589 research outputs found

    Multi-community command and control systems in law enforcement: An introductory planning guide

    Get PDF
    A set of planning guidelines for multi-community command and control systems in law enforcement is presented. Essential characteristics and applications of these systems are outlined. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Program management techniques and joint powers agreements for multicommunity programs are discussed in detail. A description of a typical multi-community computer-aided dispatch system is appended

    Evaluating the Impacts of Accelerated Incident Clearance Tools and Strategies by Harnessing the Power of Microscopic Traffic Simulation

    Get PDF
    Traffic incidents cause Americans delay, waste fuel, cause injuries, and create toxic emissions. Transportation professionals have implemented a variety of tools to manage these impacts and researchers have studied their effectiveness, illustrating a wide range between different tools and locations. To improve this state of knowledge, this dissertation sought to 1) identify prominent and effective incident management strategies, 2) model six selected incident management strategies within five highway corridors in South Carolina, and 3) apply benefit-cost analysis to evaluate the impact of various combinations of these strategies. To meet these objectives, the author evaluated published literature of the selected strategies, administered a nationwide survey of these strategies, conducted traffic simulation, and performed benefit-cost analysis. The literature review guided the author to fill gaps in knowledge regarding the effectiveness and expense of identified strategies. The nationwide survey identified effective incident management tools, the extent of their adoption, and their common problems. The author then applied PARAMICS traffic simulation software to evaluate the impact of six tools at five sites on metropolitan interstates throughout South Carolina. Finally, benefit-cost analysis was used to evaluate the benefits against costs at each study site. The survey provided many insights into both the effectiveness and collaboration within and among traffic incident management agencies and guided the author in selecting tools for evaluation. While the simulation study found that as the severity and duration of incident increases, so does the potential benefit of incident management tools, the frequency of incidents also produces significant impact on annual benefits. The benefit-cost analysis indicated that while all the incident management tools evaluated provided more benefits than costs, freeway service patrols and traffic cameras produced the highest return for incidents of varying severity. It was also found more advantageous to select one expensive but efficient incident management technology, rather than engage in the incremental deployment of various systems that might provide redundant benefits. Departments of transportation across the United States see the need to manage incidents more efficiently, consequently this dissertation developed data and analysis to compare benefits with costs to aid decision makers in selecting tools and strategies for future incident management endeavors

    Integrated Management of Emergency Vehicle Fleet

    Get PDF
    The growing public concerns for safety and the advances in traffic management systems, that have made the availability of real-time traffic information a reality, have created an opportunity to build integrated decision support systems that can improve the coordination and sharing of information between agencies that are responsible for public safety and security and transportation agencies to provide more efficient Emergency Response Service. In an Emergency Response System, reduction of the duration of response time can yield substantial benefits. The response time plays a crucial role in minimizing the adverse impacts: fatalities and loss of property can be greatly reduced by reducing the response time for emergencies. In this dissertation, we have developed an integrated model that can assist emergency response fleet dispatchers in managing the fleet. This model can help reduce the response time and improve service level by specifically accounting for the following: Vehicle Deployment: given real-time information about the status of the emergency response fleet, traffic information and the status of emergency calls, select proper fleet assignment schemes that satisfy various operation requirements. Vehicle Routing: given real-time traffic information, provide real-time route guidance for drivers of dispatched vehicles. This goal is achieved by applying various shortest path algorithms into the solution procedure. Planning and Evaluation: given the status of the fleet and the frequency of emergency calls in various areas of a region, the model can help evaluate the performance of the current system and help plan for potential sites for the relocation of vehicles and allocate an appropriate fleet of vehicles to these sites. The vehicle deployment problem is formulated as an integer optimization problem. Since this problem has been shown to be NP-hard and because of the nature of emergency response, we developed heuristics which can provide quality solutions with short computational times. Several test algorithms are proposed to solve the emergency response vehicle deployment problem. Different methods for obtaining lower bounds for the value of objective function are analyzed in this dissertation. To evaluate the performance of the system under various scenarios, a simulation model is developed. The simulation system is calibrated based on real-world data. The results of simulation and analysis show the proposed system can effectively improve the emergency response service level. Application of this model in facility allocation illustrates its usage in other relevant operational scenarios

    A Framework for Developing and Integrating Effective Routing Strategies Within the Emergency Management Decision-Support System, Research Report 11-12

    Get PDF
    This report describes the modeling, calibration, and validation of a VISSIM traffic-flow simulation of the San José, California, downtown network and examines various evacuation scenarios and first-responder routings to assess strategies that would be effective in the event of a no-notice disaster. The modeled network required a large amount of data on network geometry, signal timings, signal coordination schemes, and turning-movement volumes. Turning-movement counts at intersections were used to validate the network with the empirical formula-based measure known as the GEH statistic. Once the base network was tested and validated, various scenarios were modeled to estimate evacuation and emergency vehicle arrival times. Based on these scenarios, a variety of emergency plans for San José’s downtown traffic circulation were tested and validated. The model could be used to evaluate scenarios in other communities by entering their community-specific data

