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Abstract

Wi-Fi networks are ubiquitous nowadays and play an increasingly important role in

our everyday lives. Many emerging applications including augmented reality, indoor

navigation and human tracking, rely heavily on Wi-Fi. One key component for the suc-

cess of these applications is accurate localization. While we have GPS in the outdoor

environment, indoor localization at a sub-meter granularity remains challenging.

On the other hand, Wi-Fi technology has developed significantly evolving from

802.11b/a/g to the latest 802.11ac standard. In Wi-Fi’s development, one interesting

trend is the increasing number of antennas attached to a single access point (AP). An-

other trend is the presence of frequency-agile radios and larger bandwidths in the latest

802.11n/ac standards. These opportunities are leveraged to increase the accuracy of

indoor localization significantly:

ArrayTrack employs multi-antenna APs for angle-of-arrival (AoA) information

to localize clients accurately indoors. It is the first indoor Wi-Fi localization system

able to achieve below half meter median accuracy. Innovative multipath identification

scheme is proposed to handle the challenging multipath issue in indoor environment.

ArrayTrack is robust in term of signal to noise ratio, collision and device orientation.

ArrayTrack does not require any offline training and the computational load is small,

making it a great candidate for real-time services.

ToneTrack is a fine-grained indoor localization system employing time difference

of arrival scheme (TDoA). ToneTrack uses a novel channel combination algorithm

to increase the effective bandwidth without increasing the radio’s sampling rate, for

higher-resolution time information. A new spectrum identification scheme is proposed

to retrieve useful information from a ToA profile even when the overall profile is mostly

inaccurate. The triangle inequality property is applied to detect the APs whose direct

path is 100% blocked. With a combination of only three 20 MHz channels, ToneTrack
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achieves below one meter median error, outperforming the traditional super-resolution

ToA schemes.
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Chapter 1

Introduction

In the past few years, wireless data connectivity has continued its transition into an es-

sential utility. Wireless networks are now deployed everywhere including enterprises,

campuses, airports, homes and most of the shops. On the other hand, almost all mobile

devices now are integrated with Wi-Fi chipsets, allowing users easy network connec-

tivity at hotspots. Cellular phones are also ubiquitous, with the steady progression in

cellular standards driving data rates increasingly higher to meet an increasing demand.

Today’s worldwide wireless networking industry is a trillion-dollar business and an

indispensable part of the global economy.

On the other hand, Wi-Fi technology is still relatively young. In 1999, the IEEE

802.11b [39] standard was drafted to provide a throughput up to 11 Mbit/s on the

2.4 GHz band. Since then, Wi-Fi technology has developed significantly, evolving

from 802.11b to 802.11a/g [41, 40] quickly in the next few years. OFDM (orthog-

onal frequency division multiplexing) was introduced in 802.11a on the 5 GHz band

to increase the throughput. 802.11g employs the same OFDM modulation scheme to

provide a maximum raw data rate of 54 Mbit/s at 2.4 GHz. The 802.11n [42] stan-

dard was initiated in January 2004 and finalized in 2008 with its formal publication in

2009. 802.11n can provide much better throughput performance and keep pace with

the rapidly growing speeds provided by the Ethernet. In order to achieve this higher

throughput, quite a few new features have been incorporated into 802.11n. The key

feature is the use of Multiple-Input and Multiple-Output (MIMO) technology. MIMO

is a technique that exploits multipath propagation opportunities to improve diversity

and capacity. When a signal is transmitted from the access point (AP) A to a client

B, the signals reach the receiving antennas via multiple paths. The data are split into
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a number of spatial streams and transmitted through separate antennas to the receiver.

The current 802.11n standard supports up to four spatial streams which means four

antennas are attached to a single 802.11n access point. The MIMO scheme included

in 802.11n is still single-user MIMO which means the multiple streams can be sent to

only one client (the client may have multiple antennas).

802.11ac [43] is the latest Wi-Fi standard, finalized in 2014. It incorporates multi-

user MIMO scheme into the standard which is a big step forward compared to 802.11n.

The key feature of 802.11ac is the shift from a single-client to a multi-client commu-

nication pattern. Previously the AP can only transmit to one client at a time while

802.11ac enables the AP to transmit to several clients simultaneously. 802.11ac sup-

ports up to eight simultaneous spatial streams to four different users. The bandwidth

supported is also increased up to 160 MHz, which is four times the bandwidth sup-

ported by 802.11n. The latest 802.11ac standard offers clients near an access point

(AP) a maximum transmission rate of 1300 Mbit/s, more than enough to stream high

definition TV content.

802.11b/a	  

1999	   2003	   2014	  

802.11g	   802.11n	   802.11ac	  

2009	  	  

LINKSYS	   NETGEAR	   CISCO	  	  

Timeline	  

MERU	  	  

Figure 1.1: Commercial 802.11n/ac APs with multiple antennas.

With the popularity of MIMO and standardization of 802.11n and 802.11ac, one

interesting observation is that more and more antennas are attached to a single AP. A

lot of commercial multi-antenna APs from major vendors are already on the market as

shown in Figure 1.1. 16 sectored antenna APs are available on the market while large-

scale MU-MIMO APs with tens of antennas are available in university labs, as shown

in Figure 1.2. Also the massive MIMO concept will probably be a key feature included

in next generation, so-called 5G cellular networks.
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Figure 1.2: Massive MIMO APs from Rice Argos project [1] with many antennas.

In the last 10 years, mobile computing has greatly changed our lives. Now wear-

ables, drones, augmented reality devices such as Microsoft Hololens and even driver-

less cars have all arrived on the scene. These will for sure change our lives even more in

the next decade. For the success of these applications, one critical factor is accurate lo-

calization. The Google driverless cars employ a map with error in inches [33] because

the distances between the cars can be reduced to a few inches. The wearables need the

users’ precise localizations in the shopping mall to deliver the most related and useful

coupons. Several meters of error can locate a user from one shop to another. In a huge

library or supermarket, a lot of people may have experienced difficulty in locating a

particular item. Indoor navigation service with centimeter level accuracy will be a very

useful application on your mobiles in these scenarios.

In the outdoor environment, GPS is very popular and performs well for most ap-

plications. However, in the indoor environment, we still lack an accurate localization

system. GPS signals fade significantly in the indoor environment making them too

weak to be employed for indoor localization purposes. The granularity level of GPS on

the scale of tens of meters are also not enough for a lot of indoor applications which

requires meter and even sub-meter level accuracy.

Many technologies have been employed to provide accurate indoor localization

services including inferred, ultrasound, camera, sound, light, RFID and Wi-Fi. Among

these technologies, Wi-Fi is most promising because of its ubiquitousness. Wi-Fi nowa-

days is deployed more or less everywhere. Employing other technologies such as ultra-

sound and camera provides us satisfactory localization accuracy but incurs extra efforts

of infrastructure deployment at high cost. So this thesis investigates hosting indoor
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localization systems on top of the existing Wi-Fi infrastructure.

Among the Wi-Fi based indoor location schemes, there are three main categories:

RSSI (received signal strength indicator), AoA (angle of arrival) and ToA/TDoA (time

of arrival/time difference of arrival). The pioneer work for RSSI based scheme is

RADAR [6] proposed in 1999 which is able to provide a 2-3 meter accuracy. Due

to strong multipath in the indoor environment, RSSI based schemes suffer from low

accuracy and heavy calibration/training load. A lot of works are proposed to either im-

prove the accuracy or reduce the calibration load. The AoA based localization scheme

was popular in radar system but not explored much in Wi-Fi domain mainly because

the limited number of antennas on the wireless AP. On the other hand, the accuracy

level of ToA/TDoA based indoor localization was restricted by the bandwidth of the

channel. With a 20 MHz narrow band channel commonly used in 802.11, we can only

achieve a very coarse accuracy, not satisfying the requirement of a lot of applications.

In this thesis, the unique opportunities of current Wi-Fi networks are employed

to push the limits of indoor localization in both AoA and ToA domains. With more

antennas attached to a single AP with 802.11n and 802.11ac, AoA scheme is employed

to provide fine-grained indoor localization accuracy below half meter. Leveraging the

frequency-agile radios, a novel channel combination scheme that combines small band-

width channels is proposed to form a virtual larger bandwidth channel to significantly

improve the accuracy for ToA/TDoA based localization. The two indoor localization

systems proposed are briefly described below :

ArrayTrack is a realtime indoor localization system which employs an AoA ap-

proach for localization. With multiple antennas on a single AP, AoA information is

generated when the client’s transmission is received at the AP. The location estimate

is obtained with AoA information from several such multi-antenna APs. It is first im-

plemented on a software-defined radio platform (Rice WARP [85]) and later on cheap

off-the-shelf commodity hardware, where both demonstrate significant performance

improvement over the existing systems. ArrayTrack is a robust real-time localization

system achieving a 23 cm median accuracy with six APs and eight antennas attached

to each AP. The most challenging part of AoA localization is the presence of strong

multipath propagation indoors, which leads to performance degradation as only the di-

rect path is pointing to the true location of a client. A novel multipath identification
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scheme is proposed to tackle this problem. It is observed that the line-of-sight (LOS)

path is much more stable compared to the reflection paths on the AoA spectrum when

the client incurs a small movement. When a phone is held in hand or pocket, natural

human movements present a unique opportunity to identify the reflection paths and im-

prove localization accuracy by taking several measurements and identifying the stable

path on the AoA profiles.

ToneTrack is a TDoA-based indoor localization system. TDoA scheme was pre-

viously not popular for indoor localization because 802.11 APs do not usually have a

large enough bandwidth for necessary time-domain resolution (2 m). A novel channel

combination scheme is proposed to form a larger virtual bandwidth which is able to

achieve finer resolution in time domain to differentiate direct path and reflection paths.

A spectrum identification scheme is proposed to identify the useful part and still re-

trieve it from an overall inaccurate ToA profile. ToneTrack also employs the triangle

inequality property to effectively handle the challenging scenario when a line-of-sight

path is 100% blocked. With all these novel schemes applied, ToneTrack is able to

achieve below one meter median accuracy with only three transmissions from adja-

cent 20 MHz channels. ToneTrack can be applied on the 5 GHz and 60 GHz bands to

achieve millimeter level accuracy.

The rest of this thesis is structured as follows. Following a literature review in

Chapter 2, I present ArrayTrack in Chapter 3 and ToneTrack in Chapter 4 respectively.

Chapter 6 concludes the report and Chapter 5 discusses the future work.



Chapter 2

Literature Review

In this chapter, the IEEE 802.11 standards are introduced in chronological order fol-

lowed by the MIMO technologies which have a close relationship with indoor wireless

localization systems. After that, the representative indoor location systems proposed in

the last 20 years are discussed in detail.

2.1 IEEE 802.11 standards
IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) speci-

fications for wireless local area network (WLAN) in the 2.4 GHz, 5 GHz and 60 GHz

frequency bands. The base version of the specification was released in 1997 followed

by 802.11b and 802.11a in 1999. 802.11g was released in 2003 while 802.11n was

drafted in 2009. The latest IEEE 802.11ac standard was released in 2014. The key

features of 802.11 standards including the bandwidth, modulation and maximum data

rates are tabulated in Table 2.1. I briefly introduce them one by one below.

Standard Frequency band Bandwidth size Modulation Maximum rate Draft year

802.11 2.4 GHz 20 MHz DSSS 2 Mbit/s 1997

802.11b 2.4 GHz 20 MHz DSSS 11 Mbit/s 1999

802.11a 5 GHz 20 MHz OFDM 54 Mbit/s 1999

802.11g 2.4 GHz 20 MHz DSSS, OFDM 54 Mbit/s 2003

802.11n 2.4 GHz, 5 GHz 20 MHz, 40 MHz OFDM 450 Mbit/s 2009

802.11ac 5 GHz 20/40/80/160 MHz OFDM 1300 Mbit/s 2014

802.11ad 60 GHz 2.16 GHz OFDM 7000 Mbit/s Not yet

Table 2.1: IEEE 802.11 Standards
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2.1.1 802.11a/b/g

802.11b is a direct extension of the original 802.11 standard defined in 1997 operating

on the 2.4 GHz band together with other devices including microwave ovens, Bluetooth

and cordless telephones. Its maximum achievable raw data rate is 11 Mbit/s. The

bandwidth is 20 MHz and direct-sequence spread spectrum (DSSS) modulation scheme

is utilized. A total of 11 channels with 3 non-adjacent channels can be used.

802.11a was proposed with orthogonal frequency-division multiplexing (OFDM)

modulation in the physical layer hosted on the 5 GHz band. Compared with the

crowded 2.4 GHz band, the 5 GHz band is rarely used. 802.11a is able to provide

a maximum raw data rate of 54 Mbit/s. However, with a higher carrier frequency band,

802.11a also incurs higher loss in the air. So the effective range of 802.11a coverage is

smaller compared to 802.11b/g. Also the ability of 802.11a to penetrate walls is weaker

with a smaller wavelength.

802.11g was introduced in 2003. It is on the same 2.4 GHz band as 802.11b, but

with OFDM modulation as 802.11a. Its maximum raw data rate is also 54 Mbit/s.

2.1.2 802.11n

The IEEE 802.11n standard was initiated in January 2004 and finalized in 2008 with

its formal publication in 2009. With the improved performance offered by 802.11n, the

standard soon became widespread and popular. The 802.11n standard provides a much

better performance and keeps pace with the rapidly growing speeds of wired network.

802.11n operates on both 2.4 GHz and 5 GHz bands. The maximum raw data rate can

be achieved is 450 Mbit/s. In order to achieve this higher performance, quite a few new

features have been incorporated into the 802.11n standard:

• Use of MIMO: MIMO is a technique that exploits multipath propagation op-

portunities (diversity) to improve wireless capacity. MIMO technology will be

introduced in more detail shortly in Section 2.2. The data is split into a number

of spatial streams and transmitted through different antennas to the antennas at

the receiver. The current 802.11n standard allows up to four simultaneous spatial

streams.

• Optional 40 MHz bandwidth: An optional mode for 802.11n is to utilize a

double-sized channel bandwidth. Previous Wi-Fi systems use overlapped 20
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MHz bandwidth for each channel. This new protocol has the option of using

40 MHz instead. The main trade-off for this is that there are fewer channels can

be used simultaneously. At 2.4 GHz, three 20 MHz channels can be used at the

same time without interference with each other. For a 40 MHz bandwidth, only

one channel can be supported. Thus the choice of whether to use 20 or 40 MHz

has to be made by the number of simultaneous transmitting/receiving devices. If

there is only one pair of devices transmitting and receiving, 40 MHz can be used

as otherwise the bandwidth is not fully utilized and wasted.

• Diversity with multiple antennas: For 802.11n, the number of antennas at-

tached to one AP has been significantly increased and the idea of beamforming

and diversity are realized with these multiple antennas. The increasing number

of antennas means larger diversity can be achieved in the presence of multipath

reflections.

2.1.3 802.11ac

802.11ac is the latest 802.11 specification drafted for Wireless Local Area Networks

(WLANs). The main goal of the new 802.11ac amendment is to significantly increase

the throughput. This higher rate requirement is motivated by the continuing trend to

transition devices from wired cable links to wireless links and by the emergence of new

applications with ever higher throughput requirements. Existing 802.11 technologies

operate in both the 2.4 GHz and 5 GHz bands. 802.11ac operates strictly on the 5 GHz

band, supporting backwards compatibility with other 802.11 technologies operating on

the same band. 802.11ac is able to provide a raw data rate of 1.3 Gbit/s. To achieve

its goals, 802.11ac relies on a number of improvements in both the physical and MAC

Layers. The physical layer improvements include:

• Increased bandwidth per channel: 802.11ac supports channel bonding to

achieve up to 160 MHz bandwidth, four times the bandwidth supported by

802.11n.

• Increased number of spatial streams: up to eight spatial streams are supported,

further increasing the overall throughput.
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• Higher-order modulation - 256 Quadrature Amplitude Modulation (QAM):

four times denser than 802.11n, further increasing the bit rate density.

• Multi-User Multiple Input and Multiple Output (MU-MIMO): supports si-

multaneous transmissions to multiple clients. Up to four distinct clients can re-

ceive different data simultaneously from a single AP. This is a big step in Wi-Fi

networking as in the first time, simultaneous transmissions of different streams

to multiple clients become possible.

The MAC layer improvement includes larger maximum size of aggregate MAC

Protocol Data Units (MPDUs). Also, the Request to Send/Clear to Send (RTS/CTS)

scheme has been refined to allow more efficient dynamic bandwidth operation.

2.1.4 802.11ad and 802.11af

IEEE 802.11ad is a new physical layer defined for the millimeter wave 60 GHz band.

This high frequency band has a very different propagation characteristics compared to

2.4 GHz and 5 GHz. The peak transmission rate can be up to 7 Gbit/s. However, the

attenuation of 60 GHz signal in the air is very large and it gets absorbed very quickly

in the wall. Directional transmission needs to be employed for medium/long range

transmissions and only LOS transmission is possible.

802.11af, also referred as White-Fi is drafted in 2014 which allows WLAN oper-

ation in the TV white space bands between 54 and 790 MHz. It employs the cognitive

radio technology to transmit and avoid interference to the primary users. The trans-

mission range is large compared to 2.4 GHz and 5 GHz bands. The channel size is

usually 6-8 MHz. MU-MIMO similar to 802.11ac can be employed to transmit up to

four simultaneous steams. With four spatial streams and four 8 MHz channels bonded,

802.11af can support a maximum raw date rate of up to 500 Mbit/s.

2.2 MIMO
The earliest idea related to MIMO were proposed in1970 and later in 1993 the concept

of spatial multiplexing (SM) using MIMO was proposed by Paulraj and Kailath [77].

In 1996, Raleigh and Foschini refined and included new approaches [29, 83] to MIMO,

which considers configurations that multiple transmit antennas are co-located at one

transmitter to improve the link throughput.
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Figure 2.1: Basic MIMO concept: streams are transmitted and received by multiple

antennas.

The first commercial system was developed in 2001 that used MIMO with Or-

thogonal frequency-division multiple access technology (MIMO-OFDMA) which sup-

ported both diversity coding and spatial multiplexing. In 2005, Airgo Networks devel-

oped a 802.11n precursor implementation based on the MIMO technology. Following

that in 2006, Broadcom, Intel, and Marvell etc have fielded the MIMO-OFDM solution

based on the pre-standard for 802.11n.

The basic idea of MIMO with channel model is illustrated in Figure 2.1. A trans-

mitter sends multiple streams by multiple transmit antennas. The transmit streams go

through a matrix channel which consists of all the paths between the Nt transmit anten-

nas at the transmitter and Nr receive antennas at the receiver. Then, the receiver gets

the received signal vectors by the multiple receive antennas and decodes the received

signal vectors into the original information. A narrowband flat fading MIMO system is

modeled as:

y = H ∗ x+n (2.1)

where y and x are the receive and transmit vectors, respectively; H and n are the

channel matrix and the noise vector, respectively.

The function of MIMO can be further sub-divided into two main categories: beam-

forming and spatial multiplexing (SM).

• Beamforming (precoding) [106] is a signal processing that occurs at the trans-

mitter. The signals are emitted from each of the transmit antennas with appro-
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Figure 2.2: Different types of MIMO.

priate phase and amplitude weighting such that the signal to noise ratio (SNR) is

maximized at the receiver side. The benefits of beamforming are to increase the

received signal strength, by making signals transmitted from different antennas

add up constructively. Note that precoding requires knowledge of channel state

information (CSI) describing the channel between transmitter and receivers.

• Spatial multiplexing [34] requires a multiple-antenna configuration. In spatial

multiplexing, several streams are transmitted from different transmit antennas in

the same frequency channel. If these signals arrive at the receiver antenna array

with sufficiently large spatial distances, the receiver can separate these streams.

