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Abstract

The major focus of Emergency Medical Service (EMS) systems is to save lives and to minimize the

effects of emergency health incidents. The efficiency of the EMS systems is a major public concern. Thus,

over the past three decades a significant amount of research studies have been conducted to improve the per-

formance of EMS systems. The purpose of this study is also to improve the performance of EMS system.

The contribution of this research towards improving the performance of EMS systems is twofold. One area

is to implement optimal or near optimal dispatching strategies for EMS systems and the other is to determine

the response boundaries for EMS vehicles.

Proposed dispatching strategies are implemented incorporating the degree of the urgency of the call.

A Markov decision process (MDP) model is developed to obtain optimal dispatching strategies in less com-

plex models. A heuristic algorithm is proposed to dispatch ambulances for more complex models. In this

study, an integer programming formulation and a constructive heuristic are proposed to determine response

areas or districts for each ambulance. Additionally, dispatching rules to dispatch paramedic units within dis-

tricts and out of districts are examined.

Simulation is used to evaluate the performance of the EMS system after introducing proposed dis-

patching policies. Performance is measured in terms of patients’ survival probability rather than measuring

the response time thresholds, since survival probability reflects the patients’ outcome directly. Results are

illustrated using real-data collected from Hanover county Virginia. Results show that proposed dispatching

rules are valuable in increasing patients’ survivability.
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Chapter 1

Introduction

The fundamental responsibilities of Emergency Medical Service (EMS) systems are to provide ur-

gent medical care, such as pre-hospital care, and to transport the patient to the hospital if needed. The

efficiency of EMS systems is a major public concern [35]. Problems, such as where to locate ambulances and

how to dispatch ambulances, must be solved by EMS planners to provide effective and efficient service to the

public.

Over the past three decades, a significant amount of research studies have been conducted to im-

prove the performance of EMS systems. The major focus of these models is to reduce response time (the

time between the receipt of a call at the dispatch center and the arrival of the first emergency response vehicle

at the scene) by placing the ambulances in optimal locations. The focus has been on response time because

EMS systems are designed to rapidly provide advance medical care to critical patients such as cardiac arrest

or trauma. As a result, the common method to evaluate the EMS system is to measure coverage level that

reflects the proportion of patients who experience a response time less than a given time standard. However,

the focus of some recent research studies is on survival probability of patients in an emergency because sur-

vivability mirrors the patient outcome directly. As such, patients’ survivability is used as our performance

measure in this study.

Our contribution towards improving the performance of EMS systems is two fold. One area is to

implement optimal or near optimal dispatching strategies for EMS systems and the other is to determine the

response boundaries for EMS vehicles that maximize the patients’ survivability. When implementing optimal

dispatching strategies calls are prioritized considering the degree of the urgency of the call. Then, different

dispatching strategies are implemented for each prioritized category. The proposed dispatching strategies are
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developed for EMS systems that use fixed deployment, meaning paramedic units are located at specific loca-

tions, respond form those stations, and return to their home stations after providing the service. A Markov

decision process (MDP) approach and a simulation-based approach are utilized when implementing optimal

dispatching strategies. Since these approaches have the ability to address the stochastic and dynamic behavior

of the EMS system. The model formulations and computational results are explained in detail later in this

document. Computational results show that it is beneficial to implement prioritized dispatching strategies in

EMS systems to maximize patients’ survivability.

In another study, to determine the response areas or boundaries for each ambulance, an integer

programing formulation and a constructive heuristic will be proposed. When operations of EMS vehicles

are restricted to predetermined boundaries, it enables the EMS system to reduce the mean response time of

paramedic units support to the scene [10]. Thus, we district the EMS service area into sub-regions in order

to determine the emergency service vehicle response boundaries that increases patient survivability. After

obtaining vehicles districts, we proposed intra-district (within the district) and inter-district (out of district)

dispatching disciplines to improve the efficiency of the EMS system. These dispatching rules are developed

incorporating the degree of the urgency of the call. The performance of integrated dispatching and districting

policies are illustrated using real-world data collected from Hanover County, Virginia. Results show that op-

erating ambulances according to boundaries given by our proposed methods and dispatching rules, can help

to increase patients survivability.

The remainder of this doctoral thesis is organized as follows: In the next section relevant literature

on models used for EMS systems is discussed. Chapter 2 presents “Optimal Dispatching Strategies for Emer-

gency Vehicles to Increase Patient Survivability”, a MDP approach and computational results, for obtaining

optimal dispatching strategies that maximize patients survival probability. A simulation-based approach to

determine optimal dispatching strategies, “Priority Dispatching Strategies for EMS systems,” is presented

in Chapter 3. Additionally, a heuristic approach for obtaining improved dispatching policies is discussed in

Chapter 3. In Chapter 4, a mathematical model formulation and a constructive heuristic to determine geo-

graphical boundaries for paramedic units, “Districting and Dispatching Policies to Improve the Efficiency of

Emergency Medical Service (EMS) Systems,” is presented. Conclusions and future research suggestions are

explained in Chapter 5.

2



1.1 Literature Review

The major focus of EMS system is to save lives and to minimize the effect of an emergency health

incident. Thus, the decision-making process of an emergency medical services focused on effectiveness and

efficiency, becomes a strategic challenge. EMS planners must solve problems, such as where to locate emer-

gency service stations, how many ambulances to allocate to each station, and how to dispatch the appropriate

paramedic unit to the emergency scene. A significant amount of research work has been done towards ad-

dressing these problems faced by EMS systems in order to improve the performance of the system. The

relevant literature can be divided into which resource allocation decision is being made.

Most of the early models of the 1970’s developed for EMS systems focused on placing ambulances

at optimal locations to improve the EMS performances by providing better coverage for the population. In

these covering location models, a demand point is said to be covered if there exists at least one vehicle within

the distance or time standard. A few such static mathematical covering models are: the location set covering

problem (LSCP) [49], the maximal covering location problem (MCLP) [11], the tandem equipment alloca-

tion model (TEAM) [43], and the double standard model (DSM) [16]. Probabilistic models are developed

by researchcers to address the stochastic behavior of EMS systems, considering the fact that emergency ve-

hicles are busy once they respond to a call. In these probabilistic models, the emergency medical units are

considered as servers operating in a queuing system. The first such model is developed by Larson et al. [25].

Other well-known probabilistic models are the Maximum Expected Covering Location model (MEXCLP)

and the Maximal Availability Location Problem (MALP). Additional extensions of the (MEXCLP) model

can be found in EMS literature (e.g ReVelle et al. PLSCP [38], Marianov et al. Q-PLSCP [29], McLay [31]).

Ambulance relocation models found in EMS literature are developed to properly account for actual

coverage level, since the dispatching of an ambulance in response to a call may leave a significant proportion

of the population without sufficient coverage. In relocation models, the main focus is to relocate dynamically

vehicles in real-time when vehicles are dispatched to the scene instead of looking for a single solution to a

static or probabilistic model for providing proper coverage. The first such vehicle relocation model is devel-

oped by Koslea et al. [22] to relocate fire trucks. A more recent example for ambulance redeployment is the

dynamic double standard model at time t (DDSMt) by Gendreau et al. [17]. The primary disadvantage of

dynamic relocation models is the necessity of finding a new solution whenever a vehicle is dispatched. There

are some other practical issues in implementing the relocation of ambulances in real time for EMS systems.

For example, with an increase in the complexity of EMS systems, the number of relocations grows dramati-

3



cally; when calls come in quick succession, solutions may be infeasible. Additionally, relocating ambulance

may change the route or destination of a vehicle frequently which can lead to a confusion of drivers and

thereby causing mistakes. Current research focuses on developing more powerful solution methodologies to

solve these models quickly. There are practical issues in implementing dynamic relocation models to real

world EMS systems; in our study, an EMS system with fixed deployment (where paramedic units are located

at specific stations, respond from stations, and return back to their station after serving a call) is considered

instead of ambulances relocating. The main focus is to improve the EMS system performance by implement-

ing efficient dispatching strategies, which includes an ordered preference list of ambulances to dispatch.

There are only a few research studies that have been conducted incorporating dispatching strategies

to improve the performance of EMS systems. In many EMS systems the existing dispatching policies do

not consider the degree of the urgency of the call. Most of the EMS models previously discussed follow the

most common dispatching rule: sending the closest available unit to minimize the response time. Carter et

al. [10] found that this rule is not always optimal in minimizing the average response time. Their goal was to

determine the boundaries for each emergency unit (i.e. the area of each demand zone) in order to minimize

the average response time. They proposed a queuing model to represent the emergency medical system with

a continuous-time Markov process.

A few research studies have shown that dispatching emergency vehicles according to the degree of

the urgency of the call helps to increase the survival probability of patients. For example, Nicholl et al. [35]

conducted a case study with the objective of evaluating the safety and reliability of a two priority dispatch sys-

tems operated by ambulance service in the UK. They found that priority dispatching systems have the ability

to respond quickly to life-threatening calls by focusing resources on these calls, thereby increasing the sur-

vival probability of the patients. In addition, they recommended that low priority calls, or non-life threatening

calls, should be responded to as soon as possible rather than immediately. Another study was conducted in the

Emergency Medical Service in Helsinki, Finland, by Kusima et al. [23] to record pre-hospital death rates in

four medical priority categories (most severe to least severe) to evaluate if deaths in lower urgency categories

could have been prevented by faster ambulances responses. This community-based cohort study showed that

the four-category medical priority dispatching of ambulances helps to maintain a lower pre-hospital mortality

in the two lower urgency categories. These studies suggest that priority dispatching plays a key role in saving

lives.

EMS literature includes only a few studies incorporating dispatching policies or strategies consid-

ering the degree of the urgency of the call. Comparing the dispatching strategies of first-called first-served
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(FCFS), nearest-origin assignment, and the flexible assignment strategy, Haghani et al. [19] discussed the

benefits using priority dispatching in EMS systems to reduce response time. The objective was to evaluate

the performance of these three dispatching strategies considering dynamic travel time information, vehicle

diversion, and route changing. Henderson et al. [20] developed a decision support tool for St. John Ambu-

lance Service in New Zealand considering two types of calls: Priority 1 and Priority 2. Priority 1 calls are

considered to be the more severe incidents, while Priority 2 calls are less severe incidents. Andersson et al.

[1] also investigated the advantage of priority dispatching considering the urgency of the call. Their goal was

to relocate ambulances in order to minimize the response time. In addition to dynamic ambulance relocation,

they also proposed an algorithm to dispatch ambulances automatically incorporating the severity of the call.

They considered three types of priority calls: the most urgent life threatening calls categorized as Priority 1

calls, urgent but not life threatening calls as Priority 2, and non-urgent calls as Priority 3 calls.

Determining the response area for an ambulance or set of ambulances is another important resource

allocation decision context in EMS systems [25]. Larson defined this resource allocation problem as a “dis-

tricting” problem. The districting literature goes back to early 1960’s. One of the first study was done by

Smith [46] to redesign the police patrol response area in order to minimize the traveling time within districts.

Later Gass [15] proposed a heuristic technique for police sectors in Cleveland. A network approach was

implemented by Santone et al [41] to evaluate the alternative fire station sites and districts at the National

Bureau of Standards. Larson ([25], [27], [26]) and Carter et al. [10] are the other researchers who drew

significant amount of attention to the districting problem. A detailed discussion of their work will be given

in Chapter 4.

The models discussed thus far, were developed using three approaches: mathematical models, queu-

ing models, and simulation models. However, developing mathematical or queuing models for EMS sys-

tems to obtain optimal dispatching strategies using existing tools leads to several issues. Decision making

in emergency vehicle dispatching process is a complex real world problem that is filled with uncertainty.

Furthermore, the dynamic behavior of the EMS systems leads the dispatchers to make a series of random

sequential decisions in each stage and ultimately operate the system optimally. Since the vehicle dispatching

problem is dynamic and stochastic in behavior, the use of traditional deterministic optimization modeling

to solve EMS dispatching problems is not applicable. Therefore, the Markov Decision Process (MDP) and

simulation approaches, which are capable of addressing those issues (dynamic and stochastic behavior), can

be used to determine the optimal dispatching decisions in EMS systems. McLay et al. [34] used the MDP

approach to model the EMS system and obtain optimal dispatching rules. In our study we also used the MDP

5



approach to obtain the optimal dispatching strategies. Although the MDP is capable of addressing problems

with stochastic behavior, simulation approach has some advantages over the MDP. When the MDP approach

is used for real world EMS systems the model formulation becomes complicated; the state space grows dra-

matically with the complexity (number of ambulances and demand zones managed) of the EMS system.

In contrast, simulation models are easy to use for modeling EMS systems and measuring perfor-

mances. They also allow us to compare systems under different sets of assumptions, providing the ability

to test new operational strategies such as different ambulance locations or dispatching rules. EMS literature

includes several simulation models that have been developed and used to evaluate the performance of EMS

systems. One early example is that of Savas et al. [42] for ambulance operation in New York City. In this

study, a computer-based simulation was developed to conduct a analysis of cost-effectiveness in New York’s

emergency ambulance service. The objective was to improve the service of the EMS at a low cost. A consid-

erable improvement in average response time has been showed by redistributing the existing ambulances in

the district by locating some of them at satellite garages rather than all of them at a hospital. Another sim-

ulation model was developed by Henderson et al. [20] as a decision support tool for ambulance dispatching

in the Auckland region, New Zealand. Two other simulation models were developed by Andersson et al. [1]

and Haghani et al. [19] to study the performance of the different dispatching rules of EMS systems. These

examples show the usefulness of simulation in modeling EMS systems. In our research we are also consid-

ering a simulation approach to develop EMS systems and study the performance of the proposed dispatching

strategies to the system.

The main goal of this study is to maximize the average survival probability of the patients by im-

plementing optimal dispatching strategies and determining the response boundaries for EMS vehicles. In

contrast, most EMS systems attempt to improve their performance by minimizing the average response time.

To reduce this time, the rule followed by those systems is to dispatch the closest unit, known as the myopic

policy, giving no reference to the severity of the emergency call. When attempting to maximize the survival

probability of the patient, the myopic policy is not always optimal. For example, in a situation when the

dispatching center receives two types of calls from the same region, an urgent call subsequent to a less urgent

call, the victim involved in the second incident will be in jeopardy because the closest emergency unit may

have been sent to the less serious first call. In such a situation the dispatcher has to send another unit to the

more severe incident. This strategy may not be ideal, as the next closest available unit may take more time

to arrive at the incident. This dispatching could lead to a decrease in the survival probability of the severe

incident due to inability to minimize the response time. In order to address this situation, a system consider-
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ing the severity of the emergency has to be developed. Therefore, one objective of this research is to develop

optimal dispatching strategies for EMS systems that will maximize the patient survivability by incorporating

the degree of the urgency of the call. The other objective is to determine the response boundaries for EMS

vehicles that maximize the patients survivability.

In this study, EMS performance evaluation was conducted by measuring the patient survivability in-

stead the number of calls covered within a given time standard, known as the response time threshold (RTT).

Utilizing patient survivability to evaluate performance of EMS system is a more precise measure in terms

of number of patients survive. In addition, measuring the patients survivability directly mirrors the patient

outcome. The models developed incorporating survival probability that can be found in EMS literature are

[13],[33],and [34]. Results of these research studies indicated that incorporating survival function in the mod-

els ultimately helped to increase of patients’ survivability.

The MDP approach and simulation approaches are used to determine the optimal dispatching strate-

gies for EMS systems. The results of these findings were used to develop a heuristic to determine the im-

proved dispatching strategies in more complex models in order to maximize the patients survival probability.

Computational examples were considered to study the performances of the proposed dispatching heuristic.

The results indicated that it is not always optimal to dispatch the closest ambulance especially for low priority

calls that are non-life threatening. In addition, in this study, an integer programing model and a constructive

heuristic are proposed, to determine the response area (or boundaries) for each ambulance that increase the

patients survivability in emergencies. Results show that operating ambulance according to boundaries given

by the proposed model can help to increase patients’ survivability.
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Chapter 2

Optimal Dispatching Strategies for

Emergency Vehicles to Increase Patient

Survivability

2.1 Introduction

The goal of most emergency medical services is to provide medical care for urgent 911 calls, and/or

to transport patients to a hospital, and to ultimately save patients’ lives. In recent years, demands on EMS

systems have increased due to population growth and scarcity of resources. Thus, EMS system planners

are interested in improving the performance of EMS system by providing effective and efficient service to

customers through improved operations, such as optimal allocation of resources. Locating ambulances is

one class of resource allocation problem and a widely used method for improving the performance of EMS

systems. Dispatching emergency vehicles is another class of resource allocation problem, which is less

studied, for improving EMS system performance. In practice, the optimal strategies are not obvious and the

medical literature highlights the need for finding effective ways to dispatch ambulances to patients [40]. In

this study our focus is to improve the performance of EMS systems by implementing dispatching strategies

to use with currently available resources. In particular, in this paper we present stationary dispatching rules

for emergency vehicles. The dispatching rule provides an ordered preference list of ambulances (prioritized

list of ambulances) to dispatch for each demand zone which depends on the degree of urgency of the call.
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The dispatch center handles each 911 call, where a dispatcher determines the nature and priority

of the call and dispatches the appropriate medical unit(s). The nature of the call reflects the type of call

(such as motor vehicle accident, trauma, or difficulty breathing). The priority assigned to the call reflects the

operator’s perception of whether the call is an emergency. Here we assume that calls are classified into two

priorities, Priority 1 or life-threatening calls, and Priority 2 or non-life threatening calls. Most frequently,

EMS systems have no more than three priority levels, as these classifications need to be made in a matter of

seconds. While in this paper we limit our analysis to two priority levels, we can extend the results beyond

two levels easily with minor modifications to the model. In addition, survival probability is used as our

performance measure of the EMS system as opposed to a response time threshold, since survival probability

mirrors patient outcomes directly [13].

The vehicle dispatching problem is dynamic and stochastic in nature; thus the use of traditional de-

terministic optimization models to solve the EMS dispatching problem is not applicable. Therefore, a Markov

decision process (MDP) approach, which is capable of addressing the dynamic and stochastic behavior of the

EMS system, is used in our research to obtain the optimal dispatching strategies. We model this problem as

a discounted, infinite horizon Markov decision process. The proposed model determines how to optimally

dispatch paramedic units (ambulances) in response to emergency 911 calls in order to maximize the patients’

survivability.

The optimal policy is compared with the myopic policy of always sending the closest server. This

comparison is done using a hypothetical example using data similar to Hanover County, Virginia. Results

show that dispatching the closest vehicle is not always optimal and dispatching vehicles considering the

priority of the call leads to an increase in the average survival probability of patients. Moreover, it is observed

that additional lives can be saved with no extra cost (in terms of paramedic units available) by implementing

the optimal dispatching policy suggested by the MDP model. In other words, the optimal dispatching policy

is economical.

The remainder of this Chapter is organized as follows. Section 2.2 reviews relevant literature on

models used for EMS systems. The MDP model formulation is described in section 2.3. Section 2.4

presents a computational example using data collected from Hanover County, Virginia. Conclusions and

future research directions are presented in section 2.5.
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2.2 Related Work

The decision making process in EMS systems is a strategic and complex challenge, made even more

difficult by the uncertain nature of the system dynamics (e.g. when and where calls originate, length of

service, etc.). Several different approaches such as discrete optimization, queuing, and simulation models

have been utilized in the context of EMS systems to help the decision maker. The models found in the

literature for improving the performance of EMS systems using these approaches are briefly discussed below.

