
Received August 19, 2019, accepted September 10, 2019, date of publication September 16, 2019, date of current version October 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941706

Task-Oriented Active Sensing via
Action Entropy Minimization
TIPAKORN GREIGARN 1, (Student Member, IEEE), MICHAEL S. BRANICKY2, (Fellow, IEEE),
AND M. CENK ÇAVUŞOĞLU 1, (Senior Member, IEEE)
1Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 10900, USA
2Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA

Corresponding author: Tipakorn Greigarn (txg92@case.edu)

This work was supported in part by the National Science Foundation under Grant CISE IIS-1524363 and Grant IIS-1563805,
and in part the National Institutes of Health under Grant R01 EB018108.

ABSTRACT In active sensing, sensing actions are typically chosen to minimize the uncertainty of the state
according to some information-theoretic measure such as entropy, conditional entropy, mutual information,
etc. This is reasonable for applications where the goal is to obtain information. However, when the
information about the state is used to perform a task, minimizing state uncertainty may not lead to sensing
actions that provide the information that is most useful to the task. This is because the uncertainty in some
subspace of the state space could have more impact on the performance of the task than others, and this
dependence can vary at different stages of the task. One way to combine task, uncertainty, and sensing, is to
model the problem as a sequential decision making problem under uncertainty. Unfortunately, the solutions
to these problems are computationally expensive. This paper presents a new task-oriented active sensing
scheme, where the task is taken into account in sensing action selection by choosing sensing actions that
minimize the uncertainty in future task-related actions instead of state uncertainty. The proposed method is
validated via simulations.

INDEX TERMS Active sensing, decision making, uncertainty, entropy.

I. INTRODUCTION
Uncertainty is unavoidable in any real-world problem,
whether it is from modeling errors, changes in the environ-
ment, numerical approximations, etc. An effective way of
dealing with uncertainty is to take sensor data into consider-
ation, and make appropriate adjustments to the system [40].
This is a common practice across many fields, ranging from
systems and control to sequential decision making under
uncertainty.When the sensor can be controlled, the sensor can
be utilized to obtainmore informative observations. Choosing
sensing actions to gain more useful data is known as active
sensing.

The goal of active sensing is typically to reduce uncer-
tainty in the state of the system by minimizing some
information-theoretic measure such as entropy, conditional
entropy, mutual information, etc. While this is sufficient for
many applications where the goal is to obtain information,
when the information on the state is used to complete a task,

The associate editor coordinating the review of this manuscript and
approving it for publication was Fatih Emre Boran.

minimizing state uncertainty may not lead to sensing actions
that provide information that is most useful for the task.
This is because the reduced uncertainty may not be the most
relevant to the current stage of the task. For example, consider
a driving analogy. Let the state space be the positions of
nearby cars and the sensing actions are looking left and right.
Suppose the driver wants to merge right to change lanes; the
positions of the cars on the right determine whether or not
they can merge. Therefore looking to the right is the logical
sensing action to take. However, from a state uncertainty
perspective, the uncertainty of the positions of the cars on the
left and right are equivalent. Since only the positions of the
cars to the right affects our action of changing lanes, only the
uncertainty of the position of the car to the right matters. If we
try to reduce the uncertainty of the merging action, we will
arrive at the same conclusion that the driver should look to
the right.

In some decision making problems, the action space natu-
rally decomposes into task and sensing action spaces, where
the task-action space is the set of actions that affect the
state of the system, while the sensing-action space is the

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 135413

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/373379535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-9891-4676
https://orcid.org/0000-0003-2800-5922