Spatial multiplexing is a very powerful technique for increasing channel capacity

at higher SNR. The maximum number of spatial streams is limited by the number

of antennas at the transmitter and receiver.

MIMO technology has evolved from Single-User MIMO (SU-MIMO) to Multi-

User MIMO (MU-MIMO) and distributed MIMO in the latest few years. The architec-

ture differences are illustrated in Figure 2.2. Traditional MIMO is actually SU-MIMO

which only supports a single user reception (the user may have multiple antennas).

Both MU-MIMO and distributed MIMO support simultaneous transmission to multi-

ple clients (users) at the same time. The details of MU-MIMO and distributed MIMO

are described below.

2.2.1 Multi-User MIMO

In a MU-MIMO [30] system, an AP communicates with multiple users simultaneously.

MU-MIMO downlink capacity can scale with the minimum of the number of AP anten-

nas and the sum of antennas at the user side. This means that MU-MIMO can achieve
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MIMO capacity gains with a multiple antenna AP and multiple single antenna users!

This is of particular interest since in reality, the number of antennas is limited to 1-2

on small handheld devices. MU-MIMO has been employed in LTE and also the latest

802.11ac standard.

2.2.2 Distributed MIMO & Distributed Antenna System (DAS)

Distributed MIMO (MegaMIMO [81], AirSync [8]) is a set of advanced MIMO tech-

nologies where the available antennas are spread over a multitude of independent access

points - each having one or multiple antennas. Here transmitting antennas are located

at different APs, which run a fine-grained synchronization protocol for phase-coherent

transmissions. In theory, such a system enjoys all the significant performance gains of

a traditional MIMO system, and it may be deployed in an enterprise Wi-Fi like setup.

Phase and time synchronization at all the APs and also sharing their data on the wired

backhaul network are the basic requirements to enable distributed MU-MIMO.

The distributed antennas of a DAS (distributed antenna system) system merely

radiate the received RF signal (from the AP) within the AP’s contention domain. Wi-

Fi [22, 127] and mobile cellular networks [4, 118] have long used conventional DASs

to provide improved wireless coverage indoors, especially in larger venues, such as

convention centers or stadiums. A conventional DAS simply broadcasts the same sig-

nal from all antennas, with some designs even using “leaky feeder” coaxial cable that

radiates RF energy continuously along the length of the cable [88]. Thus conventional

DASs preclude the use of MU-MIMO and its associated spatial multiplexing gains. In

a DAS, the antennas of an AP are distributed (extended) spatially with the help of RF

or optical cables. Each of the distributed antennas may house one or more antennas

and is controlled by the same AP with no change to the AP’s hardware. An advantage

of the DAS system for localization is that all the antennas are fully time synchronized

so TDoA can be directly applied without any time synchronization issue. On the other

hand, the APs in Distributed MIMO system are usually time synchronized with 5-20 ns

synchronization error.
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2.3 Indoor localization
For localization in an outdoor environment, GPS works extremely well. Differential

GPS (DGPS) [71] now allows civilian GPS units to obtain an accuracy of 10 meters

or better. Unfortunately, the signal from the GPS satellites is too weak to penetrate

through the walls of most buildings, making GPS useless for indoor localization. In

the last two decades, many different technologies have been employed to provide in-

door localization services. Related work on indoor localization broadly groups into the

following categories:

2.3.1 Ultrasonic and infrared based approaches

A lot of early work in indoor localization have employed infrared and ultrasonic infras-

tructures.

The Active Badge [115] system is a pioneer work leveraging infrared transmis-

sions from badges carried by users for localization. The small infrared device worn

by a user transmits a globally unique infrared signal for localization every 10 s or on

demand. These transmissions are collected by the sensors placed at fixed locations in

the building and sent to the central server for processing. The performance of infrared

based location system is degraded in locations with fluorescent lighting or sunlight.

Also the transmission range of infrared transmission is only several meters, limiting its

application to small-sized rooms. A dense deployment of sensors are required to cover

the whole area. The location accuracy achieved is on an order of room-size.

The Bat [37, 116] system employs ultrasound signals for better accuracy compared

to Active Badge system because of the much lower sound transmission speed in the air

compared to infrared signals. A short pulse of ultrasound is sent from the transmitter

attached to the objects or carried out by human. The receivers are mounted at known

locations on the ceiling. The transmitters and receivers are synchronized by a central

controller. The synchronization request is sent to the transmitter via a short-range radio

and sent to the ceiling sensors through a wired network. With a minimum of two

range readings, the location estimate can be obtained. With more readings, even the 3D

location information can be obtained. By finding the relative positions of multiple Bat

transmitters attached to a single object, the orientation of the object can also be found.

720 receivers were deployed to cover an area of 1000 m2 on three floors. The system is
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able to determine 75 objects’ positions in one second with an average accuracy level of

3 cm in three dimensions. The accuracy level of Bat is quite amazing, but performance

is very sensitive to the placement of sensors. A lot of dedicated devices need to be

installed for Bat to work, making scalability and cost disadvantages for the Bat system.

Cricket [79] employs a combination of ultrasound and radio for accurate indoor

localization and so is complementary to the Bat system. The radio signal is used for

time synchronization between the receivers. In contrast with Bat, there is no time syn-

chronization needed between the transmitter and receivers, so time difference of arrival

is employed for its location estimate. Cricket is able to achieve below 10 cm accuracy.

However, same as the Bat system, it needs dedicated infrastructure installation and the

range of ultrasound signal is limited to around 10 meters which is much smaller than

the Wi-Fi coverage (50-100 meters in a typical office environment), so a quite dense

deployment is needed. The new version of Cricket (v2) is programmed via TinyOS and

it can be powered by both batteries and external power connector.

Guoguo [64] deploys an acoustic ranging infrastructure, where the innovation is

at the APs that are designed to send out acoustic beacons for ranging. The acoustic

beacons are imperceptible to humans. It employs the combined matrices of RMS de-

lay spread to identify the NLOS channel condition and assign lower weight for the

measurement from NLOS channel during localization processing. Guoguo achieves a

6-25 cm median location accuracy which is not a very surprising result for acoustic

based location because of the low transmission speed (340 m/s in the air). A big prob-

lem for acoustic based localization is that the sound noise is quite common in a lot of

environment and it greatly affects the localization accuracy. Small coverage is another

concern for an acoustic based location system since walls block sound easily.

2.3.2 Camera and visible light based approaches

Epsilon [38, 56] employs visible light from smart LEDs coupled with custom light

sensor receivers for localization. In order to avoid flicker to human eyes, the frequency

needs to be chosen higher than 200 Hz and also stay away from the 50/60 Hz (sound

frequency) interference zone. On the other hand, at the receiver side, the light sensors

of the commodity phones we are using have very limited sampling frequency which is

up to several hundreds hertz. Epsilon is able to achieve sub-meter accuracy. However,
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its usage is limited to LOS scenario and a device needs to have at least three LOS

LED anchors. Furthermore, the device needs to be exposed to the light in order to be

localized so a mobile phone in the pocket or bag will pose a problem for the system.

Even when a person is holding the phone in hand, the body may block the light and the

body reflection also adds noise to the localization result.

Luxapose [52] uses off-the-shelf cameras as receivers coupled with image pro-

cessing techniques for indoor localization. The basic idea is to include several anchors

with known position and the target in the same image. The anchors are LED luminaries

with different frequencies assigned. Then based on the relative positions of the anchors

and the target in the image, multiple distance constraint equations can be generated.

With enough number of anchors in the image, Luxapose is able to solve all the con-

straint equations and finds out the location of the target. Luxapose is able to provide

sub-meter level location accuracy and also the orientation information of the object

which is not available in a lot of location systems. By comparing the coordinate axis in

the image with the ground truth, Luxapose is able to determine the mobile’s orientation

to an accuracy of 3◦. However, for Luxapose to localize a mobile, the mobile needs to

record a image with at least three visible LED anchor points. It also needs good light

conditions and takes around 10 s for one location estimate. Another problem for cam-

era based localization is the severe privacy issue, and so it may not be a good option in

public areas.

Because of the popularity and ubiquitousness of Wi-Fi, it is still preferred to

host the localization system on the Wi-Fi infrastructure. The Wi-Fi based localiza-

tion schemes can be summarized as three categories: received signal strength indica-

tor (RSSI) [6, 13, 36, 48, 54, 66, 86, 99] and CSI [46, 96, 122, 125], angle of arrival

(AoA) [23, 47, 50, 51, 55, 73, 74, 95, 98, 117, 120, 128] and time of arrival (ToA)/time

difference of arrival (TDoA) [21, 24, 32, 44, 49, 58, 61, 67, 79, 105, 135].

2.3.3 RSSI and CSI signature based approaches

The most widely used physical layer information for indoor localization is the received

signal strength indicator. While readily available from commodity hardware, RSSI

readings are generally coarse and unstable due to multipath reflection, refraction and

scattering in indoor environment. It is also affected by the temperature [9] and humidity
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factors [16] harming the accuracy of location service provided.

RADAR [6, 7] is a pioneer work builds “maps” of signal strength to multiple

access points, achieving an accuracy in the order of meters. Later systems such as

Horus [134] use probabilistic techniques to improve localization accuracy to around

one meter when an average of six access points are within range of every location in

the wireless LAN coverage area, but require large amounts of calibration. While some

work has attempted to reduce the calibration overhead [36], mapping generally requires

significant calibration effort. Other map-based work has proposed using overheard

GSM signals from nearby towers [109], or dense deployments of desktop clients [5].

Recently, Zee [82] has proposed using crowd-sourced measurements to remove the

calibration step, resulting in an end-to-end median localization error of three meters

when Zee’s crowd-sourced data is fed into Horus.

The second line of work using RSSI are techniques based on mathematical mod-

els. Some of these proposals use RF propagation models [84] to predict distance away

from an access point based on signal strength readings. By triangulating and extrapolat-

ing using signal strength models, TIX [35] achieves an accuracy of 5.4 meters indoors.

Lim et al. [62] use a singular value decomposition method combined with RF propaga-

tion models to create a signal strength map. They achieve a localization error of about

three meters indoors. EZ [19] is a system that uses sporadic GPS fixes on mobiles to

bootstrap the localization of many clients indoors. EZ solves the constraint equations

using a genetic algorithm, resulting in a median localization error of between 2–7 me-

ters indoors, without the need for calibration. Other model-based proposals augment

RF propagation models with Bayesian probabilistic models to capture the relationships

between different nodes in the network [66], and develop conditions for a set of nodes

to be localizable [131]. Some other model-based proposals are targeted towards ad hoc

mesh networks [12, 90, 78]. I discuss some of the most important work in detail below.

RADAR [6, 7] is a pioneering work from Microsoft Research that utilizes RSSI

readings from multiple 802.11 APs to provide a localization service. The process of

RSSI-based localization such as RADAR is divided into two parts: the offline train-

ing (survey) stage in which the RSSI signatures are collected and the online matching

stage to estimate the target’s location. RADAR measures the RSSI values determin-

istically at each location from multiple APs. On each radio map, the particular RSSI
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values are distributed as contour lines in the 2-D floorplan. The RADAR system re-

quires that a client must collect data from three APs to obtain the location information.

The more APs the client can overhear, the more accurate location service it can provide.

However, moving furniture and/or large groups of people moving around necessitate a

reconstruction of the RSSI database. The median accuracy of the RADAR system is

around 2-3 meters.

Horus [134] is another localization system based on RSSI readings. Unlike

RADAR to measure RSSI readings deterministically at each location, Horus stores

the information about the RSSI distributions from the APs and adopts a probabilistic

technique to estimate the user location. Horus employs location-clustering schemes to

reduce the computational requirements of the algorithm. Horus also models the RSSI

distributions received from APs to reduce the effect of temporal variations. Horus

claims to achieve below 1 m median accuracy.

Nibble [13] proposed by Castro et al. is system built by UCLA to provide indoor

location services. It uses signal to noise ratio (SNR) rather than RSSI as a signa-

ture. The commonly applied techniques inferring location are multilateration, nearest

neighbor and Bayesian network. In multilateration, an object can infer its location by

calculating its range from beacons with known locations. This works fine in outdoor en-

vironments, but the walls and obstacles in indoor environment makes this method chal-

lenging. The nearest neighbor method is very coarse. The Bayesian network method

can incorporate more information such as location of the room and wall structures into

the probability model. Nibble applies a Bayesian network to obtain the location of

a client. Nibble is one of the first systems to use a probabilistic approach for indoor

location estimation.

A slight departure from conventional approaches, Modellet [57] makes the case

for a hybrid model combining reading-based and model-driven localization approaches

to handle data diversity and density in large scale deployments. The key intuition is

that with different signature densities and environments, different approaches should

be chosen to yield best results. It is very common to have different signature densities

with war-walking as pathway areas usually have much denser data than the inner parts

of shops. The internal layouts of shops in a shopping mall may also differ significantly.

The key observation in Modellet is that when the signature density is high, a reading-
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based method is more accurate, while model-driven scheme works better when very few

data are available. The unifying localization framework proposed is able to address the

challenges and achieve performance better than a single reading-based or model-driven

based location approach alone.

In addition to the coarse RSSI information, later work has leveraged finer channel

state information (CSI) for localization purpose. The channel response information on

each subcarrier includes both amplitude and phase which can be utilized to provide a

lot more information than RSSI readings. This CSI information is utilized to localize

client and also prevent attacks.

PinLoc [96] employs CSI information for each OFDM subcarriers as a promising

location signature. The CSI information is also available from the off-the-shelf Intel

802.11n 5300 card. PinLoc leverages the observation that multipaths exhibit stable

patterns on the subcarrier CSI information when they combine at a given location, and

these patterns can lend themselves to meter-scale localization. PinLoc is able to localize

users to the correct 1m x 1m spot with a 89% mean accuracy, while incurring only

6% false positives, outperforming Horus, the most accurate RSSI based localization

scheme.

CSITE [46] uses CSI magnitude measurements averaged in time over multiple

frames to form a unique client signature for security purposes. CSITE is able to achieve

a 90% detection rate with a 5% false positive rate. However, since RSSI is simply

CSI magnitude information averaged across different subcarriers, per-subcarrier CSI

approaches such as CSITE can be subverted by attackers with phased array software-

defined radios capable of transmitting with independent beamforming weights on dif-

ferent subcarriers.

SecureArray [122, 125] employs the CSI information from the antenna array to

generate AoA signatures of the incoming signals. This AoA signature is much more

stable than the RSSI readings. With a novel random phase perturbation scheme applied,

SecureArray is able to detect 100% of attacks while triggering a false alarm of 0.6%

on the legitimate traffic. On the other hand, AoA signature also provides information

directly related to the location of the client: the bearing of the client. With 6-8 antennas,

the angle accuracy of a linear array is around 3−10◦.

Many other works [13, 36, 48, 54, 66] either try to improve the accuracy or reduce



2.3. Indoor localization 33

the site survey efforts. However, in general, the RSSI and SNR readings from APs are

not stable and are relatively coarse for localization purposes.

2.3.4 Combination of RSSI/CSI and sensor readings

Liu et al. [63] combine Wi-Fi RSSI fingerprinting with acoustic ranging information

between smartphone users to increase accuracy. The key idea is to obtain accurate

acoustic ranging estimates among peer phones, and then map this acoustic distance

relationship jointly against the Wi-Fi signature map to increase the localization accu-

racy. So the Wi-Fi RSSI is used to obtain the rough absolute location estimate and

the acoustic ranging estimate is used to apply the accurate distance constraint (relative

location information) to increase the accuracy. With the help of these acoustic ranging

constraints, the accuracy is improved from 6 - 8 m to around 1 m. While peer assis-

tance is adopted for localization, more power and bandwidth will be consumed at the

peers. Also in order to help the target, the locations of the peers are exposed which is a

compromise of the privacy.

SAIL [68] leverages fine-grained CSI information coupled with inertial dead reck-

oning on smartphones to enable localization with a single AP. Dead reckoning is the

process of calculating one’s current location by using a previously determined location

together with the help of the sensors in the mobile. The basic idea is to employ the

dead reckoning method to obtain the distance travelled by the mobile and the ToF (time

of flight) method to obtain the distances between the AP and the mobile. The three

distances obtained yield a unique triangle. Together with the compass heading of the

mobile, location estimate can be obtained. However, finding the offset between the

phone’s and user’s headings is not trivial. The mobile’s orientation may also be quite

random when it is in use. ToF accuracy is highly dependent on the sampling rate of

the hardware which is usually constrained by the bandwidth. Also multipaths greatly

affect the performance of ToF estimates. With a sampling rate of 88 MHz, SAIL’s lo-

calization accuracy is around 2-3 meters. The performance will be worse with a usual

40 MHz sampling rate and an environment with strong multipath propagation.

Zee [82] leverages crowdsourcing to eliminate the calibration stage for RSSI based

localization. Zee employs the inertial sensors such as accelerometer, compass and gy-

roscope in the mobile to track them while simultaneously performing Wi-Fi scans. The
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only site input is a floorplan map with the pathway and barriers (e.g.,walls). Zee is

able to track users without the users’ initial location, stride length and phone place-

ment information. The intuition of Zee is to combine the sensor information with the

constraints imposed by the map, thereby filtering out infeasible location estimates over

time and converging gradually to the true location. To speed up the convergence of

particle filtering, Zee employs two techniques: motion estimation to estimate the step

count and the approximate orientation of a device relative to the direction of walk, and

Wi-Fi based initialization to make an initial guess of the device’s starting point. Un-

certainty in location tends to reduce with time as a user takes more turns which are

physical constraints added. Zee also uses backward belief propagation scheme to re-

duce uncertainty in location at earlier times, post facto. When a location estimate is

available, the corresponding Wi-Fi measurement is annotated with the estimated loca-

tion, thereby adding a record to the Wi-Fi RSSI training data. With this scheme, Zee

is able to build the training data set without any explicit effort from the user and the

service provider. With the data set built with Zee, those RSSI-based location schemes

are able to achieve around 3-5 m median accuracy which are comparable to the results

achieved with a training data set that is explicitly measured.

LiFS [132] is another system similar to Zee trying to eliminate the training pro-

cess that RSSI fingerprinting scheme requires. Site survey training is time-consuming,

labor-intensive and vulnerable to environment dynamics. LiFS exploits user motions

from the mobile devices to remove the site survey effort of the traditional RSSI based

localization. The key intuition is that human motion can be applied to connect pre-

viously independent radio fingerprints. LiFS proposes a stress-free floorplan concept

which finds out the walking distance between two locations. LiFS also constructs the

fingerprint space by computing all-pair shortest paths of fingerprints which takes O(n3)

running time while n is the number of fingerprints. The fingerprint space is then mapped

on the stress-free floor plan with simple shift and linear transformation. LiFS is able to

reduce the survey efforts significantly while still achieving reasonable accuracy level of

5-6 meters which is slightly worse than the traditional RSSI based localization method

with RSSI fingerprint data measured. However, a big disadvantage for LiFS is the high

computational load incurred. When the survey area is large or the signature density is

high with a big n, it may take a long time for LiFS to generate the fingerprint space.
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Unloc [110] is an unsupervised indoor localization system that bypasses the need

of war-driving to collect RSSI signatures. It combines dead-reckoning, urban sensing

and Wi-Fi-based localization into a single system. The key intuition is to detect the

unique landmark signature with the sensor data collected from the accelerometer, com-

pass and gyroscope within a Wi-Fi sub-space. With the Wi-Fi RSSI readings, all the

processing can be restricted to a relatively small area, so the computational load is much

reduced. Dead-reckoning is employed to roughly estimate the location of the landmark

starting from a known reference. With the landmark location estimates from multiple

users, the accuracy of the landmark locations can be improved and used to correct the

dead-reckoning errors. The errors get reduced as more landmarks are discovered. It

does not even require the floorplan and simultaneously computes the locations of users

and landmarks in a manner that converges quickly. Unloc is able to achieve a less than

2 m median error without any pre-deployment.

