1,279 research outputs found

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique

    A low-power reconfigurable ADC for biomedical sensor interfaces

    Get PDF
    This paper presents a 12-bit low-voltage low-power reconfigurable Analog-to-Digital Converter (ADC). The design employs Switched Capacitor (SC) techniques and implements a Successive Approximation (SA) algorithm. The ADC can be tuned to handle a large variety of biopotential signals, with digitally selectable resolution and input signal amplitude. It achieves 10.4-bit of effective resolution sampling at 56kS/s, with a power consumption below 3μW from a 1V voltage supply.Ministerio de Educación y Ciencia TEC2006-03022Junta de Andalucía TIC-0281

    A 0.0022 mm<sup>2</sup> 10 bit 20 MS/s SAR ADC with Passive Single-Ended-to-Differential-Converter

    Get PDF
    This paper proposes a passive switched-capacitor single-ended-to-differential-converter (SDC) as a front-end of a differential SAR ADC, such that it can convert single-ended input signals. As the SDC is passive, the overall solution is power-efficient compared to active SDC solutions, and is especially suitable for lower/medium resolutions. As opposed to active SDC solutions with a static bias current, the proposed switched-capacitor network only consumes dynamic power, such that its consumption scales linearly with the sampling frequency. This paper discusses the basic concept of the proposed scheme, and analyzes the impact of noise and other imperfections, describes the trade-offs for power and area, and discusses the consequences for the input driver. A prototype implementation in 65nm CMOS achieves a figure-of-merit of 6.1fJ/conversion-step at 20MS/s, while reaching an SNDR of 54.7dB up to Nyquist and occupying a chip area of only 60μ m times 36μ m.</p

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step

    A Review of Implementing ADC in RFID Sensor

    Get PDF
    The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made

    A Review Of Implementing Adc In Rfid Sensor

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made.Region Rhone-Alpes (France)CNPq (Brazil)INCT/NAMITEC (Brazil)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications

    Get PDF
    SMART-E-PTDC/CTM-PAM/04012/2022, IDS-PAPER-PTDC/CTM-PAM/4241/2020 and PEST (CTS/UNINOVA)-UIDB/00066/2020. This work also received funding from the European Community’s H2020 program [Grant Agreement No. 716510 (ERC-2016-StG TREND) and 952169 (SYNERGY, H2020-WIDESPREAD-2020-5, CSA)]. Publisher Copyright: © 2022 by the authors.In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated (Formula presented.) is close to 16.2 fJ/conv.-step.publishersversionpublishe
    corecore