50 research outputs found

    TV white space and LTE network optimization toward energy efficiency in suburban and rural scenarios

    Get PDF
    The radio spectrum is a limited resource. Demand for wireless communication services is increasing exponentially, stressing the availability of radio spectrum to accommodate new services. TV white space (TVWS) technologies allow a dynamic usage of the spectrum. These technologies provide wireless connectivity, in the channels of the very high frequency and ultra high frequency television broadcasting bands. In this paper, we investigate and compare the coverage range, network capacity, and network energy efficiency for TVWS technologies and LTE. We consider Ghent, Belgium, and Boyeros, Havana, Cuba, to evaluate a realistic outdoor suburban and rural area, respectively. The comparison shows that TVWS networks have an energy efficiency 9-12 times higher than LTE networks

    Spectrally efficient emission mask shaping for OFDM cognitive radios

    Get PDF
    Orthogonal Frequency Division Multiplexing has been widely adopted in recent years due to its inherent spectral efficiency and robustness to impulsive noise and fading. For cognitive radio applications in particular, it can enable flexible and agile spectrum allocation, yet suffers from spectral leakage in the form of large side lobes, leading to inter-channel interference, unless mitigated carefully. Hence, recent OFDM-based standards such as 802.11p for vehicular communication and 802.11af for TV whitespace impose strict spectrum emission mask limits to combat adjacent channel interference. Stricter masks allow channels to operate closer together, improving spectral efficiency at the cost of implementation difficulty. Meeting the strict limits is a significant challenge for implementing both 802.11p and 802.11af, yet remains an important requirement for enabling cost-effective systems. This paper proposes a novel method that embeds baseband filtering within a cognitive radio architecture to meet the specification for the most stringent 802.11p and 802.11af masks, while allowing ten 802.11af sub-carriers to occupy a single basic channel without violating SEM specifications. The proposed method, performed at baseband, relaxes otherwise strict RF filter requirements, allowing the RF subsystem to be implemented using much less stringent 802.11a designs, allowing cost reductions

    Reti Wireless Cognitive Cooperanti su TV White e Grey Spaces

    Get PDF
    Wireless networks rapidly became a fundamental pillar of everyday activities. Whether at work or elsewhere, people often benefits from always-on connections. This trend is likely to increase, and hence actual technologies struggle to cope with the increase in traffic demand. To this end, Cognitive Wireless Networks have been studied. These networks aim at a better utilization of the spectrum, by understanding the environment in which they operate, and adapt accordingly. In particular recently national regulators opened up consultations on the opportunistic use of the TV bands, which became partially free due to the digital TV switch over. In this work, we focus on the indoor use of of TVWS. Interesting use cases like smart metering and WiFI like connectivity arise, and are studied and compared against state of the art technology. New measurements for TVWS networks will be presented and evaluated, and fundamental characteristics of the signal derived. Then, building on that, a new model of spectrum sharing, which takes into account also the height from the terrain, is presented and evaluated in a real scenario. The principal limits and performance of TVWS operated networks will be studied for two main use cases, namely Machine to Machine communication and for wireless sensor networks, particularly for the smart grid scenario. The outcome is that TVWS are certainly interesting to be studied and deployed, in particular when used as an additional offload for other wireless technologies. Seeing TVWS as the only wireless technology on a device is harder to be seen: the uncertainity in channel availability is the major drawback of opportunistic networks, since depending on the primary network channel allocation might lead in having no channels available for communication. TVWS can be effectively exploited as offloading solutions, and most of the contributions presented in this work proceed in this direction

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad

    TV White Spaces: A Pragmatic Approach

    Get PDF
    190 pages The editors and publisher have taken due care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained herein. Links to websites imply neither responsibility for, nor approval of, the information contained in those other web sites on the part of ICTP. No intellectual property rights are transferred to ICTP via this book, and the authors/readers will be free to use the given material for educational purposes.  e ICTP will not transfer rights to other organizations, nor will it be used for any commercial purposes. ICTP is not to endorse or sponsor any particular commercial product, service or activity mentioned in this book. This book is released under the Attribution-NonCommercial-NoDerivatives ¦.þ International license. For more details regarding your rights to use and redistribute this work, see http://creativecommons.org/licenses/by-nc-nd/4.0/