SpinLoc [94] leverages the human body’s attenuation of Wi-Fi signals when users

spin around to estimate bearings to the APs. SpinLoc’s angle estimate scheme is coarse

with an error of up to 30◦. How the mobile is held in the hand also greatly affects the

performance of SpinLoc. On the other hand, asking a user to spin 360◦ for a location

estimate is not always feasible. SpinLoc is able to achieve around 6.5 m accuracy with

four audible APs.

Centaur [72] fuses RF and acoustic based ranging using a Bayesian inference

framework to enable higher accuracy indoor localization. The basic idea is to use ac-

curate acoustic constraint to improve the accuracy of RSSI based Wi-Fi localization.

Centaur assumes a lot of modern devices such as laptops and mobiles have both Wi-Fi

interfaces and speakers/microphones. It proposes a scheme named EchoBeep to im-

prove the acoustic ranging scheme for the NLOS scenario. Centaur is able to achieve

around 1 m accuracy compared to 3-4 m accuracy with Wi-Fi alone. The processing

time is relatively long for Centaur ranging from seconds to minutes due to high com-

putational load.

2.3.5 AoA based approaches

Because of the limited number of antennas on a single AP, AoA scheme was previ-

ously not popular for Wi-Fi indoor localization. With the new 802.11n and 802.11ac
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standards, multi-antenna APs become common in enterprises, which enables an AoA

approach to localization. Wong et al. [117] investigate the use of AoA and channel

impulse response (CIR) measurements for localization. While they have demonstrated

positive results at a very high SNR (60 dB), typical wireless LANs operate at signifi-

cantly lower SNRs, and the authors stop short of describing a complete system design

of how the ideas would integrate with a functioning wireless LAN. Niculescu et al. [73]

simulate AoA-based localization in an ad hoc mesh network. AoA has also been pro-

posed in CDMA mobile cellular systems [128], in particular as a hybrid approach be-

tween TDoA and AoA [23, 120], and also in concert with interference cancellation and

ToA [104]. Much other work in AoA use the technology to solve similar but materially

different problems. Geo-fencing [98] utilizes directional antennas and a frame coding

approach to control APs’ indoor coverage boundary. Patwari et al. [76] propose a sys-

tem that uses the channel impulse response and channel estimates of probe tones to

detect when a device has moved, but do not address location. Faria and Cheriton [27]

and others [10, 65] have proposed using AoA for location-based security and behavioral

fingerprinting in wireless networks. Chen et al. [17] investigate post hoc calibration for

commercial off-the-shelf antenna arrays to enable AoA determination, but do not inves-

tigate localization indoors. I present several representative AoA localization systems

below.

Wong et al. [117] investigate the use of a CIR method with MIMO to provide an

indoor localization service. They utilize a CIR method to identify the angle of arrival of

the received signal that corresponds to the transmission path directly from transmitter

to receiver. This is not easy as in the NLOS situation, the received power of the direct

path arrival is very low. It is also challenging to resolve the multipath arrivals in time,

as arrivals with similar propagation distance will overlap. These channel measurements

characterize the CIR between each of the measurement system transmit and receive an-

tennas. For a 4x4 MIMO system, there are 16 channels and therefore 16 CIRs, one

for each transmitter receiver antenna pair. The earliest arrival component in the CIR

is detected and used to determine the location AoA for that arrival. The intuition here

is simple: the direct path is shorter than the reflection path. The maximum likelihood

algorithm does this by simply selecting the earliest detectable component in the CIR

and estimating its AoA. The SAGE algorithm [28] is a general parameter estimation



2.3. Indoor localization 37

algorithm that attempts to estimate the various multipath arrivals in the channel, ob-

taining channel parameters for each of the arrivals in terms of the complex amplitude,

delay and AoA. The AoA of the mobile at the AP is selected as that corresponding to

the arrival with the smallest delay. While this method is quite interesting, they require

a long training sequence and high SNR value (60 dB in their experiment) which is not

realistic in real life.

Lang et al. [55] propose to combine both AoA and RSSI methods to localize

indoor clients. However, their method of obtaining AoA information in real indoor

environment is not realizable: the AP scans the surrounding 360◦ in a period of several

seconds to detect transmissions. Wireless channel is shared by all the clients and each

client takes turn to transmit and receive. The transmission of one packet from one client

is in the time scale of milliseconds and when the transmission starts is not predictable.

So the transmission may not be able to be captured by this kind of slow scanning

method. What makes it worse: the AoA obtained may not be the direct path bearing

and may be one of the multipath reflections AoAs.

Phaser [31] extends ArrayTrack [123, 124] to work on commodity hardware. By

sharing one antenna between two Intel 5300 802.11n cards [45] each with three anten-

nas, Phaser successfully synchronizes the two radio cards to form a 5-antenna array.

Phaser is a general purpose platform for any phase-based signal processing hosted on

commodity hardware. With four 5-antenna APs operating on 5 GHz band, Phaser is

able to achieve 1-2 meter median accuracy in a crowded student office environment.

PinPoint [47] proposes AoA processing with cyclo-stationary analysis to identify

the direct path. PinPoint employs the known repeating patterns within wireless signals

to form unique signature for every signal type. This unique repeating patterns such

as long training symbol in the preamble is used to self-correlate to find the first peak

identified as the direct path. However, when the direct path and reflection path are

close to each other (less than one sample distance), it is not possible for this correlation

scheme to differentiate the direct path and the reflection path. And in a typical indoor

environment, the path difference between the direct path and reflection path is usually

small. So the correlation scheme proposed in PinPoint does not work in reality. All

the figures presented in the paper have the direct path and reelection path separated at

least by 70 m (corresponding to 0.23 ms) which is very unlikely to happen in indoor
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environment. In order to minimize the uncertainty of LOS path identification with the

scheme proposed, PinPoint needs to collect multiple packets which may impede the

realtime response of the system. PinPoint achieves a median accuracy of 0.97 m.

LTEye [51] localizes LTE clients from their uplink signal transmissions using syn-

thetic aperture radar (SAR). Mechanically rotating antennas are used to form the circu-

lar SAR. LTEye also propose a scheme to identify the shortest path (not necessarily the

direct path) by calculating the time delay of the signal at one particular direction with

phase information obtained at each subcarrier. LTEye assumes a separation of the di-

rect path and reflection path and then calculate the ToA to determine the shortest path.

However, it is much more difficult to separate the direct path and reflection path signals

than obtaining the ToA information of the mixed signals. LTEye is able to achieve a

median bearing error of 7−10◦.

Ubicarse [50] takes one step further from LTEye by making the smartphone emu-

late a SAR through user induced motion. To emulate a SAR, the mobile needs to rotate

exactly following a circular trajectory. However, it is difficult for a human to rotate the

mobile devices strictly in a circle. Unicarse leverages the opportunity that there may be

two antennas in a mobile and the relative distance between the two antennas is fixed.

So the relative channel between these two antennas is employed to emulate a SAR to

solve the non-circular movement issue. However, another big problem Ubicarse does

not address is that the rotation speed of the mobile must be constant in order to emulate

a SAR. Ubicarse is able to emulate a perfect circle but the varying rotation speeds may

still degrade the performance greatly. Ubicarse is able to achieve a median location

error of 39 cm in experiments where the rotation speed is apparently constant. The per-

formance may be much worse if the rotation speeds vary during one round of rotation,

however.

CUPID [95] combines AoA estimation with the user’s mobility pattern to iden-

tify the direct path angle arrival for localization. The key idea follows ArrayTrack by

identifying the more stable AoA peak as the direct path peak. Because of the limited

number of antennas used in CUPID, it is able to achieve a 20◦ angle error. Because of

this low AoA resolution and high angle error, it may also experience the scenario when

both direct path and reflection paths are not stable. In this scenario, CUPID employs

dead-reckoning and calculates the angle change to identify the direct path. The idea is
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that with a large distance of movement, CUPID can calculate the angle change from the

sensor readings and match this value with the angle change on the AoA pseudospec-

trum. The accuracy will be improved with more antennas attached to the AP.

2.3.6 ToA/TDoA based approaches

ToA) and TDoA schemes are very popular with Ultra-wideband (UWB) systems [44,

67, 49, 135, 21, 61]. The resolution of the ToA/TDoA based localization is restricted

by the bandwidth. While UWB has a bandwidth larger than 500 MHz, the ToA/TDoA

resolution is very high while Wi-Fi does not provide a more than 20 MHz bandwidth

until 802.11n. With such a small bandwidth, the direct path and reflection path signals

are usually too close to be separated making it difficult to provide accurate ranging in-

formation. ToA and TDoA can be converted to each other without ambiguity and are

proven to be equivalent [25]. The basic idea is inherited from military outdoor RADAR

system. The basic concept of outdoor RADAR system is that the RADAR device has a

transmitter that sends a pulse to the object to measure the distance. The pulse bounces

off of that object and the receiver, physically located within the RADAR device, re-

ceives the pulse reflection. The RADAR device measures the time difference from the

time it sent the pulse to the time it received the pulse. This time difference is related

linearly to the distance to the object. Thus, the distance can be easily determined. Ultra-

wideband radios, which have been commercialized [105], can discern sub-nanosecond

time-of-flight, but performance decreases in the presence of multipath propagation and

direct path blockage [24], and practical UWB radios use very low data rates and power

due to government regulator rules, severely limiting performance.

Zhou et al. [135] propose a UWB localization system without time synchroniza-

tion between the target and the receivers. If the target and receivers are synchronized,

the absolute range between them can be found easily. However, it is not possible to

achieve tight time synchronization between the target and the receivers in most of the

applications. On the other hand, it is less challenging to have all the receivers synchro-

nized. In this case, the relative ranges of the receivers with respect to the target can be

found and the problem is converted into a TDoA problem. In this work, a scheme simi-

lar to [26] is proposed to remove time synchronization between the target and receivers

and between the receivers. The key idea is to have another transmitter with known
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locations serving as a reference and trigger the transmission with this reference. When-

ever the transmission from this transmitter is received by the receivers and the target,

the target will start another transmission and all the receivers will receive the second

transmission from the target. By measuring the time difference between the receptions

of the two signals at the receivers, the distance of the target and the receivers can be

obtained. The achievable median accuracy is around 10 cm. There are still several

problems with this scheme. The time gap between the reception and transmission at

the target side needs to be measured very accurately and this value is highly dependent

on the device itself. So one calibration is only working for one target device. Also the

transmitter chosen needs to have direct LOS paths to all the receivers and the target

which is not always possible.

Traditionally, MUSIC and ESPRIT algorithms are applied to obtain AoA infor-

mation. Li and Pahlavan [59] propose using MUSIC in the frequency domain for ToA

estimation. Because of popularity of OFDM and MIMO technologies in Wi-Fi, subcar-

rier CSI is available which makes super-resolution processing of ToA possible.

In [32], Golden et al. utilize the ToA method to obtain indoor location for client. A

similar reference observer as in [26, 135] is chosen to handle the time synchronization

problem between the transmitter and receivers. Because of the strong multipaths in

indoor environment, ESPRIT [87] algorithm is employed to decompose the direct path

and multipaths. The achievable median range accuracy is between 1-6 m with a 40 MHz

sampling rate.

Synchronicity [126] uses MUSIC super-resolution techniques to differentiate the

direct path and reflection paths. TDoA is employed in Synchronicity to bypass the

time synchronization between the target and the receivers. DAS is employed to time

synchronize all the receivers. One contribution of Synchronicity is the spectrum iden-

tification scheme proposed to retrieve useful information from an inaccurate MUSIC

ToA profile. Synchronicity is able to achieve 2-3 m accuracy while its performance is

limited by the radio bandwidth.

A recent independent work appearing in the literature, Splicer [119] employs a

similar idea as ToneTrack of combining CSI from multiple channels. While Splicer

combines CSI for a more accurate power delay profile, ToneTrack uses the combined

CSI to further increase the resolution of super-resolution MUSIC for more accurate
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localization, integrating the CSI combination process with super-resolution ToA esti-

mation.

JADE [108, 107] jointly estimates angle and delay of all the arriving multipath

signals. Compared to MUSIC, JADE is able to present us information in both time and

space at the same time but the computational load is much higher.

2.3.7 GPS-assisted approaches

EZ [19] employs genetic algorithms to triangulate users between Wi-Fi APs coupling

with sporadic GPS fixes. The key advantage of EZ is that it does not require any knowl-

edge of the environment including the location of the AP and the floorplan. EZ does

not require any explicit user participation either. With the RSSI information recorded at

multiple APs when the mobile moves to enough number of different locations, a local-

izable structure (the entire set of locations can be translated, rotated and reflected but

not distorted in any manner if all distances are to be preserved) can be found. Then with

three true, no-collinear locations obtained opportunistically, when GPS enabled mobile

devices occasionally obtain GPS readings at the edges of the indoor environment such

as entrances and windows, EZ is able to determine the client’s absolute location. The

computational load of EZ is large. On the other hand, EZ is able to achieve 2-7 m me-

dian localization error which is slightly worse compared to traditional RF fingerprinting

based localization schemes.

COIN-GPS [75] explores the possibility of using GPS-based direct localization in

some indoor environments. It is well known that GPS receivers do not work indoors

because of the extremely weak signals caused by building shells and also the strong

multipaths. COIN-GPS is a piece of work trying to break this limit. It employs a high-

gain directional antenna at the front-end of the GPS receiver and computes the location

estimates in the cloud. By steering the directional antenna towards different directions,

it is possible to have a higher SNR in a certain direction and also the multipath effects

are reduced. The indoor GPS signals are too weak to be decoded for timestamps and

ephemeris. With the cloud-offload scheme, COIN-GPS eliminates the need of decod-

ing the GPS signal and gets the ephemeris data through a web service. The signal pro-

cessing in COIN-GPS is costly in terms of both energy and computational load which

makes cloud processing an appropriate choice. COIN-GPS is able to achieve a median
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localization error of 9.6 m indoors, where all normal GPS receivers fail. COIN-GPS

may not work in reality because of the requirement of high-gain directional antenna

and the coarse accuracy performance. However, it is well appreciated that GOIN-GPS

tries to overcome the constraints and make GPS localization work the first time in the

indoor environment.

2.3.8 FM radio based approaches

Another line of work leverages FM radio for indoor localization owing to its lower

frequency and hence better robustness to penetration, multipath and distance of trans-

mission.

Chen et al. [18] leverage FM radio fingerprinting for localization purposes. Be-

cause the frequency band (88 -108 MHz) is much lower compared to Wi-Fi (2.4 GHz

and 5 GHz), FM signals are less susceptible to human presence, multipath and fading,

they exhibit exceptional wall penetration capability and very less variation over time.

One important observation from this paper is that the localization error of FM and Wi-

Fi signals are independent. Because of this, FM and Wi-Fi schemes can be combined

for localization which increases the accuracy by 83% compared to when only Wi-Fi

signals are used as signatures for localization. However, as a signature based loca-

tion system, the performance is greatly affected by environmental changes such as the

presence of people and movement of furniture. Training and updating the signature

database takes time and effort. Another disadvantage is that not many devices are now

equipped with FM radios.

ACMI [133] is another FM-based localization system which does not require site

survey (training) to store the RSSI signatures at each single spot in a building. The

intuition is that FM signals are much more stable compared to Wi-Fi signals so the

data base can be built purely based on the signal propagation model. ACMI proposes

a practical model to predict the RSSI distribution only using the publicly available FM

transmissions and the floorplan of a building. This approach saves expenditure in both

time and cost for site survey. However, the accuracy level of the system is limited to

around 6 m and 89% room identification using eight FM broadcast signals.
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2.3.9 RFID based approaches

PinIt [112] leverages antenna motion to emulate an antenna array for AoA information.

This AoA information is employed as a unique signature similar to the RSSI reading.

PinIt employs the intuition that when two RFID tags are closer to each other, their AoA

profiles are more similar to each other. PinIt uses the dynamic time warping (DTW)

method to identify a spatial similarity between two AoA multipath profiles of nearby

RFID devices. By calculating the similarity of the the AoA profiles between the target

and the reference, PinIt is able to localize the client with a median accuracy of 11 cm.

Compared to the RSSI signature, AoA signature is more stable but is still vulnerable to

the layout changes and furniture movements in the indoor environment.

RF-Compass [111] employs RFIDs located on a robot to localize a given object

with RFID attached. It introduces a new RF localization algorithm formulated as a

space partitioning optimization problem. With any two tags attached to the robot, RF-

Compass is able to partition the space into two equal parts based on which tag is closer

to the target. With multiple tags on the robot, the target is restricted to within a small

region. RF-Compass leverages the consecutive moves of the robot to generate more

space partitions, further refining the accuracy of its estimates. With multiple RFID

tags attached to the object, RF-Compass is also able to find the object’s orientation in

addition to its location. RF-Compass is able to achieve a median accuracy of 2.76 cm

in center position and 5.77◦ in orientation.

RF-IDraw [113] improves the accuracy of ArrayTrack by increasing the separation

between antennas in an antenna array. By increasing the separation, the resolution

of the AoA beam is increased at the cost of more ambiguity. RF-IDraw proposes a

new antenna array placement strategy with only four antennas: two in the middle with

half wavelength separation to remove the ambiguity and two far away from each other

to increase the resolution. However, when there are a lot of multipaths, RF-IDraw’s

performance will be greatly degraded. RF-IDraw is able to track the trajectory shape of

the users writing with a median accuracy of 3.7 cm and a character recognition success

rate of 96.8%.

Tagoram [130] is another localization system based on RFID. It is observed that

the COTS RFID product is able to provide fine-grained resolution (0.09◦) in detecting

the phase of received RF signals. Tagoram exploits the tag’s mobility to build a vir-
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tual antenna array with readings from a few antennas over a time window. With the

Differential Augmented Hologram (DAH) scheme, Tagoram relaxes the assumption of

knowing the tag’s track trajectories. Tagoram is able to achieve below one centimeter

accuracy in the Lab with known linear and circular tracks while 2-10 cm accuracy in

real luggage tracking deployments at two airports. This is the best accuracy achieved

until now with an RFID based localization system that has knowledge of a tag’s tra-

jectory. Tagoram also studies the effect of multipath and thermal noise on localization

performance.



Chapter 3

Angle-of-arrival based localization

The proliferation of mobile computing devices continues, with handheld smartphones,

tablets, and laptops a part of our everyday lives. Outdoors, these devices largely enjoy

a robust and relatively accurate location service from GPS satellite signals, but indoors

where GPS signals do not reach, providing an accurate location service is quite chal-

lenging.

Furthermore, the demand for accurate location information is especially acute in-

doors. While the few meters of accuracy GPS provides outdoors are more than suf-

ficient for street-level navigation, small differences in location have more importance

to people and applications indoors: a few meters of error in estimated location can

place someone in a different office within a building, for example. Location-aware

smartphone applications on the horizon such as augmented reality, building navigation,

social networking, and retail shopping demand both a high accuracy and a low response

time. A solution that offers a centimeter-accurate location service indoors would enable

these and other exciting applications in mobile and pervasive computing.

Using RF for location has many challenges. First, the many objects found indoors

near APs and mobile clients reflect the energy of the wireless signal in a phenomenon

called multipath propagation. This forces an unfortunate tradeoff that most existing RF

location-based systems make: either model this hard-to-predict pattern of multipath

fading, or leverage expensive hardware that can sample the wireless signal at a very

high rate. Most existing RF systems choose the former, building maps of multipath

signal strength [6, 7, 109, 134], or estimating coarse differences using RF propagation

models [35, 62], achieving an average localization accuracy of between one meter [134]

and meters: too coarse for a lot of indoor applications at hand.
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Figure 3.1: Number of production Wi-Fi access points (APs) reachable from every

client location in our experimental testbed. Transmissions from most locations reach

seven or more production APs.