    Determining optimal police patrol deployments: a simulation-based optimisation approach combining agent-based modelling and genetic algorithms

    Get PDF
    One of the most important tasks faced by police agencies concerns the strategic deployment of patrols in order to respond to calls whilst also deterring crime. Current deployment strategies typically lack robustness as they are often based on tradition. As police agencies are encouraged to improve the effectiveness and efficiency of their services, it is essential to devise advanced patrol deployments that are based on recent scientific evidence. Most existing models of patrol deployments are too simplistic, and are thus unable to provide a realistic representation of the complexity of patrol activities. Furthermore, past studies have tended to focus on individual aspects of patrol deployment such as efficiency, reactive effectiveness or proactive effectiveness, rather than consider them all together as part of the same problem. This thesis proposes to develop a decision-support tool for informing better patrol deployment designs. This tool consists of a simulation-based optimisation approach combining two key components: (1) an agent-based model (ABM) of patrol activities used to evaluate the performance of the system under a given deployment configuration and (2) a genetic algorithm (GA) which seeks to speed up the search for optimal deployments. While the developed framework is designed to be applicable to any police force, a case study is provided for the city of Detroit in order to demonstrate its potential. The developed decision-support tool shows considerable potential in informing more cost-effective patrol deployments. First, the ABM of patrol activities allows for exploration of the impact of various deployment decisions that police agencies are unable to experiment with in the real world. Second, the GA makes it possible to optimise patrol deployments by identifying 'good' solutions, which provide faster responses to incidents and deter crime in key areas, in reasonable time

    DEVELOPMENT OF A TRAFFIC INCIDENT MANAGEMENT SYSTEM FOR CONTENDING WITH NON-RECURRENT HIGHWAY CONGESTION

    Get PDF
    Traffic incidents, including disabled vehicles, fire, road debris, constructions, police activities, and vehicle crashes, have long been recognized as the main contributor of congestion in highway networks and the related adverse environmental impacts. Unlike recurrent congestion, non-recurrent congestion is random in occurrence and duration owing to the nature of incidents so that it is highly unlikely to follow predetermined temporal and spatial patterns. These findings indicate the need to have an efficient and effective incident management system, including detection, response, clearance, and network-wise traffic management to contend with non-recurrent congestion. In such a system, reliably estimated incident duration, the time difference between the onset of an incident and its complete removal, plays a key role to accomplish its goal - mitigating incident-related congestions and delays. However, due to the complex interactions between factors contributing to the resulting incident duration and the difficulty in recording data at the desirable level of quality, development of such a system for incident traffic management remains at its infancy. Thus, this research has developed a methodology for estimating incident duration and has identified critical variables and their interrelationships related to incident duration using the MDSHA (the Maryland State Highway) incident database. The proposed system is composed of the sequential classifier with association rules (SCAR) and two supplemental models. This study has confirmed its reliability and robustness through a comparative study with several state-of-the-art approaches. To minimize the incident impact, this study further pursued two additional objectives: (1) development of a deployment strategy for incident response units, and (2) design of a detour decision support model for control center staff to determine the necessity of detouring traffic. To achieve the second objective, an integer programming model has been developed from a new perspective of minimizing incident-induced delay, rather than minimizing total response time in the literature. Extensive tests of the developed model's performance and a comparative analysis with other existing models have confirmed the reliability and robustness of the proposed model. To achieve the third objective, this research has first explored key factors critical to the decision for implementing detour/diversion operations. Those factors have been integrated with an Analytical Hierarchy Process (AHP) to constitute the hybrid multi-criteria decision support system. A case study with the developed system has confirmed its reliability and flexibility. The proposed incident estimation model integrated with a response unit allocation model and a detour decision model can enhance the current traffic incident management system for highway agencies to contend with freeway non-recurrent congestion and to assist traffic operators in answering some critical issues such as: "what would be the estimated duration to clear the detected incident?", "How far will the maximum queue reach?", "Can the projected delay and congestion during incident management warrant the detour operations?", and "What would be the resulting operational costs and total socio-economic benefits due to the effective detour operations?". Furthermore, such a system will be able to substantially improve the quality and efficiency of motorists' travel over congested highways

