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Abstract 11 

It has been argued that even centimeter-level resolution is needed for mapping vegetation patterns 12 

in spatially heterogeneous landscapes such as northern peatlands. However, there are few 13 

systematic tests for determining what kind of spatial resolution and data combinations are needed 14 

and what the differences in mapping accuracy are when different datasets are omitted or included. 15 

We conducted 78 different object-based supervised random forest classifications on a patterned 16 

fen and its surroundings in Kaamanen, northern Finland, using remotely sensed optical imagery, 17 

topography, and vegetation height datasets from different platforms (unmanned aerial vehicle 18 

(UAV), aerial, satellite) with spatial resolution ranging from 5 cm to 3 m. We compared 19 

differences in classification performance when we altered (1) classification and segmentation 20 

input data and features calculated from the data, or (2) the segmentation scale. We constructed 21 

training data with the help of transect-based field sampling and UAV imagery and tested 22 

classification accuracy using 412 field-surveyed vegetation plots. The most accurate 23 
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classifications (75.7% overall accuracy) were obtained when we segmented a 5 cm resolution 24 

UAV image with a small segmentation scale and calculated features from all datasets. 25 

Classification accuracy was 2.2 percentage points (pp) lower with the most accurate aerial image 26 

(50 cm resolution) based classification, and 7.6 pp and 11.9 pp lower with the most accurate 27 

WorldView-2 (2 m resolution) and PlanetScope (3 m resolution) satellite image based 28 

classifications respectively. Classification accuracies were low (46.7–56.0%) when we used only 29 

spectral data from one dataset. The inclusion of gray-level co-occurrence matrix textural features 30 

increased classification accuracy by 0.4–12.1 pp and inclusion of multiple datasets by 8.2–25.0 31 

pp. Segmentation scale had a minor effect on classification accuracy (2.5–7.3 pp difference 32 

between the finest and coarsest segmentation scale); however, both too small and large 33 

segmentation scale might lead to suboptimal classification. The differences in land cover type 34 

areal coverage were relatively small between classifications with multiple datasets, but if 35 

classifications included features from only one dataset, the differences were larger. We conclude 36 

that multiple different optical, topographical, and vegetation height datasets should be used when 37 

mapping vegetation in spatially heterogeneous landscapes, and that sub-meter resolution data 38 

(e.g. UAV or aerial) are necessary for the most accurate maps. Although UAV data is not 39 

essentially needed for classification, it is useful for training dataset construction and especially 40 

helpful in areas lacking other sub-meter resolution data. 41 

Keywords: Arctic; data fusion; drone; land cover classification; lidar; northern boreal; object-42 

based image analysis; peatland; UAS; ultra-high spatial resolution; very-high spatial resolution 43 
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1. Introduction 45 

 46 

Land cover and vegetation maps are among the most important products derived from remotely 47 

sensed data. Thematic classifications of vegetation and land cover are usually constructed for a 48 

specific purpose, such as linking them to carbon stocks and fluxes, biodiversity, or some other 49 

environmental question (Goetz et al. 2009; Gong et al. 2013; Jung et al. 2006; Pettorelli et al. 50 

2016). In land cover mapping, key issues include what kind of datasets are used and what is their 51 

spatial resolution (Chen et al. 2017b; Chen et al. 2015; Räsänen et al. 2014). These issues are 52 

important in spatially heterogeneous landscapes such as northern peatlands and tundra (Bartsch et 53 

al. 2016; Virtanen and Ek 2014). These landscapes are fragmented and patchy in terms of their 54 

vegetation, land cover, and hydrology (Middleton et al. 2012; Palace et al. 2018; Räsänen et al. 55 

2019b, Treat et al. 2018), and biogeochemical cycles of e.g., carbon, nitrogen, and water vary 56 

greatly between different land cover types, creating an urgent need to classify them accurately 57 

(Lehmann et al. 2016; Treat et al. 2018). 58 

 59 

There have been contrasting claims about what kind of spatial resolution is needed for accurate 60 

mapping of land cover and vegetation patterns in spatially heterogeneous landscapes. Some have 61 

argued that Landsat-scale resolution (ca 30 m) is sufficient for mapping tundra-peatland 62 

environments if the objective is to track the relative abundance of different land cover types and 63 

carbon fluxes related to these types (Bartsch et al. 2016; Schneider et al. 2009; Treat et al. 2018). 64 

Others have claimed that very high spatial resolution satellite imagery (< 5 m) is needed for 65 

constructing realistic maps in these environments (Laidler and Treitz 2003; Räsänen et al. 2019b; 66 

Siewert et al. 2015; Virtanen and Ek 2014). Finally, some have argued that there is a need to 67 
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move into centimeter-level spatial resolution, obtained with unmanned aerial vehicles (UAVs) or 68 

airborne data when mapping peatland vegetation (Palace et al. 2018).  69 

 70 

Related to this discussion, several studies have been conducted using very high spatial resolution 71 

satellite imagery (spatial resolution < 5 m) in tracking vegetation and biogeochemical patterns in 72 

heterogenic northern landscapes such as tundra and peatlands (Laidler and Treitz 2003; Räsänen 73 

et al. 2019b; Siewert et al. 2015; Virtanen and Ek 2014), and these have been followed by a 74 

recent increase in using UAVs in similar tasks (Anderson and Gaston 2013; Arroyo-Mora et al. 75 

2017; Lehmann et al. 2016; Lovitt et al. 2017; Palace et al. 2018). Many of these studies note that 76 

there is a trade-off between spatial resolution and areal extent when using these data: only a 77 

relatively small extent can be covered if dataset resolution is enhanced to centimeters or meters 78 

(Laidler and Treitz 2003). Therefore, coarser resolution datasets may be preferred in tasks 79 

covering a larger extent, but the trade-offs in upscaling finer resolution data to coarser resolution 80 

are generally understudied (Treat et al. 2018). 81 

 82 

When utilizing high resolution datasets, object-based methods instead of pixel-based methods are 83 

usually preferred (Blaschke et al. 2014; Dronova 2015; Ma et al. 2017; Mahdavi et al. 2018). 84 