Most of the early models developed for EMS systems dealt with static and deterministic ambulance

station location problem. The location set covering problem (LSCP) [49], the maximal covering location

problem (MCLP) [11], the tandem equipment allocation model (TEAM) [43] and the double standard model

(DSM) [16] are few examples. Probabilistic covering location models were developed considering the fact

that emergency vehicles are busy once they respond to a call. A few such model are, the maximum expected

covering location model (MEXCLP) [12], the maximal availability location problem (MALP) [38] and a

more recent hybrid of these (LR-MEXCLP) [47]. [39, 29, 31] and [9] are the additional extensions of the

(MEXCLP) model can be found in EMS literature. Ambulance relocation models were developed to explic-

itly account for busy ambulances when calculate coverage. In relocation (or redeployment) models, the main

focus is to dynamically relocate vehicles in real-time when vehicles are dispatched to the scene. A few such

vehicle relocation models are Kolesar et al. [22], Gendreau et al. [17], and Rajagopalan et al. [37]. In another

study, Paul et al. [36], provide a case study of how ambulances (and other resources) can be reallocated

during a disaster.

The models discussed thus far were developed to locate and relocate ambulances using two ap-

proaches, mathematical models and queuing models. There are only a few research studies have investigated

dispatching strategies to improve the performance of EMS systems. Since the vehicle dispatching problem

is dynamic and stochastic in nature; simulation and MDP approaches are most often used by researchers to

address these issues. The EMS literature includes several simulation models that have been developed and

used to evaluate the performance of EMS systems. Savas [42], Henderson et al. [20], Andersson et al.[1] and

Haghani et al.[19] are researchers who developed simulation approaches for EMS models.

In many EMS systems the existing dispatching policies do not consider the degree of the urgency of

the call. Most of the EMS models discussed previously follow the most common dispatching rule, sending

the closest available unit. Carter [10] found that this rule is not always optimal in minimizing the aver-

age response time. Their goal was to determine the boundaries for each emergency unit (i.e. the area of
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each demand zone). Carter developed a queuing model to represent the emergency medical system with a

continuous-time Markov decision process. A few research studies have shown that dispatching emergency

vehicles considering the degree of the urgency of the call will lead to an increase of survival probability of

patients. For example, Nicholl et al. [35] and Kuisma et al. [23]. Thus, in this study we also consider the

severity of the call when implementing optimal dispatching rules.

EMS system performance is commonly evaluated by measuring the response time threshold (RTT),

meaning measuring the number of calls covered within a given time standard. However, recent evaluation

is focused on measuring the survival probability of patients. Utilizing patient survivability can be a more

precise measure in terms of number of patients that survive. Erkut [13] and McLay [33] developed models

for locating EMS vehicles incorporating survival probability. A discussion of these and other EMS models

that aim to improve patient survivability can be found in [32]. Results of these research studies specify that

incorporating survival function in the models ultimately helped to increase patients’ survivability.

Therefore, the objective of this study is to implement optimal dispatching strategies for EMS systems

that maximize patient survival probability by incorporating the degree of the urgency of the call. These

dispatching strategies are developed using the MDP approach. In EMS literature a few studies have been

conducted using the MDP approach. McLay [34] used an MDP approach to optimally dispatch EMS vehicles.

Maxwell et al. [30] proposed approximate dynamic programming for ambulance redeployment. The main

differences between our model and Henderson’s model can be described as follows: Henderson considered an

EMS system with ambulance redeployment. However, we consider an EMS system with fixed deployment,

meaning ambulances return back to their home station after serving the calls.

While redeployment has its advantages, there are some practical issues when implementing ambu-

lance redeployment for use with some real world EMS systems. One disadvantage of dynamic relocation

models is the necessity of finding a new solution whenever a vehicle is dispatched. This procedure is time

consuming since it has to be done frequently. Furthermore, when calls come in quick succession solutions

may be infeasible [18]. Another drawback associated with redeployment is, with an increase in the com-

plexity of EMS systems, the number of relocations grows dramatically [1]. Additionally, frequent ambulance

relocations will change the route or destination and can lead to a confusion of drivers thereby causing mis-

takes. Also, to implement redeployment in EMS systems advanced technologies such as CAD and GPS are

required. Moreover, it is necessary to incorporate the relocation cost in EMS systems; because each time

a relocation occurs the ambulances have to move from one location to another. The operating cost of EMS

systems may increase due to relocation. There is a trade off between the benefits of the relocating and the
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operational costs [19]. Since there are practical issues in implementing dynamic relocation models with some

real world EMS systems, especially those with few or limited resources, in our study an EMS system with

fixed deployment is considered instead (where paramedic units are located at specific stations, respond from

stations, and return back to their home station after serving a call). The main focus is to improve the EMS

system performance by implementing efficient dispatching strategies.

McLay [34] do consider an EMS system with fixed deployment in their model. The difference

between this work and our work can be described in the following manner. The objective of their model was

to maximize the coverage level (which reflects the proportion of calls covered within a given time standard).

In our model, however, the objective is to maximize the patient survival probability. Furthermore, their

optimal dispatching policy is not always a priority list. The optimal ambulance to dispatch depends on the

locations to which the busy ambulances have been dispatched. In our study we propose an ordered list

(priority list) of ambulances to dispatch depending on call severity. Our approach is easy to implement in

EMS systems since we consider only the call severity not the location of the busy ambulances. Furthermore,

McLay [34] showed that their dispatching policy in most cases does follow a priority list of ambulances; thus,

implementing a priority list dispatching strategy in EMS system is reasonable and constraining the decision

space ex-ante is computationally less expensive.

2.3 MDP Model Description and Parameters

Consider an EMS system with i demand zones (i = 1, ..., n) and j ambulance stations (j = 1, ...,m)

with an ambulance at each station (n × m case). Here demand is considered to be the calls requesting

paramedic units from the EMS system. In this model we assumed that locations of all demand zones and

ambulance stations are known. A 911 emergency medical service starts with a call to the dispatching center

requesting an ambulance. An arriving call is of one of two types: either Priority 1 or Priority 2. Priority 1 calls

are considered to be life-threatening while Priority 2 calls are non-life threatening calls. The time between

the arrival of the call and the time the first ambulance is dispatched to the scene is known as preparation time.

The time between the receipt of a call at the dispatch center and the arrival of the first emergency response

vehicle at the scene is known as the response time. Service time can be defined as the time required for an

ambulance to return back to its original station after leaving the station to attend the call, which includes the

transportation time of the patient to the hospital if needed. The assumptions we made when developing this

model are explained below:
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• We consider two types of calls: Priority 1 and Priority 2.

• Any type of emergency (either life-threatening or non-life threatening) can be handled by any ambu-

lance.

• Only one paramedic unit is dispatched to each call.

• Inter-arrival times of calls and service times are exponentially distributed.

• Service time is independent of the call priority. This assumption can be easily relaxed.

• When a call arrives, if a paramedic unit is available, then it must be dispatched.

• When a call arrives if all paramedic units are busy, that calls is served by outside resources (e.g. an

ambulance from a neighboring county).

Input parameters for the model are summarized below;

• λ = call arrival rate (to the entire system)

• n = total number of demand zones

• m = total number of paramedic units, each at a fixed location

• zi= proportion of calls from ith demand zone: such that
n∑
i=1

zi = 1

• pki = proportion of priority k calls from demand zone i (where priority denotes severity) : such that
2∑
k=1

pki = 1, ∀ i

• Fij(tR)= response time distribution for ambulance j for zone i with Mean Response Time (MRT) of

xij and standard deviation of σij .

• µij= average service rate by ambulance j for zone i.

• λi= λzi (call arrival rate from demand zone i)

• Ckij = Reward if ambulance j responds to zone i, for call of priority k. (This reward depends on the

response time and priority of the call.)
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EMS performance evaluation is commonly done by measuring the number of calls covered within a

given time standard, known as the response time threshold (RTT). However, later research has suggested that

using patient survivability is a more precise measure [13] in terms of the expected number of survivors in case

of emergencies. In addition, measuring the patients survivability directly mirrors the patient outcome. Erkut

[13] showed that incorporating a survival function in the EMS location problem helped to save more lives.

Therefore, to get a precise estimate of the EMS system performance, survival probability will be used as

the performance measure in this study. However, other performance measures can be used without changing

the model by adjusting the reward parameter. Although several studies have been conducted to determine

the relationship between response time and survival probability (eg. [7]), the one considered in this study

is based on Larsen et al. [24] and subsequently simplified by McLay et al. [33]. We apply their survival

function directly to calculate the survival probability of the patient since as a function of the response time.

The survival function is explained below. Let S denote the patient survival probability, then

S(tR) = max[(0.594− 0.055 ∗ tR); 0], (2.1)

where tR represents the response time. We used this survival function when calculating rewards (Ckij) in

the MDP model. The reward calculation is discussed in detail in the next section, where the MDP Model

formulation is presented.

2.3.1 MDP Model Formulation

Here we present the MDP model formulation to determine optimal dispatching strategies for EMS

systems. The objective of the MDP model is to optimally determine which ambulance to dispatch for arriving

calls in order to maximize the average reward of responding to life-threatening calls (Priority 1 calls). The

reward is considered to be the survival probability of patients as mentioned earlier. In this MDP approach we

assumed that calls arrive to the EMS system requesting paramedic units according to a Poisson process with

rate λ. The MDP model formulation is described below:

States

The state s(t) describe the status of each ambulance in the system at time t. Therefore, the state s(t) is the

vector, s(t) = {s1(t), s2(t), s3(t), . . . , sm(t)}, where sj(t) describes the status of ambulance j.
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sj(t) =

 i if ambulance j is serving a call originating at zone i at time t;

0 if ambulance j is idle at time t.

The resulting state space of (n+ 1)m states, can be described as follows:

State space S = {s(t) : sj(t) ∈ {0, 1, 2, . . . , n}, , j = 1, 2, . . . ,m}

Decisions

In the MDP model the decision is to determine which ambulance to dispatch at each state. We assume that

when calls arrives to the system one of the available ambulances must be dispatched to the incident. Let

U(s(t)) = {j ∈ {1, 2, ...,m} : sj = 0}, denote the set of available decisions when a customer arrives at time

t and the state is s(t). We define u(s(t)) as the optimal decision when the state of the EMS system is s(t),

where u(s(t)) ∈ U(s(t)). In our model, since we are interested in obtaining a priority list of ambulances to

dispatch, the set of available decisions (U(s(t))) are restricted so that the decision does not depend on the lo-

cation of the busy ambulance. For example, consider an EMS system with three ambulances and two demands

zones. When ambulance 1 is busy, the optimal decision is restricted such that u(s(t)) = u(i, 0, 0); i = 1, 2.

In other words, when ambulance 1 is busy, whether ambulance 2 or 3 is assigned to the next incoming call is

independent of which location ambulance 1 is busy serving.

Rewards(Ckij)

If ambulance j is dispatched to a call at zone i of Priority k, then a fixed reward Ckij is received. In this

model, the reward is considered to be the survival probability of the patients. These rewards depend on the

type of the call, the decision made in each stage (dispatching ambulance) and the location of the call. Reward

calculation for Priority 1 calls is explained below.

Let the probability of survival be Sij , if ambulance j responds to a call from demand zone i. Sij can be

obtained by solving the following equation.

Sij =

∫ ∞
0

S(tR)dFij(tR) (2.2)

where tR denotes the response time, Fij is the cumulative distribution function for the response times, and
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S(tR) is the survival function explained in Equation 2.1. Using this calculation, the resulting reward for

Priority 1 calls is C1
ij = Sij . For Priority 2 calls reward is set to be zero (this assumption can be easily modi-

fied), because in this model our goal is to maximize the survival probability of life-threatening calls (Priority

1 calls). Therefore, setting the reward of Priority 2 calls to zero does not affect the decision made at each

stage since those are non-life threatening calls. Thus, we can summarize the rewards as follows:

Ckij =

 Sij if k = 1;

0 if k = 2 .

Thus far we have presented thee EMS vehicle dispatching problem as a continuous-time MDP. Next

we use the uniformization approach to convert this problem into a discrete time equivalent MDP (see for

example [5] Chapter 5.1). We define the uniformization rate ν as follows:

ν = λ+
∑m
j=1 δj , where δj = max

i=1,2,...,n
{µij}.

Based on this uniformization rate the CTMC is equivalent to a DTMC with discount factor θ = ν
ν+β , where

β is the continuous rate of discount and β ∈ (0, 1).

The value iteration algorithm was used to determine the optimal value function. Let the value

function Jn(s) be the optimal finite horizon discounted reward with n periods left to go starting in state

s = (s1, s2, ..., sm). The infinite horizon discounted reward can be approximated using the limit of the finite

horizon problem starting with J0(s) = 0, ∀ s ∈ S. We used the optimality equation (recursive equation)

defined by McLay et al. [34] (equation 4, page 31) to obtain the optimal dispatching policy. We modified

their optimality equation according to our notation and assumptions as follows:

Jn+1(s) =
1

β + ν

[
m∑
j=1

I{sj=i|i>0}µijJn(s1, s2, . . . , sj−1, 0, sj+1, . . . , sm)

+
n∑
i=1

2∑
k=1

λip
k
i max
j∈U(s)

{
I{sj=0}Jn(s1, s2, . . . , sj−1, i, sj+1, . . . , sm) + (β + ν)Ckij

}
+(ν − λ−

m∑
j=1

I{sj=i|i>0}µij)Jn(s)

]
(2.3)
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where,

I{sj=i|i>0} = indicator variable that denotes ambulance j is serving a patient at zone i

I{sj=0} = indicator variable that denotes if ambulance j is available.

U(s) = the set of available decisions in state s.

Note that in [34], U(s) depends on the location of the busy ambulance. However, in our model

U(s) is restricted, as explained previously, to obtain a priority list of ambulances to dispatch. We can further

express this decision difference as follows. Recall that the state is defined as s = (s1, s2, ..., sm). Suppose s

is such that sj∗ = 0 for some j∗ = 1, 2, ...,m and sj ≥ 1 for some j = 1, 2, ...,m. In our model the decision

depends only on the location of free ambulances (location of j∗ where sj∗ = 0). In the model presented by

McLay et al. [34] the decision depends not only on the free ambulance locations but also on the location of

busy ambulances (location of j where sj ≥ 1).

The first term of the Equation 2.3 describes busy ambulances becoming available. The second

term describes new calls arriving to the system, where U(s) denotes the available decisions in state s. The

third term describes the EMS system remaining in the same state (no new call arrives to the system and no

ambulance becomes available). In the next section the MDP is applied to a scenario using data (such as

response times and service times) similar to Hanover County, Virginia to obtain optimal dispatching policies

for paramedic units.

2.4 Computational Examples

2.4.1 Two demand zones and two ambulances

An illustrative example is discussed to study the behavior of the optimal dispatching strategy given

by the MDP model. This hypothetical example was constructed using data such as response time distributions

and service time distributions, similar to that of Hanover County, Virginia Fire an EMS. For simplicity, this

example (hereby referred to as the 2×2 case) assumed an EMS system with two demand zones (i.e. the zones

which are requesting emergency vehicles) and two ambulance stations (i.e. the locations that the ambulances

are sited) with one paramedic unit (ambulance) at each station. The paramedic units at each station were

labeled Ambulance 1 and Ambulance 2, sited at station 1 and station 2 respectively. Calls arrive according to

a Poisson process with rate λ = 1 per hour to the entire system. The probability of receiving a Priority 1 or
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a Priority 2 call is equally likely from either of the demand zones. i.e. p11 = p21 = p12 = p22 = 0.5. Response

times and service times are assumed to be lognormally and exponentially distributed respectively, since those

are the best fit with data collected from Hanover County. Tables 2.1 and 2.2 summarize the response times

and service times for each demand zone.

Zone Ambulance 1 Ambulance 2

zone 1 logn(9.07,4.19) logn(14.03,6.48)
zone 2 logn(14.03,6.48) logn(9.02,6.48)

Table 2.1: Response Time Distributions-2× 2 case

Zone Ambulance 1 Ambulance 2

zone 1 expo(60) expo(65)
zone 2 expo(75) expo(65)

Table 2.2: Service Time Distributions-2× 2 case

Position (1, 1) of Table 2.1 shows that the response time (the time between the receipt of a call

at the dispatch center and the arrival of the first emergency response vehicle at the scene) distribution for

Ambulance 1 to demand zone 1 is lognormally distributed with mean of 9.07 minutes and standard deviation

of 4.19 minutes. Similarly, other positions represent the corresponding response time distributions for each

ambulance to each demand zone. Service times, the time between the receipt of a call at the dispatching

center and the time vehicle returns to the ambulance station after serving the incident, are considered as in

Table 2.2. For example, position (1,1) of Table 2.2 shows that the service time for Ambulance 1 to demand

zone 1 is exponentially distributed with mean of 60 minutes. Modeling the hypothetical example using the

MDP presented in Section 3.1 is seen below:

Since the state s describes the status of each ambulance in the system, the state s is the vector,

s = (s1, s2), where s1 is the status of ambulance 1 and s2 is the status of ambulance 2. The status of an

ambulance is 0 if it is idle at its home station, 1 if it is busy serving a call from zone 1, and 2 if it is busy

serving a call from zone 2. The resulting state space of nine states, can be described as follows;

S = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 2), (2, 1), (1, 1), (2, 2)}
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The state (0, 0) implies both ambulances are idle, (1, 0) implies Ambulance 1 is serving a call at

zone 1 and Ambulance 2 is idle, and so on. In this example a decision occurs when both ambulances are

available. Therefore, the decision is to either dispatch Ambulance 1 or Ambulance 2 when the state of the

system is (0,0). In other words, decision u((0, 0)) is either dispatch Ambulance 1 or Ambulance 2. Here we

have only this decision because we assume that the optimal policy is a priority list of ambulance to dispatch.

If ambulance j responds to zone i, then a fixed reward (Ckij) is received. For Priority 1 (k = 1) calls

the reward is obtained using Equation 2.1 and Equation 2.2 as explained above. Resulting rewards (survival

probabilities) for Priority 1 calls can be summarized as in Table 2.3. For example, position (1,1) of Table

2.3 indicates that, if Ambulance 1 responds to a call from zone 1, a fixed reward of 0.15 is received. As we

mentioned earlier for Priority 2 calls reward is set to be zero.

Zone Ambulance 1 Ambulance 2

zone 1 0.15 0.05
zone 2 0.05 0.10

Table 2.3: Rewards- 2× 2 case

Denoting J(s) as the reward function when the state of the system is s, we can write the recursive formula as

show in Equation 2.3.

Jn(0, 0) =λ1p
1
1 max

([
S11 +

Jn−1(1, 0)

β + ν

]
,

[
S12 +

Jn−1(2, 0)

β + ν

])

+λ2p
2
1 max

([
S22 +

Jn−1(0, 2)

β + ν

]
,

[
S21 +

Jn−1(0, 1)

β + ν

])

+λ1p
2
2 max

(
Jn−1(1, 0)

β + ν
,
Jn−1(0, 1)

β + ν

)
+ λ2p

2
2 max

(
Jn−1(2, 0)

β + ν
,
Jn−1(0, 2)

β + ν

)
+(ν − λ1 − λ2)

Jn−1(0, 0)

β + ν
; (2.4)
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Jn(k, 0) =λ1p
1
1S12 + λ1

Jn−1(k, 1)

β + ν
+ λ2p

2
1S22 + λ2

Jn−1(k, 2)

β + ν
+ µk1

Jn−1(0, 0)

β + ν

+(ν − λ1 − λ2 − µk1)
Jn−1(k, 0)

β + ν
; where k = 1, 2; (2.5)

Jn(0, l) =λ1p
1
1S11 + λ1

Jn−1(1, l)

β + ν
+ λ2p

2
1S21 + λ2

Jn−1(2, l)

β + ν
+ µl2

Jn−1(0, 0)

β + ν

+(ν − λ1 − λ2 − µl2)
Jn−1(0, l)

β + ν
; where l = 1, 2; (2.6)

Jn(k, l) =µk1
Jn−1(0, l)

β + ν
+ µk2

Jn−1(k, 0)

β + ν
+ (ν − µk1 − µl2)

Jn−1(k, l)

β + ν

; where k = 1, 2; and l = 1, 2. (2.7)

The value iteration algorithm was implemented in MATLAB. In addition, a MATLAB program was

developed to determine steady-state and survival probabilities. The computational time for each program was

less than 1 second. All programs were executed on Dell Vostro 1400 computer with a Pentium-IV processor

and 2 GB RAM.