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

set of actions that affect possible observations. For example,
in image-guided robotic surgical intervention, the task-action
space is all possible movements of the surgical robot, while
the sensing-action space is the range of possible image slices
from the imaging system. In this case, it is possible to decom-
pose the sequential decisionmaking problem into task-related
planning and active sensing. So, the surgical robot planner
only solves for the best way of performing the surgery, while
the active sensing algorithm selects the image slices that are
most useful for the surgery. Another example of a decoupled
system is a Mars rover that is guided by an orbital satellite.
In this scenario, the rover decides where to explore next based
on the information provided by the satellite. This problem
can be decoupled by considering where the rover goes next
as the task action, while the path of the satellite can be con-
sidered as the sensing action. The key feature shared by both
examples is the fact that the state, i.e., the configuration of
the surgical robot in the first example, and the location of the
rover in the latter, does not influence the sensing capability.
In other words, the robot (or the rover) does not have to be
in a particular state to obtain relevant information. For such
systems, the sensing and the acting aspects of the are decou-
pled, which allows us to solve the problem separately. The
proposed decoupling of sensing and acting shares the same
basic ‘‘divide and conquer’’ concept with the principle of
separation of estimation and control, where the state estimator
is designed to reduce the error between the actual and the
estimated state, while the controller is designed to perform
the task assuming perfect information.

This paper presents a new task-oriented active sensing
method that integrates the task into active sensing by choos-
ing sensing actions that minimize the uncertainty of future
task actions. The proposed algorithm reduces the ambigu-
ity of the next task-related action by choosing the sensing
action that minimizes the conditional entropy of the next
task-related action. First, a discrete version of the algorithm,
which works with systems with discrete state and action
spaces, is presented as a proof of concept. For systems with
continuous state and action spaces, the particle filter is used to
approximate belief propagation over continuous state space.
Differential entropy is estimated from particles using
k-nearest neighbor estimator.

The rest of the paper is organized as follows. Related work
is reviewed in Section II. Problem formulation is described
in Section III. A quick review of information theory is given
in Section IV. The proposed active sensing algorithm for dis-
crete systems is described in Section V. The proposed active
sensing algorithm for continuous systems is described in
Section VI. Simulations and results of discrete system exam-
ples are presented in Section VII. Simulations and results of
continuous system examples are presented in Section VIII.
Conclusions are presented in Section IX.

II. RELATED WORK
Information theory provides a basis on which various active
sensing algorithms for many different applications are built.

This section describes some of the relatedwork and highlights
the differences between this work and existing ones.

Typically an active sensing algorithm chooses a sensing
action to optimize some information measure. Schmaedeke
proposes one of the early active sensing algorithms that
utilize information theory [35]. In the paper, sensor-target
assignment is performed by maximizing the difference in
Kullback-Leibler divergence formulated as a linear program.
Manyika and Durrant-Whyte present a data fusion method
that maximizes the information content of the state [25].
Information of the state is estimated recursively using an
information filter. Porta et al. solve visual localization by
choosing camera control actions that minimize the condi-
tional entropy of the belief [29]. A Gaussian mixture observa-
tion model is learned a priori from training data. The particle
filter is used in propagating the belief in continuous spaces
and the conditional entropy of the belief is estimated from
the particles. Kreucher et al. perform sensor scheduling for
multi-target tracking by minimizing Rényi divergence of the
belief, which is represented by a set of particles [20]. Hoffman
and Tomlin propose an information gathering method for a
mobile sensor network that performs decentralized mutual
information maximization [17].

Partially-Observable Markov Decision Processes
(POMDPs) is a general framework for describing sequential
decision making under uncertainty. However, this generality
comes at a cost [24]. Only very small problems, with a few
states, can be solved exactly due to the curse of dimen-
sionality and the curse of history [24], [28]. Researchers
have put a lot of effort into approximate methods that solve
POMDPs more efficiently. A survey of earlier value function
approximation techniques can be found in [16]. One of
the earlier work that aims at approximating POMDP is the
QMDP proposed by Littman et al. [24]. The Q in QMDP
represents the Q function in Q-learning, while MDP stands
for Markov Decision Process. The QMDP algorithm first
learn the Q function of the MDP part of a POMDP, ignoring
the sensing aspect of the task. During execution, an action that
maximizes the expected Q function is chosen. A milestone
in approximate POMDP method is the Point-Based Value
Iteration (PBVI) method proposed by Pineau et al. [28].
The PBVI method approximates a POMDP value function
using a small set of belief points and the hyperplanes at the
belief points. Online POMDP is another class of approxi-
mate method that solves POMDPs forward in time, instead
of performing backup as in value iteration. Determinized
Sparse Partially Observable Tree (DESPOT), presented by
Somani et al. in [37], is an example of such algorithms.
Porta et al. extend the PBVI method to a subset of continuous
POMDPs, where the model can be described by Gaussian
mixtures [30].