Firstly, when using high resolution data, the vegetation patch size is usually larger than the data 85 

pixel size; therefore, pixels can be merged into homogeneous segments before the classification 86 

or other mapping step (Blaschke et al. 2014; Castilla and Hay 2008). In particular, several land 87 

cover types have a large internal heterogeneity in very high resolution images, often due to 88 

shadow effects caused by higher vegetation, which hamper pixel-based classifications. Secondly, 89 

the generated homogeneous segments are a more realistic construction of the landscape elements 90 

and they mimic human interpretation of the landscape more intuitively than pixels (Castilla and 91 
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Hay 2008). However, the segmentation step adds uncertainty to classification and other tasks. 92 

Segmentation should delineate the areas well; therefore, there should be careful choice of the 93 

segmentation method and its parameterization (Clinton et al. 2010; Costa et al. 2018; Georganos 94 

et al. 2018; Räsänen et al. 2013). In parameterization, one of the most important choices is to 95 

select correct segmentation scale (i.e., the size of the segment). The choice of the segmentation 96 

scale is related to resolution requirements and areal extent: coarser scale segmentation allows 97 

mapping of larger areas but small-sized patches may be missed when the resolution is too coarse. 98 

Thirdly, classification accuracies are often higher with object-based than pixel-based methods 99 

(Amani et al. 2017; Dronova 2015; Sibaruddin et al. 2018). However, also other factors such as 100 

the selection of input data have an effect on the classification accuracy. 101 

 102 

It has been shown that the inclusion of multiple images, in terms of extra spectral and 103 

phenological information, increases classification accuracy (Chen et al. 2017a; Chen et al. 2017b; 104 

Halabisky et al. 2018; Lu et al. 2017; Lucas et al. 2011). A single image is only a snapshot of one 105 

time point, and multiple images taken in different phenological or seasonal phases may allow the 106 

finding of differences between land cover or vegetation types (Chen et al. 2017b; Dudley et al. 107 

2015; Halabisky et al. 2018; Lu et al. 2017; Lucas et al. 2011). In particular, northern landscapes 108 

are typically characterized by high seasonal variation, and phenological development differs 109 

between land cover types (Juutinen et al. 2017), and especially in peatlands, water levels vary a 110 

lot seasonally. Different sensors have different spectral resolution and details; therefore, inclusion 111 

of extra spectral data, including hyperspectral data, may reveal patterns invisible to one sensor 112 

(Chen et al. 2017a; Chen et al. 2017b; Lu et al. 2017). Moreover, instead of using only average 113 

pixel values, textural features representing spatial variation in pixel values have been shown to 114 

increase classification accuracies (Chen et al. 2018; Hall-Beyer 2017; Mishra et al. 2018). It has 115 
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also been shown that when optical datasets are combined with features characterizing 116 

topographical and vegetation structure elements, classification accuracies can be boosted 117 

(Franklin and Ahmed 2017; Luo et al. 2016; Prošek and Šímová 2019; Räsänen et al. 2014; 118 

Sankey et al. 2018; Shadaydeh et al. 2017). However, some results have indicated that inclusion 119 

of lidar data does not increase classification accuracy when wetland vegetation is mapped with 120 

aerial hyperspectral data (Stratoulias et al. 2018). Although there have been multiple arguments 121 

for including different types of data in a single mapping approach, quite often UAV-based 122 

mapping includes features calculated only from the optical UAV data (Lehmann et al. 2016; 123 

Palace et al. 2018). Additionally, there are few systematic tests for determining what kind of data 124 

mixtures are needed and what the changes in mapping accuracy are when different datasets are 125 

omitted or included. 126 

 127 

Our objectives were to test what kind of spatial resolution and dataset combination are needed for 128 

mapping land cover patterns in a patchy peatland landscape in Kaamanen, northern Finland. 129 

Earlier research in the area has concentrated on carbon dioxide (CO2) exchange, its spatial and 130 

temporal heterogeneity, and the linkages between it and vegetation. The landscape is 131 

characterized by strong seasonal patterns, with high amount of snow in the winter and a short 132 

growing season in the summer (Aurela et al. 1998, 2001, 2002, 2004). There is also some 133 

interannual variation e.g. in the timing of snow melt (Aurela et a. 2004) and in the wetness 134 

conditions during the growing season. It has been reported that there is fine-scale variation in 135 

vegetation, land cover and topography (Räsänen et al. 2019c), and the distinct plant community 136 

types within the fen have diverging CO2 exchange patterns (Maanavilja et al. 2011). Overall, the 137 

chosen study area is an ideal location to test how land cover maps differ when the input data and 138 

its resolution are altered. 139 
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 140 

We conducted 78 different classifications using optical imagery, topography, and vegetation 141 

height remote sensing datasets from different platforms (UAV, aerial, satellite) with spatial 142 

resolution ranging from 5 cm to 3 m. We asked what kind of changes there are in classification 143 

accuracy and in areal cover and patchiness of land cover types when (1) spatial resolution of 144 

segmented and classified data is changed, (2) segmentation scale is changed, and (3) 145 

classification input data and features calculated from the data are changed. 146 

 147 

2. Materials and methods 148 

 149 

2.1 Study area 150 

 151 

The study area of 0.4 km2 is located in Kaamanen, northern Finland (69.14° N, 27.27° E; 155 m 152 

a.s.l.), in a northern boreal vegetation zone and subarctic climate zone. The area is dominated by 153 

a treeless mesotrophic patterned fen characterized by a strong pattern of strings (less than 1 m 154 

high) with dwarf shrub vegetation, and flarks with sedge and wet brown moss vegetation (Fig. 1). 155 

A small stream runs through the study area; the riparian areas are characterized by tall sedge 156 

vegetation. The study area includes also upland pine forests, shrub-dominated pine peatland in 157 

the ecotone between the upland forest and open peatland, and a small lake. In the middle of the 158 

circular study area, there is an eddy covariance tower that has been measuring ecosystem CO2 159 

exchange since 1997 (Aurela et al. 1998, 2001, 2002, 2004). The study area, determined by the 160 

extent of the UAV image and by the main footprint area of the eddy covariance tower, extends to 161 

a distance of 300–330 m from the tower in each direction. Similar types of peatlands and pine 162 

dominated forest vegetation can be found extensively in the region surrounding the study area. 163 
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 164 

 165 

Figure 1. The studied fen landscape is characterized by a strong string–flark pattern. <2-column fitting image> 166 

