156 research outputs found

    Feasibility study of Unmanned Aerial Vehicles (UAV) application for ultrasonic Non-Destructive Testing (NDT) of Wind Turbine Rotor Blades. Preliminary experiments of handheld and UAV utrasonic testing on glass fibre laminate

    Get PDF
    In this thesis, we have conducted a feasibility study on UAV application for ultrasonic pulsed non-destructive testing of wind turbine rotor blades. Due to the high initial cost of wind turbines, and their decreasing availability due to increasing size and offshore locations, it is imperative to properly maintain these structures over their 10-30-year lifetime. Operation and maintenance costs can account for 25-30% of the overall energy generation costs (MartinezLuengo, et al., 2016), where the wind turbine rotor blade can be considered the most critical component, accounting for 15-20% of the manufacturing costs. Thus, an increase in O&M efficiency of wind turbine rotor blades through condition monitoring can yield substantial financial benefits. Currently, Unmanned Aerial Vehicles (UAV) are in use for visual and thermography inspection of wind turbines. These techniques for structural condition monitoring does have serious limitations, as the condition of internal components in blades, built from glass fibre laminates, cannot be visually inspected. However, pulsed ultrasonic echo technique have proven highly efficient for wind turbine rotor blade inspection. The ultrasonic transducer requires surface contact with the examined material, and we investigated the potential of UAV implementation for fast, safe and reliable measurements of wind turbine rotor blades. This feasibility study investigates the applicability of ultrasonic testing of glass fibre laminates, specifically glass fibre produced by Lyngen Plast A/S. Firstly, we conducted handheld ultrasonic tests on simulated delamination defects, looking for damage indications on a voltage-time graph. Secondly, we induced damage on a 27mm thick sample through a 3-point bending test and measured the echo response from the ultrasonic pulse. The second experiment was repeated using a Storm AntiGravity UAV, producing promising results with preliminary instrumentation. A significant challenge to the feasibility of this study was the operational risks. We carried out a preliminary and qualitative risk assessment of the intended UAV operation by using the SWIFTanalysis and Bow-Tie method. The results were two important risk-mitigating measures. Risk reductive: “Design UAV for impact with wind turbine rotor blades,” and risk preventive: “Develop statistical data on wind conditions at wind turbine site, calculate low-risk dates for flight.” The implementation of the said measures, quality of our results, experiences from the UAV flight and concept considerations are presented throughout this paper. In the end, a conclusion is drawn and topics for future studies is presented

    Automated multi-rotor draft survey of large vessels

    Get PDF
    In maritime sector draft survey has a significant importance as it is used to determine many important factors used in maritime transportation. Draft is the vertical displacement from the bottom of the keel (the bottom-most element of a vessel) to the water line (the line of meeting point of hull and the water surface). It is used to measure the minimum water depth for safe navigation of vessel and to evaluate mass of cargo in the vessel by the change in displacement on the draft scale after loading of the cargo in the vessel. Draft measurement of a vessel has a vital role in maritime sector to ensure a safe equilibrium between maximum and minimum cargo that can be loaded in the vessel. Draft survey performed at the time of loading and unloading of cargo (Iron Ore) at the Narvik port to read out draft markings traditionally involved a round trip around the vessel in a small crew boat and it is a time consuming and challenging task specially in darkness (during night), shadows and when difficult to safely reach the crew boat close enough due to anchors and buoys. The goal of this study is to develop an autonomous multi-rotor system that can survey the large vessel to capture all the necessary draft measurements by reaching close enough even in challenging environments like nighttime and in presence of obstacles. This involves developing the solution for path planning to perform flight operation autonomously, developing guidance and control algorithm for the flight operation to enable the multi-rotor to follow the designated path and perform the inspection while avoiding all the hurdles using collision avoidance system. Along with developing the specifications for a multi-rotor that can perform the inspection and suggest necessary system components including multi-rotor itself and additional components such as sensors, lights and camera, and necessities for on-board data handling

    Review Paper on Visual Control of Unmanned Aerial Vehicle for Handling Disaster Management Issue

    Get PDF
    In order to get the information of any vehicle which is travelling on the way we required to rely on Global Positioning System. The GPS provides the Global Positioning Information of vehicle, which relies on external source called satellites. But the satellite signal may get cut or have small signal strength in cluttered areas or is less reliable at low altitude areas. So I think of to use the Unmanned Aerial Vehicle, not only this by attaching the Rispberry pi which is a credit size single cheap computer in order to classify the object that we want. It is a multifunctional UAV which will monitor and classify the object along with it also perform the explosive detection. It plays a great role in disaster occurred areas in order to detect the human beings or finding the objects. It also plays a role in detecting the explosive material in a cluttered area. In a flooded area in order to monitor or detect the humans it is easy for UAV to move above the surface of the ground and water. And provides the detection as well as live streaming of the particular area and images can be captured by it. It has a sensor IED in order to detect the explosive material. It can provide the full image of the object by moving around the object. It is operated by remote control. At the transmitting side you can see the live streaming and images of the area on the display. You can also able to see the detected sign indicating object with a particular object

