identifying spectral signatures (Jensen 2015; 
Lillesand et al. 2015). Delineating and mapping 
these communities require high spatial resolution 
imagery for improved feature delineation, image 
enhancements, and transformations as well as the 
incorporation of biogeophysical data.

Along with high spatial resolution imagery, classifi-
cation accuracy depends on selecting the correct clas-
sification algorithm. Use of machine learning (ML) 
classification approaches has exponentially increased 
in the last decade (Schulz et al. 2018) and applied to a 
variety of environmental and natural resource applica-
tions (Mahesh and Mather 2003; Mountrakis et al. 2011; 
Rodriguez-Galiano et al. 2012b; Hayes, Miller, and 
Murphy 2014; Maxwell, Warner, and Fang 2018; Yang 
et al. 2018). The algorithms (MLAs) use a nonpara-
metric approach to model and classify data and do 
not require normally distributed data. Numerous land 
use/cover classification studies highlight the advan-
tages of using MLAs such as random forest (RF) and 
support vector machine (SVM) (Gunn 1998; Huang et 
al. 2002; Hayes, Miller, and Murphy 2014). AvNNet 
(Burton 1993) has been used in studies for predicting 
soil organic carbon, groundwater quality index, and 
land use/cover classifications (Taghizadeh-Mehrjardi 
et al. 2020; Kavhu et al. 2021; Ahn et al. 2022). MLAs 
were utilized in the classification of the 2001 National 
Land Cover Database (NLCD) [16]. They have also been 
used with NAIP imagery for accurate land cover classi-
fication (Kulkarni and Lowe 2016; Maxwell et al. 2019).

Useful ancillary data are equally important given 
the depth and breadth of the natural community class 

definitions. These datasets help overcome spectral 
limitations of the imagery and provide information 
beyond the bird’s eye view of the canopy. 
Researchers have used various environmental and 
geomorphological variables to improve classification 
results (Anderson 1976; Corcoran et al. 2013; Hayes, 
Miller, and Murphy 2014; Juel et al. 2015; Berhane et 
al. 2018; Kumar et al. 2020). Therefore, it is important 
to understand the contribution each ancillary dataset 
provides to the classification. Widely available feature 
selection methods evaluate ancillary datasets’ impor-
tance (Guyon and Elisseeff 2003) by reducing data 
complexity (Hughes 1968) and improving computa-
tional times (Maxwell, Warner, and Fang 2018). The 
robustness of the approach used in this study 
expanded on a previous study done by the authors 
(Bhatt et al. 2022b), which included the use of NAIP 
coupled with biogeophysical variables and widely 
used machine learning algorithms like RF and SVM.

Researchers have used NAIP and UAV datasets for 
delineating and mapping land cover, identifying tree 
species, delineating wetlands, habitat mapping, and 
invasive species mapping (Maxwell et al. 2017; Bhatt  
2018, 2022; Hogland et al. 2018; Bhatt et al. 2022a; 
Monahan et al. 2022, 2022 2022). Each has advan-
tages and disadvantages in terms of spatial, spectral, 
and temporal resolution. To date, a direct compar-
ison between the two sets of imagery for natural 
habitat community classification has not been com-
pleted. The key objective of this research is to com-
pare and contrast the utility of ultra-high spatial 
resolution UAV imagery versus high spatial resolu-
tion NAIP imagery to delineate and map complex 
natural community habitats.

2. Materials

2.1. Study areas

Upper Midwest forests are classified as Laurentian 
Mixed Forest (LMF) which is made up of complex 
geomorphology, climate, soils, fauna, and vegetation 
due to the extensive glaciation which occurred over 
thousands of years. Natural community boundaries 
may be sharply defined or change gradually. The 
area has a climatic tension zone, and sites along the 
Great Lakes shoreline support vegetation with north-
ern and southern affinities which pose classification 
challenges. Dividing this landscape into natural 
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communities provides guidance to better describe, 
understand, and restore the native community diver-
sity (Cohen et al. 2014; Cohen 2020).

The study areas are within the Hiawatha National 
Forest and fall under the International Union for 
Conservation of Nature (IUCN) category IV and contain 
diverse upland and lowland ecosystems, including 

extensive pristine coastal forests and wetlands. Two 
study sites, Point aux Chenes (PAC) Bay (Figure 1) and 
Carp River Mouth (CRM) (Figure 2), were selected as 
there are numerous natural community habitats which 
are unique in vegetation, soil, and landform within rela-
tively small geographic areas (Cohen et al. 2014). Several 
of the communities (Interdunal Wetlands, Open Dunes 

Figure 2. Carp River Mouth study area. The shoreline is adjacent to Lake Huron. NAIP imagery was acquired September 2018. UAV 
imagery was collected in August 2019.

Figure 1. Pointe aux Chenes Bay study area. The shoreline is adjacent to Lake Michigan. NAIP imagery was collected in August 2018. 
UAV imagery was collected in August 2019.
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and Wooded Dune and Swale Complex) are considered 
imperiled due to rarity and/or vulnerability (Cohen et al.  
2014). The PAC site encompasses 420 ha (1,038 ac) and 
790 ha (1,952 ac) for CRM. The study areas are located 
within glacial lake and outwash plain landforms, respec-
tively (Jerome 2006). Current threats to these areas 
include unauthorized off-road vehicle use, poorly 
designed or degraded road and stream crossing struc-
tures which create physical barriers to hydrologic func-
tion, roads that parallel coastlines with inadequate 
drainage structures, and the presence and/or expansion 
of non-native invasive species.

2.1.1. Datasets and software
High-resolution multispectral NAIP and ultra-high- 
resolution UAV imagery were used for the study. 
NAIP imagery has four bands (Blue (420–492 nm), 
Green (533–587 nm), Red (604–664 nm), and Near- 
Infrared (683–920 nm)) (USDA 2022) and was acquired 
4,877 m (16,000 feet) above ground level (AGL) with a 
Leica ADS100 airborne digital sensor. The imagery has 
8-bit radiometric resolution with 0.6 m spatial resolu-
tion. Imagery tiles dated 11 August 2018 and 6 
September 2018 were downloaded from USGS Earth 
Explorer for PAC and CRM, respectively.