2.2 Fieldwork data 167 

 168 

We collected transect data of land cover distribution in 2017. Eight 250 m transects were set up 169 

in cardinal and intercardinal directions from the flux tower. Land cover along the transects was 170 

classified into ten types (Table 1). The transect data were used for training the classifiers. 171 

 172 

  173 
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Table 1. Classified land cover types. The four first land cover types are described in more detail in Maanavilja et al. 174 

(2011). 175 

Land cover 

type Description 

Wet flark Water table aboveground most of the time; field layer dominated by sedges (Carex spp.); ground layer 

covered by open water, bare peat, and wet brown mosses 

Tussock flark Water table aboveground most of the time; field layer covered by Trichophorum spp. tussocks, and 

other sedges (Carex spp.); ground layer covered by open water, bare peat, and wet brown mosses; more 

vegetation than in wet flarks 

String margin Field layer covered by Betula nana, other dwarf shrubs (e.g., Vaccinium uliginosum, Vaccinium 

oxycoccos), and some sedges (especially Carex spp.); ground layer covered by sphagnum, dry and wet 

mosses, as well as open water 

String top Field layer covered by evergreen and deciduous shrubs (e.g., Rhododendron tomentosum, Vaccinium 

vitis-idaea, V. uliginosum, Empetrum nigrum), as well as herbs (especially Rubus chamaemorus); 

ground layer covered by sphagnum and feather mosses; some lichen 

Riparian fen Field layer dominated by dense and tall sedge growth (Carex spp.), deciduous shrubs (e.g., B. nana, 

Salix spp.), and herbs (Comarum palustre); ground layer covered by sphagnum, wet mosses, and open 

water  

Pine bog Scots pine (Pinus sylvestris) with 1–30% canopy cover and ca 5 m dominant height; field layer 

dominated by evergreen and deciduous shrubs (e.g., R. tomentosum, V. vitis-idaea, V. uliginosum, 

E. nigrum), as well as herbs (especially R. chamaemorus); ground layer covered by sphagnum and 

feather mosses; some lichen 

Pine forest Forest area on mineral soil dominated by Scots pine (P. sylvestris), canopy cover > 10%, dominant 

height ca 10 m; field layer dominated by evergreen and deciduous shrubs (e.g., Calluna vulgaris, 

V. vitis-idaea, Vaccinium myrtillus); ground layer covered by feather mosses and lichen 

Clear-cut Open mineral soil forest patches or areas where trees have been cut, canopy cover < 10%; field layer 

dominated by evergreen and deciduous shrubs (e.g., C. vulgaris, V. vitis-idaea, V. myrtillus); ground 

layer covered by feather mosses and lichen 

Water Open water, includes lakes, ponds, and streams 

Non-vegetated Sand and other non-vegetated surfaces. Mostly consists of forest roads covered by gravel/sand and 

boardwalks 

 176 

For validation data, we used land cover information collected in 412 vegetation plots in 2017 and 177 

2018. In 2017, a total of 210 rectangular plots with 50 cm side length, and 18 circular plots with 178 

40 cm diameter, were used. Rectangular plots were sampled systematically at distances of 25 to 179 

150 m from the flux tower in cardinal, intercardinal, and secondary intercardinal directions. 180 

Circular plots were situated at distances of 7 to 100 m from the flux tower and represented the 181 

major land cover types found in the study area. In 2018, data were collected in 141 rectangular 182 

plots with 50 cm side length in the fen. We sampled the plots using stratified random sampling 183 

and used the following land cover types of a preliminary classification as strata: string top, string 184 

margin, wet flark, tussock flark, riparian fen, and pine bog. Finally, we visually interpreted the 185 
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UAV image, and set a total of 42 extra validation points for the following land cover types which 186 

were not well covered in our peatland targeted field sampling: water, pine forest, clear-cut, and 187 

non-vegetated surfaces. 188 

 189 

Transects in 25–100 m intervals and vegetation plots were located with a Trimble R10 GPS 190 

device with ± 5 cm accuracy, and a Garmin eTrex 30 GPS device was used when transitions 191 

between the land cover types in transects were located. The location of the vegetation plots in the 192 

UAV image was double-checked with visual interpretation to verify that the vegetation 193 

description and visual interpretation in the field matched that in the UAV image. 194 

 195 

2.3 Remote sensing datasets 196 

 197 

We used optical UAV, aerial, and satellite imagery, as well as digital elevation and digital surface 198 

models at 5 cm to 3 m spatial resolution (Table 2) to test what kind of data and resolution are 199 

needed for mapping vegetation. A DJI phantom 4 pro UAV flight was conducted, and the UAV 200 

image was georeferenced using 14 ground control points measured with a Trimble R10 GPS 201 

device with ± 5 cm accuracy. An image mosaic, as well as a digital terrain and digital surface 202 

models were computed using Pix4D software (Pix4D SA, Lausanne, Switzerland). We calculated 203 

a vegetation height model by subtracting the digital terrain model from the digital surface model. 204 

In addition to the UAV image, we used coarser resolution aerial orthophoto and lidar data from 205 

the National Land Survey of Finland (Table 2). The spatial alignment between the orthophoto 206 

and UAV data was verified with visual interpretation. From the lidar, we used a digital terrain 207 

model calculated by the National Land Survey, as well as a vegetation height model in which we 208 

subtracted the digital terrain model from a digital surface model and in which calculation we used 209 
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all lidar returns. We also used the following satellite image data sources: WorldView-2 image 210 

(WV-2, DigitalGlobe Inc., Westminster, CO, USA) and four PlanetScope images (PS, Planet 211 

Labs Inc., San Francisco, CA, USA (Planet Team 2017)). The WV-2 image was orthocorrected 212 

with the help of the aerial orthophoto and 18 ground control points. The spatial accuracy of the 213 

orthocorrected PS images was verified using visual interpretation. 214 

  215 
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Table 2. Details of the remote sensing data and layers calculated from the data. B refers to blue, G to green, GLCM 216 

to gray-level co-occurrence matrix, NDVI to normalized difference vegetation index, NDWI to normalized difference 217 

water index, NIR to near-infrared, R to red, RGI to red-green index, TPI to topographical position index, TWI to 218 

topographical wetness index, UAV to unmanned aerial vehicle, and VHM to vegetation height model. The 219 

Classifications column indicates to which dataset segmentations and further classifications the features were linked. 220 

Dataset Date Producer Spatial 

resolution 

Number and list of layers Classifications 

UAV image Jul 1, 2017 Finnish 

Meteorological 

Institute & 

authors 

0.05 m 27: B, G, R, and 8 GLCM 

layers from all spectral 

bands 

UAV 

UAV digital 

elevation 

model 

Jul 1, 2017 Finnish 

Meteorological 

Institute & 

authors 

0.08 m 7: Elevation, slope, TPIs 

(1 m, 2 m, and 5 m 

distance), TWI, VHM 

UAV 

Aerial image Jun 26, 2016 National Land 

Survey of 

Finland 

0.5 m 39: B, G, R, NIR, NDVI, 

NDWI, RGI, and 8 

GLCM layers from all 

spectral bands 

UAV, aerial (GLCM 

features only in aerial 

image classifications) 

WorldView-2 Jun 6, 2013 DigitalGlobe 

Inc. 

