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CHAPTER 1

Introduction

In this chapter the contents of the thesis are introduced, put into historical perspective

and connected to recent literature. First, a brief history of human aviation is provided,

starting in antiquity and ending with the relatively recent introduction of quadcopters.

Next, the components making up a quadcopter are explained, covering actuation, sens-

ing, estimation, planning and control. The last three of these topics are discussed in

more detail, since they are related to the main topics covered in the thesis. Thereafter,

the contributions of the thesis are summarized, followed by an overview of the structure

of the remainder of the thesis. The chapter concludes with a list of publications of the

author.
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2 Chapter 1. Introduction

1.1 A brief history of human aviation

The history of (human) aviation goes back thousands of years, starting with
gliding-based devices such as kites that appeared as early as the 5th century
BC [49]. Stories of tower jumping, where people would strap birdlike wings to
themselves and would attempt to fly by jumping of a tower, have been around
since antiquity with the Greek legend of Icarus [78] as one of the best known
examples. It would not be until the 18th century that prolonged human flight
was possible with the first successful hot-air balloon flight in 1783 by Jean-
François Pilâtre de Rozier and François d’Arlandes [110]. The achievement of
the first controlled, sustained flight of a heavier-than-air aircraft was achieved
120 years later by the famous flight of the Wright brothers on December 17th

1903 in Kitty Hawk, North-Carolina, USA [91]. From this short flight of just 12
seconds, powered aviation progressed quickly with series production of aircraft
being achieved by 1907, when the Demoiselle No. 19 monoplane became the first
heavier-than-air aircraft produced in series [84].

(a) Daedalus and Icarus,
relief in the Villa Albani,
Rome1.

(b) The famous flight of the Wright brothers2.

Figure 1.1: Illustrations of the long history of human aviation

1Image retrieved from https://en.wikipedia.org/wiki/File:
Daedalus_und_Ikarus_MK1888.png, taken from page 409 of 1028, in Volume 4 of the
German illustrated encyclopedia Meyers Konversationslexikon, 4th edition (1885-1890).

2Image taken from Library of Congress Prints and Photographs Division Washington, D.C.
20540 USA, http://loc.gov/pictures/resource/ppprs.00626/

https://en.wikipedia.org/wiki/File:Daedalus_und_Ikarus_MK1888.png
https://en.wikipedia.org/wiki/File:Daedalus_und_Ikarus_MK1888.png
http://loc.gov/pictures/resource/ppprs.00626/
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1.1.1 Rotorcraft

Around the same time as the first airplanes were produced in series, the first hu-
man flight with a rotor wing aircraft was achieved in 1907 by the French brothers
Jacques en Louis Breguet [155]. The aircraft they used was the Gyroplane No.
1, which might very well be the earliest example of a quadcopter. It consisted
of a central frame from which four arms extended, each of them having a four
blade biplane rotor at the end (see Figure 1.2a). Although this aircraft was able
to lift a human of the ground (be it only 0.6 meters at the first flight, which
later extended to 1.5 meters), it required a person at the end of each arm to
stabilize the device. Paul Cornu performed the first free flight in the same year
with the Cornu helicopter [155], which consisted of two counter-rotating rotors
(see Figure 1.2b). Many other designs arose in subsequent years. However, it
would take until the early 1920s for the first ‘practical’ rotorcraft to arrive with
the invention of the autogyro by Juan de la Cierva [100] (see Figure 1.2c). Prac-
tical is meant here in the sense that it was able to fly distances that made it
useful for traveling: it flew from London to Paris in 1928, crossing the English
Channel. In the subsequent decades many different designs were developed, such
as coaxial multirotors, twin rotors, tiltrotors, intermeshing rotors and tip-jets,
see Figure 1.3. Although all these designs are/were capable of successful flights,
at least to some extent, the most common configuration in use today is that of
a single main rotor with a tail rotor to compensate the rotation caused by the
main rotor, known commonly as the helicopter.

1.1.2 Modern Quadcopters: A revolution in the skies

Despite the growth of the airline industry in the second half of the 20th century,
airplanes and rotorcraft were still very expensive devices and private use was only

3Image taken from http://www.aviastar.org/helicopters_eng/breguet_gyro.php.
4Image retrieved from https://commons.wikimedia.org/wiki/File:HE2G8.jpg, originally

taken from http://www.centennialofflight.gov/essay/Rotary/early_20th_century/HE2G8.
htm.

5Image taken from https://flickr.com/photos/49487266@N07/6950759784,
from the San Diego Air and Space Museum Archive repository.

6Cropped image, original from NASA/JPL-Caltech, re-
trieved from https://mars.nasa.gov/mars2020/multimedia/raw-images/
SI1_0046_0671022109_238ECM_N0031416SRLC07021_000085J

7Retrieved from http://www.aviastar.org/helicopters_eng/fw-61.php
8Image by Dutch Ministry of Defense, https://www.defensie.nl/onderwerpen/materieel/

vliegtuigen-en-helikopters/boeing-ch-47d-en-ch-47f-chinook-transporthelikopter
9Photo taken by Michael Starkey, retrieved from https://en.wikipedia.org/wiki/File:

Iwo_Jima_Osprey.jpg
10Photo taken by Greg Goebel, retrieved from https://commons.wikimedia.org/wiki/File:

Yakmx_2b_(29167519213).jpg
11Photo taken by Wikipedia User: JimCollaborator (https://en.wikipedia.org/wiki/

User:JimCollaborator), retrieved from https://commons.wikimedia.org/wiki/File:Hiller_YH-
32_Hornet.jpg

http://www.aviastar.org/helicopters_eng/breguet_gyro.php
https://commons.wikimedia.org/wiki/File:HE2G8.jpg
http://www.centennialofflight.gov/essay/Rotary/early_20th_century/HE2G8.htm.
http://www.centennialofflight.gov/essay/Rotary/early_20th_century/HE2G8.htm.
https://flickr.com/photos/49487266@N07/6950759784
https://mars.nasa.gov/mars2020/multimedia/raw-images/SI1_0046_0671022109_238ECM_N0031416SRLC07021_000085J
https://mars.nasa.gov/mars2020/multimedia/raw-images/SI1_0046_0671022109_238ECM_N0031416SRLC07021_000085J
http://www.aviastar.org/helicopters_eng/fw-61.php
https://www.defensie.nl/onderwerpen/materieel/vliegtuigen-en-helikopters/boeing-ch-47d-en-ch-47f-chinook-transporthelikopter
https://www.defensie.nl/onderwerpen/materieel/vliegtuigen-en-helikopters/boeing-ch-47d-en-ch-47f-chinook-transporthelikopter
https://en.wikipedia.org/wiki/File:Iwo_Jima_Osprey.jpg
https://en.wikipedia.org/wiki/File:Iwo_Jima_Osprey.jpg
https://commons.wikimedia.org/wiki/File:Yakmx_2b_(29167519213).jpg
https://commons.wikimedia.org/wiki/File:Yakmx_2b_(29167519213).jpg
https://en.wikipedia.org/wiki/User:JimCollaborator
https://en.wikipedia.org/wiki/User:JimCollaborator
https://commons.wikimedia.org/wiki/File:Hiller_YH-32_Hornet.jpg
https://commons.wikimedia.org/wiki/File:Hiller_YH-32_Hornet.jpg
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(a) Gyroplane No. 1, possibly the first quadcopter3.

(b) Cornu helicopter, the first rotorcraft capable of free human flight4.

(c) Cierva C.8 Autogyro, the first rotating wing aircraft to cross the English Chan-
nel5.

Figure 1.2: Early 20th century rotorcraft designs.



1

1.1 A brief history of human aviation 5

(a) Ingenuity, currently on Mars6. (b) Focke-Wulf Fw 61 7.

(c) Boeing CH-47 Chinook8. (d) Bell Boeing V-22 Osprey9.

(e) Kaman K-Max10. (f) Hiller YH-32 Hornet.11 .

Figure 1.3: Examples of different rotor designs: (a) coaxial , (b) transverse,
(c) tandem, (d) transverse mounted tiltrotor, (e) intermeshing and (f) tip-jet
multirotors.
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accessible to the very rich. Moreover, they could only be operated by highly
trained pilots. This started to change with the introduction of quadcopters
around the year 2006, when the Federal Aviation Administration (FAA) issued
its first commercial drone permit and companies started developing drones for
commercial use. In 2010 Parrot introduced the Parrot AR drone [117, 32], which
was a quadcopter type drone that was controllable via a smartphone. This drone
opened the market to consumers, in fact, this introduction could be seen as the
first time in history that controlled flight was accessible to the general public.
When DJI introduced the quadcopter type Phantom 1 in 2013 [48], which allowed
high quality aerial photos and videos to be taken by everyone, the commercial
drone market saw a massive growth, reaching over $ 21 billion by 2021 [168].
Today, quadcopters are used in a wide variety of applications, including aerial
photography, agricultural and industrial inspection, (parcel) delivery, research
and artworks [127].

(a) DJI Phantom, one of the first quad-
copters equipped with a camera and
gimbal12

(b) Avular Vertex, a customizable quad-
coper used in research and inspection13

(c) Avular Vertex, equipped with a mi-
crophone array to detect defects in in-
dustrial installations12

(d) DHL delivery drone used in China14

Figure 1.4: Examples of quadcopter applications
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1.2 Quadcopter working principles

Modern quadcopters consist of four separate rotors mounted on a rigid frame,
where each rotor is mounted at the end of an arm, see Figure 1.4. They are
generally considered a type of robot, which becomes clear when the definition
of robot from [43] is considered: “a goal oriented machine that can sense, plan
and act”. Like most robotic systems, quadcopters consist of several components
required to operate, which can be divided as follows:

1. Sensing: The gathering of information from the environment (data collec-
tion).

2. Estimation: The interpretation of the sensor information (turning the data
into useful information).

3. Planning: The computation of the desired motion based on user specifica-
tions (planning how to arrive at a goal given the current information).

4. Control : The determination of the required actuation for a desired motion
(turning the planned motion into actuator setpoints).

5. Actuation: The implementation of the actuation in the physical environ-
ment (achieving motion).

In this division, the first and last items, i.e., sensing and actuation, provide the
interaction with the environment and are part of the hardware of the system. The
other components handle the processing of information from the environment
(estimation) and decide what to do (planning) and how to do it (control) to
achieve a desired goal. These components are implemented in software. An
overview of the components is given in Figure 1.5, together with the interaction
between them.

In the remainder of this section the actuation and sensing components for
quadcopters will be discussed in more detail, followed by separate sections on
estimation, planning and control, since these are the main topics covered in this
thesis.

1.2.1 Actuation

In quadcopters, motion is made possible by the lift generated by the four pro-
pellers, where two propellers opposite to each other rotate in the same direction

12Image by DJI, retrieved from https://www.dji.com/nl/phantom
13Image by Avular (https://avular.com/), used with permission
14Image by DHL, retrieved from https://www.dhl.com/tw-en/home/press/press-archive/

2019/dhl-express-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-
delivery-service.html

https://www.dji.com/nl/phantom
https://avular.com/
https://www.dhl.com/tw-en/home/press/press-archive/2019/dhl-express-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.dhl.com/tw-en/home/press/press-archive/2019/dhl-express-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.dhl.com/tw-en/home/press/press-archive/2019/dhl-express-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
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Quadcopter (hardware)

Actuatio ensing

Quadcopter (software)

Estimation

Sensor

Measurements

Planning

Control Estimated States

User-Specified

Goals

Desired

Trajectory

Planning

Desired

Trajectory

User-Specified

Goals

Estimated

States

Actuator

Setpoints

Control

Actuator

Setpoints

Desired

Trajectory

Estimated

States

Figure 1.5: Schematic overview of the different components that make up a
quadcopter. The sensors send measurements to the estimation component, which
turns the measurements into useful information. This information is then used
in the planning component, together with user-specified goals, to determine the
trajectory the quadcopter should follow. The desired trajectory is combined with
the estimated states in the control component that computes the required actu-
ator setpoints. Finally, the actuators implement these setpoints in the physical
environment.
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(e.g., clockwise), whilst the other pair rotates in the reverse direction (e.g., coun-
terclockwise), see Figure 1.6. Each propeller’s rotational velocity, which is pro-
portional to the generated thrust of the propeller, can be controlled individually.
This allows for control of the quadcopter, which can be conceptually understood
by considering the following scenarios:

1. Having all the propellers produce equal thrust results in the quadcopter
experiencing a thrust upwards (Figure 1.6a). In hover, this thrust ex-
perienced by the quadcopter equals the gravitational force acting on the
quadcopter. By increasing the thrust above this hover level, the quad-
copter moves upwards, while decreasing the thrust below the hover level
will make the quadcopter move downward.

2. By increasing the thrust of two adjacent propellers and decreasing the
thrust of the other two by the same amount, a rotation around an axis can
be achieved, as shown in Figures 1.6b and 1.6c.

3. Increasing the rotation of the clockwise propellers with respect to the coun-
terclockwise propellers results in a rotation about what is referred to as
the yaw axis (Figure 1.6d).

From these scenarios it becomes clear that in order to move a quadcopter in the
horizontal plane, the inputs cannot be used independently. Moreover, there are
only four inputs, while there are six degrees of freedom (DOFs): three rotational
and three translational DOFs. This makes the quadcopter an underactuated
system, i.e., the inputs cannot be used to accelerate the quadcopter in arbitrary
directions. In particular, horizontal movement can only be achieved from a
rotation around the roll or pitch axes.

1.2.2 Sensing

In order to perform a task with a quadcopter (or robot in general), first its
position and orientation (or attitude) with respect to its surroundings need to
be determined. The position and orientation, as well as their derivatives such
as velocity and acceleration, are commonly grouped into what is referred to as
the state of the quadcopter. In order for the current state of a quadcopter to
be determined, it is equipped with a variety of sensors. These sensors provide
measurements of one or several quantities, which can then be used to determine
the state of the quadcopter using estimation algorithms (see Section 1.3). The
types of sensors that a quadcopter is equipped with vary per model, and each
type of sensor is available in a range of configurations by different manufacturers.
However, a rough division of common sensor types can be made as follows.
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(a) Z translation (b) Roll rotation

(c) Pitch rotation (d) Yaw rotation

Figure 1.6: Movement scenario’s for a quadcopter. In each sub-figure the disks
represent the propellers with corresponding direction of rotation and the blue
arrows represent the direction and magnitude of thrust provided by each propeller,
where the magnitude is visualized by the size of the arrow. A body-fixed frame
according to the North-East-Down convention is shown in dashed green and the
red arrows represent the acceleration on the body-fixed frame as a result of the
propeller thrusts.

1.2.2.1 Onboard Sensors

Onboard sensors, as the name suggests, are sensors that are place on the quad-
copter itself. Most of the sensors used in quadcopters belong to this category
and because they are placed on the quadcopter, they are often designed to be
lightweight and energy-efficient.

• Accelerometer
Accelerometers are used to measure the accelerations of the quadcopter in
three directions. They are very common in quadcopters and are used in
both attitude and position estimation. Accelerometers are often part of
the Inertial Measurement Unit (IMU).
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• Gyroscope
Gyroscopes measure angular velocities in three directions. They are very
common in quadcopters and are used in attitude estimation. Together
with the accelerometer (and sometimes magnetometer) they are part of
the Inertial Measurement Unit (IMU).

• Magnetometer
Magnetometers provide measurements of the surrounding magnetic field.
They can be used to determine the attitude of the quadcopter by using it
as a compass of sorts. In particular, they are often key in determining the
angle about the gravitational vector when the quadcopter is hovering.

• Camera
Cameras are used as a sensor by using vision processing, detecting dis-
tance to objects among other things. By using several cameras pointing in
the same direction, 3D images can be obtained and distance can also be
determined.

• Optical flow sensor
Optical flow sensors measure the visual motion and output a displacement
measurement, which is useful for determining horizontal velocities and in
obstacle avoidance.

• Barometer
Barometers measure the pressure in the environment, which can be used
to determine the height of the quadcopter by considering the barometric
formula [124].

• LiDAR (Light detection and ranging) sensor
LiDAR sensors are used to measure distances to objects. They are often
used for height estimation and obstacle avoidance, but are also used in
combination with localization algorithms such as SLAM (Simultaneous
localization and mapping) [34].

1.2.2.2 External Sensors

External sensors are sensors that are not (fully) placed on the quadcopter it-
self. Some of them provide sensor information directly, while others are used in
conjunction with equipment on the quadcopter itself.

• Global Navigation Satellite Systems (GNSSs)
A Global Navigation Satellite System can be used to determine position
of the quadcopter outdoors. It uses satellite position system, such as the
well-known GPS, Galileo and GLONASS, to determine the position of the
quadcopter relative to these satellites. By using the known position of
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these satellites, the position of the quadcopter with respect to the world
can be obtained.

• Ultra-wideband (UWB) system
Contrarily to GNSSs, UWB systems are mostly suitable for indoor use.
However, they use a method similar to that of GNSSs for determining the
position of a quadcopter, by which beacons are positioned in a room as
‘satellites’ that transmit ultra-wide frequency signals. These can then be
used by a receiver to determine the position of the quadcopter.

• Motion Capture (mocap) Systems
Mocap systems consist of multiple cameras positioned in a room, which
track markers (typically using infrared reflection). By using multiple
markers on a quadcopter, the attitude can also be determined by con-
sidering the position of each marker relative to each other. They provide
very high accuracy position and attitude estimates and are often used as
‘ground truth’ estimates to validate other sensors.

Armed with these sensors, quadcopters are capable of sensing the environment
around them. However, the measurements provided by these sensors often do
not provide the desired accuracy and/or they do not measure the state that is
of interest directly.

1.3 Estimation

Although the quadcopter is equipped with several sensors, they often do not
provide direct measurements of the desired states, or they do not provide the
desired accuracy. In order to determine the state of the quadcopter, estimation
algorithms are used, which, by combining different sensors’ information and/or
using model information, provide an (improved) estimate of the actual state of
the quadcopter.

In order to discuss the orientation of a quadcopter (or any rigid-body for
that matter) coordinate frames are used. The world frame, also referred to
as the inertial frame, is fixed to the environment, providing a reference. The
world frame is represented by three orthogonal unit vectors. Another frame
is attached to the quadcopter, known as the body-fixed frame, again specified
by three orthogonal unit vectors, see Figure 1.7. The orientation of this body-
fixed frame, or equivalently its vectors, with respect to the world frame specifies
the orientation of the quadcopter, which is also commonly referred to as the
attitude of the quadcopter. This orientation can be represented in a variety
of ways, with some examples discussed in the ‘Representing Orientation’ insert
below. The position of the origin of this frame is used to describe the position
of the quadcopter.
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Estimation for quadcopters is typically divided into two parts: 1) attitude
and angular velocity estimation; and 2) position and translational velocity esti-
mation. Both categories will be treated separately. At the end of this section,
methods that estimate the pose, i.e., the combination of position and orientation,
directly will be discussed.

Figure 1.7: Coordinate frames. The world frame and its axes are depicted in
black, whereas the body-fixed frame and its axes are shown in green. The position
of the body-fixed frame, and thus that of the quadcopter, with respect to the world
frame is shown with the dashed arrow and denoted as p. The orientation of the
body-fixed frame with respect to the world frame is denoted byR and conceptually
visualized by the dotted line.



1

14 Chapter 1. Introduction

Representing Orientation

Expressing the orientation of a quadcopter is equivalent to expressing the ro-
tation in three dimensions of a frame attached to the quadcopter with respect
to a world-fixed frame. A rotation in three dimensions can be represented in
several different ways, here the ones most commonly used in quadcopters are
briefly discussed.

Rotation Matrix: The mentioned rotation matrix contains the vectors of
the body-fixed frame specified in the world frame as each of its columns. This
results in a 3 × 3 matrix, having 9 parameters. Rotating a vector by using a
rotation matrix is simply multiplying this vector by this rotation matrix and
successive rotations can be achieved by multiplication of the corresponding
rotation matrices. The advantage of representing the orientation in this manner
is that it fully defines the rotation, while the disadvantage is that is contains 9
parameters, making it redundant since there are only three degrees of freedom.

Euler Angles: The orientation can also be represented by applying three
elementary rotations around the axes of moving frames, starting at the body-
fixed frame and ending at the world-fixed frame. In quadcopters (and aviation
in general) it is common to use the Tait-Bryan z − y − x rotation and the
corresponding yaw (ψ), pitch (θ) and roll (φ) angles. That is, the rotation
is represented by: (i) a fist rotation about the z-axis of the body-fixed frame
by ψ; (ii) a second rotation around the y-axis of the resulting frame by θ;
and (iii) a final rotation around the x-axis of the frame resulting from the
first two rotations by φ. Euler angle representations are often used, because
they use only three parameters and they allow for an easier interpretation of a
rotation. The disadvantage is that they suffer from what is known as ‘gimbal
lock’, which occurs when two of the mentioned rotation axes align, making the
representation not unique.

Quaternions: According to Euler’s rotation theorem, any rotation of a rigid

body in a three-dimensional space around a fixed point can be represented by a

single rotation around a fixed axis going through the fixed point. Unit quater-

nions can be viewed as a method to represent the axis and angle by a 4 × 1

vector. Using quaternions, subsequent rotations can be easily computed us-

ing the quaternion product and it has the advantage of being a more compact

representation than a rotation matrix. Moreover, quaternions do not suffer

from the gimbal lock problem as Euler angle representations do, making them

a preferred choice in many applications that involve three-dimensional rota-

tions. However, care must be taken, since the quaternion representation forms

a double cover of the group of rotations in three-dimensions, i.e., a quaternion

and its negative represent the same orientation.
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1.3.1 Attitude and angular velocity estimation

Attitude estimation for quadcopters is typically carried out using the sensors
of the IMU, i.e., the accelerometer, gyroscope and magnetometer. At low ac-
celerations, the accelerometer provides a measure of the direction of gravity in
the body-fixed frame. The magnetometer measures the ambient magnetic field,
which, combined with knowledge of the Earth’s magnetic field at the current
position and some calibration procedures [112]1, provides a vector measurement
of the direction of magnetic north. Together, the accelerometer and magne-
tometer provide two independent vector measurements2, which are sufficient to
characterize the attitude of a quadcopter. The angular velocities measured by
the gyroscope can be integrated over time to provide another estimate of the
orientation. The reason for using both vector-based and gyroscope-based mea-
surements is that they both have their disadvantages that can (partially) be
compensated for by the other. Indeed, the attitude measurement of the ac-
celerometer is disturbed when the drone is experiencing exogenous forces other
than gravity, while the magnetic field measured by the magnetometer is influ-
enced by ferromagnetic elements in the environment3 and the attitude estimate
of the gyroscope typically has drift caused by noise and bias in the original
measurement that is integrated over time.

IMU-based attitude estimation has been researched extensively over the past
decades [3, 157]. The most common algorithms used are either complementary
filter (CF)-based [137] or Kalman filter (KF)-based solutions [32, 135], although
alternative solutions have also been proposed, such as sliding-mode [62], fuzzy-
logic [161], gradient-descent [135] and neural network [207] based methods.

1.3.1.1 Complementary filter-based

Euler angle based linear complementary filters have been developed in [13, 141].
Complementary filters, which operate directly on SO(3), and can, therefore, be
considered nonlinear, have been proposed by Robert Mahony, Tarek Hamel and
Jean-Michel Pflimlin in a popular sequence of papers [136, 82, 137]. In these pa-
pers they developed several nonlinear complementary filters and provided exten-
sive stability proofs for all of them. Others have continued their work, resulting
in adaptive complementary filters (ACFs), where the noise characteristics of each
sensor is updated in the estimation procedure, based on some adaption mecha-
nism. This contrasts static filters, i.e., filters where the sensor characteristics are
considered constant. ACFs have been proposed that use quaternion [198, 215]
and rotation matrix [98] representations.

1A very good reference on inertial sensor based estimation is the PhD thesis of Manon
Kok [111].

2Assuming that the quadcopter is not flown too close to the magnetic North or South
poles.

3Such as the rebar (steel mesh) used in concrete, as experienced on the robotic’s soccer
field at the Eindhoven University of Technology (https://www.techunited.nl/en/).

https://www.techunited.nl/en/
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1.3.1.2 Kalman filter-based

The standard KF [104] has been applied to IMU-based attitude estimation in
[20], mainly using Euler angles. Nonlinear extensions of the KF have also been
used, mainly the extended KF (EKF) [103] using both quaternion [197, 175] and
SO(3) [90] representations and unscented KF (UKF), also using both quater-
nion [53] and SO(3) [185] representations. Also Bayesian filters have been used,
such as the particle filter [156], Fisher information-based filters [121] and cuba-
ture KFs [211]. Clearly, there is a broad literature on Kalman filters and their
variants in this context.

1.3.2 Position and translational velocity estimation

Estimating the position of a quadcopter is often considered more difficult than
that of estimating its attitude. The problem is somewhat simpler when exter-
nal sensors, such as GNSSs, UWB or mocap systems are available, since they
provide high quality estimates of the position. However, they have their own
challenges, such as latency in providing data to the quadcopter, but mainly
their dependence on the environment, i.e., they are not available everywhere.
For instance, GNSSs is only reliable outdoors and, to get high precision mea-
surements, a base station with known position is needed [162]. Measurements
from UWB systems [153, 113, 119] are only available in the neighborhood of the
installed anchors, and similar issues hamper mocap systems. Mocap systems
have the additional disadvantage of being quite expensive and requiring no ob-
structions between the cameras and the quadcopter (although some obstructions
are allowed if a sufficient number of cameras is used).

If only onboard sensors are available, things get even harder [181], especially
when an absolute position is desired. For estimating the horizontal position of
the quadcopter, i.e., its x and y position in the world frame, (a combination of)
cameras, optical flow sensors [60] and LiDARs is often used. The displacement
measured by optical flow sensors can be integrated over time to give a position
estimate relative to the starting point. LiDAR sensors, like cameras used in
stereo, can be used to measure the distance to objects, from which a relative
position estimate can be obtained. Combined with mapping techniques and some
knowledge of the environment, this can lead to position estimates in the inertial
frame [151]. Cameras can also be used in more advanced algorithms that use
object classification and known relations between objects in the environment,
sometimes referred to as world modeling, to determine the current position of
the quadcopter [44, 21].

Determining the height of a quadcopter is typically done using the
accelerometer and barometer [176], sometimes extended with the use of cam-
eras and LiDAR. The acceleration measurement can be integrated twice over
time, giving an estimate of the relative position, although it often shows consid-
erable drift due to the noisy characteristics of the accelerometer and the double



1

1.3 Estimation 17

integration performed [159]. The pressure measurement of the barometer yields
an absolute height measurement through the barometric formula [71], however it
is susceptible to changes in pressure not caused by a change in height, which yield
disturbed height measurements. Examples of these disturbances include airflow
caused by wind or the propulsion of the quadcopter itself as well as tempera-
ture drifts. Cameras and LiDAR are used in a similar manner as for horizontal
position estimation [40, 64, 65], although one has to take into consideration the
orientation of the quadcopter with respect to the ground, which is estimated
using techniques discussed in the previous section. Since the estimated attitude
is never perfect, errors in this estimate can propagate into the estimate of the
height.

1.3.3 Direct pose estimation

There are also methods that combine the estimation of both the attitude and the
position. Mocap systems, for instance, often provide both (if multiple trackers
are used). Onboard cameras can also be used to directly estimate the pose by
using markers in the environment, such as Aruco markers [70] or the Avular
Starling system1. Moreover, there is information in each subsystem (attitude
and position) that can be used to infer estimates of the other, e.g., a change in
horizontal position is the result of a rotation around some of the axes. Methods
using this information have been considered that use CFs [201, 80], EKFs [11,
59, 51] and UKFs [185], among others.

1.4 Planning

Once the state of the quadcopter is estimated with sufficient accuracy, the next
step is to determine how the quadcopter should move in order to achieve a
user-specified goal. This motion is often represented by a trajectory, which
contains the required states over time that will result in achieving the goal(s),
see Figure 1.8. Quadcopters have the property of being differentially flat [199],
which means that a certain subset of the states and their derivatives can be used
to completely describe the evolution of the other states and inputs. In the case
of quadcopters, its position and yaw angle and their derivatives are sufficient
to describe the other states and inputs. Therefore, determining a sufficiently
smooth (i.e., so that the required derivatives exist) trajectory for the position
and yaw angle, in order to achieve the user-specified goals, is the task of the
planning component.

Often, the user specifies only the start and end points and it is up to the
planning algorithm to determine a trajectory that avoids obstacles and respects
the physical constraints of the quadcopter [223]. Other subgoals can also be con-
sidered, such as waypoints along a path that specify poses where the quadcopter

1https://avular.com/starling/

https://avular.com/starling/
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Planning

Desired

Trajectory

User-Specified

Goals

Estimated

States

Figure 1.8: Schematic representation of the planning component of a quad-
copter. Using the current states estimated in the estimation component a desired
trajectory is computed that satisfies user-specified goals.

should stand still, for instance, for images to be shot [172, 178]. Trajectory gen-
eration often makes use of the differential flatness property of quadcopters [199]
in combination with, for example, piecewise polynomial functions [147] or opti-
mization methods [47]. The task of trajectory generation is sometimes divided
into path planning, i.e., finding a parametric function that avoids obstacles, and
motion planning, i.e., determining the speed of the quadcopter along the path
such that dynamic feasibility constraints are satisfied [47, 31]. Methods used
for planning include optimal control [87], receding horizon path planning [26],
B-spline optimization [222] and motion primitives [154].

Planning strategies that use optimal control in particular have been studied
extensively in quadcopters. For instance, in [95] time-optimal trajectories are
computed for landing a quadcopter on a (translating and tilting) moving plat-
form. They consider a 3 (2 translational and 1 rotational) DOF model and use
the differential flatness property [199] of the system to convert the control prob-
lem to a nonlinear programming problem using time discretization. They allow
for collision avoidance and time-varying final constraints and provide experi-
mental results. In [220] a real-time time-optimal trajectory planning approach
subject to velocity constraints and non-convex input (thrust) and attitude con-
straints is proposed. They assume a geometric path is given and attempt to
follow it as fast as possible by using the differential flatness property. In [186] a
minimum time-optimal control problem with constraints on the roll, pitch and
yaw rates and angles, as well as position and thrust constraints, is tackled. They
transcribe the problem into transverse coordinates, i.e. a geometric path, and
transform the dynamics, cost and constraints into the new coordinates. They
then use the PRONTO algorithm [86] with barrier functions for the constraints
to obtain optimal trajectories. This allows them to avoid obstacles and they show
experimental results using a Crazyflie [73] nano quadcopter. In [96] trajectories
are formulated as piecewise polynomials using the differential flatness property,
as was done in [147]. They formulate a quadratic program (QP) that generates
trajectories through a series of waypoints, while satisfying physical constraints
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of the quadcopter and corridor constraints on the position. In [72] the direct
multiple shooting approach is used to compute trajectories for quadcopter based
systems (such as with an end-effector). In [193] time-optimal descent trajec-
tories that avoid the Vortex Ring State are provided by solving a minimum
time-optimal control problem using GPOPS II [167], a general purpose optimal
control solver. A performance benchmark of time-optimal control strategies for
quadcopters is provided in [89].

In [194] a library of optimal trajectories is calculated offline and used to
train a neural network, which then predicts new trajectories online from dif-
ferent initial conditions. The predicted trajectories are further optimized using
a sparse QP solver and they demonstrate the results in experiments, where it
calculates near-optimal trajectories in a few milliseconds. GPOPS II is also used
in [195] to generate a training set of trajectories which are then encoded and
generalized using Dynamic Movement Primitives (DMPs). They use a planar
quadcopter model and generate new trajectories with the DMPs. In [170] time-
optimal maneuvers for a two dimensional quadcopter subject to input constraints
are calculated using Pontryagin’s Maximum Principle (PMP). Flips are allowed
and they use switching time optimization (STO) to solve the boundary value
problem (BVP) that results from the PMP. Time-optimal trajectories in 2D are
computed in [23] using a decomposition of the trajectory, resulting in analytical
solutions. In [191] they use the differential flatness property and a polynomial
parametrization for the flat outputs.

The computation of energy efficient trajectories has also received attention
from the research community. For instance, in [132] energy-optimal trajectories
are computed using GPOPS II by assuming that the quadcopter undergoes three
phases: acceleration, constant speed, and deceleration. The energy consumption
is then calculated afterwards and compared for different trajectories. In [214]
models for the brushless direct current (BLDC) motors and the battery typi-
cally used in quadcopters are provided, as well as a calculation of the energy
consumed by the quadcopter. They consider deterministic wind disturbances
and calculate energy-optimal trajectories using GPOPS II. In [38] they calcu-
late the power usage of the drone by explicitly considering the efficiency of the
battery depending on its state-of-charge. [187] compares drone based delivery
with truck based delivery and shows the potential of quadcopters to be more ef-
ficient in commercial delivery applications, showcasing the importance of energy
efficient planning.

1.5 Control

Where planning is considered with determining a trajectory for the quadcopter
from user-specified goals, control is concerned with determining the required
actuator setpoints in order to follow the desired trajectory. As is the case with
estimation, control of quadcopters is often divided into attitude and position
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control [131, 67], which are then combined for full motion control. Such a scheme
is typically referred to as cascaded control, because of the control loops forming
a cascade, see Figure 1.9. In the rest of the section attitude control is discussed
first, followed by position control strategies.

Attitude

Dynamics

Inner-loop
Outer-loop

Attitude

Controller

Position

Controller

Position

Dynamics

Attitude

Setpoint

Position

Setpoint
Attitude

Control

Attitude

Output

Position

Output

Figure 1.9: Cascaded control scheme often employed in quadcopter control. The
inner-loop consists of the attitude dynamics and attitude controller in a feedback
loop, which ensures attitude setpoints can be tracked. The outer-loop uses a
position controller that generates setpoints for the inner-loop, these setpoints are
such that the position dynamics follow a desired trajectory as determined in the
planning component.

1.5.1 Attitude control

As in attitude estimation, attitude control is either linear, often by using Euler
angles as representation, or nonlinear, commonly based on quaternion or rotation
matrix representations.

1.5.1.1 Linear attitude control

Linear attitude control is typically achieved by linearization around the hover
conditions of the quadcopter or around a trajectory [50]. This often results in
the use of relatively simple controllers, such as proportional-integral-derivative
(PID) [32, 160] and linear quadratic (LQ) [30] control strategies. Since the
attitude kinematics and dynamics of a quadcopter are nonlinear, it is hard to give
global guarantees using linear control. However, in practice, linear controllers
are quite effective, providing that the trajectories flown do not require large
angle deviations from hover. Because of their simplicity and effectiveness, linear
controllers are widely used and offer a relatively easy starting point to control
the angles of a quadcopter [109].

1.5.1.2 Nonlinear attitude control

Nonlinear attitude control has been extensively studied [208, 33, 179], often in-
volving control on SO(3). One of the difficulties of control on SO(3) is that global
asymptotic stability is not possible with continuous state-feedback laws [24],
making almost global asymptotic stability the best one can hope to achieve.
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Here, ‘almost’ refers to the requirement that the stability is guaranteed for all
initial conditions not belonging to a set of measure zero [149, 123]. Hybrid [142]
and discontinuous [122] control laws have been proposed to achieve global asymp-
totic stability of the attitude dynamics.