UAV data were collected in August 2019 using a 
fixed-wing Trimble U×5-AG aircraft. The U×5-AG has a 
1 m wingspan with 2.5 kg weight and is capable of 
flying up to 45 minutes with a cruise speed of 80 km/ 
h. Imagery with 80% overlap was acquired using a five- 
band (Blue (475 ± 20 nm), Green (560 ± 20 nm), Red 
(668 ± 10 nm), Red Edge (717 ± 10 nm), and Near- 
Infrared (840 ± 40 nm)) MicaSense camera mounted 
onboard. Flying height was between 104 and 134 m 
(341 ft–440 ft) with a 7 cm spatial resolution for the PAC 
and 9 cm for the CRM. The spatial resolution varied due 
to the flying height and differences in terrain geometry. 
Days with optimum sunlight conditions and minimum 
clouds were selected for flying to minimize illumination 
and shadowing inconsistencies. Using the onboard 
high-accuracy Global Navigation Satellite System 
(GNSS) positioning data, the UAV images were pro-
cessed and mosaicked with Agisoft Metashape 1.5.3 
software using the standard workflow procedure pro-
vided by the USFS UAV office (Sloan 2017).

ERDAS IMAGINE (Hexagon Geospatial) was used to 
generate Principal Component Analysis (PCA), spectral 
indices, and Gray-Level Co-Occurrence Matrix (GLCM) 
texture layers for both sets of imagery. Random 

training points were generated using ArcPro software. 
Machine learning algorithms were implemented using 
the “caret” (Kuhn et al. 2020) package within R (Team  
2013) programming language.

3. Methods

Spectral variability and similarity within and between 
the vegetative components of the natural community 
habitats created classification challenges and was 
documented by Bhatt et al. (2022a). However, the 
high spatial resolution NAIP and UAV imagery com-
bined with ML permitted utilization of the variability 
(Maxwell et al. 2017). All NAIP and UAV spectral bands 
were utilized for training set generation. An integrated 
classification approach incorporating ancillary data 
(image transformation and enhancement techniques), 
field data, and expert knowledge was developed 
(Whittaker 1962; Adam, Mutanga, and Rugege 2009; 
Corcoran et al. 2013; Cohen et al. 2014; Lane et al. 2014; 
Berhane et al. 2018; Congalton and Green 2019). 
Accurately delineated training area polygons were cri-
tical for optimal performance of Machine Learning 
Algorithms (MLAs) (Maxwell, Warner, and Fang 2018).

3.1. Image transformation techniques

PCA is commonly used for various classification appli-
cations and is one of the most widely used transfor-
mation techniques and generates uncorrelated 
components (Dunteman 1989; Jensen 2015). It has 
been used by natural resource managers to delineate 
vegetation, map change detection, and observe vege-
tation distribution (Almeida and Souza Filho 2004; 
Munyati 2004; Lasaponara 2006; Dronova et al.  
2015). By contrast, Independent Component Analysis 
(ICA) uses higher-order statistics and considers each 
component to be non-Gaussian (Shah et al. 2002). The 
transformation highlights minute details in the ima-
gery even when the feature occupies a small area 
(Hyvärinen and Oja 2000). However, it has been used 
minimally to map vegetation and for land use/cover 
classification (Shah et al. 2007a, 2007b; Fangfang and 
Xiao 2011). Components from both transformations 
were visually assessed for edge detection within and 
between the natural habitat communities to generate 
valid training sets. With the multispectral data, the 
UAV imagery was preprocessed and mosaicked 
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using Metashape and the NAIP imagery was prepro-
cessed by the contractor after acquisition.

3.2. Topographic data

Land surface characteristics for the study areas are 
greatly influenced by extensive glaciation and influ-
ence elevation and soil characteristics such as drai-
nage and pH which influence natural community 
development. A high-resolution (1 m) LiDAR Digital 
Elevation Model (DEM) was used to identify topo-
graphic details of the natural community habitats for 
the NAIP imagery. Additionally, an ultra-high-resolu-
tion DEM was generated in Metashape from the point 
cloud data to use with the UAV imagery.

3.3. Texture

Similar spectral signatures occur between the natural 
habitat communities and increase the difficulty of 
accurate separation during training set development 
and classification. However, the communities do dis-
play various types of texture traditionally used in man-
ual interpretation. Different texture statistics can detect 
unique information and spatial patterns for features 
which are hard to separate using only spectral informa-
tion (Haralick, Shanmugam, and Dinstein 1973; 
Maillard 2003; Lane et al. 2014; Hall-Beyer 2017). In 
the past, texture-based variables have been incorpo-
rated by researchers into species detection, for fine- 
scale wetland classification, and in land use/cover clas-
sification (Rodriguez-Galiano et al. 2012a; Feng et al.  
2015; Berhane et al. 2018; Franklin and Ahmed 2018; 
Tassi and Vizzari 2020). GLCM texture measures were 
calculated from the first and second PCA components 
and created two uncorrelated texture datasets. For 
both the NAIP and the UAV imagery, first (55.38% to 
67.72%) and second (27.02% to 38.32%) principal com-
ponents contributed the highest to explaining the data 
variability (Dunteman 1989). Four GLCM texture mea-
sures (contrast, entropy, standard deviation, dissimilar-
ity) were calculated. Contrast measures the local 
variations present in the image, entropy measures the 
randomness within the data, standard deviation looks 
at its frequency of occurrence with reference and 
neighboring pixel values, and dissimilarity measures 
the differences in elements of the GLCM from each 
other (Haralick, Shanmugam, and Dinstein 1973; Hall- 
Beyer 2017). Data were generated with a 32-bit 

grayscale level and two Euclidean geometry offsets 
(2, 2 and 2, −2). Window sizes of 3 × 3, 5 × 5, 7 × 7, 
and 9 × 9 were evaluated.