2 m 75: coastal B, B, G, 

yellow, R, red-edge, 

NIR1, NIR2, NDVI, 

NDWI, RGI, and 8 

GLCM layers from all 

spectral bands 

UAV, aerial, 

WorldView-2 (GLCM 

features only in 

WorldView-2 image 

classifications) 

Four 

PlanetScope 

images 

Jun 11, 2017 Planet Labs 

Inc. 

 

3 m 

 

60: B, G, R, NIR, NDVI, 

NDWI, RGI from all 

images, and 8 GLCM 

layers from all spectral 

bands of the July image 

UAV, aerial, 

WorldView-2, 

PlanetScope (GLCM 

features only in 

PlanetScope image 

classifications) 

Jul 25, 2017 

Aug 8, 2017 

Sep 7, 2017 

Lidar data Jul 12, 2016 National Land 

Survey of 

Finland 

0.5 points m−2 

(point cloud), 

2 m (layers) 

9: Elevation, slope, TPIs 

(5 m, 10 m, 20 m, 50 m, 

100 m distances), TWI, 

VHM 

UAV, aerial, 

WorldView-2, 

PlanetScope 

 221 

2.4 Land cover classification 222 

 223 

We classified the land cover types with an object-based approach (Blaschke et al. 2014). First, we 224 

conducted a full lambda schedule segmentation and compared four different segmentation scale 225 

options for four different images. Second, we carried out random forest classifications (Breiman 226 

2001) for the different segmentations and compared six different feature set options. 227 
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 228 

Visual interpretation is often the most meaningful way to parameterize segmentations in natural 229 

environments (Räsänen et al. 2013). Based on parameter combination testing and visual 230 

interpretation, we gave the relative weights 0.7, 0.5, 0.3, and 0.3 to color, texture, size, and shape, 231 

respectively. We segmented the following datasets one by one: UAV image, aerial image, WV-2 232 

image, and PS image from July. We tested the following segmentation scales (i.e., mean size of 233 

segments): 2.5 m2, 5 m2, 10 m2, and 20 m2 with a minimum segment size of 1 m2, 2m2, 4m2, and 234 

8 m2 respectively. As the pixel size of the WV-2 and PS images was 4 m2 and 9 m2, respectively, 235 

we could not conduct the classifications with the lowest segmentation scale for them. Instead, the 236 

highest resolution classifications for these was a pixel-based classification, and we carried out 237 

three classifications for WV-2 and two for PS. Segmentations were conducted in Erdas Imagine 238 

2016 (Hexagon Geospatial, Madison, AL, USA). 239 

 240 

For each segment, we calculated the mean value of all layers from different datasets (Table 2). In 241 

addition to the spectral bands, we calculated the following spectral indices for the aerial and 242 

satellite images: normalized difference vegetation index (Rouse et al. 1973), normalized 243 

difference water index (McFeeters 1996), and red-green index (Coops et al. 2006). For each 244 

spectral band of the segmented images, we calculated the following eight gray-level co-245 

occurrence matrix textural images (Haralick et al. 1973): energy (texture uniformity), entropy 246 

(texture randomness), correlation (pixel’s correlation with its neighborhood), inverse difference 247 

moment (texture homogeneity), inertia (intensity contrast between a pixel and its neighborhood), 248 

cluster shade, cluster prominence, and Haralick correlation. These were calculated with eight 249 

quantization levels, and a moving window technique with the neighborhood distance set to five 250 

for the UAV image, two for the aerial image, and one for the satellite images. For the digital 251 
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elevation models, we calculated slope, topographical position indices with different 252 

neighborhood distances (Guisan et al. 1999), and topographical wetness index (Böhner and 253 

Selige 2006). Texture layers were calculated with Orfeo Toolbox (Grizonnet et al. 2017), and 254 

topographical layers were calculated with SAGA-GIS (Conrad et al. 2015). 255 

 256 

We constructed training data for classifications with the help of the transect field data and visual 257 

interpretation of the UAV image. We constructed the training data using the 2.5 m2 resolution 258 

UAV segmentation. We selected 3479 training segments (102 to 831 for each class). 259 

 260 

In UAV segmentation based classifications, we used features calculated for all datasets; in aerial 261 

image segmentation based classifications, UAV features were excluded; in WV-2 segmentation 262 

based classifications, UAV and aerial image features were excluded; in PS segmentation based 263 

classifications, UAV, aerial image, and WV-2 features were excluded (Table 2). Furthermore, for 264 

each segmentation, we tested six different feature set options: (1) spectral bands and indices for 265 

the segmented image, (2) spectral bands and indices as well as textural features for the segmented 266 

image, (3) spectral bands and indices for the segmented image and topographical/vegetation 267 

height features, (4) spectral bands and indices for multiple images, (5) spectral bands and indices 268 

for multiple images and topographical/vegetation height features, and (6) spectral bands and 269 

indices for multiple images, topographical/vegetation height features, and textural features for the 270 

segmented image. We conducted altogether 78 classifications (13 segmentations and six different 271 

feature sets for each segmentation). 272 

 273 

It has been shown that random forest is insensitive to parameterization (Du et al. 2015; 274 