To study the effect of the geographic dispersion of demand on the optimal dispatching strategy, the

call volume between the two demand zones is varied such that z1 + z2 = 1, resulting in 1/10 ≤ λ1/λ2 ≤ 10.

The value iteration algorithm is applied to solve for the value function Jn(s) and to obtain the optimal

decision in the long run. The results indicated that it is always optimal to dispatch the closest unit for Priority

1 calls (not only for this example but also for all other examples tested). Interestingly, this result is in contrast

to the findings of McLay et al. [34], who showed that under different settings it is not always best to dispatch

the closest ambulance to a Priority 1 call. We conjecture tat the reason for the disparity in our results is that

we restrict our attention to policies that follow a priority list; whereas in McLay et al. [34] the policy depends

on the location of the busy ambulances.

The optimal order of dispatching ambulances for Priority 2 calls is shown in Table 2.4 for this hypo-

thetical example. According to the table when z1 = 0.1 (i.e., probability of requesting a paramedic vehicle

for demand zone 1 is 0.1), the optimal order of dispatching paramedic vehicles to demand zone 1 is: Am-
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bulance 1 is first choice and Ambulance 2 is the second choice. To demand zone 2, Ambulance 1 is the first

choice and Ambulance 2 is second. Table 2.4 shows the optimal order of dispatching units for Priority 2 calls

along with the closest dispatch order for each corresponding z1 value.

Closest Policy Optimal Policy-by MDP
order zone1 order zone2 order zone1 order zone2

z1 log10(λ1/λ2) choi 1 choi 2 choi 1 choi 2 choi 1 choi 2 choi 1 choi 2

0.1 -0.95 1 2 2 1 1 2 1 2
0.2 -0.60 1 2 2 1 1 2 1 2
0.3 -0.36 1 2 2 1 1 2 1 2
o.4 -0.17 1 2 2 1 2 1 2 1
0.5 0 1 2 2 1 2 1 2 1
0.6 0.17 1 2 2 1 2 1 2 1
0.7 0.36 1 2 2 1 2 1 2 1
0.8 0.60 1 2 2 1 2 1 2 1
0.9 0.95 1 2 2 1 2 1 2 1

Table 2.4: Comparison of order of dispatching ambulances for Priority 2 calls- Closest Policy and Optimal
Policy by MDP

The steady-state or long-run probabilities of each state were calculated to analytically determine

the optimal dispatching polices and to calculate the long-run average survival probability of life-threatening

patients in this example. This analytical approach allows us to enumerate all possible orders of dispatching

ambulances and to study the performance of each dispatching order. However, this approach becomes un-

manageable when the problem size increases (in terms of number of demand zones, number of ambulances,

and number of call types) because there are (m!)kn possible dispatching orders, if we consider an EMS sys-

tem with n demand zones, m ambulances, and k types of calls. This calculation can be described as fallows:

There are m! possible dispatching orders for each district when we consider only one type of call. Since

there are k types of calls, there exists (m!)k possible dispatching orders for each district. Thus, for n dis-

tricts, there are (m!)kn total possible dispatching orders. As such, for this hypothetical example there are 16

possible cases. We calculated the long-run average survival probability for these 16 cases and determined

the optimal order of dispatching ambulances. The analytical results confirmed the MDP policy, and indicated

that it is optimal to send the closest unit to the Priority 1 calls.

By examining the optimal dispatching order (see Table 2.4), it is suggested that the optimal policy is

likely to reserve the closest ambulance to serve the zone with higher call arrival rate for Priority 1 calls. For

example, Ambulance 2 will not be deployed when z1 = 0.1 (i.e. the higher customer arrival rate comes from
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zone 2, since z2 = 0.9) because it is reserved for Priority 1 calls and it is the closest paramedic unit for zone

2. Ambulance 1, on the other hand, is dispatched for Priority 2 calls from demand zone 2 according to the

optimal policy if both ambulances are idle. We obtained the long-run average survival probability of patients

to compare the two dispatching strategies; myopic and optimal. The calculation of long-run average survival

probabilities are described below. Let πs be the steady-state probabilities of each state. Then the calculation

of the survival probability of closest dispatching policy can be expressed as follows:

Long-run probability that an incoming Priority 1 call survives (Conditional survival probability) when the

closest ambulance is dispatched =

λ1p
1
1[S11π(0,0) + S12

2∑
k=1

π(k,0) + S11

2∑
l=1

π(0,l)] + λ2p
1
2[S22π(0,0) + S22

2∑
k=1

π(k,0) + S21

2∑
l=1

π(0,l)]

λ1p11 + λ2p12
(2.8)

To compare the performance of two dispatching strategies, closest and optimal, the proportion of call

from demand zone 1 is varied from 0 to 1 while maintaining z1+z2 = 1. Figure 2.1 graphs log10(λ1

λ2
) against

P (survival). As this figure shows, the conditional survival probability increases when the ambulances are

dispatched according to the optimal policy rather than always sending the closest unit. The objective value

(i.e. the survival probability) difference between the two dispatching strategies is greatest when call volume

is not balanced between two demand zones. In other words, it is suggested that dispatching ambulances un-

der the optimal policy as opposed to a myopic policy is most beneficial, in terms of patients’ survival, when

call arrival rate is unbalanced between demand zones. Although the absolute difference in average survival

probabilities between the two policies seems low, this translates to a large increase in the expected number

of patients who can survive with no additional cost (in terms of available paramedic units). For example,

when z1 = 0.9, the survival probability of patients can increase by 5.63 % compared to the myopic policy of

sending the closest ambulance. Thus, if it is assumed that this system receives 1000 Priority 1 calls per year;

approximately an additional 56 lives can be saved by following the optimal dispatching rule with available

resources.

We would also like to study the impact of the optimal dispatching rule on other performance mea-

sures of interest. For example, Carter [10] showed that work load of paramedic units is a key factor associated

with EMS system performance. Thus, we studied the work load of each ambulance in this hypothetical ex-

ample. Figure 2.2 compares the proportion of time that the ambulances are busy for the two dispatching
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Figure 2.1: Comparison of Survival Probability for Two dispatching strategies

policies for the hypothetical example (2× 2 case). As this figure illustrates, when ambulances are dispatched

according to the closest dispatching rule, the ambulance busy probability continuously decreases or increases

with respect to the call volume at the zones they are closest to. That is, in this example, for the myopic policy

Ambulance 1, which is closest to zone 1, become more busy as z1 increases, while Ambulance 2, which

is closest to zone 2, becomes more busy as z2 increase. Thus, by following a myopic policy, ambulance

utilization is unbalanced when demand call volume is unbalanced. For the optimal dispatching strategy, the

utilization of ambulances was smoothly distributed between two ambulances. In other words, the optimal

policy tends to balance the work load between the two ambulances. In addition, it was observed that the order

of sending paramedic units to each demand zone depended on the ambulance busy proportion. According to

the MDP model, the optimal dispatching rule tends to send the less busy unit for Priority 2 calls.

2.4.2 Three demand zones and two ambulances

An EMS system with three demand zones and two ambulances (3× 2 case) is considered to further

illustrate the nature of the optimal dispatching policy. The input data for this hypothetical example is consid-
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Figure 2.2: Comparison of Busy Probability of Each Ambulance for Two Dispatching Strategies - 2× 2 case

ered as follows, Table 2.5 summarizes the response times while Table 2.6 summarizes service times for each

demand zone.

Zone Ambulance 1 Ambulance 2

zone 1 logn(9.07,4.19) logn(14.03,6.48)
zone 2 logn(14.03,6.48) logn(10.92,5.05)
zone 3 logn(8.03,4.19) logn(9.07,6.48)

Table 2.5: Response Time Distributions- 3× 2 case

We assumed that calls arrive according to a Poisson process with rate λ = 1 per hour to the entire

system and probability of receiving a Priority 1 or a Priority 2 call is equally likely from any demand zone.

The corresponding rewards for this example are given in Table 2.7.

Table 2.8 provides the order of dispatching ambulances according to the closest dispatching policy

for this EMS system. For example, according to the table, the closest order of dispatching paramedic vehicles

to demand zone 1 is: Ambulance 1 is first choice and Ambulance 2 is the second choice regardless of the call
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Zone Ambulance 1 Ambulance 2

Zone 1 expo(60) expo(65)
Zone 2 expo(75) expo(65)
Zone 3 expo(50) expo(55)

Table 2.6: Service Time Distributions- 3× 2 case

Zone Ambulance 1 Ambulance 2

Zone 1 0.15 0.05
Zone 2 0.05 0.10
Zone 3 0.20 0.15

Table 2.7: Rewards- 3× 2 case

arrival rate from any demand zone.

Order zone1 Order zone2 Order zone3
choice 1 choice 2 choice 1 choice 2 choice 1 choice 2

1 2 2 1 1 2

Table 2.8: Closest Policy - 3× 2 case

In this example, first we set the proportion of calls from demand zone 1 to 0.1 (z1 = 0.1) and

varied the call volume between demand zone 2 and demand zone 3 such that z1 + z2 + z3 = 1, resulting

1/8 ≤ λ2/λ3 ≤ 8 to study the effect of the geographic dispersion of demands. MDP model suggested that,

it is optimal to send the closet unit for Priority 1 calls always. The optimal order of dispatching ambulances

for Priority 2 calls is given in Table 2.9. Comparing Table 2.8 and Table 2.9, we can conclude that it is

not optimal to dispatch the closet unit always for Priority 2 calls. The comparison of survival probability

for two dispatching strategies, closest and optimal is depicted in Figure 2.3. A comparison of ambulance

busy probabilities is depicted in Figure 2.4. Results of these comparisons are similar to the observations we

obtained previously in 2× 2 case example.

By observing the optimal dispatching order for Priority 2 calls, we can say that the optimal policy

tends to reserve the closest ambulance to serve the demand zone with higher rewards and arrival rate. For

instance, consider the case when z1 = 0.1, z2 = 0.1 and z3 = 0.8. Demand zone 3 has the higher arrival

rate and higher reward. Ambulance 1 is the closest paramedic unit for demand zone 3. Thus, Ambulance 1 is

reserved to respond to Priority 1 calls from demand zone 3 and dispatch the Ambulance 2 for Priority 2 calls
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Figure 2.3: Comparison of Survival Probability of Two Dispatching Strategies - 3× 2 case

instead (if both ambulances are available to dispatch). This dispatching order is vise versa when z1 = 0.1,

z2 = 0.8 and z3 = 0.1. Because in this instance, higher call arrival rate occurs from demand zone 2 and

higher reward is given by Ambulance 2. Thus, Ambulance 2 is reserved to respond to Priority 1 calls from

zone 3 and Ambulance 1 is dispatched to Priority 2 calls (if both ambulances are available).

Optimal Policy-by MDP
Order zone1 Order zone2 Order zone3

z2 log10(λ2/λ3) choice 1 choice 2 choice 1 choice 2 choice 1 choice 2

0.1 -0.90 2 1 2 1 2 1
0.2 -0.54 2 1 2 1 2 1
0.3 -0.30 2 1 2 1 2 1
0.4 -0.09 1 2 2 1 1 2
0.5 0.09 1 2 1 2 1 2
0.6 0.30 1 2 1 2 1 2
0.7 0.54 1 2 1 2 1 2
0.8 0.90 1 2 1 2 1 2

Table 2.9: Optimal Policy for Priority 2 Calls - 3× 2 case, when z1 = 0.1

This observation is also confirmed by the next hypothetical example. In this instance we set the
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Figure 2.4: Comparison of Busy Probability of Each Ambulance for Two Dispatching Strategies - 3× 2 case

proportion of calls from demand zone 2 to 0.1 (z2 = 0.1) and varied the call volume between demand zone

1 and demand zone 3 such that z1 + z2 + z3 = 1, resulting 1/8 ≤ λ1/λ3 ≤ 8. The MDP results show that

it is optimal to dispatch the closest available unit for Priority 1 calls. The optimal order for Priority 2 calls is

given in Table 2.10. Results confirm that the optimal policy is likely to reserve the closest ambulance to serve

the zone with higher call arrival rate and higher reward.

Optimal Policy-by MDP
Order zone1 Order zone2 Order zone3

z1 log10(λ1/λ3) choice 1 choice 2 choice 1 choice 2 choice 1 choice 2

0.1 -0.90 2 1 2 1 2 1
0.2 -0.54 2 1 2 1 2 1
0.3 -0.30 2 1 2 1 2 1
0.4 -0.09 2 1 2 1 2 1
0.5 0.09 2 1 2 1 2 1
0.6 0.30 2 1 2 1 2 1
0.7 0.54 2 1 2 1 2 1
0.8 0.90 2 1 2 1 2 1

Table 2.10: Optimal Policy for Priority 2 Calls - 3× 2 case, when z2 = 0.1
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2.5 Conclusions and Future Research

This Chapter explains the use of a Markov decision process approach for determining optimal dis-

patching strategies for EMS systems. A discounted, infinite horizon Markov decision process model is devel-

oped and analyzed to obtain optimal dispatching policies. In this model calls are prioritized according to the

severity of the call. The results show that dispatching ambulances considering the degree of urgency of the

call will lead to an increase in the average survival probability of patients. It is also observed that many lives

can be saved at no additional cost (in terms of paramedic units available) by following the optimal policy.

Further, the results show that the optimal policy is likely to balance the work load between paramedic units.

We compared the myopic policy of always sending the closest ambulance with the optimal policy

given by the MDP model. Results indicate that it is always optimal to dispatch the closest ambulance for

Priority 1 patients. The optimal policy for Priority 1 calls is intuitive, since faster response times increase

patient survival probability. For Priority 2 calls, a priority list of ambulances to dispatch is obtained using the

model. The proposed dispatching rule is easy to implement in EMS systems since a priority list of ambulances

to dispatch depends only on the location and degree of urgency of the call and not on the location of all busy

ambulances. Thus, obtaining priority list heuristic policies for EMS systems will be a vital area for future

research.

This MDP approach allows us to address the stochastic behavior of the EMS system. Additionally,

the running time for our MDP formulation in MATLAB is not significant. One potential drawback is that the

formulation of the dynamic programming model is complicated when problem size increases. For example,

if we consider an EMS system with m ambulances and n demand zones, then the total number of states

become (n + 1)m. As such, if we try to apply this dynamic programming approach for larger problems we

will face the curse of dimensionality. However, in the future a simulation approach can be used to overcome

this drawback of the MDP approach, and this is an area of future research that we are currently pursuing.

Simulation can also help to alleviate some other potential drawbacks associated with an MDP approach,

namely the assumption of exponential service times and of zero-length queue.

We believe the parsimonious model we presented here provides unique contribution in that it shows

that it is possible to achieve significant improvements, in terms of lives saved, at little cost by considering

the degree of urgency of the call. Furthermore, this can be achieved even with a simple policy: send the

closest ambulance to Priority 1 calls, follow an ordered preference list for Priority 2 calls. This should

be easy to implement in practice as ordered preference lists are already widely accepted policy types in
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EMS systems. Lastly, we observe that applying the optimal policy is most beneficial when the demand is

imbalanced between zones. Interestingly, the optimal policy tends to balance the workload as compared to

the myopic policy of always sending the closets unit. This is an important observation as workload imbalance

resulting from a myopic policy is also the greatest when demand is imbalanced between zones.

Finally, the methodology presented in this Chapter can be extended to consider multiple types of

vehicles, multiple patient categories etc. In addition, this methodology can be applied to other problems such

as dispatching police cars and fire engines and military deployment.
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Chapter 3

Priority Dispatching Strategies for EMS

Systems

3.1 Introduction

The primary objective of an emergency medical service (EMS) system is to save lives and to minimize the ef-

fect of an emergency health incident. This goal can be achieved by providing adequate and timely paramedic

support to the scene. There is a well documented correlation between the response time, the time between

the receipt of a call at the dispatch center and the arrival of the first emergency response vehicle at the scene,

and the survival probability of the patient ([48], [13]). Hence, the response time is vital in minimizing the

impact of the incident. Thus, the dispatcher must consider the location of the available vehicles. In addition,

the degree of the urgency of the call is an important factor in dispatching paramedic units, as some types of

emergencies may be more time critical (e.g. heart attack), than others (e.g. broken leg).

As this discussion suggests, it is vital to use an efficient dispatching strategy to increase the sur-

vivability of patients in an emergency and thereby improve the performance of the EMS system. While a

significant amount of research has been conducted related to improving the efficiency of the EMS system,

most models focus on the decision context of locating vehicles where the outcome of interest is coverage to

an area (e.g. [49], [11], [16], [8]), where coverage is defined as the number of demand points that can be

reached by paramedic units within a given time standard. In most of these models, the implicit dispatching

rule is to send the closest unit to the scene regardless of the severity of the call. However, Carter et al. [10]
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showed that this dispatching rule is not always optimal in minimizing the average response time.

In this chapter we focus on the complementary decision context of which ambulance to dispatch to

an incident. Ambulance dispatching decisions allocate appropriate paramedic units considering the nature

and risk level of the call. As such, different types of dispatching strategies incorporating the degree of the ur-

gency of the call will be studied to ascertain the impact on the response time and ultimately patients’ survival

probability. We examine the behavior of optimal dispatching strategies through several examples. Results

are used to guide us in creating a useful heuristic to dispatch ambulances that increase the average survival

probability of patients and thereby improve the efficiency of the EMS systems.

3.2 Related work

The overall goal of emergency medical service (EMS) systems is to prevent life-threatening and

disabling injuries by providing care in timely manner. Thus, the decision-making process for EMS, which

focuses on providing effective and efficient services, is a strategic challenge. EMS planners must solve prob-

lems such as where to locate emergency service stations, the number of ambulances to allocate to each station,

and how to dispatch the appropriate paramedic unit to the emergency scene. A significant amount of research

has been done towards addressing these. Much of the relevant literature can be divided into which resource

allocation decision is being made.

While much work has focused on the optimal location of vehicles ([49], [11], [12]), these assume

that the closest paramedic unit is dispatched. We limit the remainder of our discussion to research that in

some way directly addresses the dispatching problem. Ambulance relocation models found in EMS litera-

ture are developed to explicitly account for busy ambulances when calculating coverage, since dispatching

of an ambulance in response to a call may leave a significant proportion of the population without sufficient

coverage. In this approach, the main focus is to dynamically relocate vehicles in real-time when vehicles are

dispatched to the scene. The first such vehicle relocation model was developed by Kolesar et al. [22] to relo-

cate fire trucks. A more recent example for ambulance redeployment is the dynamic double standard model

at time t (DDSMt) by Gendreau et al. [17]. The primary disadvantage of dynamic relocation models is the

necessity of finding a new solution whenever a vehicle is dispatched. This procedure is time consuming since

it has to be done frequently [17]. There are some other practical issues in implementing the relocation of

ambulances in real time for EMS systems. For example, with an increase in the complexity of EMS systems,
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the number of relocations grows dramatically [1]; when calls come in quick succession solutions may be

infeasible. From a practical standpoint, relocating ambulances may change the route or destination of vehi-

cles frequently which can lead to a confusion of drivers and thereby causing mistakes [19]. Current research

focuses on developing more powerful solution methodologies to solve these models quickly. However, since

there are practical issues in implementing dynamic relocation models to real world EMS systems, our study

focuses on the complementary problem of fixed deployment (paramedic units are located at specific stations,

respond from stations, and return back to their station after serving a call) instead of ambulances relocating

while en-route. The main focus is to improve the EMS system performance by implementing efficient dis-

patching strategies, which includes an ordered preference list of ambulances to dispatch. Such dispatching

strategies are easy to implement in practice as ordered preference lists are already widely accepted policy

types in EMS systems.