Systems based on ultrasound sensors such as Bat [116] and Cricket [79] have

achieved accuracy to the level of centimeters, but usually require dedicated infrastruc-

ture to be installed in every room in a building, an approach that is expensive, time

consuming, and requires maintenance effort. So we still prefer the location system to

be hosted on the existing Wi-Fi infrastructure.

Recently, however, two new opportunities have arisen in the design of indoor lo-

cation systems:

1. Wi-Fi APs are incorporating ever-increasing numbers of antennas to bolster ca-

pacity and coverage with MIMO techniques. In fact, it is expected that in the

future, the number of antennas at the AP will increase several-fold, to meet the

demand for MIMO links and spatial multiplexing [3, 102], which increase over-

all capacity. Indeed, the latest 802.11ac standard specifies eight MIMO spatial

streams, and 16-antenna APs have been available since 2010 [129].

2. Meanwhile, Wi-Fi AP density remains high: with my experimental infrastruc-

ture excluded, transmissions from most locations in my testbed (a typical student

office in the university) reach seven or more production network APs as shown

in Figure 3.1, with all but about five percent of locations reaching five or more

such APs. Furthermore, by leveraging the signal processing that is possible at

the physical layer, an AP can extract information from a single packet at a lower
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SNR than what is required to receive and decode the packet. This allows even

more APs to cooperate to localize clients than would be possible were the system

to operate exclusively at higher layers.

This chapter describes ArrayTrack, an indoor localization system that exploits the in-

creasing number of antennas at the APs to provide fine-grained location for mobile

devices in an indoor setting. When a client transmits a frame, multiple multi-antenna

ArrayTrack APs overhear the transmission, and each compute the AoA information

from the clients’ incoming frame. Then, the system aggregates the APs’ AoA data at

a central backend server to estimate the client’s location. While the AoA technique

is already in wide use in radar and acoustics, the challenge in realizing this technique

indoors is the presence of strong multipath RF propagation in these environments. To

address this problem, I introduce a novel scheme to eliminate the effects of multipath,

even in the relatively uncommon situations when little or no energy arrives on the direct

path between client and AP. ArrayTrack advances the state of the art in localization in

three distinct ways:

1. Multipath reflection is a well-known challenge for AoA based indoor localiza-

tion. To mitigate the effects of indoor multipath propagation, ArrayTrack con-

tributes a novel multipath suppression algorithm to effectively remove the re-

flection paths between clients and APs. By employing the natural movements

of human body, ArrayTrack is able to identify the more stable direct path for

localization.

2. Upon detecting a frame, an ArrayTrack AP quickly switches between sets of

antennas, synthesizing new AoA information from each. I term this technique

diversity synthesis, and find that it is especially useful to increase the effective

number of antennas in the case of low AP density.

3. ArrayTrack’s system architecture centers around parallel processing in hardware,

at APs, and in software, at the database backend, for fast location estimates. The

packet detection is implemented in FPGA and only a tiny part of the preamble is

transferred from the AP to the backend for AoA processing. The computational

load is small at the backend and the whole process is completed within 0.1 s.
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ArrayTrack is implemented on the Rice WARP FPGA platform [85] and evaluated

in a 41-node network deployed over one floor of a busy office space. Experimental

results in this setting show that using just three APs, ArrayTrack can localize clients to

a median 57 cm and mean one meter accuracy. With six APs, ArrayTrack achieves a

median 23 cm and mean 31 cm location accuracy, localizing 95% of clients to within

90 cm. At the same time, ArrayTrack is fast, requiring just 100 milliseconds to produce

a location estimate. To my knowledge, these are the most accurate and responsive

location estimates until 2013 for a Wi-Fi based location system that does not require

infrastructure except a normal density of nearby Wi-Fi APs. Furthermore, ArrayTrack’s

performance is robust against different antenna heights, different antenna orientation,

low SNR and collisions.

In the next section, I detail ArrayTrack’s design. An implementation discussion (§3.2)

and performance evaluation (§3.3) then follow.

3.1 Design
ArrayTrack’s design is described as information flows through the system, from the

physical antenna array, through the AP hardware, and on to the central ArrayTrack

server, as summarized in Figure 3.2. First, ArrayTrack leverages techniques to detect

packets at very low signal strength, so that many APs can overhear a single transmission

(§3.1.1). Next, at each AP, ArrayTrack uses many antennas (§3.1.2) to generate an AoA

spectrum: an estimate of likelihood versus bearing (§3.1.3), and cancels some of the

effects of multipath propagation (§3.1.4). Finally, the system combines these estimates

to estimate location (§3.1.5), further eliminating multipath’s effects.

3.1.1 Packet detection and buffer management

To compute an AoA spectrum for a client, the AP only need to overhear a small number

of frames (between one and three, for reasons that will become clear in Section 3.1.4)

from that client. For ArrayTrack’s purposes, the contents of the frame are immaterial,

so ArrayTrack can process control frames such as acknowledgments, and even frames

encrypted at the link layer.

The physical-layer preamble of an 801.11 frame contains known short and long

training symbols, as shown in Figure 3.3. I use a modified version of Schmidl-Cox [91]
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Access point
(Hardware radio

platform)

·Angle-of-arrival spectrum computation (§2.3)
·Multipath processing algorithms (§2.4)
·Maximum likelihood position estimation (§2.5)

ArrayTrack server

Packet detection (§2.1), 
diversity synthesis (§2.2)

Antenna
array

Circular buffer

8

(Number of access points)

1

AntSel

Figure 3.2: ArrayTrack’s high-level design for eight radio front-ends, divided into func-

tionality at each ArrayTrack access point and centralized server functionality. For clar-

ity, the transmit path functionality of the access point is omitted.

detection to detect an incoming frame’s short training symbols. Once the detection

block senses a frame, it activates the diversity synthesis mechanism described in the

next section and stores the samples of the incoming frame into a circular buffer, one

logical buffer entry per frame detected.

Since it does not require even a partial packet decode, ArrayTrack can process any

part of the packet, which is helpful in the event of collisions in a carrier-sense multiple

access network (§3.3.3.5). ArrayTrack detects the preamble of the packet and records

a small part of it. In principle, one time domain packet sample would provide enough

information for the AoA spectrum computation described in Section 3.1.3. However, to

average out the effects of noise, ArrayTrack employs 10 samples (I justify this choice

in Section 3.3.3.3). Since a commodity Wi-Fi AP samples at 40 MHz/second, this

implies that I need to process just 25× 10 = 250 nanoseconds of a packet’s samples,

under 1.5% of an Wi-Fi preamble’s 16 µs duration.
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s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 S0 S1G

3.2 µs 3.2 µs800 ns

Figure 3.3: The 802.11 OFDM preamble consists of ten identical, repeated short train-

ing symbols (denoted s0 . . .s9), followed by a guard interval (denoted G), ending with

two identical, repeated long training symbols (denoted S0 and S1).

3.1.2 Diversity synthesis

Upon detecting a packet, most commodity APs switch between pairs of antennas se-

lecting the antenna from each pair with the strongest signal, a technique called diversity

selection. This well-known and widely implemented technique improves performance

in the presence of destructive multipath fading at one of the antennas, and can be found

in the newest 802.11n MIMO access points today. It also has the advantage of not

increasing the number of radios required, thus saving cost at the AP.

ArrayTrack seamlessly incorporates diversity selection into its design, synthesiz-

ing independent AoA data from both antennas of the diversity pair. This technique is

termed diversity synthesis.

Referring to Figure 3.2, once the packet detection block has indicated the start of

a packet, control logic stores the samples corresponding to the preamble’s long training

symbol S0 (Figure 3.3) from the upper set of antennas into the first half of a circular

buffer entry. Next, the control logic toggles the AntSel (for antenna select) line in

Figure 3.2, switching to the lower set of antennas for the duration of the second long

training symbol S1.1 Since S0 and S1 are identical and each 3.2 µs long, they fall well

within the coherence time2 of the indoor wireless channel, and so ArrayTrack can treat

the information obtained from each set of antennas as if the two sets were obtained

simultaneously from different radios at the AP.

1ArrayTrack uses the long training symbols because the hardware radio platform has a 500 ns switch-

ing time during which the received signal is highly distorted and unusable.
2The time span over which the channel can be considered stationary. Coherence time is mainly a

function of the RF carrier frequency and speed of motion of the transmitter, receiver, and any nearby

objects.
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Figure 3.4: The AoA spectrum of a client’s received signal at a multi-antenna access

point estimates the incoming signal’s power as a function of its angle of arrival.

3.1.3 AoA spectrum generation

Especially in indoor wireless channels, RF signals reflect off objects in the environ-

ment, resulting in multiple copies of the signal arriving at the access point: this phe-

nomenon is known as multipath propagation. An AoA spectrum of a client’s received

signal at a multi-antenna AP is an estimate of the incoming signal’s power as a function

of AoA, as shown in Figure 3.4. Since strong multipath propagation is present indoors,

the direct-path signal may be significantly weaker than the reflected-path signals, or

may even be undetectable. In these situations, the highest peak on the AoA spectrum

would correspond to a reflected path instead of the direct path to the client. This makes

indoor localization using AoA spectra alone highly inaccurate, necessitating the re-

maining steps in ArrayTrack’s processing chain.

3.1.3.1 Phased-array primer

In order to explain how ArrayTrack generates AoA spectra, I now present a brief primer

on phased arrays. While the technology is well established, I focus on indoor applica-

tions, highlighting the resulting complexities.

For clarity of exposition, I first describe how an AP can compute AoA information

in free space (i.e., in the absence of multipath reflections), and then generalize the

principles to handle multipath wireless propagation. The key to computing a wireless

signal’s AoA is to analyze received phase at the AP, a quantity that progresses linearly

from zero to 2π every RF wavelength λ along the path from client to access point, as
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Figure 3.5: Principle of operation for ArrayTrack’s AoA spectrum computation phase.

(Left:) The phase of the signal goes through a 2π cycle every radio wavelength λ , and

the distance differential between the client and successive antennas on the access point

is related to the client’s bearing on the access point. (Right:) The complex representa-

tion of the sent signal at the client (filled dot) and received signals at the access point

(crosses) reflects this relationship.

shown in Figure 3.5 (left).

This means that when the client sends a signal, the AP receives it with a phase

determined by the path length d from the client. Phase is particularly easy to measure

at the physical layer, because software-defined and hardware radios represent the phase

of the wireless signal graphically using an in-phase-quadrature (I-Q) plot, as shown in

Figure 3.5 (right), where angle measured from the I axis indicates phase. Using the I-Q

plot, we see that a distance d adds a phase of 2πd/λ as shown by the angle measured

from the I axis to the cross labeled x1 (representing the signal received at antenna one).

Since there is a λ/2 separation between the two antennas, the distance along a path

arriving at bearing θ is a fraction of a wavelength greater to the second antenna than it

is to the first, that fraction depending on θ . Assuming d� λ/2, the added distance is
1
2λ sinθ .

These facts suggest a particularly simple way to compute θ at a two-antenna access

point in the absence of multipath: measure x1 and x2 directly, compute the phase of each

(∠x1 and ∠x2), then solve for θ as

θ = arcsin
(
∠x2−∠x1

π

)
(3.1)

Generalizing to multiple antennas. In indoor multipath environments, Equation 3.1

quickly breaks down, because multiple paths’ signals sum in the I-Q plot. However,
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adding multiple, say M, antennas can help. The best known algorithms are based on

eigenstructure analysis of an M×M correlation matrix Rxx in which the entry at the lth

column and mth row is the mean correlation between the lth and mth antennas’ signals.

Suppose D signals s1(t), . . . ,sD(t) arrive from bearings θ1, . . . ,θD at M > D an-

tennas, and that x j(t) is the received signal at jth antenna element at time t. Recalling

the relationship between measured phase differences and AP bearing discussed above,

the array steering vector is used a(θ) to characterize how much added phase (relative

to the first antenna) seen at each of the other antennas, as a function of the incoming

signal’s bearing. For a linear array,

a(θ) = exp
(
− j2πd

λ

)


1

exp(− jπ sinθ)

exp(− j2π sinθ)
...

exp(− j(M−1)π sinθ)


(3.2)

d is the separation between antennas which is usually half wavelength λ .

So what the AP hears can be expressed as

x(t) =
A︷ ︸︸ ︷

[a(θ1) a(θ2) · · · a(θD)]


s1(t)

s2(t)
...

sD(t)

+n(k), (3.3)

where n(k) is noise with zero mean and σ2
n variance. This means that Rxx can be

expressed as

Rxx = E[xx∗]

= E [(As+n)(s∗A∗+n∗)]

= AE [ss∗]A∗+E [nn∗]

= ARssA∗+σ
2
n I (3.4)

where Rss = E [ss∗] is the source correlation matrix.

The array correlation matrix Rxx has M eigenvalues λ1, . . . ,λM associated respec-

tively with M eigenvectors E = [e1 e2 · · · eM]. If the noise is weaker than the incoming

signals, then when the eigenvalues are sorted in non-decreasing order, the smallest
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M−D correspond to the noise while the next D correspond to the D incoming signals.

The D value depends on how many eigenvalues are considered big enough to be sig-

nals. ArrayTrack chooses D value as how many eigenvalues are larger than a threshold

that is a fraction of the largest eigenvalue. Based on this process, the corresponding

eigenvectors in E can be classified as noise or signal:

E =

 EN︷ ︸︸ ︷
e1 . . . eM−D

ES︷ ︸︸ ︷
eM−D+1 . . . eM

 (3.5)

I refer to EN as the noise subspace and ES as the signal subspace.

x1

x2

x3

a(θ1)

a(θ2)

Signal 
e-vector e1

Signal e-vector e2

Noise
e-vector e3

Signal subspace

a(θ) continuum

Figure 3.6: In this three-antenna example, the two incoming signals (at bearings θ1 and

θ2 respectively) lie in a three-dimensional space. Eigenvector analysis identifies the

two-dimensional signal subspace shown, and MUSIC traces along the array steering

vector continuum measuring the distance to the signal subspace. Figure adapted from

Schmidt [92].

The MUSIC AoA spectrum [92] inverts the distance between a point moving along

the array steering vector continuum and ES, as shown in Figure 3.6:

P(θ) =
1

a(θ)∗ENE∗Na(θ)
(3.6)

This yields sharp peaks in P(θ) at the signals’ AoA.

3.1.3.2 Spatial smoothing for multipath distortion

Implementing MUSIC as-is, however, yields highly distorted AoA spectra, for the fol-

lowing reason. When the incoming signals are phase-synchronized with each other
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Figure 3.7: Spatial smoothing an eight-antenna array x1, . . . ,x8 to a virtual six-element

array (number of groups NG = 3).
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Figure 3.8: Varying the amount of spatial smoothing on AoA spectra.

(as results from multipath) MUSIC perceives the distinct incoming signals as one su-

perposed signal, resulting in false peaks in P(θ). ArrayTrack therefore adopts spa-

tial smoothing [97], averaging the correlation matrices of incoming signals across

NG groups of antennas to reduce this correlation. For example, spatial smoothing

over NG = 3 six-antenna groups on an eight-antenna array with correlation matrices

R16, R27 and R38 would output one spatial smoothed correlation matrix: Ṙ, where

Ṙ = 1
3 (R16 +R27 +R38), as shown in Figure 3.7.

How should ArrayTrack choose NG? Figure 3.8 shows a microbenchmark com-

puting MUSIC AoA spectra for a client near and in the line of sight of the AP (so the

direct-path bearing dominates P(θ)) both with and without spatial smoothing. As NG

increases, the effective number of antennas decreases, and so spatial smoothing can

eliminate smaller peaks that may correspond to the direct path. On the other hand, as

NG increases, the overall noise in the AoA spectrum decreases, and some peaks may be

narrowed, possibly increasing accuracy. Based on this microbenchmark and experience
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generating AoA spectra indoors from a number of different clients in my testbed, it’s

found that a good compromise is to set NG = 2, and this value is used in the performance

evaluation in Section 4.3.

3.1.3.3 Array geometry weighting

Information from the linear array is not equally reliable as a function of θ , because

of the asymmetric physical geometry of the array. Consequently, after computing a

spatially-smoothed MUSIC AoA spectrum, the ArrayTrack multiplies it by a window-

ing function W (θ), the purpose of which is to weight information from the AoA spec-

trum in proportion to the confidence that ArrayTrack has in the data. With a linear

array, ArrayTrack multiplies P(θ) by

W (θ) =

1, if 15◦ < |θ |< 165◦

sinθ , otherwise.
(3.7)

3.1.3.4 Array symmetry removal

Although a linear antenna array can determine bearing, it cannot determine which side

of the array the signal is arriving from. This means that the AoA spectrum is essentially

a 180◦ spectrum mirrored to 360◦. When there are many APs cooperating to determine

location, this is not a problem, but when there are few APs, accuracy suffers. To address

this, ArrayTrack employs the diversity synthesis scheme described in Section 3.1.2 to

have a ninth antenna not in the same row as the other eight included. Using the ninth

antenna, ArrayTrack calculates the total power on each side of the AoA spectrum, and

removes the half with less power, resulting in a true 360◦ AoA spectrum.

3.1.4 Multipath suppression

While the spatial smoothing algorithms described above (§3.1.3.2) reduce multipath-

induced distortion of the AoA spectrum to yield an accurate spectrum, they do not

identify the direct path, leaving multipath reflections free to reduce system accuracy.

The multipath suppression algorithm I present here has the goal of removing or reduc-

ing peaks in the AoA spectrum not associated with the direct path from AP to client.

ArrayTrack’s multipath suppression algorithm leverages changes in the wireless

channel that occur when the transmitter or objections in the vicinity move by group-

ing together AoA spectra from multiple frames, if available. The method is motivated
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Scenario Frequency

Direct path same; reflection paths changed 71%

Direct path same; reflection paths same 18%

Direct path changed; reflection paths changed 8%

Direct path changed; reflection paths same 3%

Table 3.1: Peak stability microbenchmark measuring the frequency of the direct and

reflection-path peaks changing due to slight movement.

Algorithm (Multipath suppression)

1. Group two to three AoA spectra from frames spaced closer than 100 ms in

time; if no such grouping exists for a spectrum, then output that spectrum to

the synthesis step (§3.1.5).

2. Arbitrarily choose one AoA spectrum as the primary, and remove peaks

from the primary not paired with peaks on other AoA spectra.

3. Output the primary to the synthesis step (§3.1.5).

Figure 3.9: ArrayTrack’s multipath suppression algorithm.

by the following observation: when there are small movements of the transmitter, the

receiver, or objects between the two, the direct-path peak on the AoA spectrum is usu-

ally stable while the reflection-path peaks usually change significantly, and these slight

movements happen frequently in real life when we hold a mobile handset making calls,

for example.

I run a microbenchmark at 100 randomly chosen locations in my testbed (see Fig-

ure 3.20, p. 69), generating AoA spectra at each position selected and another position

five centimeters away. If the corresponding bearing peaks of the two spectra are within

five degrees, ArrayTrack marks that bearing as unchanged. If the variation is more than

five degrees or the peak vanishes, ArrayTrack marks it changed.

The results are shown in Table 3.1. Most of the time, the direct-path peak is un-

changed while the reflection-path peaks are changed. This motivates the algorithm

shown in Figure 3.9. Note that for those scenarios in which both the direct-path and

reflection-path peaks are unchanged, ArrayTrack keeps all of them without any dele-
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Figure 3.10: ArrayTrack’s multipath suppression algorithm operating on two example

AoA spectra (left) and the output AoA spectrum (right).

terious consequences. Also, observe that the microbenchmark above only captures

two packets. This leaves room for even further improvement if ArrayTrack captures

multiple packets during the course of the mobile’s movement. The only scenario which

induces failure in the multipath suppression algorithm is when the reflection-path peaks

remain unchanged while the direct-path peak is changed. However, as shown above,

the chances of this happening are small. An example of the algorithm’s operation is

shown in Figure 3.10.