1.5.2 Position control

Similar to the attitude control, the position control of quadcopters has received
much attention in the past decade [173]. A few examples of control strategies
used include sliding-mode control [29], iterative learning control [88], nonlin-
ear control [102, 123, 114], reinforcement learning [97] and model predictive
control [22, 152, 79]. For more information and comparisons between control
strategies, several survey papers provide adequate references [224, 173, 109, 105].

1.6 Contents and contributions of this thesis

Quadcopters are becoming increasingly important in today’s society, and their
use in both industry and consumer markets is expected to increase in the fu-
ture [210, 183]. The increased use of, and new applications for, quadcopters is
expected to result in stricter demands on their performance in terms of speed,
accuracy, reliability and robustness [42]. In order for these demands to be met,
improvement of existing estimation and control algorithms is of crucial impor-
tance. In this thesis, several existing methods for estimation and control of
quadcopters are examined and improved upon by employing optimization-based
techniques. These novel additions to the fields of estimation and control of
quadcopters are discussed in more detail below.

1.6.1 Adaptive Complementary Filter

First, the problem of attitude estimation by using IMU measurements is tack-
led. As discussed in Section 1.3.1, the angular velocity measurements of the
gyroscope are often fused with vector-based measurements provided by the ac-
celerometer and/or magnetometer using a complementary filter, because of its
stability properties (also on SO(3)) and intuitive tuning. The complementary fil-
ter is tuned by setting the cut-off frequency, which determines the relative trust
in the gyroscope and vector measurement. This cut-off frequency is typically
based on static measurements of the noise characteristics of the gyroscope and
vector measurements and set as a constant. However, especially the noise char-
acteristics of the vector measurements are not stationary, due to, for instance,
accelerations of the quadcopter that disturb the gravity vector measurement of
the accelerometer or magnetic disturbances acting on the magnetometer.
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Based on the observation that the noise characteristics of the accelerome-
ter and magnetometer are not stationary, a novel adaptation scheme for the
complementary filter is proposed. This adaptation scheme modifies the com-
plementary filter cut-off frequency and is based on the similarity between inde-
pendent estimates obtained from the vector and gyroscope measurements. The
adaptive complementary filter is also derived on the special orthogonal group
and convergence of the filter is established. The effectiveness of the approach is
demonstrated with simulation results.

Contribution 1.1. The design of a new, adaptive, nonlinear complementary
filter with a novel adaptation rule that provides a more effective way of han-
dling disturbances acting on the vector measurements. The filter error converges
asymptotically towards zero.

1.6.2 Estimation and identification for Markov Jump Linear Sys-
tems

The second research direction originated from the problem of intermittent avail-
ability and reliability of sensors such as GNSS and UWB systems, as discussed
in Section 1.3.2. This problem is reformulated as that of estimating the optimal
joint maximum a posteriori probability (JMAP) state and mode of a Markov
Jump Linear System (MJLS), for which several methods already existed in the
literature. However, computing the JMAP estimates of the state and mode of
a MJLS is known to be a computationally intractable problem and the existing
methods provide no guarantees in the sense of being close to the optimal, with
most methods often getting stuck in local minima. A novel approximate method
for such problems is proposed that guarantees to be within a pre-specified bound
of the optimal estimate. The proposed method builds upon relaxed dynamic
programming [129]. Through numerical examples, it is shown that this method
can lead to improved estimates with less computations than existing methods
proposed in the literature.

This novel method has also been applied to the problem of identifying the
parameters of a class of stochastic switched systems, where the active subsys-
tem is determined by a Markov chain. This class includes autoregressive models
with exogenous inputs (ARX) for which the parameters switch according to a
Markov chain and general Markov Jump Linear Systems (MJLSs) with full-state
information. The transition probabilities of the Markov chain are assumed to
be known, but the active subsystem is unknown. The application of the method
to identification results in a recursive identification method for the joint maxi-
mum a posteriori probability estimate of these parameters and of the unknown
mode. The method is guaranteed to provide an estimate whose joint posteriori
probability is within a constant factor of that of the optimal estimate while re-
ducing the computational complexity. The advantages and disadvantages of this
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method with respect to the standard Expectation-Maximization (EM) algorithm
are discussed in detail and a numerical example is provided.

Contribution 1.2. Novel estimation and identification methods for computing
joint maximum a posteriori probability estimates of the state and mode, as well
as models, of Markov Jump Linear Systems, which are guaranteed to lie within
a pre-specified bound of the optimal estimates.

1.6.3 Model Predictive Control for Quadcopters

The third research direction is related to the challenge of trajectory tracking
control for quadcopters. That is, a control strategy is proposed that allows the
quadcopter to follow any feasible reference for almost (see Section 1.5.1.2) any
initial condition. A cascaded control approach is used, consisting of an inner-
and an outer-loop, as is common in quadcopters as has already been discussed in
Section 1.5. The outer-loop controller handles the position control and provides
references for the inner-loop controller, which, in turn, handles the attitude con-
trol. This cascaded strategy allows the outer-loop control problem to be tackled
in the realm of linear systems, whereas the inner-loop control problem is still
nonlinear, but simpler than the original control problem. The desired features
of this controller include: the ability to anticipate future reference information,
i.e., ‘to look ahead’; explicit handling of constraints, such as maximum thrust
generated by the propellers; fast computation times, allowing the controller to be
implemented on a quadcopter platform; and stability guarantees, which ensure
safety of the quadcopter if the model assumptions are satisfied.

To achieve this, Model Predictive Control (MPC) [143] is used for the outer-
loop controller. As the name suggests, MPC uses a model of the quadcopter to
predict which control inputs are needed to track the reference. It also allows
the handling of constraints by solving an optimal control problem and fast com-
putation times because of its receding horizon implementation. This outer-loop
controller uses recent results for global stabilization of linear systems subject
to input saturations in a Model Predictive Control strategy. The inner-loop
controller is an almost globally asymptotically stable attitude controller that
guarantees that references generated from the outer-loop controller are tracked
asymptotically.

By combining the globally stable MPC controller for the outer-loop with an
almost globally asymptotically stable attitude controller for the inner-loop, the
whole cascaded closed-loop system is proven to be almost globally asymptotically
stable.

Contribution 1.3. A cascaded, model predictive control strategy that (i) allows
for tracking of references while explicitly considering thrust constraints; (ii) is
almost globally asymptotically stable; (iii) and is computationally inexpensive
due to the formulation of the MPC as a quadratic program.
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1.6.4 Fast Landing of Quadcopters while Avoiding Vortex Ring State

The fourth and last challenge considered in this thesis is that of computing fast
and efficient landing trajectories for a quadcopter, while avoiding the Vortex
Ring State (VRS). The VRS is a well-known effect in helicopters that occurs
when a fast vertical descent is performed with low horizontal speed. This causes
the vortices at the tips of the blade to grow, which results in high fluctuations
in the lift that the quadcopter can provide, making it (almost) uncontrollable.
Although recovery is possible in some cases, entering the VRS often results in
a crash, with potential damage to the quadcopter and the environment as a
result1. The aerodynamics in the VRS are turbulent and difficult to model,
therefore the aim is to avoid this region altogether and it is modeled as a hard
constraint on the system.

Both time-optimal and energy-optimal vertical descent trajectories are inves-
tigated, considering the VRS constraint. The constraint is a region in the ve-
locity space of the blade disk frames of the quadcopter that cannot be entered.
This constraint is non-convex, which, combined with the nonlinear dynamics
and high-dimensional state of a quadcopter, makes computing these trajectories
a complex problem. Moreover, the common strategy of separating the problem
into path and motion planning (see Section 1.4) is not possible, since the optimal
path itself depends on the motion of the quadcopter.

Because of the complexity of the problem a numerical, approximate method
is used to compute the trajectories. The modeling of the VRS is improved
compared to previous papers [193, 192] and the first energy-optimal descent tra-
jectories while avoiding the VRS are provided. Finally, the results are carefully
discussed and several interesting directions for future work are proposed.

Contribution 1.4. The Vortex Ring State for quadcopters is carefully modeled
and time-optimal and energy-optimal vertical descent trajectories are computed
that avoid the VRS altogether, providing fast and efficient vertical maneuvers
while ensuring the safety of the quadcopter.

1.7 Further interest of the thesis

Although this thesis is written from the viewpoint of, and inspired by, quadcopter
applications, some of the provided solutions are more general and can be of in-
terest for other applications. For instance, the method described in Section 1.6.1
can be used in any application that uses an IMU to estimate the attitude. More-
over, the introduced similarity measure and corresponding adaptation rule could
be useful in other applications where adaptation is needed based on the distor-
tion of one signal compared to another. Moreover, as already mentioned, the
estimation algorithms described in Section 1.6.2 apply to general MJLS that

1https://youtu.be/LCret4rv0HE

https://youtu.be/LCret4rv0HE
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need not be associated with quadcopters. The methods used in the cascaded
MPC strategy described in Section 1.6.3 could also be applied to other cascaded
systems. Moreover, the established stability results for the discrete-time MPC
strategy used on a continuous time system is of interest in a broader application
context. Lastly, the planning methods described in Section 1.6.4 can also be
used in other settings where time and energy efficient trajectories are desired.

1.8 Structure of this thesis

The remainder of this thesis is organized into three parts: Part II contains the
contributions related to estimation; the chapters related to control and planning
are provided in Part III; and the thesis is concluded in Part IV, together with
recommendations for future work. Each of the chapters in this thesis are based
on either conference or journal articles and can thus be read independently.

The first part contains three chapters, of which the first is related to Contri-
bution 1.1 and in the other two chapters Contribution 1.2 is presented.

In the second part two chapters are presented, related to Contribution 1.3
and 1.4, respectively.

The last part contains the concluding statements of this thesis, together with
recommendations for future work. The bibliography is provided at the end of
the thesis, sorted alphabetically.
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CHAPTER 2

Similarity-Based Adaptive Complementary

Filter for IMU Fusion

This chapter addresses the attitude estimation problem using vector and gyroscope mea-

surements. It proposes a novel adaptation scheme for the complementary filter cut-off

frequency which is based on the similarity between independent estimates obtained from

the vector and gyroscope measurements. The adaptive complementary filter is also de-

rived on the special orthogonal group and convergence of the filter is established. The

effectiveness of the approach is demonstrated with simulation results.

This chapter is based on [8]
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2.1 Introduction

Estimating the attitude of a rigid body based on sensor data from an Inertial
Measurement Unit (IMU), consisting of (three-axes) accelerometers, gyroscopes
and magnetometers, is crucial in many applications and in particular in the
context of Unmanned Aerial Vehicles (UAVs). As a result much work has been
developed on attitude estimation over the years [135, 133, 218, 19, 69, 140, 174,
162, 53, 13, 136, 82, 137]. However, the attitude estimation problem has gained
a renewed interest recently. In fact, the trend in the last few years in the UAV
industry is that of size and cost reduction. Therefore, it is often the case that
the available data from low-cost IMUs does not provide sufficiently accurate
information for the current estimation techniques to deliver the desired attitude
accuracy [137].

The most popular IMU-based attitude estimation approaches are the Kalman
filter (KF) and the complementary filter (CF) [135]. There are many variants
of the Kalman filter, such as linear [133], [218], extended Kalman filters (EKFs)
[19, 69, 140, 174] and unscented Kalman filters (UKFs) [162], [53]. Some of the
advantages of linear KFs are their effectiveness and low implementation cost,
as well as the guaranteed optimality and stability under the assumption of lin-
ear process and measurement models as well as Gaussian noise and disturbance
processes. However, for nonlinear processes the EKF and UKF typically show
better results, at the cost of more computational complexity and the absence
of stability guarantees. In the context of complementary filters, one of the first
applications of the linear CF to attitude estimation was presented in [13]. Non-
linear CFs that operate directly on the Special Orthogonal Group (SO(3)) have
also been developed and successfully implemented in [136], [82] and [137]. One
of the main advantages of the CFs over KFs is the fact that they do not require
an explicit model of the dynamics and/or sensors, which is hard to obtain in
many applications and in particular in the context of small-scale UAVs, where
some aerodynamic effects such as turbulence, drag and ground effects have a
significant effect but are hard to model. Another advantage is its simplicity,
since it relies on simple low and high pass filtering of the sensor data.

The complementary filter is a time-invariant filter, both in the linear [13] and
nonlinear versions [136, 137], which performs well under the assumption that the
accelerometer and magnetometer only measure the gravitational vector and earth
magnetic field, respectively. However, under the effect of body accelerations and
magnetic disturbances caused by the environment, this assumption is no longer
valid, resulting in poor attitude estimates (see Figure 2.2). Therefore it is rea-
sonable to expect that adaptive filtering [184], meant to cope with signals with
time-varying frequency content, could potentially lead to better performance.
While the work in this direction is limited, there are some recent contributions
for UAV attitude estimation, which have focused on the adaptation of the filters
in order to account for the shortcomings in the sensors. For instance, in [125] an
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adaptive linear KF is proposed, where the measurement noise covariance matrix
is adapted based on the difference between the accelerometer measurements and
the gravity vector. In [182] and [51] adaptive EKFs are proposed, where the
adaptation is based on the deviation of the actual from the expected measure-
ment and the same deviation used in a fuzzy logic setting, respectively. Adaptive
complementary filters (ACFs) have also been used as in [158], [216] and [198],
where adaptation based on comparing the accelerometer with the gravity vector
is used. Furthermore, [139] provides a complementary filter in the least squares
sense (also known as Wahba’s problem [204]), using the difference between the
output of the filter and the measurement by the accelerometer for adaptation and
[115] proposes a multiple model adaptive complementary filter, with adaptation
based on the same measure.

In this chapter a new adaptation rule for changing the parameter of the
complementary filter online is proposed, determining which measurement (either
from the gyroscope or from the vector) is more relevant for the attitude estimate.
The rationale behind the approach is that the attitude estimate should rely on
vector measurements if the independent estimates using only vector measure-
ments and only gyroscope measurements are similar over a time window, pos-
sibly apart from a constant factor due to low-frequency noise of the gyroscope
estimate. Otherwise the attitude estimate should rely instead on the gyroscope,
since not meeting this similarity condition is an indication that significant dis-
turbances are affecting the vector measurements. Moreover, it is shown that
this adaptation concept is not only applicable for estimating single angles with
linear models but also for estimating rotational matrices considering the non-
linear kinematic model in SO(3). In fact, the work in [137] is extended to this
adaptation setting and it is shown that the convergence proofs given there can be
easily extended to the proposed setting in this chapter as well. The effectiveness
of the approach is illustrated through simulation results using a full non-linear
model of a quadcopter and IMU sensors.

The contribution of this chapter is therefore twofold. First a novel adaptation
rule for complementary filters based on the similarity between gyroscope and
vector estimates is proposed; and second convergence of this filter is established.

The remainder of the chapter is organized as follows. The standard atti-
tude estimation framework is described in Section 2.2, where the need for an
adaptive approach is also motivated. In Section 2.3 the proposed method con-
sidering linear models is introduced and in Section 2.4 the method is extended
to the special orthogonal group and convergence is shown. Section 2.5 shows the
main advantages over the non-adaptive filter using simulations and Section 2.6
contains concluding remarks and directions for future work.
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2.2 Background & Motivation

Let I denote an inertial world fixed frame with z-axis aligned with the gravity
vector, but pointing upwards, and the IMU fixed frame be denoted by B, which
will be referred to as the body-fixed frame. Moreover, let R ∈ SO(3) denote
the rotation matrix from B to I and ω = [ωx, ωy, ωz]

T ∈ R
3 denote the angular

velocity of B with respect to I expressed in B. Then the attitude kinematics are
given by

Ṙ = Rω×, (2.1)

where a× denotes the skew symmetric matrix of a such that a×v = a× v for all
vectors a and v and vex(·) denotes the inverse operation, so that vex(a×) = a.
The rotation matrix R can be parametrized by the three x-y-z Tait-Bryan angles
rotating around the axes of the body frame of the UAV, namely roll (φ), pitch
(θ) and yaw (ψ). The attitude kinematics in these coordinates are given by

λ̇ = Q(λ)ω, (2.2)

where λ = [φ, θ, ψ]T ∈ R
3 is the angle vector and Q(λ) is given by

Q(λ) =





1 sφtθ cφtθ
0 cφ −sφ
0

sφ
cθ

cφ
cθ



 , (2.3)

where cǫ, sǫ and tǫ denote the cosine, sine and tangent of an angle ǫ, respectively.
Note that for small angles Q(λ) ≈ I, and a linear model is obtained. This linear
model is often considered in practice and will be used in the sequel to illustrate
the ideas in this chapter.

The accelerometer measures body accelerations in the three axes in B (ne-
glecting Coriolis effects), as given by

aB = RT ρ̈−RT





0
0
g



+ na, (2.4)

where ρ̈ ∈ R
3 are the body accelerations in I, g is the Earth’s gravitational

acceleration and na is the accelerometer noise.
The magnetometer measures the magnetic field in the body-frame, which is

characterized by

mB = RTmI + dm + nm, (2.5)

where mI ∈ R
3 is the Earth’s magnetic field in the inertial frame, nm ∈ R

3 is the
magnetometer noise and dm ∈ R

3 contains the magnetic disturbances caused by
the environment, such as electric motors and nearby ferromagnetic materials.
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The accelerometer and magnetometer measurements can be combined to
give an algebraic estimate of the angle vector. In fact, by assuming negligible
accelerations and magnetic disturbances, the measurements are given by

aB ≈ −RT





0
0
g



 , mB ≈ RTmI . (2.6)

This results in a direct estimate of the angle vector as

λv = λ+ nv, (2.7)

where nv ∈ R
3 is considered non-stationary noise. The non-stationary behavior

results from the assumption that the accelerometer only measures the gravity
vector, which is valid only at slow accelerations in near-hover, and magnetic
disturbances caused by the environment and the motors of the quadcopter are
negligible. This results in correlated, high frequency noise for the angle vector
measurements.

An estimate of the angular velocities is given by the gyroscope as

ωg = ω + nω + nbias, (2.8)

where nω ∈ R
3 is considered white noise and nbias is a sensor bias. By assuming

small angles and integrating the angular rate measurements according to (2.2)
another estimate for the angle vector, denoted as λg, can be obtained. However,
even when assuming nbias = 0, due to the white noise component in (2.8) this
estimate will be corrupted by a random walk signal b(t) leading to

λg = λ+ b(t), (2.9)

which in practice leads to a poor low-frequency estimate of λ using this method,
often interpreted as a time-varying offset/bias. Note that is assumed here that
there are no other disturbances, e.g. device failure, acting on the gyroscope, so
that the angle estimate resulting from it can be assumed to be accurate up to
the bias.

2.2.1 Complementary Filter

As mentioned previously, the complementary filter is a common method to fuse
the two measurements, λv and λg, combining the strengths of both. In the
Laplace domain it takes the form

Λ̂(s) =
C(s)

s+ C(s)
︸ ︷︷ ︸

F1(s)

Λv(s) +
s

s+ C(s)
︸ ︷︷ ︸

F2(s)

Ωg(s)

s
, (2.10)
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Λ̂Λv
+

+
C(s) 1

s

Ωg

−

+

Figure 2.1: Complementary filter.

where F1 and F2 are a low-pass and a high-pass filter, respectively, which satisfy

F1(s) + F2(s) = 1, (2.11)

for any choice of the compensator C(s) and Λv(s) and Ωg(s) are the Laplace
transforms of λv and ωg, respectively. Schematically this can be represented as in
Figure 2.1. Although there have been considerable efforts made in designing C(s)
in the literature, the most common choice is that of a simple gain C(s) = α > 0,
for which the filter in (2.10) combined with (2.7) and (2.8) results in

Λ̂(s) =
α

s+ α
Λ(s) +

s

s+ α

Ω(s)

s
+

α

s+ α
Nv(s)

+
s

s+ α

Nω(s)

s
, (2.12)

where Λ(s), Ω(s), Nv(s) and Nω(s) are the Laplace transforms of λ, ω, nv and
nω, respectively. Note that the first two terms on the right hand side in (2.12)
assure that the method converges in the absence of noise, whereas the two noise
terms are filtered. The random walk term is high-pass filtered, which leads to
low-pass filtered white noise. The term Nv, which as discussed before is assumed
as mostly having high-frequency content, is low-pass filtered.

2.2.2 Motivation

If the noise Nv would be stationary, a single α could be selected and the comple-
mentary filter would provide an adequate solution to the problem of estimating
the angles. However, this noise is not stationary since:

• Under accelerations the accelerometer does not measure purely the gravity
vector anymore, thereby distorting the angles calculated from this measure-
ment

• Disturbances of the earth magnetic field caused by (intensive) motor usage
and/or the environment will distort the angle vector estimate
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This is illustrated in the top of Figure 2.2, where some typical angle estimates
from the accelerometer and gyroscope measurements are shown for the pitch
angle φ, together with the actual angle and Figure 2.2 shows the difference
between the accelerometer measurements and the gravity vector, normalized.
This shows that the integrated gyroscope measurement is accurate up to the
bias, whereas the accelerometer angle does not show a bias in steady state but
has more noise as well as large distortions when accelerations are present. As
shown in the figure, for the complementary filter, a small α will filter significantly
the non-stationary noise of the vector estimates but will not be robust to the
offset of the estimate obtained with the gyroscope. In turn, a large α will be
too sensitive to the non-stationary noise of the accelerometer. This motivates
making α time-dependent and adapt it with respect to perceived properties of
Nv (for which a similarity based approach will be used in the sequel).

2.2.3 Problem Formulation

The problem considered in this chapter is that of estimating the attitude of a
body-fixed frame with respect to that of the inertial frame, parametrized by the
rotation matrix R, subject to the kinematics in (2.1) and given the vector and
gyroscope measurements given by (2.7) and (2.8), respectively. In particular,
the attitude estimate should be robust to disturbances acting on the vector
measurements.

2.3 Proposed Adaptive Method

In order to address the shortcomings described in the previous section an adap-
tive gain complementary filter is proposed, where the gain is adapted according
to the reliability of the angle vector measurement, λv.

The adaption is based on the following observation:
If the angular estimate achieved from integrating the gyroscope measurement is
similar to the angular estimate determined from the accelerometer and magne-
tometer measurements over a time window, then the accelerometer and magne-
tometer measurements are not distorted.

In order to quantify this similarity between the angle vector and gyroscope
measurement, a similarity measure is introduced as

S(t) = min
(

S̄,min
c
J(c, t)

)

, (2.13)

where 0 < S̄ <∞ is the upper bound for the similarity measure and

J(c, t) =

√
∫ t

t−h

(λv(τ)− λg(τ) − c)
2
dτ , (2.14)
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Figure 2.2: Motivation for adaptive gain strategy using data from a simulated
quadcopter. (top) Typical angle estimates obtained using the vector (φ̂v) and
gyroscope (φ̂g) measurements, together with the actual angle (φ) and the estimate
given by the complementary filter with a small α (φ̂S) and a large α (φ̂L). (bottom)
Associated accelerometer signals, showing the connection between accelerations
and deviations for the vector estimate. Note that for the complementary filter, a
small α will filter significantly the non-stationary noise of the vector estimates but
will be not robust to the offset of the estimated obtained with the gyroscope and
a large α will be too sensitive to the non-stationary noise of the accelerometer.
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which depends on the signal values λg and λv in a moving time window of length
h, i.e., in the interval τ ∈ [t− h, t]. The cost function in (2.14) essentially shifts
the two signals on top of each other by using c, after which the signals are
subtracted from each other and integrated, which gives a measure of similarity
of shape. It can be shown that the minimizer of (2.13) is simply the mean value
of the two vectors over the window length, i.e.

c∗(t) := argmin
c

J(c, t) =
1

h

∫ t

t−h

(λv(τ) − λg(τ)) dτ. (2.15)

This results in very fast calculation times for S(t). The adaptive gain is then
defined as

α(t) = ᾱe−KS(t), (2.16)

where ᾱ > 0 and K > 0. This results in

0 < α ≤ α(t) ≤ ᾱ ∀t ∈ R≥0, (2.17)

where α = ᾱe−KS̄. By varying the gain by the exponential of the similarity
measure, a quick reaction to disturbances on the vector measurements is ensured.
Moreover, S̄ ensures that the adaptive gain remains strictly positive and in
practice it can be chosen arbitrarily high as to not interfere with the cost function
in (2.14).

In order to show convergence of the observer with adaptive gain in the absence
of noise, consider the time domain representation of the linear complementary
filter as presented in (2.12) with the adaptive gain (2.16), leading to

˙̂
λ = ωg + α(t)(λv − λ̂). (2.18)

The following proposition establishes convergence of the proposed observer.

Proposition 2.1. Consider the rotation kinematics (2.2) and measurements

given by (2.7) and (2.8). Let λ̂ denote the solution to (2.18) and let λ̃ = λ − λ̂
denote the angle error. Then, under the assumption that nbias = 0, the error λ̃
converges to zero in the absence of noise and is input-to-state (ISS) stable in the
presence of noise considering the noise properties as discussed in Section 2.2.

Proof. We introduce the Lyapunov function

V (λ̃) =
1

2
λ̃2. (2.19)

Taking the derivative of (2.19) with respect to time gives

V̇ = −α(t)λ̃2 − nωλ̃− α(t)nvλ̃, (2.20)

which is negative definite in the absence of noise, so that it can be concluded
that the estimation error converges to zero in the absence of noise and is input-
to-state (ISS) stable in the presence of noise considering the noise properties as
discussed in Section 2.2.
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Figure 2.3: Passive complementary filter on SO(3)

2.4 Adaptive Complementary Filter on SO(3)

Now that the rationale behind the approach was shown for the linear case, the
ACF is presented directly on SO(3). The problem of estimating the attitude
directly on the special orthogonal group can be formulated as determining an
estimate R̂ ∈ SO(3) of the rotation matrix R that rotates the body-fixed frame
B to the inertial frame I, from measurements provided by the accelerometer,
gyroscope and magnetometer of the IMU. If the estimator frame is defined as E ,
then R̂ rotates E to I. As the error of the filter on SO(3), consider

R̃ = R̂TR ∈ SO(3), (2.21)

which is the rotation from the estimator frame to the inertial frame. Note that
the goal of the observer is to drive the estimation error to R̃ → I3, since this
means that R̂ and R coincide.

In [136] a passive complementary filter on SO(3) was introduced, which is
expanded here by introducing a similarity measure for the special orthogonal
group. The proposed estimator in [136] has the following kinematics

˙̂
R = R̂

(

(ωg)× + kpPa(R̃)
)

, (2.22)

where kp > 0 is the observer gain and Pa(H) = 1
2 (H−HT ) is the anti-symmetric

matrix projection operator in matrix space. Naturally R in (2.21) is not avail-
able, but by using R = Ry to generate the error term R̃, a filter resembling the
complementary filter is achieved. This becomes clear by comparing the block-
diagram representation in Figure 2.3 with the classical complementary filter in
Figure 2.1.

As in the linear case, the estimator suffers from disturbances applied to the
vector measurements, for which a similar adaptation scheme is presented. In
order to compare the gyroscope and vector measurements on SO(3), first the
rotation of the body frame with respect to the inertial frame as determined
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Figure 2.4: Simulation results for k̄ = 2.5 [rad · s−1], ξ = 8 [−], S̄ = 50 [−],
h = 0.5 [s], kp = 0.1 [rad · s−1]. The top shows the angular estimate resulting from
the non-adaptive (blue) and adaptive filter (green), gyroscope integration (red)
and the actual angle (dashed black) for the roll angle. The bottom plot shows the
adaptive (green) and fixed gain (blue) over time.



2

40 Chapter 2. Similarity-Based Adaptive Complementary Filter for IMU Fusion

                         

                         

PSfrag replacements

φ
[d
eg
]

k
p

[r
a
d
·s

−
1
]

Time [s]

Passive
Adaptive

Gyro

True

Passive
Adaptive

−80

−60

−40

−200

20

40

60

80

0

0

0.5

1

1.5

2

2.5

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

40
45
50

Figure 2.5: Simulation results for k̄ = 2.5 [rad · s−1], ξ = 8 [−], S̄ = 50 [−],
h = 0.5 [s], kp = 1 [rad · s−1]. The top shows the angular estimate resulting from
the non-adaptive (blue) and adaptive filter (green), gyroscope integration (red)
and the actual angle (dashed black) for the roll angle. The bottom plot shows the
adaptive (green) and fixed gain (blue) over time.
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from the vector and gyroscope measurements are defined as Rv ∈ SO(3) and
Rg ∈ SO(3), respectively. The error between these two measurements in SO(3)
can be seen as

R̃vg = RT
v Rg ∈ SO(3), (2.23)

so that by the same insight as for the linear case, if this is close to I3, it can be
concluded that the vector measurements can be trusted. To quantify this the
cost function is defined as

Evg =
1

4
||I3 − R̃vg||2F =

1

2
tr(I3 − R̃vg), (2.24)

which should be small over a time window. Next, the similarity measure on
SO(3) is defined, with a slight abuse of notation, as

S(t) = min
(

S̄,min
c
J(c, t)

)

, (2.25)

where 0 < S̄ <∞,

J(c, t) =

√
∫ t

t−h

(Evg(τ)− c)2 dτ , (2.26)

and c∗(t) can again be shown to be the mean of Evg(t) over the time window.
The adaptive gain is again defined as

kp(t) = k̄e−ξS(t), (2.27)

with k̄ > 0 and ξ > 0, so that

0 < k ≤ kp(t) ≤ k̄ ∀t ∈ R≥0, (2.28)

with k = k̄e−ξS̄. The following theorem establishes convergence of the proposed
adaptive estimator.

Theorem 2.2. Consider the rotation kinematics (2.1) and measurements given
by Rv and Rg. Let R̂ denote the solution to (2.22) with the adaptive gain (2.27)
and let the error variable R̃ be defined as in (2.21). Then the estimation error
R̃ converges to zero.

Proof. In order to analyze the convergence of the estimator with adaptation the
same steps as in [137] are followed. First, consider the Lyapunov function

Et =
1

4
||I3 − R̃||2F =

1

2
tr(I3 − R̃) (2.29)

and its derivative with respect to time is

Ėt = −kp(t)|vex(Pa(R̃))|2, (2.30)

which is negative definite so that it can be concluded, using similar arguments
as in [137], that the estimation error converges to zero.
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The above theorem shows that the filter in [137] can be extended to an
adaptive filter, and in particular to the one proposed here, without affecting the
convergence guarantees.

2.5 Simulations

In order to demonstrate the effectiveness of the approach simulations were per-
formed using a model of a quadcopter and compared to the non-adaptive passive
complementary filter as proposed in [137].

Two different settings for the passive complementary filter are compared for
the same trajectory in Figures 2.4 and 2.5. For the adaptive filter the maximum
gain was set to k̄ = 2.5 [rad · s−1], the gain factor was set to ξ = 8 [−], the
upper bound for the similarity measure was set to S̄ = 50 [−] and the window
length was set to h = 0.5 [s] for both figures. For the non-adaptive filter the
gain was fixed to kp = 0.1 [rad · s−1] and kp = 1 [rad · s−1] in Figures 2.4 and 2.5,
respectively. The trajectories in both figures are the same.

In both figures the top plot shows the angular estimate resulting from the
non-adaptive (blue) filter, adaptive filter (green), gyroscope integration (red)
and the actual angle (dashed black) for the roll angle. The bottom plot shows
the adaptive gain (green) together with the fixed gain (blue) over time.

Together the figures display the advantage of the adaptive over the non-
adaptive filter. In Figure 2.4 the fixed gain kp is set low, thus giving more
priority to the gyroscope measurements, resulting in good estimates during accel-
erations but a poor convergence in steady-state, resulting in a large steady-state
deviation. In contrast, the larger gain setting of Figure 2.5 results in a bet-
ter performance in steady-state conditions, but yields poor performance during
accelerations.

The proposed adaptive filter performs better than its non-adaptive counter-
part in both simulations. It allows for a larger initial gain, resulting in better
steady-state behavior, whilst still allowing the gain to be lowered using the adap-
tation rule from (2.27) in order to avoid deviations during accelerations. This
essentially gives the user more knobs to turn in order to adjust the filter to the
behavior of the sensors of the IMU. That the adaptive filter outperforms the
passive filter becomes more clear by comparing the error as defined in (2.29) for
the passive filter with low and high gain settings and the adaptive filter as in
Figure 2.6.

2.6 Conclusions & Future Work

The problem of attitude estimation considering disturbances acting on the vector
measurements was solved using an adaptation scheme for the passive comple-
mentary filter directly on the special orthogonal group. The adaptation scheme
presented is this chapter was proven to converge and simulations results showed
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Figure 2.6: Error on SO(3) as defined in (2.29) for the passive filter with low
(blue) and high gain (red) settings and the adaptive filter (green)

that the adaptation scheme performs as expected, showing the advantages com-
pared to the non-adaptive filter.

Future work will include experimental testing of the method, as well as the
use of the adaptation scheme on the passive complementary filter with bias
correction and other, more advanced complementary filters that have been pro-
posed in the literature. Moreover, different adaptation schemes based on machine
learning can be considered.





CHAPTER 3

Estimation for Markov Jump Linear Systems

Computing the optimal joint maximum a posteriori probability (JMAP) estimate of the

state and mode of a Markov jump linear system (MJLS) is known to be a computation-

ally intractable problem. This chapter provides a novel approximate method for such a

problem that guarantees to be within a pre-specified bound of the optimal estimate. The

proposed method builds upon relaxed dynamic programming. Through numerical exam-

ples, it is shown that this method can lead to better estimates with less computations

than previous suboptimal methods proposed in the literature.

This chapter is based on [6, 4]
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3.1 Introduction

Markov Jump Linear Systems (MJLS) are switched linear systems, where the
switching between modes occurs according to a finite state Markov chain. One
can find applications of MJLS in many fields, such as signal processing [116],
control [45], economics [28] and maneuvering target tracking [171].

It is well-known that the optimal state and mode sequence estimator, in
the sense of joint maximum a posteriori probability (JMAP), for discrete time
MJLS subject to uncorrelated Gaussian disturbances and noise, relies on a bank
of Kalman filters (KFs), see [17]. However, the required number of filters grows
exponentially with time, resulting in a computationally intractable solution [17].
This directly leads to the use of suboptimal algorithms, such as sampling [58],
iterative [57] and moving horizon filters [188], among others [55]. The most com-
monly used MJLS filters are the optimal linear minimum mean square filter [46]
and the interacting multiple model (IMM) algorithm [17]. Suboptimal strate-
gies for JMAP estimation for MJLS have been studied in [130], where iterative
algorithms based on the expectation maximization algorithm have been imple-
mented, iteratively combining a discrete optimization via the Viterbi algorithm
with a fixed-interval Kalman smoother. More recently, suboptimal JMAP esti-
mation for MJLS was investigated in [120], where a moving horizon strategy is
combined with a constrained Viterbi algorithm in order to find the JMAP esti-
mate subject to constraints. These and other algorithm for maneuvering target
tracking, which are often modeled as MJLS, are reviewed and compared in [171].