The most commonly used dispatching rule is to send the closest available unit without considering

the severity of the call. Carter et al. [10] found that this rule is not always optimal in minimizing the average

response time. Their goal was to determine the boundaries for each emergency unit (i.e. the response area

of ambulance) in order to minimize the average response time. A few research studies have shown that dis-

patching emergency vehicles according to the degree of the urgency of the call helps to increase the survival

probability of patients. For example, Nicholl et al. [35] conducted a case study with the objective of eval-

uating the safety and reliability of a two-priority dispatch system operated by an ambulance service in the

UK. They found that priority dispatching systems have the ability to respond quickly to life-threatening calls

by focusing resources on these calls, thereby increasing the survival probability of patients. In addition, they

recommended that low priority calls, or non-life threatening calls, be responded to as soon as possible rather

than immediately. Another study was conducted for an EMS system in Helsinki, Finland, by Kuisma et al.

[23] to record pre-hospital death rates in four medical priority categories (most severe to least severe) to eval-

uate if deaths in lower urgency categories could have been prevented by faster ambulances responses. This

community-based cohort study showed that the four-category medical priority dispatching of ambulances

helps to maintain a lower pre-hospital mortality in the two lower urgency categories. These studies suggest

that priority dispatching can play a key role in saving lives.

EMS literature includes only a few studies incorporating dispatching policies or strategies consid-

ering the degree of the urgency of the call. Comparing the dispatching strategies of First Come First Serve

(FCFS), nearest origin assignment, and the flexible assignment strategy, Haghani et al. [19] discussed the

benefits of using priority dispatching in EMS systems to reduce response time. The objective was to evaluate
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the performance of these three dispatching strategies considering dynamic travel time information, vehicle di-

version, and route changing. Henderson et al. [20] developed a decision support tool for St. John Ambulance

Service in New Zealand considering two types of calls: Priority 1 calls are considered to be the more severe

incidents, while Priority 2 calls are less severe incidents. Andersson et al. [1] also investigated the advantage

of priority dispatching considering the urgency of the call. Their goal was to relocate ambulances in order to

minimize the response time. In addition to dynamic ambulance relocation, they also proposed an algorithm

to dispatch ambulances automatically incorporating the severity of the call. They considered three types of

priority calls: the most urgent life-threatening calls (Priority 1), urgent but not life-threatening (Priority 2),

and non-urgent calls (Priority 3).

Other authors use Markov Decision Process (MDP) approach to model EMS systems. McLay et

al. [34] and Bandara et al. [3] used an MDP approach to model the EMS system and obtain optimal dis-

patching rules. The objective of the model in McLay et al. [34] is to maximize the coverage level while the

objective of Bandara et al. [3] is to maximize patient survival probability. Although MDPs are capable of

addressing problems with stochastic behavior and finding optimal solutions, a simulation approach has some

advantages. When the MDP approach is used for real world EMS systems the model formulation becomes

complicated and the state space grows dramatically with the complexity (number of ambulances and demand

zones managed) of the EMS system. Furthermore, MDP models assume that service times are exponentially

distributed.

In contrast, simulation models are easy to use for modeling EMS systems and measuring perfor-

mance. They also allow us to compare systems under different sets of assumptions, providing the ability

to test new operational strategies such as different ambulance locations or dispatching rules. The literature

includes several simulation models that have been developed and used to evaluate the performance of EMS

systems. One early example is that of Savas [42] for ambulance operations in New York City. In this study,

a simulation was developed to conduct a cost-effectiveness analysis of New York’s emergency ambulance

service. The objective was to improve the service of the EMS system at a low cost. This study showed a

considerable improvement in average response time by redistributing the existing ambulances in the district

by locating some of them at satellite garages rather than all of them at a hospital. Henderson et al. [20] also

developed a simulation model (BartSim) as a decision support tool for ambulance dispatching in Auckland,

New Zealand. Andersson et al.[1] and Haghani et al. [19] also developed simulation approaches for the EMS

models described earlier. These examples show the usefulness of simulation in modeling EMS systems. In

our research we are also considering a simulation approach to model EMS systems and study the performance
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of the proposed dispatching strategies.

The main goal of this study is to increase the average survival probability of the patients by imple-

menting dispatching strategies that incorporate the degree of urgency of the call. In contrast, most of the

models developed for EMS systems attempt to improve their performance by maximizing the coverage while

operating according to the myopic dispatching policy, giving no reference to the severity of the emergency

call. When attempting to maximize the survival probability of the patient, the myopic policy is not always

optimal. For example, in a situation when the dispatching center receives two types of calls from the same

region, an urgent call subsequent to a less urgent call, the victim involved in the second incident will be in

jeopardy because the closest emergency unit may have been sent to the first but less serious call. In such a

situation the dispatcher has to send another unit to the more severe incident. This strategy may not be ideal,

as the next closest available unit may take more time to arrive at the incident. This dispatching could lead to

a decrease in the survival probability of the severe incident due to inability to minimize the response time.

In order to address this situation, a system considering the severity of the emergency has to be developed.

Therefore, the objective of this article is to develop, easy to implement, dispatching strategies for EMS sys-

tems that will increase patient survivability while incorporating the degree of the urgency of the call.

A simulation model was developed to represent the EMS system. To obtain the optimal dispatching

strategies in less complex models either full enumeration or a commercial optimizer was used. The results of

these findings were used to develop a heuristic to determine the improved dispatching strategies in more com-

plex models in order to maximize patient survival probability. Andersson [1] and Lee [28] also implemented

heuristics for dispatching ambulances. Finally, we discuss computational examples to study the performance

of the proposed dispatching heuristic. EMS performance evaluation was conducted by measuring the pa-

tient survivability instead the number of calls covered within a given time standard, known as the response

time threshold (RTT). The results indicated that it is not always optimal to dispatch the closest ambulance

especially for low priority calls that are non-life threatening. Moreover, it is found that dispatching vehicles

considering priority of the call leads to an increase in the expected average survival probability of the patients

and to a decrease in the average response time for life-threatening calls.
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3.3 Model Description

An EMS system with i demand zones (i = 1, ..., n) and j ambulance stations (j = 1, ...,m) with an ambu-

lance at each station ( n ×m case) is considered. The emergency vehicle dispatching process is depicted in

Figure 3.1. A 911 emergency medical service starts with a call to the dispatching center requesting an ambu-

lance. The time between the arrival of the call and the time the first ambulance is dispatched to the scene is

known as the “preparation time”. The time between the receipt of a call at the dispatch center and the arrival

of the first emergency response vehicle at the scene is known as the “response time”. “Turn around” time can

be defined as the time required for an ambulance to return back to its original station after serving the patient,

which includes the transportation time of the patient to the hospital if needed. Not every emergency call is

life-threatening. Therefore, the dispatcher has to select and assign the appropriate ambulance according to

the severity of the call. In this study we consider two types of calls: Priority 1 calls are considered to be

life-threatening and Priority 2 calls are non-life threatening. Input parameters for the model are summarized

below.

Figure 3.1: Emergency vehicle dispatching process

• λ = call arrival rate (to the entire system)

• n = total number of demand zones

• m = total number of paramedic units, each at a fixed location

• zi= proportion of calls from ith demand zone: such that
∑
i

zi = 1. ∀ i = 1, ..., n

• pki= probability of Priority k calls from demand zone i : such that
∑
k

pki = 1. ∀ i = 1, ..., n

• Rij= response time distribution for ambulance j for zone i with Mean Response Time (MRT) of µRij

and standard deviation of σRij
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• Aij= turn around time distribution for ambulance j for zone iwith mean of µAij and standard deviation

of σAij

• λi= λzi , call arrival rate in demand zone i

EMS performance evaluation is commonly done by measuring the number of calls covered within a given

time standard, known as the “response time threshold” (RTT). Later research has suggested that using patient

survivability is a more precise measure in terms of the expected number of survivors in case of emergencies

[13]. Erkut et al. [13] showed that incorporating a survival function in EMS location problems helped to save

more lives. In order to get a precise estimate of the EMS system performances, survival probability will be

used as the performance measure of this study. Although several studies have been conducted to determine

the relationship between response time and survival probability, the one utilized in this study is based on

Larsen et al. [24] and subsequently simplified by McLay et al. [33]. This survival function is is given in

equation (4.1), where S denotes the patient survival probability and the realized response time is tR..

S(tR) = max[(0.594− 0.055 ∗ tR); 0] (3.1)

3.3.1 Simulation Model

Arena software is utilized to develop a simulation model to represent an EMS system. In the model

we assumed that calls arrive according to a Poisson process with rate λ, which is consistent with the call

arrival process of Hanover county Fire and EMS, the EMS system used in our case study. The status of

an ambulance is either “busy” serving a call from demand zone i or “idle” at station j. The status of all

ambulances is used to model the state of the EMS system. This simulation model is designed to identify

the call location and its severity as soon as a call arrives to the system and to dispatch one of the available

ambulances. Once the ambulance is dispatched, the ambulance status is set to “busy” and generates the re-

sponse time according to a given distribution, Rij , which depends on the call location and the responding

paramedic unit. Then, the survival probability is calculated according to the response time using equation

(4.1) for Priority 1 patients. (Priority 2 patients add zero value to the objective function because their calls

are non-life-threatening.) After calculating the survival probability, the ambulance status is reset to “busy”

for a time until it returns to the original station. We considered this time as “Turn around” time as explained

previously, and again is drawn from a known distribution, Aij , which depends on the location of the call and

the responding vehicle. If all ambulances are busy then it is assumed calls are served by outside resources (by

36



fire engines or ambulances from neighboring county). Such arrangements are in place in Hanover county. In

addition, we assumed that the response time for outside unit is greater than 11 minutes. Thus, zero survival

probability is given to the calls that are served by the outside paramedic unit when calculating the average

survival probability. The zero-queue assumption can be relaxed by allowing those calls to be queued in the

system (we explore the results of lifting this assumption in a later section). However, we believe the zero-

queue assumption is reasonable for the following reasons. (1) The objective of the model is to maximize the

survival probability of Priority 1 calls and this probability is zero for response times greater than 11 minutes

(according to equation (4.1)). Therefore, the contribution of the calls waiting in the queue, when calculating

the objective function is negligible. (2) The examples we have studied with non-zero queue in the simulation

model showed that the zero-length queue assumption does not significantly impact the steady-state results

such as average survival probabilities and dispatching strategies. Therefore, the EMS system was modeled

with zero queue when investigating the structure of the optimal policy, as well as developing the heuristic.

The effect of the zero-queue length assumption on the performance of the system is studied in detail in a later

section. Figure 3.2 illustrates the flow chart of this simulation model. This simulation was modeled assuming

that the EMS system operates 24 hours per day and seven days per week.

Dispatching strategies can be characterized into static and dynamic. In a static policy, fixed deploy-

ment (ambulances return to their home station after serving a call) is considered; while in a dynamic policy,

ambulances relocate based on real-time information. In this study a static dispatching rule for EMS systems is

proposed in order to maximize the patients survivability. In particular, we restrict our attention to dispatching

rules that provide an ordered preference list of ambulances to dispatch for each demand zone depending on

the priority of the call. For example, if the preference order of dispatching paramedic units is 2, 3, 1 then

Ambulance 2 is the first choice to dispatch, if it is busy Ambulance 3 is the second choice and, if both 2 and 3

are busy Ambulance 1 is the third choice. From here on we refer to a preference order list as a “contingency

table” for short, a name commonly used by EMS system administrators. OptQuest of Arena (or the optimal

simulator in Arena) is used to determine the optimal dispatching policies (the optimal order of dispatching

ambulances) in less complex models and improved dispatching policies in more complex models. The results

are used to develop a heuristic approach for implementing improved dispatching policies. Once the dispatch-

ing strategies are determined, the simulation model will be used to evaluate the performance of the EMS

system. This simulation model is developed to incorporate different dispatching strategies and evaluate the

performance of each dispatching strategy.
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Figure 3.2: Simulation flow Chart

An illustrative example is discussed to study the behavior of the optimal dispatching strategy. This

hypothetical example is constructed using data such as response times and turn around times similar to

Hanover County, Virginia. A detailed description of Hanover County Fire an EMS is provided in a later

section. For illustrative purposes, this example (2× 2 case) assumes an EMS system with two demand zones

(i.e. the zones that are requesting emergency vehicles) and two ambulance stations (i.e. the locations of the

ambulances) with one paramedic unit (ambulance) at each station. The paramedic units at each station are
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labeled Ambulance 1 and Ambulance 2, sited at station 1 and station 2 respectively. Calls arrive according

to a Poisson process with rate λ = 1 per hour to the entire system. Both demand zones are equally likely to

receive Priority 1 and Priority 2 calls , i.e. p11 = p12 = p21 = p22 = 0.5. Response times and turn around

times are assumed to be lognormally and exponentially distributed respectively, since those are the best fit

with data collected from Hanover County. Tables 3.1 and 3.2summarizes the response times and turn around

times for each demand zone:

Zone Ambulance 1 Ambulance 2

zone 1 logn(9.07,4.19) logn(14.03,6.48)
zone 2 logn(14.03,6.48) logn(9.02,6.48)

Table 3.1: Response Time Distributions-2× 2 case

Zone Ambulance 1 Ambulance 2

zone 1 expo(50) expo(54)
zone 2 expo(60) expo(50)

Table 3.2: Turn around time Distributions-2× 2 case

Position (1, 1) of Table 3.1 shows that the response time for Ambulance 1 to demand zone 1 is log-

normally distributed with mean of 9.07 minutes and standard deviation of 4.19 minutes. Position (1, 1) of

Table 3.2 shows that the turn around time for Ambulance 1 to demand zone 1 is exponentially distributed

with a mean of 50 minutes. We vary the call volume between the two demand zones such that z1 + z2 = 1,

resulting 1/10 ≤ λ1/λ2 ≤ 10 to study the effect of the geographic dispersion of demand on the optimal

dispatching strategy.

To study the structure of the optimal policy on this small example, the optimal simulator in Arena

(OptQuest) is used to obtain the preference order list for dispatching ambulances which maximizes patient

survivability. This simulator ran for 200 replications per simulation with tolerance of 0.0001 until it ob-

tains the optimal solution (optimal dispatching order); each replication ran for 336 simulated hours to obtain

steady-state results with the half width of a 95% confidence interval. The performance, i.e. the average

survival probability, of the optimal dispatching rule is compared to the myopic policy of always sending the

closest ambulance. Comparison of the survival probability of two dispatching policies is depicted in Fig-

ure 3.3. As Figure 3.3 shows, the simulation indicates that P (survival) increases when ambulances are
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dispatched based on the optimal policy rather than sending the closest unit for every call. In some cases,

however, the optimal rule is to send the closest unit. This occurs when the call volume is almost balanced

between two demand zones. (i.e. log10(λ1/λ2) = 0, log10(λ1/λ2) = −.17 and log10(λ1/λ2) = 0.17). The

objective value difference (i.e. the survival probability) of the two dispatching strategies is greatest when

the call volume is not balanced between the two demand zones. Since the objective difference is small (in

absolute terms), we did a paired t-test to determine whether the objective improvement is statistically sig-

nificant. We found that objective improvement is statistically significant when z1 = 0.1, 0.8 and 0.9 (i.e.

log10(λ1/λ2) = −0.95, 0.6 and 0.95) at the 95% confidence level. Although the objective difference is low,

the number of patients who can survive will increase with no additional cost by following the optimal dis-

patching rule. For example, when z1 = 0.9, the survival probability can increase by 5.63% compared to the

send-the-closest rule. If it is assumed that this system serves 1000 Priority 1 calls per year, approximately

an additional 17 lives can be saved by following the optimal dispatching rule with available resources. To

get a sense for this, Hanover county serves around 4760 Priority 1 calls per year. In addition, the average

response time for Priority 1 calls is reduced by dispatching ambulances according to the optimal dispatching

strategy. Figure 3.3 compares the average response time for Priority 1 calls. This figure indicates that the

optimal dispatching strategy helps to decrease the average response time for Priority 1 calls. Two additional

hypothetical examples are constructed in this study using data similar to Hanover County. Example 2 is an

EMS system with three demand zones and three ambulances (3×3 case), while Example 3 is an EMS system

with five demand zones and three ambulances (5×3 case). These two examples are summarized in Appendix

A.

For this example (2× 2 case) OptQuest of Arena determined that it is optimal (OptQuest enumerate

all possibilities in this case) to dispatch the closest paramedic unit for Priority 1 calls but that policy is not

always optimal for Priority 2 calls. Similar results have been obtained by Bandara et al. [3] for low priority

calls in a system with exponential response times. In Table 3.3, the contingency table for Priority 2 calls

provided by the OptQuest of Arena is compared with the closest dispatching strategy for the (2 × 2) case.

Table 3.3 shows that when probability of requesting an ambulance for demand zone 1 is 0.1 (i.e. z1 = 0.1),

the optimal order of dispatching paramedic units to demand zone 1 is that Ambulance 1 is first choice and

Ambulance 2 is second choice. For demand zone 2 optimal order is Ambulance 1 first choice and Ambulance

2 second choice. Similarly we can obtain the preference order of dispatching ambulances for both policies

using Table 3.3. By observing the ambulance dispatching orders, it is suggested that the optimal policy is

likely to reserve the closest ambulance to serve the zone with higher customer arrival rate for Priority 1 calls.

40



−1 −0.5 0 0.5 1
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

log
10

(λ
1
/λ

2
)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Comparison of Average Survival Probability of the System

 

 

Closest Rule
Optimal Rule

−1 −0.5 0 0.5 1
10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

log
10

(λ
1
/λ

2
)

R
es

po
ns

e 
T

im
e 

(in
 M

in
ut

es
)

Comparison of Average Response Time for Priority 1 calls

 

 
Closest Rule
Optimal Rule

Figure 3.3: Comparison of Survival Probability and Average Response Time

For example, Ambulance 2 will not be deployed for Priority 2 calls (if both ambulances available) from

demand zone 2 according to the optimal policy when z1 = 0.1 (i.e. higher customer arrival rate occur from

zone 2, since z2 = 0.9) because it is reserved for Priority 1 calls and it is the closest paramedic unit for zone

2. Ambulance 1 on the other hand, is dispatched for Priority 2 calls from demand zone 2 under the optimal

policy if both ambulances are available.

Closest Policy Optimal Policy-by OptQuest
order zone1 order zone2 order zone1 order zone2

z1 log10(λ1/λ2) choi 1 choi 2 choi 1 choi 2 choi 1 choi 2 choi 1 choi 2

0.1 -0.95 1 2 2 1 1 2 1 2
0.2 -0.60 1 2 2 1 1 2 1 2
0.3 -0.36 1 2 2 1 1 2 1 2
o.4 -0.17 1 2 2 1 1 2 2 1
0.5 0 1 2 2 1 1 2 2 1
0.6 0.17 1 2 2 1 1 2 2 1
0.7 0.36 1 2 2 1 2 1 2 1
0.8 0.60 1 2 2 1 2 1 2 1
0.9 0.95 1 2 2 1 2 1 2 1

Table 3.3: Comparison contingency tables (closest versus optimal policies) for Priority 2 calls

To study the effect of the response time on the survival probability of the 2 × 2 example, the Mean

Response time (MRT) is varied from three minutes to thirteen minutes in one minute increments and we

obtain the survival probability for the two cases with the most dispersed call volume, when z1 = 0.1 and

z1 = 0.9. Additionally, the objective differences between optimal and myopic policies are observed. See
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Figure 3.4. This figure shows that when MRT increases survival probability decreases gradually, as expected.