    Research on the System Safety Management in Urban Railway

    Get PDF
    Nowadays, rail transport has become one of the most widely utilised forms of transport thanks to its high safety level, large capacity, and cost-effectiveness. With the railway network's continuous development, including urban rail transit, one of the major areas of increasing attention and demand is ensuring safety or risk management in operation long-term remains for the whole life cycle by scientific tools, management of railway operation (Martani 2017), specifically in developed and developing countries like Vietnam. The situation in Vietnam demonstrates that the national mainline railway network has been built and operated entirely in a single narrow gauge (1000mm) since the previous century, with very few updates of manual operating technology. This significantly highlights that up to now, the conventional technique for managing the safety operation in general, and collision in particular, of the current Vietnamese railway system, including its subsystems, is only accident statistics which is not a scientific-based tool as the others like risk identify and analyse methods, risk mitigation…, that are already available in many countries. Accident management of Vietnam Railways is limited and responsible for accident statistics analysis to avoid and minimise the harm caused by phenomena that occur only after an accident. Statistical analysis of train accident case studies in Vietnam railway demonstrates that, because hazards and failures that could result in serious system occurrences (accidents and incidents) have not been identified, recorded, and evaluated to conduct safety-driven risk analysis using a well-suited assessment methodology, risk prevention and control cannot be achieved. Not only is it hard to forecast and avoid events, but it may also raise the chance and amount of danger, as well as the severity of the later effects. As a result, Vietnam's railway system has a high number of accidents and failure rates. For example, Vietnam Rail-ways' mainline network accounted for approximately 200 railway accidents in 2018, a 3% increase over the previous year, including 163 collisions between trains and road vehicles/persons, resulting in more than 100 fatalities and more than 150 casualties; 16 accidents, including almost derailments, the signal passed at danger… without fatality or casual-ty, but significant damage to rolling stock and track infrastructure (VR 2021). Focusing and developing a new standardised framework for safety management and availability of railway operation in Vietnam is required in view of the rapid development of rail urban transport in the country in recent years (VmoT 2016; VmoT 2018). UMRT Line HN2A in southwest Hanoi is the country's first elevated light rail transit line, which was completed and officially put into revenue service in November 2021. This greatly highlights that up to the current date, the UMRT Line HN2A is the first and only railway line in Vietnam with operational safety assessment launched for the first time and long-term remains for the whole life cycle. The fact that the UMRT Hanoi has a large capacity, more complicated rolling stock and infrastructure equipment, as well as a modern communica-tion-based train control (CBTC) signalling system and automatic train driving without the need for operator intervention (Lindqvist 2006), are all advantages. Developing a compatible and integrated safety management system (SMS) for adaption to the safety operating requirements of this UMRT is an important major point of concern, and this should be proven. In actuality, the system acceptance and safety certification phase for Metro Line HN2A prolonged up to 2.5 years owing to the identification of difficulties with noncompliance to safety requirements resulting from inadequate SMS documents and risk assessment. These faults and hazards have developed during the manufacturing and execution of the project; it is impossible to go back in time to correct them, and it is also impossible to ignore the project without assuming responsibility for its management. At the time of completion, the HN2A metro line will have required an expenditure of up to $868 million, thus it is vital to create measures to prevent system failure and assure passenger safety. This dissertation has reviewed the methods to solve the aforementioned challenges and presented a solution blueprint to attain the European standard level of system safety in three-phase as in the following: • Phase 1: applicable for lines that are currently in operation, such as Metro Line HN2A. Focused on operational and maintenance procedures, as well as a training plan for railway personnel, in order to enhance human performance. Complete and update the risk assessment framework for Metro Line HN2A. The dissertation's findings are described in these applications. • Phase 2: applicable for lines that are currently in construction and manufacturing, such as Metro Line HN3, Line HN2, HCMC Line 1 and Line 2. Continue refining and enhancing engineering management methods introduced during Phase 1. On the basis of the risk assessment by manufacturers (Line HN3, HCMC Line 2 with European manufacturers) and the risk assessment framework described in Chapter 4, a risk management plan for each line will be developed. Building Accident database for risk assessment research and development. • Phase 3: applicable for lines that are currently in planning. Enhance safety requirements and life-cycle management. Building a proactive Safety Culture step by step for the railway industry. This material is implemented gradually throughout all three phases, beginning with the creation of the concept and concluding with an improvement in the attitude of railway personnel on the HN2A line. In addition to this overview, Chapters 4 through Chapter 9 of the dissertation include particular solutions for Risk assessment, Vehicle and Infrastructure Maintenance methods, Inci-dent Management procedures, and Safety Culture installation. This document focuses on constructing a system safety concept for railway personnel, providing stringent and scientific management practises to assure proper engineering conditions, to manage effectively the metro line system, and ensuring passenger safety in Hanoi's metro operatio

    A study of terrestrial radio determination applications and technology : final report, contract no. DOT/TSC-1274