    Product Development Process for Small Unmanned Aerial Systems

    Get PDF
    The DoD has recognized the need for persistent Intelligence, Surveillance and Reconnaissance (ISR) over the last two decades. Recent developments with commercial drones have changed the market structure; there is now a thriving and extensive market base for drone based remote sensing. This research provides system engineering methods to support the DoD use of this burgeoning market to meet operational ISR needs. The three contributions of this research are: a process to support Small Unmanned Aerial Systems (SUAS) design, tools to support the design process, and tools to support risk assessment and reduction for both design and operations. The process and tools are presented via an exemplar design for an ISR SUAS mission. The exemplar design flows from user needs through to an allocated baseline with an assessment of system reliability based on a compilation of commercial component reliability and failure modes

    Optimized Endpoint Delivery Via Unmanned Aerial Vehicles

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are remotely piloted aircraft with a range of varying applications. Though early adoption of UAVs focused on military applications, surveillance, photography, and agricultural applications are presently on the rise. This work aims to ascertain how UAVs may be employed to elicit deceased transportation times, increased power efficiency, and improved safety. Resulting in optimized end point delivery. A combination of tools and techniques, involving a mathematical model, UAV simulations, redundant control systems, and custom designed electrical and mechanical components were used towards reaching the goal of a 10-kilogram maximum payload delivered 10 miles under 30 minutes. Two UAV prototypes were developed, the second of which (V2) showed promising results. Velocities achieved in V2, in combination with a versatile payload connector and proper networking, allowed for 5-10 mile deliveries of goods less than 8-kilograms to be achieved within a metropolis faster than the 30-minute benchmark

    Autonomisen multikopteriparven hallinta etsintä- ja pelastustehtävissä

    Get PDF
    This thesis presents the requirements and implementation of a Ground Control Station (GCS) application for controlling a fleet of multicopters to perform a Search And Rescue (SAR) mission. The requirements are put together by analysing existing drone types, SAR practices, and available GCS applications. Multicopters are found to be the most feasible drone to use for the SAR use case because of their maneuverability, despite not having the best endurance. Several existing area coverage methods are presented and their usefulness is analyzed for SAR scenarios where different amounts of prior knowledge is available. It is stated that most search patterns can be used with a fleet of drones, by creating drone formations and by dividing the target area into sub-areas. It is noted that most currently available GCS applications are focused on controlling a single drone for either industrial or hobby use. A proof of concept prototype is developed on top of an open source GCS and tested in field tests. Based on all the previous learnings from the protype and research, a new GCS is designed and developed. The development on optimizing communications between the GCS and the autopilot leads to a filed patent application. The new software is tested with three multicopters in a water rescue scenario and several user interface improvements are made as a result of the learnings. The development of a GCS for controlling a drone fleet for search and rescue is proven feasible.Työssä esitetään multikopteriparven hallintaan käytettävän Ground Control Station (GCS) ohjelmiston vaatimukset ja toteutus Search And Rescue (SAR) etsintä- ja pelastustehtävien suorittamiseksi. Vaatimukset kootaan yhteen analysoimalla saatavilla olevia droonityyppejä, SAR pelastuskäytäntöjä, sekä GCS ohjelmistoja. Multikopterit osoittautuvat liikkuvuutensa ansiosta pelastustehtäviin sopivimmaksi vaihtoehdoksi, vaikka niiden saavutettavissa oleva lentoaika ei ole parhaimmasta päästä. Erilaisia etsintämetodeja esitetään alueiden kattamiseksi ja niiden hyödyllisyyttä analysoidaan SAR tilanteissa, joissa ennakkotietoa on saatavilla vaihtelevasti. Osoitetaan, että useimpia etsintäalgoritmeja voidaan hyödyntää drooniparvella, muodostamalla lentomuodostelmia, sekä jakamalla kohdealue pienempiin osa-alueisiin. Huomataan, että suurin osa tällä hetkellä saatavilla olevista GCS ohjelmistoista on suunnattu teollisuuden tai harrastelijoiden käyttöön, pääasiassa yksittäisen droonin hallintaan. Prototyyppi kehitetään avoimen lähdekoodin GCS ohjelmiston pohjalta ja testataan kenttätesteissä. Tästä saadun tiedon avulla suunnitellaan ja kehitetään uusi GCS ohjelmisto. Kehitystyö viestinnän optimoinniksi autopilotin ja GCS ohjelmiston välillä johtaa patenttihakemukseen. Uusi ohjelmisto testataan kolmella multikopterilla vesipelastustilanteessa ja sen seurauksena käyttöliittymään tehdään useita parannuksia. GCS ohjelmiston luominen drooniparven hallintaan etsintä- ja pelastustehtävissä todetaan mahdolliseksi

    Optimization-based Estimation and Control Algorithms for Quadcopter Applications

    Get PDF
    corecore