As Figure 3.4 shows, when the probability of requesting a paramedic unit to demand zone 1 is low (i.e.z1 =

0.1) compared to zone 2, the objective difference between the two dispatching strategies is not significant

for smaller response times (or MRT). However, objective differences become gradually significant as the

response time increases (see Figure 3.4 Case 1). This relationship between MRT and survival probability is

reversed when z1 = 0.9 (see Figure 3.4 Case 2). This result can be confirmed by observing the objective

difference graph (rightmost graph in Figure 3.4). The MRT 3 mins curve shows that the objective difference is

not significant when demand zone 1 has smaller call arrival rate. This objective difference becomes significant

when call arrival rate increases for zone 1. This result is reversed when MRT is 13 minutes.
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Figure 3.4: Sensitivity analysis-Vary Mean Response Time (MRT) for demand zone 1 by Ambulance 1

While we chose a very small example to illustrate the structure of the optimal policy, the discussion

and observations presented for this example are consistent with many other small (up to 5 demand zones and

3 ambulances) examples that were tested. For larger examples, it becomes impractical to obtain the optimal

policy via simulation.

3.4 Improved Dispatching Strategies- Heuristic Approach

The running time for simulation model, when analyzing the performance of the system, was not

significant (less than two minutes) for most of the examples considered. However, the running time of the

commercial simulation optimizer to obtain an improved solution is significant and grows with problem size.
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For example, OptQuest running time for an example with three demand zones and three ambulances is 38

minutes while it is 9292 minutes for an example with five demand zones and three ambulances. (OptQuest

running times for computational examples considered in this study are summarized in Table 3.4). In addition,

full enumeration is not practical for obtaining the optimal dispatching order, because there are (m!)2n possi-

ble dispatching orders.

Example Size OpQuest Running Time(mins)

Example 1 2× 2 case 4
Example 2 3× 3 case 38
Example 3 5× 3 case 9292
Example 4 5× 5 case > 10000

Table 3.4: OptQuest running Times

Since the running times increase dramatically with the problem size and full enumeration is not

practical, a heuristic was developed to determine improved dispatching strategies for real-world EMS sys-

tems. While studying the optimal policy, we observed that there was a marked difference in the ambulance

busy probabilities between the optimal and myopic policies. Figure 3.5 compares the proportion of time dur-

ing a day that the ambulances are busy for the myopic and optimal dispatching policies for the hypothetical

Example 1 (2 × 2 case). As this figure illustrates, when ambulances are dispatched according to the closest

dispatching rule, the ambulance busy probability continuously decreases or increases with respect to z1 and

z2 values. For instance, Ambulance 1 busy probability increases when z1 increases and Ambulance 2 busy

probability decreases when z2 decreases. In this example we find that ambulance utilization is unbalanced

when z1 and z2 values differ substantially and the closest dispatching rule is followed. For the optimal dis-

patching strategy, the utilization of ambulances was smoothly distributed between two ambulances. Also, it

was observed that the order of sending paramedic units to each demand zone is linked to the ambulance busy

proportion. According to the simulation model, the optimal dispatching rule tends to send the less busy unit

(in terms of what unit would be busy under a myopic policy) for Priority 2 calls.

As observed in earlier examples the optimal dispatching rule did not always send the closest unit

for Priority 2 calls. While for Priority 1 calls the optimal rule was to send the closest unit if it is available.

Hence we studied the probability that the closest ambulance is dispatched to Priority 1 and Priority 2 calls

for these examples. Figure 3.6 indicates the probability that the closest (absolute closest, not closest among
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Figure 3.5: Comparison of Busy Probability of Each Ambulance for Two Dispatching Strategies - 2× 2 case

those available) server is dispatched to each Priority call for Example 1. This figure indicates that the optimal

policy tends to serve the Priority 1 calls from the location (zone) with higher arrival rate by the closest unit

more often, while Priority 2 calls from either of the demand zones are served by the unit which is closest to

the zone with lower arrival rate (by less busy ambulance). Consequently, Priority 2 calls from the demand

zone with higher arrival rates are not likely to be served by the closest ambulance according to the optimal

policy (see Figure 3.6 Priority 2). Figure 3.6 (Overall) shows that the proportion of calls served by the closest

ambulance has increased by following the optimal dispatching compared to closest rule for Priority 1 calls.

For Priority 2 calls, however, the proportion of calls served by the closest ambulance has decreased. These

results also are confirmed by the examples 3 × 3 case and 5 × 3 case. Figure 3.7 and Figure 3.8 show the

probability that the closest server is dispatched to Priority 1 and Priority 2 calls for each example. These

figures illustrate that the proportion of Priority 1 calls served by the closest ambulance can be increased by

following the optimal rule in comparison to the closest rule. It is also observed that the Priority 2 calls are

unlikely to be served by the closest unit according to the optimal rule.

Based on these observations, a heuristic rule is developed to dispatch the ambulances for emergen-

cies considering the priority or the severity of the call. This heuristic provides an ordered preference list of

ambulances to dispatch (contingency table) for each demand zone depending on the priority of the call. Ac-

cording to the the heuristic rule for Priority 1 calls, the closest available unit is dispatched. For Priority 2 calls,

however the contingency table does not depend on the distance from the ambulance station to the demand

zone. This result is also confirmed by the findings of [34]. The ordered list for dispatching ambulances to
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Figure 3.6: Probability that the closest server is dispatched to Priority 1 and Priority 2 calls for Optimal Rule
and Closest Rule - (2× 2 case)
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Figure 3.7: Probability that the closest server is dispatched to Priority 1 and Priority 2 calls for Optimal Rule
and Closest Rule - (3× 3 case)

Priority 2 calls is constructed considering the busy probability of each paramedic unit. Previous results show

that optimal policy tends to dispatch the less busy ambulance to Priority 2 calls. Therefore, this heuristic is

also developed to dispatch the less busy ambulance for Priority 2 calls. The heuristic (H1) algorithm used to

obtain the contingency table for Priority 2 calls is outlined below.

Let n be the total number of demand zones and m be the total number of ambulances.

Step 1:

Let r1, r2, r3, . . . , rk . . . , rm be a permutation of (1, 2, 3, . . . ,m) and trki be the response time of the ambu-

lance rk to zone i.

for each i where i = 1, 2, 3, . . . , n

rank response time trki as tr1i ≤ t
r2
i ≤ t

r3
i ≤ . . . ≤ t

rk
i . . . ≤ trmi
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Figure 3.8: Probability that the closet server is dispatched to Priority 1 and Priority 2 calls for Optimal Rule
and Closest Rule - (5× 3 case)

Let aij ∈ A be an (n×m) matrix, where ith row of A denotes r1, r2, r3, . . . , rk . . . , rm

Step 2:

Consider the row vector z where z(i) denotes the proportion of calls from demand zone (i), i = 1, 2, 3, . . . , n

Step 3:

Let bkj ∈ B be the Heuristic proportion matrix of size (m×m)

for j = 1, 2, 3, . . . ,m Do

for k = 1, 2, 3, . . . ,m Do

sum = 0;

for i = 1, 2, 3, . . . , n Do

if aij == k

sum = sum+ z(i)

bkj = sum

Step 4:

Let seq = 1, 2, 3, . . . ,m be a column vector and

B
′

= adjoin(B, seq)

Do priority sort on B
′

in sequential order to permute the last column of B
′
.

The last column of B
′

gives the dispatching order of ambulances for non-life threatening calls (For Priority

2 calls).

Using this heuristic we obtained the order of dispatching ambulances for the (3 × 3 case) shown
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in Table 3.5. To interpret this table, consider the Heuristic policy portion of the table. Column “zone 1”

under the Priority 1 heading in Table 3.5 indicates that Ambulance 1 is the first choice to dispatch, followed

by Ambulance 2 (if Ambulance 1 is busy) then Ambulance 3 (if both Ambulance 1 and Ambulance 2 are

busy) for Priority 1 calls. We observed that the dispatching policy given by the heuristic (H1) is similar to

the order given by the optimal rule (compare dispatching policies given in Table 3.5). Dispatching order for

zone 3 given by the H1 is slightly different in comparison to the optimal order, since H1 provides the same

dispatching order for all Priority 2 calls.

Heuristic Policy Optimal Policy
Priority 1 calls Priority 2 calls Priority 1 calls Priority 2 calls

Dispatch order zone 1 zone 2 zone 3 zone 1 zone 2 zone 3 zone 1 zone 2 zone 3 zone 1 zone 2 zone 3

1st Choice 1 2 3 1 1 1 1 2 3 1 1 1
2nd Choice 2 3 2 2 2 2 2 3 2 2 2 3
3rd Choice 3 1 1 3 3 3 3 1 1 3 3 2

Table 3.5: Order of dispatching ambulances for Heuristic and Optimal Policies - (3× 3 case)

3.4.1 Performance of Heuristic Policy

The survival probability of the dispatching rules of closest dispatching (myopic policy), OptQuest dispatch-

ing, Andersson heuristic dispatching [1], and the dispatching rule proposed by the heuristic H1 are compared

in Figure 3.9 for the (3× 3) example. The Andersson dispatching rule is developed based on the preparedness

function which describes the ability to cover each demand zone. According to this algorithm, the ambulance

whose unavailability causes the least drop in the preparedness value, is dispatched for non life-threatening

calls, while the closest available unit is dispatched for life-threatening calls. [28] illustrated the role of pre-

paredness in ambulance dispatching and also provide a dispatching heuristic. However, we did not consider

the heuristic proposed by [28] when comparing different dispatching strategies in our study because their

study does not consider the degree of the urgency of the call when dispatching paramedic units. Furthermore,

initial testing showed that the [28] heuristic performs similar to the myopic policy.

For this small example OptQuest provides the optimal dispatching order for each demand zone. As

we can observe from Figure 3.9, H1 performs better than Andersson’s heuristic in all aspects.(e.g. increase

patient survivability, decrease response time). In addition, H1 is easy to implement in EMS systems since it

provides a static dispatching rule. On the other hand, the Andersson heuristic provides a dynamic dispatching

rule and it needs to be executed every time an emergency call arrives. The improvement of the objective

(survival probability) value by following the heuristic (H1) dispatching rule seems low (in absolute terms)
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when compared to the myopic policy (see Survival rate comparison of Figure 3.9). However this corresponds

to a potential large number of Priority 1 calls by following the proposed heuristic (H1) rule. For example, the

average number of lives saved per 1000 Priority 1 calls in the (3× 3 case) is 76 while it is 135 for an example

with 5 demand zones and 3 ambulances.
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Figure 3.9: Comparison of Dispatching Strategies -3× 3 case
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Figure 3.10: Probability that the closest server is dispatched to Priority 1 and Priority 2 calls for Heuristic
Rule and Closest Rule -3× 3 case

Figures 3.9 compares the response time for Priority 1 calls and the percentage of calls responded

within 10 minutes for each dispatching policy. These Figures show that the results obtained (survival rate, av-

erage response time, and percentage of calls covered within 10 mins) by following the proposed dispatching

heuristic for those EMS systems are similar to the results obtained by following the rule given by OptQuest.

Hence it can be said that the proposed heuristic performs as well as optimal dispatching given by OptQuest

for these two examples, and this observation is consistent with other cases tested. Dispatching ambulances

according to the proposed heuristic (H1) will lead to an increase of patient survivability and thereby increase

the EMS systems performance. Further, average response time for Priority 1 calls decreases while percentage
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of calls covered within 10 minutes increase for Priority 1 calls increases. Figure 3.10 compares the propor-

tion of calls served by the (absolute) closest paramedic unit by following the dispatching strategies closest

and heuristic for Example 2, (3 × 3) case. As this figure shows, more Priority 1 calls can be served with

the closest unit by following the heuristic rule rather than sending the closest unit for every call (because the

closest unit is not occupied serving less severe calls). The performance heuristic policy of (H1) for Example

2, (5× 3) case is summarized in Appendix B . In a later section the proposed heuristic is applied to a scenario

using real-world data from Hanover County, Virginia.

3.4.2 Exploring the Zero-queue Assumption

This section illustrates the effect of the zero-queue length assumption on the performance of the

EMS system. We modified our zero-queue length EMS system to a system with a queue by allowing the calls

to be queued if all ambulances are busy. Then we compared the performance of the EMS system with queue

to the EMS system with zero-queue. Though there are several queuing disciplines to serve customers in the

queue, we assumed that customers in the queue are served according to the FCFS (First Come First Serve)

discipline, because most of the EMS systems follow this rule. Studying the best queuing discipline to serve

customers in the EMS system queue would be another interesting research topic.

We used several examples to study the effect of the queue on the optimal dispatching policy. How-

ever, we illustrate the results here via Example 1 (2×2 case) to compare the performance of the EMS system

with a queue (in which calls must wait until one of the ambulances in the system is idle to receive service)

to the EMS system with zero-queue. First we studied the optimal order of dispatching ambulances for each

demand zone. The optimal order remains the same even if we consider a waiting queue in the EMS system.

We did full enumeration to obtain the optimal dispatching order. Next we compared the survival probability

of these two EMS systems (see Figure 3.11). As can be observed from Figure 3.11 the EMS system with

queue has similar behavior to the EMS system with no queue. The only difference is the survival probability

of the EMS system with queue decreases compared to the EMS system with zero-queue. This decrease is due

to the calls waiting in line, which increase the busy probability of the ambulances which in turn decreases the

survival probability of future calls.

Figure 3.12 compares the ambulance busy probabilities of the two EMS systems, with queue and

zero-queue. As we can observe from the figure, the busy probabilities of ambulances follow similar trends

in both systems. However, the busy probabilities for the EMS system with queue increase slightly compared
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Figure 3.11: Comparison of Survival probability of EMS systems

to the EMS system with zero-queue, as can be expected. Thus we studied the average waiting time and the

average number waiting in the queue for this example. We observed that the number waiting in the system

was less than 0.4 calls on average for all scenarios. Additionally, we found that average waiting time in the

queue varied from 18 minutes to 22 minutes. These last two observations imply that while the number of

calls waiting seems negligible, if a call waits, it has to wait for an exceptional amount of time. This helps

to explain why many EMS systems employ alternative strategies for dealing with calls when all ambulances

are busy. Also it was observed that in the zero-queue system only 9% of the calls are served by the outside

paramedic unit.

Interestingly, these differences do not affect the optimal dispatching strategy, which happens to be

the same for both systems. Since the optimal policy structure informed our heuristic, we must look at the

performance of the heuristic under a non-zero queue. In fact, we find that the survival probability improve-

ment by following heuristic policy is greater in a EMS system with a queue compared to a EMS system with

zero-queue, meaning that the dispatching rule is more beneficial (in terms of patients survivability) when

EMS systems operate with a queue. For example, when z1 = 0.9 (i.e. log10(λ1/λ2) = 0.95), the heuristic

results in 9.21% higher survival probability than the myopic policy compared to a 5.63% difference in sur-

vival probability between the heuristic policy and the myopic policy in the zero-queue system. We observed

similar results for other examples tested. In summary, the queue has a negligible affect on the optimal policy

and the heuristic (H1) rule is more beneficial when there is a queue in the EMS system. Therefore, we believe

our zero-queue assumption is justified.
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Figure 3.12: Comparison of busy probability of each ambulance for two EMS systems

3.5 Case Study

Hanover County, Virginia was used as the study area in our simulation model. The Hanover County

EMS department responds to 911 calls 24 hours a day with a population of approximately 100,000 and an

area of 471 square miles. Based on data collected in 2007, the average number of calls in Hanover is 1.2

calls/hour (peak rate) with 9521 total calls through out the year. An instance with twelve demand zones,

four ambulance stations and five paramedic units was considered in this EMS simulation model. All demand

zones and station locations are shown in Figure 3.13. Rescue stations 1, 2, 3 and 4 are the four fire stations

with a paramedic unit at each station. The fifth paramedic unit is sited in the fourth station. Response time

and turn around time distributions for this example are summarized in Appendix C.

Priority 1 calls
Dispatch order z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12

1st Choice 4 3 2 4 1 1 2 3 4 1 2 2
2nd Choice 5 4 3 5 3 4 3 1 5 4 4 4
3rd Choice 3 5 4 3 2 5 4 4 3 5 5 5
4th Choice 2 2 5 1 4 2 5 5 1 3 3 3
5th Choice 1 1 1 2 5 3 1 2 2 2 1 1

Table 3.6: Heuristic (H1) order of dispatching ambulances for Priority 1

Priority 2 calls
Dispatch order z 1 z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z 10 z 11 z 12

1st Choice 5 5 5 5 5 5 5 5 5 5 5 5
2nd Choice 3 3 3 3 3 3 3 3 3 3 3 3
3rd Choice 1 1 1 1 1 1 1 1 1 1 1 1
4th Choice 4 4 4 4 4 4 4 4 4 4 4 4
5th Choice 2 2 2 2 2 2 2 2 2 2 2 2

Table 3.7: Heuristic (H1) order of dispatching ambulances for Priority 2
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Figure 3.13: Hanover County Map, dots represent station locations
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Figure 3.14: Comparison of dispatching Strategies - 12× 5 case

Table 3.6 provides the contingency for Priority 1 calls according to the heuristic (H1) rule. The order

of dispatching ambulances for Priority 2 calls is given in Table 3.7. The survival rate per 1000 Priority 1 calls,

when using the dispatching heuristic (H1) is compared to the policy of always sending closest paramedic unit

in Figure 3.14 as the total arrival rate to the system is varied. In addition, Figure 3.14 compares the average

response time and percentage of calls covered within 10 minutes for each dispatching strategy. As the figure

indicates, when call rate increases, survival rate and percentage of calls covered within 10 minutes decreases

while the average response time increases. When dispatching paramedic units according to H1 rule, survival

rate and coverage can increase while average response time decreases in comparison to the myopic policy.

Although the differences between survival probability for two dispatching strategies is low, many lives can be
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saved at no additional cost (in terms of servers used) by following the proposed dispatching heuristic (H1).

For example, there is an 8.33% increase in survival probability compared to the closest rule when call arrival

rate equals to 1 per hour. Since there are 9521 total calls to the system during a year, assuming half of them

are life-threatening, approximately an additional 28 lives can be saved per year with available resources by

following the dispatching heuristic proposed in this study. Hence we can say that it is beneficial to implement

dispatching heuristic H1 for EMS systems such as the one presented in this study.
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Figure 3.15: Comparison of dispatching Strategies for Priority 2 calls - 12× 5 case

So far we have discussed the impact of proposed dispatching rule on Priority 1 calls. The effect of

this dispatching rule on Priority 2 calls is depicted in Figure 3.15. As the figure indicates, average response

time for Priority 2 calls increases. Though, proportion of calls covered within 20 minutes decreases slightly.

This impact did not affect the average survival probability since Priority 2 calls are non-life threatening.

Finally, we believe that the heuristic we presented here provides significant improvements for EMS

systems in terms of lives saved at no additional cost. Moreover, this improvement can be achieved by a simple

policy of dispatching the closet available paramedic unit for Priority 1 calls while Priority 2 calls are served

according to a pre-determined ordered preference list. This policy is applicable for existing EMS systems

since it is easy to implement.

3.6 Conclusion and Future Research

Implementing optimal dispatching strategies for EMS systems to increase patient survivability is a

challenging problem. In this study a heuristic algorithm was proposed for dispatching ambulances incorpo-

rating the degree of the urgency of the call to maximize patient survivability. This dispatching heuristic is
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developed to send the closest available ambulance for Priority 1 calls and the less busy ambulance for Prior-

ity 2 calls. The proposed rule provides an order of dispatching ambulances for each demand zone depending

on the priority of the call. However, the heuristic algorithm (H1) provides the same dispatching order for

Priority 2 calls for every demand zone. Future research can be conducted to obtain the order of dispatching

ambulances for Priority 2 calls depending on the demand zone.