Rodriguez-Galiano et al. 2012); thus, we used the default parameter values: number of trees was 275 
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set to 500 and number of tested variables at each tree node was set to the square root of variables 276 

in the classification. Classifications were computed in R (R Core Team 2018) using package 277 

randomForest (Liaw and Wiener 2002). 278 

 279 

2.5 Accuracy assessment and classification comparison 280 

 281 

We tested classification accuracy using the 412 validation plots as reference data. For each point, 282 

we set a polygon circle either with a 25 cm (rectangular plots) or 20 cm (circular plots and extra 283 

visually interpreted plots) radius. We then cross-tabulated pixel-based classification accuracy 284 

with 5 cm accuracy (corresponds to the pixel size of UAV classifications). We compared 285 

different classifications based on overall accuracy as well as class-specific user’s and producer’s 286 

accuracies which have been suggested to be used as primary measures (Liu et al. 2007). 287 

Following the suggestion and equation by Foody (2008), we calculated 95% confidence intervals 288 

for the overall accuracy of each classification. In confidence interval calculations, we set the 289 

sample size to the number of 5 cm pixels within reference polygons (n = 30495 for UAV 290 

classifications and 30475 for other classifications). We also calculated the areal cover of each 291 

land cover type in each classification. To study the patchiness of the landscape, we calculated the 292 

mean patch size for each land cover type and measured patch complexity with mean shape index 293 

(i.e., patch perimeter divided by the smallest possible patch perimeter) for the classifications with 294 

the highest classification accuracy for each segmentation using V-LATE (Lang and Tiede 2003). 295 

 296 

3. Results 297 

 298 
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The highest classification accuracy (76.7%) was achieved when we segmented the UAV image 299 

with 2.5 m2 or 5 m2 mean segment size and derived features from all datasets but excluded 300 

textural features (Table 3, Fig. 2). Almost as high classification accuracies were obtained (2.2 301 

percentage points (pp) lower) when the segmented image was the aerial image instead of the 302 

UAV image. The classification accuracies were notably lower (7.6 pp with WV-2 and 11.9 pp 303 

with PS) when satellite imagery was segmented instead of the UAV. Confidence interval was ± 304 

0.5 pp for classifications with > 60% overall classification accuracy and ± 0.6 pp for 305 

classifications with < 60% accuracy (Table S1); hence, the differences between different 306 

segmented image types can be considered statistically significant. Irrespective of the segmented 307 

image, visually acceptable classifications were obtained (Fig. 3). The classification accuracy 308 

decreased when the mean size of the segment increased. However, there was little difference 309 

between the two smallest segment sizes. At all segmentation scales, UAV or aerial image based 310 

classifications had the highest accuracies. Depending on the segmented data, the classification 311 

accuracy difference between the finest and coarsest segmentation scale was between 2.5 and 7.3 312 

pp (Table 3, Figs 2 and 4). 313 

 314 

Table 3. Overall classification accuracies (± confidence interval) for each segmentation with the classifications with 315 

highest classification accuracies. UAV refers to unmanned aerial vehicle. 316 

Segment 

size (m2) 
UAV (%) 

Aerial image 

(%) 

WorldView-2 

(%) 

PlanetScope 

(%) 

2.5 76.7±0.5 74.5±0.5 – – 

5 76.7±0.5 73.7±0.5 69.1±0.5 – 

10 73.8±0.5 72.8±0.5 67.7±0.5 64.8±0.5 

20 70.2±0.5 72.0±0.5 63.9±0.5 57.5±0.6 

 317 
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 318 

Figure 2. Classification accuracies (y-axis) of the 78 different classifications. Different feature sets used in the 319 

classification are presented on x-axis, the segmented image is visualized with different colors, and used 320 

segmentation scale is shown with line dash type. <2-column fitting image> 321 

 322 
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 323 

Figure 3. Classifications with 10 m2 segmentation scale and with the following segmented images: a) unmanned 324 

aerial vehicle, b) aerial, c) WorldView-2, d) PlanetScope (9 m2 pixels instead of segments as a basis). In all 325 

classifications, the feature set which yielded the highest classification accuracy is used. This includes features 326 
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calculated from multiple images as well as topographical and vegetation height features for all subfigures, excludes 327 

texture features for a, b, and c, and includes them for d. <2-column fitting image> 328 

There were large differences in classification accuracy when different feature sets were used 329 

(Fig. 2). The lowest accuracies were obtained when using only spectral bands and indices for the 330 

segmented image. The inclusion of textural features increased classification accuracy (0.4 to 12.1 331 

pp increase), but a higher increase was achieved when multiple remote sensing datasets were 332 

used. Inclusion of multiple images increased accuracy by 8.2–20.4 pp, inclusion of topographical 333 

and vegetation height data by 8.0–19.9 pp, and inclusion of both multiple images and 334 

topographical and vegetation height data by 10.6–25.0 pp. When all datasets were included in the 335 

classification, classification accuracy usually slightly decreased when textural features were 336 

included in the classification (0.4 pp increase to 2.5 pp decrease). In visual interpretation of the 337 

different classifications, it was observed that inclusion of multiple datasets was needed for 338 

visually acceptable classifications and their inclusion decreased random noise in the 339 

classifications (Fig. 5, Fig. 4a). 340 
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 341 

Figure 4. Unmanned aerial vehicle image classifications with the following segmentation scales: a) 2.5 m2, b) 5 m2, 342 

c) 10 m2, and d) 20 m2. The feature set is the one which yielded the highest classification accuracy (includes features 343 
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calculated from multiple images as well as topographical and vegetation height features, but excludes texture 344 

features). <2-column fitting image> 345 
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 346 

Figure 5. Unmanned aerial vehicle (UAV) image classifications with 2.5 m2 segmentation scale and with the 347 

following feature sets: a) UAV spectral bands only, b) UAV spectral bands and texture, c) UAV spectral bands, 348 

topography, and vegetation height, and d) multiple images. <2-column fitting image> 349 
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In the classification with the highest classification accuracy, wet flark had the largest areal 350 

coverage (28.5%) followed by pine bog (14.3%), string top (14.1%), and riparian fen (12.2%) 351 

(Tables 4 and S2). When compared with other classifications with the highest classification 352 

accuracy for each segmentation, the changes in areal coverage of different land cover types were 353 

generally small to moderate (between 3.0 pp decrease and 3.2 pp increase). However, when 354 

compared with classifications which included features only from one dataset (either spectral 355 

bands and indices or spectral and textural features), the differences in class-specific classification 356 

areal extent were larger (between 11.2 pp decrease and 10.0 pp increase). 357 

 358 

Table 4. Areal coverage, and user’s and producer’s accuracies for the classification with highest overall accuracy 359 