3.1.5 AoA spectra synthesis

In this step, ArrayTrack combines the AoA spectra of several APs into a final location

estimate. Suppose N APs generate AoA spectra P1(θ), . . . ,PN(θ) as processed by the

previous steps, and ArrayTrack wishes to compute the likelihood of the client being

located at position x as shown in Figure 3.4. ArrayTrack computes the bearing of x

to AP i, θi, by trigonometry, and then estimates the likelihood of the client being at

location x, L(x), as

L(x) =
N

∏
i=1

Pi (θi) . (3.8)

With Equation 3.8 ArrayTrack searches for the most likely location of the client

by forming a 10 centimeter by 10 centimeter grid, and evaluating L(x) at each point in

the grid. ArrayTrack then uses hill climbing on the three positions with highest L(x) in

the grid using the gradient defined by Equation 3.8 to refine the location estimate.
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Figure 3.11: ArrayTrack combines information from multiple APs into a likelihood of

the client being at location x by considering all AoA spectra at their respective bearings

(θ1,θ2) to x.

3.1.6 AoA profile as a unique location signature

AoA information from multiple APs can be combined for localization purpose. On the

other hand, it is also noted that a single AoA profile can serve as a unique location

signature for security purposes. This signature is very difficult for an attacker to forge

while the attacker is not located exactly at the same position as the legitimate client.

How a unique AoA signature is generated and compared is described in this section.
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Figure 3.12: Stability of AoA signatures for three clients: each curve on each subplot

shows the client’s pseudospectrum at logarithmically-spaced time intervals.

To convey the intuition of how the unique AoA spectra are computed, a single

client transmitting near an AP with no multipath reflections is considered. If the client
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is at a bearing θ to the AP as shown in Figure 3.5 (left), then its signal will travel an

extra distance of 1/2λ sinθ to the second AP antenna, as compared with the first. This

distance directly corresponds to a measured baseband phase difference Ω = π sinθ be-

tween the two signals’ baseband symbol representations, as shown in Figure 3.5 (right).

Therefore, my estimate of the client’s bearing to the AP θ̂ based on a measured base-

band phase difference Ω is

θ̂ = arcsin(Ω/π) . (3.9)

Prior work has shown that the above concepts generalize to compute AoA spectra using

more than two antennas and in the presence of indoor multipath propagation. All that

required is a hardware or software-defined radio to capture tens to hundreds of base-

band physical layer samples from the preamble of a received packet [124]. It is also

noted that the AoA signatures are relatively stable in a static environment. Benchmark

experimental results are shown in Figure 3.12. Three clients are placed at three ran-

dom locations and the AoA pseudospectra are measured at different time points and

plotted. We can see clearly from the figure, even after 24 hours, the pseudospectra

are still reasonably stable which makes them suitable to be employed for identification

purposes.
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Figure 3.13: Upper: Estimated client bearing to the AP θ̂ as a function of measured

baseband phase difference Ω, and its rate of change with respect to Ω (lower).
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It is further noticed that θ̂ and Ω do not have a linear relationship with each other.

Estimated client bearing is plotted in Figure 3.13 (top), in units of degrees and the

derivation of θ̂ with respect to Ω in n Figure 3.13 (down). Here, note that a small

perturbation of Ω translate to smaller perturbations of θ̂ when the client is broadside to

the axis of the array (i.e., θ ≈ 0) but larger perturbations of θ̂ when the client is close

to θ =±π/2 radians (corresponding to Ω =±π radians):

d
dΩ

θ̂ =
1√

π2−Ω2
(3.10)

dθ̂/dΩ reaches a minimum of π−1 ≈ 0.32 when the client is broadside, and increases

sharply when the client is near the array axis.

Random phase perturbation. The AoA computation yields one AoA spectrum a time.

But since we try to formulate a highly specific client signature, it’s preferred to make

the array sensitive to slight changes at any angle. Based on the above observation of

non-uniform rate of change of θ̂ with respect to Ω, then, I propose a novel scheme to

add a random phase offset ζ2 to Ω, and compute another AoA signature. This pro-

cess is iterated, adding L− 1 further random offsets, so obtaining L AoA signatures

σ1(θ), ...,σL(θ) based on L random phase offsets ζ1 = 0,ζ2, . . . ,ζL. Note that we can

introduce deterministic perturbation to bring the peaks close to ±π to make the signa-

ture most unique in order to increase the attack detection rate. However, deterministic

perturbation has the following disadvantages compared with random perturbations:

1. The false alarm rate will also be increased accordingly.

2. The peaks very close to ±π become unstable (sensitive to very tiny changes).

3. As there are multiple peaks on a signature, it is difficult to bring all the peaks

near to ±π at the same time.

A random perturbation scheme is employed to spread the peaks all over the range be-

tween −π and +π to maintain a balance between high detection rate and low false

alarm rate. The averaging process described in next section mitigates the inaccura-

cies caused near +180/-180 degrees and also reduces the possibility of similar lobes in

coincidence.
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An attacker frame and a client frame:
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Figure 3.14: The effect of random phase perturbation on AOA signatures: Upper:

comparison between an attacker’s frame and a client’s frame. Lower: comparison

between two frames from the same client. M is the similarity metric described below.

Figure 3.14 (upper) shows the effect of my algorithm on two frames transmitted

100 milliseconds apart, from a legitimate client and an attacker placed several centime-

ters away. The signatures are similar (but not identical) under one phase perturbation,

with a rather high similarity metric M ), but the other phase perturbation produces very

different signatures with a similarity metric M = 0. Figure 3.14 (lower) shows that

the random perturbation does not separate (which is desired) the AoA signatures of

frames (also spaced 100 ms apart) from the same client, enhancing the AoA signature

specificity and selectivity.

Given two AoA signatures σA(θ) and σB(θ), the local maxima in each signature

are found using standard numerical methods. A metric M is designed that pairs local

maximum i from σA with local maximum j from σB. The metric takes two pseu-

dospectra σA and σB as inputs, and pairs peaks only if they are positioned within a

small constant angle threshold Θ of each other. The similarity metric M also takes the
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Speed Coherence time at 2.4 GHz

Near-stationary (1 kph) 77 ms

Walking (5 kph) 15 ms

Running (12 kph) 6 ms

Table 3.2: Wireless coherence times at 2.4 GHz as computed with Equation 3.12 for

typical client motion speeds.

magnitudes (normalized) of paired peaks into consideration. If two peaks are paired in

coincidence, their peak magnitudes may vary significantly. For M to approach 1, the

peaks need to be paired and at the same time, the magnitudes of paired peaks should

also be close to each other.

S = {(i, j) : |∠i−∠ j|< Θ}

M
(
σ

A,σB) =
∑(i, j)∈S mi ·m j(

∑i m2
i +∑ j m2

j

)
/2

. (3.11)

To incorporate the random phase addition algorithm above, the metrics result-

ing from comparing the L pseudospectra σA
1 (θ), ...,σA

L (θ) arising from random phase

perturbations of σA (as described in the previous section) pairwise with the L pseu-

dospectra σB
1 (θ), ...,σ

B
L (θ) arising from the same random phase perturbations of σB

are averaged. I call this average metric M̄ .

Wireless coherence time. The wireless channel between client and AP is determined

by scattering, reflection, and refraction by objects in the environment. A key design

parameter is the time duration over which the wireless channel can be considered un-

changing with high likelihood, as a function of the speed of the client’s motion and/or

motion of objects in the environment. The wireless coherence time Tc is determined

by carrier wavelength λ and maximum client velocity v. If v measured in meters per

second, then the coherence time is given by [100]:

Tc =
9

16π(v/λ )
. (3.12)

Table 3.2 shows wireless coherence time at 2.4 GHz as a function of typical client

motion speeds indoors. Within this time, we can be confident that the AoA signatures

of two transmissions from the same client will indeed be the same, making a false alarm
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Figure 3.15: The second generation WARP mother board: (left) and the third gener-

ation WARP board with 4 radio cards attached (right) (Figures adopted from Mango

website [85]).

a rare event. When the environment is static, the AoA signatures can actually be stable

for hours and even days.

3.2 Implementation

Figure 3.16: The second generation WARP radio board: MAX2829 transceiver (left)

and the clock board (right) (Figures adopted from Mango website [85]).

ArrayTrack is built on top of WARP software-defined radio platform developed

by Mango [85]. The second and third generations of WARP boards are shown in Fig-

ure 3.15. The second generation mother board has a Xilinx Virtex-4 FPGA [121],

which provides all the node’s processing resources. Four daughtercards (Wi-Fi radio
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Figure 3.17: The block diagram of third generation WARP platform, integrated with

a Virtex-6 FPGA, two programmable RF interfaces (Figure adopted from mango web-

site).

cards) can be attached to the motherboard to support up to 4 radios sharing the same

oscillating clock. The Ethernet port connecting WARP and the computer supports both

100 M and Gigabit Ethernet. The default daughtercard is a Maxim MAX2829 [69]

transceiver as shown in Figure 3.16 (left) supporting both 2.4 GHz and 5 GHz trans-

mission/reception. It supports 14-bit ADC for reception and 16-bit DAC for trans-

mission. The maximum transmission power supported is 18 dBm. The clock board

in Figure 3.16 (right) is employed to share the sampling clock signal between WARP

boards so multiple boards can be time and frequency synchronized. The third genera-

tion WARP platform is shown in Figure 3.15 (right). Xilinx Virtex-6 LX240T FPGA

is employed in this newer version platform for a higher computational speed and two

radio boards are already included on the motherboard. The memory slot is also up-

graded from DDR2 to DDR3. The maximum radio bandwidth supported is 36 MHz.

The block diagram of third generation WARP platform is shown in Figure 3.17. The

connections between each components are clearly marked.

3.2.1 ArrayTrack prototype

The prototype ArrayTrack AP, shown in Figure 3.18, uses two Rice WARP FPGA-

based wireless radios. Each WARP is equipped with four radio front ends and four

omnidirectional antennas. ArrayTrack utilizes the digital I/O pins on one of the WARP

boards to output a time synchronization pulse on a wire connected between the two

WARPs, so that the second WARP board can record and buffer the same time-indexed
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samples as the first. The WARPs run a custom FPGA hardware design architected with

Xilinx System Generator for DSP that implements all the functionality described in

Section 4.1.

Figure 3.18: the ArrayTrack prototype AP is composed of two WARP radios, while a

cable-connected USRP2 software-defined radio calibrates the array.

The 16 antennas3 attached to the WARP radios are placed in a rectangular geom-

etry (Figure 3.19). Antennas are spaced at a half wavelength distance (6.13 cm). This

also happens to yield maximum MIMO wireless capacity, and so is the arrangement

preferred in commodity APs.

3.2.2 AP phase calibration

Equipping the AP with multiple antennas is necessary for ArrayTrack, but does not

suffice to calculate the AoA as described in the preceding section. Each radio re-

ceiver incorporates a 2.4 GHz oscillator whose purpose is to convert the incoming radio

frequency signal to its representation in I-Q space shown, for example, in Figure 3.5

(p. 52). An undesirable consequence of this downconversion step is that it introduces

an unknown phase offset to the resulting signal, rendering AoA inoperable. This is

permissible for MIMO, but not for ArrayTrack application, because this manifests as

an unknown phase added to the constellation points in Figure 3.5. My solution is to

calibrate the array with a USRP2 generating a continuous wave tone, measuring each

phase offset directly. Because small manufacturing imperfections exist for SMA split-

ters and cables labelled the same length, a one-time (run only once for a particular set

3The two WAPPs have a total of eight radio boards, each with two ports. ArrayTrack is able to switch

ports as described in §3.1.2 and record the two long training symbols with different antennas. So with

two WARPs, the maximum number of antennas I can utilize is 16.
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Figure 3.19: The AP mounted on a cart, showing its antenna array.

of hardware) calibration scheme is proposed to handle these equipment imperfections.

The signal from the USRP2 goes through splitters and cables (I called them ex-

ternal paths) before reaching WARP radios. The phase offset Pho f f I want to measure

is the internal phase difference Phin2−Phin1. Running calibration once, I obtain the

following offset:

Pho f f 1 = (Phex2 +Phin2)− (Phex1 +Phin1) (3.13)

Because of equipment imperfections, Phex2 is slightly different from Phex1 so Pho f f 1

is not equal to Pho f f . The external paths are exchanged and calibration process is run

again:

Pho f f 2 = (Phex1 +Phin2)− (Phex2 +Phin1) (3.14)

Combing the above two equations, ArrayTrack obtains Pho f f and the phase difference

caused by equipment imperfections:

(Pho f f 2 +Pho f f 1)/2 = Pho f f (3.15)

(Pho f f 2−Pho f f 1)/2 = Phex1−Phex2 (3.16)

Subtracting the measured phase offsets from the incoming signals over the air then

cancels the unknown phase difference, and AoA becomes possible.
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Testbed clients. The clients used in my experiments are Soekris boxes equipped with

Atheros 802.11g radios operating in the 2.4 GHz band.

3.3 Evaluation
To show how well ArrayTrack performs in real indoor environment, I present experi-

mental results from the testbed described in Section 4.2. First I present the accuracy

level ArrayTrack achieves in the challenging indoor office environment and explore the

effects of number of antennas and number of APs on the performance of ArrayTrack.

After that, I demonstrate that ArrayTrack is robust against different transmitter/receiver

heights and different antenna orientations between clients and APs. Finally the latency

introduced by ArrayTrack, which is a critical factor for a real-time system is examined.

Experimental methodology. The prototype APs are placed at the locations marked

“1”–“6” in the testbed floorplan, shown in Figure 3.20. The layout shows the basic

structure of the office but does not include the numerous cubicle walls also present.

The 41 clients are placed roughly uniformly over the floorplan of size 25 m× 24 m,

covering areas both near to, and far away from the AP. Some clients are put near metal,

wood, glass and plastic walls to make my experiments more comprehensive. Some

clients are placed behind concrete pillars deliberately so that the direct path between

the AP and client is blocked, making the situation more challenging.

To measure ground truth in the location experiments presented in this section,

ArrayTrack used scaled architectural drawings of the building combined with mea-

surements taken from a Fluke 416D laser distance measurement device, which has an

accuracy of 1.5 mm over 60 m.

Due to budget constraints, ArrayTrack used one WARP AP, moving it between

the different locations marked on the map in Figure 3.20 and receiving new packets to

emulate many APs receiving a transmission simultaneously. This setup does not favor

my evaluation of ArrayTrack. Consequently, the results reported next overestimate the

magnitude of the location error that ArrayTrack has described, by the following rea-

soning. The time interval between moving the WARP AP from location to location and

taking measurements was approximately minutes, well larger than the wireless chan-

nel coherence time, or the time it takes for the wireless channel to change because of

motion of objects nearby. Assuming that the nearby object motion between my mea-
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Figure 3.20: Testbed environment: Soekris clients are marked as small dots, and the

AP locations are labelled “1”–“6”.

surements at different APs is random and uncorrelated with the wireless channel, such

random changes in the wireless channel can only on average add error to ArrayTrack

system.

3.3.1 Static localization accuracy

I first evaluate how accurately AoA pseudospectrum computation without array geome-

try weighting and reflection path removing localizes clients. This represents the perfor-

mance ArrayTrack would obtain in a static environment without any client movement,

or movement nearby. The curves labeled three APs, four APs, five APs, and six APs

in Figure 3.21 show raw location error computed with Equation 3.8 across all different

AP combinations and all 41 clients. The general trend is that average error decreases

with an increasing number of APs. The median error varies from 75 cm for three APs

to 26 cm for six APs. The average error varies from 317 cm for three APs to 38 cm

for six APs. A heatmap combination example is shown in Figure 3.22 with increasing

number of APs.

3.3.2 Semi-static localization accuracy

I now evaluate ArrayTrack using data that incorporates small (less than 10 cm) move-

ments of the clients, with two more such location samples per client. This is represen-
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Figure 3.21: Cumulative distribution of location error from unoptimized raw AoA spec-

tra data across clients using measurements taken at all combinations of three, four, five,

and six APs.

tative of human movement even when stationary, due to small inadvertent movements,

and covers all cases where there is even more movement up to walking speed. In Fig-

ure 3.23, it is shown that ArrayTrack improves the accuracy level greatly, especially

when the number of APs is small. ArrayTrack improves mean (not median) accuracy

level from 38 cm to 31 cm for six APs (a 20% improvement). 90%, 95% and 98% of

clients are measured to be within 80 cm, 90 cm and 102 cm respectively of their actual

positions. This improvement is mainly due to the array geometry weighting, which

removes the relatively inaccurate parts of the spectrum approaching 0 degrees or 180

degree (close to the line of the antenna array).

When there are only three APs, ArrayTrack improves the mean accuracy level

from 317 cm to 107 cm, which is around a 200% improvement. The intuition behind

this large performance improvement is the effective removal of the false positive loca-

tions caused by multipath reflections and redundant symmetrical bearings. When the

number of APs is big such as five or six, heatmap combination inherently reinforces the

true location and removes false positive locations. However, when the number of APs

is small, this reinforcement is not always strong and sometimes the array symmetry
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One AP Two APs Three APs

Four APs Five APs Six APs

Figure 3.22: Heatmaps showing the location likelihood of a client with differing num-

bers of APs computing its location. The ground truth location of the client in each is

denoted by a small dot in each heatmap.

causes false positive locations, which greatly degrades the localization performance. In

these cases, ArrayTrack enables the array symmetry removal scheme described in Sec-

tion 3.1.3.4 to significantly enhance accuracy. By using this technique, ArrayTrack can

achieve a median 57 cm accuracy levels with only three APs, good enough for many

indoor applications.

The angle (bearing) accuracy is shown here in Figure 3.24. For clear visualization,

only the bearing accuracy of 10 Soekris locations are shown, with 10 measurements at

each location. The red dots indicate the ground truth angle while the blue stars are

the measured angles at each location. ArrayTrack is able to achieve an average of 3-4

degrees of bearing accuracy with 8-antenna AP.

3.3.2.1 Varying number of AP antennas

I now show how ArrayTrack performs with differing number of antennas at APs. In

general, with more antennas at each AP, ArrayTrack can achieve a more accurate AoA

spectrum and capture a higher number of reflection-path bearings as Figure 3.25 shows,

which accordingly increases localization accuracy. Because ArrayTrack applies spatial

smoothing on top of the MUSIC algorithm, the effective number of antennas is actually

reduced and so MUSIC algorithm is not able to capture all the arriving signals when

the number of antennas is small. The localization performance is shown in Figure 3.26.
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Figure 3.23: Cumulative distribution of location error across clients for three, four, five

and six APs with ArrayTrack.

The mean accuracy level is 138 cm for four antennas, 60 cm for six antennas and 31 cm

for eight antennas. It is interesting to note that the improvement gap between four and

six antennas is bigger than that between six to eight antennas. In a strong multipath

indoor environment like my office, the direct path signal is not always the strongest.

However, the direct path signal is among the three biggest signals most of the time.

How the direct path peak changes is shown in Figure 3.27. The client is placed on

the some line with respect to the AP while blocked by more and more pillars. Even

when it is blocked by two pillars, the direct path signal is still among the top three

biggest, although not the strongest. With five virtual antennas, after spatial smoothing,

ArrayTrack is able to avoid losing the direct path signals as sometimes happens when

only four antennas are used. The accuracy level improvement from six to eight antennas

is due to the more accurate AoA spectrum obtained. With an increasing number of

antennas, there will be some point when increasing the number of antennas does not

improve accuracy any more as the dominant factor will be the calibration, antenna

imperfection, noise, correct alignment of antennas, and even the human measurement
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Figure 3.24: Measured bearings versus ground truth bearings for ArrayTrack.

errors introduced with laser meters in the experiments. I expect that an antenna array

with six antennas (30.5 cm long) or eight antennas (43 cm long) is quite reasonable.