3.4. Spectral indices

Spectral indices have been used extensively to map 
and monitor vegetation (Bannari et al. 1995; Berhane 
et al. 2018; Bhatt et al. 2022b). The normalized vege-
tation index (NDVI) is widely used by researchers to 
look at vegetation growth, phenology extraction, and 
landcover classification (Rouse et al. 1974; Tucker  
1979; Shuang et al. 2021) and was employed in this 
study to classify the natural communities. NDVI calcu-
lation takes ratio between the red (R) and near-infra-
red (NIR), while the two modified water indices based 
on the WorldView water index (WV-WI) were devel-
oped by Wolf (Wolf 2012). The water index for the 
NAIP imagery (WINAIP) using its blue and near-IR 
bands, and a water index for the UAV imagery 
(WIUAV) using the blue and near-IR bands of the 
Micasense camera created customized indices.

3.5. Evaluation of ancillary datasets

When classifying natural community habitats, input-
ting multispectral imagery alone was not adequate 
for accurate data classification. With manual interpre-
tations, ancillary data such as soil maps are tradition-
ally used for improved boundary delineation and 
vegetation classification. It made sense to provide 
the ML classifiers with this type of information as 
well. DEMs, GLCM-textures (contrast, entropy, stan-
dard deviation, dissimilarity), and spectral indices 
(NDVI, WINAIP, WIUAV) were calculated. The next 
step was to understand each ancillary dataset’s con-
tribution to classification improvement as using all of 
them does not guarantee the best result. Ancillary 
input dataset selection approaches have been used 
in many remote sensing applications (i.e. data mining, 
natural language processing, bioinformatics, image 
processing, crop classification, crop yield prediction, 
and mineral mapping) (Guyon and Elisseeff 2003; 
Hoque et al. 2014; Zhong et al. 2019; Kumar et al.  
2020; Momm, ElKadiri, and Porter 2020; Zheng et al.  
2021), but have not been extensively used in natural 
habitat community classification (Bhatt et al. 2022a). 
Input data selection (also known as variable or feature 
selection) approaches are fast, cost-effective, and 
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provide insight into the contribution of each ancillary 
dataset (Guyon and Elisseeff 2003). For this study, joint 
mutual information maximization (JMIM) (Bennasar et 
al. 2015), a filter-based method, was used.

3.6. Training set development

Training polygons, from which the ML training 
points are selected, were manually drawn with care-
ful consideration given to vegetation community 
species, soil drainage classes and pH, elevation and 
landform, information highlighted in the PCA and 
ICA components, ground truth data, and expert 
knowledge of the areas. Eight natural community 
classes and three non-community classes were iden-
tified (Table 1).

Accurate training sets are critically important for 
the classification accuracies (Maxwell, Warner, and 
Fang 2018). Multiple training sets created with ran-
domly selected training points were developed across 
the study sites to capture spectral and spatial varia-
bility. More training polygons (812 for UAV vs 136 for 
NAIP) were needed to classify the UAV imagery 
because the higher spatial resolution provided 
greater detail and it was important to incorporate 
the spectral details of different natural community 
classes. Boundaries of the training set polygons 
(Figures 3 and 4) are verified from extensive field 
assessment and from existing stand maps. This 
approach was selected based on its successful use in 
previous research (Bhatt et al. 2022b).

3.7. Image classification

RF, SVM, and avNNet are widely used classifiers within 
the remote sensing community for land use/cover, 
agriculture crop classifications, and groundwater qual-
ity assessment (Gong et al. 1997; Huang et al. 2002; 
Clark, Roberts, and Clark 2005; Bandos, Bruzzone, and 
Camps-Valls 2009; Bradter et al. 2011; Hayes, Miller, and 
Murphy 2014; Berhane et al. 2018; Mahdianpari et al.  
2018; Gómez et al. 2019; Ahn et al. 2022). RF was 
developed by Brieman (1984) as an ensemble classifier 
which utilizes nonparametric classification and regres-
sion tree (CART) (Breiman and Cutler 2007) rules to 
predict. It can work with spatially large and complex 
datasets which are highly correlated and can work 
robustly without having optimization parameters 
(Breiman 1999; Maxwell, Warner, and Fang 2018). 
SVM, a supervised machine learning algorithm which 
identifies an optimal hyperplane separating two classes 
in a feature space and was developed by Vapnik (2013). 
Having a higher dimensional feature space to project 
the non-linear and noisy data distributions can help 
overcome the overfitting issue and classify the real- 
world data better (Boser et al. 1992; Maxwell, Warner, 
and Fang 2018). Averaged neural network (avNNet) 
functions by applying averaging technique to the 
neural network (Ripley 2007). avNNet can be used for 
both regression and classification by applying the 
modified ordinary differential equations to the neural 
network (Ripley 2007). For classifying the data, model 
scores are averaged first and then applied it to the 
predicted class (Burton 1993).

Table 1. Natural community habitats and associated vegetation components. Communities 9–11 were developed for land uses not 
natural community habitats.