In this work, a novel method for finding the JMAP estimate of both the state
and mode sequence of a MJLS is proposed. The method differs from existing ones
in the use of relaxed dynamic programming (RDP) to prune the number of mode
histories, referred to as hypotheses. RDP was introduced in [129] as a method
to reduce the complexity of solving dynamic programming (DP) problems by
allowing for a suboptimal solution, which is still within a certain bound of the
optimum. The method was applied to the control of switched (linear) systems
in [129, 77, 219], where the mode can be controlled rather than it following a
Markov chain as in MJLS.

To the best of the authors’ knowledge, this chapter is the first to provide
a method for the JMAP estimation of MJLS that guarantees near global op-
timality to within a pre-specified bound, whereas other suboptimal algorithms
[130, 120], which often end up in local optima, have no such guarantees. More-
over, numerical examples show that this method can lead to better estimates
with less computations than previous methods.

This chapters generalizes the results from [6], which focuses on linear systems
with independent and identically distributed outliers, to MJLS.

The remainder of this chapter is organized as follows; Section 3.2 introduces
the problem and Section 3.3 discusses the optimal solution. Section 3.4 contains
the main methods and results of the chapter, showing that the JMAP estimator
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for MJLS can be determined within an ǫ-factor of the optimal. Simulations
show the efficacy of the approach in Section 3.5 and the chapter is concluded in
Section 3.6.

Notation: A Gaussian random variable a ∈ R
n with mean µ and covariance

Θ ≻ 0 is denoted by a ∼ N (µ,Θ), i.e., the probability density function of a is

given by Pr {a} = ((2π)n|Θ|)− 1
2 e−

1
2
‖a−µ‖2

Θ−1 , where |Θ| denotes the determinant
of a matrix Θ and ‖a‖Θ :=

√
a⊺Θa.

3.2 Problem Description

Consider the discrete-time Markov jump linear system

xk+1 = Aσk+1
xk +Bσk+1

uk +Gσk+1
wk, (3.1a)

for k ∈ N0 := N∪{0}, where xk ∈ R
n, uk ∈ R

m and wk ∈ R
nw denote the system

state, known exogenous input and process noise, respectively. Furthermore,
consider the following output equation

yk = Cσk
xk +Dσk

uk +Hσk
vk (3.1b)

for k ∈ N, where yk ∈ R
r and vk ∈ R

nv denote the observation and measurement
noise, respectively. Moreover, let σk denote the mode the system is in at time
k, which is described by a Markov chain with s states and known transition
probabilities

ρij := Pr {σk+1 = i|σk = j} , i ∈ S, j ∈ S, (3.2)

where S = {1, 2, . . . , s}, and initial distribution ρi = Pr {σ0 = i}. The initial
state x0, wk and vk are considered to be independent and identically distributed
(i.i.d.) Gaussian random variables with the following distributions

wk ∼ N (0, Q), vk ∼ N (0, R), x0 ∼ N (x̄0, P0), (3.3)

with known mean x̄0 and such that, for all i ∈ S,

Qi := GiQG
⊺

i ≻ 0, Ri := HiRH
⊺

i ≻ 0, P0 ≻ 0.

The matrices Ai, i ∈ S, are assumed to be invertible, which is typically the case
when (3.1) results from discretization of a continuous-time problem. All the
parameters of the model are assumed to be known, whereas, in practice, these
can be estimated by identification methods for MJLS such as the ones given
in [92, 41].

The objective is to find both the state estimates, X̂H
0 := [x̂⊺0 , . . . , x̂

⊺

H ]⊺, as well
as the mode sequence, Σ̂H

0 := [σ̂0, . . . , σ̂H ]⊺, that have the maximum likelihood,
given measurements Y H

1 := [y⊺1 , . . . , y
⊺

H ]⊺ and an arbitrary time H ∈ N. This is
equivalent to finding the state estimates and mode sequence that maximize the
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joint conditional probability of the state estimates X̂H
0 and outlier sequence Σ̂H

0

given the measurements Y H
1 , i.e.

(

X̂H
0 , Σ̂

H
0

)

= arg max
X̂H

0 ,Σ̂H
0

Pr
{

X̂H
0 , Σ̂

H
0 |Y H

1

}

. (3.4)

The conditional and joint probabilities are related as follows

Pr
{

X̂H
0 , Σ̂

H
0 |Y H

1

}

=
Pr

{

Y H
1 , X̂H

0 |Σ̂H
0

}

Pr
{

Σ̂H
0

}

Pr
{
Y H
1

} (3.5)

and since the denominator is independent of X̂H
0 and Σ̂H

0 , (3.5) can be combined
with (3.4) to give

(

X̂H
0 , Σ̂

H
0

)

= arg max
X̂H

0 ,Σ̂H
0

Pr
{

Y H
1 , X̂H

0 |Σ̂H
0

}

Pr
{

Σ̂H
0

}

. (3.6)

Since it will be easier to work with logarithms of probabilities, the following
problem is considered, equivalent to (3.4)

(

X̂H
0 , Σ̂

H
0

)

= arg min
X̂H

0 ,Σ̂H
0

− log(Pr
{

Y H
1 , X̂H

0 |Σ̂H
0

}

)

− log(Pr
{

Σ̂H
0

}

). (3.7)

3.3 Optimal Solution

The solution to the optimization problem given in the previous section is known
to rely on a bank of Kalman filters, and for a non-switching model it reduces
to a single Kalman filter [17, 46]. Here, the optimization will be rewritten
as an optimal control problem, starting with the conditional probability of Y
and X given Σ. By using the chain rule (Pr {a, b|c} = Pr {a|b, c}Pr {b|c}, for
random variables a, b, c) and the Markov property of the model (3.1), the natural
logarithm of the conditional probability can be expressed as

log(Pr
{

Y H
1 , X̂H

0 |Σ̂H
0

}

) = log(Pr {x0})

+

H∑

k=1

log(Pr {yk|xk, σk}) + log(Pr {xk|xk−1, σk}). (3.8)

Moreover, for the mode sequence it follows that

− log
(

Pr
{

Σ̂H
0

})

= ℓσ0
+

H∑

k=1

ℓσk,σk−1
,
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where ℓσk,σk−1
:= − log(ρσk,σk−1

) and ℓσ0
:= − log(ρσ0

). Expressions for the
probabilities in (3.8) are obtained from the model (3.1) and distributions (3.3)

− log(Pr {xk|xk−1, σk}) =
1

2

(

‖wk−1‖2Q−1
σk

+ βw
σk

+ c0

)

, (3.9a)

− log(Pr {yk|xk, σk}) =
1

2

(

‖yk − Cσk
xk −Dσk

uk‖2R−1
σk

+βv
σk

+ c1
)
, (3.9b)

− log (Pr {x̂0}) =
1

2

(

‖x̂0 − x̄0‖2P−1
0

+ c2

)

, (3.9c)

where βw
i := log(|Qi|), βv

i := log(|Ri|) for i ∈ S and c0 = c2 = n log(2π),
c1 = r log(2π), which are subsequently omitted since they do not depend on xk
and σk. By substituting these expressions into (3.7) and by defining the variables
w̄k = wk−1 and αk = σ̂k−1, the optimization problem becomes

J(x̂H , σ̂H) = min
W̄H

1 ,αH
1

H∑

k=1

g(x̂k, σ̂k, w̄k, αk, yk)

+ h(x̂0, σ̂0, x̄0),

s.t. x̂k = Aσ̂k
x̂k−1 +Bσ̂k

uk−1 +Gσ̂k
w̄k,

(3.10)

where W̄H
1 := (w̄1, . . . , w̄H), αH

1 := (α1, . . . , αH) and

g(x̂k, σ̂k, w̄k, αk, yk) =
1

2

[

‖w̄k‖2Q−1

σ̂k

+ βw
σ̂k

+ βv
σ̂k

+ ‖yk − Cσ̂k
x̂k −Dσ̂k

uk‖2R−1

σ̂k

+ 2ℓσ̂k,αk

]

, (3.11)

h(x̂0, σ̂0, x̄0) = ℓσ̂0
+

1

2
‖x̂0 − x̄0‖2P−1

0
. (3.12)

After the minimization one can find

(x̂H , σ̂H) = argmin
x̂H ,σ̂H

J(x̂H , σ̂H) (3.13)

and iterate backwards for k ∈ {H − 1, . . . , 1, 0}

x̂k = A−1
σ̂k+1

(
x̂k+1 −Bσ̂k+1

uk −Gσ̂k+1
w̄k+1

)
, (3.14)

σ̂k = αk+1, (3.15)

to find the state and mode histories.
The optimal control problem in (3.10) can be solved using dynamic program-

ming, which consists of the following steps:
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1. Start with the arrival cost for k = 0, defined as

J0(x̂0, σ̂0) = h(x̂0, σ̂0, x̄0) (3.16)

2. For k ∈ {1, . . . , H}, compute the arrival cost

Jk(x̂k, σ̂k) = min
w̄k,αk

{g(x̂k, σ̂k, w̄k, αk, yk)

+ Jk−1(A
−1
σ̂k

(x̂k −Bσ̂k
uk−1 −Gσ̂k

w̄k), αk)}. (3.17)

Then J in (3.10) equals the arrival cost JH . An expression for the cost
function Jk can be found using the following proposition. Let Ek denote the set
of all possible mode histories up to time k, i.e.

Ek := {T 1
k , T 2

k , . . . , T
nEk

k }, (3.18)

where nEk
= sk is the cardinality of the set Ek, and

T i
k = {σ̂i

0, σ̂
i
1, . . . , σ̂

i
k−1}, i ∈ {1, . . . , sk}, (3.19)

denotes the ith possible mode history from time 0 to time k − 1, where σ̂j
k ∈ S

for every j ∈ {1, . . . , sk}.
Proposition 3.1. The arrival cost Jk(x̂k, σ̂k) is given by

Jk(x̂k, σ̂k) = min
T ∈Ek

1

2

(

x̂k − x̂Tk|k

)⊺

ΠT

(

x̂k − x̂Tk|k

)

+ γT , (3.20)

where for each T ∈ Ek, ΠT =
(
Pk|k

)−1
, γT = ck, x̂

T
k|k = x̂k|k and x̂k|k, ck, Pk|k

are obtained by iterating

x̂0|0 = x̄0, P0|0 = P0, c0 = ℓσ̂0
, (3.21a)

and, for j ∈ {0, . . . , k − 1},
x̂j+1|j = Aσ̂j+1

x̂j|j +Bσ̂j+1
uj , (3.21b)

Pj+1|j = Aσ̂j+1
Pj|jA

⊺

σ̂j+1
+Qσ̂j+1

, (3.21c)

Lj+1 = (Rσ̂j+1
+ Cσ̂j+1

Pj+1|jC
⊺

σ̂j+1
)−1, (3.21d)

Kj+1 = Pj+1|jC
⊺

σ̂j+1
Lj+1, (3.21e)

ej+1 = yj+1 − Cσ̂j+1
x̂j+1|j −Dσ̂j+1

uj+1 (3.21f)

x̂j+1|j+1 = x̂j+1|j +Kj+1ej+1, (3.21g)

Pj+1|j+1 = Pj+1|j −Kj+1Cσ̂j+1
Pj+1|j , (3.21h)

cj+1 =
1

2
‖ej+1‖2Lj+1

+ ℓσ̂j+1,σ̂j

+
1

2

(

βw
σ̂j+1

+ βv
σ̂j+1

)

+ cj

(3.21i)
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The proof follows by establishing by induction that (3.16), (3.17) takes the
form (3.20). It is omitted for the sake of brevity, however a similar proof can be
found in [76].

Note that it follows from Proposition 3.1 that one can run a Kalman filter
for each possible mode history in Ek and choose the one with the lowest cost
to provide the state estimate. However, the cardinality of the set Ek grows
exponentially with increasing k, which makes computing the optimal solution
intractable for any reasonably large k.

Remark 3.2. Note that the obtained expression for the cost-to-go requires the
minimization over all possible mode histories and that by taking the minimum
of the cost over all possible mode histories it only depends on x̂k and σ̂k and not
on the actual or any other specific mode history.

Remark 3.3. Note that the cost (3.20) is not necessarily positive since βw
i

and βv
i might be negative which may lead to negative γT obtained from (3.21i).

However, the problem can always be scaled to enforce that βw
i and βv

i are positive
for every i ∈ S, which leads to positive γT and positive cost (3.20). In fact,
applying the transformation z → ζz, ζ ∈ R, to all the variables xk, wk, uk,
k ∈ N0 and yk, vk, k ∈ Nan equivalent JMAP problem is obtained, where
(3.1) holds for the transformed variables but with Q → E[ζwkζw

⊺

k ] = ζ2Q and
R → E[ζvkζv

⊺

k ] = ζ2R leading to βw
i → βw

i +2n log(ζ) and βv
i → βv

i +2r log(ζ).
By choosing ζ > 1 sufficiently large, it can be ensured that βw

i and βv
i are positive

for every i ∈ S and that the cost (3.20) is positive. Note that after using the
proposed method, the obtained estimates can always be scaled back to the original
variable dimensions.

The previous remark justifies the following assumption, which can be made
without loss of generality

Assumption 3.4. For every i ∈ S, βw
i > 0, βv

i > 0 and thus Jk(x̂k, σ̂k) > 0,
∀k.

3.4 Proposed approximate method

A technique from approximate dynamic control, known as relaxed dynamic pro-
gramming [129], is employed in order to find an approximate solution to (3.20)
. The idea of relaxed dynamic programming is to find simple functions to ap-
proximate Jk. In this chapter the following functions V0(x̂0, σ̂0) = J0(x̂0, σ̂0) are
considered, and, for k ∈ {1, . . . , H},

Vk(x̂k, σ̂k) = min
T ∈Pk

1

2

(

x̂k − x̂Tk|k

)⊺

ΠT

(

x̂k − x̂Tk|k

)

+ γT , (3.22)

where Pk ⊆ Ek can be seen as a pruned version of Ek, where certain mode
histories are discarded, thus reducing the complexity of the solution.
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In order to achieve this, let

Ck := {(Tk−1, αk)|Tk−1 ∈ Pk−1, αk ∈ S}, (3.23)

denote the set containing all possible mode histories at time k considering the
mode histories at k − 1 that were not removed during pruning.

One first approach to prune, which would still ensure optimality, could be
the following procedure:

Pruned Dynamic Programming procedure

1. Initialize Pk as empty.

2. Take the element (mode history) T̄ in Ck \ Pk with the smallest γT̄ and
check if it satisfies

1

2
(xk − x̂T̄k|k)

⊺ΠT̄ (xk − x̂T̄k|k) + γT̄ ≥

min
T ∈Pk

1

2
(xk − x̂Tk|k)

⊺ΠT (xk − x̂Tk|k) + γT , ∀xk ∈ R
n. (3.24)

3. If (3.24) is not satisfied, then add the mode history T̄ of Ck to Pk. If there
are no more elements in Ck, then stop, otherwise go to step 2.

Note that to facilitate step 2 the elements in Ck can be ordered initially with
increasing values of γT . This entails first putting the mode history corresponding
to the lowest cost into the pruned set, after which for each remaining mode
history it is checked if it is worse for all xk. If this is the case, that specific
mode history can be discarded while still ensuring that Vk will be equal to Jk.
This follows by the principle of optimality (the tail of an optimal path is also
optimal), which in this case translates to: if a mode sequence is redundant at
step k of the dynamic programming algorithm, then it is a redundant tail of any
mode sequence at steps k + 1, . . . , H .

Note that this procedure may not result in much pruning, since a mode
history that is worse for all xk may not exist. In order to relax this, the optimal
arrival cost is no longer desired, but rather the set Pk is iteratively chosen in such
a way that the approximated arrival cost function Vk(x̂k, σ̂k) is always within a
factor ǫ ≥ 0 of the optimal function Jk(x̂k, σ̂k), for every x̂k and σ̂k, i.e.,

Jk(x̂k, σ̂k)≤ Vk(x̂k, σ̂k) ≤ (1 + ǫ)Jk(x̂k, σ̂k), ∀x̂k, σ̂k. (3.25)

For (3.25) to make sense it needs to be ensured that the cost Jk is positive,
which can be assumed without loss of generality as mentioned in Remark 3.3.
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In order to choose the set Pk such that (3.25) holds, let

Uk(x̂k, σ̂k) := min
αk∈S

min
w̄k

(1 + ǫ)g(x̂k, σ̂k, w̄k, αk, yk)

+Vk−1(A
−1
σ̂k

(x̂k −Bσ̂k
uk−1 −Gσ̂k

w̄k), αk),

= min
T ∈Ck

1

2
(x̂k − x̄Tk|k)

⊺Π̄T (x̂k − x̄Tk|k) + γ̄T ,

where for each T = (σ̂0, . . . , σ̂k−2, αk) ∈ Ck, Π̄T =
(
P̄k|k

)−1
, γ̄T = c̄k, x̄Tk|k =

x̄k|k and x̄k|k, c̄k, P̄k|k are obtained by computing for j = k − 1

x̄j+1|j = Aσ̂j+1
x̂j|j +Bσ̂j+1

uj , (3.26a)

P̄j+1|j = Aσ̂j+1
Pj|jA

⊺

σ̂j+1
+ ψ−1Qσ̂j+1

, (3.26b)

L̄j+1 = (ψ−1Rσ̂j+1
+ Cσ̂j+1

P̄j+1|jC
⊺

σ̂j+1
)−1, (3.26c)

K̄j+1 = P̄j+1|jC
⊺

σ̂j+1
L̄j+1, (3.26d)

ēj+1 = yj+1 − Cσ̂j+1
x̄j+1|j −Dσ̂j+1

uj+1 (3.26e)

x̄j+1|j+1 = x̄j+1|j + K̄j+1ēj+1, (3.26f)

P̄j+1|j+1 = P̄j+1|j − K̄j+1Cσ̂j+1
P̄j+1|j , (3.26g)

c̄j+1 =
1

2
‖ēj+1‖2L̄j+1

+ ψℓσ̂j+1,σ̂j

+
1

2
ψ
(

βw
σ̂i
j+1

+ βv
σ̂i
j+1

)

+ cj

(3.26h)

with ψ = (1+ǫ) and x̂j|j , Pj|j , cj are obtained by iterating the recursion (3.21a)-
(3.21i) for j ∈ {0, . . . , k − 2}. The function Uk coincides with Vk when ǫ = 0.
However, this function is defined with an extra cost term for the running cost g
when ǫ > 0.

At each timestep k, the set Pk is a pruned version of the set Ck obtained as
follows:

Relaxed Dynamic Programming procedure

1. Initialize Pk as empty.

2. Take the element (mode history) T̄ in Ck \ Pk with the smallest γT̄ and
check if it satisfies

1

2
(xk − x̄T̄k|k)

⊺Π̄T̄ (xk − x̄T̄k|k) + γ̄T̄ ≥

min
T ∈Pk

1

2
(xk − x̂Tk|k)

⊺ΠT (xk − x̂Tk|k) + γT , ∀xk ∈ R
n. (3.27)

3. If (3.27) is not satisfied, then add the mode history T̄ of Ck to Pk. If there
are no more elements in Ck, then stop, otherwise go to step 2.



3

54 Chapter 3. Estimation for Markov Jump Linear Systems

This can be viewed as performing the same procedure as in (3.24), but using
the cost including the (1 + ǫ) factor calculated using (3.26a)-(3.26h). The next
result shows that this procedure guarantees that (3.25) is met.

Theorem 3.5. Suppose that Assumption 3.4 holds and let Vk be defined by
(3.22) with the set Pk obtained from the procedure (3.27). Then (3.25) holds.

Proof. Using induction, V0(x̂0, σ̂0) = J0(x̂0, σ̂0) and assuming

Vk−1(x̂k−1, σ̂k−1) ≤ (1 + ǫ)Jk−1(x̂k−1, σ̂k−1)

then

Uk(x̂k, σ̂k) ≤ min
αk∈S

min
w̄k

(1 + ǫ)g(x̂k, σ̂k, w̄k, αk, yk)

+(1 + ǫ)Jk−1(A
−1
σ̂k

(x̂k −Bσ̂k
uk−1 −Gσ̂k

w̄k), αk)

=(1 + ǫ)Jk(x̂k, σ̂k)

It is clear, from the definition of Uk(x̂k, σ̂k), that

min
T ∈Ck

1

2
(x̂k − x̂Tk|k)

⊺ΠT
k (x̂k − x̂Tk|k) + γT ≤ Uk(x̂k, σ̂k)

and due to the inclusion of the element with the lowest cost in Ck into Pk

according to (3.27), the set Ck can be replaced by the set Pk in the last inequality,
obtaining

Vk(x̂k, σ̂k) ≤ Uk(x̂k, σ̂k) ≤ (1 + ǫ)Jk(x̂k, σ̂k)

which concludes the proof.
This implies that at each time step the joint log-likelihood of the state and

mode sequence estimate is within a factor ǫ of the optimal joint log-likelihood.
If this procedure is conducted for ǫ = 0 the procedure in (3.24) is obtained and
the optimal sequence is guaranteed, but the complexity (number of hypotheses
or cardinality of Pk) grows exponentially with time k. This will also be the
case for sufficiently small ǫ, making it impossible to bound the complexity of the
method for a general ǫ. However, simulations (see Section 3.5) show that when
ǫ is sufficiently large the number of hypotheses remains bounded and small even
for large time spans, as also reported in [129]. It is, however, hard to provide
results on if this is the case in general and, if so, how large ǫ should be.

Testing (3.27) might in general be hard. Alternatively, a tighter bound is
proposed, resulting in less pruning, but simpler to test. This test is given in
terms of the following linear matrix inequalities (LMIs)

∃τj ≥ 0, such that

nPk∑

j=1

τj = 1 and Z̄ ≥
nPk∑

j=1

τjZj (3.28)
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where nPk
denotes the cardinality of the set Pk and

Z̄ =

[

Π̄T̄ −Π̄T̄ x̄
T̄
k|k

−(x̄T̄k|k)
⊺Π̄T̄ (x̄T̄k|k)

⊺Π̄T̄ x̄
T̄
k|k + 2γ̄T̄

]

,

Zj =

[

ΠTj
−ΠTj

x̂
Tj

k|k

−(x̂
Tj

k|k)
⊺ΠTj

(x̂
Tj

k|k)
⊺ΠTj

x̂
Tj

k|k + 2γTj

]

,

with Tj the sequences in Pk, i.e., Pk = {T1, . . . , TnPk
}. If this new check holds

then (3.27) holds (the converse is not in general true). This can be quickly seen
by noting that if (3.28) holds, then, for every z ∈ R

n+1

z⊺Z̄z ≥ z⊺
nPk∑

j=1

τjZjz ≥ min
j
z⊺Zjz

must hold and therefore, considering z =
[
x⊺k, 1

]⊺
, it is concluded that (3.27)

must hold as well.
This procedure amounts to checking nPk

LMIs for each element in Ck, which
in the worst case results in a total of 1

2 (n
2
Ck

− nCk
) LMIs to be checked at

each timestep, which might be computationally hard to do online. A simpler
alternative is to search for a single mode sequence that has less cost for all xk.
This entails checking if

∃i ∈ {1, . . . , nPk
}, s.t. Z̄ ≥ Zi, (3.29)

which is easily verified, but could result in an (unnecessarily) large amount of
hypotheses being maintained.

Remark 3.6. Note that the guarantee (3.25) in Theorem 1 concerns the negative
log-likelihood as in (3.7) and not the likelihood itself as in (3.6). In order to
translate (3.25) to a guarantee in terms of the likelihood, let

L∗ = max Pr
{

Y H
1 , X̂H

0 |Σ̂H
0

}

Pr
{

Σ̂H
0

}

be the right hand side of (3.6) corresponding to the optimal cost J and let L be
the value obtained by the proposed relaxed dynamic programming method corre-
sponding to V . The costs are then J = − log(L∗) − c and V = − log(L) − c,
where c = c0 + c1 + c2 is a positive constant due to the terms neglected in (3.9).
Then, the method guarantees

− log(L∗)− c ≤ − log(L)− c ≤ (1 + ǫ)(− log(L∗)− c),

which implies L∗1+ǫ

eǫc ≤ L ≤ L∗ (Ass. 3.4 implies L∗ < 1).
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3.5 Simulations

In order to demonstrate the effectiveness of the proposed approach, two examples
are considered: a random walk model subject to measurement failures and the
tracking of multiple targets1.

3.5.1 Example 1: System subject to measurement failures

Consider a scalar random walk model subject to measurement failures given by

xk+1 = xk + wk

yk = xk +Hσk
vk

where σk ∈ S = {1, 2}, H1 = 20, H2 = 1, and the mode sequence probabilities
follow probability transition matrix Γ = [ρij ] with ρ11 = 0.15, ρ12 = 0.4, ρ21 =
0.85, ρ22 = 0.6.

For this model NMC = 50 Monte-Carlo simulations are performed, each
with a horizon of H = 12. The proposed methods using the LMI check in
(3.28) (LMI) and using the loosened check of (3.29) (PosDef) are compared to
the expectation maximization (EM) algorithm adapted from [130] and the time
varying KF algorithm using the true mode sequence (KF) to the optimal cost
for varying values of ǫ. The results are shown in Figure 3.1, where from the top
figure it can be observed that the proposed methods manage to find the optimal
cost for ǫ = 0 as expected from (3.25) and that they perform better than both
the EM and the KF algorithms. Moreover, they achieve the same cost, which
stays well below the (1+ǫ) bound. In the bottom figure it becomes clear that the
loosened check of (3.29) only retains more hypotheses for low ǫ, and by looking
at the computation times displayed in Figure 3.2 it is concluded that for this
problem the larger amount of hypotheses retained does not outweigh the reduced
computation times.

3.5.2 Example 2: Multiple model tracking (MMT)

Consider a discretized version of a target moving in a 2 dimensional (x, y) space
according to

xk+1 = Aσk+1
xk + wk,

yk = Cxk + vk,

where the state is given by x = [px, vx, py, vy]
⊺, with px, py and vx, vy denoting

the position and velocity in (x, y) direction, respectively. The measurements are
the position in x and y, so that C = [e⊺1 e

⊺

3 ]
⊺, e1 = [1 0 0 0], e3 = [0 0 1 0] and

wk ∈ N (0, 0.001I), vk ∈ N (0, 0.01I). For the motion the model is considered

1All files used for the simulation results are available at https://github.com/aandrien/
relaxed-JMAP.

https://github.com/aandrien/relaxed-JMAP
https://github.com/aandrien/relaxed-JMAP
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Figure 3.1: (top) The cost of several algorithms scaled to the optimal cost.
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step by the proposed two methods.
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to have three operating modes σk ∈ S = {1, 2, 3} and the modes consist of a
constant velocity, positive constant turn rate ω and negative constant turn rate
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Table 3.1: RMS and mode identification results for example 2

Algorithm px [m] vx [m/s] py [m] vy [m/s] Mode [%]
KF 0.0413 0.0771 0.0411 0.0764 100
PosDef 0.0467 0.1812 0.0462 0.1813 67.9
EM 0.0613 0.3437 0.0614 0.3440 38.2
IMM 0.0804 0.3969 0.0792 0.3916 48.0

−ω model, respectively. For the constant velocity model,

A1 =

[
ACV 02×2

02×2 ACV

]

, ACV =

[
1 τ
0 1

]

,

where τ = 0.1 is the sample time and for the constant turn rate model, A2 =
ACT (−ω), A3 = ACT (ω), where

ACT (ω) =







1 sin(ωτ)
ω 0 − 1−cos(ωτ)

ω
0 cos(ωτ) 0 −sin(ωτ)

0 1−cos(ωτ)
ω 1 sin(ωτ)

ω
0 sin(ωτ) 0 cos(ωτ)






,

The transition probability matrix and initial probabilities are

Γ =





0.85 0.1 0.05
0.1 0.8 0.1
0.05 0.1 0.85



 ,





ρ1
ρ2
ρ3



 =





0.6
0.2
0.2



 .

The other parameters are ǫ = 0.5, ω = 2 and a scaling of ζ = 100 was used to
have a positive cost.

This model is simulated for NMC = 500 Monte-Carlo simulations, each with
a length of H = 100, comparing the estimation errors for the proposed algorithm
using the check in (3.29), a time-varying Kalman filter using the true mode se-
quence, the expectation maximization algorithm and the interactive multiple
model (IMM) filter [17]. Although the last algorithm only provides estimates
of the current state, as opposed to both the state and mode sequence over the
whole horizon, it is used in this comparison because it is commonly used for
MMT. An instance of one of the simulations is shown in Figure 3.3. The results
are displayed in Table 3.1, showing the RMS errors of all 4 states for each al-
gorithm, as well as the mode identification results, displayed as a percentage of
correct estimates of the true mode. From these it becomes clear that the pro-
posed method outperforms both the EM and IMM algorithms, having a smaller
RMS error for each state as well as a larger percentage of correctly identified
modes. The performance of the proposed methods is similar to the KF with
respect to position, but is significantly worse for velocity. This is because the
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measurements cover only position, so that incorrect identification of the mode
results in incorrect prediction, which influences mainly the velocity estimates as
they are not directly corrected by the measurements.

3.6 Conclusions & Future Work

In this chapter novel methods for obtaining the JMAP estimate of the state
and mode sequence of MJLS have been presented that use relaxed dynamic
programming. By employing RDP the estimates are guaranteed to be within an
ǫ bound of the optimal joint log-likelihood. Furthermore, provided two methods
to perform the pruning have been provided: one based on LMIs and a simpler,
and often faster, check that prunes based on the positive definiteness of a matrix.
Simulation results show the effectiveness of both methods on two examples as
well as the advantage of the method compared to the well-known expectation
maximization technique.

Future work includes the investigation of the robustness of the method
against uncertainties in the transition probabilities and exploring other methods
of pruning the hypotheses.





CHAPTER 4

System Identification for Markov Jump Linear

Systems

This chapter tackles the problem of identifying the parameters of a class of stochas-

tic switched systems, where the active subsystem is determined by a Markov chain. This

class includes autoregressive models with exogenous inputs (ARX) for which the param-

eters switch according to a Markov chain and general Markov Jump Linear Systems

(MJLSs) with full-state information. The transition probabilities of the Markov chain

are assumed to be known, but the active subsystem is unknown. A recursive identifica-

tion method for the joint maximum a posteriori probability estimate of these parameters

and of the unknown mode is proposed relying on relaxed dynamic programming. The

method is guaranteed to provide an estimate whose joint posteriori probability is within

a constant factor of that of the optimal estimate while reducing the computational com-

plexity. The advantages and disadvantages of this method with respect to the standard

Expectation-Maximization (EM) algorithm are discussed and a numerical example is

provided.

This chapter is based on [7]
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4.1 Introduction

Switched (and hybrid) systems [126] extend traditional linear and non-linear
systems and are characterized by a set of subsystems among which the sys-
tem switches abruptly during operation. Extensive research has been con-
ducted on these systems in recent decades. One of the considered challenges
has been system identification. Several identification techniques are now avail-
able that consider broad classes of systems and more specific ones. See, for
example, [36, 101, 163, 27, 93] and [118], for a recent book on this subject. A
particularly interesting class is that of switched autoregressive systems with ex-
ogenous inputs (sARX), where the system parameters switch arbitrarily among
a finite set of values [163, 202]; the active subsystem (mode) is assumed not to
be known (otherwise traditional techniques can be used to identify the subsys-
tems). Recursive identification methods, interesting in many contexts such as
adaptive control and well-established for traditional ARX, are also available for
sARX [202].

When the switching is governed by a Markov chain, these systems are referred
to as Markovian Jump systems [221], also referred to here as Markov switched
systems. A prominent subclass, considering linear dynamics, are Markov Jump
Linear systems (MJLS) [46]. They appear often in applications such as net-
worked control systems [12], econometrics [83], chemistry [37], among many
others. The identification of Markov switched systems with unknown mode can
rely on the mentioned methods for the identification of switched systems with
arbitrary switching [36, 163, 202, 118], which ignore the probabilistic knowledge
of the switching mechanism. However, as shown for instance in [148], by taking
this knowledge into account, more efficient identification methods can naturally
be obtained.

The literature on the identification of Markov switched systems is tied in
with the Expectation Maximization (EM) algorithm, a suboptimal approach for
maximum likelihood (or maximum a posteriori probability) problems with un-
observed variables. For some classes of systems analytic solutions for parameter
identification can be found by using the EM algorithm. These include:

(A) switched ARX with switching governed by a Markov chain, see [99, 37] for
the EM analytic expressions.

(B) non-linear Markov jump linear systems with subsystem dynamics that
affinely depend on a set of known state and control dependent features
and the coefficients of the affine combination are unknown; the expres-
sions for the EM algorithm without considering external control inputs
can be found in [18].

(C) Markov jump linear systems with full state information, which are special
cases of (B).
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Only a few exceptions in the literature do not rely on the EM algorithm when
considering these models, see, e.g., [92]. For more general classes including
MJLS with partial information [16, 15, 189, 41], auto-regressive moving-average
with exogenous inputs (ARMAX) systems [25], non-linear Jump Markov sys-
tems [164], one must rely on numerical alternatives to the EM algorithm such as
Gibbs sampling or more generally Monte-Carlo Markov chain (MCMC) meth-
ods. The transition matrix of the Markov chain is sometimes considered to be
unknown and in other cases known.

While it is remarkable that the EM algorithm can provide an analytic solution
for the mentioned classes (A, B, C), it has some shortcomings:

(i) It can get stuck in local maxima of the objective function (e.g., log-
likelihood); this is a known and shared problem with the usual application of
the EM algorithm in the context of finite mixture models [145] and results from
the fact that the objective functions are typically multi-modal. A related issue
is that the local maximum the algorithm converges to depends on parameter
initialization.

(ii) It is not recursive as opposed to for instance the methods for sARX
systems with arbitrary switching (see [202] as mentioned before), hampering
their use in applications such as adaptive control.

The literature on handling these issues is scarce. Shortcoming (i) can be
mitigated by considering the maximum a posteriori probability estimator and
a good prior function on the parameters rather than the maximum likelihood
estimator [18]. In turn, [74] addresses this shortcoming by devising an algorithm
that iteratively learns the location of local maxima and focuses the search away
from these local maxima. To the best of my knowledge, there are currently no
recursive algorithms to the problem at hand. These shortcomings motivate the
present paper which proposes a different method for the identification of models
(A), (B), and (C).

First, a problem formulation is proposed, which encompasses the identifica-
tion problems for models (A), (B) and (C), with known Markov chain transition
probabilities. The goal is to find the joint maximum a posteriori probability esti-
mator of the unknown parameters and unknown modes. However, as it will turn
out, the complexity of computing this joint MAP estimator grows exponentially
with the data size.

Motivated by this, a recursive method is proposed that relies on relaxed
dynamic programming (see [129]), which is guaranteed to provide an estimate
whose joint posteriori probability is within a constant factor of that of the op-
timal estimate while reducing the computational complexity. This method is
borrowed from Chapter 3 and the connection will be clarified next.