3.3.3 Robustness

Robustness to varying client height, orientation, low SNR, and collisions is an impor-

tant characteristic for ArrayTrack to achieve. ArrayTrack’s accuracy is investigated

under these adverse conditions in this section.

As ArrayTrack works on any part of the packet, the preamble of the packet is

chosen to work with ArrayTrack. Preamble part is transmitted at the base rate and

what’s more, complex conjugate with the known training symbol generate peaks which

is very easy to be detected even at low SNR.

3.3.3.1 Height of mobile clients

In reality, most mobiles rest on a table or are held in the hand, so they are often located

around 1–1.5 meters off the ground. APs are usually located on the wall near the

ceiling, typically 2.5 to 3 meters high. I seek to study whether this height difference

between clients and APs will cause significant errors in ArrayTrack’s accuracy. The

mathematical analysis in §3.1.3 is based on the assumption that clients and APs are at

the same height. It is shown below that a 1.5 meter height difference introduces just
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Figure 3.25: More antennas improve resolution and accuracy. Resolution and accuracy

benefit localization performance.

1%–4% error when the distance between the client and AP varies between five and

10 meters.

Suppose the AP is distance h above the client; ArrayTrack computes the resulting

percentage error caused by this h. AoA relies on the distance difference d1−d2 between

the client and the two AP antennas in a pair. Given an added height, this difference

becomes:

d′1−d′2 =
d1

cosφ
− d2

cosφ
(3.17)

where cosφ = h/d. The percentage error is then (d′1−d′2)−(d1−d2)
d1−d2

= (cosφ)−1− 1. For

h= 1.5 meters and d = 5 meters, this is 4% error; for h= 1.5 meters and d = 10 meters,

this is 1% error.

In my experiments, the AP is placed on top of a cart for easy movement with

the antennas positioned 1.5 meters above the floor. To emulate a 1.5-meter height

difference between AP and clients, the clients are put on the ground at exactly the

same location and generate the localization errors with ArrayTrack to compare with

the results obtained when they are more or less on the same height with the AP.4

The experimental results shown in Figure 3.28 demonstrate the preceding. Me-

4Note that this low height does not favor my experimental results as lower AP positions are suscep-

tible to even more clutter from objects than an AP mounted high on the well near the ceiling.
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Figure 3.26: CDF plot of location error for four, six and eight antennas with Array-

Track.
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Figure 3.27: The AoA spectra for 3 clients in a line with AP.

dian location error is slightly increased from 23 cm to 26 cm when the AP uses eight

antennas. One factor involved is that it is unlikely for a client to be close to all APs,

as the APs are separated in space rather than being placed close to each other. One

advantage of ArrayTrack is the independence of each AP from the others, i.e., when we

have multiple APs, even if one of them is generating inaccurate results, the rest will not

be affected and will mitigate the negative effects of the inaccurate AP by reinforcing

the correct location.

In future work, I’m planning to extend the ArrayTrack system to three dimen-

sions by using a vertically-oriented antenna array in conjunction with the exiting
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Figure 3.28: CDF plot of ArrayTrack’s location error for different antenna height, dif-

ferent orientation and baseline results, with eight antennas and six APs.

horizontally-oriented array. This will allow the system to estimate elevation directly,

and largely avoid this source of error entirely.

3.3.3.2 Mobile orientation

Users carry mobile phones in their hands at constantly-changing orientations, so the

effect of different antenna orientations on ArrayTrack is studied here. Keeping the

transmission power the same on the client side, I rotate the clients’ antenna orientations

perpendicular to the APs’ antennas. The results in Figure 3.28 show that the accuracy

level I achieve suffers slightly compared with the original results, median location error

increasing from 23 cm to 50 cm. By way of explanation, it is found that the received

power at the APs is smaller with the changed antenna orientation, because of the dif-

ferent polarization. With linearly polarized antennas, a misalignment of polarization of

45 degrees will degrade the signal up to 3 dB and a misaligned of 90 degrees causes

an attenuation of 20 dB or more. By using circularly-polarized antennas at the AP, this

issue can be mitigated.
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Figure 3.29: The effect of number of data samples on AoA spectrum.

3.3.3.3 Number of preamble samples

To show that ArrayTrack works well with very small number of samples, testbed re-

sults are presented in Figure 3.29. Each subplot is composed of 30 AoA spectra from

30 different packets recorded from the same client in a short period of time. I use dif-

ferent number of samples to generate the AoA pseudospectra. As WARPLab samples

40 MHz per second, one sample takes only 0.025 us. When the number of samples in-

creased to 5, the AoA spectrum is already quite stable which demonstrate ArrayTrack

has the potential to responds extremely fast. ArrayTrack employs 10 samples in my ex-

periments and for a 100 ms refreshing interval, the overhead introduced by ArrayTrack

traffic is as little as: (10 samples)(32 bits/sample)(8 radios)
100 ms = 0.0256 Mbit/s.

3.3.3.4 Low signal to noise ratio (SNR)

The signal to noise ratio (SNR) effect on the performance of ArrayTrack is shown in

this section. Because ArrayTrack does not need to decode any packet content, all the

short and long training symbols can be used for packets detection, which performs very

well compared with the original Schmidl-Cox packet detection algorithm. With all the

10 short training symbols used, ArrayTrack is able to detect packets at SNR as low as

-10 dB.

It is clear that low SNR is not affecting the packet detection much. Then I want to
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Figure 3.30: AoA spectra become less sharp and more side peaks when the SNR be-

comes small.

see whether this low SNR affect my AoA performance. The client is kept at the same

position untouched and keep decreasing the transmission power of the client to see how

AoA spectra change. The results are shown in Figure 3.30. It can be seen clearly that

when the SNR becomes very low below 0 dB, the spectrum is not sharp any more and

very large side lobe appears on the spectrum generated. This will definitely affect my

localization performance. However, it is also found that as long as the SNR is not below

0 dB, ArrayTrack works pretty well.

3.3.3.5 Packet collisions

In very rare cases, two simultaneous transmissions cause collisions. It is shown here

ArrayTrack is still able to work as long as the preambles of the two packets are not over-

lapping. For collision between two packets of 1000 bytes each, the chance of preamble

colliding is 0.6%. As long as the training symbols are not overlapping, ArrayTrack

is able to obtain the AoA information for both of them. ArrayTrack detects the first

colliding packet and generate an AoA spectrum. Then ArrayTrack detects the second

colliding packet and generate its AoA spectrum. However, the second AoA spectrum
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Figure 3.31: The procedure to obtain AoA spectra for two colliding packets.
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Figure 3.32: A summary of the end-to-end latency that the ArrayTrack system incurs

in determining location.

is composed of bearing information for both packets. So ArrayTrack removes the AoA

peaks of the first packet from the second AoA spectrum, thus successfully obtaining

the AoA information for the second packet as shown in Figure 3.31.

3.3.4 System latency

System latency is important for the real-time applications such as augmented reality.

Figure 3.32 summarizes the latency ArrayTrack incurs, starting from the beginning of

a frame’s preamble as it is received by the ArrayTrack APs. As discussed previously

(§3.3.3.3), ArrayTrack only requires 10 samples from the preamble in order to function.

ArrayTrack therefore has the opportunity to begin transferring and processing the AoA

information while the remainder of the preamble and the body of the packet is still on

the air, as shown in the figure. System latency is comprised of the following pieces:

1. T : the air time of a frame. This varies between approximately 222 µs for a
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1500 byte frame at 54 Mbit/s to 12 ms for the same size frame at 1 Mbit/s.

2. Td: the preamble detection time. For the 10 short and two long training symbols

in the preamble, this is 16 µs.

3. Tl: WARP-PC latency to transfer samples. It is estimated to be approximately

30 milliseconds, noting that this can be significantly reduced with better bus con-

nectivity such as PCI Express on platforms such as the Sora [103].

4. Tt : WARP-PC serialization time to transfer samples.

5. Tp, the time to process all recorded samples.

Tt is determined by the number of samples transferred from the WARPs to the PC

and the transmission speed of the Ethernet connection. The Ethernet link speed between

the WARP and PC is 100 Mbit/s. However, due to the very simple IP stack currently im-

plemented on WARP, added overheads mean that the maximum throughput that can be

achieved is about 1 Mbit/s. This yields Tt =
(10 samples)(32 bits/sample)(8 radios)

1 Mbit/s = 2.56 ms.

Tp depends on how the MUSIC algorithm is implemented and the computational

capability of the ArrayTrack server. For an eight-antenna array, the MUSIC algo-

rithm involves eigenvalue decomposition and matrix multiplications of linear dimen-

sion eight. Because of the small size of these matrices, this process is not the limiting

factor in the server-side computations. In the synthesis step (§3.1.5) ArrayTrack applies

a hill climbing algorithm to find the maximum in the heatmap computed from the AoA

spectra. For my current Matlab implementation with an Intel Xeon 2.80 GHz CPU and

4 GB of RAM, the average processing time is 100 ms with a variance of 3 ms for the

synthesis step.

Therefore, the total latency that ArrayTrack adds starting from the end of the

packet (excluding bus latency) is Ttotal = Td +Tt +Tp ≈ 100 ms.

Recall that the walking speed for human being in indoor environment is around 1-

2 m/s. This 100 ms small latency means ArrayTrack is fast enough for locating people

with walking speed in the indoor environment.
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3.4 Discussion
How does ArrayTrack deal with NLOS?

The NLOS scenarios encountered in the experiments can be categorized into two dif-

ferent groups:

• G1: Direct path signal is attenuated (not the strongest) but exists.
• G2: Direct path signal is totally blocked.

G1 does not affect ArrayTrack as the spectra synthesis method strengthens the

true location in nature. Also ArrayTrack proposes the multipath identification scheme

to remove multipath reflections when slight movements can be employed.

For G2, one blocked direct path degrades the performance of ArrayTrack slightly

but not much. ArrayTrack is dependent on the spectra from multiple APs to localize a

client. Because all the APs are placed at different locations, it is very unlikely that the

client’s direct paths to all the APs are blocked. As long as some of the APs’ direct paths

are not 100% blocked, ArrayTrack is still able to achieve relatively accurate results.

The results presented in this thesis include scenarios when the client is placed with 1-2

walls in between with respect to the APs.

Linear versus circular array arrangement?

Most commonly seen commercial APs have their antennas placed in linear arrange-

ment. As circular array resolves 360 degrees while linear resolves 180 degrees, twice

the number of antennas is needed for circular array to achieve the same level of reso-

lution accuracy while linear array has the problem of symmetry ambiguity addressed

with synthesis of multiple APs. One big problem with circular array is that the spa-

tial smoothing scheme employed in ArrayTrack can not be applied directly to remove

coherence between signals because the steering vector does not possess a linear rela-

tionship with circular array.



Chapter 4

Time-Difference of Arrival based

localization

Recently, indoor wireless localization systems have broken the meter accuracy barrier

both for Wi-Fi devices [47, 124] and RFID tags [112, 113, 130], but to achieve these

results, require some combination of many APs and antennas, very long antenna arrays,

and/or an RF environment without too many obstacles blocking client-AP lines of sight.

Physical layer Bandwidth Raw resolution

802.11a/g Wi-Fi 20 MHz 15 m

802.11n Wi-Fi 40 7.5

802.11ac Wi-Fi < 160 > 1.9

Ultra-wideband > 500 < 60 cm

Table 4.1: Popular physical layers used in localization, their frequency bandwidth,

and the raw sample spatial resolution each offers—the distance light travels between

sampling instants at that bandwidth: Raw resolution = Speed of light / Bandwidth.

These systems have broken the meter accuracy barrier with AoA and other types

of signal processing analysis, but time-of-arrival (ToA) analysis promises to improve

accuracy even further. ToA has a particular challenge, however, as shown in Table 4.1:

for a typical 802.11a/g Wi-Fi channel with only 20 MHz bandwidth, the signal is sam-

pled once every 50 nanoseconds, during which the signal travels a full 15 meters. As

the next rows of the table show, later 802.11n/ac standards enhance this resolution, but

still achieve just 1.9 meters of raw sample resolution. Super-resolution spectral signal
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AP Mobile

Frequency

Time
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Figure 4.1: A Wi-Fi mobile hops across 80 MHz of bandwidth in 10 ms in order to

avoid other competing Wi-Fi users and in-band interference. Cellular LTE mobiles use

a similar strategy for similar reasons. ToneTrack leverages in-band frequency hopping

to improve indoor localization accuracy.

processing algorithms such as MUSIC [92, 59] and matrix-pencil [89] can enhance this

raw sample resolution by an approximate factor of 2×, but still achieve an accuracy

proportional to the raw sample spatial resolution shown in Table 4.1, limiting the utility

of ToA analysis. Even UWB systems that sample at a rate of 500 MHz and up achieve

just 60 cm raw spatial resolution. Focusing on ToA/TDoA analysis, this chapter ques-

tions whether it is possible to achieve a higher resolution for time-based localization.

The opportunity leveraged in this work is that tomorrow’s wireless networks will

make adaptive and opportunistic use of a large variety of frequency bandwidths, rang-

ing from narrow 5 MHz channels intended for the exclusive use of one mobile user

at a time, to expansive 160 MHz channels shared between users with CSMA. In-

deed, the use of narrow frequency-bandwidth channels is now commonplace: Wi-

Fi [15, 20, 101] and cellular systems divide the wireless medium into fine-grained

time-frequency blocks, conferring many benefits such as reducing fixed-airtime MAC

overheads, increasing SNR, and allowing for channel assignment algorithms to opti-

mize throughput for many users. Furthermore, the use of wide-bandwidth channels has

also emerged. The 802.11ac standard [43] specifies transmission bandwidths from 20

to 160 MHz, even allowing two non-contiguous 80 MHz channels to be aggregated

together as one 160 MHz channel. Dynamic Frequency Selection (DFS) in the 5.250–

5.725 MHz band lets Wi-Fi radios hop channels to avoid any nearby military radar.
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In this chapter, I present ToneTrack, an indoor localization system that leverages

frequency-agile wireless networks to enhance the accuracy of indoor localization.

ToneTrack measures the ToA of a client’s transmission at pairs of APs in the network.

In order to do this, it analyzes the correlation between incoming signals on different

subcarriers as MUSIC does, but in the frequency domain. This allows ToneTrack to

achieve higher ToA accuracy than simply looking at the sample index of packet de-

tection or channel impulse response. But as noted above, even with super-resolution

MUSIC scheme, frequency bandwidth still limits the resolution that ToA algorithms

can achieve.

To overcome this bandwidth limitation, ToneTrack contributes a novel signal com-

bination scheme that combines data from a device as it hops across different channels

in a frequency band, as shown in Figure 4.1.The result is that ToneTrack can achieve

gains in time resolution that are proportional to the number of channels hopped across

when transmitting within a channel coherence time.

After extracting a ToA profile of the mobile device’s signal from each AP, Tone-

Track analyzes each profile individually. Even when multipath reflections arrive too

close in time to the direct path and super-resolution schemes reach their resolution lim-

its, failing to resolve all the paths correctly, ToneTrack is still able to identify the useful

data therein, retrieving relatively accurate information despite inaccuracy in the overall

ToA profile. Here novel peak classification algorithms identify the accurate direct-path

peak in the time-of-arrival profile and retain it for further processing.

Lastly, ToneTrack compares TDoA readings across pairs of APs in the network

in order to estimate and refine the mobile client’s location. Most prior indoor local-

ization work cope with multipath reflections when both reflection paths and direct path

exist. The direct path signal may get attenuated but does exist. However, the direct path

signal sometimes gets 100% blocked, an even more challenging scenario. ToneTrack

employs the classical triangle inequality property to identify the APs whose direct path

is completely blocked, improving accuracy in this most challenging situation. Then

clustering, outlier rejection, and averaging complete the processing chain, yielding lo-

cation estimate from a mobile client’s transmission. ToneTrack does not require any

offline training: preamble data from one to three packets suffice, making the approach
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amenable to real-time tracking.

Contributions. ToneTrack contributes the following novel design elements:

1. A frequency (tone) combining algorithm that allows a ToA/TDoA method to

increase the bandwidth it may utilize for finer accuracy without increasing the

radio’s sampling rate (§4.1.3).

2. Retrieve useful information from the inaccurate ToA spectrum profile even when

the super-resolution scheme reaches the resolution limit (§4.1.4).

3. A triangle inequality-based method together with outlier rejection scheme for

identifying and discarding the AP to which a client’s LOS transmission is com-

pletely blocked (§4.1.5).

Roadmap. The rest of this chapter begins with my system design (§4.1) and im-

plementation (§4.2). My evaluation (§4.3) in an indoor 20× 25 meter office testbed

demonstrates a 90 cm median localization accuracy with four APs, each equipped with

one antenna and overhearing three packets transmitted at adjacent channels with only

20 MHz bandwidth.

4.1 Design
This section presents the design of ToneTrack, starting with a system description

(§4.1.1) before delving into ToneTrack’s constituent parts: super-resolution ToA pro-

cessing (§4.1.2), channel combination (§4.1.3), spectrum identification (§4.1.4), and

multi-AP data fusion (§4.1.5).

4.1.1 Design Overview

ToneTrack is designed as a passive system that listens to mobile clients’ transmissions

at nearby APs. Thus the system requires no additional wireless channel overhead for

deployment in a production wireless local-area network. Figure 4.2 shows the high-

level system design: upon hearing multiple packet transmissions on different channels

from a mobile device, an AP forwards the packets to the backend server over a backhaul

wired network, appended with timestamps. Then, once the backend server receives this

data within a channel coherence time, it passes them to the channel combination step
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Figure 4.2: High-level design of ToneTrack. APs overhear a packet transmission from

a mobile and pass the packets to the backend server to run a time-of-arrival (ToA)

estimation algorithm, combining the resulting hyperbolic loci (labeled in the figure

with their originating AP pairs) for a location estimate.

described in Section 4.1.3 to generate a high-resolution ToA profile. Next, novel algo-

rithms determine whether the resulting ToA profile is in fact accurate, or alternately,

contains an accurate part useful for localization, even when the overall ToA profile is

inaccurate (§4.1.4). After that, the ToneTrack controller combines the ToA informa-

tion collected at pairs of APs into TDoA estimates. In Figure 4.2, the hyperbolic curve

labeled “AP 1/2” denotes the possible loci of the mobile based on AP 1 and AP 2’s

TDoA and the hyperbolic curve labeled “AP 1/3” denotes the possible loci of the mo-

bile based on AP 1 and AP 3’s TDoA. Finally, the server processes the TDoA estimates

across pairs of APs using geometrical reasoning (triangle inequality), clustering and

outlier rejection schemes (§4.1.5), yielding a final location estimate.

4.1.2 ToA estimation

Once a client’s transmission arrives at an AP, ToneTrack measures the time of arrival

(ToA) of a client’s transmission at one AP: this section describes this process in detail.

4.1.2.1 Primer: MUSIC in the frequency domain

I begin with the classical MUSIC algorithm [92, 59], which models the multipath in-

door radio propagation channel h(t) as the sum of D attenuated and delayed impulse
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responses:

h(t) =
D

∑
k=1

αkδ (t− τk). (4.1)

Here αk and τk are the complex attenuation and propagation delay of the kth path. For

simplicity, in this section ToneTrack’s operation is described over one Wi-Fi channel.

Later sections generalize to multiple Wi-Fi channels.

Processing starts with the per-subcarrier channel response of Equation 4.1 in the

frequency domain:

H[ fn] =
D

∑
k=1

αke− j2π( f0+n∆ f )τk . (4.2)

Here, fn and ∆ f are the carrier frequency and the size of subcarrier bandwidth, respec-

tively. ToneTrack estimates H[ fn] by taking the DFT of the received 64-sample 802.11

long training symbol and dividing, per-subcarrier, by the known transmitted long train-

ing symbol. This estimate is denoted as Ĥ[ fn]. In 802.11a/g, 52 out of 64 subcarriers

contain preamble information; all of them are employed in the processing that follows.