Natural community Common trees, plants, shrubs

1 Emergent Marsh Sedges, musk grasses, common reed, common waterweed, coontail, waterlily (Cohen et al. 2014)
2 Submergent Marsh Musk grasses, common waterweed, coontail, waterlily, pond-lilies (Cohen et al. 2014)

3 Great Lakes Marsh Broad-leaved cat-tail, waterlily, pond-lilies, coontail, duckweed, sedges, reed grass, tag alder, green ash, paper birch (Cohen 
et al. 2014)

4 Northern Shrub Thicket Sedges, grasses, ferns, tag alder, bog birch, dogwoods, winterberry, willows, black ash, tamarack, black spruce, white pine, 
northern white-cedar (Cohen et al. 2014)

5 Interdunal Wetlands Sedges, rush, willow, tamarack, jack pine, northern white-cedar (Cohen et al. 2014)

6 Rich Conifer Swamp Northern white-cedar, white pine, tamarack, spruce, red maple, black ash, tag alder, balsam fir, birch (Cohen et al. 2014)
7 Wooded Dune & Swale 

Complex
Pines, oaks, red maple, balsam fir, sedges, rush, ferns, tag alder, willows, black spruce, black ash, tamarack, northern white- 

cedar, aspen (Cohen et al. 2014)
8 Sand & Gravel Beach Marram grass, Baltic rush, willow, pitcher’s thistle, sea rocket (Cohen et al. 2014)

9 Open Water Lake Michigan, Lake Huron, inland lakes, rivers and ponds
10 Open Land Open land areas including agriculture and quarries
11 Impervious Surfaces Roads, houses, cars, other man-made structures
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In a recent study completed by Bhatt et al. (2022a) 
with NAIP imagery, RF was shown to be a better classi-
fier for natural community habitats compared to SVM. 
Along with RF and SVM, another ML algorithm, aver-
aged neural network (avNNet) from the caret (Kuhn et 
al. 2020) package was tested. Within the training poly-
gons, 75% of the randomly selected training points 
were used to develop the training sets and the remain-
ing 25% were reserved for accuracy assessment. To 
avoid any overfitting issues, a 10-fold cross validation 
was applied to the data (Kohavi 1995). All three classi-
fiers were ran with “center” and “scale” pre-processing 

parameters to standardize the ancillary datasets (Kuhn  
2015; Kuhn et al. 2020). Classifications were executed 
using the “caret” package (Kuhn et al. 2020) in the “R” 
programming language (Team 2013). Results for the 
three classifiers were compared using Overall Accuracy 
(OA) and kappa coefficient (k) (Congalton and Green  
2019). Individual communities were evaluated employ-
ing User’s Accuracy (UA), Producer’s Accuracy (PA), and 
F1 Scores (Congalton and Green 2019). Between 10 and 
15 ground truth observations were made for each 
natural habitat community class during field visits 
(August 2019) to each study site.

Figure 3. Natural habitat communities training and testing polygons for CRM study area.

Figure 4. Natural habitat communities training and testing polygons for CRM study area.
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3.8. Accuracy assessment and post-classification 
refinement

Accuracy assessment was completed using the 
reserved test points plus independently collected 
field points. These are referred to as validation points. 
Evaluations were completed by comparing classifica-
tion values against the validation points (Congalton 
and Green 2019). Using the resulting accuracy assess-
ment matrices, UA and PA values were calculated for 
each habitat class.

“Salt and pepper” effects (Lillesand et al. 2015) 
were smoothed to create a more easily interpreted 
final classification map. A majority filter using a 7 × 7 
moving window was run based on previous research 
(Munyati 2004).

4. Results

Pixel-based image classifications were run using RF, 
SVM, and avNNet with RF producing the best classifi-
cations for the various combinations of imagery and 
variables. Figures 5 and 6 show the classification 
results for both sets of imagery at each study site. 
The figures show zoomed-in classification snippets 
highlighting various mapped details. Visual assess-
ment of the classifications showed that the UAV clas-
sifications delineated finer boundary detail for each 
community. This is due to the finer spatial resolution 
when compared to the NAIP derived boundaries. The 
NAIP imagery also presented a more generalized nat-
ural community habitat map with less “salt-and-pep-
per” artifacts (Lillesand et al. 2015).

Figure 5. Selected areas of the PAC classification delineated by the RF classification for NAIP and UAV imageries highlighting detail 
differences for the natural community classes.
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The PAC NAIP-based classification achieved OAs 
between 86.28% and 88.33% using all input variables 
with RF. When the highest contributing variables 
based on the JMIM scores were used, the OAs ranged 
between 85.28% and 87.74%. Reducing the input 
variables from 15 to 9 did not significantly affect the 
OAs and kappa (k) (Table 2). However, accuracies 
decreased significantly using only the 4 NAIP bands 
and ranged from 72.49% to 77.15% (Table 2). This 
illustrates the important contribution made by the 
variables. The final classification had an OA of 
87.74% and a k of 0.85. Similar results occurred with 
the PAC UAV imagery. Using the 16 available inputs 
with the UAV imagery, the OA was slightly lower 
(Table 3) compared to inputting the best 10 JMIM 
selected inputs. Once again, using just the five UAV 
reflectance bands decreased OA between 5% and 8% 

with all three classifiers (Table 3). The final UAV ima-
gery classification using RF achieved an OA of 93.74% 
and 0.92 k. Overall, the UAV classifications provided 
better end products than the NAIP classifications by a 
6% increase in OA (0.7 k) using RF (Table 3).

The NAIP and UAV classifications for the CRM study 
site achieved higher accuracies with RF compared to 
SVM and avNNet. Final NAIP-CRM classification OA was 
83.85% with 0.79 k (Table 2). The UAV-CRM OA and k 
were 87.31% and 0.83, respectively (Table 3). Both 
classifications performed best using JMIM scores to 
select input variables compared to using all available 
data (Tables 2 and 3). Using only the NAIP spectral 
bands decreased the OA by 16% (Table 2), and with 
the UAV the accuracy decreased 11.8% (Table 3). These 
results are similar to those seen with the PAC study site 
and the work completed by Bhatt et al. (2022b). They 

Figure 6. Selected areas of the CRM study site delineated by the RF classification for NAIP and UAV imageries highlighting detail 
differences for the natural community classes.
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indicate the robustness of the classification approach 
across the diverse natural communities.