The proposed method, relying on dynamic programming, is inspired by the
method proposed in Chapter 3, although in the present chapter and in Chapter 3,
the problems tackled are quite different. In fact, here we tackled the problem of
identifying the parameters of a Markov jump linear system whereas in Chapter 3
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we tackled the problem of estimating the state of a Markov jump linear system
based on the output and with unknown Markov chain state. It is well-known, for
standard linear time-invariant (LTI) systems represented as standard ARMAX
models, that parameter identification can be carried out with Kalman filtering,
which is a standard method for state estimation for LTI systems [106]. In fact,
one can see the parameters of LTI systems as unknown dynamical state variables
with trivial dynamics and formulate a state estimation problem to estimate
these. One of the strong advantages of this method with respect to others (such
as the Maximum Likelihood method) is that this leads to a recursive method for
parameter estimation which can run online. We resort to a similar line of thought
in this chapter and by leveraging on the results proposed in the previous chapter,
we propose a new method for the system identification of a Markov jump linear
system. A variant of the method proposed in Chapter 3, which can still provide
guarantees on the joint posteriori probability, is also provided. Although these
guarantees are much less tight, this variant shows superior performance in the
provided numerical example. By providing global optimality guarantees, these
methods depart from the EM algorithm, which constructs a sequence of cost
improving approximations, which are prone to get stuck in local optima.

On the other hand, for the proposed method the assumption that the Markov
chain transition probabilities are known is needed, which is not the case for the
EM algorithm. The shortcoming of relaxed dynamic programming regarding the
difficulty in predicting upfront the complexity of the method is also inherited,
although in many applications it stays within acceptable levels.

Through a numerical example the effectiveness of the proposed method is
shown.

The remainder of the paper is organized as follows. Section 4.2 proposes a
problem formulation which encompasses the identification problems for models
(A), (B) and (C) and formulates the joint MAP parameter estimation problem.
Section 4.3 provides the optimal solution to the joint MAP estimation problem,
showing that it is in general computationally infeasible to obtain. Section 4.4
introduces the proposed methods relying on relaxed dynamic programming. Sec-
tion 4.5 discusses a numerical example and Section 4.6 provides some final re-
marks and conclusions.

Notation: In denotes the n × n identity matrix. For vectors u1, . . . , un,
(u1, . . . , un) :=

[
u⊺1 · · · u⊺n

]⊺
. Vector ei ∈ R

m denotes the ith element of the
canonical basis, i.e., it is zero except at entry i where it is one. The notation w ∼
N (v,R) indicates that w is Gaussian distributed with mean v and covariance
R. For a symmetric matrix M and a vector v, |M | is the determinant and
‖x‖M :=

√
x⊺Mx. The Kronecker product between A and B is denoted by

A⊗B.
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4.2 Problem formulation

In this section it is shown that the identification problem for the three models
(A), (B), (C) mentioned in the introduction can be written in terms of the
following problem. Consider the following model

ζt = Γσt,tθ + wt, t ≥ 0, (4.1)

where θ ∈ R
nθ is a vector of parameters to be estimated and σt ∈ S :=

{1, 2, . . . ,m} is a Markov chain with transition probabilities

pij = Prob[σt+1 = j|σt = i].

The vectors ζt ∈ R
nζ are available for estimating the parameters. Moreover, the

gains Γi,t, switching according to the Markov chain i = σt, can be decomposed
as

Γi,t = e
⊺

i ⊗ x⊺t

for some vectors xt ∈ R
nx×nζ available for estimating the parameters, where

ei ∈ R
m, nθ = m× nx. The noise variables wt ∈ R

nζ are independent Gaussian
random variables with zero mean and covariance that depends on the active mode
at time t, wt ∼ N (0, Rσt

), where Ri are assumed to be positive definite. The pij
are assumed to be known together with the initial probabilities p0i := Pr{σ0 = i},
i ∈ {1, . . . ,m}. The problem of interest is to estimate θ from the data set

D = {(ζt, xt)|t ∈ {0, 1, . . . , H}},

where H is the size of the data set. Note that the Markov chain mode is not
available in this data set.

The models (A), (B), and (C) can be written in the general form (4.1), as
shown in Sections 4.2.1, 4.2.2, 4.2.3, respectively. In Section 4.2.4, the joint
MAP estimation problem is formulated.

4.2.1 sARX

Consider the following autoregressive model with exogenous inputs (ARX mod-
els):

yt =

q
∑

j=1

aσt

j yt−j +

r∑

ℓ=1

bσt

ℓ ut−ℓ + wt (4.2)

for which the unknown parameters (ai1, . . . , a
i
q, b

i
1, . . . , b

i
r), i ∈ {1, 2, . . . ,m}

switch according to a Markov chain σt identical to the one described before.
Let us first assume that yt ∈ R and ut ∈ R. Suppose that the following data

DA ={(yt)|t ∈ {−q + 1, . . . , 0, 1, . . . , H}}
∪ {(ut)|t ∈ {−r + 1, . . . , 0, 1, . . . , H}}
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is available from experiments. The goal is to estimate the parameters

θ = (a1, b1, a2, b2, . . . , am, bm)

with ai = (ai1, . . . , a
i
q) and bi = (bi1, . . . , b

i
r) from the data in DA.

Let ζt = yt and

x⊺t =
[
yt−1 · · · yt−q ut−1 · · · ut−r

]
.

Then (4.2) can be rewritten as (4.1) with

Γi,t = e
⊺

i ⊗ x⊺t

Suppose now that yk ∈ R
ny , uk ∈ R

nu , possibly for ny ≥ 1 and nu ≥ 1 and
the coefficients aij , b

i
j in (4.2) are matrices rather than scalars; by redefining

θ = (ν(ā1), ν(b̄1), ν(ā2), ν(b̄2), . . . , ν(ām), ν(b̄m))

where for A = [a1, a2, · · · , an], ν(A) = [a⊺1 , a
⊺

2 , · · · , a⊺n]⊺, āi = [ai1, · · · , aiq] ,
b̄i = [bi1, · · · , biq] and

Γi,t = e⊺i ⊗ x⊺t

with
x
⊺

t = [[y⊺t−1
· · · y

⊺

t−q]⊗ Inyq [u⊺

t−1
· · · u

⊺

t−r]⊗ Inur]

(4.1) can still be obtained, where the fact that ν(ABC) = (C⊺ ⊗A)ν(B) was
used.

4.2.2 Jump Markov Non-linear systems

Consider the following class of Jump Markov Non-linear systems

ξt+1 = φ0(ξt, ut) +

p
∑

ℓ=1

ασt

ℓ φℓ(ξt, ut) + wt (4.3)

where ξt ∈ R
nξ is the state, ut ∈ R

nu is the control input,

θ := (α1, α2, . . . , αm),

with αi = (αi
1, . . . , α

i
p), α

i
j ∈ R is the set of parameters to be estimated, and

φℓ : R
nξ ×R

nu → R
nξ are known functions. Suppose now that the data available

from experiments contains the full state, besides the control input

DB = {(ξt, ut)|t ∈ {0, 1, . . . , H}}.

Then, let ζt = ξt+1 − φ0(ξt, ut), xt,ℓ = φℓ(ξt, ut), x
⊺

t =
[
xt,1 . . . xt,p

]
to

obtain (4.1) with
Γi,t = e⊺i ⊗ x⊺t .
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4.2.3 Markov Jump Linear Systems

Consider a general MJLS

ξt+1 = Aσt
ξt +Bσt

ut + wt

where ξt ∈ R
nξ and ut ∈ R

nu . Suppose that the matrices Ai and Bi are unknown
or a subset of entries are unknown. In general, one can write

Ai = Φ0 +

a∑

j=1

γi,jΦj , Bi = Θ0 +

b∑

j=1

βi,jΘj

for constant matrices Φj and Θj and parameters γi,j , βi,j . Then the MJLS is
written as (4.3) with

φ0(ξt, ut) = Φ0ξt +Θ0ut

φℓ(ξt, ut) = Φℓξt, 1 ≤ ℓ ≤ a

φℓ(ξt, ut) = Θℓ−aut, a+ 1 ≤ ℓ ≤ a+ b

and αi
j = γi,j for 1 ≤ j ≤ a and αi

j = βi,j−a, a+ 1 ≤ j ≤ a+ b.
Likewise if the MJLS also contains output equations

ξ̄t+1 = Āσt
ξ̄t + B̄σt

ut + w̄t

yt = C̄σt
ξ̄t + D̄σt

ut + v̄t

one can write ξt =
[
ξ̄⊺t y⊺t

]⊺
, and wt =

[
w̄⊺

t v̄⊺t
]⊺

ξt+1 =

[
Āσt

0
C̄σt

0

]

︸ ︷︷ ︸

Aσt

ξt +

[
B̄σt

D̄σt

]

︸ ︷︷ ︸

Bσt

ut + wt

and obtain a similar formulation.

4.2.4 Maximum a posteriori probability (MAP) estimation problem

In the maximum a posteriori probability (MAP) framework, the goal is to pro-
vide both an estimate θ̂ of the parameters θ as well as an estimate σ̂0:H :=
[σ̂0, . . . , σ̂H ]⊺ of the mode sequence σ0:H := [σ0, . . . , σH ]⊺, that have the maxi-
mum likelihood, given data D = Dζ ∪ Dx, with Dζ := {ζt|t ∈ {1, . . . , H}} and
Dx := {xt|t ∈ {1, . . . , H}}. It is assumed that the prior information is Gaussian
θ ∼ N (θ̄0, P0). The MAP problem that is tackled is then equivalent to find-
ing the state estimates and mode sequence that maximize the joint conditional
probability of the parameter estimates and sequence σ̂ given the data D, i.e.

(

θ̂, σ̂0:H

)

= arg max
θ,σ0:H

Pr {θ, σ0:H |D} . (4.4)



4

68 Chapter 4. System Identification for Markov Jump Linear Systems

where
Pr {θ, σ0:H |D} ∝ Pr {Dζ |θ, σ0:H ,Dx}Pr {σ0:H}Pr {θ} (4.5)

4.3 Joint MAP estimator

Using logarithms (4.4) is rewritten as
(

θ̂, σ̂0:H

)

= arg min
θ,σ0:H

− log(Pr {σ0:H})− log(Pr {θ})

− log(Pr {Dζ |θ, σ0:H ,Dx}),
(4.6)

where by taking into account the prior probabilities

− log (Pr {θ}) = 1

2

(∥
∥θ − θ̄0

∥
∥
2

P−1
0

+ c1

)

, (4.7)

with c1 = nθ log(2π) + log(|P0|), and

− log (Pr {σ0:H}) = ℓσ0
+

H∑

t=1

ℓσt,σt−1
,

with ℓσt,σt−1
:= − log(pσt,σt−1

) and ℓσ0
:= − log(p0σ0

). Due to the independence
of the noise random variables,

− log(Pr {Dζ |θ, σ0:H ,Dx}) = −
H∑

t=1

log(Pr {ζt|θ, σt, xt}) (4.8)

and due to the Gaussian assumption

− log(Pr {ζt|θ, σt, xt})=
1

2

(

‖ζt − Γσt,tθ‖2R−1
σt

+βσt
+c2

)

, (4.9)

βi := log(|Ri|) and c2 = nζ log(2π). It is assumed that βi ≥ 0, which can
always be met by properly scaling the problem (see Chapter 3). By substituting
these expressions into (4.6) and by defining the variables αt = σt−1, for t ∈
{1, 2, . . . , H}, with α1:H = (α1, . . . , αH), the optimization problem becomes

J(θ, σH) = min
α1:H

H∑

t=1

g(θ, σt, αt, ζt) + h(θ, σ0), (4.10)

where α := (α1, . . . , αH) and

g(θ, σt, αt, ζt) =
1

2

[

βσt
+ ‖ζt − Γσt,tθ‖2R−1

σt

+ 2ℓσt,αt

]

, (4.11)
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h(θ, σ0) = ℓσ0
+

1

2

∥
∥θ − θ̄0

∥
∥
2

P−1
0

. (4.12)

After the minimization one can find

(θ̂, σ̂H) = argmin
θ,σH

J(θ, σH) (4.13)

and obtain the desired estimate θ̂.
The optimal control problem in (4.10) can be solved using dynamic program-

ming, which consists of the following steps:

1. Start with the arrival cost for t = 0, defined as

J0(θ, σ0) = h(θ, σ0) (4.14)

2. For t ∈ {1, . . . , H}, compute the arrival cost

Jt(θ, σt) = min
αt

{g(θ, σt, αt, ζt) + Jt−1(θ, αt)}. (4.15)

Then J in (4.10) equals the arrival cost JH . An expression for the cost
function Jt can be found using the following proposition. Let Et denote the set
of all possible mode histories up to time t, i.e.

Et := {T 1
t , T 2

t , . . . , T
nEt

t }, (4.16)

where nEt
= mt is the cardinality of the set Et, and

T i
t = {σi

0, σ
i
1, . . . , σ

i
t−1}, i ∈ {1, . . . ,mt}, (4.17)

denotes the ith possible mode history from time 0 to time t − 1, where σj
t ∈ S

for every j ∈ {1, . . . ,mt}.
Proposition 4.1. The arrival cost Jt(θ, σt) is given by

Jt(θ, σt) = min
T ∈Et

1

2

(

θ − θ̂Tt

)⊺

ΠT

(

θ − θ̂Tt

)

+ γT , (4.18)

where for each T ∈ Et, ΠT = (Pt)
−1

, γT = ct, θ̂
T
t = θ̂t and θ̂t, ct, Pt are

obtained by iterating
θ̂0 = θ̄0, c0 = ℓσ0

, (4.19a)

and, for j ∈ {0, . . . , t− 1},
Lj+1 = (Rσj+1

+ Γσj+1,j+1PjΓ
⊺

σj+1,j+1)
−1, (4.19b)

Kj+1 = PjΓ
⊺

σj+1,j+1Lj+1, (4.19c)

ej+1 = ζj+1 − Γσj+1,j+1θ̂j (4.19d)

θ̂j+1 = θ̂j +Kj+1ej+1, (4.19e)

Pj+1 = Pj −Kj+1Γσj+1,j+1Pj , (4.19f)

cj+1 =
1

2

(

‖ej+1‖2Lj+1
+ βσj+1

)

+ ℓσj+1,σj
+ cj (4.19g)
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Note that the cardinality of the set Et grows exponentially with increasing t,
which makes computing the optimal solution intractable with increasing t.

4.4 Proposed recursive estimator using relaxed dynamic program-
ming

In this section, relaxed dynamic programming [129] is used to approximate
the solution to (4.18), described in Section 4.4.1. In Section 4.4.2 a variant that
will lead to better results in the numerical example is also proposed, although
it provides less guarantees.

4.4.1 Relaxed dynamic programming

Using relaxed dynamic programming [129] to approximate the solution to (4.18)
amounts to finding approximating functions for Jt. To this effect, consider the
following approximating functions V0(θ, σ0) = J0(θ0, σ0), and, for t ∈ {1, . . . , H},

Vt(θ, σt) = min
T ∈Pt

1

2

(

θ − θ̂Tt

)⊺

ΠT

(

θ − θ̂Tt

)

+ γT , (4.20)

where Pt ⊆ Et can be seen as a pruned version of Et, where certain mode histories
are discarded, thus reducing the complexity of the solution.

In order to achieve this, let

Ct := {(Tt−1, αt)|Tt−1 ∈ Pt−1, αt ∈ S}, (4.21)

denote the set containing all possible mode histories at time t considering the
mode histories at t− 1 that were not removed during pruning.

The set Pt is iteratively chosen in such a way that the approximated arrival
cost function Vt(θ, σt) is always within a factor ǫ ≥ 0 of the optimal function
Jt(θ, σt), for every θ and σt, i.e.,

Jt(θ, σt)≤ Vt(θ, σt) ≤ (1 + ǫ)Jt(θ, σt), ∀θ, σt. (4.22)

For (4.22) to make sense the cost Jt needs to be positive, which is the case due
to the assumption that βi ≥ 0.

In order to choose the set Pt such that (4.22) holds, let

Ut(θ, σt) := min
αt∈S

(1 + ǫ)g(θ, σt, αt, ζt) + Vt−1(θ, αt),

= min
T ∈Ct

1

2
(θ − θ̄Tt )

⊺Π̄T (θ − θ̄Tt ) + γ̄T ,
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where for each T = (σ0, . . . , σt−2, αt) ∈ Ct, Π̄T =
(
P̄t

)−1
, γ̄T = c̄t, θ̄Tt = θ̄t and

θ̄t, c̄t, P̄t are obtained by computing for j = t− 1

L̄j+1 = (ψ−1Rσj+1
+ Γσj+1,j+1PjΓ

⊺

σj+1,j+1)
−1, (4.23a)

K̄j+1 = PjΓ
⊺

σj+1,j+1L̄j+1, (4.23b)

ēj+1 = ζj+1 − Γσj+1,j+1θ̂j (4.23c)

θ̄j+1 = θ̂j + K̄j+1ēj+1, (4.23d)

P̄j+1 = Pj − K̄j+1Γσj+1,j+1Pj , (4.23e)

c̄j+1 =
1

2

(

‖ēj+1‖2L̄j+1
+ ψβσj+1

)

+ ψℓσj+1,σj
+ cj (4.23f)

with ψ = (1 + ǫ) and θ̂j , Pj , cj are obtained by iterating the recursion (4.19a)-
(4.19g) for j ∈ {0, . . . , t− 2}. Note that Ut coincides with Vt when ǫ = 0.

At each timestep t, the set Pt is a pruned version of the set Ct obtained as
follows:

Relaxed Dynamic Programming procedure

1. Initialize Pt as empty.

2. Take the element (mode history) T̄ in Ct \ Pt with the smallest γT̄ and
check if it satisfies

1

2
(θ − θ̄T̄t )⊺Π̄T̄ (θ − θ̄T̄t ) + γ̄T̄ ≥

min
T ∈Pt

1

2
(θ − θ̂Tt )

⊺ΠT (θ − θ̂Tt ) + γT , ∀θ ∈ R
nθ . (4.24)

3. If (4.24) is not satisfied, then add the mode history T̄ of Ct to Pt. If there
are no more elements in Ct, then stop, otherwise go to step 2.

The next result shows that this procedure guarantees that (4.22) is met. The
proof is omitted since it follows similar steps as in the proof of a similar result
in Chapter 3.

Theorem 4.2. Let Vt be defined by (4.20) with the set Pt obtained from the
procedure (4.24). Then (4.22) holds.

�

This implies that at each time step the joint log-likelihood of the state and
mode sequence estimate is within a factor ǫ of the optimal joint log-likelihood.
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4.4.2 Variant of relaxed dynamic programming

As the first method is not always able to prune enough mode histories to keep the
computation time reasonable (as is the case in the example), a second method
is proposed that is able to prune more. In this method, consider

Wt(θ, σt) := min
αt∈S

(1 + ǫ) [g(θ, σt, αt, ζt) + Vt−1(θ, αt)] ,

= min
T ∈Ct

1

2
(1 + ǫ)(θ − θ̂Tt )

⊺ΠT (θ − θ̂Tt ) + γT ,

where for each T ∈ Ct, ΠT = (Pt)
−1, γT = ct, θ̂Tt = θ̂t and θ̂t, ct, Pt are obtained

by iterating (4.19a)-(4.19g).
The same procedure as in Section 4.4.1 is performed to find the pruned set,

except for the check (4.24), which is replaced by

1

2
(1 + ǫ)

[

(θ − θ̂T̄t )
⊺ΠT̄ (θ − θ̂T̄t ) + γT̄

]

≥

min
T ∈Pt

1

2
(θ − θ̂Tt )⊺ΠT (θ − θ̂Tt ) + γT , ∀θ ∈ R

nθ . (4.25)

In the next theorem it will be shown that by performing this method for pruning
it can be guaranteed that the following bound on the pruned cost

Jt(θ, σt) ≤ Vt(θ, σt) ≤ (1 + ǫ)tJt(θ, σt), ∀θ, σt, (4.26)

is met.

Theorem 4.3. Let Vt be defined by (4.20) with the set Pt obtained from the
procedure (4.25). Then (4.26) holds.

�

Proof. The proof is provided by induction, by definition V0(θ, σ0) = J0(θ, σ0)
and assuming

Vt−1(θ, σt−1) ≤ (1 + ǫ)t−1Jt−1(θ, σt−1) (4.27)

then it follows that

Wt(θ, σt) ≤ min
αt∈S

(1 + ǫ) [g(θ, σt, αt, ζt)

+ (1 + ǫ)t−1Jt−1(θ, σt−1)
]
,

≤ min
αt∈S

(1 + ǫ)t [g(θ, σt, αt, ζt) + Jt−1(θ, σt−1)] ,

= (1 + ǫ)tJt(θ, σt).

Since ǫ ≥ 0 it follows from the definition of Wt(θ, σt) that

min
T ∈Ct

1

2
(θ − θ̂Tt )⊺ΠT (θ − θ̂Tt ) + γT ≤Wt(θ, σt)
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and by performing the pruning according to (4.25), where the inequality is
checked for all θ ∈ R

nθ , the pruned set Pt can be substituted for Ct in the
previous inequality. Then

Vt(θ, σt) ≤Wt(θ, σt) ≤ (1 + ǫ)tJt(θ, σt),

is obtained, achieving (4.26) and concluding the proof.

4.4.3 Checking the pruning condition

Since checking if (4.24) (or similarly (4.25)) holds is in general hard, the following
alternative test in terms of Linear Matrix Inequalities (LMIs) is proposed. First
note that if the following condition holds then (4.24) holds

∃τj ≥ 0, such that

nPt∑

j=1

τj = 1 and

1

2
(θ − θ̄T̄t )⊺Π̄T̄ (θ − θ̄T̄t ) + γ̄T̄ ≥

nPt∑

j=1

τj

(1

2
(θ − θ̂

Tj

t )⊺ΠTj
(θ − θ̂

Tj

t ) + γTj

)

, ∀θ ∈ R
nθ . (4.28)

where nPt
denotes the cardinality of the set Pt and Tj are the sequences in Pt,

i.e., Pt = {T1, . . . , TnPt
}. This follows from the fact that the right hand side of

this latter equation is always larger or equal than the right hand side of (4.24).
Letting z =

[
θ⊺ 1

]
, the inequality of this latter condition as can be written as

z⊺Z̄z ≥ z⊺(

nPt∑

j=1

τjZj)z, ∀θ ∈ R
nθ ,

where

Z̄ =

[
Π̄T̄ −Π̄T̄ θ̄

T̄
t

−(θ̄T̄t )
⊺Π̄T̄ (θ̄T̄t )⊺Π̄T̄ θ̄

T̄
t + 2γ̄T̄

]

,

Zj =

[

ΠTj
−ΠTj

θ̂
Tj

t

−(θ̂
Tj

t )⊺ΠTj
(θ̂

Tj

t )⊺ΠTj
θ̂
Tj

t + 2γTj

]

.

Equivalently, one can consider this condition for every z instead of for z =
[
θ⊺, 1

]
. In fact, letting

[
W1 w2

w⊺

2 w3

]

= Z̄ − (

nPt∑

j=1

τjZj)
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this condition can be written as

[
θ⊺ 1

]
[
W1 w2

w⊺

2 w3

] [
θ
1

]

≥ 0, ∀θ ∈ R
nθ ,

and by the Schur complement this condition is equivalent to w3 ≥ 0 and θ⊺(W1−
w2(w

−1
3 )w⊺

2 )θ, for every θ, so that the last entry of z plays no role. One can
then check (4.28) (which implies (4.24)) with the following LMI condition: there
exist τj ≥ 0 adding up to one

∑nPt

j=1 τj = 1 such that the following linear matrix
inequalities (LMIs) hold

∃τj ≥ 0, such that

nPt∑

j=1

τj = 1 and Z̄ ≥
nPt∑

j=1

τjZj. (4.29)

Similar LMIs can be obtained to check (4.25), but are omitted here for brevity.

4.5 Example

The effectiveness of the proposed recursive estimator is demonstrated on a
second order, switched ARX model as introduced in Section 4.2.1:

yt =

{

−0.2yt−1 + 0.24yt−2 + ut + wt for σt = 1

−1.4yt−1 − 0.53yt−2 + ut + wt for σt = 2

with wt ∈∼ N (0,Rσt
) where R1 = R2 = 1.0. The goal is to estimate the

parameter vector

θ = (a11, a
1
2, b

1, a21, a
2
2, b

2)

= (−0.2, 0.24, 1,−1.4,−0.53, 1)

as well as the mode sequence σ0:H , where the length of the dataset is taken to
be H = 50. As the input signal a sine wave with an amplitude of 10 and a
frequency of 20Hz is chosen, i.e.

u(t) = 10 sin(2π · 0.05t)

and the transition probabilities are given by
[
p11 p12
p21 p22

]

=

[
0.7 0.3
0.1 0.9

]

.

Figure 4.1 shows the input and output data in the top together with the mode
sequence in the bottom.
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Figure 4.1: (top) Input and output signal used in the example, (bottom) True
and estimated mode sequence

The method proposed in Section 4.4.2 is used, since the first method did not
result in sufficient pruning of mode histories. The bound is set to ǫ = 1 and
the resulting estimates are compared with those obtained from running (4.19b)-
(4.19g) using the actual modes (Known). The resulting parameter estimates
(Estimated) together with the actual values (True) are shown in Figure 4.2,
were it can be seen that the proposed method is able to estimate the parameters
accurately. The same holds for the estimation of the mode sequence as shown
in the bottom of Figure 4.1. From these results it is concluded that the bound
given in (4.26) might be overly conservative.

In Figure 4.3 the number of hypotheses that the proposed method stores at
each timestep for increasing values of ǫ are shown, showing that the proposed
method greatly reduces the complexity of the original problem. Even for low
values of ǫ the number of hypotheses converges to a constant level, making it
feasible for online identification.
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4.6 Conclusions

In this paper a method for the identification of Markov switched systems is
provided that is recursive, has theoretical guarantees and is computationally
feasible for online identification.

Suggestions for future research include the tightening of the guarantees and
establishing a relation between the (maximum) number of hypotheses that need
to be stored and a corresponding bound on the cost.
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CHAPTER 5

Model Predictive Controller for Quadcopters

with Almost Global Trajectory Tracking

Guarantees

This chapter provides a new method for trajectory tracking for quadcopters following

a cascaded control approach. An outer-loop model predictive controller generates twice

differentiable acceleration references, which provide attitude and angular velocity and

acceleration references for a non-linear inner-loop controller. The model predictive

controller allows for tracking of references while explicitly considering that the thrust of

the quadcopter is upper and lower limited. It is proven that the overall strategy renders

the trajectory tracking errors uniformly almost globally asymptotically stable. Via a

numerical case study the advantages of the novel method are highlighted.

This chapter is based on [9, 5]
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5.1 Introduction

Quadcopters are now widespread in the consumer market [54] and are used in
many applications, such as agriculture [196], surveillance [81], wildlife monitor-
ing [128], construction [61], (medicine) delivery [14, 217] and even extraterrestrial
exploration [203, 85]. From a research point of view, quadcopters have received
much attention as well, due to the challenging nonlinear dynamics needed to
properly describe them [138], their under-actuated configuration [63] and high
maneuverability [35]. In particular, for the control of quadcopters many av-
enues have been explored, such as sliding mode control [29], iterative learning
control [88], nonlinear control [102, 123], reinforcement learning [97], to name a
few. However, despite the broad range of approaches in quadcopter control, it
is still hard to find in the literature a control approach with the following highly
desired features:

1. Able to anticipate on future reference information;

2. Explicit handling of constraints on the states and inputs;

3. Implementable in real-time on embedded hardware;

4. Having stability or tracking error convergence guarantees.

Model Predictive Control (MPC) can potentially provide these features, due to
its ability to anticipate using future reference information, handle constraints
explicitly and the availability of well-established theoretical results that can be
used to provide guarantees on closed-loop behavior [144]. Moreover, the typically
high computational burden of (non-linear) MPC (3) can potentially be overcome
by using the differential flatness property of quadcopters as in [79]. Yet, to the
best of the authors’ knowledge there are no MPC strategies currently available
that provide all these favorable features. Indeed, MPC setups have been used
for quadcopters in, for example, [152], exploiting differential flatness to achieve
a convex optimization problem that is solved in real-time; however no stability
guarantees are provided. In [22], a hierarchical MPC strategy was developed that
uses linearization around the trajectory to make the problem computationally
feasible, however tracking error convergence guarantees are not given.

A common element in many quadcopter control approaches is a cascaded
control structure, where the control of the orientation of the quadcopter, known
as the inner-loop, is separated from the position and velocity control, referred
to as the outer-loop [108]. A strategy combining a thrust prioritizing inner-
loop controller with an outer-loop controller that satisfies constraints on some
of the states was presented in [114], again without stability and convergence
guarantees. Control strategies following other approaches also do not provide
all the desired features. For instance, the strategies provided in [67, 131] meet
3) and 4), however 1) and 2) are not satisfied.
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Motivated by this gap in the literature, in this chapter a new MPC ap-
proach is proposed based on a general fourth-order quadcopter model as pre-
sented in [66]. A cascaded control design is employed, in which the control
of the translational system, consisting of position and velocity kinematics and
dynamics, is re-formulated as a linear problem by considering a virtual acceler-
ation as input. This is referred to as the outer-loop tracking problem and an
MPC strategy is designed that allows for meeting the desired features mentioned
above. In order for the system to track the desired virtual acceleration gener-
ated by the MPC in the outer-loop, a desired thrust vector is generated, which is
converted into a desired attitude that is tracked by using the attitude controller
presented in [123]. The attitude tracking problem is referred to as the inner-loop,
and the adopted controller requires that the desired virtual acceleration is twice
differentiable, which is ensured by considering a linear fourth-order model for
the outer-loop. It is shown how the constraints for the original nonlinear model
can be translated into constraints for the linear fourth-order model, although
this translation involves some degree of conservatism, as will be explained. Con-
sidering a given class of reference inputs, it is shown that the outer-loop MPC
control strategy results in uniform global asymptotic stability (UGAS) for the
tracking error. This convergence proof relies on new technical contributions that
rely on state and input transformations and on recent results on globally stable
MPC strategies for linear systems with input constraints. The advantages of the
proposed cascaded control scheme are show in a numerical case study.

Compared to the preliminary results presented in [9], here: (i) a more com-
plete, fourth-order model of the quadcopter as proposed in [66] is considered, (ii)
trajectory tracking guarantees are provided for the full cascaded system rather
than setpoint guarantees only for the outer-loop controller, and (iii) all the proofs
and extensive explanations, not available in [9], are provided.

The remainder of this chapter is structured as follows. First, the dynamic
model is discussed and the problem is defined in Section 5.3, after which the
method is outlined in Section 5.4. The inner- and outer-loop controllers are
presented in Sections 5.5 and 5.6, which are combined to provide the overall
controller in Section 5.7, together with the proofs of the main results. Sim-
ulations results are provided in Section 5.8. Section 5.9 provides concluding
remarks.

5.2 Preliminaries

In this section the notation used in this chapter is introduced. Let ei ∈ R
3 for

i ∈ {1, 2, 3} denote the standard unit vectors. The trace of a matrix A is denoted
by tr (A) for a square matrix A ∈ R

n×n. The Euclidean, or two-norm, of a vector
is denoted by ‖v‖ for v ∈ R

n, i.e., ‖v‖ =
√
v⊤v. The induced Euclidean matrix

norm for A ∈ R
n×n is denoted similarly by ‖A‖, which is equal to

√

λmax(A⊤A),
where λmax(A

⊤A) denotes the largest eigenvalue of A⊤A. A positive definite and
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semi-positive definite matrix A are denoted by A ≻ 0 and A � 0, respectively.
A diagonal matrix with vectors of entries a, b on the diagonal is denoted as
diag(a, b).

Consider the non-autonomous system

ẋ = f(t, x), (5.1)

with state x taking values in R
n, time t ∈ R≥0 and f : R≥0 × R

n → R
n is

piecewise continuous in t and locally Lipschitz in x. The origing x = 0 is an
equilibrium point of (5.1) at t = 0 if

f(t, 0) = 0, for all t ∈ R≥0. (5.2)

In this chapter uniform global asymptotic stability (UGAS), uniform global ex-
ponential stability (UGES) and uniform local exponential stability (ULES) are
considered, for which definitions are given in [107] and repeated here for conve-
nience.

Definition 5.1 (cf. [107]). The equilibrium point x = 0 of (5.1) is

• stable if, for each ǫ > 0, there is δ = δ(ǫ, t0) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t‖ < ǫ, for all t ≥ t0 ≥ 0. (5.3)

• unstable if it is not stable.

• uniformly stable if, for each ǫ > 0, there is δ = δ(ǫ) > 0, independent of
t0, such that (5.3) is satisfied.

• asymptotically stable if it is stable and there is a positive constant c = c(t0)
such that x(t) → 0 as t→ ∞, for all ‖x(t0)‖ < c.

• uniformly asymptotically stable if it is uniformly stable and there is a pos-
itive constant c, independent of t0, such that for all ‖x(t0)‖ < c, x(t) → 0
as t → ∞, uniformly in t0; that is, for each η > 0, there is T = T (η) > 0
such that

‖x(t)‖ < η, for all t ≥ t0 + T (η), for all ‖x(t0)‖ < c. (5.4)

• uniformly globally asymptotically stable (UGAS) if it is uniformly asymp-
totically stable, δ(ǫ) can be chosen to satisfy limǫ→∞ δ(ǫ) = ∞, and, for
each pair of positive numbers η and c, there is T = T (η, c) > 0 such that

‖x(t)‖ < η, for all t ≥ t0 + T (η, c), for all ‖x(t0)‖ < c. (5.5)

• uniformly locally exponentially stable (ULES) if there exist positive con-
stants c, k, and λ such that

‖x(t)‖ ≤ k ‖x(t0)‖ e−λ(t−t0), for all ‖x(t0)‖ < c. (5.6)



5

5.2 Introduction 85

• uniformly globally exponentially stable (UGES) if (5.6) is satisfied for any
initial state x(t0) ∈ R

n.

Global stabilization of a quadcopter involves global stabilization of its at-
titude on SO(3) and global stabilization of its linear position. Since global
stabilization on SO(3) using a continuous control input can not be achieved,
cf. [24], we need to relax such stability notion. In fact, uniform almost global
asymptotic stability is the aim in this chapter, which is defined as follows:

Definition 5.2. The equilibrium point x = 0 of (5.1) is uniformly almost glob-
ally asymptotically stable (UaGAS), if it is UGAS, except for initial conditions
in a set of measure zero. That is, (5.5) holds for every x(t0) ∈ R

n \ {M}, where
M is a set of measure zero.

5.3 Quadcopter dynamics and problem formulation

In this section a model of the quadcopter dynamics is first introduced, followed
by the introduction of feasible reference trajectories. Based on these two ingre-
dients, a problem statement is provided.

5.3.1 Dynamic model of quadcopter

The model that is used here is based on [102]. However, in contrast to [102], stiff
rotors and no external wind are considered here (as was also done in [66]). To
present the resulting model, suitable coordinate frames are needed. To introduce
them, let W denote a right-handed inertial (or world) frame according to the
North-East-Down (NED) convention, with unit vectors along the axes denoted
by {xW , yW , zW }, forming an orthonormal basis. Let B denote a right-handed
body-fixed frame with unit vectors {xB, yB, zB} forming an orthonormal basis,
where these vectors are the axes of B with respect to W . The origin of the
body-fixed frame coincides with the center of mass of the quadrotor, and zB is
aligned with zW and the gravitational vector when the quadrotor is at hover,
see Figure 5.1. The orientation of B with respect to W is represented by the
rotation matrix R = [xB , yB, zB] ∈ SO(3). Let ω = [ω1, ω2, ω3]

⊤ denote the
angular velocities of B relative to W , expressed in B. The position and linear
velocity of the center of mass of the quadrotor with respect to W are denoted
by p = [px, py, pz]

⊤ and v = [vx, vy , vz]
⊤, respectively.