(unmanned aerial vehicle segmentation with 2.5 m2 segment size and features calculated from all datasets excluding 360 

texture) as well as minimum, mean, and maximum estimates over all classifications. 361 

  

Wet 

flark 

Tussock 

flark 

String 

top 

String 

margin 

Riparian 

fen 

Pine 

bog 

Pine 

forest 

Clear-

cut Water 

Non-

vegetated 

A
re

al
 

co
v

er
ag

e 

(%
) 

Best classification 28.5 5.4 14.1 9.7 12.2 14.3 8.3 1.3 5.8 0.3 

Minimum 20.5 2.9 13.5 4.8 4.9 3.1 4.9 0.5 4.3 0.1 

Mean 29.5 6.0 16.7 9.2 11.4 11.0 8.3 1.1 6.2 0.6 

Maximum 37.3 9.9 24.0 13.9 22.1 14.6 10.1 2.5 7.8 2.1 

P
ro

d
u

ce
r'

s 

ac
cu

ra
cy

 

(%
) 

Best classification 82.1 54.6 82.8 43.8 84.7 94.7 92.5 90.0 100.0 79.6 

Minimum 59.0 13.2 30.5 15.0 12.7 7.1 10.6 6.7 73.3 43.9 

Mean 75.6 37.4 65.3 33.2 63.1 67.2 79.6 52.7 95.5 71.7 

Maximum 84.6 58.3 82.8 49.4 88.6 98.6 100.0 100.0 100.0 96.6 

U
se

r'
s 

ac
cu

ra
cy

 

(%
) 

Best classification 89.9 33.5 78.0 52.6 78.2 99.9 100.0 89.0 87.7 89.0 

Minimum 59.9 8.1 34.6 16.5 16.7 10.2 6.6 9.4 37.4 42.1 

Mean 81.0 27.9 61.8 36.3 63.7 79.2 64.7 78.4 77.2 74.7 

Maximum 89.9 44.2 79.6 53.1 81.9 100.0 100.0 100.0 100.0 100.0 

 362 

In the classification with the highest classification accuracy, class-specific user’s and producer’s 363 

accuracies varied between 33.5% and 100% (Tables 4 and S1). Lowest accuracies were obtained 364 

for string margin and tussock flark (33.5–54.6%), whereas for other land cover types, accuracies 365 

were > 78.0%. In other classifications with the highest classification accuracy for each 366 
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segmentation, most of the classes had reasonable classification accuracies (lowest accuracy 367 

44.6% when string margin, tussock flark, and clear-cut were excluded from the comparison). 368 

However, in the other classifications, some of the class-specific accuracies were extremely low 369 

(lowest user’s accuracy 6.6% and lowest producer’s accuracy 6.7%) (Tables 4 and S1). 370 

 371 

In the patchiest land cover types, mean patch sizes were two orders of magnitude smaller than in 372 

the least patchy ones (Table 5, Table S3). Land cover types with the lowest classification 373 

accuracies (tussock flark and string margin) had the smallest mean patch sizes, whereas other fen 374 

land cover types (wet flark, string top, and riparian fen) had intermediate patch sizes, and pine 375 

bog and pine forest had the largest patch sizes (Table 5). Patch sizes were the smallest in the 376 

classifications with the smallest segmentation scale, and segmented image did not have a large 377 

effect on mean patch size (Table 5). The patch complexity was dependent on the spatial 378 

resolution of the segmented data: patches were the most complex in UAV segmentation based 379 

classifications and the least complex in classifications utilizing satellite image segmentation. The 380 

complexity increased when the segmentation scale increased, and there was relatively little 381 

difference in patch complexity between land cover types (Fig. 6). 382 

  383 
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Table 5. Mean patch size in m2 for land cover classes in the classifications with the highest classification accuracy 384 

for each segmentation. Additionally, mean patch size over all land cover classes (furthest right column) and mean 385 

patch size for different land cover classes over all classifications (bottom row) are shown. UAV refers to unmanned 386 

aerial vehicle, WV-2 refers to WorldView-2, and PS refers to PlanetScope. 387 
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UAV 2.5 m 113 10 41 10 58 410 830 11 97 23 39 

UAV 5 m 159 16 53 15 110 711 1855 21 91 33 61 

UAV 10 m 233 26 69 24 168 1106 3352 41 112 34 93 

UAV 20 m 297 43 102 42 272 2040 7726 76 408 68 155 

Aerial 2.5 m 88 7 39 9 42 265 650 19 56 14 33 

Aerial 5 m 142 13 52 14 75 526 853 43 109 25 55 

Aerial 10 m 215 23 68 22 144 873 1340 76 191 36 88 

Aerial 20 m 323 39 94 37 213 1313 2585 123 320 41 141 

WV-2 5 m 192 11 57 15 90 709 978 64 134 25 59 

WV-2 10 m 229 12 62 19 119 741 1426 63 174 32 72 

WV-2 20 m 408 26 114 45 318 1650 4026 74 362 40 159 

PS 10 m 236 20 69 24 125 1229 3830 69 247 47 89 

PS 20 m 362 25 85 67 238 1639 10346 112 353 69 153 

Mean 231 21 70 26 152 1016 3061 61 204 37   

 388 
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 389 

Figure 6. Patch complexities (shape index, y-axis) for the classification with the highest classification accuracy for 390 

each segmentation (lines) and land cover types (x-axis). <2-column fitting image> 391 

4. Discussion and conclusions 392 

 393 

Our results show that the highest classification accuracies are obtained when using features 394 

calculated from multiple datasets (Figs 2 and 5). This means that there is a need at least for 395 

multiple optical datasets or one optical dataset and data about topography and vegetation height 396 

when mapping vegetation spatially heterogeneous landscapes. However, in order to have the 397 

highest classification accuracies, both multiple optical datasets and topography/vegetation height 398 

features are needed. According to our results, textural features increase classification accuracy 399 

notably when the feature set is otherwise quite limited, such as when features are calculated from 400 
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one dataset only (Palace et al. 2018). However, textural features do not increase classification 401 

accuracy when multiple optical datasets as well as topography and vegetation height features are 402 

used in classification (Fig. 2). Less useful textural and other features could also be removed from 403 

the classification using feature selection algorithms which include e.g., random forest wrappers 404 

such as Boruta (Kursa and Rudnicki 2010). Feature selection could thus remove the not useful or 405 

even harmful textural features and leave useful textural features in the final classification. 406 