Kappa values were categorized into three groups, 
good (k < 0.80) (Landis and Koch 1977; Altman 1990), 
strong (k 0.80–0.90), and almost perfect (k > 0.90) 
(McHugh 2012). With this study, the classifications 
showed strong to almost perfect relationships between 
“truth” and the classified results (Tables 2 and 3). Along 
with the OA and k, F1 scores were compared for each 
natural community class. Within the remote sensing 
community, F1 scores are widely considered when the 
dataset does not have a balanced accuracy. It is essen-
tially the harmonic mean of precision (UA) and recall 
(PA) (Etten et al. 2018; Zhang et al. 2020). Both precision 
(UA) and recall (PA) should be 1 for a good classification, 
though this seldom occurs with complex real-world 
datasets. Figures 7 and 8 show the F1 scores by com-
munity class for the RF classifier. For PAC NAIP classifica-
tion, lower F1 scores (Figure 7) are observed with Great 
Lakes Marsh (0.71), Interdunal Wetland (0.77), and SGB 

(0.74). These lower scores for Great Lakes Marsh and 
Interdunal Wetland can be attributed to the similarities 
in the vegetation with other natural habitat commu-
nities like Wooded Dune and Swale Complex and 
Emergent Marsh. With the PAC UAV classification, 
lower accuracies (Figure 7) were observed with Great 
Lakes Marsh (0.66) due to spectral similarities in natural 
habitat communities with Emergent Marsh and Wooded 
Dune and Swale Complex.

Lowest F1 Scores for CRM classification were 
observed with Rich Conifer Swamp natural commu-
nity class for both NAIP (0.52) and UAV (0.47) ima-
gery (Figure 8). Major confusion for Rich Conifer 
Swamp was observed with Wooded Dune and 
Swale Complex (Appendix - Tables 1 and 2) 
Emergent Marsh natural community showed lower 
F1 scores (Figure 8) for NAIP imagery, whereas for 
UAV it was high. Major confusion for Emergent 
Marsh was observed with Great Lakes Marsh, Rich 
Conifer Swamp and Wooded Dune and Swale 

Table 2. Accuracy assessments of the NAIP derived classifications for PAC and CRM.

Ancillary Data/Variables (NAIP) Classifier

PAC CRM

OA 
(%) k

OA 
(%) k

R, G, B, NIR RF 77.15 0.72 67.26 0.57
SVM 75.33 0.69 65.50 0.55

avNNet 72.49 0.65 65.11 0.53
NAIP + DEM + GLCM-Texture (7×7) - PC 1, 2 (Contrast, Entropy, Standard Deviation, Dissimilarity) + NDVI + 

WINAIP
RF 88.33 0.86 84.80 0.80

SVM 87.04 0.84 83.57 0.79
avNNet 86.28 0.83 80.95 0.75

Final Classification - 
NAIP + DEM + GLCM-Texture (7×7) - PC 1, 2 (Contrast) + NDVI + WINAIP

RF 87.74 0.85 83.85 0.79
SVM 86.13 0.83 83.06 0.78
avNNet 85.28 0.81 79.60 0.74

Table 3. Accuracy assessments of the UAV derived classifications for PAC and CRM.

Ancillary data/Variables (UAV) Classifier

PAC CRM

OA 
(%) k

OA 
(%) k

R, G, B, Red Edge, NIR RF 87.06 0.83 75.51 0.67
SVM 86 0.82 75.34 0.66

avNNet 78.80 0.73 70.04 0.58
UAV (R, G, B, RE, NIR) + DEM + GLCM-Texture (7×7) - PC 1, 2 (Contrast, Entropy, Standard Deviation, Dissimilarity) 

+ NDVI + WIUAV
RF 93.02 0.91 86.77 0.82

SVM 89.13 0.87 84.46 0.80
avNNet 85.14 0.81 80.52 0.73

UAV (R, G, B, NIR) + DEM + GLCM-Texture (7×7) - PC 1, 2 (Contrast) + NDVI + WIUAV (without red edge) RF 93.39 0.92 87.31 0.83
SVM 90.56 0.88 86.14 0.81
avNNet 84.22 0.80 80.78 0.74

Final Classification - 
UAV (R, G, B, RE, NIR) + DEM + GLCM-Texture (7×7) - PC 1, 2 (Contrast) + NDVI + WIUAV

RF 93.74 0.92 87.31 0.83
SVM 91.07 0.89 86.16 0.81

avNNet 85.09 0.81 81.13 0.74
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Complex (Appendix Table 2). The higher Emergent 
Marsh F1 score for UAV could be attributed to the 
more precise training data collection and higher 
spatial resolution. Similarly, Great Lakes Marsh class 
had a much better F1 score for NAIP than UAV. 
Majority of confusion for Great Lakes Marsh in 
UAV classification was with Northern Shrub Thicket 
and Open Water classes (Appendix Table 2). Highest 
F1 scores for both study areas were seen with Open 
Water, Open Land, and Impervious Surface, due to 
their uniform surface reflectance (Figures 7 and 8). 
Overall, the F1 scores for both the study areas were 
reasonably well given the complexity and spectral 
similarities of the natural habitat communities.

PAC NAIP classification (Figure 5) was more gen-
eralized and contributed to Wooded Dune & Swale 
Complex and Emergent Marsh over prediction when 
compared to field observations. The UAV classifica-
tion delineated the natural communities well except 
for Emergent Marsh, Interdunal Wetlands, and Great 
Lakes Marsh. This confusion is due to the same 

vegetation components and water being found in 
all of them (Table 1); hence spectral (Appendix 
Figure A1 and B1) and textural similarities between 
them. These communities are smaller in size and 
intermixed with more commonly occurring, larger 
area, communities and therefore have fewer valida-
tion points. Fewer points mean misclassifications 
have a greater impact on UA and PA and were 
lower compared to the other classes (natural com-
munities) (Appendix Table A1).

The confusion matrix for NAIP CRM classification 
(Appendix Table A2) shows both lower UAs and PAs 
for Emergent Marsh, Northern Shrub Thicket, and Rich 
Conifer Swamp. The matrix shows confusion between 
Emergent Marsh and Northern Shrub Thicket. 
Evaluation of the training sets showed large standard 
deviations and these training sets were replaced with 
ones with less variability (smaller standard deviations). 
The misclassification of the Rich Conifer Swamp is 
primarily with Wooded Dune & Swale Complex. This 
confusion is the result of a high percentage of the 

Figure 7. RF classifier F1 scores for the natural communities between NAIP and UAV imagery for Pointe aux Chenes.