Computational examples showed that the proposed heuristic is beneficial in increasing patient sur-

vivability with no extra cost in terms of the number of paramedic units; meaning that patient survivability

can be increased using the available resources simply by implementing the proposed dispatching rule. Even

though this heuristic was developed to maximize the patient survivability, it helps to decrease the average

response time and increase the percentage calls served within 10 minutes for Priority 1 calls. The average

response time for Priority 2 calls increased slightly by following the proposed dispatching rule. Although the

average response time increased it did not affect the average survivability of patients since Priority 2 calls

are non-life threatening. Future research can concentrate towards obtaining dispatching rules to maximize

patient survival probability of life-threatening calls while minimizing the effect on the average response time

of Priority 2 calls.

The simulation model was developed enabling all the ambulances located at each station to serve

the calls originating from any demand zone, meaning there is no restriction on ambulance response area. [10]

showed that defining response areas (or boundaries) for each ambulance will lead to a decrease the average

response time. Determining response areas for each ambulances while incorporating the proposed dispatch-

ing rule for dispatching ambulances in EMS systems, is another vital area of future research.
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Chapter 4

Districting and Dispatching Policies to

Improve the Efficiency of Emergency

Medical Service (EMS) Systems

4.1 Introduction

The fundamental responsibilities of Emergency Medical Service (EMS) systems are to provide ur-

gent medical care, such as pre-hospital care, and to transport the patient to the hospital if needed. The

efficiency of EMS systems is a major public concern, because providing urgent medical care can literally

mean the difference between life and death. Over the past thirty years a significant amount of research stud-

ies have been conducted to improve the performance of EMS systems by providing effective and efficient

service to the public.

The response time, the time elapsed from an emergency call arriving at the dispatch center until

the time an emergency vehicle arrives at the scene, is vital in minimizing the impact of the incident. Rapid

response times by EMS systems can reduce the fatality of an emergency incident [7]. For example, the sur-

vival probability in critical emergency incidents such as a trauma, can be expressed as a function of the time

to treatment [14]. Therefore, much of the research focus has been on reducing response time and thereby

improving the performance of such EMS systems. There are three main resource allocation decisions in

emergency medical service that can be used to reduce the response time. Locating ambulances is one class of
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resource allocation problem and a widely used method in EMS systems. Relocating ambulances is another

category of resource allocation problem which focused on dynamically relocating vehicles in real-time in or-

der to increase the coverage based on demand patterns. Dispatching emergency vehicles is the third category

of resource allocation problem, which is less studied, for improving EMS system performance. In this study

our focus is to improve the performance of EMS systems by implementing dispatching strategies to use with

currently available resources.

Our contribution towards improving the performance by implementing dispatching strategies is two

fold. One area is to determine the response boundaries for each EMS vehicle, because when operations of

EMS vehicles are restricted to predetermined response areas (or boundaries), it enables the EMS system to

decrease the average response time of paramedic support to the scene [10]. In addition, Larson et al. [25]

showed that determining districts (the region of primary responsibility of a response unit) of each unit is an

important decision for EMS systems in order to balance the workload between paramedic units. Therefore,

in this study one objective is to determine a response area for each ambulance by partitioning the service

region of the EMS system into districts. The second area is to propose intra-district (within the district) and

inter-district (out of district) dispatching discipline to improve the performance of the EMS system. The

importance of implementing better intra-district and inter-district dispatching policies, is well documented

by Larson et al. [27]. Thus, the second objective of this work is to implement dispatching rules in order to

improve the performance of the EMS system. These dispatching strategies are developed incorporating the

degree of the urgency of the call, because priority dispatching strategies can improve the survival probability

of patients [3]. We used the survival probability as the performance measure to study the impact of the par-

titioning on the overall performance of the EMS system, since measuring the patients’ survivability reflect

the patient outcome directly (Erkut et al. [13]). This study presents a constructive heuristic for dividing the

service region into sub-regions (or districts) to determine the response boundaries of each paramedic unit

(ambulance). In addition, a simulation approach is used to study the performance of the EMS system by

introducing integrated dispatching and districting policies to the system.

4.2 Related work

In the past three decades a significant amount of research work had been conducted to improve

the performance of emergency services such as Emergency Medical Services (EMS), fire companies and

police emergency services. The models developed for EMS systems address three vital decisions; location,
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relocation and dispatch of paramedic units. However, most of the models focused on decision context of

locating paramedic units at optimal stations in order to provide better coverage for the service population.

A few such static mathematical covering models are LSCP [49], MCLP [11], TEAM [43] and DSM [16].

Probabilistic covering location models were developed incorporating the ambulance busy probabilities in the

model. MEXCLP [12], MALP [38], AMEXCLP [4], PLSCP [39], Q-PLSCP [29] and McLay [31] are few

examples for probabilistic covering models. The focus of ambulance relocation models is to dynamically

relocate ambulances in real-time when dispatching ambulances to provide better coverage for population,

since dispatching of an ambulance may leave a significant proportion of population without coverage (e.g.

[22],[17]). The literature related to the paramedic unit dispatching problem will be discussed next in this

section, since our main focus of this work is to study dispatching strategies to improve the performance of

the EMS system.

Most of the existing models we discussed above mainly focused on the optimal location of vehicles

to provide better coverage with different objective functions. However, determining response areas for each

ambulance and dispatching appropriate paramedic unit to the scene are less studied but important decision

contexts in EMS systems. The importance of determining response areas for emergency vehicles is clearly

explained by Larson ([25], [27], [26]). Larson introduced this problem (determining response area) as a

“districting” problem. Larson stated the districting problem as follows: “How should the service region be

partitioned into areas of primary responsibility (districts) so that a level or combination of levels of service is

best achieved?” [25].

One early example for vehicle districting is Smith [46]. A gradient search technique was used in

his study to redesign police patrol response areas so as to minimize the traveling time within the district.

Later Gass [15] developed a heuristic technique to determine police patrol districts that balance the call rate

from each district. However, the work done by Larson ([25], [27], [26]) and Carter et al. [10] towards the

districting problem influenced the later research significantly. Larson [26] developed a hypercube queuing

model to represent the EMS system and to obtain several performance measures. In later research [25] he

discussed the importance of intra-district (within districts) dispatching and inter-district (out of district) when

designing EMS systems. Though, in few earlier models ([41], [44], [45]) all responses are assumed to be

intra-district, and a district is assumed to be all elements closet to the each facility location. Carter et al. [10]

also studied the effect of districting on the performance of the EMS system. They used average response time

and workload imbalance as performance measures. Carter found that dispatching the closest paramedic unit

is not always optimal and dispatching units according to pre-determined boundaries can decrease the average
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response time.

Thus, in our study one goal is to determine response area (or district) for each ambulance while the

second goal is to obtain dispatching policies for dispatching units within districts and out of districts in order

to increase survival probability. In this study, first we propose a computational time efficient, constructive

heuristic to obtain districts. The second goal of this study is to determine intra-district and inter-district

dispatching policies. These dispatching policies are developed considering the degree of the urgency of

the call. The benefits of priority dispatching strategies, are well documented by [3], [34],[19] and [35]. A

simulation approach is used to study the performance of the proposed integrated districting and dispatching

polices for EMS systems.

4.3 Methodology

Given an emergency service area of an EMS system and its demands (number of calls requesting

emergency vehicles), we wish to divide the service area into K districts, such that each district determines

the response area for an ambulance or a set of ambulances. In addition, it is desirable that a district consists

of contiguous demand zones. For example, Figure 4.1 shows a geographical region partitioned into three

sub-regions. A1, A2, A3 and A4 are the positions of each of the ambulance stations (with a paramedic unit at

each station) in the service region. According to the partitioning, ambulance A2 and A3 serve calls arriving

from district 2 while ambulance A4 serves for district 3 and ambulance A1 serves for district 1. Determining

response districts for each paramedic unit such as this is done in order to minimize the average response time

or to balance the work load among ambulances (Carter et al. [10]). In this study we proposed two methods

to obtain districts. First we proposed an integer programming model to divide the service area in to districts,

because the integer programming approach is a widely used method in districting, especially in political

districting [21], [6], [2]. However, those work show that when the problem size increases the computational

time to obtain a solution grows significantly. Thus we proposed a constructive heuristic to determine vehicle

districts within less computational time, as our second method.

After determining vehicles districts, our next goal is to develop inter-district and intra-district dis-

patching policies for paramedic units. We considered dispatching rules that are static, meaning that we

considered an EMS system with fixed deployment (paramedic units are located at specific stations, respond

from stations, and return back to their station after serving the call). In addition, we considered stationary

dispatching rules; in other words, we assumed that EMS systems followed an ordered preference list of ambu-
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Figure 4.1: Example for partitioning

lances, when dispatching paramedic units. We studied several within-district and out of-district dispatching

policies as follows:

Intra-district policies

To dispatch ambulances within districts we considered two polices. The first policy is the myopic policy

of sending the closest available unit, giving no reference to the degree of the urgency of the call. Myopic

rule (closest rule) is the most common dispatching rule existing in EMS systems. The second policy is the

heuristic policy, developed by Bandara et al. [3] to dispatch paramedic units. The key differences between

this dispatching heuristic and the myopic policy can be expressed as follows: One is that the dispatching

heuristic was developed considering the severity of the call, the other is that the heuristic policy helps to

balance the work load between units.

Inter-district policies

Here we considered two dispatching polices to cross district boundaries when all ambulances within the dis-

trict are busy. In the first policy, we assumed that other emergency services such as fire engines or ambulances

from other counties will assist the calls, when all available ambulances within the district are busy . These
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kind of dispatching rules are common for EMS systems. For example, in Hanover County, Virginia EMS

department, these types of arrangements are in place. An ordered preference list of ambulances is used, to

dispatch paramedic units within the district. We refer this dispatching policy as “Nocross rule” throughout

this paper from here onwards. The second policy is to dispatch ambulances from other districts to assist calls

if all ambulances within the district are busy. We refer to this policy as “Cross rule” in this study. In this

rule we also used an order preference list of ambulances to cross boundaries. We utilized the heuristic policy,

developed by Bandara et al. [3] to obtain this preference list.

These intra-district and inter-district dispatching policies result in four different dispatching rules,

which can be summarized as follows.

1. Closest-Nocross

2. Closest-Cross

3. Heuristic-Nocross

4. Heuristic-Cross

We used the survival probability as the performances measure to study the impact of the integrated

districting and dispatching polices on the overall performance of the EMS system, because measuring the pa-

tients’ survivability mirrors the patient outcome directly (Erkut et al [13]). To obtain the patient survivability

we used the survival function developed by Larsen et al. [24] and subsequently simplified by McLay et al.

[33]. The survival function is explained below. Let S denote the patient survival probability,

S(tR) = max[(0.594− 0.055 ∗ tR); 0], (4.1)

where tR represents the response time. A simulation model is developed using Arena software to represent

the EMS system and to obtain the patient survival probability.

4.4 Mathematical Model to Determine Response Boundaries

This section presents the procedure of determining response boundaries for emergency vehicles

using a mathematical programming approach. First we used an integer programing model to partition the

service region into a desired number of districts K (partition size). Then we apply different dispatching

policies as introduced in the previous section. Finally we used a simulation-based approach to ascertain the
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performance (survival probability of patients) of the partitioned EMS system to pick the best partitioning

size and dispatching policy combination. Figure 4.2 depicts the procedure of obtaining the best number of

districts (best K value) to operate for an EMS system, where K = 1, . . . ,m (number of ambulance).

Figure 4.2: Procedure-Integer Programming

4.4.1 Mathematical Model Formulation

For a given geographical region of an EMS department, we are interested in partitioning this region

into sub-regions (or districts) which determines the response area for an ambulance or a set of ambulances.

Partitioning such as this may be done in order to decrease the average response time for emergency calls.

Since the response time mainly depends on the traveling distance of ambulances, our objective is to minimize

the weighted traveling distance of each ambulance. Therefore, districting is done so as to minimize the

distance between demand zones and corresponding ambulance stations while minimizing the travel distance

within a sub-region. Euclidean distance is used as the traveling distance between any two points within the

service region. We used an integer programming approach to model this problem.

The model developed below assumes that an EMS system is partitioned in to square cells to represent

demand zones. For example, Figure 4.3 shows a service region is partitioned into 28 demand zones. Further,

assume that the EMS system has m ambulance stations, the positions of ambulances are known and each
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ambulance station is located at the middle of the corresponding demand zone. For example, the EMS system

shown in Figure 4.3 has 4 ambulance stations and positions are named as A1, A2, . . . , A4.

A1A1

A2
A3

A4

A2 A3

A4

Service region Service region is partitioned into square 
cells of demand zones

1 2

3 4

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22

23 24 272625 28

Figure 4.3: Square cells of demands

The notation used in the mathematical model is described below.

n = Number of demand zones

m = Number of ambulance stations with an ambulance in each station

K = Number of possible sub-regions or districts

dij = Euclidean distance from demand zone i to ambulance station j

ail = Euclidean distance between demand zone i and demand zone l

hi= Demand of zone i (number of calls)

Let N = {i, l : i, l = 1, 2, . . . , n}, M = {j : j = 1, 2, . . . ,m} and K̄ = {k : k = 1, 2, . . . K} be the index

sets. The decision variable Xjk, indicates the allocation of ambulances to sub-regions.

Xjk =

 1 if ambulance j is assigned to sub-region k;

0 otherwise.
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The decision variable Yijk, indicates the allocation of ambulances in a sub-region to a demand zone.

Yijk =

 1 if demand zone i is covered by ambulance j in sub-region k;

0 otherwise.

The decision variable Zik, determines the allocation of demand zones to sub-regions.

Zik =

 1 if demand zone i is assigned to sub-region k;

0 otherwise.

The decision variable Dilk, indicates which demand zones are included in the same sub-region.

Dilk =

 1 if both demand zones i and l is assigned to sub-region k;

0 otherwise.

Therefore, we can formulate the linear integer programming model as follows.

Minimize
K∑
k=1

n∑
i=1

m∑
j=1

hidijYijk +

K∑
k=1

n∑
i=1

n∑
l≥i

ailDilk

subject to
m∑
j=1

K∑
k=1

Yijk ≥ 1 ∀ i ∈ I (4.2)

K∑
k=1

Xjk = 1 ∀ j ∈ J (4.3)

m∑
j=1

Xjk ≥ 2 ∀ k ∈ K̄ (4.4)

Yijk ≤ Xjk ∀ k ∈ K̄, ∀ j ∈ J, ∀ i ∈ I (4.5)

n∑
i=1

Zik = 1 ∀ k ∈ K̄ (4.6)

Zik +Xjk − Yijk ≤ 1 ∀ k ∈ K̄, ∀ j ∈ J, ∀ i ∈ I (4.7)
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Dilk ≤ Zik ∀ k ∈ K̄, ∀ i, l ∈ I and i 6= l (4.8)

Zik + Zlk −Dilk ≤ 1 ∀ k ∈ K̄, ∀i, l ∈ I and i 6= l (4.9)

Xjk, Zik, Yijk, Dilk ∈ {0, 1}, ∀ i ∈ I, ∀ j ∈ J, ∀ k ∈ K̄ (4.10)

The objective function consists of two parts. It is the sum of the weighted distances from demand zone i to

ambulance station j and the distance between two demand zones in the same sub-region. The first term of

the objective function computes the distance from each demand zone to each ambulance station within the

district. This term is used to minimize the weighted traveling distance from ambulance station to demand

zones. As we mentioned earlier, we used Euclidean distance between demand zone and ambulance station

as the traveling distance. The second term of the objective function calculates the total Euclidean distance

between each demand zone within a particular sub-region in the manner such that i, l ∈ S for l ≥ i. (Selecting

i and l according to this manner, helps us to reduce the running time of the model to some extent, because

the distance between i and l is equal to the distance between l and i, it is not necessary to consider the same

distance two times when a term is minimized.) Therefore, the second term of the objective function helps to

minimize the traveling distance inside a sub-region by providing a compact sub-region.

Constraint (4.2) ensures that every demand zone is covered by at least one paramedic unit. Constraint

(4.3) ensures that each ambulance is allocated to only one sub-region. Constraint (4.4) ensures that there are

at least two ambulances in each sub-region. This constraint is used to ensure that every demand zone has a

back up coverage when one ambulance is busy. We can relax this constraint according to the back up coverage

we desire. For example, if we are interested in three ambulances for back up coverage R.H.S of this constraint

should equal to three. If we are not interested in back up coverage then R.H.S of this inequality becomes one.

Constraint (4.5) ensures that if demand zone i is covered by ambulance j in sub-region k then that ambulance

is assigned to sub-region k. Constraint (4.6) ensures that demand zone i is only assigned to one sub-region.

Constraint (4.7) ensures that if both demand zone i and station j are in the same sub-region k ( i.e., Zik = 1

and Xjk = 1) then that demand zone i, can be covered by ambulance j in sub-region k (i.e., Yijk = 1).

Consider constraints (4.8) and (4.9). These two constraints ensure that Dilk must equal to zero unless both
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Zik and Zlk equal 1. In addition, constraint (4.9) ensures that if both demand zone i and l are selected for

sub-region k then Dilk have value 1. The constraint set (4.5) is summarized in the first two columns of Table

4.4.1 which shows the possible values for Y,X variables. Similarly the constraint set (4.7) is summarized in

column 3 to column 5 of Table 4.4.1 which shows the possible values for Z,X, Y variables and the constrain

set (4.8)-(4.9) is summarized in column 6 to column 8 of Table 4.4.1 which shows the possible values for

Z,D variables. A few computational examples are discussed in the next section to obtain the performance of

this proposed mathematical model.

Yijk Xjk Zik Xjk Yijk Zik Zlk Dilk

0 0 or 1 0 0 0 or 1 0 0 0
1 1 1 0 0 or 1 1 0 0

0 1 0 or 1 0 1 0
1 1 1 1 1 1

Table 4.1: Explanation of the constraints (4.5), (4.7)–(4.9)

4.5 Computational Results Using Mathematical Model

In this section we present computational results for two examples using the mathematical model

developed. Each optimization problem was formulated using Optimization Programming Language (OPL)

which uses a solver called CPLEX to solve the mathematical models and Excel was used to input the data.

Hanover County, Virginia is used as our study region and we considered the urban area of this county in our

mathematical model. The Hanover County EMS department responds to 911 calls 24 hours a day with a

population of approximately 100,000 and an area of 471 square miles. Based on data collected in 2007, the

average number of calls in Hanover is 1.2 calls/hour (peak rate) with 9521 total calls through out the year.

An instance with forty one demand zones, five ambulance stations with a paramedic units at each station was

considered as our first example. All demand zones and station locations are shown in Figure 4.4. Rescue

stations A1, A2, A3, A4 and A5 are the five stations with a paramedic unit at each station.

The solution for this example for different K (number of sub-regions) values given by the math-

ematical model is depicted in Figure 4.5 and 4.6. When K > 2 to obtain a feasible solution we need to

change the right hand side of constraint set (4.4) to 1 because with five ambulances it would be impossible

to assign at least two ambulances for more than two districts. When k = 1, the model does not partition the

region in to subregions or districts (Figure 4.5-a). When K = 2, the optimal sub-regions given by the model

is shown in Figure 4.5-b. The demand zones that belong to different sub-regions are shaded using different
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Figure 4.4: Study Area- Hanover County EMS department in Virginia

colors. According to this optimal solution ambulance A1 and ambulance A2 are allocated to one sub-region

and ambulances A3, A4 and A5 are allocated to another sub-region. When K = 3, K = 4 and K = 5, the

optimal districts are shown in Figure 4.6.