Using the above variables, the model can now be described by the equations
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Figure 5.1: The inertial reference frame {W } and body fixed frame {B}.

ṗ = v, (5.7a)

v̇ = gzW − TzB −RDR⊤v, (5.7b)

Ṙ = RS(ω), (5.7c)

Jω̇ = S(Jω)ω − τg −AR⊤v − Cω + τ. (5.7d)

The forces acting on the translational dynamics ((5.7a)-(5.7b)) of the quadrotor
consist of the gravity, given by gzW , where g is the gravitational constant, the
thrust force −TzB, where T ≥ 0 denotes the magnitude of the combined thrust
of the four propellers (mass-normalized), and a drag force as a result of rotor
drag −RDR⊤v = −d(R)v, where D = diag(dx, dy, dz), dx, dy, dz > 0 are the
mass-normalized rotor drag coefficients and d(R) = RDR⊤.

The rotation of the quadcopter is characterized by the attitude kinemat-
ics given in (5.7c), where S(a) represents a skew-symmetric matrix such that
S(a)b = a× b for any vectors a, b ∈ R

3 and the dynamics given in (5.7d), where
J ∈ R

3×3 is the inertia matrix, τg ∈ R
3 are torques resulting from gyroscopic

effects, A and C are constant matrices and τ = [τ1, τ2, τ3]
⊤ ∈ R

3 is the torque
input.
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The thrust is considered to be non-negative and limited according to

0 ≤ T (t) ≤ Tmax, for all t ∈ R≥0, (5.8)

where Tmax > g is the maximal thrust. This is a physical restriction dictated by
the fact that the propellers can only generate limited thrust upwards and must
be capable of counteracting the gravitational force. Note that the thrust T and
the torque τ are considered as the control inputs of the quadcopter. Effects such
as motor dynamics and propeller aerodynamics are omitted.

5.3.2 Reference trajectory

In this chapter the focus is on a certain class of feasible reference trajectories. In
fact, a reference trajectory (p̄, v̄, R̄, ω̄, T̄ , τ̄ ) : R≥0 → R

3×R
3×SO(3)×R

3×R×R
3

is called feasible, if it satisfies the dynamics (5.7) in the sense that for all t ∈ R≥0:

˙̄p = v̄, (5.9a)

˙̄v = gzW − T̄ z̄B − R̄DR̄⊤v̄, (5.9b)

˙̄R = R̄S(ω̄), (5.9c)

J ˙̄ω = S(Jω̄)ω̄ − τg −AR̄⊤v̄ − Cω̄ + τ̄ , (5.9d)

and
0 < ǫ ≤ T̄ (t) ≤ Tmax − ǭ, (5.10)

for fixed ǭ, ǫ > 0. Note that the thrust of a feasible reference must be strictly
greater than zero and have a maximum that is strictly smaller than the maximal
thrust Tmax of the actual quadcopter.

5.3.3 Problem statement

Given a feasible reference trajectory, the error coordinates can be defined as

p̃ = p̄− p, (5.11a)

ṽ = v̄ − v, (5.11b)

R̃ = R̄⊤R, (5.11c)

ω̃ = ω − R̃⊤ω̄, (5.11d)

which can be used to formulate the main problem of this chapter as follows.

Problem 1. Given a feasible reference trajectory (p̄, v̄, R̄, ω̄, T̄ , τ̄), find control
laws

T = T (p, v, R, ω, p̄, v̄, R̄, ω̄, T̄ , τ̄),

τ = τ(p, v, R, ω, p̄, v̄, R̄, ω̄, T̄ , τ̄),
(5.12)
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such that (5.8) holds and such that for the closed-loop system (5.7), (5.9), (5.12)

lim
t→∞

(p̃(t), ṽ(t), R̃(t), ω̃(t)) = (0, 0, I, 0), (5.13)

for almost all initial conditions (p(0), v(0), R(0), ω(0)) ∈ R
3×R

3×SO(3)\{M}×
R

3, where M is a set of measure zero.

Assumption 5.3. It is assumed that the effects of rotation in the drag force are
negligible, i.e., that d(R) = RDR⊤ ≈ D, for all trajectories considered.

Remark 5.4. While Problem 1 assumes, for simplicity, a continuous-time con-
troller implementation by making T and τ at time t a function of the state and
reference at time t, the actual proposed controller will take a sample and hold
form. This is required due to the MPC approach. More formally, we can state
that T, τ are functions of the state and reference from time 0 to time t.

5.4 Methodology

In order to solve the nonlinear tracking problem defined in Problem 1, a cascaded
controller design is employed. The cascade consists of an outer loop and an inner
loop, that contain the translational ((5.7a)-(5.7b)) and rotational ((5.7c)-(5.7d))
subsystems, respectively, as depicted in Figure 5.2. First the setup of the cascade
is discussed, followed by the resulting constraints on the subsystems that follow
from the setup and the thrust constraint (5.8). These constraints also ensure
that the variables used in this section are well-defined. The section is concluded
with the problem definitions related to the inner loop and outer loop, that are
solved in the subsequent sections.

5.4.1 Cascaded trajectory tracking setup

Considering the definition of the position and the velocity errors in (5.11a)-
(5.11b), their dynamics can be found by subtracting (5.9a)-(5.9b) from (5.7a)-
(5.7b), giving

˙̃p = ṽ,

˙̃v = −Dṽ + TzB − T̄ z̄B.

Introducing a new virtual input ad ∈ R
3, referred to as the desired acceleration

(error), the actual acceleration error is replaced by ad, i.e.,

ad = TzB − T̄ z̄B, (5.14)

which leads to

˙̃p = ṽ, (5.15a)

˙̃v = −Dṽ + ad. (5.15b)
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ConversionMPC
(Section 5.6)

Attitude

Dynamics

Position

Dynamics
(Section 5.4.1)

(Section 5.5)

Figure 5.2: Overview of the proposed control strategy. In the outer loop, MPC is
used to generate desired accelerations ad, as discussed in Section 5.6. As discussed
in Section 5.4.1, these accelerations are subsequently converted to thrust inputs
T that are applied to the quadcopter as well as desired attitudes Rd and angular
velocities ωd. These are then combined with the reference and measured attitudes
and angular velocities, R̄, ω̄ and R,ω, respectively, in the attitude controller in
the inner loop, resulting in torque inputs τ that are applied to the quadcopter, see
Section 5.5. The outer-loop and inner-loop strategies are combined in Section 5.7,
where the stability of the overall system is discussed as well.

In Section 5.6 an MPC strategy is used to find a desired acceleration ad such
that the dynamics in (5.15) are stabilized and the constraint in (5.8) is satisfied.
Based on this desired acceleration, the inputs τ and T are then used to have the
actual acceleration converge to the desired acceleration, i.e., to have the error

ã = ad − TzB + T̄ z̄B. (5.16)

converge to zero. By setting (5.16) to zero, it follows that

TzB = ad + T̄ z̄B, (5.17)

and by setting the thrust as the magnitude of the vector on the right-hand side,
i.e.,

T =
∥
∥ad + T̄ z̄B

∥
∥ , (5.18)

the first input is determined. Note that in order to ensure the correct direction of
the vector on the right-hand side in (5.17), the vector zB can be used. However,
this is not a direct control input of the quadcopter. Therefore, instead, the
desired rotation of the quadcopter, denoted by Rd, is determined next. First,
note that pre-multiplication of (5.17) with R̄⊤ results in

T R̄⊤Re3 = R̄⊤ad + T̄ R̄⊤R̄e3,
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or, equivalently,

T R̃e3 = R̄⊤ad + T̄ e3. (5.19)

The desired thrust direction is then set to

zB,d =





zB,d1

zB,d2

zB,d3



 =
R̄⊤ad + T̄ e3

∥
∥R̄⊤ad + T̄ e3

∥
∥
, (5.20)

and the remaining columns of the desired quadcopter orientation are set to

yB,d =
zB,d × e1

‖zB,d × e1‖
=

[

0
zB,d3

α

−zB,d2

α

]⊤

,

xB,d = yB,d × zB,d =
[
α − zB,d1

zB,d2

α − zB,d1
zB,d3

α

]⊤
,

for α =
√

z2B,d2
+ z2B,d3

. The desired attitude of the quadcopter is then given by

Rd =
[
xB,d, yB,d, zB,d

]
. (5.21)

Roughly speaking, this ensures that when the errors in (5.15) converge to zero,
ad converges to zero and zB,d → e3, making Rd → I.

Note that the Euclidean norm is invariant under rotation, so that the thrust
defined in (5.18) can be written as

T =
∥
∥ad + T̄ z̄B

∥
∥ =

∥
∥R̄⊤ad + T̄ e3

∥
∥ .

Combined with (5.20) and (5.21), this shows that (5.19) can be written as

T R̃e3 = R̄⊤ad + T̄ e3 = TRde3. (5.22)

From this it becomes clear that by making R̃ converge to Rd, the desired accel-
eration is achieved. This will be achieved using the torque τ , which is generated
by the attitude tracking controller presented in Section 5.5. This controller will
require differentiable setpoints for the desired angular velocity, which are found
by first noting that from Ṙd = RdS(ωd) it follows that

ẋB,d = ωd3
yB,d − ωd2

zB,d, (5.23a)

ẏB,d = −ωd3
xB,d + ωd1

zB,d, (5.23b)

żB,d = ωd2
xB,d − ωd1

yB,d. (5.23c)

Pre-multiplying (5.23b) with x⊤B,d and (5.23c) with x⊤B,d and y⊤B,d results in an
expression for the desired angular velocity as

ωd =





−y⊤B,dżB,d

x⊤B,dżB,d

−x⊤B,dẏB,d



 . (5.24)
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The above derivations show that the desired acceleration ad can be achieved
by generating the desired attitude in (5.21) and using the thrust as in (5.18).
Next, it is discussed how the constraint on the thrust in (5.8) can be converted
to constraints on the desired acceleration ad, which is to be generated by the
MPC. Moreover, the constraints on the desired acceleration will also ensure that
the variables in this section are well-defined.

5.4.2 Constraints

The magnitude of the thrust vector is constrained according to (5.8) and for
(5.20) to be defined it is required that T 6= 0. Furthermore, in order for yB,d

to be well-defined it is required that zB,d and e1 are never parallel, which is
achieved by requiring zB,d3

> 0, which also ensures T 6= 0. Note that from
(5.20) it follows that ensuring zB,d3

> 0 is equivalent to ensuring z̄⊤Bad + T̄ > 0.
To this effect, ad ∈ A is constrained and the set of admissible values that the
desired acceleration can take is defined as

A(R̄, T̄ ) := {ad ∈ R
3|0 <

∥
∥ad + T̄ z̄B

∥
∥ ≤ Tmax, z̄

⊤
Bad + T̄ > 0}. (5.25)

The inner-loop controller requires setpoints for the desired angular velocity and
its derivative, which means that the desired acceleration needs to be twice dif-
ferentiable, see (5.24).

5.4.3 Cascaded problem definition

The original tracking control problem as defined in Problem 1 is now split into
two subproblems, namely an outer-loop and an inner-loop problem. The outer-
loop problem is formulated as

Problem 2 (Outer-loop problem). Find a twice differentiable virtual acceler-
ation control law ad = ad(p, v, p̄, v̄, T̄ ), such that the origin (p̃(t), ṽ(t)) = (0, 0)
of the system ( (5.15a)-(5.15b)) is UGAS and such that ad ∈ A(R̄, T̄ ), for all
t ∈ R≥0, where A(R̄, T̄ ) is defined in (5.25).

Since it is desired to steer R̃ to Rd, the attitude error and angular velocity
error considered in the inner-loop problem are defined as

Re = R⊤
d R̃ (5.26)

and
ωe = ω − R̃⊤ω̄ −R⊤

e ωd, (5.27)

respectively. The inner-loop problem is now formulated as

Problem 3 (Inner-loop problem). Find a control law τ = τ(R,ω, R̄, ω̄, T̄ , ad,
such that the origin (Re(t), ωe(t)) = (I, 0) of the system ( (5.26)-(5.27)) is Ua-
GAS.
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In Section 5.7 it will be shown that by solving Problems 2 and 3 a solution
to Problem 1 can be obtained.

Remark 5.5. Similarly to Remark 5.4, we can state that the control laws in
Problem 2 and 3 are rather a function of state and reference variables from time
0 to time t, to accent the sampled-data approach.

5.5 Inner-loop tracking

As mentioned in the introduction, many controllers for stabilizing the attitude
dynamics of quadcopters have been proposed over the years. Here, a controller
similar to the one proposed in [123] is employed, because it provides ULES
and UaGAS for the attitude dynamics. The dynamics of the error variables in
((5.26),(5.27)) are given by

Ṙe = ReS(ωe),

Jω̇e = S(Jω)ω − τg −AR⊤v − Cω + τ

−JR̃⊤J−1
(
S(Jω̄)ω̄ − τg −AR̄⊤v̄ − Cω̄ + τ̄

)

+J
[(

S(ω)R̃⊤ − R̃⊤S(ω̄)
)

ω̄ + S(ωe)R
⊤
e ωd − R⊤

e ω̇d

]

,

which, combined with the input

τ = −Kωωe +KR

3∑

i=1

ki(ei ×R⊤
e ei)

− S(Jω)ω + τg +AR⊤v + Cω

+ JR̃⊤J−1
(
S(Jω̄)ω̄ − τg −AR̄⊤v̄ − Cω̄ + τ̄

)

− J
[(

S(ω)R̃⊤ − R̃⊤S(ω̄)
)

ω̄ + S(ωe)R
⊤
e ωd −R⊤

e ω̇d

]

,

(5.28)

result in the closed-loop system

Ṙe = ReS(ωe), (5.29a)

Jω̇e = −Kωωe +KR

3∑

i=1

ki(ei ×R⊤
e ei), (5.29b)

with distinct ki > 0, Kω ≻ 0 and KR ≻ 0. The following theorem asserts
stability for this closed-loop system:

Theorem 5.6 (cf. [123], Theorem 4). The system in (5.29) has (I, 0) as a ULES
and UaGAS equilibrium. That is, let Ec = {I, diag(1,−1,−1), diag(−1, 1,−1),
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diag(−1,−1, 1)}, then Re converges to Ec and ωe converges to zero. The equilib-
ria (Re, 0) of (5.29), where Re ∈ Ec \ {I}, are unstable and the set of all initial
conditions converging to the equilibria (Re, 0), where Re ∈ Ec \{I} form a lower
dimensional manifold.

Since Re converges to I for almost all initial conditions it follows from (5.26)
that R̃ converges to Rd for almost all initial conditions. Moreover, as ωe → 0
it follows from (5.27) that ω̃ → R⊤

e ωd, which combined with Re → I results in
ω̃ → ωd. This solves Problem 3.

5.6 Outer-loop tracking

For the outer-loop control problem defined in Problem 2 a model predictive
control (MPC) strategy is used, that allows for the desired acceleration to be
constrained to the set defined in (5.25), while still providing appropriate stability
guarantees. As is common for many MPC strategies, the MPC law used is
formulated in discrete time. An overview of the MPC strategy is provided in
Figure 5.3. In this section, the actual optimal control problem (OCP) that
is solved is presented in a stepwise manner, starting with the discretization
of the dynamics ((5.15a)-(5.15b)) in Section 5.6.1. In this same section, the
constraints on the continuous states are replaced by constraints on the discrete
input, which still ensure the continuous-time satisfaction of the constraint on
the desired acceleration ad in (5.25). An MPC law is formulated based on the
resulting discretized system in Section 5.6.4. This MPC law uses the fact that
a globally stabilizing control law is known, which is introduced just before, in
Section 5.6.3. In Section 5.6.5 it will be shown that stability and constraint
satisfaction is achieved for the continuous time system as well.

MPC

OCP

(Eq. 5.47)
Z�H

Dynamic

Control�er

(��. 5.3�)

Figure 5.3: Overview of the proposed MPC strategy, for one of the three axes.
The position and velocity error dynamics are extended into a dynamic controller
structure in (5.33), which is subsequently discretized using exact discretization
with a ZOH input. This discretized system forms the basis for the optimal control
problem (OCP) that is solved for the MPC strategy in (5.47).
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5.6.1 Discretization and input transformation

As mentioned, the MPC law used is formulated in discrete-time, and in order
to be able to provide twice differentiable desired accelerations for the inner-loop
the following extended version of ((5.15a)-(5.15b)) is considered:

˙̃p = ṽ, (5.30a)

˙̃v = −Dṽ + ad, (5.30b)

ȧd = − 1

γ
(ad + j), (5.30c)

j̇ = − 1

γ
(j + s), (5.30d)

where γ > 0, p̃, ṽ, ad, j ∈ R
3 and the snap s ∈ R

3 is considered as the input.
By designing a piecewise constant (zero-order-hold (ZOH)) control law for s in
this model, instead of for ad directly, it is ensured that ad is twice differentiable
for the original model (5.15). Recall that twice differentiability of the desired
acceleration ad is required by the inner-loop controller. Note that for the purpose
of ensuring differentiability, integrator dynamics would have sufficed, however
the first-order filter dynamics will be used at the end of this subsection to provide
constraint satisfaction in between sample times.

Next, ad is constrained to lie in a more conservative set than strictly neces-
sary, i.e., contained in the set defined in (5.25). However, with the benefit that
this idea will result in an easier control design to generate ad by decoupling the
constraint in (5.25). First note that

∥
∥ad + T̄ z̄B

∥
∥ ≤ ‖ad‖ + T̄ .

Hence, if
‖ad‖ + T̄ ≤ Tmax,

then the upper-bound in (5.25), i.e.,
∥
∥ad + T̄ z̄B

∥
∥ ≤ Tmax, is met. Furthermore,

it also required that z̄⊤Bad + T̄ > 0, which can be ensured by requiring

‖ad‖ ≤ T̄ − δ,

for some small 0 < δ < ǫ. These last two conditions describe a sphere for the
desired acceleration ad to be in of radius Tmax − T̄ and T̄ − δ, respectively.
However, similarly to [152], a more conservative, box approximation AL(T̄ ) ⊂
A(R̄, T̄ ) is considered, where A(R̄, T̄ ) as defined in (5.25) and

AL(T̄ (t)) := {ad ∈ R
3| − L ≤ ad,i ≤ L, i ∈ {1, 2, 3}}, (5.31)

with

L(t) =
1√
3
min

(
T̄ (t)− δ, Tmax − T̄ (t)

)
, (5.32)
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Figure 5.4: Schematic depiction of the constraints on the desired acceleration ad
in 2D (so that circles and squares are considered, instead of spheres and cubes, re-
spectively). The blue and red circles have radii of Tmax− T̄ and T̄−δ, respectively.
Note that the radius of each circle changes as the reference thrust T̄ changes, so
that it is not always the case that the red circle is smaller than the blue circle. In
this case however, the red circle is the smallest, and thus the most restricting for
the desired acceleration ad to have to lie in. In this circle the largest square that
fits is depicted in green, and the constraint on the desired acceleration can now
be decoupled by limiting each of the components to smaller than ±L.

which can be viewed as the largest cube that fits in the sphere that is most
restricting, see Figure 5.4. Note that ad ∈ AL(T̄ ) implies ad ∈ A(R̄, T̄ ). This
allows for the consideration of three separate, constrained, scalar systems given
by

ṗi = vi, (5.33a)

v̇i = −divi + ai, (5.33b)

ȧi = − 1

γ
(ai + ji), (5.33c)

j̇
i
= − 1

γ
(ji + si), (5.33d)

with i ∈ {1, 2, 3}, pi, vi, ai, ji, si ∈ R, di the corresponding component of D and
ai ∈ AL(T̄ (t)) := {a ∈ R| − L(t) ≤ a ≤ L(t)}. The index i will be omitted from
here on whenever possible to improve readability, since the three scalar systems
are of the same form.

Using exact discretization with a ZOH input, i.e.,

s(t) = s(tk), t ∈ [tk, tk+1), (5.34)

with tk = kh, k ∈ N≥0, and h > 0 the sample time, results in the discrete-time
system

xk+1 = Axk +Buk (5.35)
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where xk = x(tk), x =
[
p v a j

]⊤
taking values in R

4, uk = s(tk) taking
values in R and k ∈ N≥0. The system matrices are of the form

A =







1 c1 c2 c3
0 c4 c5 c6
0 0 c7 c8
0 0 0 c7






, B =







c9
c10
c11
c12






, (5.36)

where ci > 0, for i = 1, 2, . . . , 12. The time-varying constraint in (5.32) can be
lower bounded by a positive constant as

0 < ∆ = inf
t∈R

≥0

L(t), (5.37)

since T̄ (t) is limited as in (5.8) and δ < ǫ. The constraint a ∈ AL(T̄ (t)) is
then ensured by initializing the controller such that |a(0)| ≤ ∆, |j(0)| ≤ ∆ and
restricting the input as

−∆ ≤ uk ≤ ∆, for all k ∈ N≥0. (5.38)

This choice of controller saturation results in the satisfaction of the constraint
(5.32) as can be seen by considering the evolution of the acceleration and the
jerk of the system (5.33) in between sample times, which is given by

a(t) = α(t)ak + β(t)j
k
+ [1− α(t) − β(t)]uk,

j(t) = α(t)j
k
+ [1− α(t)]uk,

for t ∈ [tk, tk+1), where α(t) = e−t/γ and β(t) = t
γ e

−t/γ . From these equations
it follows that during the first sample period the jerk is limited by

|j(t)| ≤ α(t)∆ + [1− α(t)]∆ = ∆, (5.39)

for t ∈ [tk, tk+1), so that the jerk is limited at the sample point, as well as
between sample points. Similarly, the acceleration is bounded as

|a(t)| ≤ α(t)∆ + β(t)∆ + [1− α(t)− β(t)]∆ = ∆, (5.40)

for t ∈ [tk, tk+1). This also holds for all subsequent sample periods, so that it
can be concluded that the constraint in (5.31), and thus the constraint in (5.25),
is satisfied for all t ∈ R≥0.
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5.6.2 MPC formulation

The MPC law for the scalar system (5.35) consists of solving the following opti-
mal control problem (OCP) at each time step:

min
Uk

J(xk, Uk) = lT (xN |k) +
N−1∑

ℓ=0

l(xℓ|k, ûℓ|k),

s.t. x0|k = xk,

xℓ+1|k = Axℓ|k +Buℓ|k, ℓ ∈ {0, 1, . . . , N − 1} ,
uℓ|k ∈ Uℓ|k, ℓ ∈ {0, 1, . . . , N − 1} ,

(5.41)

where Uk =
[
u0|k . . . uN−1|k

]⊤
contains the predicted future control inputs.

Moreover, N ∈ N≥1 is the prediction horizon, l : R
4 × R → R≥0 is the

stage/running cost, lT : R4 → R≥0 is the terminal cost and xℓ|k, uℓ|k denote
the prediction of the state and input at time step ℓ+ k, made at time k, respec-
tively. The time-varying set Uℓ|k is chosen such that it contains the constraints
on the input in (5.38) and some additional constraints to ensure stability as
introduced in the sequel.

The first input of the optimal Uk, denoted as U∗
k =

[

u∗0|k . . . u∗N−1|k

]⊤

,

is then applied to the system, yielding the MPC policy uk = µMPC(xk) as a
nonlinear function of the state, where

µMPC(xk) = u∗0|k. (5.42)

The input to the trajectory tracking dynamics in (5.15a)-(5.15b) is now obtained
by solving the OCP at each k ∈ N for each scalar system i ∈ {1, 2, 3} resulting in
µMPC,i(xk). Using these inputs as si(t) = µMPC,i(xk) for t ∈ [tk, tk+1) (see also
(5.34)) in the linear system (5.33) yields ai(t) and ad(t) = [a1(t), a2(t), a3(t)]⊤.

In the rest of this section exact expressions will be provided for the OCP
that ensure that the origin of (5.15a)-(5.15b) is globally asymptotically stable
(GAS).

5.6.3 Low-gain feedback controller

The MPC law as proposed in [205] is used to stabilize the system (5.35)-(5.36).
This MPC law is based on the fact that a globally stabilizing control law is known
for this system that provides a quadratic Lyapunov function. By imposing extra
constraints on the first step of the input, a decrease in the Lyapunov function is
guaranteed.

This stabilizing control law will be introduced shortly, however it is first
shown that there exists a control law that renders the origin of the system
(5.35)-(5.36) globally asymptotically stable in the following lemma.



5

98 Chapter 5. Model Predictive Control for Quadcopters

Lemma 5.7. There exists a control law uk = uk(xk) that renders the origin of
the system (5.35)-(5.36) globally asymptotically stable and that satisfies the input
constraint |uk| ≤ ∆, k ∈ N≥0.

Proof. From [206] it follows that the necessary and sufficient conditions for a lin-
ear system subject to input saturation to be globally asymptotically stabilizable
are

1. The pair (A,B) is stabilizable, and

2. A has as its eigenvalues in the closed unit disc.

The system (5.35)-(5.36) has four eigenvalues:

λ1 = 1, λ2 = e−dh, λ3 = λ4 = e−h/γ , (5.43)

where d, h, γ > 0 . These all lie in the closed unit disk, thus satisfying the second
condition. Moreover, by computing the controllability matrix

C =
[
B AB A2B A3B

]

of the system and calculating its determinant yields that it is nonzero for all
d, h, γ > 0, so that the system is controllable and thus stabilizable.

A globally stabilizing control law, known as a low-gain controller, was pro-
posed in [94] as

uL = Fε(xk)xk = −(R+B⊤Pε(xk)B)−1B⊤Pε(xk)Axk, (5.44)

where R ≻ 0 and ε(xk) > 0 is the low-gain parameter, which is scheduled
such that the controller provides global asymptotic stability. The dependency
of ε(xk) on xk is omitted hereafter for brevity. The matrix Pε ≻ 0 is determined
by solving the parametric discrete-time algebraic Ricatti equation (DARE):

Pε = A⊤PεA−A⊤PεB(RL +B⊤PεB)−1B⊤PεA+Qε, (5.45)

with Qε ≻ 0 a parametrized matrix such that limε→0Qε = 0 and dQε

dt > 0, e.g.,
Qε = εI. The low-gain parameter is scheduled as

ε(xk) = max

{

r ∈ (0, 1]

∣
∣
∣
∣
(x⊤k Prxk)tr(Pr) ≤

∆2

b

}

, (5.46)

where b = 2tr(BB⊤), Pr is the unique positive definite solution of (5.45) with
ε = r and tr(·) denotes the trace of a matrix. For this scheduling it is assumed
that R = I, which can always be achieved by appropriate scaling.

In [206] it was shown that the low-gain controller in (5.44) with Pε the solu-
tion of (5.45) and the scheduling (5.46) provides global asymptotic stability for
linear discrete-time systems subject to input saturation. The following theorem
states the same result for the system under consideration.
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Theorem 5.8 (cf. [206]). The system (5.35) with input (5.44) with R = I, Pε

the solution of (5.45) and the scheduling given in (5.46) satisfies the constraint
(5.37) and is globally asymptotically stable.

5.6.4 Model predictive controller

Next, the same Lyapunov function candidate as was used in the proof of Theo-
rem 5.8 is considered, namely Vk = V (xk) = x⊤k Pkxk and the shorthand nota-
tions Pk = Pε(xk), Qk = Qε(xk), Fk = Fε(xk) and R = I, however the evolution
along trajectories for any |uk| ≤ ∆ is evaluated as

Vk+1 − Vk = −x⊤k Qkxk − u⊤k uk + x⊤k+1(Pk+1 − Pk)xk+1

+ (uk − Fkxk)
⊤(I +B⊤PkB)(uk − Fkxk),

= −x⊤k Qkxk + x⊤k+1(Pk+1 − Pk)xk+1

+ (uk − Fkxk)
⊤B⊤PkB(uk − Fkxk)

− x⊤k F
⊤
k Fkxk − 2x⊤k F

⊤
k (uk − Fkxk).

In [205] it was established that Vk+1−Vk and x⊤k+1(Pk+1−Pk)xk+1 cannot have
the same sign for the scheduling in (5.46), thus a decreasing Lyapunov function
can be ensured by having

2x⊤k Fk(uk − Fkxk)− (uk − Fkxk)
⊤B⊤PkB(uk − Fkxk) ≥ 0.

By writing this constraint as

[
2x⊤k Fk − (uk − Fkxk)

⊤B⊤PkB
]
(uk − Fkxk) ≥ 0,

it becomes clear that the term in the square brackets must have the same sign
as (uk − Fkxk)

1. This can be achieved by requiring

sign(uk − Fkxk)(uk − Fkxk) ≥ 0,

sign(uk − Fkxk)(2Fk −B⊤PkB(uk − Fkxk)) ≥ 0,

or by using the following linear constraints on the input as in [205]:

sign(Fkxk)(uk − Fkxk) ≥ 0,

sign(Fkxk)(2Fk −B⊤PkB(uk − Fkxk)) ≥ 0.

1When both terms are nonzero
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The MPC law then consists of solving the following optimal control problem
(OCP) at each time step

min
Uk

J(xk, Uk) = lT (xN |k) +
N−1∑

ℓ=0

l(xℓ|k, uℓ|k)

s.t. x0|k = xk

xℓ+1|k = Axℓ|k +Buℓ|k, ℓ ∈ {0, . . . , N − 1}
|uℓ|k| ≤ ∆, ℓ ∈ {0, . . . , N − 1}
0 ≤ sign(Fkx0|k)(u0|k − Fkx0|k),

0 ≤ sign(Fkx0|k)(2Fk −B⊤PkB(u0|k − Fkx0|k)).

(5.47)

The first input is then applied to the system according to (5.42), where u∗0|k
is obtained from (5.47). The following result asserts the stability of the MPC
policy [205, 212]:

Theorem 5.9. The origin of the system (5.35) with input (5.42), obtained from
(5.47), for any l : R4 × R → R≥0, lT : R4 → R≥0 and N ∈ N≥1, is globally
asymptotically stable.

Proof. The optimization in (5.47) guarantees, by construction, that Vk+1−Vk <
0, for sufficiently small ǫ and all xk 6= 0. Moreover, the optimization problem is
always feasible, since a known solution in the form of (5.44) is feasible.

Remark 5.10. Note that only the first input of the horizon u0|k in (5.47) needs
to be constrained by ∆, whereas for the rest of the horizon the constraint on the
input can be chosen freely, whilst still guaranteeing feasibility and stability of the
closed-loop system. This is because only the first input in the horizon is applied
to the system, and there always exists a solution in the form of the low-gain
feedback controller.

Remark 5.11. Note that the choice of cost function in (5.47) is not mentioned
in the above theorem, i.e., any cost function and any horizon N ∈ N≥1 can be
chosen whilst still guaranteeing global asymptotic stability of the system (5.35).
In fact, global stability follows from the constraints imposed in (5.47). However,
the performance of the MPC strategy does depend on the choice of cost function,
since the controller is free to generate an input that satisfies the input constraint
and makes the Lyapunov function decrease in the next timestep, but yields a
larger decrease in the Lyapunov function than the low-gain feedback controller.

Remark 5.12. Although the choice of cost function in (5.47) is not relevant for
providing stability guarantees in Theorem 5.9, in the stability proof of the cascade
in Section 5.7 uniqueness of solutions is required. Therefore, the cost function in
(5.47) is limited to be convex in the rest of this chapter. Note that this is not a
major restriction, since in practice convex cost functions are typically preferred
as they often lead to lower computation times.
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5.6.5 Stability of the continuous-time system

Although GAS has been concluded for the system (5.35), care must be taken in
concluding GAS for the continuous-time system in (5.30). The state in (5.35)
is exactly the state (5.30) due to the ZOH and the exact discretization used.
However, the behavior of the continuous-time system in between sampling times
needs to be considered as well.

Consider the continuous-time linear system in (5.30), which can be written
as

˙̄x(t) = Āx(t) + B̄u(t), (5.48)

where x̄(t) = [p̃⊤, ṽ⊤, a⊤d , j
⊤]⊤ ∈ R

12 and the input is generated by solving
(5.47) for each axis and setting

u(t) =





µMPC,1(x̄(kh))
µMPC,2(x̄(kh))
µMPC,3(x̄(kh))



 , for t ∈ [kh, kh+ h). (5.49)

Then, for t ∈ [kh, kh+ h]:

x̄(t) = eĀ(t−kh)x(kh) +

∫ t−kh

0

eĀs ds B̄u(kh),

and therefore

‖x̄(t)‖ = ‖eĀ(t−kh)x̄(kh) +

∫ t−kh

0

eĀs ds B̄u(kh)‖

≤ ‖eĀ(t−kh)‖‖x̄(kh)‖+ ‖
∫ t−kh

0

eĀs dsB̄‖ ‖u(kh)‖

≤ c1‖x̄(kh)‖+ c2 ‖u(kh)‖ .

As both ‖x̄(kh)‖ and ‖u(kh)‖ go to zero it follows that limt→∞ ‖x̄(t)‖ = 0.
Therefore, the system (5.48) in closed loop with the ZOH-input given by (5.42)
is globally asymptotically stable.

5.7 Cascaded trajectory tracking controller

In the previous sections a desired acceleration for asymptotic stability of the po-
sition dynamics in the outer-loop problem was derived together with a controller
that uses the torque and thrust to acquire this desired control action asymptoti-
cally in the inner-loop problem. In order to conclude stability of the closed-loop
system using the proposed strategy, the cascaded system is now examined. To
conclude stability the following theorem will be used:



5

102 Chapter 5. Model Predictive Control for Quadcopters

Theorem 5.13 (cf. [166],[123]). Consider a cascaded system ẋ = f(t, x) with
f(t, 0) = 0, for all t ∈ R≥0, that can be written as

ẋ1 = f1(t, x1) + g(t, x1, x2)x2, (5.50a)

ẋ2 = f2(t, x2), (5.50b)

with x1 and x2 taking values in R
n and R

m, respectively. This system is a
cascade of the systems

ẋ1 = f1(t, x1) (5.51)

and (5.50b). If the origins of the systems (5.51) and (5.50b) are UGAS and
the solutions to (5.50) remain bounded, then the origin of the system (5.50) is
UGAS.

Remark 5.14. In [166] it is assumed that f1(t, x1) is continuously differentiable
in (t, x1) and f2(t, x2), g(t, x1, x2) are continuous in their arguments, and locally
Lipschitz in x2 and (x1, x2) respectively. However, only uniqueness of solutions
(see Remark 5.12) is used in the proof of Theorem 5.13, so that the same theorem
can be employed here in the stability proof for this system.

Consider the dynamics (5.7) and reference (5.9) in closed loop with the inputs
(5.18), (5.28) and (5.49). The closed-loop system is then given by

˙̃p = ṽ, (5.52a)

˙̃v = −Dṽ + ad(t) + TR(I −R⊤
e )e3, (5.52b)

ȧd = − 1

γ
(ad + j), (5.52c)

j̇ = − 1

γ
(j + u), (5.52d)

Ṙe = ReS(ωe), (5.52e)

Jω̇e = −Kωωe +KR

3∑

i=1

ki(ei ×R⊤
e ei). (5.52f)

Theorem 5.15. The origin (p̃, ṽ, Re, ωe) = (0, 0, I, 0) of (5.52) is UaGAS.