The subcarrier correlation matrix RHH then measures phase changes between different

subcarriers:

RHH = E{Ĥ[ fn]Ĥ∗[ fn]}, (4.3)

where the expectation is calculated across multiple OFDM symbols (spaced in time).

Suppose D copies (direct path and reelection paths) of a transmission s1, . . . ,sD

arrive at the AP’s antenna at D respective times t1, . . . , tD, and further suppose the

OFDM symbol of the transmission contains M subcarriers (M > D) so all copies of

the transmission can be captured. Eigenanalysis of the subcarrier correlation matrix

RHH at the AP then results in M eigenvalues associated respectively with M eigenvec-

tors E = [e1 e2 · · · eM]. If sorting the eigenvalues in non-decreasing order, the smallest

M−D eigenvalues tend to correspond to background noise while the next D eigenval-

ues tend to correspond to the D incoming copies of the mobile’s transmission. Based

on this process, the corresponding eigenvectors in E are classified as noise subspace

and signal subspace:

E =

 EN︷ ︸︸ ︷
e1 . . . eM−D

ES︷ ︸︸ ︷
eM−D+1 . . . eM

 (4.4)

I refer to EN as the noise subspace and ES as the signal subspace. The time steering
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Figure 4.3: A simple two-tap channel emulator: An RF splitter-combiner (“S/C”) splits

an incoming signals into two branches: one travels over the longer (upper) cabled path,

the other travels over the shorter (lower) cabled path. This network models an idealized

wireless channel with two paths (one direct path and one reflection path), of varying

differential path length.
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Figure 4.4: MUSIC’s resolution limit. At 20 MHz bandwidth, MUSIC loses the ability

to resolve two paths with a length difference of less than about six meters (20 ft). The

two ground-truth path lengths are denoted as dotted vertical lines.

vector a(τ) represents the channel’s response to a signal arriving at time τ:

a(τ) =


1

exp(− j2πτ∆ f )
...

exp(− j2(M−1)πτ∆ f )

 (4.5)

The time steering vector a(τ) is in the signal subspace and is orthogonal to the

noise subspace when τ exactly coincides with each time of arrival of the signal. The

MUSIC ToA spectrum then measures the distance (in a vector space defined by the array

correlation matrix above) between the time steering vector and the noise subspace, as τ

varies, thus estimating the time arrival of multiple signals at a granularity independent

of the original signal sampling rate:

P(τ) =
1

a(τ)HENEH
N a(τ)

. (4.6)

With the steering vector and noise subspace vector in the denominator, P(τ) gen-

erates peaks when the steering vector is orthogonal to the noise subspace vector which
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happens when τ coincides with the time of arrivals of the incoming signals.

Limitations of MUSIC’s super-resolution capability. MUSIC is informally known

as a super-resolution algorithm. The τ variable in Equation 4.6 can vary in arbitrarily-

small steps, smaller than the sampling period shown in Table 4.1. But this does not

imply MUSIC is able to resolve multipaths with arbitrarily small time delay differences.

The frequency bandwidth of the received transmission and background noise imposes

a resolution limit independent of τ’s step size chosen.

To probe this limit in a controlled experimental setting, the simple channel emu-

lation setup shown in Figure 4.3 is used. An RF splitter-combiner first splits a wired

signal into two equal components, one of which travels over a longer cabled path than

the other. A second RF splitter-combiner then combines the two signals together, where

they are received and processed with MUSIC algorithm. Different cable lengths1 are

used to control the relative path lengths, and attenuators to control the respective path

signal strengths to the same level.

Decreasing the path length difference from 13.5 m (44 ft.) gradually to 2.7 m

(8.8 ft.) results in the MUSIC pseudospectra shown in Figure 4.4. It can be seen from

the figure that MUSIC is able to resolve both paths quite accurately when their lengths

are sufficiently different, but once the path length difference between the two signals

is decreased to around six meters (20 ft.), MUSIC is not able to generate accurate

pseudospectra anymore: its two spectrum peaks half-merge in Figure 4.4 (c) and (d),

moving away from ground-truth. When the path length difference is further decreased,

the two peaks fully merge into one peak, as shown in Figure 4.4 (e).

4.1.3 Channel combination

To overcome the limitations of MUSIC’s super-resolution capability noted above in

Section 4.1.2.1, ToneTrack leverages the frequency agility of upcoming Wi-Fi, LTE,

and white-space radios as they hop between different frequencies in short periods of

time. Note that if frequency hopping happens within a channel coherence time, the

ToA spectra generated are similar, but each is a low-resolution picture of the ToA.

1Because of lower transmission speed in cable, the cable length is translated to equivalent air prop-

agation distance. (The delay of a 1.8 m RG-58 cable is equivalent to 2.7 m propagation delay in the

air).
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The basic idea of ToneTrack’s channel combination technique is to combine multiple

frequency-agile transmissions from the client to form a virtual wider bandwidth trans-

mission, without increasing the sampling rate. Since the effective array aperture of

MUSIC’s ToA estimate is proportional to the number of subcarriers measured (i.e., the

bandwidth), time resolution ought to scale linearly with bandwidth. However, naı̈vely

concatenating data from two channels does not work: they must align in both the time

and frequency domains in order for the combined data to yield a better resolution in the

ToA spectrum plot.
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Figure 4.5: ToneTrack’s channel combination scheme. Time domain alignment equal-

izes the slope of the phase in the frequency domain between channels, as shown in

(b1) and (b2). Subsequent frequency domain alignment removes the phase offset and

enables successful concatenation of data as shown in (c1) and (c2).

Alignment in time domain. While standard packet detection algorithms [91] can syn-

chronize to a sample level at typical baseband sampling rates, ToneTrack requires sub-
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sample level time alignment of the two overheard signals for combination.

Since the data are recorded at the same radio at different times, there are different

fractional (sub-sample) time delays introduced to each set of data. In order to combine

data, this random time difference needs to be removed. As these two groups of data

are recorded within a small time interval, the relative amplitudes of the peaks on the

spectra are stable. Standard fractional interpolation methods [53] are applied to align

the two signals based on their respective ToA spectra. Sub-sample interpolation of the

raw data in the time domain causes the whole ToA spectrum to move in time. One

sample shift is corresponding to a spectrum movement of 50 ns at 20 MHz. The time

difference (in ns) of the largest peak position on each of the two spectra is measured.

Then the two sets of data in the time domain are aligned, matching the two largest peaks

to the same position with a corresponding sub-sample interpolation of the raw data. As

demonstrated in Figure 4.5 (b1) and (b2), with a single signal, time domain alignment

equalizes the slopes of the two groups of sub-carrier phases.

To see why this is the case, consider a measurement of phase in the frequency

domain. Looking across subcarriers of separation ∆ f , the time-shifting property of the

DFT

H[k]e2π jτ0k/N F←→ h [(n− τ0)N ] (4.7)

tells us that if there is only one signal, phase at the AP changes linearly across subcar-

riers as 2π∆ f τ0/N where the slope of the phase is proportional to the propagation time

τ0.

Alignment in frequency domain. Unfortunately, concatenating even time-aligned

data from adjacent channels fails again, yielding completely inaccurate and noisy ToA

spectra. ToneTrack needs to estimate the phase of the sub-carrier just after the last

sub-carrier of the first channel. Then the phase of the first sub-carrier of the second

channel is aligned to the estimated one by subtracting the phase offset. This concept

is demonstrated in Figure 4.5 (c1) and (c2) with data from two channels fully aligned

in both time and frequency domains. With this step, the two groups of channel re-

sponse data can now be concatenated to yield better resolution than any one alone. A

larger virtual bandwidth is formed without increasing the radio’s sampling rate. When

multipath is present, the phase change becomes highly non-linear since it is the super-



4.1. Design 92

0

0.5

1

0 25 50 750

0.5

1

3 
ch

an
ne

ls

D = 4.8 m

2 
ch

an
ne

ls

0 25 50 75

D = 2.4 m

 

 

0 25 50 75

0

0.5

1

1 
ch

an
ne

l
 

 

Time (ns)

D = 9.6 m

Figure 4.6: ToneTrack’s channel combination scheme effectively increases the reso-

lution capability of MUSIC, as tested by varying the path length difference d in my

two-tap channel emulator. Red curves denote ToA spectra where peaks have problem-

atically merged and MUSIC is not able to resolve them correctly.

position of many paths of varying magnitude and phase. The insight is that since this

superposition remains continuous across channels in phase, ToneTrack can still align

the two groups of data by matching the phase of the last sub-carriers in the first group

of data to the first sub-carrier in the second group of data. With the scheme described

here, ToneTrack is able to concatenate multiple groups of data from adjacent channels

seamlessly to perform like one single larger bandwidth channel.

4.1.3.1 Channel combining microbenchmark

The effectiveness of ToneTrack’s channel combination is demonstrated with the mi-

crobenchmark results shown in Figure 4.6. In the first row, with one single 20 MHz

channel, ToneTrack fails to resolve both signals when the path difference D be-

tween the signals decreases to 4.8 meters (15.8 feet). With the channel combination

scheme applied with two channels, ToneTrack successfully resolves both two signals at

D = 4.8 meters but fails to resolve when the difference decreases to 2.4 m. With three

channels, ToneTrack is able to resolve two signals separated by only a 2.4 m (7.9 feet)
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path length difference. My end-to-end localization results in Section 4.3.2 leverage this

channel combining algorithm to markedly improve ToneTrack’s accuracy level. The

channel combination process at each AP is fully independent of the data fusion process

later in Section 4.1.5 across multiple APs.

There is no limit on the number of channels can be employed for combination in

ToneTrack. My current implementation is based on 2.4 GHz and thus ToneTrack em-

ploys channels 1, 5 and 9 for experiments. The spectrum range available in 2.4 GHz for

Wi-Fi is small. Channel 11 may be included to further add 10 MHz to the combination.

The spectrum range in 5 GHz is much larger and more channels can be combined for

higher accuracy.

4.1.3.2 Overlapping and non-adjacent channels

In the case of overlapping channels that may result when the mobile changes its center

frequency by an amount less than the bandwidth of its transmissions, it is clear that

ToneTrack’s channel combining technique generalizes by averaging the channel infor-

mation in the tones the two transmissions have in common. Then the two overlapping

channels can be converted into two equivalent adjacent channels in terms of localization

with the overlapping part removed from one channel.

I briefly discuss how the scheme may be generalized to sets of channels that are

non-adjacent. The steering vector needs to be modified to reflect the different subcar-

rier separation between non-adjacent channels. This has the drawback of multiplying

the number of peaks in the ToA spectrum, in a way analogous to the grating lobes

problem RF-IDraw solves for AoA spectra [113]. Alignment in the frequency domain

is challenging for non-adjacent channels because it is not easy to estimate the correct

phase offset, since the phase change is non-linear in the presence of strong multipath.

The design and evaluation of non-adjacent channel combination is left as future work.

4.1.4 Spectrum identification

I now describe the processing ToneTrack performs on the ToA profile computed in

§4.1.2 and §4.1.3 to determine whether the spectrum is accurate and if not, whether

ToneTrack can still retrieve relatively accurate direct-path information from the spec-

trum. This processing is termed spectrum identification. As noted in Section 4.1.2,

when the lengths of a line-of-sight path and a reflected path are too close to each other,
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Figure 4.7: Peak position error when two peaks merged into one, as a function of the

relative strength of the two peaks.

MUSIC is unable to resolve the two signals correctly in the time domain on the pseu-

dospectrum. This leads to either inaccurate pseudospectrum peak positions or multiple

peaks merge. However, ToneTrack can sometimes still retrieve useful and relative ac-

curate information from these inaccurate pseudospectra.

4.1.4.1 Merged-signal peaks

It is first observed that when the two paths’ peaks merge into one as shown in Figure 4.6,

as long as the first (direct) path signal is stronger, the error in the peak position is still

small. The simple two-tap channel emulator of Figure 4.3 on page 88 is used to quantify

this experimentally. In Figure 4.7, the relative signal strength between the direct path

and a reflection path 2.7 meters longer is varied, starting from +22 dB (i.e., direct path

22 dB stronger than reflection path) down to −7 dB (i.e., reflection path 7 dB stronger

than reflection path). The results in Figure 4.7 show that the error is well under one

meter as long as the direct-path signal is stronger. The error increases significantly

when the reflection path is stronger, up to 2.3 meters.

After ToneTrack identifies a merged peak, it measures the skew direction of the

peak as shown in Figure 4.8 by finding the peak position and the two midpoints at

which the peak amplitude falls by half (this is also known as the −3 dB beamwidth).
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Figure 4.8: Merged-signal peaks. ToneTrack classifies useful spectra by the skew di-

rection (earlier or later) of a merged peak: (a) the first (direct path) peak has merged

into a later (reflection path) peak, or (b) a later (reflection path) peak has merged into

the first (direct path) peak.

By comparing the distance of the peak position to the two 3 dB beamwidth midpoints,

ToneTrack measures the direction of the peak’s skew: a peak position falling to the

right of the −3 dB beamwidth’s midpoint as shown in Figure 4.8 (a) indicates that the

first peak, which corresponds to the direct path, has merged into a later peak (which

corresponds to a reflection path). ToneTrack identifies this merged peak as inaccurate

and thus useless. The blue plot shows a spectrum skewing earlier in time (merged

towards the direct-path peak). In this case the peak has a reasonably small error, and

can thus still be kept for localization even it is a peak merged with two signals.

4.1.4.2 Single-signal peaks

If the two peaks are separated by more than the MUSIC resolution limit2 as shown in

Figure 4.10 (a1) and (a2), then MUSIC can accurately estimate their respective posi-

tions, and ToneTrack feeds the position of the first, direct-path peak to the next pro-

cessing stage. But if the two peak positions are separated by less than the resolution

limit as shown in Figure 4.10 (b1) and (b2), they fall into the zone that MUSIC is not

able to resolve accurately.

2It is experimentally verified that at 20 MHz at medium-high SNRs, this resolution limit is stable and

measured to be around 6 m.
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Figure 4.9: Peak error (translated from time to meters) for separated peaks in the simple

two-tap channel emulator, when the direct path and the first-arriving reflection path are

separated but arrive too close in time for MUSIC to accurately resolve.

Often, the direct path and reflection path signals have differing amplitudes. It is

observed anecdotally that even when the two peaks are too close for MUSIC to resolve,

the larger peak on the pseudospectrum corresponding to the stronger signal is still quite

accurate compared to the smaller peak. This observation is validated empirically in

the simple two-tap channel emulator of Figure 4.3 on page 88 with the following mi-

crobenchmark. The path length difference between the direct-path and reflection-path

signals is fixed to be 5.4 m (18 ft). Then the relative signal strength between the direct

and reflection paths is adjusted from 3 dB to 9 dB and the peak position error is shown

in Figure 4.9. It can be seen clearly that when the direct path signal is stronger, although

MUSIC is not able to resolve both of them correctly, the error of the direct-path peak

is quite small (less than 0.5 m). On the other hand, the smaller reflection path peak has

a much larger error, so ToneTrack can still extract relatively accurate information from

the MUSIC spectrum in these scenarios as ToneTrack only cares the direct-path peak.

Referring to Figure 4.10 (b1) and (b2), when the separated peaks are closer than the res-

olution limit, ToneTrack compares the relative amplitudes of the two. If the amplitude

of the first peak is greater than the second peak as in (b2), ToneTrack marks the ToA

spectrum as useful; otherwise it discards the ToA spectrum such as in (b1). Referring

again to the signals with a 3 dB difference in Figure 4.9, this bounds the error due to
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Figure 4.10: The peak separation d is greater than the resolution limit dl , both (a1) and

(a2) are kept. If the d is smaller than dl , ToneTrack identifies useful ToA spectra by

comparing their respective amplitudes and (b1) is discarded.

the presence of the second peak to well below one meter.

4.1.4.3 Classifying peaks as merged or single-signal

To apply the above spectrum identification technique, ToneTrack needs to estimate

whether a certain peak arises from a single path or is the result of the respective peaks

of multiple arrivals merging together in the ToA spectrum. Prior theoretical work [2]

has shown that the beamwidth of the MUSIC spectrum is inversely proportional to

the square root of SNR and the bandwidth of the signal. Consequently, within the

SNR range ToneTrack operates at, a single-signal peak will be thinner compared to

a merged peak, even if the merged peak originates from two closely-spaced signals.

For example, the difference is apparent when the red merged peaks in Figure 4.6 is

compared with blue peaks. ToneTrack thus measures the peak’s −3 dB beamwidth

W−3 dB and compares it with a threshold value Wt to make the decision:

W−3 dB >Wt : Merged peak.

W−3 dB ≤Wt : Single peak.

Using microbenchmarks measuring the impact of SNR and the path difference of
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the two signals on Wt , ToneTrack experimentally determines the best value for Wt in

Section 4.3.3, and show that it produces good end-to-end performance in my indoor

testbed in Section 4.3.2.

4.1.4.4 Algorithm (Spectrum Identification)

As the preceding microbenchmarks show, useful and accurate information can still be

retrieved even when MUSIC fails to resolve all the signals correctly, as long as infor-

mation about the direct path peak is relatively accurate. In this section I summarize

ToneTrack’s spectrum identification algorithm, which comprises the processing Tone-

Track performs on each (possibly channel-combined, cf. §4.1.3) ToA spectrum from

a single AP before passing that ToA spectrum on to the multi-AP data fusion step de-

scribed next in Section 4.1.5.

• Step 1. Isolate the first two peaks on the ToA spectrum as input to the algorithm.

If the two peak positions are separated by greater than the resolution limit, then

the first peak contains accurate direct-path distance information, so ToneTrack

retains the spectrum and proceed to Step 3. Otherwise, the two peak positions

are separated by a distance less than resolution limit (which MUSIC is not able

to resolve accurately) so ToneTrack proceeds to Step 2:

• Step 2. Compare the relative amplitudes of the two peaks. From the microbench-

marks, it is known that as long as the direct path signal is stronger than the

reflection path signal, the direct-path peak position will be more accurate. So

ToneTrack retains the spectrum if and only if the first peak’s amplitude exceeds

the second’s.

• Step 3. Check whether the first peak is a single-signal peak or a merged peak

(§4.1.4.3). ToneTrack retains the spectrum and the algorithm terminates in this

step if the peak is a single-signal peak. Otherwise, ToneTrack proceeds to Step 4:

• Step 4. Check the direction of the peak’s skew (§4.1.4.1). ToneTrack retains the

spectrum if and only if the peak is merged towards the direct path (left side).

After the above steps, only the useful peak remains. At this point ToneTrack sends the

ToA spectrum to the multi-AP data fusion step described next.
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4.1.5 Multi-AP data fusion

In this final stage of processing, ToneTrack converts measured ToAs from each AP into

distance differences between pairs of APs, using these distance differences to estimate

the mobile’s location. Occasionally, the direct-path signal may be totally blocked, with

only reflection signals detectable at the AP. The following two methods are proposed

to handle this very challenging scenario.

4.1.5.1 Triangle inequality

As shown in Figure 4.11a, when both APs are able to resolve the direct-path signals

from the mobile client, the distance estimates to AP 1 and AP 2 (d1 and d2, respec-

tively), fit the following triangle inequality property:

d1 +a12 ≥ d2, (4.8)

where a12 is the distance between APs 1 and 2, which is known. However, when the

direct path to AP 2 is completely blocked and only one or more reflection paths exist,

as shown in Figure 4.11b, the resulting distance estimates may violate this triangle

inequality, i.e., d1 + a12 < d2. Whenever ToneTrack detects such a violation of the

triangle inequality, ToneTrack tags the violating AP (AP 2 in this example) as having

its direct path completely blocked, and exclude it from further processing in the chain.