However, in our case, Boruta runs indicated that all features were important in different 407 

classifications, and also random forest out-of-bag error rates did not change when we tested a 408 

different amount of the most important features. Earlier, it has been shown that classification 409 

accuracy might slightly increase when only the most important features are left in the 410 

classification and some of the less important features which are deemed important are left out 411 

(Räsänen et al. 2014). 412 

 413 

The highest classification accuracies were obtained with UAV image based classifications. 414 

However, we argue that UAV image is not necessarily needed for classifying fine-resolution 415 

vegetation patterns in patchy landscapes, because almost as high classification accuracies were 416 

obtained when using a 0.5 m pixel size aerial image as a basis for the classification (Table 3, 417 

Fig. 2 and 3). Actually, when using only spectral features calculated only from dataset, aerial 418 

image-based classifications had slightly higher classification accuracies than UAV-based 419 

classifications (Fig. 2). In turn, in UAV-based classifications, the inclusion of texture boosted 420 

classification accuracy more than in aerial image-based classifications. Classification accuracies 421 

were notably smaller when both UAV and aerial image were excluded from the classification 422 

(Table 3, Fig. 2), although visually acceptable maps were produced also with a combination of 423 

very high resolution satellite imagery and aerial lidar (Fig. 3). 424 
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 425 

Our results do not necessarily suggest that UAV mappings are not useful. Firstly, in our case, the 426 

UAV image was especially useful for training dataset construction, and the use of a coarser 427 

resolution aerial image in training dataset construction would have been more demanding. Of 428 

course, the training dataset could be constructed using field observations and field-measured GPS 429 

information only, but also in this case the UAV image was useful in double checking the relative 430 

positional accuracy of the field observations. Secondly, in many areas across the globe, aerial 431 

imagery and lidar data are not available and data collection of such data is expensive. In these 432 

areas, UAV offers a cheaper and easier solution to collect data from areas with limited areal 433 

extent (Anderson and Gaston 2013; Palace et al. 2018). Considering the first two points, our 434 

results indicate that the highest spatial resolution UAV images over small areas could be used for 435 

training or validation dataset construction (Räsänen et al. 2019a), and lower spatial resolution 436 

UAV data over a larger area could be collected for classification and other mapping purposes. 437 

Thirdly, related to the two first points, UAV data can be used for upscaling purposes, and utilized 438 

as a training data for satellite imagery based mappings (Riihimäki et al. 2019). Fourthly, we used 439 

data collected only from one UAV flight. Results could have been different if we had used 440 

multiple UAV images, as it has been shown that inclusion of images taken at different 441 

phenological stages boost classification accuracy (Chen et al. 2017b; Dudley et al. 2015; 442 

Halabisky et al. 2018; Lu et al. 2017; Lucas et al. 2011). Fifthly, our UAV flight had only an 443 

RGB camera onboard. Classification accuracies could have been higher if we had used visible 444 

and near-infrared (VNIR) or hyperspectral cameras (Cao et al. 2018; Sankey et al. 2018) or UAV 445 

lidar (Sankey et al. 2018). These instruments would have allowed more detailed mapping of 446 

spectral and structural properties of different land cover types. Already in our case, classification 447 

accuracies were considerably higher when we combined spectral UAV data with vegetation 448 
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height and topography data collected using airborne lidar and UAV. However, the inclusion of 449 

hyperspectral or lidar data would have increased the cost and time required for data collection 450 

and processing (Palace et al. 2018). Sixthly, based on visual inspection, patch boundaries 451 

delineated from the UAV image followed the actual patch boundaries in the field more accurately 452 

than patch boundaries delineated using other data. This was also supported by the fact that 453 

patches were the most complex when classifications were based on UAV segmentations (Fig. 6). 454 

Although the classification accuracy was only slightly lower with more general patch boundaries 455 

in our case, it could be more useful to delineate patches as realistically as possible in some other 456 

tasks (Lang et al. 2014). 457 

 458 

According to our results, segmentation scale has an effect on classification accuracy, but this 459 

effect is mostly minor (Table 3, Figs 2 and 4). Our results suggest that there might be a lower 460 

limit for optimal segmentation scale, probably in our case 2.5 m2. Below this limit, finer scale 461 

segmentations do not increase classification accuracy any further but might instead lead to noise 462 

in the classification and lower classification accuracies (Dronova et al. 2012; Räsänen et al. 2013; 463 

Yue et al. 2012). On the other hand, when segmentation scale is slightly increased from the upper 464 

limit of the optimal scale (in our case 5 m2), the decreases in classification accuracy are generally 465 

small. When the segmentation scale grows too large (in our case 20 m2 and above), decreases in 466 

classification accuracy can be larger. However, we tested only four different segmentation scales 467 

and did not test how the changes in the other segmentation parameters affect classification 468 

accuracy. Earlier, it has been shown that changing segmentation scale has a large effect on 469 

classification accuracy (Dronova et al. 2012), but also the segmentation method and other 470 

parameters have an effect (Dronova et al. 2012; Räsänen et al. 2013). Furthermore, also multi-471 

resolution segmentations could be conducted in which different segmentation scale is used for 472 
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delineating patches of different land cover types (Blaschke et al. 2014; Dronova 2015), but 473 

classification based on a single-scale segmentation is easier to implement. 474 

 475 

It is evident that optimal segmentation scale for classification depends on what the real patchiness 476 

of vegetation and land cover types in the study area is. Northern peatlands are extremely 477 

mosaicked in their structure, and this is the case also with our study area. A mean segment size as 478 

small as 2.5 m2 was found to produce the most accurate classification results, although the 479 

difference in classification accuracy was very small when compared to 5 m2 segment size. The 480 

patchiness of the peatland landscape is also illustrated by the fact that some of the fen land cover 481 

types, especially tussock flark and string margin, had very low mean patch size while the mean 482 

patch size for forest and pine bog was many times  larger (Table 5). This indicates that smaller 483 

segmentation scale and higher resolution data are needed for mapping fen than for mapping forest 484 

vegetation. This is an important finding from a carbon dynamics research point of view, as fens 485 

are very critical especially in methane circulation (Marushchak et al. 2016). However, before 486 

making a strong generalization about the landscape patchiness, the optimal segmentation scale in 487 

several different landscapes should be tested. In any case, nowadays, there are tools and images 488 

to study this question at a fine scale, while this was not possible some years ago when very high 489 

resolution data were not widely available. 490 

 491 

We calculated confidence intervals for each classification, although we could have also tested if 492 

differences in classification performance are statistically significant. However, the tests of 493 

significance, such as the widely used McNemar test (Foody 2004) are mostly based on pairwise 494 

comparisons, and such comparisons would have been challenging in our case with approximately 495 