Proof. First note that (5.52) is a cascade of the systems ((5.52a)-(5.52d)) and
((5.52e)-(5.52f)). Since ((5.52e)-(5.52f)) is UaGAS, we consider our stability
analysis on R

6×G, where G ⊂ SO(3)×R
3 is the uniformly almost global region

of attraction of ((5.52e)-(5.52f)).
Since ((5.52e)-(5.52f)) and (5.48) are UGAS on R

6×G, it is only required to
show that the solutions remain bounded to conclude UGAS of (5.52) on R

6 ×G
according to Theorem 5.13. The dynamics ((5.52e)-(5.52f)) are bounded since



5

5.7 Cascaded trajectory tracking controller 103

Description Symbol Value

Gravitational constant g 9.81

Inertia matrix J diag(0.08, 0.08, 0.15)

Translational drag coefficients D diag(3.3, 1.7, 1.7)

Gyroscopic torques τg [0, 0, 0]⊤

Cross drag coefficients A 0.1I

Rotational Drag coefficients C 0.5I

Maximum torque Tmax 1.6g = 15.696

Table 5.1: Quadcopter parameters used in simulations.

they are UGAS on G and for ((5.52a)-(5.52d)) the boundedness of solutions
is shown in Appendix 5.A. The result follows from Theorem 5.13. Moreover,
the origin (p̃, ṽ, Re, ωe) = (0, 0, I, 0) is UGAS except for initial conditions in a
set of measure zero, so that UaGAS of (5.52) can be concluded according to
Definition 5.2.

Finally, it is shown that when UaGAS of (5.52) is realized, a solution to
Problem 1 is found.

Corollary 5.16. The controller consisting of the inputs obtained from (5.18),
(5.28) and (5.49) solves Problem 1.

Proof. From Theorem 5.15 it directly follows that (p̃(t), ṽ(t)) → (0, 0), which
combined with ((5.15a)-(5.15b)) results in ad(t) → 0. Then, by using (5.20),
it follows that zB,d(t) → e3 and from (5.21) it then follows that Rd(t) → I.
Combining this with Re(t) → I results in R̃(t) → I. Finally, since ȧd(t) → 0, it
follows that ωd(t) → 0, which, combined with ωe(t) → 0 and (5.27), results in
ω̃(t) → 0, concluding the proof.

5.8 Numerical case study

In this section the effectiveness of the proposed strategy is illustrated through
numerical examples. The dynamics in (5.7) are considered with the parameters
provided in Table 5.1. For the reference trajectory, we consider

p̄(t) =
[
cos(t) sin(t) −5 sin(2t)

]⊤
, (5.53)

together with a heading angle ψ = 0.2t, which is the angle between the projection
of xB onto the xW − yW plane and the xW axis, see Figure 5.1. This angle is
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only well defined when the thrust vector is limited by 0 ≤ z⊤W z̄B(t) < 1, for
t ∈ R≥0, i.e., when the quadcopter is upright, which is the case for this reference
trajectory. This trajectory fully defines the states and inputs of the reference
model in (5.9) by following the differential flatness method employed in [66].
The initial conditions are set to

p(0) =
[
0 1 −6

]⊤
,

v(0) = v̄(0),

R(0) = Rx

(

170
π

180

)

Ry

(

30
π

180

)

Rz

(

20
π

180

)

,

ω(0) = ω̄(0),

where Rx(θ) denotes a rotation around the x-axis according to

Rx(θ) =





1 0 0
0 cos(θ) sin(−θ)
0 sin(θ) cos(θ)





and Ry, Rz are rotations about the y and z axes defined similarly.
For all simulations the inner-loop gains are set to Kω = 30J , KR = 70J with

J the inertia matrix and [k1, k2, k3] = [0.9, 1, 1.1]. Furthermore, a sample time
of h = 0.1 seconds is used and γ = 0.01 is set for the model used in the MPC
controller.

5.8.1 Outer-loop verification

First the scalar, linear discrete-time system (5.35) is simulated for the z-axis,
with the input generated by solving the OCP in (5.47) and transforming back
to the system using (5.42). The following quadratic cost function is used

J = x⊤N |kQNxN |k + fNxN |k +

N−1∑

ℓ=0

x⊤ℓ|kQxℓ|k + fxℓ|k + u⊤ℓ|kRûℓ|k + guℓ|k, (5.54)

with Q = diag(100, 1, 1, 1), QN = 0.01Q, R = 0.1 and fN = f = g = −1.
The settings for the low-gain controller that provides the constraints by solving
the DARE in (5.45) are Qε = εQ and RL = 0.1, where ε is obtained from the
scheduling in (5.46). Note that the settings for the low-gain controller can be
chosen independently of those of the cost function (cf. Remarks 5.11 and 5.12).

To show the importance of the stabilizing constraints, the horizon is set to
N = 1 and the solutions for the OCP are computed with and without the stabiliz-
ing constraints. Figure 5.5 shows the position errors for both cases, showing that
the stabilizing constraints ensure stability and fast convergence. The scheduled
low-gain parameter obtained from (5.46) and corresponding Lyapunov function
are shown for both cases in Figure 5.6, confirming that the constraint on the
first input only results in a decreasing Lyapunov function for the system.
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Figure 5.5: Position errors for the linear discrete-time system with (red, solid)
and without (blue, dashed) constraints.

5.8.2 Quadcopter Simulation

A simulation of the cascaded system, consisting of the outer and inner loop, is
performed next. Most settings remain the same for each subsystem correspond-
ing to the x, y, z axes, except for the prediction horizon and the terminal cost,
which are set to N = 20 and QN = 10Qd, where Qd is obtained by solving
the regular DARE, i.e. (5.45) for ε = 1, with Q and R from the cost function.
Moreover, fN , f and g are set to zero, i.e., fN = f = g = −1.

The resulting trajectory is visualized in Figure 5.10, where it can be seen
that the quadcopter is able to recover from an upside-down initial attitude and
converges to the reference trajectory. The corresponding position and attitude
errors are shown in Figures 5.7 and 5.8, respectively. For the attitude errors
the same metric as in the proof of Theorem 5.13 is used, i.e., γ(R1, R2) =
‖R1 −R2‖F and the distance of both the desired attitude Rd and the reference
attitude error R̃ to I are evaluated. Lastly, Figure 5.9 displays the thrust during
the trajectory, showing that it stays below the maximum value and thus satisfies
the constraint (5.8).

5.9 Conclusions

In this chapter a new cascaded controller was presented, that enables guaranteed
trajectory tracking for quadcopters while taking into account the limited thrust
capabilities of quadcopters. The method uses the differential flatness property
of the quadcopter dynamics in combination with a uniformly almost globally
asymptotically stable inner-loop controller and a novel, MPC-based, uniformly
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Figure 5.6: Low-gain parameter ε(xk) (top) and Lyapunov function Vk (bottom)
for the linear discrete-time system with (red, solid) and without (blue, dashed)
constraints.

globally asymptotically stable outer-loop controller. This combination allows for
providing convergence guarantees for trajectory tracking, incorporation of future
reference information and constraint handling. Moreover, the methodology used
allows the MPC strategy to be formulated as three quadratic problems, each with
just four states and one input, and only linear constraints on the first input of
the horizon, allowing for fast computation times. The advantages of the method
are shown in a numerical case study.

Suggestions for future research include the development of less conservative
constraints on the desired acceleration ad, by, for example, relaxing the need for
decoupling and/or providing tighter bounds on the evolution of the desired accel-
eration in between sample times. An experimental case study and demonstration
of the real-time capability of the suggested control strategy is also of interest.
Finally, the incorporation of measurement inaccuracies in the development of
the controller will make the method more applicable in practice.
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5.A Proof of theorem 5.15

Consider the dynamics in (5.52), which, using (5.48), can be written as

˙̄x(t) = Āx̄(t) + B̄u(x̄(kh)) +







0
I3
0
0






TR(I −RT

e )e3

for t ∈ [kh, kh + h) with x̄(t) ∈ R
12. Using the observation that the x, y and

z dynamics were decoupled, these dynamics can be considered separately, and
using the fact that T is (globally) bounded and the (Re, ωe) dynamics are locally
exponentially stable, only boundedness (and therefore stability) of the following
dynamics needs to be studied:

ẋ(t) = Ax(t) +BµMPC(x(kh)) +







0
1
0
0






γ(t)

for t ∈ [kh, kh+h) with x(t) ∈ R
4, A and B are the system matrices for a single

axis and where |γ(t)| ≤ ce−λt for some constants λ > 0 and c > 0, where c
depends on the initial condition (Re(t0), ωe(t0)).
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The aim is to achieve this by showing that the function V (x) = x⊤Pε(x)x
remains bounded, by considering this function at sample times. The following
properties will be used, which follow from the scheduling in (5.46) (cf. [177],
Theorem 4.52):

1. For any x1, x2 ∈ R
n: x⊤1 Pε(x1)x1 ≤ x⊤2 Pε(x2)x2 implies ε(x1) ≥ ε(x2).

2. Pε is continuously differentiable with respect to ε and dPε

dε > 0 for any
ε ∈ (0, 1].

It follows that:

x(kh+ h) = [Ax(kh) +BµMPC(x(kh))] +

∫ h

0

eĀsγ(kh+ h− s) ds







0
1
0
0






.

Furthermore,
∥
∥
∥
∥
∥

∫ h

0

eĀsγ(kh+ h− s) ds

∥
∥
∥
∥
∥
≤ c4e

−λkh.

From the proof of Theorem 5.9 it is known that

V (Ax(kh) +BµMPC(x(kh))) ≤ V (x(kh)).

Assume that

V (x(kh+ h)) ≥ V (Ax(kh) +BµMPC(x(kh))).
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Then ε(x(kh + h)) ≤ ε(Ax(kh) + BµMPC(x(kh))) and Pε(x(kh+h)) ≤
Pε(Ax(kh)+BµMPC(x(kh))). Therefore,

V (x(kh+ h)) = x(kh+ h)⊤Pε(x(kh+h))x(kh+ h)

≤ x(kh+ h)⊤Pε(Ax(kh)+BµMPC(x(kh)))x(kh+ h)

≤ V (x(kh)) + 2
√

‖Pε(Ax(kh)+BµMPC(x(kh)))‖V (x(kh))c4e
−λkh

+ ‖Pε(Ax(kh)+BµMPC(x(kh)))‖c24e−2λkh

≤ V (x(kh)) + c5
√

V (x(kh))e−λkh + c6e
−2λkh.

In case
V (x(kh+ h)) < V (Ax(kh) +BµMPC(x(kh)))

the latter bound holds even with c5 = c6 = 0, since

V (Ax(kh) +BµMPC(x(kh))) ≤ V (x(kh)).

Observe that the difference equation

Fk+1 = Fk + 2α
√

Fke
−λkh + α2e−2λkh

is solved by

Fk =

(

α
1 − e−λkh

1− e−λh
+
√

F0

)2

.
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Therefore, it is obtained that

V (x(kh)) ≤
(

α
1 − e−λkh

1− e−λh
+
√

V (x(0))

)2

≤
(

α

1− e−λh
+
√

V (x(0))

)2

,

where α = max(c5/2,
√
c6).

Since V (x(kh)) is bounded, boundedness of x(kh) is obtained, from which
boundedness of x(t) follows as well.
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Figure 5.10: Three dimensional plot of the quadcopter trajectory. The position
trajectory of the reference and quadcopter are shown by the red and blue lines,
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and zB axes, respectively. The right most snapshot is the initial condition. Note
that the quadcopter is able to recover from an initial upside-down attitude and
converges to the reference.





CHAPTER 6

Time and Energy Efficient Descent Trajectories

for Quadcopters that Avoid the Vortex Ring

State

In this chapter, the problem of computing time-optimal and energy-optimal vertical

descent trajectories for quadcopters, while avoiding the Vortex Ring State (VRS), is

investigated. The VRS is a region in the velocity space of the quadcopter in which

disturbances on the thrust produced by the propellers result in a reduced control effec-

tiveness and can eventually lead to a crash. A new model is proposed for the VRS

dynamics for quadcopters, which is shown to be more complete in comparison with

existing approaches. Based on this novel model, time-optimal and energy-optimal tra-

jectories are computed using GPOPS II and compared in a numerical case study.

This chapter is based on [10]
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6.1 Introduction

The Vortex Ring State (VRS) is a well-known phenomenon in helicopters [190].
It captures a loss of thrust due to the formation of vortices at the blade tips
during fast descent trajectories, see Fig. 6.1. In normal operation, the horizon-
tal rotors of a quadcopter produce a downward induced flow (Fig. 6.1a). When
the quadcopter starts to descend, this flow is disturbed by the upward flow of
the descending motion. This results in disruption of the laminar flow around the
rotor disks. If the descent rate approaches the rotor induced velocity, vortices
form around the rotor in a vortex ring (Fig. 6.1b). These vortices cause distur-
bances in the thrust and torque that the rotors produce. This in turn can lead
to reduced control effectiveness and even total loss of control of the quadcopter,
with a crash as a possible consequence. The VRS can also occur in cases when
the quadcopter is not descending fast, but the wind causes the quadcopter to
enter the VRS. A well-known example of the latter scenario can take place in
the industrial inspection of chimneys [134], where the quadcopter can enter VRS
even when it is hovering due to a large upward airflow caused by the wind. If
the vertical velocity is further increased, beyond the VRS region, the Turbulent
Wake State (TWS) is entered, which has an even more detrimental effect on the
control effectiveness than the VRS (Fig. 6.1c). At some point the flow around
the rotors will even become laminar again, although in the direction opposite of
that in normal operation (Fig. 6.1d). The velocity region where this occurs is
referred to as the Windmill Brake State (WBS). In the WBS, helicopters can
perform maneuvers that allow them to land safely even when motor failure has
occurred, by changing the pitch of the rotor blades. In quadcopters, the pro-
pellers are typically fixed-pitch, so that it is deemed important to avoid this
region as well. In the rest of this chapter the complete set of regions that need
to be avoided, i.e. the VRS, TWS and WBS, will be referred to simply as the
VRS.

The characteristics of the VRS in helicopters have been studied in detail [2,
100, 52, 209, 200, 146]. However, in quadcopters not much is known about this
effect and there are only a few recent studies [39, 68, 193, 192].

In particular, in [193] a first attempt to describe the VRS in quadcopters
is made. The effect is modeled and experimentally validated, and a constraint
in the velocity space of the quadcopter’s propeller frames is proposed. Time-
optimal descent trajectories that avoid this constraint are then provided by solv-
ing a minimum time-optimal control problem using GPOPS [167], a general pur-
pose optimal control solver. Although the results are impressive, the velocity
in the propeller frame as a result of the angular velocity and the offset of the
propeller from the body-fixed quadcopter frame are not taken into account. In
[192], this component of the blade disk velocity is taken into account, however
only pure yaw rotation is considered to avoid the VRS.

In this chapter this gap in the literature will be addressed and the full dynam-
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Figure 6.1: Schematic depiction of a helicopter in different operating regimes,
based on [165]. The descent rate of the helicopter increases through (a)-(d).

ics of the propeller frames is considered, which results in a more difficult problem
setting due to the coupling between the rotational and translational velocities
in the constraint. Moreover, the challenge of computing not only time-optimal
trajectories is considered, but energy-optimal descent trajectories as well.

The computation of time-optimal trajectories has been studied extensively
in quadcopters following various approaches, including nonlinear program-
ming [95], real-time planning subject to constraints [220], the PRONTO algo-
rithm with barrier functions [186], piecewise polynomial trajectories formulated
as a quadratic program (QP) [96] and direct multiple shooting [72]. A perfor-
mance benchmark is provided in [89].

The computation of energy-optimal trajectories has also received quite some
attention from the research community. For instance, in [132] energy-optimal
trajectories are computed using GPOPS II by assuming that the quadcopter
undergoes three phases, namely: acceleration, constant speed, and deceleration.
In [214] models for the brushless direct current (BLDC) motors and the battery
typically used in quadcopters are provided, as well as a calculation of the energy
consumed by the quadcopter under deterministic wind disturbances. In [38] the
power usage of the drone is calculated by explicitly considering the efficiency of
the battery depending on its state-of-charge. An empirical study for a specific
quadcopter’s energy usage was performed in [1], resulting in a model of the total
energy consumption with specific values that are only applicable to that quad-
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copter, making it unsuitable in this study. However, from the results in [1] it
is clear that the energy used for computation and communication processes is
low compared to that of flying, which is assumed here as well. In [187] a com-
parison between drone-based delivery and truck-based delivery is provided. The
potential of quadcopters to be more efficient in commercial delivery applications
is shown, showcasing the importance of energy-efficient planning.

The contribution in this chapter is twofold; first a new, improved model for
the VRS and corresponding constraint are developed, and, second time-optimal
and energy-optimal trajectories that take into account the VRS are computed.
To the best of the authors’ knowledge, these problems have not been considered
elsewhere. Moreover, the energy-optimal trajectories are considered with free
end time, in contrast to other recent papers [150, 213, 214] that considered fixed
end time. A extensive numerical case study is provided as well.

The remainder of the chapter is organized as follows. In Section 6.2 the con-
sidered quadcopter dynamics, including a BLDC motor model, are presented,
together with a measure of the energy usage of the quadcopter and a problem
formulation is given. Section 6.3 provides a new model of the blade-disk dynam-
ics and compares it to the previously used methods. Section 6.4 presents the use
of GPOPS II to solve the trajectory planning problems and Section 6.5 provides
the numerical case study. The chapter is concluded in Section 6.6 and several
directions for future work are proposed.

6.2 Quadcopter Model

6.2.1 Dynamic model of quadcopter

Let W denote a right-handed inertial (or world) frame according to the North-
East-Down (NED) convention, with unit vectors along the axes denoted by
{xW , yW , zW }. Let B denote a right-handed body-fixed frame with unit vectors
{xB , yB, zB}, where these vectors are the axes of B represented in W . Let Di,
i ∈ {1, 2, 3, 4} denote right-handed frames centered at each of the four propeller
hubs and let li = [li,x, li,y, 0]

⊤ ∈ R
3 denote the position of the origin of frame Di

with respect to B. The origin of the body-fixed frame coincides with the center of
mass of the quadcopter, and zB is aligned with zW and the gravitational vector
when the quadcopter is at hover, see Fig. 6.2. The orientation of B with re-
spect to W is represented by the rotation matrix R = [xB, yB, zB] ∈ SO(3). Let
ω = [ω1, ω2, ω3]

⊤ ∈ B denote the angular velocities of B relative to W , expressed
in B. The position and linear velocity of the center of mass of the quadcopter
with respect to W are denoted by p = [px, py, pz]

⊤ and v = [vx, vy, vz]
⊤, respec-

tively.
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Figure 6.2: The inertial W , body-fixed B and blade disk D1 frames.

The model used was developed in [66] and is given by the equations

ṗ = v, (6.1a)

v̇ = gzW − TzB −RDrR
⊤v, (6.1b)

Ṙ = RS(ω), (6.1c)

Jω̇ = τ − S(ω)Jω − τr. (6.1d)

The forces acting on the translational dynamics of the quadcopter consist of the
gravity, given by gzW , where g is the gravitational constant, the mass-normalized
thrust force −TzB, where T ≥ 0 denotes the magnitude of the combined thrust
of the four propellers, and a drag force as a result of rotor drag where Dr =
diag(dx, dy, dz), dx, dy, dz > 0 are the mass-normalized rotor drag coefficients.

The rotation of the quadcopter is characterized by the attitude kinemat-
ics given in (6.1c), where S(a) represents a skew-symmetric matrix such that
S(a)b = a × b for any vectors a, b ∈ R

3 and the dynamics given in (6.1d),
where J ∈ R

3×3 is the inertia matrix, τr = JrS(ω)Ωre3 ∈ R
3 are torques

resulting from the inertia of the propellers, Jr is the inertia of the propeller
and motor, Ωr =

∑4
i=1 ωr,i, ωr,i is the angular velocity of propeller i and

τ = [τ1, τ2, τ3]
⊤ ∈ R

3 is the torque input.
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Alternatively, the orientation of the quadcopter can be represented using
quaternions instead of rotation matrices as considered above. The use of quater-
nions over rotation matrices results in numerical advantages, which is why
quaternions are used in the computation of trajectories in Section 6.5. In order
to provide more insight in the quadcopter dynamics and the VRS, rotation ma-
trices will be used for now and the introduction of the quaternion form of the
dynamics will be postponed to Section 6.4.

6.2.2 Propeller thrust relation

The thrust and torques exerted on the quadcopter originate from the thrust
generated by each of its four propellers, which in turn are (typically) powered
by BLDC motors. The thrust and torque generated by each of the four propellers
are modeled as

Tp,i = kTω
2
r,i, for i ∈ {1, 2, 3, 4}, (6.2)

τp,i = kτω
2
r,i, for i ∈ {1, 2, 3, 4}, (6.3)

where Tp,i and τp,i are the thrust and torque generated by each propeller, respec-
tively. The constants kT and kτ are the thrust and aerodynamic drag factors of
the propellers and are given by kT = CT

m ρAr2, kτ = CQρAr
3, where m is the

mass of the vehicle, A = πr2 and r are the blade disk area and radius, respec-
tively, ρ is the air density, CQ = CT

√

CT /2 is the propeller torque coefficient
and CT > 0 is the propeller thrust coefficient.

The propeller speeds are then related to the thrust and torque of the quad-
copter as

[
T
τ

]

=







kT kT kT kT
lykT −lykT −lykT lykT
lxkT lxkT −lxkT −lxkT
kτ −kτ kτ −kτ













ω2
r,1

ω2
r,2

ω2
r,3

ω2
r,4






. (6.4)

6.2.3 Brushless DC Motor Model

In order to estimate the energy usage of the quadcopter the method as proposed
in [150] is used, which neglects battery effects and the effects of commonly used
Electronic Speed Controllers (ESCs). The method uses a model that represents
the brushless DC motors used in quadcopters as a resistor and voltage generator
in series and neglects the transient response of the electrical part of the motor,
since it is of a faster timescale than that of the mechanical system. The model
for a single motor is then given by

vm = Rmim + keωr, (6.5a)

keim = Jrω̇r + kτω
2
r + dτωr + τf , (6.5b)
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where Rm, Jr, ke, τf , dτ are motor constants and vm and im are the voltage
and current across the motor, respectively. The power usage of a single motor
is given by

P = vmim = Rmi
2
m + keωrim, (6.6)

which, using (6.5b), can be written as a function of the angular velocity and its
derivative as

P = c1ω̇
2
r + c2ω̇rω

2
r + c3ω̇rωr + c4ω̇r + c5ω

4
r + c6ω

3
r + c7ω

2
r + c8ωr + c9, (6.7)

where

c1 =
Rm

k2e
J2
r , c2 = 2

Rm

k2e
Jrkτ , c3 = 2

Rm

k2e
Jrdτ + Jr,

c4 = 2
Rm

k2e
Jrτf , c5 =

Rm

k2e
k2τ , c6 = 2

Rm

k2e
kτdτ + kτ ,

c7 =
Rm

k2e
(2kτ τf + d2τ ) + dτ , c8 = 2

Rm

k2e
τfdτ + τf ,

c9 =
Rm

k2e
τ2f .

6.2.4 Problem statement

The objective in this chapter is to calculate time-optimal and energy-optimal
trajectories that move from an initial state to a goal state (which is below the
initial state), while avoiding the VRS. The corresponding optimal control prob-
lem formulations are posed first and the constraints for avoiding the VRS are
discussed in the next section.

The energy usage of a quadcopter over a time window can be found by
integrating the sum of the power usage of all propellers over that same window,
i.e., E =

∫ tf
0

∑4
i=1 Pi dt. The general form of the problem tackled in this chapter

is given by

Problem 4. Given an initial (p0, v0, R0, ω0) and final (ptf , vtf , Rtf , ωtf ) condi-
tion, find a solution to the following optimal control problem

min
ωr,i(t),

i∈{1,2,3,4}

J

s.t. (6.1a)− (6.1d) (dynamics),

(6.4) (thrust/torque-propeller relation),

(p(0), v(0), R(0), ω(0)) = (p0, v0, R0, ω0),

(p(tf ), v(tf ), R(tf ), ω(tf )) = (ptf , vtf , Rtf , ωtf ),

0 ≤ ωr,i(t) ≤ ωr,max, ∀t ∈ [0, tf ], i ∈ {1, 2, 3, 4}
vD,i ∈ V , i ∈ {1, 2, 3, 4} (VRS constraint),

(6.8)
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Figure 6.3: Sketch of different operating regimes of a propeller in the blade disk
velocity space. The horizontal (νH) and vertical (νz) velocities are normalized
by the induced velocity at hover [180]. Both the TWS and the WBS are to be
avoided and are referred to, together with the VRS region, as simply the VRS in
this chapter.

where ωr,max > 0 is the maximum rotation speed of the propellers and tf is
the final time, vD,i and V are the blade disk velocities and VRS constraint,
respectively, and will be introduced in the next section. The cost function is
given by

J =

{∫ tf
0

∑4
i=1 Pi dt, for energy optimization,

tf , for time optimization.
(6.9)

6.3 Vortex Ring State

The VRS is an effect that occurs when the quadcopter enters a specific region of
the velocity state-space during descent maneuvers (see Fig. 6.1), resulting in high
fluctuations in the thrust that the quadcopter can provide. The aerodynamics
in the VRS are generally considered turbulent and difficult to model, therefore
the aim is to avoid this region altogether and it is modeled as a hard constraint
on the system.

As stated in the introduction, the different operating regimes have been ex-
tensively studied in helicopters. The regions can be characterized by the hori-
zontal and vertical velocities in the blade disk frame, normalized by the induced
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velocity at hover, as sketched in Fig. 6.3. The velocity of the origin of the blade
disk frame belonging to the ith propeller, i.e. Di, expressed in the same blade
disk frame, is given by

vD,i = vB + ω × li = R⊤v + ω × li, (6.10)

where it is assumed that the blade disk frame and the body-fixed frame have the
same orientation. The horizontal and vertical velocities in the blade disk frame,
normalized by the induced velocity at hover are given by

νH,i =

√

v2D,i,x + v2D,i,y

vh
, νz,i =

vD,i,z

vh
, (6.11)

respectively. Here, vh =
√

Thover/2ρA is the induced velocity at hover, vD,i =
[vD,i,x, vD,i,y, vD,i,z]

⊤ and Thover, ρ and A are the thrust of the propeller at hover,
air density and blade disk area, respectively.

In [193] wind-tunnel experiments were performed with a quadcopter to iden-
tify the VRS regions for fixed pitch blade angles and brushless motors, as they
are commonly used in quadcopter, contrary to helicopters that use variable pitch
blades. As also stated in [193] the WBS is to be avoided in quadcopters, since
due to the fixed pitch blades quadcopters are not able to go into auto-rotation
as helicopters can. The results of the wind-tunnel experiments are shown in
Fig. 6.4.

In [193] the region to be avoided was modeled as the region below the green
line in Fig. 6.4, i.e., the blade disk velocity was constrained to only lie in the
region defined as

vD,i ∈ V1 := {vD,i ∈ R
3|νz,i ≤ νH,i tan(20

◦)}, (6.12)

which can be viewed as a cone into which the velocity vector cannot enter, see
Fig. 6.6. Both 2D and 3D time-optimal trajectories were computed. However,
the component of the blade disk frame that is due to the rotational velocity
of the quadcopter was not taken into account, i.e., in [193] ω was (implicitly)
considered to be zero in (6.10). To realize a more accurate description, here
the rotational component is considered, which, especially for 2D trajectories,
means that the constraint in (6.12) is not suitable. To see this, consider Fig. 6.5,
where a sketch of the 2D model of the quadcopter as used in [193] is shown,
together with the velocity constraint regions generated from (6.12). It becomes
clear that in order to descend, the VRS region must be entered, since due to
the rotational component at least one of the blade disks enters the constraint.
For 3D trajectories the constraint in (6.12) entails that in order to descend, the
quadcopter must, at least in the beginning, perform a yaw rotation. This is not
the case in practice, where slow, purely vertical descent trajectories are possible
for quadcopters.
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Figure 6.4: VRS constraint regions used in this and previous works, together
with wind-tunnel measurements performed in [193]. The black asterisks and red
squares represent measurements with high and low fluctuations of the propeller
thrust, respectively. The area below the green line represents the constraint used
in [193] (6.12), the gray area is the constraint used in [192] (6.13), and the area
below the blue line is used in this chapter (6.14).
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zB

Figure 6.5: Sketch of a 2D quadcopter, with in red the VRS regions according
to (6.12). It is clear that neither downward, nor rotational motion (for which
the blue arrows depict the corresponding blade disk velocities) is possible without
violating the VRS constraint.

Figure 6.6: Blade disk {D} frame and VRS constraint regions. The velocity
of the blade disk frame cannot enter the depicted green cone (V1) (6.12), black
truncated cone (V2) (6.13) or blue paraboloid (V) (6.14). In this chapter a smooth
approximation of the truncated cone, represented by the blue paraboloid, is con-
sidered, in order to improve numerical stability.

In [192] a modified constraint was used, indicated by the gray colored polygon
in Fig. 6.4. In 3D this yields the constraint set given by

vD,i ∈ V2 := {vD,i ∈ R
3|νz,i ≤ νH,i tan(20

◦) ∪ νz,i ≤ 0.5}, (6.13)

which can be viewed as a truncated cone into which the velocity vector cannot
enter, see Fig. 6.6. In this chapter a smooth approximation of this region is
considered, in order to improve numerical stability. The approximated region is
indicated by the area below the blue curve in Fig. 6.4 and is given by

vD,i ∈ V := {vD,i ∈ R
3|νz,i ≤ 0.28ν2H,i + 0.4}. (6.14)

This region can be viewed as a paraboloid, as shown in Fig. 6.6.
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6.4 Computing time- and energy efficient trajectories

The optimal control problem in (6.8) is hard to solve due to several reasons.
First, note that the dynamics in (6.1) are highly nonlinear. The constraint in
(6.14) is non-convex in the blade disk velocity space, and since it is a nonlinear
combination of the other states (see (6.10)), the constraint on the original states
becomes even more complex. Moreover, the constraint needs to be considered
for each propeller, further complicating matters.

Because of the complexity of the problems and the path constraints con-
sidered, a general purpose solver known as GPOPS-II [167] is employed. It is
a direct method, i.e., where the original, continuous optimal control problem
is discretized and transformed into a nonlinear programming (NLP) problem.
More specifically, it employs a variable-order adaptive Legendre-Gauss-Radau
quadrature collocation method.

In order to solve the problem using GPOPS-II, first the dynamics in (6.1) are
written into quaternion form. The main advantage is that quaternions require
only 4 parameters, whereas rotation matrices require 9. Let q denote the unit
quaternion that represents the orientation of frame B with respect to frame W .
The rotation of a vector a ∈ R

3 by the quaternion q, resulting in a new vector
a′ ∈ R

3, is then given by

a′ = Rq(a) = q ⊗
[
0
a

]

⊗ q∗, (6.15)

where ⊗ is the quaternion product and q∗ the quaternion conjugate. The dy-
namics in (6.1) can then be written as

ṗ = v, (6.16a)

v̇ = gzW −Rq(Te3)−Rq(DrRq∗(v)), (6.16b)

q̇ =
1

2
q ⊗ ω, (6.16c)

Jω̇ = τ − S(ω)Jω − τr. (6.16d)

Next, the optimal control problem in (6.8) is written in a common form. Let
the state and input vectors be defined by

x = [p, v, q, ω, ωr]
⊤ ∈ R

n, u = ω̇r ∈ R
m (6.17)

where n = 17 and m = 4. Consider the following optimal control problem

min
u(t)

J

s.t. ẋ(t) = f(x(t), u(t)),

x(0) = x0, x(tf ) = xtf ,

0 ≤ ωr,i(t) ≤ ωr,max, ∀t ∈ [0, tf ], i ∈ {1, 2, 3, 4}
vD,i ∈ V , i ∈ {1, 2, 3, 4} (VRS constraint),

(6.18)
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Table 6.1: Parameters used in simulations [150].

Rm = 0.2 [Ohm] ρ = 1.225 [kg/m3]
ke = 0.0104[Vs/rad] J = diag(0.081, 0.081, 0.142) [kgm2]
CT = 0.0048 [-] Dr = diag(0.3846, 0.3846, 0.1538) [s-1]
τf = 4× 10−2 [Nm] Jm = 4.9× 10−6 [kgm2]
m = 1.3 [kg] Jp = 3.7× 10−5 [kgm2]
r = 0.12 [m] dτ = 2× 10−4 [Nm s/rad]
l = 0.175 [m] ωr,max = 1047.2 [rad/s]
g = 9.81 [m/s2] ω̇r,max = 10000 [rad/s2]

Table 6.2: Initial and final conditions used for the simulations.

Variable Unit Initial Value Final Value

p [m] [0, 0,−30]⊤ [0, 0, 0]⊤

v [m/s] [0, 0, 0]⊤ [0, 0, 0]⊤

q [-] [1, 0, 0, 0]⊤ [1, 0, 0, 0]⊤

ω [rad/s] [0, 0, 0]⊤ [0, 0, 0]⊤

ωr [rad/s] [912, 912, 912, 912]⊤ [912, 912, 912, 912]⊤

where f : Rn × R
m → R

n is given by (6.16) and the cost function is defined as
in (6.9).

6.5 Numerical Case Study

The optimal control problem introduced in (6.18) is considered, with the pa-
rameters of a DJI Phantom 2 quadrotor [56], given in Table 6.1. Two scenarios
are considered, both having the same initial and final conditions, where the
quadcopter starts at a height of 30 meters and has to descend to 0 meters, see
Table 6.2. The quadcopter is required to be at rest in both the initial and final
point, in which case the propeller velocity is given by ωr,hover =

√

Thover/kT . In
the first scenario the quadcopter is not constrained in its horizontal movement
(apart from the VRS), whereas in the second scenario the horizontal positions of
the quadcopter are restricted to lie in the interval [−3, 3] meters. In both cases
the quadcopter’s roll and pitch angles are limited to ±35 degrees, since many
quadcopters used in industry are limited to low angle movements.

The resulting position trajectories are shown in Fig. 6.7 for the restricted
and unrestricted horizontal positions, for both energy and time as optimization
criteria. Moreover, the trajectories resulting from optimization without the VRS
constraint are also shown, which are straight lines, as expected. Note that the
time and energy trajectories are actually quite similar, they are almost mirror
images of each other.
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Table 6.3: Simulation results.

Restricted x, y VRS Criterion Energy [kJ] Time [s]
No Yes Energy 9.909 7.18
No Yes Time 10.62 7.02
No Old Energy 9.720 7.21
No Old Time 10.28 7.00
No No Energy 5.523 4.76
No No Time 5.636 4.74

Yes Yes Energy 12.34 8.87
Yes Yes Time 12.85 8.83
Yes Old Energy 11.91 8.68
Yes Old Time 12.71 8.57
Yes No Energy 5.523 4.76
Yes No Time 5.637 4.74

Numerical results from twelve different settings are compared in Table 6.3,
where the ‘Restricted’ column refers to the restriction of horizontal positions.
The column ‘VRS’ specifies whether the constraint (6.14) is used (‘Yes’) or not
(‘No’) and ‘Old’ refers to the case where the constraint is applied but the angular
velocity is not considered in (6.10). The ‘Criterion’ column specifies whether the
trajectory is optimized for energy or time.