It is noted that it is also possible that when the direct path to AP 2 is blocked, the triangle

inequality may not necessarily be violated, and so while this test is conservative in the

APs it excludes (thus aiding performance), it is not comprehensive in the elimination of

direct path blockage scenarios. With more group of APs, the chance of detection of the

blocked APs is higher. Also this scheme may fail when multiple APs are 100% blocked.

However, the chance that multiple APs are blocked at the same time is quite low as the

APs are usually placed at different locations, and my end-to-end evaluation suffers from

these effects as and when they happen in practice. It is noted that this method has very

recently been applied to ToA-based ultrasound positioning [114] and ToneTrack would

like to apply this method to TDoA-based Wi-Fi localization in ToneTrack.

4.1.5.2 Clustering and outlier rejection

Clustering and outlier rejection further reduce the error caused by a complete blockage

of the direct path signal and errors from other sources. This is based on the fact that
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Figure 4.11: The classical triangle inequality can identify APs whose direct path to the

client must be blocked.

the direct path signals of multiple APs will localize the clients close to the true source

location, while reflection path signal will localize the client at random locations. As

shown in Figure 4.12, APs 1, 2, 3 and 4 all have direct path signals while AP 5 has

direct path signal blocked. Its estimates with any three APs from {1, 2, 3 and 4} will

be around the true location of the mobile. A location estimate from involving AP 5

will be far away from the true location, and can be detected and removed. ToneTrack

can even detect the AP with direct path totally blocked. Note that ToneTrack need at

least four APs whose direct paths are not blocked in order to detect the blocked AP.

When the number of available APs is large, the number of combinations ToneTrack

needs to check can be very large. One solution to this problem is to remove some APs

with small signal strength and only keep the rest for outlier rejection purposes. Please

note that it is very unlikely to have the LOS paths to all the APs 100% blocked as the

APs are usually placed at different locations. In the extreme scenario when the client

is placed in a metal container with LOS paths to all the APs blocked, ToneTrack is not

able to localize the client correctly.

4.1.5.3 Final location estimation

As noted above in Section 4.1.1, each pair of APs yields one TDoA estimate in the

shape of a hyperbolic arc. Thus three APs are able to localize the client at the inter-
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Figure 4.12: Employing clustering and outlier rejection to remove non-accurate esti-

mates.

section of two hyperbolas.3 Both closed form solutions and iterative algorithms can be

found in [14, 70, 93]. ToneTrack leverages a closed form solution in 2-D space sim-

ilar to prior work [70]. With any group of three APs, ToneTrack has one intersection

from two hyperbolas. If there are more than four APs, ToneTrack applies the scheme

described in Section 4.1.5.1 and Section 4.1.5.2 to detect the 100% blocked AP and

remove it from localization. Then ToneTrack averages the location estimates with all

combination of three APs. When only four APs exist, the scheme described in Sec-

tion 4.1.5.2 can not be applied. ToneTrack then adopts a simple clustering algorithm

to choose a group of three estimates which yields the minimum sum of distances and

average them.

From ToA to TDoA. ToneTrack is based on time-difference-of-arrival (TDoA) be-

tween the mobile transmission’s arrival at each pair of APs. In order to compute

TDoA, ToneTrack relies on a time-synchronization mechanism between APs. This is

achieved by either a wireless protocol such as SourceSync, which can achieve 5 -10 ns

(95th percentile) synchronization error at a typical wireless SNR ratio of 20 dB [80], or

the Ethernet-based Precision Time Protocol standardized as IEEE 1588, which Broad-

com has shown can provide a five nanosecond time synchronization error [11]. Other

schemes include time-synchronization with light [60] and the use of distributed antenna

system (DAS) [127] to bypass this time synchronization problem.

The computational load of ToneTrack is mainly a matrix multiplication of size

3If there is no intersection, ToneTrack discards data from that triplet of APs.
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64 x 64. It is noted that with channels combined together, the matrix size is increased

linearly. When there are many channels, it is recommended to select one sub-carrier out

of every N adjacent sub-carriers evenly to reduce the matrix size. When there are many

APs, the number of combinations for outlier rejection scheme is large which impedes

ToneTrack’s real-time objective. ToneTrack thus only keeps a limited number of APs

based on the signal strengths as higher SNR presents us more accurate spectrum.

4.2 Implementation
ToneTrack is implemented on the Rice WARP platform [85] with WARPLab version

7.3. ToneTrack employs a small part of the preamble of a packet which is the most

robust part for my localization. For the long training symbol (LTS) in the preamble,

only the middle 52 out of 64 sub-carriers are actually used. With the original LTS, only

52/64 × 20 MHz = 16.25 MHz bandwidth would be used for localization. In order to

use all subcarriers, ToneTrack builds one symbol very similar to the LTS in 802.11 but

with all the 64 subcarriers occupied. This symbol is attached just after the original LTS,

incurring less than 0.1% overhead in a 1500-byte packet.

Figure 4.13: Each AP is a latest WARP v3 Kit with FMC-RF-2X245 module to enable

4 radios. Antennas are placed at the dedicated AP positions with low loss LMR-400

cables.

ToneTrack employs five WARPs, one as the transmitter (client) and four as the

receivers (APs). The carrier frequency offsets between the WARP transmitter and re-

ceivers are measured in the range of several hundreds to several thousands of Hertz. It
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is much smaller than the sub-carrier size (312.5 kHz) and hence has very little effect

on the ToA spectrum. So a carrier frequency offset (CFO) between mobile and AP, and

pairs of APs is not a problem for ToneTrack. Each WARP kit is also attached with the

FMC-RF-2X245 module to enable four radios on each board as shown in Figure 4.13.

The antennas are connected to the WARPs with low loss LMR-400 coaxial cables.

All the data recorded at the APs are retrieved through Ethernet connections between

the WARPs and the server. My super-resolution MUSIC, spectrum identification (SI),

triangle inequality (TI) and clustering schemes are implemented on the server side.

AP Calibration. Due to the nonlinearity of the receiver front end across each sub-

carrier, ToneTrack needs to calibrate the channel frequency response in terms of both

amplitude and phase. Note that this calibration is a one-time effort for one power-on-off

cycle of the WARP. The calibration steps are describe briefly here. First, the radio of the

transmitter to the radio of the receiver is connected with an RF cable. Then, the channel

frequency response is calculated for each sub-carrier and the phases across each sub-

carrier are calibrated into exact linear relationship with the right slope. The slope can

be calculated as 2π∆ f t, where ∆ f is the sub-carrier size and t is the signal propagation

time which can be calculated carefully by measuring the length of the cable attached

between the transmitter and the receiver, adding a correction for the small extra path

length caused by the splitter and the internal circuitry of the WARP radios. ToneTrack

also calibrates the amplitude of the frequency response across each sub-carrier to be

equal. After calibration, I’m able to achieve a very sharp time of arrival spectrum close

to a line with only one signal transmitted through cables. This front-end linear calibra-

tion can be restricted only to ToneTrack processing. The calibration does not factor into

the transmit waveform either. The calibration coefficients are calculated as phases and

amplitudes for each sub-carrier and they are applied only when ToneTrack processing

is called.

4.3 Evaluation
To show how well ToneTrack performs in real indoor environment, I present the results

from the testbed described in Section 4.2. First I present my evaluation methodology.

Then I show my main results in Section 4.3.2 which answer the following:

1. What is the overall end-to-end performance with channel combination (§4.3.2)?
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2. How much is spectrum identification scheme helping ToneTrack (§4.3.2.2)?

3. How does the triangle inequality scheme perform in identifying the APs with

direct path totally blocked (§4.3.2.3)?

4. Will increasing numbers of APs improve performance (§4.3.2.4)?

5. What is the performance of ToneTrack with different levels of time synchroniza-

tion errors between APs (§4.3.2.5)?

After the main results are presented, the choice of Wt is justified in Section 4.3.3.

4.3.1 Experimental methodology

For my experiments, three radios on each AP is utilized to receive signals at chan-

nels 1, 5 and 9 respectively. The three radios are connected to a single antenna with

combiners. The transmitter either hops across frequencies with one radio, transmitting

on three channels sequentially or transmits simultaneously on all three channels with

three radios. At each AP position, both data traces from frequency hopping and traces

from simultaneous transmissions at multiple channels are collected. They do not have

obvious performance difference. My results presented here include all the traces.

Figure 4.14: The indoor office environment testbed used for my experiments. The four

APs used in my experiments are marked as black numbers while the client locations

are marked as red dots.

The APs are placed in a 25× 20 m office, denoting them with numbers shown
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in Figure 4.14. The clients are placed at 40 randomly-chosen locations denoting their

positions as red dots on the floor plan. 12 clients are not in the same room as the APs,

with at least one to two walls in between. Please note that only four APs are employed

for the evaluation except in Section 4.3.2.4 where the performance of varying number

of APs is evaluated.

4.3.2 End-to-end localization accuracy

The end-to-end performance evaluation of ToneTrack is shown in this section.

4.3.2.1 Overall performance

The overall performance of ToneTrack is shown in Figure 4.15. With only three

20 MHz channels, ToneTrack is able to achieve 0.9 m median accuracy in a typical

office environment with strong multipaths. The median accuracies of two and one

channel are 1.3 m and 1.9 m respectively, significantly better than the naı̈ve resolution.

With three channels, the 90% accuracy is around 2 m. The red curve is the CDF plot for

super-resolution MUSIC without any of my proposed schemes. So even with just one

channel, ToneTrack is able to reduce the median localization error by 40% compared

to the state-of–the-art super-resolution scheme. With the channel combination schemes

applied, ToneTrack further reduces the median error to below one meter which is a

significant improvement with only 20 MHz channels.
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Figure 4.15: ToneTrack’s overall localization performance with different numbers of

channels and four APs.
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Figure 4.16: Isolating the effect of the spectrum identification (SI) scheme with three

channels. Four APs are used in this experiment.

Also the long tail of MUSIC curve is removed in ToneTrack. The effectiveness of

channel combination is demonstrate here with three channels in 2.4 GHz band. More

channels can be utilized for combination at 5 GHz and 60 GHz bands which means even

finer accuracy level can be achieved. I believe with the channel combination scheme

proposed in ToneTrack, it is possible to achieve localization accuracy close to UWB

systems.

4.3.2.2 Benefit of Spectrum Identification

The effect of spectrum identification (SI) scheme is now isolated and shown in Fig-

ure 4.16. With the spectrum identification scheme, the median accuracy is improved

from 116 cm to 90 cm. It is clear that the spectrum identification scheme is effective in

improving the performance by identifying the more accurate part of the spectrum for

localization. However, it is noted that when there are only three APs, this scheme may

not be applied because discarding the inaccurate spectrum reduces the number of APs

below three which is the minimum requirement for TDoA localization. However, due

to the popularity of Wi-Fi in enterprises and universities, this is not an issue as most of

the time many APs can be overheard in range. It is also noted that this spectrum iden-

tification scheme is more effective in the environment with stronger multipaths which

makes it a suitable candidate for indoor localization.
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Figure 4.17: The effect of triangle inequality (TI) and clustering schemes.

4.3.2.3 Impact of TI and clustering

Now the triangle inequality (TI) and clustering schemes are removed to see how the

performance of ToneTrack is degraded. It is clear from Figure 4.17 that without these

schemes, there is a long tail on the CDF. These two schemes are effective in identifying

those ‘bad’ APs (APs with direct path 100% blocked) and estimates with large errors.

These ‘bad’ APs usually cause a big error because only the reflection paths exist and

they localize the client to random positions. The direct-path blockage issue is more

severe than multipaths. ToneTrack can still try to differentiate the direct path and mul-

tipaths if both exist. With direct path 100% blocked, unless ToneTrack can identify the

AP and remove it from localization, it always causes a large error which significantly

degrades the performance.

4.3.2.4 Number of APs

The effect of varying number of APs on ToneTrack is evaluated in this section with

two more APs added at positions marked in Figure 4.14. In order to localize a client,

ToneTrack needs a minimum number of three APs to have at least two hyperbolas to

intersect. With only three APs, all the schemes proposed are not applied because no

single AP can be removed. From the results in Figure 4.18, a clear gap can be seen

between the CDF of three APs and four APs. With more APs added, the performance

increases slightly. I believe the best solution is to identify the optimal group of APs



4.3. Evaluation 108

10 50 100 200 400 8000

0.2

0.4

0.6

0.8

1

Localization error (cm, log scale)

C
D

F

 

 

6 APs
5 APs
4 APs
3 APs

Median

Figure 4.18: ToneTrack’s performance with varying number of APs. Only one channel

is used in this experiment.

rather than include more random APs for localization. ToneTrack is able to detect the

‘bad’ APs whose direct path is 100% blocked and remove them. However, it is still

challenging to tell which group of APs presents the best localization performance. A

safe solution is to include more APs for ToneTrack.

4.3.2.5 Impact of synchronization error

In my current testbed, all the APs are fully synchronized with distributed antenna sys-

tem deployment. In a distributed MIMO system, there are still time synchronization

errors between APs, leading to a performance degradation of ToneTrack. In order

to evaluate the performance of ToneTrack with time synchronization error, I borrow

the time synchronization error data from SourceSync [80] and incorporate them into

my time estimates. Then ToneTrack employs the new TDoA estimates to localize the

clients. As shown in Figure 4.19, with 5 ns and 10 ns (95th percentile4) time synchro-

nization error, ToneTrack still performs quite well, achieving a median localization

accuracy of 1.05 m and 1.4 m respectively with three channels. This time synchro-

nization error is expected to be further reduced in future to have an even less effect on

ToneTrack’s localization performance.

4Note that 5 ns and 10 ns are the 95th percentile values, which mean the average values are signifi-

cantly smaller.



4.3. Evaluation 109

Localization error (cm)
0 100 200 300 400

C
D

F

0

0.2

0.4

0.6

0.8

1

No time synchronization error 
5 ns (95th percentile) error
10 ns (95th percentile) error

Median

Figure 4.19: ToneTrack’s performance with 5 ns and 10 ns (95th percentile) inter-AP

time-synchronization error.

4.3.3 Microbenchmark: Choosing Wt

The choice for the spectrum lobe width threshold Wt to differentiate the single peak and

merged peak is justified here. When more than two signals are merged or the signals are

in the medium and low SNR regions, the width of the merged lobe is much larger. The

most challenging scenario is shown in Figure 4.20 where only two signals are merged

and they are in the high SNR region (21 dB). With two signals in the high SNR region,

the lobe width is the thinnest among the merged lobes. It is shown that even under these

conditions, ToneTrack can still choose a constant threshold value safely for a particular

bandwidth with very little performance degradation. From Figure 4.20, it can be seen

that the width of the merged peak is large as long as the path difference between the two

signals are above 1.7 m. If ToneTrack chooses the threshold as 2.5 m5 to differentiate

a single and merged peak, ToneTrack makes mistakes only when the path difference of

the two signals is below 1.5 m. Note that the merged peak position is always between

the true peak positions of the two signals. When the path difference is as small as below

1.5 m, the deviation of the merged peak position from the true direct path peak position

is also small. So mis-identification of the merged peak as single peak in this scenario

has little effect in the performance. From Figure 4.21, it is clear that the lobe width of

5Note that the spectrum lobe width is converted from time at the speed of light.
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Figure 4.20: The merged peak width decreases when the signal path difference de-

creases (21 dB SNR).
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Figure 4.21: The lobe width of a single signal’s ToA spectrum decreases when SNR

increases. The lobe width increases dramatically when SNR goes below 6 dB. The red

region denotes a range where ToneTrack classifies a single signal peak as a merged

peak, but note the extremely low SNR.
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a single signal remains well below 2.5 m as long as the SNR is above 6 dB. ToneTrack

makes mistakes only in the very low SNR region (below 6 dB). In this SNR region,

the accuracy level of the spectrum is anyway low and ToneTrack relies more on other

APs to localize the client. So the effect of making mistakes on an inaccurate spectrum

is also small. It is also noted that with many APs around, it is unlikely all the APs

have low SNRs with respect to a client. This threshold can be adjusted with varying

SNR values in the future work. However, a single threshold is performing pretty well

as explained.



Chapter 5

Future Work

The current ArrayTrack is a 2-D localization system. Several immediate extensions of

ArrayTrack are listed as below:

3-D tracking: It is straightforward to extend ArrayTrack to 3-D with another

dimension of antenna array added. To include another linear array, nearly twice the

number of antennas as current are required.

Location with massive MIMO: With the 60 GHz frequency band introduced in

the next generation Wi-Fi and cellular standards, large number of antennas will be

attached to the AP and the accuracy level can be significantly increased.

Combine ArrayTrack with other schemes: ArrayTrack is flexible to be com-

bined with other localization schemes for better performance. ArrayTrack can easily

be applied on top of ToneTrack to further refine the location estimates.

ToneTrack is able to achieve a 0.9 m median accuracy with three adjacent 20 MHz

channels. It is expected that the accuracy level will be significantly increased with the

following future plans:

Wider bandwidth: With the latest 802.11ac standard, the channel bandwidth sup-

ported can be up to 160 MHz as shown in Figure 5.1. Evaluating ToneTrack on higher

bandwidth channels is the next step to boost the performance. The third generation

WARP platform only supports a maximum bandwidth of 36 MHz, which is limited by

the MAX2829 transceiver used. Employing a UWB platform and down-sampling the

time domain data to the bandwidth required is one option to obtain data from larger

bandwidth channels currently not available.

Data combination from non-adjacent channels: Adjacent channel combination

has been successfully realized in ToneTrack. In indoor environment, because of strong
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Figure 5.1: 802.11ac supports up to 160MHz bandwidth

multipath, the phase information across each sub-carrier is not linear. This non-linear

relationship makes phase offset calculation critical for channel combination extremely

difficult. Combining non-adjacent channels for localization is a very interesting direc-

tion worth exploring. A further extension of non-adjacent channel combination is to

combine data from different carrier frequency bands such as 2.4, 5 and 60 GHz.

Wi-Fi imaging: With several 160 MHz channels combined, ToneTrack is able to

achieve millimeter level accuracy. With such a high level of accuracy, Wi-Fi imaging

may become possible which will enable many new applications!



Chapter 6

Conclusion

In this thesis, I have presented two systems I built during my Ph.D period to push the

state-of-the-art indoor localization limits.

I have presented the design, implementation and evaluation of ArrayTrack, the

first indoor location system hosted on Wi-Fi Infrastructure which is able to achieve sub-

meter accuracy with AoA scheme. The most challenging part of AoA localization is

the presence of strong multipath reflections indoors, which leads to severe performance

degradation. I have proposed a novel multipath identification scheme to handle this

problem. ArrayTrack is robust in term of signal to noise ratio, collision and mobile

orientation. ArrayTrack does not require any offline training and the computational

load is small, making it a great candidate for real time location services. With six

8-antenna APs, ArrayTrack is able to achieve a median accuracy below 30 cm.

The second system I have presented is a TDoA based indoor localization sys-

tem called ToneTrack. I have proposed a innovative channel combination scheme to

increase the effective bandwidth which significantly improves the accuracy. I have pro-

posed a novel spectrum identification scheme to retrieve useful information even when

the overall ToA spectrum is mostly inaccurate. The triangle inequality and outlier rejec-

tion schemes are used to handle the challenging scenario when the LOS path is 100%

blocked. ToneTrack is able to achieve below one meter accuracy with only three trans-

missions from adjacent 20 MHz channels. With the scheme proposed in ToneTrack, it

is possible to combine more channels in the 5 GHz band to achieve localization accu-

racy close to UWB systems.

Thus ArrayTrack and ToneTrack push the envelope of localization systems in

terms of accuracy, hardware requirements, and responsiveness.
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