Instead of finding a sensing action, some work focuses on
finding a control trajectory or a policy that produces state
trajectory which leads to more effective information gath-
ering. Ryan and Hedrick calculate an information-seeking
control trajectory by minimizing the finite horizon sum of

135414 VOLUME 7, 2019

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

the entropy of the belief [33]. The finite horizon entropy
is calculated by Monte-Carlo simulation. Araya et al. pro-
pose ρPOMDP, which extends the POMDP formulation to
the case where the reward function is defined in the belief
space [3]. By defining the reward function over the belief
space, ρPOMDP is capable of formulating decision mak-
ing problems where information acquiring is the end goal.
Chakravorty and Erwin formulate sensor scheduling as a
receding horizon control problem with information gain as
the objective function [6]. The policy gradient is obtained
from Monte-Carlo simulations. A probabilistic policy allows
soft maximization using the policy gradient. Charrow et al.
present a multi-robot information gathering algorithm [7].
Control trajectories for multi-robot information gathering are
obtained bymaximizing the mutual information over the state
trajectory. Wang et al. formulate information gathering as
a POMDP where the action space is decoupled into state-
changing actions and observation-making actions, where the
state-changing action is assumed to be deterministic [42].
Javdani et al. propose a hyperedge cutting algorithm that
drives the uncertainty over hypotheses down to one decision
region by greedily maximizing the expected marginal gain of
a test [18]. Spaan et al. formulate cooperative perception of
networked robot systems as a POMDP [38]. The positions of
the targets and the robots, as well as the features of the targets,
are considered as the state of the system. Instead of defining
a reward function on the belief to encourage information
gathering, classification actions and book-keeping variables
are incorporated into the formulation to maintain the piece-
wise linear and convex property of the POMDP. Satsangi
et al. solve sensor selection problem bymodifying the backup
step in the point-based value iteration (PBVI) algorithm [34].
Instead of considering a combination of sensors as an action
in POMDP, each sensor is added via greedy maximiza-
tion of the value function during the PBVI backup, which
reduces the computation complexity of each iteration of PBVI
significantly.

While it is rather straightforward to describe a sequen-
tial decision making under uncertainty as a POMDP, it is
generally difficult to solve in many real-world applications.
As a results, many researchers have come up with different
planning algorithms that exploit different characteristics of
the problem in order to deal with the uncertainty in the sys-
tem. Chhatpar and Branicky solve robotic assembly problems
where clearance is much smaller than the visual feedback by
constructing a contact map in the configuration space [8].
Prentice and Roy present the belief roadmap, where the
covariance matrices are factored and stored in the edges,
which simplifies posterior distribution and expected cost cal-
culations [31]. Van den Berg et al. formulate belief space
planning problems with Gaussian motion and measurement
models as iterative LQG (iLQG) problems, where the ini-
tial trajectory is generated from a sampling-based method
in the state, then the trajectory is updated iteratively using
iLQG algorithm [41]. Agha-Mohammadi et al. solve belief

space planning using PRM where the edges are stabilizing
controllers [1].

There is some prior work on active sensing methods that
are designed to provide information related to a given task.
Kwok and Fox use reinforcement learning for sensing action
selection for soccer robots [22]. The long-term value of a
sensing action is learned in the training phase. The robot
then performs the best action according to the learned action-
value function. Guerrero et al. present two task-oriented
active sensing methods for soccer robots [15]. The difference
between the two methods is the objective function. In the first
method, the variance of the value function of the next iteration
is minimized, while in the second method, the expected value
of the value function of the next iteration is maximized.
Experimental results show that the expected value maximiza-
tion method is more effective than the variance minimization
method.