The results displayed in Fig. 6.7 and Table 6.3 show that the time and energy
efficient trajectories are quite similar. This can be explained by considering that
the final time is also an optimization variable in the computation of energy effi-
cient trajectories, thus spending less time to reach the final configuration results
in a lower energy use. Moreover, the trajectories that do not take the angular
velocity in (6.10) into account (‘Old’), are faster and more energy efficient, how-
ever they do violate the VRS in (6.14), as shown in Fig. 6.8 for the time-optimal,
horizontally restricted case. The trajectories that ignore the VRS constraint are
the fastest and most energy efficient, which is to be expected.

Fig. 6.9 shows the 3D position trajectory of the unrestricted, energy opti-
mized case which respects the VRS constraint in (6.14), together with several
snapshots of the quadcopter along the trajectory. From this figure more insight
in the shape of the trajectory and the angles that the quadcopter goes through
is obtained, from which it becomes clear that the quadcopter also uses the yaw
angle to avoid the VRS region. In Fig. 6.10 this can also be seen by looking at
the angles of the quadcopter over time, which also respect the constraint of ±35
degrees for the roll and pitch angles as shown.
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Figure 6.7: Three dimensional plot of the quadcopter trajectory. The results
of energy optimization in the unrestricted translational, restricted translational
and without the VRS cases are shown by the red, blue and green lines, respec-
tively. Similarly, the orange, yellow and dashed brown lines show the unrestricted
translational, restricted translational and without the VRS trajectories for time
optimization. Note that the cases for energy and time optimal paths overlap in
the case that the VRS is not considered.
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6.6 Conclusions and future directions

In this chapter the dynamics of the blade-disk velocity have been carefully mod-
eled and taken into account to ensure the VRS region is avoided. Both time-
optimal and energy-optimal trajectories that avoid the VRS have been computed
using GPOPS II.

This chapter can be viewed as a starting point for many interesting research
directions. For instance, the combination of nonlinear dynamics and non-convex
constraint resulting from the VRS make for a difficult problem to solve. Further
research can be performed into computing optimal trajectories using less com-
putational power, allowing for online optimal control frameworks such as model
predictive control to be applied. The VRS in quadcopters can itself be investi-
gated further by performing more extensive experiments, as well as considering
data-driven methods that allow for the (online) learning of the region and/or
trajectories that avoid it.
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CHAPTER 7

Conclusions and Recommendations

In this dissertation, multiple steps have been taken to address important challenges on

speed, efficiency and robustness of quadcopters. These steps are essential for quad-

copters to become a fully integrated part of our society. This chapter provides the

conclusions that have been reached in solving these challenges and provides suggestions

for further research.
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This thesis contains novel solutions to challenges that cover many aspects of
quadcopters. The conclusions and recommendations related to each contribution
presented in Section 1.6 are discussed separately.

7.1 Adaptive Complementary Filter

In the second chapter of this thesis the challenge of providing accurate attitude
estimates using gyroscopic and vector-based measurements, where the vector-
based measurements consist of accelerometer and magnetometer measurements,
has been considered. It was observed that in real-world applications, the vector-
based measurements suffer from disturbances that are often not taken into ac-
count in current attitude filter design, resulting in poor estimates. These distur-
bances are caused by, for instance, accelerations of the quadcopter that are not
considered in the design of the filter or ferromagnetic materials in the environ-
ment that lead to disturbed measurements of the Earth’s magnetic field by the
magnetometer.

In order to provide more accurate estimates when these disturbances take
place, a new attitude filter was proposed directly on the Special Orthogonal
Group, in the form of an adaptive complementary filter, where the filter gain is
adapted. This adaptation is based on the observation that when the attitude
estimates of the gyroscope and vector-based measurements are of a similar shape
in a certain time window, the vector-based measurements can be considered
accurate. To quantify this, a similarity measure was introduced, which combined
with the adaptation scheme, results in proven convergence of the filter estimate
to the true attitude. It was shown that the filter is more robust to the considered
disturbances, while not losing performance in non-disturbed cases.

Recommendations It is recommended to investigate the application of the
adaptive component of the filter to other, more advanced complementary fil-
ter designs that have been proposed in the literature, although care must be
taken to ensure that convergence can still be guaranteed. Another direction for
future work is the usage of other sensors present on the quadcopter, such as cam-
eras, which can further increase the accuracy of the obtained attitude estimate.
Furthermore, knowledge of the quadcopter model, combined with sensors that
provide position and/or velocity measurements, can also be used for improved
attitude estimation. Finally, it could prove beneficial to use other adaptation
rules based on, for instance, different insights or data-driven methods such as
Gaussian Processes [169] or (Deep) Neural Networks [75].

7.2 Estimation and identification for Markov Jump Linear Systems

In chapters three and four, Markov Jump Linear Systems (MJLSs) have been
studied in the context of both estimation and identification. MJLSs form a class
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of switched linear systems, where the switching occurs according to a Markov
chain, i.e., the mode of the system switches based on some probability, which is
only related to the previous mode the system was in.

In Chapter 3 the problem of maximum likelihood estimation of both the state
and the mode sequence over a certain horizon was considered. Estimates that
satisfy this requirement are referred to as optimal joint maximum a posteriori
probability (JMAP) estimates. It is known that computing the optimal JMAP
estimate for MJLSs is computationally intractable, and, therefore, a novel, sub-
optimal method was proposed. The proposed method uses a technique from
the optimal control community known as relaxed dynamic programming, which
allows to obtain estimates that are guaranteed to be within a pre-specified bound
of the optimal estimates.

It was shown in Chapter 4 that the identification of several classes of Markov
switched systems can be transcribed to the same estimation problem as was
tackled in Chapter 3. In particular, this includes the following classes:

• switched autoregressive models with exogenous inputs (sARX), where the
switching is governed by a Markov chain;

• jump Markov nonlinear systems with subsystem dynamics that depend
affinely on a set of known state and control dependent features and the
coefficients of the affine combination are unknown;

• MJLSs with full state information;

Hence, for these classes the same method can also be applied to identification,
yielding the same guarantees on near-optimality.

The method provides the first theoretical guarantees on near-optimality in
the literature, which is an important step forward compared to existing algo-
rithms that are prone to getting stuck in local optima.

Recommendations The simulations performed on both the estimation and
identification problems suggest that there is room to tighten the theoretical
bound further. That is, the pre-specified bound currently needs to be set quite
large to ensure that the problems remain computationally tractable, while the
resulting estimates are still very close to optimal. It is recommended to improve
upon the existing theoretical bound, in order to provide more insight and perhaps
allow for different pruning methods.

Future work can be performed into finding a relation between a certain max-
imum number of hypotheses being retained and a corresponding bound on the
cost. This would make the method more interesting for practical use, since a
user can then weigh the cost of keeping more hypotheses (and therefore using
more computation) with the benefit of being closer to the optimal estimates.
An interesting research direction towards this relation between complexity and
optimality is to compute, at each timestep, the smallest possible bound that
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keeps the desired number of hypotheses. The guaranteed bound on the cost is
then replaced with this smallest bound at the current timestep, if this smallest
bound is larger than the previously computed guaranteed bound.

7.3 Model Predictive Control for Quadcopters

In Chapter 5 a novel model predictive control (MPC) strategy for quadcopter
reference tracking was presented, that explicitly takes the limited thrust, which
the quadcopter can provide, into account. The strategy consists of an inner-loop,
concerning the attitude and angular velocity dynamics, and an outer-loop, which
handles the position and translational velocity. By using this cascaded strategy,
the outer-loop can be viewed as a linear system with a new, virtual input, which
is transformed to setpoints for the inner-loop to ensure that this virtual input is
actually achieved. For the inner-loop a nonlinear controller is used that provides
almost global asymptotic stability. In the outer-loop, a system extension is first
performed to ensure that, even when using a zero-order-hold sampling on the
input, sufficiently smooth setpoints can be generated for the inner-loop. An
input transformation is subsequently applied to transform the constraints on
the state to constraints on the input only. For this system, a globally stabilizing
controller is known, which is used in the formulation of an MPC scheme that
provides global stability guarantees.

The MPC strategy provides the following main advantages:

1. (Almost) global asymptotic stability guarantees for the whole cascaded
system, where it must be noted that these guarantees hold for the orig-
inal, continuous-time system, even though a zero-order-hold controller is
applied.

2. Guaranteed constraint satisfaction and incorporation of future reference
information due to the usage of an MPC strategy.

3. Complete freedom in choosing the cost function used by the MPC scheme,
while still providing stability guarantees. Moreover, the stability guar-
antees follow from linear constraints on the first input only. This means
that fast computation times can be achieved by the MPC controller and
real-time implementation is possible.

These three features make the proposed tracking controller a promising solution
for future quadcopters.

Recommendations Although the presented strategy provides many advan-
tages, there is room for improvement. For instance, the inner-loop controller uses
feedforward signals to cancel many terms, which might not always be known or
measurable. The assumption of full state information can also be investigated,



7

7.4 Fast Landing for Quadcopters while Avoiding the Vortex Ring State 137

i.e., incorporating estimation (errors) in the design of the strategy. While the
limited thrust capability of the quadcopter is taken into account, the torque that
the quadcopter can generated around its axes is also limited in practice, which
could be considered in a control strategy as well. This can perhaps be achieved
by using MPC for the inner loop as well. Finally, the constraints considered in
the MPC controller are very conservative in order to guarantee stability. It is
recommended to investigate how these can be relaxed. If this is successful, it
can be expected that higher performance can be achieved.

7.4 Fast Landing for Quadcopters while Avoiding the Vortex Ring
State

In Chapter 6 the aerodynamic effect known as the Vortex Ring State has been
studied for quadcopters. This effect occurs during (fast) descent trajectories,
when the descent rate of the quadcopter approaches the induced velocity of
the rotors, resulting in a loss of lift of some, or all, of the propellers. This, in
turn, leads to a reduced control effectiveness and can lead to instability and
uncontrollability of the quadcopter, with a crash as a common result.

Since this effect is detrimental to the safe operation of quadcopters and the
dynamics during this effect are hard to model, the VRS is often avoided alto-
gether by constraining the quadcopter to not enter the region, where the VRS
might occur. A more complete modeling of the blade-disk velocities, which de-
termine when the VRS region is entered, was performed, where the angular ve-
locities of the quadcopter are taken into account. This is in contrast to previous
work, where the effects of the angular velocities on the blade-disk velocities were
not considered. The improved model was subsequently used in the planning of
time-optimal and energy-optimal descent trajectories for quadcopters that avoid
the VRS region.

Recommendations Due to the nonlinear dynamics of the quadcopter in com-
bination with the non-convex constraint related to the VRS region, the compu-
tation of time-optimal and energy-optimal trajectories currently takes several
hours. It is of interest to find approximations that allow for faster computation
of time-optimal and energy-optimal trajectories, so that the trajectories could
be computed online, resulting in a more practical application. This would also
make for landing maneuvers that are more robust against disturbances and/or
modeling errors due to online re-planning of trajectories. Possible avenues for
finding useful approximations include the differential flatness property of quad-
copters [66] as well as MPC, where in the latter case care must be taken to
ensure recursive feasibility and optimality.

The VRS effect itself also invites further investigation, as the effect in quad-
copters has only received little attention from the research community so far.
In doing so, perhaps the detrimental effects caused by the VRS can be avoided
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by not viewing the region as a hard constraint, but as a disturbance on the dy-
namics, which can be compensated for by some controller. Finally, data-driven
methods could be of use as well in order to identify the VRS region or VRS
dynamics, and it is recommended to pursue these directions in the future.

7.5 Final Thoughts

Quadcopters show great promise in providing more time-, cost- and energy-
efficient solutions to existing and future problems in application fields such as
agriculture, (industrial) inspection, law enforcement, delivery (in remote loca-
tions), construction, security, environmental studies and human transport. In
order for quadcopters to become increasingly useful in many of these areas, it
is important that some challenges are overcome. One of the disadvantages of
quadcopters at this stage is their high energy usage and resulting limited flight
time. If improvements can be made in this avenue, their usability would increase
tremendously. Another interesting area is the guaranteed safety of quadcopters
and their environment during normal use, as well as when damage occurs to the
quadcopter.

In this thesis, new methods have been proposed that improve the capabili-
ties of quadcopters. These methods cover many of the most important aspects
of quadcopters, including estimation, identification, planning and control. By
using these results as starting points for future work as suggested in the recom-
mendations, quadcopters can become an important part of our everyday lives.



Bibliography

[1] H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and E. Dutkiewicz,
“Comprehensive energy consumption model for unmanned aerial vehicles,
based on empirical studies of battery performance,” IEEE Access, vol. 6,
pp. 58 383–58 394, 2018.

[2] G. A. Ahlin, “The fluid dynamics of the helicopter vortex ring phe-
nomenon,” Ph.D. dissertation, 2007.

[3] H. Al-Jlailaty and M. M. Mansour, “Efficient attitude estimators: A
tutorial and survey,” Journal of Signal Processing Systems, 5 2021.
[Online]. Available: https://doi.org/10.1007/s11265-020-01620-4

[4] A. R. P. Andriën and D. J. Antunes, “Near-optimal map estimation for
markov jump linear systems using relaxed dynamic programming,” IEEE
Control Systems Letters, vol. 4, no. 4, pp. 815–820, 2020.

[5] A. R. P. Andriën, E. Lefeber, D. J. Antunes, and W. Heemels, “Model
predictive controller for quadcopters with almost global trajectory tracking
guarantees,” To be submitted, 2021.

[6] A. Andriën and D. Antunes, “Filtering and smoothing in the presence of
outliers using duality and relaxed dynamic programming,” in 2019 IEEE
58th Conference on Decision and Control (CDC), 2019, pp. 6038–6043.

[7] ——, “Near-optimal recursive identification for markov switched systems,”
in Accepted to 2021 IEEE 60th Conference on Decision and Control
(CDC), 2021.

[8] A. Andriën, D. Antunes, M. v. d. Molengraft, and W. Heemels, “Similarity-
based adaptive complementary filter for imu fusion,” in 2018 European
Control Conference (ECC), 2018, pp. 3044–3049.

[9] A. Andriën, D. Kremers, D. Kooijman, and D. Antunes, “Model predictive
tracking controller for quadcopters with setpoint convergence guarantees,”
in 2020 American Control Conference (ACC), 2020, pp. 3205–3210.

https://doi.org/10.1007/s11265-020-01620-4


140 Bibliography

[10] A. Andriën, A. Talaeizadeh, D. Antunes, and W. Heemels, “Time and
energy efficient descent trajectories for quadcopters that avoid the vor-
tex ring state,” in Submitted to 2022 IEEE Conference on Robotics and
Automation (ICRA), 2022.

[11] C. V. Angelino, V. R. Baraniello, and L. Cicala, “Uav position and atti-
tude estimation using imu, gnss and camera,” in 2012 15th International
Conference on Information Fusion, 2012, pp. 735–742.

[12] D. J. Antunes and H. Qu, “Frequency domain analysis of networked control
systems modelled by markov jump linear systems,” IEEE Transactions on
Control of Network Systems, pp. 1–1, 2021.

[13] A. J. Baerveldt and R. Klang, “A low-cost and low-weight attitude es-
timation system for an autonomous helicopter,” in Proceedings of IEEE
International Conference on Intelligent Engineering Systems, 9 1997, pp.
391–395.

[14] M. Balasingam, “Drones in medicine—the rise of the machines,”
International Journal of Clinical Practice, vol. 71, no. 9, p. e12989, 2017.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/ijcp.
12989

[15] M. P. Balenzuela, A. G. Wills, C. Renton, and B. Ninness, “A variational
expectation-maximisation algorithm for learning jump markov linear sys-
tems,” 2020, [arXiv preprint arXiv:2004.08564, April 2020].

[16] ——, “Bayesian parameter identification for jump markov linear systems,”
2021, [arXiv preprint arXiv:2004.08565, Februari 2021].

[17] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications
to tracking and navigation: theory algorithms and software. John Wiley
& Sons, 2004.

[18] M. Barao and J. S. Marques, “Offline bayesian identification of jump
markov nonlinear systems,” IFAC Proceedings Volumes, vol. 44, no. 1,
pp. 7761–7766, 2011, 18th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S147466701644855X

[19] B. Barshan and H. F. Durrant-Whyte, “Inertial navigation systems for
mobile robots,” IEEE Transactions on Robotics and Automation, vol. 11,
no. 3, pp. 328–342, 6 1995.

[20] B. Barshan and H. Durrant-Whyte, “Evaluation of a solid-state gyro-
scope for robotics applications,” IEEE Transactions on Instrumentation
and Measurement, vol. 44, no. 1, pp. 61–67, 1995.

https://onlinelibrary.wiley.com/doi/abs/10.1111/ijcp.12989
https://onlinelibrary.wiley.com/doi/abs/10.1111/ijcp.12989
https://arxiv.org/abs/2004.08564
https://arxiv.org/abs/2004.08565
https://www.sciencedirect.com/science/article/pii/S147466701644855X


Bibliography 141

[21] H. Bavle, J. L. Sanchez-Lopez, P. De la Puente, A. Rodriguez-Ramos,
C. Sampedro, and P. Campoy, “Fast and robust flight altitude estimation
of multirotor uavs in dynamic unstructured environments using 3d point
cloud sensors,” Aerospace, vol. 5, no. 3, 2018. [Online]. Available: https://
www.mdpi.com/2226-4310/5/3/94

[22] A. Bemporad, C. Pascucci, and C. Rocchi, “Hierarchical and hybrid
model predictive control of quadcopter air vehicles,” IFAC Proceedings
Volumes, vol. 42, no. 17, pp. 14–19, 2009, 3rd IFAC Conference on
Analysis and Design of Hybrid Systems. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1474667015307308

[23] M. Beul and S. Behnke, “Analytical time-optimal trajectory generation and
control for multirotors,” in 2016 International Conference on Unmanned
Aircraft Systems (ICUAS), 2016, pp. 87–96.

[24] S. P. Bhat and D. S. Bernstein, “A topological obstruction to
continuous global stabilization of rotational motion and the unwinding
phenomenon,” Systems & Control Letters, vol. 39, no. 1, pp. 63–70,
2000. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167691199000900

[25] M. Billio, A. Monfort, and C. Robert, “Bayesian estimation of switching
arma models,” Journal of Econometrics, vol. 93, no. 2, pp. 229–255, 1999.

[26] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon path planning for 3d exploration and surface
inspection,” Autonomous Robots, vol. 42, no. 2, pp. 291–306, 11 2016.
[Online]. Available: https://doi.org/10.1007/s10514-016-9610-0

[27] L. Blackmore, S. Gil, Seung Chung, and B. Williams, “Model learning for
switching linear systems with autonomous mode transitions,” in 2007 46th
IEEE Conference on Decision and Control, 2007, pp. 4648–4655.

[28] W. P. Blair and D. D. Sworder, “Continuous-time regulation of a class of
econometric models,” IEEE Transactions on Systems, Man, and Cyber-
netics, vol. SMC-5, no. 3, pp. 341–346, 5 1975.

[29] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode tech-
niques applied to an indoor micro quadrotor,” in 2005 IEEE Int. Confer-
ence on Robotics and Automation, 4 2005, pp. 2247–2252.

[30] S. Bouabdallah, A. Noth, and R. Siegwart, “Pid vs lq control tech-
niques applied to an indoor micro quadrotor,” in 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2451–2456 vol.3.

https://www.mdpi.com/2226-4310/5/3/94
https://www.mdpi.com/2226-4310/5/3/94
https://www.sciencedirect.com/science/article/pii/S1474667015307308
https://www.sciencedirect.com/science/article/pii/S1474667015307308
https://www.sciencedirect.com/science/article/pii/S0167691199000900
https://www.sciencedirect.com/science/article/pii/S0167691199000900
https://doi.org/10.1007/s10514-016-9610-0


142 Bibliography

[31] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory planning for a
quadrotor helicopter,” in 2008 16th Mediterranean Conference on Control
and Automation, 2008, pp. 1258–1263.

[32] P.-J. Bristeau, F. Callou, D. Vissière, and N. Petit, “The navigation
and control technology inside the ar.drone micro uav,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 1477–1484, 2011, 18th IFAC World Congress.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1474667016438188

[33] F. Bullo and A. D. Lewis, Geometric control of mechanical systems : mod-
eling, analysis, and design for simple mechanical control systems. New
York, NY: Springer, 2005.

[34] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous lo-
calization and mapping: Toward the robust-perception age,” IEEE Trans-
actions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[35] G. Cai, J. Dias, and L. Seneviratne, “A survey of small-scale unmanned
aerial vehicles: Recent advances and future development trends,” Un-
manned Systems, vol. 02, no. 02, pp. 175–199, 2014.

[36] D. Chen, L. Bako, and S. Lecœuche, “A recursive sparse learning
method: Application to jump markov linear systems,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 3198–3203, 2011, 18th IFAC World Congress.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1474667016441030

[37] X. Chen, S. Zhao, and F. Liu, “Identification of time-delay markov
jump autoregressive exogenous systems with expectation-maximization
algorithm,” International Journal of Adaptive Control and Signal
Processing, vol. 31, no. 12, pp. 1920–1933, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.2807

[38] Y. Chen, D. Baek, A. Bocca, A. Macii, E. Macii, and M. Poncino, “A case
for a battery-aware model of drone energy consumption,” in 2018 IEEE
International Telecommunications Energy Conference (INTELEC), 2018,
pp. 1–8.

[39] L. Chenglong, F. Zhou, W. Jiafang, and Z. Xiang, “A vortex-ring-state-
avoiding descending control strategy for multi-rotor uavs,” in 2015 34th
Chinese Control Conference (CCC), 2015, pp. 4465–4471.

[40] A. Cherian, J. Andersh, V. Morellas, N. Papanikolopoulos, and B. Mettler,
“Autonomous altitude estimation of a uav using a single onboard camera,”

https://www.sciencedirect.com/science/article/pii/S1474667016438188
https://www.sciencedirect.com/science/article/pii/S1474667016438188
https://www.sciencedirect.com/science/article/pii/S1474667016441030
https://www.sciencedirect.com/science/article/pii/S1474667016441030
https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.2807


Bibliography 143

in 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2009, pp. 3900–3905.

[41] E. Cinquemani, R. Porreca, G. Ferrari-Trecate, and J. Lygeros, “A general
framework for the identification of jump markov linear systems,” in 2007
46th IEEE Conference on Decision and Control, 2007, pp. 5737–5742.

[42] P. Cohn, A. Green, M. Langstaff, and M. Roller, “Commercial drones are
here: The future of unmanned aerial systems,” McKinsey & Company,
2017.

[43] P. Corke, Robotics, Vision and Control. Springer International
Publishing, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-
54413-7

[44] P. Corke, J. Lobo, and J. Dias, “An introduction to inertial and visual
sensing,” The International Journal of Robotics, vol. 26, pp. 519–535, 2007.

[45] O. Costa, J. do Val, and J. Geromel, “Continuous-time state-feedback h2-
control of markovian jump linear systems via convex analysis,” Automatica,
vol. 35, no. 2, pp. 259 – 268, 1999.

[46] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-time Markov
jump linear systems. Springer Science, 2006.

[47] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“A prototype of an autonomous controller for a quadrotor uav,” in 2007
European Control Conference (ECC), 2007, pp. 4001–4008.

[48] B. Coxworth. (2013, 4) Dji announces stabilized hero mount, and
camera-equipped phantom quadcopter. New Atlas. [Online]. Available:
https://newatlas.com/dji-phantom-vision-zenmuse-quadcopter/27028/

[49] T. Crouch, S. N. Air, and S. Museum, Wings: A History of Aviation from
Kites to the Space Age. Smithsonian National Air and Space Museum,
2003.

[50] R. Cunha, D. Antunes, P. Gomes, and C. Silvestre, “A path-following
preview controller for autonomous air vehicles,” in AIAA Guidance,
Navigation, and Control Conference and Exhibit. American Institute of
Aeronautics and Astronautics, 6 2006. [Online]. Available: https://doi.
org/10.2514/6.2006-6715

[51] A. L. da Silva and J. J. da Cruz, “Fuzzy adaptive extended kalman filter for
uav ins/gps data fusion,” Journal of the Brazilian Society of Mechanical
Sciences and Engineering, vol. 38, no. 6, pp. 1671–1688, 8 2016.

https://doi.org/10.1007/978-3-319-54413-7
https://doi.org/10.1007/978-3-319-54413-7
https://newatlas.com/dji-phantom-vision-zenmuse-quadcopter/27028/
https://doi.org/10.2514/6.2006-6715
https://doi.org/10.2514/6.2006-6715


144 Bibliography

[52] B. Dang-Vu, “Vortex ring state protection flight control law.” in 39th
European Rotorcraft Forum, MOSCOU, Russia, Sep. 2013. [Online].
Available: https://hal-onera.archives-ouvertes.fr/hal-01061133

[53] H. G. de Marina, F. J. Pereda, J. M. Giron-Sierra, and F. Espinosa, “Uav
attitude estimation using unscented kalman filter and triad,” IEEE Trans-
actions on Industrial Electronics, vol. 59, no. 11, pp. 4465–4474, 11 2012.

[54] B. de Miguel Molina and M. Segarra Oña, The Drone Sector in Europe.
Cham: Springer International Publishing, 2018, pp. 7–33. [Online].
Available: https://doi.org/10.1007/978-3-319-71087-7_2

[55] C. E. de Souza and M. D. Fragoso, “h∞ filtering for discrete-time linear
systems with markovian jumping parameters,” Int. Journal of Robust and
Nonlinear Control, vol. 13, no. 14, pp. 1299–1316, 2003.

[56] DJI. Dji phantom 2. DJI. [Online]. Available: https://www.dji.com/nl/
phantom-2

[57] A. Doucet and C. Andrieu, “Iterative algorithms for state estimation of
jump markov linear systems,” IEEE Transactions on Signal Processing,
vol. 49, no. 6, pp. 1216–1227, 6 2001.

[58] A. Doucet, A. Logothetis, and V. Krishnamurthy, “Stochastic sampling
algorithms for state estimation of jump markov linear systems,” IEEE
Trans. on Automatic Control, vol. 45, no. 2, pp. 188–202, 2 2000.

[59] T. M. Drews, P. G. Kry, J. R. Forbes, and C. Verbrugge, “Sequential
pose estimation using linearized rotation matrices,” in 2013 International
Conference on Computer and Robot Vision, 2013, pp. 113–120.

[60] S. Driessen, N. Janssen, L. Wang, J. Palmer, and H. Nijmeijer,
“Experimentally validated extended kalman filter for uav state estimation
using low-cost sensors,” IFAC-PapersOnLine, vol. 51, no. 15, pp. 43–48,
2018, 18th IFAC Symposium on System Identification SYSID 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2405896318317488

[61] H. Durrant-Whyte, N. Roy, and P. Abbeel, Construction of Cubic Struc-
tures with Quadrotor Teams. MITP, 2012, pp. 177–184.

[62] A. El Hadri and A. Benallegue, “Sliding mode observer to estimate both the
attitude and the gyro-bias by using low-cost sensors,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009, pp.
2867–2872.

https://hal-onera.archives-ouvertes.fr/hal-01061133
https://doi.org/10.1007/978-3-319-71087-7_2
https://www.dji.com/nl/phantom-2
https://www.dji.com/nl/phantom-2
https://www.sciencedirect.com/science/article/pii/S2405896318317488
https://www.sciencedirect.com/science/article/pii/S2405896318317488


Bibliography 145

[63] B. J. Emran and H. Najjaran, “A review of quadrotor: An underactuated
mechanical system,” Annual Reviews in Control, vol. 46, pp. 165–180,
2018. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1367578818300932

[64] D. Eynard, P. Vasseur, C. Demonceaux, and V. Frémont, “Uav altitude
estimation by mixed stereoscopic vision,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 646–651.

[65] D. Eynard, P. Vasseur, C. Demonceaux, and V. Frémont, “Real time
UAV altitude, attitude and motion estimation from hybrid stereovision,”
Autonomous Robots, vol. 33, no. 1-2, pp. 157–172, 3 2012. [Online].
Available: https://doi.org/10.1007/s10514-012-9285-0

[66] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of
quadrotor dynamics subject to rotor drag for accurate tracking of high-
speed trajectories,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 620–626, 2018.

[67] I. Fantoni, R. Lozano, and F. Kendoul, “Asymptotic stability of hierarchi-
cal inner-outer loop-based flight controllers,” IFAC Proceedings Volumes,
vol. 41, no. 2, pp. 1741 – 1746, 2008, 17th IFAC World Congress.

[68] J. V. Foster and D. Hartman, “High-fidelity multi-rotor unmanned aircraft
system (UAS) simulation development for trajectory prediction under off-
nominal flight dynamics,” in 17th AIAA Aviation Technology, Integration,
and Operations Conference. American Institute of Aeronautics and
Astronautics, Jun. 2017. [Online]. Available: https://doi.org/10.2514/6.
2017-3271

[69] E. Foxlin, “Inertial head-tracker sensor fusion by a complementary
separate-bias kalman filter,” in Proceedings of the IEEE 1996 Virtual Re-
ality Annual International Symposium, 3 1996, pp. 185–194, 267.

[70] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marín-
Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280 –
2292, 2014.

[71] P. Gąsior, S. Gardecki, J. Gośliński, and W. Giernacki, “Estimation of
altitude and vertical velocity for multirotor aerial vehicle using kalman
filter,” in Recent Advances in Automation, Robotics and Measuring
Techniques. Springer International Publishing, 2014, pp. 377–385.
[Online]. Available: https://doi.org/10.1007/978-3-319-05353-0_36

https://www.sciencedirect.com/science/article/pii/S1367578818300932
https://www.sciencedirect.com/science/article/pii/S1367578818300932
https://doi.org/10.1007/s10514-012-9285-0
https://doi.org/10.2514/6.2017-3271
https://doi.org/10.2514/6.2017-3271
https://doi.org/10.1007/978-3-319-05353-0_36


146 Bibliography

[72] M. Geisert and N. Mansard, “Trajectory generation for quadrotor based
systems using numerical optimal control,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 2958–2964.

[73] W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, and P. Kozier-
ski, “Crazyflie 2.0 quadrotor as a platform for research and education in
robotics and control engineering,” in 2017 22nd International Conference
on Methods and Models in Automation and Robotics (MMAR), 2017, pp.
37–42.

[74] S. Gil and B. Williams, “Beyond local optimality: An improved approach
to hybrid model learning,” in Proceedings of the 48h IEEE Conference on
Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, 2009, pp. 3938–3945.

[75] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[76] G. C. Goodwin, M. M. Seron, and J. A. De Doná, Constrained Estimation.
London: Springer London, 2005, pp. 187–216.

[77] D. Görges, M. Izak, and S. Liu, “Optimal control and scheduling of
switched systems,” IEEE Transactions on Automatic Control, vol. 56,
no. 1, pp. 135–140, 1 2011.

[78] R. Graves, The Greek Myths: The Complete and Definitive Edition. Pen-
guin Books, Limited, 2017.

[79] M. Greeff and A. P. Schoellig, “Flatness-based model predictive control for
quadrotor trajectory tracking,” in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 10 2018, pp. 6740–6745.

[80] H. F. Grip, T. I. Fossen, T. A. Johansen, and A. Saberi, “Globally
exponentially stable attitude and gyro bias estimation with application
to gnss/ins integration,” Automatica, vol. 51, pp. 158–166, 2015.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0005109814004579

[81] A. Gynnild, “The robot eye witness,” Digital Journalism, vol. 2, no. 3,
pp. 334–343, 2014. [Online]. Available: https://doi.org/10.1080/21670811.
2014.883184

[82] T. Hamel and R. Mahony, “Attitude estimation on so[3] based on direct in-
ertial measurements,” in Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006., 5 2006, pp. 2170–2175.

http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/S0005109814004579
https://www.sciencedirect.com/science/article/pii/S0005109814004579
https://doi.org/10.1080/21670811.2014.883184
https://doi.org/10.1080/21670811.2014.883184


Bibliography 147

[83] J. D. Hamilton, “A new approach to the economic analysis of nonstationary
time series and the business cycle,” Econometrica, vol. 57, no. 2, pp. 357–
384, 1989.

[84] G. Hartmann. Clément-bayard, sans peur et sans reproche. [Accessed
15-June-2021]. [Online]. Available: http://www.hydroretro.net/etudegh/
clement-bayard.pdf

[85] M. Hassanalian, D. Rice, and A. Abdelkefi, “Evolution of space drones
for planetary exploration: A review,” Progress in Aerospace Sciences,
vol. 97, pp. 61–105, 2018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0376042117301884

[86] J. Hauser, “A projection operator approach to the optimization of
trajectory functionals,” IFAC Proceedings Volumes, vol. 35, no. 1, pp.
377–382, 2002, 15th IFAC World Congress. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1474667015387334

[87] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1485–1491,
2011, 18th IFAC World Congress. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S147466701643819X

[88] M. Hehn and R. D’Andrea, “A frequency domain iterative learning
algorithm for high-performance, periodic quadrocopter maneuvers,”
Mechatronics, vol. 24, no. 8, pp. 954–965, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957415814001561

[89] M. Hehn, R. Ritz, and R. D’Andrea, “Performance benchmarking of
quadrotor systems using time-optimal control,” Autonomous Robots,
vol. 33, no. 1-2, pp. 69–88, Mar. 2012. [Online]. Available: https://doi.
org/10.1007/s10514-012-9282-3

[90] A. V. Heikki Hyyti, “A dcm based attitude estimation algorithm for low-
cost mems imus,” International Journal of Navigation and Observation,
vol. 2015, 2015.

[91] T. A. Heppenheimer, First flight : the Wright brothers and the invention
of the airplane. Hoboken, N.J: Wiley, 2003.

[92] S. Hojjatinia, C. M. Lagoa, and F. Dabbene, “A method for identification
of markovian jump arx processes,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
14 088–14 093, 2017, 20th IFAC World Congress.

[93] ——, “Identification of switched autoregressive exogenous systems from
large noisy datasets,” International Journal of Robust and Nonlinear Con-
trol, vol. 30, no. 15, pp. 5777–5801, 2020.

http://www.hydroretro.net/etudegh/clement-bayard.pdf
http://www.hydroretro.net/etudegh/clement-bayard.pdf
https://www.sciencedirect.com/science/article/pii/S0376042117301884
https://www.sciencedirect.com/science/article/pii/S0376042117301884
https://www.sciencedirect.com/science/article/pii/S1474667015387334
https://www.sciencedirect.com/science/article/pii/S1474667015387334
https://www.sciencedirect.com/science/article/pii/S147466701643819X
https://www.sciencedirect.com/science/article/pii/S147466701643819X
https://www.sciencedirect.com/science/article/pii/S0957415814001561
https://doi.org/10.1007/s10514-012-9282-3
https://doi.org/10.1007/s10514-012-9282-3


148 Bibliography

[94] P. Hou, A. Saberi, Z. Lin, and P. Sannuti, “Simultaneous external and
internal stabilization for continuous and discrete-time critically unstable
linear systems with saturating actuators,” Automatica, vol. 34, no. 12, pp.
1547 – 1557, 1998.