After determining the districts, to obtain the best K, the next step is to apply different dispatching

policies to the EMS system (see Figure 4.2). Then we did a simulation analysis to determine the overall

performance of the partitioned EMS system. As mentioned earlier, we used the survival probability as the

performances measure to study the impact of the partitioning on the overall performance of the EMS system.

4.5.1 Performance of the Partitioned EMS System

A simulation model is developed using Arena software to represent the EMS system and to obtain

the patient survival probability. We assumed that this EMS system operates according to the dispatching rules
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Figure 4.5: Districts given by mathematical model when K = 1 and K = 2

we introduced in section 4.2. However, when comparing the performance of dispatching policies for K > 1,

we only illustrate the performance of Heuristic-Nocross rule and Heuristic-Cross rule. This is because, we

found that the myopic policies, e.g Closest-Nocross rule and Closest-Cross rule, always perform worse than

the heuristic policies. We defined Heuristic-Nocross rule as Nocross rule and Heuristic-Cross rule as Cross

rule for convenience when comparing performance of those policies. We leave the K = 1 case (heuristic and

closest) as a baseline reference.

We considered the previous example with different K values to compare the performance of parti-

tioning. Figure 4.7 compares the survival rate for two dispatching rules (Nocross rule and Cross rule) with

Closest policy and Heuristic policy when K = 2 and K = 3. Figure 4.8 compares the performance when

K = 4 and K = 5.

According to those graphs when call arrival rate increases, survival rate decreases gradually for

every policy as expected. In addition, we observed that the Heuristic rule performs well in comparison to

Closest rule always, when the system operates without partitioning (when K = 1). However, the partitioning

approach with Nocross rule is better than no partitioning in terms of patients survivability (see K = 2). This
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Figure 4.6: Districts given by mathematical model when K = 3, K = 4 and K = 5

occurs because in this instance partitioning allows the Priority 1 calls to be more likely to be served by the

closest ambulance (instead of that ambulance being busy serving a call that is farther away). However, this

observation is not true when K ≥ 3. In these cases some of the subregions do not have backup coverage

when the ambulances are busy. For example, when K = 4 (see Figure 4.6) , only one district operates with

two ambulances (A3 and A4), while other districts have one ambulance (no backup coverage) each. Thus we

can conclude that “over-partitioning” can reduce the effectiveness of an EMS system.

The performance of Nocross rule and Cross rule is worse than Closest rule performance whenK = 4

and K = 5 (see Figure 4.8). This observation is also justified by Figure 4.9. Therefore, we can conclude

that the optimal partitioning size is two for this example with Nocross rule, since operating the EMS system

with two districts (K = 2) helps to save more lives than operating without partitioning. For example, there

is a 14% increase in the average survival rate of Priority 1 patients with Nocross rule when call arrival rate

is 3/hour and K = 2, compared to no partitioning Closest rule. If we assume that this EMS system receives

1000 life-threatening (Priority 1) calls during a year this corresponds to approximately an additional 39 lives

saved without utilizing any additional resources. To get a sense for this, Hanover county serves around 4760
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Figure 4.7: Comparison of survival rate when K = 2 and K = 3

Figure 4.8: Comparison of survival rate when K = 4 and K = 5

Priority 1 calls per year. After studying several computational examples, it is observed that it may be ben-

eficial to implement districting when operating EMS systems; but that one must be careful in selecting the

number of sub-regions so as not to reduce backup coverage. To study this further we conider an EMS system

with 6 ambulances, in which case K = 3 can still result in backup coverage for all districts. However, in this

instance we assign demands to each zone randomly in order to have evenly distributed deamnds throught the

service region. Solutions to this instance for different K values given by the mathematical model is shown in

Figure 4.10 and Figure 4.11.

After obtaining districts, we did a simulation to asses the performance of partitioned EMS system

in order to find the best K. We studied the performance of Nocross rule and performance of Cross rule for

different K values. Figure 4.12 illustrates the performances of Nocross rule and Cross rule. By observing

this graph we can conclude that best number of districts for this example is three (K = 3) with Nocross rule.

Operating this EMS system with three districts is better than operating without districts (K = 1) in terms of
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Figure 4.9: Comparison-performance of Nocross rule and Cross rule
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Figure 4.10: Vehicle districts when K = 1 and K = 2

patients’ survivability. There is a 20% increase in the average survival probability of patients with Nocross

rule when call arrival rate is 1/hour and K = 3.

In this study, we formulated a mathematical programming model to partition an EMS service area

in to sub-regions to determine the service boundaries of the ambulances. Results show that it is beneficial

to operate the EMS system with partitioning as long as backup coverage can be maintained. Though, the

proposed integer model provides the vehicle districts, the execution time to obtain a solution is significant

and grows with problem size. OPL running times for computational examples considered in this study are

summarized in Table 4.2). Thus we proposed a constructive heuristic to determine vehicle districts in the next

section.
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Figure 4.11: Vehicle districts when K = 3 and K = 4

Example K value OPL Running Time(mins)

41 zones and 5 ambulances 2 4
3 43
4 140
5 272

41 zones and 6 ambulances 2 4
3 53
4 1110

Table 4.2: OPL running Times

4.6 A Constructive Heuristic to Determine Vehicle Districts

The districting problem is not only found in EMS literature but also in political districting literature.

The most popular way to obtain district is to use mathematical programming such as integer programming

or mixed integer programming (e.g. [21], [6], [2]). However, in these models execution time is significantly

large. Thus in this study we proposed a constructive heuristic to obtain emergency vehicle boundaries within

less computational time. In this heuristic we utilize the Adjusted Expected Coverage (AEXC) [4] concept for

obtaining districts. The AEXC describes the ability to cover the demand zones taking in account ambulance

busy probabilities and their dependencies. This AEXC concept is used in many mathematical models in order

to find the location of ambulance stations. We used the objective function proposed by R.Batta et al. [4] to
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Figure 4.12: performance of Nocross rule and Cross rule

calculate the AEXC. In that function they relaxed the independence assumption when calculating server busy

probability using the correction factor Q(M,ρ, j), which is proposed by Larson [27]. The objective function

can be summarized as follows:

Maximize
∑N
i=1

∑M−1
j=1 (1− ρ)ρjhiyj+1,iQ(M,ρ, j) where

yji =

 1 if zone i is covered by at least j servers;

0 otherwise.

N = Number of demand zones

M = Number of ambulance stations with an ambulance at each station

hi = Demand (number of calls) from zone i

ρ = Utilization factor

They used this objective function to determine ambulance station locations with respect to several

constraints so as to maximize the AEXC. However, we can use the same function to calculate the AEXC

since we already know the ambulance station locations and the value of yji with respect to a given distance

standard. Thus, we can define AEXC as below:

AEXC =
N∑
i=1

M−1∑
j=1

(1− ρ)ρjhiyj+1,iQ(M,ρ, j) (4.11)

72



As mentioned earlier, AEXC level is used in our heuristic when determining the best number of districts to

operate in the EMS system. The procedure for obtaining response boundaries can be summarized as fallows:

First we calculate the AEXC for K=1 (without partitioning the service region in to districts). Then we partition

the service region in to districts according to the constructive heuristic and calculate the corresponding AEXC

level. This procedure is depicted in Figure 4.13. Once we cannot improve the AEXC level by partitioning into

districts we discontinue the procedure and pick the districts that maximize the AEXC level as our solution.

Simulation results also confirmed that maximum AEXC level maximizes the average survivability of the

patients’. We will elaborate these findings in results section. After determining vehicles districts our next

goal is to develop inter-district and intra-district dispatching policies for paramedic units in order to improve

the performance of the EMS system using the dispatching rules we introduced in section 4.2.

Figure 4.13: Procedure-Constructive Heuristic
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4.7 The Heuristic Development

The heuristic algorithm developed below assumes that the response area of the EMS is partitioned

into square cells of demand zones. Let N denote the set of demand zones (or nodes) and let E be the set of

edges (adjacencies) in the system. According to this partition, the response area can be represented as a p× q

grid. For example, Figure 4.14 depicts that an EMS system is partitioned into 6 × 6 grid system meaning

that an EMS system with 36 demand zones. We included the shaded demand zones in to the EMS service

region with zero demand to obtain a p× q grid system, which helps to construct a heuristic algorithm that can

apply for EMS systems have different geographical shapes. In the p× q grid, any demand zone i ∈ N can be

represented as (x, y) where x = 1, 2, , p and y = 1, 2, , p. If two demand zones i1 = (a, b), i2 = (c, d) ∈ N

are adjacent, then the ordered pair (i1, i2) = ((a, b), (c, d)) ∈ E .
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Figure 4.14: Service region is partitioned into square cells of demand zones

We adopt the following notation to represent the demand zones in the grid system. In p × q grid

any demand zone i ∈ N can be written as i = (x − 1) ∗ q + y where x = 1, 2, . . . , p and y = 1, 2, . . . , q.

For example, the demand zone (1, 3) in Figure 4.14, corresponds to zone 3 which can be obtained as (1 −

1) ∗ 6 + 3 = 3. Further, we assumed that the EMS system has m ambulance stations and the positions of all

ambulances are known.

74



The notation used in the heuristic algorithm is summarized below:

i = demand zone

j = ambulance station

N = Number of demand zones

m = Number of ambulance stations with an ambulance at each station

K = Number of possible sub-regions or districts

A(a, b) = {(c, d) ∈ N : ((a, b), (c, d)) ∈ E}= the set of demand zones adjacent to zone (a, b)

hi = demand of zone i

zi = proportion of calls from ith demand zone: such that
n∑
i=1

zi = 1

λ = call arrival rate to the entire system

λi= λzi (call arrival rate from demand zone i)

µ = service rate

MK = number of servers within the district when there are K districts

ρ = utilization factor for infinite-capacity system; ρ = λ/MKµ

Q(M,ρ, j)= ”Correction factor” for computing that the (j+1)st selected server is the first available

server:given that there are total of M servers(ambulances) within the district

ρj = fraction of time that unit j is busy serving calls

This heuristic algorithm is developed in order to determine districts that maximize the AEXC level

of the EMS system and to balance the workload among ambulances. According to the heuristic, first we

obtain m districts assigning each demand zone to its’ closest ambulance station. Then, we balance the work

load among ambulances by swapping adjacent demand zones between districts. Next, we merge adjacent

districts for a given K value to get new districts so as to maximize the AEXC level of the EMS system. The

heuristic steps can be summarized as follows:
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Step 1 Obtain m districts assigning each demand zone to its’ closest ambulance station as described below;
1: Number the ambulances 1 through m. Let cxy ∈ C be an (p × q) matrix, where cxy= number of calls

from zone i. Let dxy ∈ D be an (p × q) matrix, where dxy= district assignment for each demand zone
(x, y). (Note that;i = (x− 1) ∗ q+ y where x = 1, 2, . . . , p and y = 1, 2, . . . , q). The matrix D provides
the district assignment for each demand zone.

2: for x = 1→ p do
3: for y = 1→ q do
4: if cxy 6= 0 then
5: calculate distance from zone (x, y) to each ambulance station
6: assign dxy = closest ambulance number
7: else
8: assign dxy = 0
9: end if

10: end for
11: end for
12: Return: D

Step 2 Procedure 1-Calculate the work load of each ambulance using the iterative procedure described by
Larson [3] in page 859. We modified their procedure according to our notation and assumptions as follows

1: Let W be a column vector of size (1 ×m), where w(j) denotes the work load of each ambulance and
V ar(W ) be the variance of W .

2: Step 2.0 Input D matrix
3: Step 2.1 Initialization

1. Compute from the M/M/m queuing model the exact value for r ≡ average utilization factor,
where r = λ/µ for M/M/m/∞ system

2. Set n = 0.

3. Define ρ̂j(n) ≡ estimate of ρj at the nth iteration. Set ρ̂j(n) = r, j = 1, 2, . . . ,m

4: Step 2.2 Iteration
5: set n← n+ 1
6: for j = 1→ m do
7: compute ρ̂j(n) from equation given below.

8: ρj =

[
1 +

∑
j∈G1

j

λj +
∑
j∈G2

j

λjQ(m, ρ, 1)r +
∑
j∈G3

j

λjQ(m, ρ, 1)r2 + · · ·+
∑
j∈Gm

j

λjQ(m, ρ, 1)rm−1
]

9: end for

10: Step 2.3 Normalize [so that N−1
m∑
j=1

ρ̂j(n) = r]

1. Compute Γ ≡
[
N−1

m∑
j=1

ρ̂j(n)/r

]
2. ρ̂j(n)← Γρ̂j(n)

11: Step 2.4 Convergence Test
12: if max |ρ̂j(n)− Γρ̂j(n)| > ε then
13: Goto Step 2.2
14: else
15: STOP
16: end if
17: Return: W and V ar(W ), where W = [ρ̂1, ρ̂2, . . . , ρ̂m]
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Step 3 Swap the adjacent demand zones between adjacent districts until workload is balanced among ambu-
lances while remaining the contiguous within districts.

1: Initialization
2: OldW = W and OldV ar(W ) = V ar(W )
3: for k = 1→ m do
4: for i = 1→ p do
5: for j = 1→ q do
6: if d(i, j) = 1 then
7: ∀A(i, j)
8: if A(i, j) 6= k and A(i, j) 6= 0 then
9: OldA(i, j) = A(i, j)

10: A(i, j) = k
11: Update D
12: [W,V ar(W )] = Callprocedure1(D)
13: if Var(W) ≤OldVar(W) then
14: exit
15: else
16: A(i, j) = OldA(i, j)
17: Reset D
18: end if
19: end if
20: end if
21: end for
22: end for
23: end for
24: Return: D

Step 4 Merge adjacent districts according to the number of districts (K) desired according to the following
procedure.

1: Step 4.1. Initialize K = 1
2: Set OldAEXC = AEXC
3: Step 4.2 Set K = K + 1
4: Merge adjacent districts as fallows.
5: Let P be a list with K rows, where a row of P denotes the possible adjacent districts to merge and obtain

a new district. i.e., p(x, y) ⊂ m
6: for k = 1→ K do
7: for i = 1→ p do
8: for j = 1→ q do
9: for l = 2→ length(P (k, :)) do

10: if d(i, j) = P (k, l) then
11: set d(i, j) = P (k, 1)
12: end if
13: end for
14: end for
15: end for
16: end for
17: Return: D
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Step 5
1: Input matrix D
2: Calculate AEXC using equation (4.12)
3: Set NewAEXC = AEXC
4: if NewAEXC > OldAEXC then
5: Set OldAEXC = NewAEXC
6: Goto step 4
7: else

Exit
8: end if
9: K value provides the best number of districts to operate in EMS system and matrix D provides the

allocation of demand zones to each district.
10: Return: D and K

4.8 Computational Results Using Constructive Heuristic

This section provides the computational results for several examples using the constructive heuristic.

Hanover County, Virginia is used as the study area of these examples. Hanover County is a semi-rural, semi-

suburban county in the metropolitan Richmond area. The study area is depicted in Figure 4.15. As it is

observed the service region is divided into square cells of demand zones. First, we illustrate an instance with

41 demand zones and 6 ambulances (Example 1) which is the urban area of the county. Then, an example

with 137 demand zones and 6 ambulances (Example 2) is discussed.
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Figure 4.15: Service Region-Hanover County
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4.8.1 Example 1

The districts given by the heuristic procedure for this example are illustrated in Figure 4.16 and

Figure 4.17. We calculated the AEXC level for each K value to get the best number of districts to operate.

Figure 4.18 (left most graph) depicts the AEXC for different K values while varying distance standard. The

“distance standard” determines the ability to cover a demand zone by an ambulance. If the distance between

a demand zone and an ambulance station is greater than “distance standard” then that node is considered not

covered by that ambulance. According to the AEXC graph in Figure 4.18, the AEXC level increases for

higher “distance standard” values as expected. In addition, it is observed that once AEXC level start to go

down it decreases continuously. For example, the AEXC level when K = 2 is greater than K = 1. However,

it started to go down when K = 3 and it remains for K = 4. We observed similar results, for other cases we

tested. In this example, the AEXC level is greatest when K = 2. Thus we can conclude that operating this

EMS system with two districts maximize the AEXC level. In addition, we did a simulation analysis to ensure

these findings.
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Figure 4.16: Districts given by Constructive Heuristic when K = 1 and K = 2-Example 1

A simulation model is developed using Arena software to represent EMS system and to obtain sur-

vival probability. In this comparison we present only the performance of Nocross rule, because Nocross rule

performed better than Cross rule for this instance. Figure 4.18 (right most graph) compares the performance
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of Nocross rule for different K values. Figure 4.18 illustrates that operating the EMS system with two dis-

tricts (K = 2) performs better than any other case in terms of patients’ survivability. Therefore, bestK is two

for this example. This observation confirms the previous finding, that the K value corresponds to maximum

AEXC level provide the best district size. Additionally, we can conclude that the K value corresponds to

maximum AEXC level provides the maximum survival probability. This result is also confirmed by the next

example.
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Figure 4.17: Districts given by Constructive Heuristic when K = 3 and K = 4-Example 1
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Figure 4.18: Performance of Districting-Example 1
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4.8.2 Example 2

The second example is an EMS system with 137 demand zones and 6 ambulances (extracted from

Hanover County). The study region of this example is shown in Figure 4.19. The locations of each ambulance

station and all demand zones are depicted in Figure 4.19.
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Figure 4.19: Study region- Example 2 (K = 1)

The districts given by the heuristic for this example are shown in Figure 4.20. The corresponding

AEXC level for these solutions is illustrated in Figure 4.21 (left most graph). WhenK > 3, the heuristic does

not provide districts and corresponding AEXC levels, since it cannot be increased the AEXC further. K = 2

provides the maximum AEXC level for this example. For K ≥ 3, the AEXC level likely to decrease. Thus,

operating this EMS system with two districts (K = 2) is better compared to K = 1. Simulation analysis also

confirmed that operating this EMS system with two districts help to increase patients’ survivability. Figure

4.21 (right most graph) compares the performance of Nocross rule. According to the graph, K = 2 performs

better than any other k value in terms of survivability. In addition, we observed that the K value corresponds

to maximum AEXC level, also maximizes the survival probability of patients for every case we tested.

In the next section, we compare the performance of the mathematical model and the constructive

heuristic.

81



1

2 3 4

5 6 7 8

9 10 11 12 13 14

15 A1 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31A3 33 34

35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54

55 56 57A2 59 60 61 62 63A4 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102A5 104 105 106 107 108

109 110 111 112 113 114 115 116

117 118 119 120A6 122 123 124 125

126 127 128 129 130 131 132 133

134 135 136 137

1

2 3 4

5 6 7 8

9 10 11 12 13 14

15 A1 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31A3 33 34

35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54

55 56 57A2 59 60 61 62 63A4 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102A5 104 105 106 107 108

109 110 111 112 113 114 115 116

117 118 119 120A6 122 123 124 125

126 127 128 129 130 131 132 133

134 135 136 137

(a) (b)

K=2 K=3

Figure 4.20: Districts given by the Constructive Heuristic when K = 2 and K = 3-Example 2

4.9 Comparison- Mathematical Model and Constructive Heuristic

This section illustrates the performance of two districting methods (mathematical model, construc-

tive heuristic). Performance measures such as running time, survival probability are used to compare these

two methods. In addition, we consider the 41 demand zones and 5 ambulances as an instance for the com-

parison. We defined the mathematical model as the “Integer model” and constructive heuristic as the “AEXC

method” for convenience when comparing performance of those methods.