Figure 8. RF classifier F1 scores for the natural communities between NAIP and UAV imagery for Carp River Mouth.
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same conifer species in both communities including 
northern white cedar, tamarack, white pine, and tag 
alder (Table 1). Landform is also a strong indicator for 
Wooded Dune & Swale Complex (Figure 9). However, if 
the swales are widely spaced between the dunes, the 
texture changes and contributes to the error particu-
larly with the coarser NAIP spatial resolution (Figure 9). 
The UAV classification shows lower UAs and PAs for 
Great Lakes Marsh, Northern Shrub Thicket, and Rich 
Conifer Swamp. Again, the poor classification of Great 
Lakes Marsh and Northern Shrub Thicket is due to high 
variability in the training sets, and sets were retaken.

Ancillary data sets were evaluated using JMIM fea-
ture selection. JMIM scores range between 0 and 2 
regardless of the measurement units of the input vari-
ables. This allows direct comparison between the vari-
ables in ascertaining the unique contribution each 
input makes to the classification. Plots of the JMIM 
scores (Figure 10) show that the input variables (ancil-
lary data) maintain the same pattern of importance for 
both sets of imagery across the study sites. The same 
results were seen with work completed by Bhatt et al. 
(2022a). These included DEMs, GLCM-textures (con-
trast, entropy, standard deviation, dissimilarity), 

NDVIs, and modified water indexes specific to the 
NAIP and UAV imagery. The water index for each set 
of imagery differed due to the NAIP having four spec-
tral bands (B, G, R, near-IR) while the UAV has five 
bands (B, G, R, red edge, and near-IR). JMIM scores 
were calculated for all of the spectral bands as well 
(Figure 10). At both study sites, the most important 
input features with the NAIP imagery were all NAIP 
spectral bands, NDVI, WINAIP, DEM and contrast tex-
ture (Figure 10). For the UAV data, the five Micasense 
spectral bands, NDVI, WIUAV, DEM, and contrast tex-
ture (Figure 10) showed high importance. It is impor-
tant to remember that JMIM-based selection values do 
not guarantee a more accurate classification but pro-
vide quantitative guidance to input variable selection.

Both NDVI and WINAIP, two of the highest JMIM 
scores, provided information to accurately delineate 
the community habitat classes. Classes such as 
Wooded Dune and Swale Complex, Rich Conifer 
Swamp, and Northern Shrub Thicket showed higher 
values with NDVI compared to the remainder of the 
habitat community classes. Incorporation of the DEM, 
NDVI, WINAIP, contrast textures 1, and 2 increased the 
OA of the natural community classifications an average 

Figure 9. Landforms influence on natural communities for the PAC and CRM study sites are highlighted when draped over a multi 
directional oblique weighted (MDOW) hillshade. Classifications derived using Random Forest.

12 P. BHATT AND A. L. MACLEAN



of 13.59% for NAIP and 18.22% for the UAV when com-
pared to only using the spectral bands of each set of 
imagery (Tables 2 and 3). Overall, the UAV-based classi-
fication outperformed the NAIP classification due to its 
high-spatial resolution and greater texture details.

5. Discussion

Most studies classifying land use/cover are for specific 
resource management purposes and categorize the 
imagery into narrowly defined, non-overlapping 

classes. However, classifying imagery into well 
defined, robust natural community habitats provides 
a holistic approach to resource management and is 
more representative of field condition variability. Until 
recently, there were no natural community habitat 
classification studies of the complex Laurentian 
Mixed Forest in the Upper Great Lakes. Inventorying, 
monitoring, and preserving these pristine habitats, 
particularly along coastlines, are increasingly impor-
tant given the impacts of climate change. Field-based 
monitoring alone is not able to complete these tasks 

Figure 10. Ancillary dataset (variable) importance scores using JMIM feature selection method. B-blue, C1-contrast texture (PC1, 7×7 
moving window), C2-contrast texture (PC2, 7×7), DEM-digital elevation model, Dissim1-Dissimilarity texture (PC1, 7×7), Dissim2- 
Dissimilarity texture (PC2, 7×7), Ent1-entropy texture (PC1, 7×7), Ent2-entropy texture (PC2, 7×7), G-green, NDVI-normalized 
difference vegetation index, NIR-near-infrared, R-red, SD1-standard deviation texture (PC1, 7×7), SD2-standard deviation texture 
(PC2, 7×7), WINAIP- NAIP modified water index, WIUAV-UAVmodified water index.
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in a timely, cost-effective manner. The approach pre-
sented in this study is applicable to other areas across 
United States and Canada (White and Host 2008; 
Brown et al. 2013). New Hampshire (Sperduto and 
Nichols 2004), North Carolina (Schafale and Weakley  
1990), Wisconsin (Curtis 1959; Noss 1987), 
Massachusetts (Whitlatch 1977; Kearsley 1999), 
Indiana (Jackson 1979; Homoya et al. 1984), 
Minnesota (Hanson and Hargrave 1996; Aaseng et al.  
2011; Wilson and Ek 2017), and (Inventory, Florida 
Natural Areas 1990) are a few of the states that have 
developed Natural Communities classification 
schemes. While the hierarchy of the classification var-
ies from state to state, the foundation of the schemes 
is the same: group recurring assemblages of flora and 
fauna found in particular physical environments into a 
descriptive classification scheme. These maps provide 
information essential to conservation planning and 
protecting biodiversity by communicating a story to 
resource managers, landowners, land-use planners, 
and scientists (Cohen 2020).