[95] B. Hu and S. Mishra, “Time-optimal trajectory generation for landing a
quadrotor onto a moving platform,” IEEE/ASME Transactions on Mecha-
tronics, vol. 24, no. 2, pp. 585–596, 2019.

[96] X. Hu, D. Olesen, and P. Knudsen, “Trajectory generation using semidef-
inite programming for multi-rotors,” in 2019 18th European Control Con-
ference (ECC), 2019, pp. 2577–2582.

[97] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadro-
tor with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[98] K. J. Jensen, “Generalized nonlinear complementary attitude filter,”
Journal of Guidance, Control, and Dynamics, vol. 34, no. 5, pp.
1588–1593, 2011. [Online]. Available: https://doi.org/10.2514/1.53467

[99] X. Jin and B. Huang, “Identification of switched markov autoregressive
exogenous systems with hidden switching state,” Automatica, vol. 48,
no. 2, pp. 436–441, 2012. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0005109811005450

[100] W. Johnson, Rotorcraft aeromechanics. Cambridge New York, NY: Cam-
bridge University Press, 2013.

[101] A. L. Juloski, S. Weiland, and W. P. M. H. Heemels, “A bayesian ap-
proach to identification of hybrid systems,” IEEE Transactions on Auto-
matic Control, vol. 50, no. 10, pp. 1520–1533, 2005.

[102] J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel, “Nonlinear
feedback control of quadrotors exploiting first-order drag effects,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 8189–8195, 2017, 20th IFAC World
Congress. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405896317317822

[103] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction
theory,” Journal of basic engineering, vol. 83, no. 1, pp. 95–108, 1961.

[104] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Transactions of the ASME–Journal of Basic Engineering, vol. 82,
no. Series D, pp. 35–45, 1960.

https://doi.org/10.2514/1.53467
https://www.sciencedirect.com/science/article/pii/S0005109811005450
https://www.sciencedirect.com/science/article/pii/S0005109811005450
https://www.sciencedirect.com/science/article/pii/S2405896317317822
https://www.sciencedirect.com/science/article/pii/S2405896317317822


Bibliography 149

[105] V. Kangunde, R. S. Jamisola, and E. K. Theophilus, “A review on drones
controlled in real-time,” International Journal of Dynamics and Control,
1 2021. [Online]. Available: https://doi.org/10.1007/s40435-020-00737-5

[106] K. J. Keesman, System identification : an introduction. London New
York: Springer, 2011.

[107] H. Khalil, Nonlinear Systems, ser. Pearson Education. Prentice Hall,
2002.

[108] M. Khan, M. Zafar, and A. Chatterjee, “Barrier functions in cascaded
controller: Safe quadrotor control,” in 2020 American Control Conference
(ACC), 2020, pp. 1737–1742.

[109] J. Kim, S. A. Gadsden, and S. A. Wilkerson, “A comprehensive survey
of control strategies for autonomous quadrotors,” Canadian Journal of
Electrical and Computer Engineering, vol. 43, no. 1, pp. 3–16, 2020.

[110] E. Kirschner, Aerospace balloons : from Montgolfiere to space. Fallbrook,
CA: Aero, 1985.

[111] M. Kok, Probabilistic modeling for sensor fusion with inertial measure-
ments. Linköping: Linköping University Electronic Press, 2016.

[112] M. Kok and T. B. Schön, “Magnetometer calibration using inertial sensors,”
IEEE Sensors Journal, vol. 16, no. 14, pp. 5679–5689, 2016.

[113] M. Kok, J. D. Hol, and T. B. Schön, “Indoor positioning using ultra-
wideband and inertial measurements,” IEEE Transactions on Vehicular
Technology, vol. 64, no. 4, pp. 1293–1303, 2015.

[114] D. Kooijman, A. P. Schoellig, and D. J. Antunes, “Trajectory tracking
for quadrotors with attitude control on S2 × S1,” in 2019 18th European
Control Conference (ECC), 6 2019, pp. 4002–4009.

[115] R. Kottath, P. Narkhede, V. Kumar, V. Karar, and S. Poddar, “Multiple
model adaptive complementary filter for attitude estimation,” Aerospace
Science and Technology, vol. 69, no. Supplement C, pp. 574 – 581, 2017.

[116] V. Krishnamurthy, S. Dey, and J. P. LeBlanc, “Blind equalization of iir
channels using hidden markov models and extended least squares,” IEEE
Transactions on Signal Processing, vol. 43, no. 12, pp. 2994–3006, 12 1995.

[117] B. Kuchera. (2010, 10) The $300 quadrocopter: your iphone is a remote
control. ARS Technica. [Online]. Available: https://arstechnica.com/
gaming/2010/10/the-300-quadrocopter-your-iphone-is-a-remote-control/

https://doi.org/10.1007/s40435-020-00737-5
https://arstechnica.com/gaming/2010/10/the-300-quadrocopter-your-iphone-is-a-remote-control/
https://arstechnica.com/gaming/2010/10/the-300-quadrocopter-your-iphone-is-a-remote-control/


150 Bibliography

[118] F. Lauer and G. Bloch, Hybrid System Identification: Theory and Algo-
rithms for Learning Switching Models. Lect. Notes Control, 2019.

[119] A. Ledergerber and R. D’andrea, “Calibrating away inaccuracies in ultra
wideband range measurements: A maximum likelihood approach,” IEEE
Access, vol. 6, pp. 78 719–78 730, 2018.

[120] J. H. Ledet, V. P. Jilkov, and X. R. Li, “Recursive sliding-window algo-
rithm for constrained multiple-model map estimation,” in 2018 21st Int.
Conference on Information Fusion, 7 2018, pp. 1–5.

[121] T. Lee, “Bayesian attitude estimation with the matrix fisher distribution
on so(3),” IEEE Transactions on Automatic Control, vol. 63, no. 10, pp.
3377–3392, 2018.

[122] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a
quadrotor uav on se(3),” in 49th IEEE Conference on Decision and Control
(CDC), 2010, pp. 5420–5425.

[123] E. Lefeber, S. J. A. M. van den Eijnden, and H. Nijmeijer, “Almost global
tracking control of a quadrotor uav on se(3),” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), 12 2017, pp. 1175–1180.

[124] G. Lente and K. Ősz, “Barometric formulas: various derivations and
comparisons to environmentally relevant observations,” ChemTexts, vol. 6,
no. 2, Apr. 2020. [Online]. Available: https://doi.org/10.1007/s40828-
020-0111-6

[125] W. Li and J. Wang, “Effective adaptive kalman filter for mems-
imu/magnetometers integrated attitude and heading reference systems,”
Journal of Navigation, vol. 66, no. 1, p. 99–113, 2013.

[126] D. Liberzon, Switching in Systems and Control. Boston, MA, USA:
Birkhauser, 2003.

[127] C. F. Liew, D. DeLatte, N. Takeishi, and T. Yairi, “Recent develop-
ments in aerial robotics: A survey and prototypes overview,” 2017,
[arXiv:1711.10085, November 2017].

[128] J. Linchant, J. Lisein, J. Semeki, P. Lejeune, and C. Vermeulen, “Are
unmanned aircraft systems (uass) the future of wildlife monitoring? a
review of accomplishments and challenges,” Mammal Review, vol. 45,
no. 4, pp. 239–252, 2015. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1111/mam.12046

[129] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE
Transactions on Automatic Control, vol. 51, no. 8, pp. 1249–1260, 8 2006.

https://doi.org/10.1007/s40828-020-0111-6
https://doi.org/10.1007/s40828-020-0111-6
https://onlinelibrary.wiley.com/doi/abs/10.1111/mam.12046
https://onlinelibrary.wiley.com/doi/abs/10.1111/mam.12046


Bibliography 151

[130] A. Logothetis and V. Krishnamurthy, “Expectation maximization algo-
rithms for map estimation of jump markov linear systems,” IEEE Trans.
on Signal Processing, vol. 47, no. 8, pp. 2139–2156, 8 1999.

[131] R. Lozano, A. Sanchez, S. Salazar-Cruz, I. Fantoni, and J. Torres,
“Discrete-time stabilization of integrators in cascade: Real-time stabiliza-
tion of a mini-rotorcraft,” in Proceedings of the 45th IEEE Conference on
Decision and Control, 12 2006, pp. 6265–6270.

[132] H. Lu, K. Chen, X. B. Zhai, B. Chen, and Y. Zhao, “Tradeoff between du-
ration and energy optimization for speed control of quadrotor unmanned
aerial vehicle,” in 2018 IEEE Symposium on Product Compliance Engi-
neering - Asia (ISPCE-CN), 2018, pp. 1–5.

[133] H. J. Luinge, P. H. Veltink, and C. T. M. Baten, “Estimation of orien-
tation with gyroscopes and accelerometers,” in Proceedings of the First
Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and
Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the
Biomedical Engineering Society (Cat. N, vol. 2, 10 1999, pp. 844 vol.2–.

[134] A. Maas. Hadek chimney inspection. Avular. [Online]. Available: https://
avular.com/casestudies/hadek/

[135] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation
of IMU and MARG orientation using a gradient descent algorithm,” in
2011 IEEE International Conference on Rehabilitation Robotics, 6 2011,
pp. 1–7.

[136] R. Mahony, T. Hamel, and J. M. Pflimlin, “Complementary filter design
on the special orthogonal group so(3),” in Proceedings of the 44th IEEE
Conference on Decision and Control, 12 2005, pp. 1477–1484.

[137] ——, “Nonlinear complementary filters on the special orthogonal group,”
IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1203–1218,
6 2008.

[138] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Mod-
eling, estimation, and control of quadrotor,” IEEE Robotics Automation
Magazine, vol. 19, no. 3, pp. 20–32, 9 2012.

[139] P. Marantos, Y. Koveos, and K. J. Kyriakopoulos, “Uav state estimation
using adaptive complementary filters,” IEEE Transactions on Control Sys-
tems Technology, vol. 24, no. 4, pp. 1214–1226, 7 2016.

[140] J. L. Marins, X. Yun, E. R. Bachmann, R. B. McGhee, and M. J. Zyda, “An
extended kalman filter for quaternion-based orientation estimation using
marg sensors,” in Proceedings 2001 IEEE/RSJ International Conference

https://avular.com/casestudies/hadek/
https://avular.com/casestudies/hadek/


152 Bibliography

on Intelligent Robots and Systems. Expanding the Societal Role of Robotics
in the the Next Millennium (Cat. No.01CH37180), vol. 4, 2001, pp. 2003–
2011 vol.4.

[141] K. Masuya, T. Sugihara, and M. Yamamoto, “Design of complementary fil-
ter for high-fidelity attitude estimation based on sensor dynamics compen-
sation with decoupled properties,” in 2012 IEEE International Conference
on Robotics and Automation, 2012, pp. 606–611.

[142] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “Quaternion-based
hybrid control for robust global attitude tracking,” IEEE Transactions
on Automatic Control, vol. 56, no. 11, pp. 2555–2566, 11 2011. [Online].
Available: https://doi.org/10.1109/tac.2011.2108490

[143] D. Q. Mayne, “Model predictive control: Recent developments and future
promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, Dec. 2014. [Online].
Available: https://doi.org/10.1016/j.automatica.2014.10.128

[144] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model pre-
dictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp.
789 – 814, 2000.

[145] G. McLachlan and D. Peel, Finite Mixture Models. Wiley, 2000.

[146] J. McQuaid, A. Kolaei, G. Bramesfeld, and P. Walsh, “Early onset pre-
diction for rotors in vortex ring state,” Journal of Aerospace Engineering,
vol. 33, no. 6, p. 04020081, 2020.

[147] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference on
Robotics and Automation, 5 2011, pp. 2520–2525.

[148] X. Meng and T. Chen, “Optimal sampling and performance comparison of
periodic and event based impulse control,” IEEE Transactions on Auto-
matic Control, vol. 57, no. 12, pp. 3252 –3259, 12 2012.

[149] P. Monzón, “On necessary conditions for almost global stability,” IEEE
Transactions on Automatic Control, vol. 48, no. 4, pp. 631–634, 2003.

[150] F. Morbidi, R. Cano, and D. Lara, “Minimum-energy path generation for
a quadrotor uav,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 1492–1498.

[151] H. D. K. Motlagh, F. Lotfi, H. D. Taghirad, and S. B. Germi, “Position
estimation for drones based on visual slam and imu in gps-denied environ-
ment,” in 2019 7th International Conference on Robotics and Mechatronics
(ICRoM), 2019, pp. 120–124.

https://doi.org/10.1109/tac.2011.2108490
https://doi.org/10.1016/j.automatica.2014.10.128


Bibliography 153

[152] M. W. Mueller and R. D’Andrea, “A model predictive controller for quadro-
copter state interception,” in 2013 European Control Conference (ECC),
2013, pp. 1383–1389.

[153] M. W. Mueller, M. Hamer, and R. D’Andrea, “Fusing ultra-wideband range
measurements with accelerometers and rate gyroscopes for quadrocopter
state estimation,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 1730–1736.

[154] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient
motion primitive for quadrocopter trajectory generation,” IEEE Transac-
tions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[155] K. Munson, Helicopters and other rotorcraft since 1907. London: Bland-
ford Publishing, 1968.

[156] J. Musić, P. M. Cecić, and P. V. Zanchi, “Real-time body orientation
estimation based on two-layer stochastic filter architecture,” Automatika,
vol. 51, no. 3, pp. 264–274, 2010. [Online]. Available: https://doi.org/10.
1080/00051144.2010.11828380

[157] M. Nazarahari and H. Rouhani, “40 years of sensor fusion for orientation
tracking via magnetic and inertial measurement units: Methods, lessons
learned, and future challenges,” Information Fusion, vol. 68, pp. 67–84,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1566253520303997

[158] A. A. Neto, D. G. Macharet, V. C. da Silva Campos, and M. F. Mon-
tenegro Campos, “Adaptive complementary filtering algorithm for mobile
robot localization,” Journal of the Brazilian Computer Society, vol. 15,
no. 3, pp. 19–31, 9 2009.

[159] P. Neto, J. N. Pires, and A. P. Moreira, “3-d position estimation from in-
ertial sensing: Minimizing the error from the process of double integration
of accelerations,” in IECON 2013 - 39th Annual Conference of the IEEE
Industrial Electronics Society, 2013, pp. 4026–4031.

[160] B. J. Njinwoua and A. V. Wouwer, “Cascade attitude control of
a quadcopter in presence of motor asymmetry,” IFAC-PapersOnLine,
vol. 51, no. 4, pp. 113–118, 2018, 3rd IFAC Conference on Advances in
Proportional-Integral-Derivative Control PID 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896318303513

[161] k. Odry, I. Kecskes, P. Sarcevic, Z. Vizvari, A. Toth, and P. Odry,
“A novel fuzzy-adaptive extended kalman filter for real-time attitude
estimation of mobile robots,” Sensors, vol. 20, no. 3, 2020. [Online].
Available: https://www.mdpi.com/1424-8220/20/3/803

https://doi.org/10.1080/00051144.2010.11828380
https://doi.org/10.1080/00051144.2010.11828380
https://www.sciencedirect.com/science/article/pii/S1566253520303997
https://www.sciencedirect.com/science/article/pii/S1566253520303997
https://www.sciencedirect.com/science/article/pii/S2405896318303513
https://www.mdpi.com/1424-8220/20/3/803


154 Bibliography

[162] S. M. Oh, “Multisensor fusion for autonomous uav navigation based on the
unscented kalman filter with sequential measurement updates,” in 2010
IEEE Conference on Multisensor Fusion and Integration, 9 2010, pp. 217–
222.

[163] H. Ohlsson and L. Ljung, “Identification of switched linear regression
models using sum-of-norms regularization,” Automatica, vol. 49, no. 4,
pp. 1045–1050, 2013. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0005109813000320

[164] E. Ozkan, F. Lindsten, C. Fritsche, and F. Gustafsson, “Recursive maxi-
mum likelihood identification of jump markov nonlinear systems,” IEEE
Transactions on Signal Processing, vol. 63, no. 3, pp. 754–765, 2015.

[165] G. Padfield, Helicopter Flight Dynamics: The Theory and Application of
Flying Qualities and Simulation Modeling, ser. AIAA education series.
American Institute of Aeronautics and Astronautics, 2007. [Online].
Available: https://books.google.nl/books?id=kTNMPgAACAAJ

[166] E. Panteley and A. Loría, “Growth rate conditions for uniform asymptotic
stability of cascaded time-varying systems,” Automatica, vol. 37, no. 3,
pp. 453–460, 2001. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0005109800001692

[167] M. A. Patterson and A. V. Rao, “Gpops-ii: A matlab software for solving
multiple-phase optimal control problems using hp-adaptive gaussian
quadrature collocation methods and sparse nonlinear programming,”
ACM Trans. Math. Softw., vol. 41, no. 1, Oct. 2014. [Online]. Available:
https://doi.org/10.1145/2558904

[168] PwC. (2018, 11) Flying high. Engineering Council of India. [Online]. Avail-
able: https://www.pwc.in/assets/pdfs/publications/2018/flying-high.pdf

[169] C. Rasmussen and C. Williams, Gaussian processes for machine learning.
Cambridge, Mass: MIT Press, 2006.

[170] R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea, “Quadrocopter perfor-
mance benchmarking using optimal control,” in 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2011, pp. 5179–5186.

[171] X. Rong Li and V. P. Jilkov, “Survey of maneuvering target tracking.
part v. multiple-model methods,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 41, no. 4, pp. 1255–1321, 10 2005.

[172] G. Rousseau, C. S. Maniu, S. Tebbani, M. Babel, and N. Martin,
“Quadcopter-performed cinematographic flight plans using minimum jerk
trajectories and predictive camera control,” in 2018 European Control Con-
ference (ECC), 2018, pp. 2897–2903.

https://www.sciencedirect.com/science/article/pii/S0005109813000320
https://www.sciencedirect.com/science/article/pii/S0005109813000320
https://books.google.nl/books?id=kTNMPgAACAAJ
https://www.sciencedirect.com/science/article/pii/S0005109800001692
https://www.sciencedirect.com/science/article/pii/S0005109800001692
https://doi.org/10.1145/2558904
https://www.pwc.in/assets/pdfs/publications/2018/flying-high.pdf


Bibliography 155

[173] B. Rubí, R. Pérez, and B. Morcego, “A survey of path following control
strategies for UAVs focused on quadrotors,” Journal of Intelligent &
Robotic Systems, vol. 98, no. 2, pp. 241–265, 9 2019. [Online]. Available:
https://doi.org/10.1007/s10846-019-01085-z

[174] S. Sabatelli, M. Galgani, L. Fanucci, and A. Rocchi, “A double-stage
kalman filter for orientation tracking with an integrated processor in 9-
d imu,” IEEE Transactions on Instrumentation and Measurement, vol. 62,
no. 3, pp. 590–598, 3 2013.

[175] A. Sabatini, “Quaternion-based extended kalman filter for determining ori-
entation by inertial and magnetic sensing,” IEEE Transactions on Biomed-
ical Engineering, vol. 53, no. 7, pp. 1346–1356, 2006.

[176] A. M. Sabatini and V. Genovese, “A sensor fusion method for tracking
vertical velocity and height based on inertial and barometric altimeter
measurements,” Sensors, vol. 14, no. 8, pp. 13 324–13 347, 2014. [Online].
Available: https://www.mdpi.com/1424-8220/14/8/13324

[177] A. Saberi, A. A. Stoorvogel, and P. Sannuti, Internal and External
Stabilization of Linear Systems with Constraints. Birkhäuser Boston,
2012. [Online]. Available: https://doi.org/10.1007/978-0-8176-4787-2

[178] B. Sabetghadam, A. Alcántara, J. Capitán, R. Cunha, A. Ollero, and
A. Pascoal, “Optimal trajectory planning for autonomous drone cinematog-
raphy,” in 2019 European Conference on Mobile Robots (ECMR), 2019, pp.
1–7.

[179] A. Sanyal and N. Chaturvedi, “Almost global robust attitude tracking
control of spacecraft in gravity,” in AIAA Guidance, Navigation and
Control Conference and Exhibit. American Institute of Aeronautics and
Astronautics, 6 2008. [Online]. Available: https://doi.org/10.2514/6.2008-
6979

[180] G. Saunders, Dynamics of helicopter flight. New York: Wiley, 1975.

[181] M. G. Scott. That’s what she said. The Office. [Online]. Available:
https://youtu.be/1mipOFszqNE?t=105

[182] K. D. Sebesta and N. Boizot, “A real-time adaptive high-gain ekf, applied
to a quadcopter inertial navigation system,” IEEE Transactions on Indus-
trial Electronics, vol. 61, no. 1, pp. 495–503, 1 2014.

[183] B. Silver, M. Mazur, A. Wisniewski, and A. Babicz, “Welcome to the era
of drone-powered solutions: a valuable source of new revenue streams for
telecoms operators,” PWC Communications Review, 2017.

https://doi.org/10.1007/s10846-019-01085-z
https://www.mdpi.com/1424-8220/14/8/13324
https://doi.org/10.1007/978-0-8176-4787-2
https://doi.org/10.2514/6.2008-6979
https://doi.org/10.2514/6.2008-6979
https://youtu.be/1mipOFszqNE?t=105


156 Bibliography

[184] H. Simon, “Adaptive filter theory,” Prentice Hall, vol. 2, pp. 478–481, 2002.

[185] A. M. Sjøberg and O. Egeland, “Lie algebraic unscented kalman filter for
pose estimation,” 2020, [arXiv:2005.00385, April 2020].

[186] S. Spedicato and G. Notarstefano, “Minimum-time trajectory generation
for quadrotors in constrained environments,” IEEE Transactions on Con-
trol Systems Technology, vol. 26, no. 4, pp. 1335–1344, 2018.

[187] J. K. Stolaroff, C. Samaras, E. R. O’Neill, A. Lubers, A. S. Mitchell, and
D. Ceperley, “Energy use and life cycle greenhouse gas emissions of drones
for commercial package delivery,” Nature Communications, vol. 9, no. 1,
2 2018. [Online]. Available: https://doi.org/10.1038/s41467-017-02411-5

[188] Q. Sun, C. Lim, P. Shi, and F. Liu, “Design and stability of moving hori-
zon estimator for markov jump linear systems,” IEEE Transactions on
Automatic Control, vol. 64, no. 3, pp. 1109–1124, 3 2019.

[189] A. Svensson, T. B. Schön, and F. Lindsten, “Identification of jump markov
linear models using particle filters,” in 53rd IEEE Conference on Decision
and Control, 2014, pp. 6504–6509.

[190] S. Taamallah, “A qualitative introduction to the vortex-ring-state, autoro-
tation, and optimal autorotation,” in Proceedings of the 36th European
rotorcraft forum. National Aerospace Laboratory NLR, 2010.

[191] S. Taamallah, X. Bombois, and P. M. Van den Hof, “Trajectory planning
and trajectory tracking for a small-scale helicopter in autorotation,”
Control Engineering Practice, vol. 58, pp. 88–106, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0967066116301782

[192] A. Talaeizadeh, H. N. Pishkenari, and A. Alasty, “Quadcopter fast pure de-
scent maneuver avoiding vortex ring state using yaw-rate control scheme,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 927–934, 2021.

[193] A. Talaeizadeh, D. Antunes, H. N. Pishkenari, and A. Alasty,
“Optimal-time quadcopter descent trajectories avoiding the vortex ring
and autorotation states,” Mechatronics, vol. 68, p. 102362, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0957415820300428

[194] G. Tang, W. Sun, and K. Hauser, “Learning trajectories for real- time op-
timal control of quadrotors,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2018, pp. 3620–3625.

https://doi.org/10.1038/s41467-017-02411-5
https://www.sciencedirect.com/science/article/pii/S0967066116301782
https://www.sciencedirect.com/science/article/pii/S0957415820300428
https://www.sciencedirect.com/science/article/pii/S0957415820300428


Bibliography 157

[195] T. Tomić, M. Maier, and S. Haddadin, “Learning quadrotor maneuvers
from optimal control and generalizing in real-time,” in 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2014, pp.
1747–1754.

[196] J. Turner, P. Kenkel, R. B. Holcomb, and B. Arnall, “Economic Poten-
tial of Unmanned Aircraft in Agricultural and Rural Electric Coopera-
tives,” Southern Agricultural Economics Association, 2016 Annual Meet-
ing, February 6-9, 2016, San Antonio, Texas 230047, 2016.

[197] J. Vaganay and M. Aldon, “Attitude estimation for a vehicle using
inertial sensors,” Control Engineering Practice, vol. 2, no. 2, pp. 281–287,
1994. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/0967066194902097

[198] R. G. Valenti, I. Dryanovski, and J. Xiao, “Keeping a good attitude: A
quaternion-based orientation filter for imus and margs,” Sensors, vol. 15,
no. 8, pp. 19 302–19 330, 2015.

[199] M. van Nieuwstadt and R. M. Murray, “Real time trajectory generation
for differentially flat systems,” IFAC Proceedings Volumes, vol. 29, no. 1,
pp. 2301 – 2306, 1996, 13th World Congress of IFAC, 1996, San Francisco
USA, 30 June - 5 July.

[200] H. Van Vyve, “Simulation of a helicopter in vortex ring state through
a coupled simulation of multi-body dynamics and aerodynamics,” Ph.D.
dissertation, UCL - Ecole polytechnique de Louvain, 2019. [Online].
Available: http://hdl.handle.net/2078.1/thesis:19581

[201] J. F. Vasconcelos, B. Cardeira, C. Silvestre, P. Oliveira, and P. Batista,
“Discrete-time complementary filters for attitude and position estimation:
Design, analysis and experimental validation,” IEEE Transactions on Con-
trol Systems Technology, vol. 19, no. 1, pp. 181–198, 2011.

[202] R. Vidal, “Recursive identification of switched arx systems,” Automatica,
vol. 44, no. 9, pp. 2274–2287, 2008. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0005109808001088

[203] P. Voosen, “Nasa to fly drone on titan,” Science, vol. 365, no. 6448, pp.
15–15, 2019. [Online]. Available: https://science.sciencemag.org/content/
365/6448/15.1

[204] G. Wahba, “A least squares estimate of satellite attitude,” SIAM Review,
vol. 7, no. 3, pp. 409–409, 1965.

[205] X. Wang, H. F. Grip, A. Saberi, and T. A. Johansen, “A new low-and-high
gain feedback design using mpc for global stabilization of linear systems

https://www.sciencedirect.com/science/article/pii/0967066194902097
https://www.sciencedirect.com/science/article/pii/0967066194902097
http://hdl.handle.net/2078.1/thesis:19581
https://www.sciencedirect.com/science/article/pii/S0005109808001088
https://www.sciencedirect.com/science/article/pii/S0005109808001088
https://science.sciencemag.org/content/365/6448/15.1
https://science.sciencemag.org/content/365/6448/15.1


158 Bibliography

subject to input saturation,” in 2012 American Control Conference (ACC),
6 2012, pp. 2337–2342.

[206] X. Wang, A. Saberi, A. A. Stoorvogel, and P. Sannuti, “Simultaneous
global external and internal stabilization of linear time-invariant discrete-
time systems subject to actuator saturation,” Automatica, vol. 48, no. 5,
pp. 699 – 711, 2012.

[207] D. Weber, C. Gühmann, and T. Seel, “Neural networks versus conventional
filters for inertial-sensor-based attitude estimation,” 2020, [arXiv preprint
arXiv:2005.06897, June 2020].

[208] J.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem,” IEEE
Transactions on Automatic Control, vol. 36, no. 10, pp. 1148–1162, 1991.

[209] O. Westbrook-Netherton and C. Toomer, “An investigation into predicting
vortex ring state in rotary aircraft,” 2014.

[210] A. Wisniewski and M. Mazur, “Clarity from above pwc global report on the
commercial applications of drone technology,” Tech. rep. May 2016. URL:
http://www. pwc. pl/pl/pdf/clarity-from-above-pwc . . . , Tech. Rep., 2016.

[211] X. Wu and K. Ma, “Attitude estimation based on robust information cuba-
ture quaternion filter,” Circuits, Systems, and Signal Processing, vol. 39,
p. 2948–2967, 2020.

[212] M. Xue and I. A. Hiskens, “Alternative strategies for designing stabilizing
model predictive controllers,” in 52nd IEEE Conference on Decision and
Control, 12 2013, pp. 4491–4497.

[213] F. Yacef, N. Rizoug, L. Degaa, O. Bouhali, and M. Hamerlain, “Trajectory
optimisation for a quadrotor helicopter considering energy consumption,”
in 2017 4th International Conference on Control, Decision and Informa-
tion Technologies (CoDIT), 2017, pp. 1030–1035.

[214] F. Yacef, N. Rizoug, L. Degaa, and M. Hamerlain, “Energy-efficiency path
planning for quadrotor uav under wind conditions,” in 2020 7th Inter-
national Conference on Control, Decision and Information Technologies
(CoDIT), vol. 1, 2020, pp. 1133–1138.

[215] Q.-q. Yang, L.-l. Sun, and L. Yang, “A fast adaptive-gain complementary
filter algorithm for attitude estimation of an unmanned aerial vehicle,”
Journal of Navigation, vol. 71, no. 6, p. 1478–1491, 2018.

[216] T. S. Yoo, S. K. Hong, H. M. Yoon, and S. Park, “Gain-scheduled com-
plementary filter design for a mems based attitude and heading reference
system,” Sensors, vol. 11, no. 4, pp. 3816–3830, 2011.

https://arxiv.org/abs/2005.06897


[217] W. Yoo, E. Yu, and J. Jung, “Drone delivery: Factors affecting the
public’s attitude and intention to adopt,” Telematics and Informatics,
vol. 35, no. 6, pp. 1687–1700, 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0736585318300388

[218] S. Zhang, S. Yu, C. Liu, X. Yuan, and S. Liu, “A dual-linear kalman
filter for real-time orientation determination system using low-cost mems
sensors,” Sensors, vol. 16, no. 2, p. 264, 2 2016.

[219] W. Zhang, J. Hu, and A. Abate, “Infinite-horizon switched lqr problems in
discrete time: A suboptimal algorithm with performance analysis,” IEEE
Transactions on Automatic Control, vol. 57, no. 7, pp. 1815–1821, 7 2012.

[220] X. Zhang, Y. Fang, X. Zhang, P. Shen, J. Jiang, and X. Chen, “Attitude-
constrained time-optimal trajectory planning for rotorcrafts: Theory and
application to visual servoing,” IEEE/ASME Transactions on Mechatron-
ics, vol. 25, no. 4, pp. 1912–1921, 2020.

[221] P. Zhao, Y. Kang, and Y. Zhao, “A brief tutorial and survey on markovian
jump systems: Stability and control,” IEEE Systems, Man, and Cybernet-
ics Magazine, vol. 5, no. 2, pp. 37–C3, 2019.

[222] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” CoRR, vol.
abs/1907.01531, 2019. [Online]. Available: http://arxiv.org/abs/1907.
01531

[223] X. Zhou, Z. Yi, Y. Liu, K. Huang, and H. Huang, “Survey on path and
view planning for uavs,” Virtual Reality & Intelligent Hardware, vol. 2,
no. 1, pp. 56–69, 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2096579620300073

[224] A. Zulu and S. John, “A review of control algorithms for autonomous
quadrotors,” Open Journal of Applied Sciences, vol. 04, no. 14, pp.
547–556, 2014. [Online]. Available: https://doi.org/10.4236/ojapps.2014.
414053

https://www.sciencedirect.com/science/article/pii/S0736585318300388
https://www.sciencedirect.com/science/article/pii/S0736585318300388
http://arxiv.org/abs/1907.01531
http://arxiv.org/abs/1907.01531
https://www.sciencedirect.com/science/article/pii/S2096579620300073
https://www.sciencedirect.com/science/article/pii/S2096579620300073
https://doi.org/10.4236/ojapps.2014.414053
https://doi.org/10.4236/ojapps.2014.414053


160 Bibliography



Summary

Optimization-based
Estimation and Control Algorithms

for Quadcopter Applications

This thesis presents novel optimization-based estimation and control algo-
rithms. While these algorithms are primarily intended for quadcopter applica-
tions, some of these algorithms are more general and can be of interest in a
broader range of applications. Considering the expected increase in the usage of
quadcopters and their new application domains, demands on their performance
in terms of speed, accuracy, reliability and robustness are likely to increase. In
order to meet these new demands, improvements on current methods are re-
quired, of which this thesis provides several.

One of directions in which improvement is required is that of estimation of
the state of the quadcopter, which is covered in the first part of the thesis.
Accurate attitude and position estimation is important for the control of quad-
copters, in order to know their configuration with respect to the environment
they are operating in. In this thesis, novel estimation algorithms are proposed
for both attitude and position estimation. For attitude estimation, the challenge
of accurate estimation that is robust to disturbances in the accelerometer and
magnetometer measurements is considered. An adaptive complementary filter
is proposed that fuses measurements from a gyroscope and vector-based mea-
surements, which are provided by accelerometers and/or magnetometers. The
filter is posed directly on the Special Orthogonal Group, and estimates the dis-
turbances in the vector-based measurements. These estimates are then used to
adapt the gains of the filter to rely more on the measurements with low noise
levels. As a result, the method enhances non-adaptive methods while still pro-
viding similar convergence guarantees for the estimation errors, as will be shown
in this thesis.

Concerning position estimation, the issues arising from intermittent avail-
ability of positioning sensors such as GPS or Ultra-wideband (UWB) systems



ii Summary

are addressed. The estimation problem is formulated in a considerably broader
framework than just the quadcopter context, namely that of state estimation for
Markov Jump Linear Systems (MJLSs). A novel approach for this general prob-
lem relying on Relaxed Dynamic Programming techniques is proposed, leading
to near-optimal estimates within a pre-specified bound. The proposed method
is also applied to the identification of MJLSs.

Another important area of improvement in quadcopters is that of planning
and control, which is covered in the second part of this thesis. Good planning
algorithms are essential in order to ensure that the trajectories generated for
the quadcopter are fast, efficient and safe. In this thesis, a new method is
proposed for the computation of both time-optimal and energy-optimal vertical
descent trajectories. These trajectories are computed while explicitly taking into
account the aerodynamic phenomenon known as the Vortex Ring State (VRS).
This effect occurs during fast descent trajectories and can cause a loss of control
of the quadcopter, which can result in a crash. The VRS is carefully modeled
and is explicitly taken into account in the determination of both time-optimal
and energy-optimal vertical descent trajectories.

The control part of the thesis investigates trajectory tracking for quadcopters.
Accurate and robust trajectory tracking is important to ensure that planned tra-
jectories are followed even when disturbances are presented. For the trajectory
tracking problem a novel model predictive control (MPC) strategy is proposed.
The problem is separated into an outer-loop controller handling the translational
dynamics and an inner-loop controller that handles the attitude dynamics. For
the inner loop a nonlinear controller is used, while for the outer loop MPC
is applied. This MPC strategy uses an input transformation that allows the
use of results on globally stabilizing control for linear systems subject to input
constraints. In this way the MPC strategy allows for reference tracking while
respecting constraints on the thrust of the quadcopter. Results that render the
trajectory tracking errors almost globally asymptotically stable are provided for
the overall strategy.
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