Example K value Integer Model Time (mins) AEXC Method Time (mins)

41 zones and 2 4 0.05
5 ambulances 3 43 0.05

4 140 0.1
5 272 0.15

Table 4.3: Comparison- Running Times

Table 4.3 illustrates the execution time for both methods. The mathematical model was implemented

in OPL while the AEXC method was implemented in MATLAB. All programs were executed on a Dell

Vostro 1400 computer with a Pentium-IV processor and 2 GB RAM. According to the Table 4.3, we can
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Figure 4.21: Performance of Districting-Example 2

observe that running time of the AEXC method is significantly smaller compared to the Integer model. Thus

we can conclude that the AEXC method is computationally time efficient. Next we compared the survival

probability of patients according to the solutions given by those two methods. Figure 4.22 compares the

survival probability for the Integer method and for the AEXC method using Nocross rule and Cross rule.

As the Nocross rule graph (Right most graph) shows, the districts given by the AEXC model increases the

patients survivability compared to the districts given by the Integer model. However, in the Cross rule the

survival probability difference is not significant for the two methods. Finally, we can conclude that the

districts provided by the AEXC method is better compared to the Integer model in term of patients survival

probability with the Nocross rule. Operating this EMS system according to the districts given by the AEXC

method is better than operating with the solution given by Integer model in terms of patients’ survivability.

There is a 10% increase in the average survival probability of patients with Nocross rule when call arrival

rate is 1/hour.
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Figure 4.22: Survival Probability Comparison- Integer method and AEXC method

4.10 Sensitivity Analysis

We now explore the effect of response time (the time between the receipt of a call at the dispatch

center and the arrival of the first emergency response vehicle at the scene) and turn around time (the time

required for an ambulance to return back to its original station after serving the patient) on the performance

of dispatching strategies to study the robustness of our previous findings. The EMS system with 6 ambulances

and 41 demand zones case (Example 1) is considered in this sensitivity analysis. First we vary the turn around

time from 30 minutes to 65 minutes range while holding the call arrival rate constant (λ = 1 call/ hour). The

Figure 4.23 compares the survival rate for different dispatching rules for distinct partition sizes. As we

expected, the Figure 4.23 shows that survival rate decreases when turn around time increases. However,

our previous findings (e.g. best K is 2 and best dispatching rule is Nocross rule) remains the same in this

instance.Thus, we can say that operating according to pre-determined boundaries an EMS system is able

to increase patient survivability. In addition, priority dispatching strategies leads to increase the survival

probability of patients.

Next we vary the response time from 4 minutes to 14 minutes range while holding the call arrival

rate constant (λ = 1 call/ hour). The Figure 4.24 compares the survival rate for different dispatching policies.

As the graph depicts, the survival rate decreases when response time increases. In this case also our previous

findings remain the same, that is best K is 2 and best dispatching rule is Nocross rule.

Finally we vary the response time of outside ambulance from 4 minutes to 20 minutes range for two

different λ values. The Figure 4.25 compares the performance of different dispatching policies while varying

the response time of outside ambulance. The left most graph shows the performance when call arrival rate is
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Figure 4.23: Survival rate comparison for different K values while varying the turn around time

one per hour while the right most graph shows the performance when call arrival rate is 3 per hour. When

call arrival rate is low (see left most graph), there is no significant different between performance of No cross

rule and Cross Rule for higher response time of outside ambulance. However, when call arrival rate is high

(see right most graph), No cross Rule perform better than Cross Rule in terms of patients survival rate. This

result also indicates that operating EMS systems according to pre-determined districts (or boundaries) and

dispatching ambulances considering the severity of the call leads to an increase of patient survival probability.

In this section, we conducted a sensitivity analysis to see our findings remain the same while varying

several parameters. Results show that our findings are robust. Thus we can conclude that it is beneficial to op-

erate the EMS system with districts in terms of patients survivability and dispatching ambulances considering

the degree of the urgency of the call also leads to increase the patient survival probability.
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Figure 4.24: Survival rate comparison for different K values while varying the response time

Figure 4.25: Survival rate comparison for different K values while varying the response time of Outside
Ambulance

4.11 Conclusion and Future Research

In this chapter we proposed a mathematical model and a constructive heuristic to determine response

boundaries of emergency service vehicles. Computational results show that operating according to predeter-

mined boundaries is beneficial for EMS systems in terms of patients survivability; however that one must be

careful in selecting the number of districts so as not to reduce backup coverage. In addition, it is observed

that districting helps to increase the coverage level of EMS systems. After determining districts we proposed

intra-district and inter-district dispatching policies for EMS systems. Results show that integrated dispatch-

ing and districting policies leads to increase patient survival probability. The methodology in this chapter
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can be applied to public services such as police patrol services. In addition, the methodology we proposed

here can be extended to consider other objectives when determining response boundaries. For an example,

we can district the service region into sub-regions so as to maximize the patient survival probability. Finally,

it is concluded that the districts provided by AEXC method is better when compared to districts provided by

Integer method in terms of computational time and survival probability.
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Chapter 5

Conclusions and Discussion

Optimal dispatching rules potentially have significant effect on patient survivability during an emer-

gency incident in addition to locating medical units. Thus this research studies and proposes dispatching and

districting policies for EMS systems in order to improve the performance of EMS systems. Performance

is measured in terms of patients’ survivability as opposed to measuring the response time threshold, since

survival probability reflects the patient outcome directly. These dispatching policies are implemented consid-

ering the degree of the urgency of the call. The performance of proposed dispatching and districting policies

are illustrated using real-world data collected from Hanover County, Virginia.

Throughout this study, we assumed that calls arrives according to Poisson process with rate λ to the

entire system and we consider an EMS system with fixed deployment. In addition, static dispatching rules

were considered when developing dispatching strategies. Further, in this study calls are prioritized according

to the severity of the call. All observations and conclusions are made under those assumptions.

First a discounted, infinite horizon, Markov decision process model is developed and analyzed to

obtain optimal dispatching strategies for less complex EMS systems. In the MDP model we assumed that

service times and turn around times are exponentially distributed. Computational results show that a myopic

policy is not always optimal and dispatching ambulances considering the severity of the call leads to increase

the patient survival probability. It is also observed that many lives can be saved at no additional (in terms of

paramedic units available) cost. Further, the results show that the optimal policy given by the MDP model

is likely to balance the work load between ambulances. We compared the myopic policy of always sending

the closest ambulance with the optimal policy given by the MDP model. Results indicate that it is always

optimal to dispatch the closest ambulance for Priority 1 patients. The optimal policy for Priority 1 calls is
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intuitive, since faster response times increase patient survival probability. For Priority 2 calls, a priority list

of ambulances to dispatch is obtained using the model. The proposed dispatching rule is easy to implement

in EMS systems since a priority list of ambulances to dispatch depends only on the location and degree of

urgency of the call and not on the location of all busy ambulances. This MDP approach allows us to ad-

dress the stochastic behavior of the EMS system. Additionally, the running time for our MDP formulation

in MATLAB is not significant. One potential drawback is that the formulation of the dynamic programming

model is complicated when problem size increases. However, a simulation approach can be used to overcome

this drawback of the MDP approach. Simulation can also help to alleviate some other potential drawbacks

associated with an MDP approach, namely the assumption of exponential service times and of zero-length

queue.

Next a simulation based approach is used to study the nature of the optimal dispatching policy and

to develop a heuristic dispatching rule for complex EMS systems. In the simulation model we assumed that

response times and turn around times are lognormally and exponentially distributed respectively. Simulation

results also showed that it is better to dispatch the closest ambulance for Priority 1 patients. For Priority 2

calls, a priority list of ambulances to dispatch is obtained using a heuristic. According to this heuristic rule

consider the ambulance busy probabilities when dispatching ambulances to Priority 2 calls. We calculated

the ambulance busy probability by considering the demand of each zone. Computational results show that

the heuristic rule is vital in increasing patient survivability at no extra cost when compared to myopic policy

of always sending the closet unit without considering the degree of the urgency of the call. We believe the

heuristic we presented here provides unique contribution in that it shows that it is possible to achieve signif-

icant improvements, in terms of lives saved, at little cost by considering the degree of urgency of the call.

Furthermore, this can be achieved even with a simple heuristic: send the closest ambulance to Priority 1 calls,

follow an ordered preference list for Priority 2 calls. This should be easy to implement in practice as ordered

preference lists are already widely accepted policy types in EMS systems. However, the heuristic algorithm

(H1) provides the same dispatching order for Priority 2 calls for every demand zone. Future research can be

conducted to obtain the order of dispatching ambulances for Priority 2 calls depending on the demand zone.

Even though this heuristic was developed to maximize the patient survivability, it helps to decrease the aver-

age response time and increase the percentage calls served within 10 minutes for Priority 1 calls. The average

response time for Priority 2 calls increased slightly by following the proposed dispatching rule. Although the

average response time increased it did not affect the average survivability of patients since Priority 2 calls

are non-life threatening. Future research can concentrate towards obtaining dispatching rules to maximize
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patient survival probability of life-threatening calls while minimizing the effect on the average response time

of Priority 2 calls.

Finally, we proposed districting techniques in order to determine the emergency service vehicles

response boundaries. An integer mathematical model and a constructive heuristic are proposed to determine

emergency vehicles response boundaries. We observed that the constructive heuristic is efficient compared to

integer mathematical model in terms of computational time. After determining vehicle boundaries, we pro-

posed intra-district and inter-district dispatching policies. Results show that these districting and dispatching

policies are valuable in increasing patients’ survival. Overall, we can conclude that integrated dispatching

and districting policies proposed in this study can be used to improve the performance of EMS systems at no

extra cost in terms of the number of paramedic units.

In this study only two types of calls were considered to address the severity of the call. Also, it

was assumed that upon arrival we know the priority of the call exactly. In reality there are classification

errors associated with call priority. Future research can focus on studying the classification errors of calls that

impact patient survivability while incorporating few other call categories to address the severity of the call.

In addition, the methodologies proposed in this study can be applied to other problems such as dispatching

police cars and fire engines and military deployment.

EMS administrators and managers continually seek innovative methods to enhance system perfor-

mance [7]. Although numerous studies have sought answers to such EMS related issues, certain unaddressed

issues still exist. The integrated districting and dispatching policies we proposed can be used to address some

of these issues such as enhancing the survival probability of patients in comparison to that of the existing

methods in the EMS systems. We found that there is an 8% increase in the average survival probability by

implementing our proposed rules in place of the existing EMS system in Hanover County, Virginia.

Our proposed integrated districting and dispatching policies can be easily implemented to EMS sys-

tems that follow fixed deployment with known station locations. Our proposed methods allow re-allocating

of available paramedic units with no extra financial costs and without jeopardizing the patient survival while

increasing the overall efficiency of the EMS system. Since our model was developed based on emergency

calls received peak hours (12pm-6pm time period) it can be successfully applied to a region with higher 911

call rate. Furthermore, based on sensitivity analysis, the efficiency of our proposed system will be more pro-

nounced with increasing call rate.

The most widely used dispatching methods have following draw backs. According to the myopic

dispatching policy, the ambulances are dispatched based on proximity instead of the degree of the urgency of
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the call [3], [34], [1]. We proposed Priority dispatching strategies instead of a myopic policy. Furthermore,

most nationwide dispatch methods do not include the response boundary (or district) concept. EMS vehicles

operating according to our dispatching policy can reduce the response time substantially for Priority 1 calls.

However, the average response time for Priority 2 calls increased slightly. The standard common EMS per-

formance is to respond to 80% of Priority 2 calls in less than 30 minutes for urban and less than 45 minutes

for rural areas [20]. In our simulation we found that 80% of the Priority 2 calls can be responded in less than

20 minutes. We recommend our dispatching methods for EMS systems where the small increment in the

average response time to priority 2 calls can be afforded without serious consequences in terms of the overall

system efficiency. For other EMS systems (response time standard is less than 20 minute for Priority 2 calls)

we need to study the EMS system carefully before recommending our dispatching methods.

Finally, we recommend these policies for EMS system given economical and technical feasibility

of our proposed policies. No extra training is needed for dispatchers since our method produces an ordered

preference list of ambulances to be dispatched considering the priority of the call. Since such preference lists

(known as contingency tables) are already used in EMS system, no additional training is required for the

EMS staff regarding preference lists. Thus we can recommend integrated districting and dispatching policies

to improve the performance of EMS systems that follow a fixed deployment and myopic policy with scarce

resources. In addition, we recommend these rules for EMS system with limited number of ambulances,

without addition of extra paramedic units.
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Appendix A Additional Examples

A.1 Parameters for Examples

Response Times Turn Around Times
Example Size Call proportion (zi) Amb 1 Amb 2 Amb 3 Amb 1 Amb 2 Amb 3

z1 = 0.1 zone 1 (9.07,4.19) (10.92,5.05) ((14.03,6.48) (60) (65) (50)
Example 2 3× 3 case z2 = 0.4 zone 2 (14.03,6.48) (11.05,6.48) (12.03,5.05) (75) (65) (60)

z3 = 0.5 zone 3 (14.03,6.48) (12.03,5.05) (10.92,5.05) (65) (65) (75)
z1 = 0.1 zone 1 (9.07,4.19) (12.03,5.05) (10.07,4.19) (60) (65) (60)
z2 = 0.3 zone 2 (8.03,6.48) (11.03,6.48) (13.03,6.48) (75) (50) (75)

Example 3 5× 3 case z3 = 0.2 zone 3 (14.03,6.48) (12.03,5.05) (9.03,6.48) (65) (60) (65)
z4 = 0.2 zone 4 (10.92,5.05) (9.07,4.19) (11.05,6.48) (65) (75) (65)
z5 = 0.2 zone 5 (11.05,6.48) (9.07,4.19) (8.03,6.48) (65) (65) (65)

Table 1: Parameters for examples

• In table 1 under Response Times column (µ1, σ) implies that response times are distributed lognor-

mally with mean of µ1 and standard deviation of σ. Also under Turn Around Times column (µ2)

implies that turn around times are exponentially distributed with mean of µ2.

• Assumed that calls arrived according to a poison process with rate λ = 1 per hour to the entire system

for both examples.

• For these two examples we assumed that the probability of receiving a Priority 1 or a Priority 2 call is

equally likely from any of the demand zones. i.e.

1. for 3× 3 case - p11 = p12 = p13 = p21 = p22 = p23 = 0.5

2. for 5× 3 case - p11 = p12 = p13 = p14 = p15 = p12 = p22 = p32 = p42 = p52 = 0.5

A.2 Comparison of Myopic and Optimal Dispatching Rules

Priority 1 Calls Priority 2 Calls
Dispatch Order Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3

1st Choice 1 2 3 1 1 1
2nd Choice 2 3 2 2 2 3
3rd Choice 3 1 1 3 3 2

Table 2: Optimal order of dispatching ambulances - (3× 3 case)

Tables 2 and 3 show the optimal order of dispatching ambulances to Priority 1 and Priority 2 calls

for each demand zone.For an example, the column zone 1 under Priority 1 heading in Table 2 indicates that
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Figure 1: Comparison of Two dispatching Strategies - 3× 3 case
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Figure 2: Comparison of Two dispatching Strategies - 5× 3 case

Ambulance 1 is 1st choice to dispatch, followed by Ambulance 2 ( if Ambulance 1 is busy ) then Ambulance

3 ( if both Ambulance 1 and Ambulance 2 are busy).
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Priority 1 Calls Priority 2 Calls
Dispatch Order Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

1st Choice 1 1 3 2 3 3 2 2 2 2
2nd Choice 3 2 2 1 2 2 3 3 3 3
3rd Choice 2 3 1 3 1 1 1 1 1 1

Table 3: Optimal order of dispatching ambulances - ( 5× 3 case)
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Appendix B Performance of heuristic policy (5 × 3) case

Priority 1 calls Priority 2 calls
Dispatch order zone 1 zone 2 zone 3 zone 4 zone 5 zone 1 zone 2 zone 3 zone 4 zone 5

1st Choice 1 1 3 2 3 2 2 2 2 2
2nd Choice 3 2 2 1 2 3 3 3 3 3
3rd Choice 2 3 1 3 1 1 1 1 1 1

Table 4: Order of dispatching ambulances according to Heuristic Rule - ( 5× 3 case)
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Figure 3: Comparison of dispatching Strategies -5× 3 case
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Figure 4: Probability that the closest server is dispatched to Priority 1 and Priority 2 calls for Heuristic Rule
and Closest Rule -5× 3 case
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Appendix C Hanover County Fire and EMS department Data-Case

Study

In table 5 under Response Times (µ1, σ) implies that response times are distributed lognormally

with mean of µ1 and standard deviation of σ. Also In table 6 under Turn Around Times (µ2) implies that turn

around times are exponentially distributed with mean of µ2. We assumed that the probability of receiving a

Priority 1 or a Priority 2 call is equally likely from any of the demand zones. i.e. p11 = p12 = p13 = p14 =

p15 = p16 = p17 = p18 = p19 = p1,10 = p1,11 = p1,12 = p21 = p22 = p23 = p24 = p25 = p26 = p27 =

p28p29 = p2,10 = p2,11 = p2,12 = 0.5.

Call proportion Response Times

(zi) Demand zone Amb 1 Amb 2 Amb 3 Amb 4 Amb 5
z1 = 0.226034 zone 1 (16.77,12.47) (15.43,11.47) (13.38,9.95) (8.03,5.97) (8.03,5.97)
z2 = 0.019513 zone 2 (32.14,23.89) (32.14,23.89) (19.87,14.77) (32.14,23.89) (32.14,23.89)
z3 = 0.060281 zone 3 (23.72,17.64) (9.92,7.38) (13.42,9.97) (18.84,14.01) (18.84,14.01)
z4 = 0.043914 zone 4 (26.26,19.52) (32.14,23.89) (26.07,19.38) (15.39,11.44) (15.39,11.44)
z5 = 0.02657 zone 5 (16.89,12.56) (24.56,18.26) (17.16,12.76) (28.44,21.14) (28.44,21.14)
z6 = 0.09327 zone 6 (10.07,7.48) (16.32,12.13) (32.14,23.89) (15.59,11.59) (15.59,11.59)
z7 = 0.326744 zone 7 (25.03,18.61) (9.85,7.32) (14.18,10.54) (15.04,11.18) (15.04,11.18)
z8 = 0.065128 zone 8 (18.82,13.99) (32.14,23.89) (13.74,10.21) (25.79,19.17) (25.79,19.17)
z9 = 0.007525 zone 9 (32.14,23.89) (32.14,23.89) (27.34,20.32) (20.9,15.53) (20.9,15.53)
z10 = 0.077626 zone 10 (12.6,9.36) (19.62,14.59) (14.63,10.87) (12.7,9.44) (12.7,9.44)
z11 = 0.029886 zone 11 (22.98,17.08) (18.28,13.59) (19.77,14.7) (19.69,14.63) (19.69,14.63)
z12 = 0.023509 zone 12 (32.14,23.89) (18.63,13.85) (32.14,23.89) (19.72,14.66) (19.72,14.66)

Table 5: Response times and proportion of calls for 12× 5 case

Turn Around Times

Demand zone Amb 1 Amb 2 Amb 3 Amb 4 Amb 5
zone 1 (75.61) (77.68) (91.86) (69.87) (69.87)
zone 2 (148.13) (130.08) (104.53) (122.64) (122.64)
zone 3 (84.56) (63.10) (63.25) (95.30) (95.30)
zone 4 (93.42) (108.45) (119.19) (83.9) (83.9)
zone 5 (74.9) (75.39) (76.58) (95.01) (95.01)
zone 6 (64.49) (65.35) (103.12) (86.03) (86.03)
zone 7 (67.63) (58.47) (83.59) (77.40) (77.40)
zone 8 (97.9) (108.57) (103.34) (98.87) (98.87)
zone 9 (129.59) (108.57) (103.34) (113.6) (113.6)
zone 10 (65.11) (76.15) (88.01) (73.96) (73.96)
zone 11 (87.25) (101.74) (99.14) (82.96) (82.96)
zone 12 (90.79) (73.28) (91.86) (87.26) (87.26)

Table 6: Turn Around Times for 12× 5 case
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