Which imagery is best for natural community classi-
fication is unclear. Variations in reflectance values 
between the UAV and NAIP for the same areas are 
shown in Figures 11 and 12. This variation is due, in 
part, to the different bandwidths for the RGB bands. 
Imagery pair A in Figure 11 shows a gray textured area 
(red arrow) in the UAV imagery which is Princess Pine 
(Dendrolycopodium obscurum) an endangered club 
moss and indicates a small, but important area of 
Wooded Dune Swale Complex. It is not visible in the 
NAIP; rather, the entire area is classified as Interdunal 
Wetland and does not provide the spatial and spectral 
detail required to manage and protect this at-risk spe-
cies. Pair B (Figure 11) highlights underwater seepage 
and drainage patterns from springs not detectable on 
the UAV imagery. The presence of a small Great Lakes 
Marsh trapped by a sand bar is visible on the UAV 
imagery (Pair C, Figure 11) but appears as Sand and 
Gravel Beach on the NAIP. These small “trapped” Great 
Lakes Marsh Areas support bird’s eye primrose (Primula 
mistassinica) and blue vervain (Verbena hastata). Both 
species are important food sources for native bees and 
need to be monitored frequently given the imperiled 
status of many bee species. On the UAV imagery, the 
bright magenta areas found in Pair D (Figure 11) are 
Phragmites and are not visible in the NAIP. Common 
reed (Phragmites australis ssp. americanus) is a native 
species. However, Phragmites australis ssp. australis is 

an invasive species and is considered to be proble-
matic in North America. It invades marsh meadows 
and cattail zones and reduces the number of bird 
species found in these habitats (Robichaud and 
Rooney 2017). In Figure 12, Pair A shows individual 
stems of downed coarse woody debris which provides 
food and habitat for a wide range of organisms, slows 
water flow in river and streams, and recycles nutrients 
trapped in the wood. Pair B (Figure 12) shows dead tree 
in both images, but the UAV imagery permits counting 
of the snags and species identification. Snags are cri-
tical landscape features for numerous wildlife species.

For areal coverage, NAIP is more comprehensive as it 
is acquired by aircraft flying at a constant speed and 
altitude. It undergoes rigorous radiometric and geo-
metric corrections, and mosaics are easy to create. By 
contrast, UAV imagery has variations in lighting condi-
tions due to acquisition times often spaced throughout 
the day, and the vehicle is more susceptible to pitch, 
yaw, and roll distortions due to its lighter weight. 
Radiometric and geometric conditions are applied to 
the UAV imagery, but the user must be willing to 
accept quality variation across the mosaicked imagery. 
A study completed by 2022b), recommends an image 
overlap of 80% to help overcome geometric variability 
and produce acceptable quality orthoimages. The finer 
spatial resolution of the UAV imagery maps textural 
changes very well, which are important to the accurate 
delineation of spectrally similar natural communities 
such as Northern Shrub Thicket, Rich Conifer Swamp 
and Wood Dune & Swale Complex (Table A2).

Performing radiometric and geometric corrections 
on the UAV imagery is time-consuming. Current pro-
cessing software has limitations in photogrammetric 
robustness and ease of use. The physical size of the 
UAV imagery is also an important consideration, and 
adequate computing resources and storage space are 
prerequisites. Processing times need to be consid-
ered. With the two study areas, it took 88 hours to 
preprocess the UAV imagery and generate the final 
orthomosaics for the two study areas.

For NAIP, temporal resolution is not ideal as it is 
collected every 5 years especially for catastrophic 
events such as fires and flooding as well as phenolo-
gical timed events. UAV imagery offers advantages to 
these types of studies as the platform can be airborne 
in a short-time frame and is ideal for data collection 
over small geographic areas where the vehicle can be 
kept in the operator’s line of sight.
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Accurate training sets and informative ancillary 
datasets are equally important to the success of 
mapping natural communities. Spectral signatures 
(Appendix Figure A1 and B1) alone do not provide 
enough clear separation to accurately delineate the 
natural communities. This study used PCA, ICA, soil 
data, landform, field data, and expert image inter-
pretation to outline training set polygons for each 
natural habitat community. Training points for the 

MLAs were extracted from within the polygons 
(Figures 3 and 4). It is important to note that the 
difference between the number of training sets for 
NAIP and UAV is attributed to the spatial resolu-
tion. Larger training polygons within the ultra-fine 
UAV imagery contain too much variation (large 
standard deviations) and result in noisy training 
sets and lead to misclassification of the natural 
communities.

Figure 11. Spectral reflectance differences between UAV and NAIP imagery for PAC due to differences in the red, green and blue 
bandwidths.
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The natural habitat communities at both study sites 
exhibited significant amounts of local variation. The 
finer spatial resolution of the UAV imagery emphasizes 
the high degree of texture created within and between 
the natural communities and contributed to the accu-
rate delineation of the natural community boundaries. 
Each community exhibits distinctive patterns and 
shapes such as the well-defined ridge and valley com-
plex associated with the Wooded Dune and Swale 
Complex. Contrast texture, using a 7 × 7 window size, 
was the most informative variable when evaluated 
against entropy, standard deviation, and dissimilarity 
using JMIM feature selection (Figure 10). Low contrast 
values were observed with smooth texture classes such 
as Open Water, Open Land, and Impervious Surface. 
Highly textured community classes (i.e. Wooded Dune 
and Swale Complex, Rich Conifer Swamp, Northern 
Shrub Thicket) have a rougher texture represented by 
higher contrast values as illustrated in Figure 10. Due 
to the small area of some of the natural communities 
and having multiple vegetation species within each 
community, it is not possible to run large texture win-
dows (i.e. 21 × 21, 33 × 33). The detailed texture image 
degrades dramatically as window size increases (Figure 
A2 – Appendix) and it would add more confusion to 
the classification (Cohen et al. 2014; Hall-Beyer 2017).

This discussion presents advantages and disadvan-
tages to using each set of imagery and recommending 

using one to the exclusion of the other would be wrong. 
How will the final map be used is the question(s) which 
should dictate to mix of UAV imagery and NAIP. RF is 
recommended as the classifier of choice when working 
with ecologically complex natural community habitats. 
SVM and avNNet are less efficient compared to RF and 
always produce lower accuracies in this study. It may be 
argued that tuning the RF parameters may further 
improve the classifications. However, parameter tuning 
is time-consuming and not cost-effective given the 
acceptable accuracies achieved for the natural commu-
nity delineation and mapping.

