782 research outputs found

    Online Robot Introspection via Wrench-based Action Grammars

    Full text link
    Robotic failure is all too common in unstructured robot tasks. Despite well-designed controllers, robots often fail due to unexpected events. How do robots measure unexpected events? Many do not. Most robots are driven by the sense-plan act paradigm, however more recently robots are undergoing a sense-plan-act-verify paradigm. In this work, we present a principled methodology to bootstrap online robot introspection for contact tasks. In effect, we are trying to enable the robot to answer the question: what did I do? Is my behavior as expected or not? To this end, we analyze noisy wrench data and postulate that the latter inherently contains patterns that can be effectively represented by a vocabulary. The vocabulary is generated by segmenting and encoding the data. When the wrench information represents a sequence of sub-tasks, we can think of the vocabulary forming a sentence (set of words with grammar rules) for a given sub-task; allowing the latter to be uniquely represented. The grammar, which can also include unexpected events, was classified in offline and online scenarios as well as for simulated and real robot experiments. Multiclass Support Vector Machines (SVMs) were used offline, while online probabilistic SVMs were are used to give temporal confidence to the introspection result. The contribution of our work is the presentation of a generalizable online semantic scheme that enables a robot to understand its high-level state whether nominal or abnormal. It is shown to work in offline and online scenarios for a particularly challenging contact task: snap assemblies. We perform the snap assembly in one-arm simulated and real one-arm experiments and a simulated two-arm experiment. This verification mechanism can be used by high-level planners or reasoning systems to enable intelligent failure recovery or determine the next most optima manipulation skill to be used.Comment: arXiv admin note: substantial text overlap with arXiv:1609.0494

    Proprioceptive localization for a quadrupedal robot on known terrain

    Get PDF
    We present a novel method for the localization of a legged robot on known terrain using only proprioceptive sensors such as joint encoders and an inertial measurement unit. In contrast to other proprioceptive pose estimation techniques, this method allows for global localization (i.e., localization with large initial uncertainty) without the use of exteroceptive sensors. This is made possible by establishing a measurement model based on the feasibility of putative poses on known terrain given observed joint angles and attitude measurements. Results are shown that demonstrate that the method performs better than dead-reckoning, and is also able to perform global localization from large initial uncertainty

    Implementation of Static RFID Landmarks in SLAM for Planogram Compliance

    Get PDF
    Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for planogram compliance and inventory management to provide consistency between online retail platforms and brick and mortar stores. The platform of choice is the Turtlebot3 Burger platform, by ROBOTIS, modified to hold an RFID reader. With existing packages, researchers are provided with the ability to essentially perform SLAM on a base level using an inbuilt Lidar sensor. It is from these existing packages that researchers plan to build a system to localize RFID tags in generated maps to provide a quantifiable decrease in localization time and increase in certainty

    Task-Oriented Active Sensing via Action Entropy Minimization

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.In active sensing, sensing actions are typically chosen to minimize the uncertainty of the state according to some information-theoretic measure such as entropy, conditional entropy, mutual information, etc. This is reasonable for applications where the goal is to obtain information. However, when the information about the state is used to perform a task, minimizing state uncertainty may not lead to sensing actions that provide the information that is most useful to the task. This is because the uncertainty in some subspace of the state space could have more impact on the performance of the task than others, and this dependence can vary at different stages of the task. One way to combine task, uncertainty, and sensing, is to model the problem as a sequential decision making problem under uncertainty. Unfortunately, the solutions to these problems are computationally expensive. This paper presents a new task-oriented active sensing scheme, where the task is taken into account in sensing action selection by choosing sensing actions that minimize the uncertainty in future task-related actions instead of state uncertainty. The proposed method is validated via simulations

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Localization and Manipulation of Small Parts Using GelSight Tactile Sensing

    Get PDF
    Robust manipulation and insertion of small parts can be challenging because of the small tolerances typically involved. The key to robust control of these kinds of manipulation interactions is accurate tracking and control of the parts involved. Typically, this is accomplished using visual servoing or force-based control. However, these approaches have drawbacks. Instead, we propose a new approach that uses tactile sensing to accurately localize the pose of a part grasped in the robot hand. Using a feature-based matching technique in conjunction with a newly developed tactile sensing technology known as GelSight that has much higher resolution than competing methods, we synthesize high-resolution height maps of object surfaces. As a result of these high-resolution tactile maps, we are able to localize small parts held in a robot hand very accurately. We quantify localization accuracy in benchtop experiments and experimentally demonstrate the practicality of the approach in the context of a small parts insertion problem.National Science Foundation (U.S.) (NSF Grant No. 1017862)United States. National Aeronautics and Space Administration (NASA under Grant No. NNX13AQ85G)United States. Office of Naval Research (ONR Grant No. N000141410047

    Improving optical sorting of bulk materials using sophisticated motion models

    Get PDF
    Visuelle Eigenschaften sind mächtige Merkmale zur Klassifikation von Schüttgütern, auf Basis derer man defekte oder unbrauchbare Teilchen erkennen kann. Die Verwendung optischer Bandsortieranlagen ist eine etablierte Technik zur Sortierung basierend auf diesen Merkmalen. Derartiger Sortierer leiden jedoch unter Verzögerungen zwischen der gleichzeitigen Klassifikation und Lokalisierung und der darauffolgenden Separation. Dadurch entsteht die Notwendigkeit für akkurate Modelle der Teilchenbewegung, mittels derer diese Lücke überbrücktwerden kann. In dieser Veröffentlichung stellen wir unser Konzept vor, mittels hochentwickelter Simulationen genaue Modelle herzuleiten und den Teilchenstrom durch Optimierungen im Design des Sortierers zu verbessern. Dies ermöglicht die Verbesserung der Sortiergüte und Kosteneffizienz. Abschließend präsentieren wir erste Ergebnisse
    corecore