3000 comparison pairs. Overall, both confidence intervals and statistical tests are extremely 496 
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sensitive to sample size (Foody 2009), and confidence intervals we reported should be treated 497 

with caution. We set the sample size to the number of 5 cm pixels within our reference polygons 498 

(ca. 30000). If we had set sample size to the number of reference polygons (412), confidence 499 

limits would have been approximately nine times wider. In that case, each classification would 500 

have been allowed to have only one value within each reference polygon. However, the land 501 

cover type boundaries of different classifications are often located within reference polygons, and 502 

classifications can thus be partly correct per each reference polygon (Fig. S1). In these cases, 503 

choosing the suitable reference unit (polygon vs. pixel vs. aerial unit such as m2) is somewhat 504 

arbitrary. Although the chosen reference unit has small to moderate effect for commonly used 505 

accuracy metrics such as user’s, producer’s, and overall accuracy, its effect can be 506 

disproportionally large for statistical tests. This highlights the difficulty of evaluating classifier 507 

performance for classifications with differing pixel sizes and boundaries, and also for object-508 

based classifications. Numerous polygon or object-based accuracy assessment methods have been 509 

suggested, but those methods have unresolved conceptual challenges (Ye et al. 2018).  510 

 511 

When classifying vegetation or other patterns using a fine-resolution approach, there are strict 512 

requirements for high locational and geometrical precision (Müllerová et al. 2017). If the pixel 513 

size is some centimeters, also locational accuracy should be some centimeters and high-precision 514 

GPS devices should be used. The need for high positional accuracy is evident especially if one is 515 

merging multiple different remote sensing datasets and/or field-measured data in the mapping. In 516 

practice, each dataset should be in the same correct position. Although UAV images can be 517 

orthocorrected with ground control points and small markers in the field, similar methods are 518 

more difficult to implement for satellite images, as their pixel size is usually meters instead of 519 

centimeters. Therefore, it might be that satellite images are not exactly in the same position as the 520 
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UAV data, which might affect mapping accuracy. Also in our case, we could not verify the exact 521 

positional accuracy of the satellite imagery due to coarser pixel size and few easily mappable 522 

(man-made) features in the study area. However, classifications using satellite imagery were still 523 

feasible, which suggests that positional accuracy was sufficient. 524 

 525 

When land cover classification is linked to biogeochemical cycles such as carbon flux data 526 

measured with chambers or eddy covariance towers, it is important that the relative proportion of 527 

different land cover types is predicted accurately and that the patches of different land cover 528 

types are approximately in the correct position (Davidson et al. 2017; Treat et al. 2018). 529 

However, small errors in patch location or form are not that worrisome. Considering the 530 

requirement that relative proportions of land cover types are predicted accurately, our results 531 

suggest that it is important to include multiple datasets in the classification. However, according 532 

to our results, if only one dataset (i.e. UAV, aerial imagery, WV-2 or PS) is used in classification, 533 

the relative proportion of different land cover types may not be accurately predicted. Hence, our 534 

results suggest that finer resolution data (such as UAV or aerial imagery) may be left out from the 535 

classification if the goal is to map relative proportions of different classes and there is no need to 536 

maximize classifier performance. Coarser resolution datasets and segmentations provide 537 

sufficient mapping accuracy for relative proportions of land cover types, especially if mapping is 538 

conducted in areas with rather large areal extent. In the high northern latitudes, widely available 539 

very-high resolution satellite datasets such as PS and ArcticDEM (Porter et al. 2018) could thus 540 

be used for different fine-scale mapping approaches. Nevertheless, we concentrated only on one 541 

study area and did not test what the implications of the different classification options is for 542 

applications such as carbon flux modeling. Therefore, more research should be conducted to test 543 

what kind of datasets and what spatial resolution should be used in different tasks. 544 
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 545 

It has been reported that there have been changes in the high-latitude vegetation patterns during 546 

the past decades (Guay et al. 2014; Jorgenson and Grosse 2016; Macias-Fauria et al. 2012). Also 547 

in the future, vegetation and land cover patterns in the north will probably change rapidly due to 548 

warming climate. Previously, it has been argued that there should be standardized approaches for 549 

fine-scale change detection (Jorgenson and Grosse 2016). Our results imply that sub-meter 550 

resolution data is required for tracking changes in vegetation patches and their spatial location, 551 

but very high resolution satellite data (< 5 m) may be sufficient for detecting changes in areal 552 

cover of different land cover or vegetation types. Overall, repeated standardized UAV mappings 553 

could offer a low-cost method for tracking fine-scale changes. Furthermore, it has been discussed 554 

that UAVs provide a powerful approach to track fine-scale phenology (Berra et al. 2019; 555 

Klosterman et al. 2018). 556 

 557 

Finally, instead of using crisp maps of land cover or habitat types, fuzzy or continuous maps 558 

could be used in mapping vegetation patterns (Foody 1997; Rapinel et al. 2018; Rocchini 2014, 559 

Räsänen et al. 2019c). In these maps, boundaries between different land cover types are not exact, 560 

and/or specific areas might be a mixture of multiple mapped properties such as vegetation 561 

communities. These methods might also help in mapping land cover types with low classification 562 

accuracy such as tussock flark and string margin in our case (Table 4). Although the continuous 563 

and fuzzy maps are often more realistic, they might be less intuitive to use and less 564 

straightforward to interpret. They could also be produced from coarser pixel sized data, which 565 

would allow land cover products with a larger extent but lower accuracy. Therefore, it seems that 566 

the most feasible way is to produce multiple maps showing spatial patterns of different 567 

environmental properties and use the different maps flexibly for different purposes. 568 
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