6. Conclusions

Natural community mapping with high and ultra-high 
spatial resolution imagery along with informative ancil-
lary data is challenging and critically important for the 
forest management and policy. The data sets are physi-
cally large and have high computational requirements 
along with lengthy processing times. The development 
of good training sets requires time and detailed knowl-
edge of the study area. Widely used and robust machine 
learning algorithms like RF overcome these intricacies. 
However, acceptable results are achieved in this study 
not only in identifying the correct natural community 
label but also mapping accurate and detailed bound-
aries between the communities.

Figure 12. Spectral reflectance differences between UAV and NAIP imagery for CRM due to differences in the red, green and blue 
bandwidths.
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This research has many unexplored and unan-
swered questions to be further investigated. In the 
future studies, efficacy of the red edge band and 
derived indices needs exploring and compared with 
traditional indices like NDVI. Red edge indices have 
been used in the past with Sentinel-2A, Rapid-Eye, 
WorldView-2, and UAV imagery to observe vegetation 
phenology, spatial variability of crop growth, leaf area 
index, and burn severity assessments (Hill 2013; 
Shang et al. 2015; Fernández-Manso et al. 2016; Zhu 
et al. 2017; Guo et al. 2021) but not in mapping 
natural habitat communities. Investigation of training 
data size and quality should also be explored in refer-
ence to two different imagery datasets.

Due to the increasing need for sustainable planning 
and management practices, mapping natural commu-
nities at finer scales is important and requires robust 
workflows such as one provided in this study and use 
of advanced remote sensing techniques. Future work 
should involve testing the robustness of this workflow 
for larger areas and other regions. Lastly, advanced 
methods like deep learning should be considered and 
compared with machine learning algorithms.
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Appendix A

Table A1. NAIP and UAV classification accuracy assessment matrices for PAC. EM – Emergent Marsh, SM – Submergent Marsh, GLM – 
Great Lakes Marsh, IW – Interdunal Wetlands, WDSC – Wooded Dune & Swale Complex, SGB – Sand & Gravel Beach, OW – Open Water, 
IS – Impervious Surface.

RF 
(NAIP - PAC) EM SM GLM IW WDSC SGB OW IS UA (%) PA (%)

EM 518 11 0 13 21 20 1 0 88.7 89.0

SM 11 329 0 0 0 0 0 0 96.7 96.7
GLM 0 0 101 0 4 2 11 0 85.6 60.1

IW 2 0 0 285 29 87 0 1 70.5 85.0
WDSC 46 0 44 17 941 20 0 0 88.1 94.1

SGB 5 0 1 20 5 223 0 0 87.8 63.3
OW 0 0 22 0 0 0 292 0 93.0 96.0
IS 0 0 0 0 0 0 0 124 100.0 99.2

OA = 87.74%, k = 0.85

RF 
(UAV – PAC) EM SM GLM IW WDSC SGB OW IS UA (%) PA (%)

EM 467 1 11 25 2 1 4 24 87.2 86.1
SM 1 223 0 3 0 0 3 0 96.9 96.9

GLM 0 0 28 1 4 0 1 1 80 53.8
IW 52 1 2 465 7 2 3 9 85.9 89.7

WDSC 1 0 4 4 673 0 0 1 98.5 97.5
SGB 3 0 0 4 0 117 0 2 92.8 95.9

OW 5 5 3 5 1 0 1137 0 98.3 98.7
IS 13 0 4 11 3 2 3 366 91.0 90.8

OA = 93.74%, k = 0.92

Table A2. NAIP and UAV classification accuracy assessment matrices for the CRM. EM – Emergent Marsh, GLM – Great Lakes Marsh, 
NST – Northern Shrub Thicket, RCS – Rich Conifer Swamp, WDSC – Wooded Dune & Swale Complex, OW – Open Water, OL Open Land, 
IS – Impervious Surface.

RF 
(NAIP - CRM) EM GLM NST RCS WDSC OW OL IS UA(%) PA(%)

EM 175 23 48 3 23 0 6 0 62.9 53.3

GLM 29 1192 39 0 2 3 1 0 94.1 89.5
NST 31 83 404 9 157 0 0 1 58.9 61.4

RCS 3 0 4 95 42 0 0 0 65.9 42.6
WDSC 87 26 162 108 1494 0 2 0 79.5 86.7

OW 0 7 0 0 0 897 0 0 99.2 99.6
OL 3 0 1 8 4 0 283 0 94.6 96.9
IS 0 0 0 0 0 0 0 119 100.0 99.1

OA = 83.58%, k = 0.79
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RF 
(UAV – CRM) EM GLM NST RCS WDSC OW OL IS UA(%) PA(%)

EM 206 13 9 0 0 2 3 1 88.0 85.5
GLM 21 544 122 1 9 42 19 0 71.8 65.8

NST 8 164 875 10 121 0 36 1 72.0 74.5
RCS 0 0 1 44 22 0 0 0 65.6 35.5

WDSC 0 3 121 69 871 0 1 0 81.8 85.1
OW 4 78 5 0 0 3255 0 2 97.3 98.6

OL 1 23 41 0 0 1 615 1 90.1 91.2
IS 1 2 1 0 0 1 0 119 95.9 95.9

OA = 87.31%, k = 0.83

Figure A1. Spectral reflectance signatures for PAC study area shown using NAIP (8-bit-unsigned) and UAV (16-bit-unsigned) imagery 
DN Values.
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Figure A2. GLCM texture (Contrast) differences in details caused by the window sizes.

Figure B1. Spectral reflectance signatures for CRM study area shown using NAIP (8-bit-unsigned) and UAV (16-bit-unsigned) imagery 
DN Values.
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