    Get PDF
    Final report"July 31, 1978." -- "September, 1978."--Cover. "Submitted to: Transportation Systems Center, Department of Transportation, Kendall Square, Cambridge, MA 02142."Bibliography: p. 188-193.DOT-TSC-1274 M.I.T. Project. 84492prepared by John E. Ward, Mark E. Connelly, Avram K. Tetewsky

    DISTRICTING AND DISPATCHING POLICIES TO IMPROVE THE EFFICIENCY OF EMERGENCY MEDICAL SERVICE (EMS) SYSTEMS

    Get PDF
    The major focus of Emergency Medical Service (EMS) systems is to save lives and to minimize the effects of emergency health incidents. The efficiency of the EMS systems is a major public concern. Thus, over the past three decades a significant amount of research studies have been conducted to improve the performance of EMS systems. The purpose of this study is also to improve the performance of EMS system. The contribution of this research towards improving the performance of EMS systems is twofold. One area is to implement optimal or near optimal dispatching strategies for EMS systems and the other is to determine the response boundaries for EMS vehicles. Proposed dispatching strategies are implemented incorporating the degree of the urgency of the call. A Markov decision process (MDP) model is developed to obtain optimal dispatching strategies in less complex models. A heuristic algorithm is proposed to dispatch ambulances for more complex models. In this study, an integer programming formulation and a constructive heuristic are proposed to determine response areas or districts for each ambulance. Additionally, dispatching rules to dispatch paramedic units within districts and out of districts are examined. Simulation is used to evaluate the performance of the EMS system after introducing proposed dispatching policies. Performance is measured in terms of patients\u27 survival probability rather than measuring the response time thresholds, since survival probability reflects the patients\u27 outcome directly. Results are illustrated using real-data collected from Hanover county Virginia. Results show that proposed dispatching rules are valuable in increasing patients\u27 survivabilit

    Intelligent Transportation Systems Strategic Plan (Phase I Report)

    Get PDF
    This interim report on an Intelligent Transportation Systems Strategic (ITS) Plan has been developed as documentation of the process of offering a vision for ITS and recommending an outline for organizational structure, infrastructure, and long-term planning for ITS in Kentucky. This plan provides an overview of the broad scope of ITS and relationships between various Intelligent Vehicle Highway Systems (IVHS) functional areas and ITS user service areas. Three of the functional areas of ITS have been addressed in this interim report with sections devoted to mission, vision, goals, and potential technology applications. Within each of the three areas, recommendations have been made for applications and technologies for deployment. A more formalized business plan for will be developed to recommend specific projects for implementation. Those three functional areas are 1) Advanced Rural Transportation Systems (ARTS), 2) Advanced Traveler Information Systems (ATIS), and 3) Commercial Vehicle Operations (CVO). A survey of other states was conducted to determine the status of the development of ITS strategic plans. Information received from the 11 states that had completed strategic plans was used to determine the overall approach taken in development of the plans and to evaluate the essential contents of the reports for application in Kentucky. Kentucky\u27s ITS Strategic Plan evolved from an early decision by representatives of the Kentucky Transportation Cabinet (KyTC) to formalize the procedure by requesting the Kentucky Transportation Center to prepare a work plan outlining the proposed tasks. Following several introductory meetings of the Study Advisory Committee, additional focus group meetings were held with various transportation representatives to identify ITS issues of importance. Results from these meetings were compiled and used as input to the planning process for development of the Strategic Plan components of ARTS and ATIS. The development of a strategic plan for Commercial Vehicle Operations originated from a different procedure than did the other functional areas of ITS. As part of well-developed commercial vehicle activities through the ITS-related programs of Advantage I-75 and CVISN, Kentucky has become a national leader in this area and has developed a strategic plan of advanced technology applications to commercial vehicles. The strategic plan for Commercial Vehicle Operations was developed out of the convergence of several parallel processes in Kentucky. Empower Kentucky work teams had met over a two-year period to develop improved and more efficient processes for CVO in Kentucky. Their conclusions and recommendations encouraged the further activities of the Kentucky ITS/CVO working group that first convened in the summer of 1996. In an effort to conceptually organize the various ITS/CVO activities in Kentucky, and as a commitment to the CVISN Mainstreaming plan, an inclusive visioning exercise was held in early 1997. Out of this exercise emerged the six critical vision elements that guided the CVO strategic plan. The remaining functional areas to be included in the ITS Strategic Plan will be addressed in the second phase of this study. Those areas are Advanced Traffic Management Systems (ATMS), Advanced Vehicle Control Systems (AVCS), and Advanced Public Transportation Systems (APTS). It is anticipated that a process similar to that developed for the first phase of this study will continue
    • …
    corecore