    Pushing the Limits of Indoor Localization in Today’s Wi-Fi Networks

    Get PDF
    Wireless networks are ubiquitous nowadays and play an increasingly important role in our everyday lives. Many emerging applications including augmented reality, indoor navigation and human tracking, rely heavily on Wi-Fi, thus requiring an even more sophisticated network. One key component for the success of these applications is accurate localization. While we have GPS in the outdoor environment, indoor localization at a sub-meter granularity remains challenging due to a number of factors, including the presence of strong wireless multipath reflections indoors and the burden of deploying and maintaining any additional location service infrastructure. On the other hand, Wi-Fi technology has developed significantly in the last 15 years evolving from 802.11b/a/g to the latest 802.11n and 802.11ac standards. Single user multiple-input, multiple-output (SU-MIMO) technology has been adopted in 802.11n while multi-user MIMO is introduced in 802.11ac to increase throughput. In Wi-Fi’s development, one interesting trend is the increasing number of antennas attached to a single access point (AP). Another trend is the presence of frequency-agile radios and larger bandwidths in the latest 802.11n/ac standards. These opportunities can be leveraged to increase the accuracy of indoor wireless localization significantly in the two systems proposed in this thesis: ArrayTrack employs multi-antenna APs for angle-of-arrival (AoA) information to localize clients accurately indoors. It is the first indoor Wi-Fi localization system able to achieve below half meter median accuracy. Innovative multipath identification scheme is proposed to handle the challenging multipath issue in indoor environment. ArrayTrack is robust in term of signal to noise ratio, collision and device orientation. ArrayTrack does not require any offline training and the computational load is small, making it a great candidate for real-time location services. With six 8-antenna APs, ArrayTrack is able to achieve a median error of 23 cm indoors in the presence of strong multipath reflections in a typical office environment. ToneTrack is a fine-grained indoor localization system employing time difference of arrival scheme (TDoA). ToneTrack uses a novel channel combination algorithm to increase effective bandwidth without increasing the radio’s sampling rate, for higher resolution time of arrival (ToA) information. A new spectrum identification scheme is proposed to retrieve useful information from a ToA profile even when the overall profile is mostly inaccurate. The triangle inequality property is then applied to detect and discard the APs whose direct path is 100% blocked. With a combination of only three 20 MHz channels in the 2.4 GHz band, ToneTrack is able to achieve below one meter median error, outperforming the traditional super-resolution ToA schemes significantly

    Integration of TV White Space and Femtocell Networks.

    Get PDF
    PhDFemtocell is an effective approach to increase system capacity in cellular networks. Since traditional Femtocells use the same frequency band as the cellular network, cross-tier and co-tier interference exist in such Femtocell networks and have a major impact on deteriorating the system throughput. In order to tackle these challenges, interference mitigation has drawn attentions from both academia and industry. TV White Space (TVWS) is a newly opened portion of spectrum, which comes from the spare spectrum created by the transition from analogue TV to digital TV. It can be utilized by using cognitive radio technology according to the policies from telecommunications regulators. This thesis considers using locally available TVWS to reduce the interference in Femtocell networks. The objective of this research is to mitigate the downlink cross-tier and co-tier interference in different Femtocell deployment scenarios, and increase the throughput of the overall system. A Geo-location database model to obtain locally available TVWS information in UK is developed in this research. The database is designed using power control method to calculate available TVWS channels and maximum allowable transmit power based on digital TV transmitter information in UK and regulations on unlicensed use of TVWS. The proposed database model is firstly combined with a grid-based resource allocation scheme and investigated in a simplified Femtocell network to demonstrate the gains of using TVWS in Femtocell networks. Furthermore, two Femtocell deployment scenarios are studied in this research. In the suburban Femtocell deployment scenario, a novel system architecture that consists of the Geo-location database and a resource allocation scheme using TVWS is proposed to mitigate cross-tier interference between Macrocell and Femtocells. In the dense Femtocell deployment scenario, a power efficient resource allocation scheme is proposed to maximize the throughput of Femtocells while limiting the co-tier interference among Femtocells. The optimization problem in the power efficient scheme is solved by using sequential quadratic programming method. The simulation results show that the proposed schemes can effectively mitigate the interference in Femtocell networks in practical deployment scenarios
    corecore