The proposed active sensing method is different from the
existing work for several reasons. First, it is different from
POMDP-based methods because it does not solve the plan-
ning problem in the belief space. The action-entropy active
sensing algorithm aims at providing a tractable solution to
a subset of sequential decision making problems where the
sensing and the acting aspects of the task are naturally decou-
pled. The action-entropy active sensing algorithm chooses
a sensing action that minimizes the uncertainty in the next
task action according to the policy provided by the state-
space planner. While the proposed solution to the decoupled
problem may be suboptimal in terms of accumulated reward,
the decoupled approach could make up for the smaller reward
in terms of computational time. Moreover, the proposed
method is different from the other information gathering
methods such as [3] and [38] because it is designed to be used
in the context of task completion. So, the ultimate goal is not
to obtain information but to perform the task well. Finally,
the proposed method is different from [22] and [15] because
no training or value function is required. Instead, the proposed
method only assumes the availability of a policy that maps
a state into a task-related action. A preliminary study of
the proposed method, specifically the continuous formulation
of the problem with a Python implementation, is presented
in [14]. In this paper, both discrete and continuous formula-
tions are presented, with the discrete algorithm implemented
in Python, and the continuous algorithm implemented in
C++. The proposed method is also explored and validated
in more depth with two examples for the discrete case and
two new examples for the continuous case.

III. PROBLEM FORMULATION
The objective of the active sensing algorithm in this work
is to provide useful information for task completion under
uncertainty, where both motion and sensing uncertainties
are considered. The proposed method is based on Bayesian
estimation, which is reviewed in this section.

VOLUME 7, 2019 135415

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

In decision-making problems where sensing actions do not
affect the states, such as looking around while driving or tak-
ing image slices in image-guided robotic surgery, the action
space can be divided into two action spaces. First, the space
of actions that change the state of the system is denoted
by U . This set of action is used in completing the task so it
will be referred to as the task-action space. The other action
space, denoted by V , is the space of actions that affect the
measurement but not the state. Since this set of actions is only
used in sensing, it shall be called the sensing-action space.
Let X and Z denote the state space and the measurement
space respectively. The state-transition model, p(xt |ut , xt−1),
is a probability distribution function of the next state xt ∈ X
given that a task action ut ∈ U is performed at a state
xt−1 ∈ X . The measurement model, p(zt |vt , xt), is a distri-
bution of the measurement zt ∈ Z given that a sensing action
vt ∈ V is performed at a state xt ∈ X .
The information the robot has about the state of the envi-

ronment is represented by its belief, b(xt), which is a distri-
bution defined over the state space given all past actions and
measurements, i.e.,

b(xt) = p(xt |u1:t , v1:t , z1:t),∀xt ∈ X , (1)

where b0 = p(x0) is the probability distribution of the initial
state. For brevity, the time subscript t will be dropped where
it would not cause confusion. When the robot interacts with
the environment, its belief propagates according to the state-
transition model as follows,

b̄(xt) =
∫
X
p(xt |ut , xt−1)b(xt−1)dxt−1. (2)

For systems with discrete state space, the integral in belief
propagation becomes a summation as follows,

b̄(xt) =
∑

xt−1∈X
p(xt |ut , xt−1)b(xt−1). (3)

When the robot performs a sensing action and receives a mea-
surement, its belief is updated according to its measurement
model as follows,

b(xt) = ηp(zt |vt , xt)b̄(xt). (4)

where η is the prior probability of observation that normalizes
the expression on the right-hand side.

In this work, it is assumed that a state-space planner
is available for task-related planning. This planner will be
referred to as the task planner. Various state-space planners
can be used as the task planner [9], [23]. Fundamentally,
the only requirement of the task planner is to generate a policy
π : X → U that tells the robot what to do at each state. The
desirable behavior of the robot is encoded in the policy. For
example, mobile robot navigation would have a policy that
brings the robot from any state to the goal state.

The goal of this work is to create an active sensing algo-
rithm that works with a state-space planner in completing a
task. The proposed active sensing method integrates sens-
ing and acting aspects of the task by choosing the sensing

action vt that minimizes the conditional entropy of the next
task action ut+1 = π (xt). Since the objective function of
the active sensing method is minimizing task-action entropy,
the proposedmethod shall be referred to as the action-entropy
active sensing method.

IV. BACKGROUND ON INFORMATION THEORY
A short review on conditional entropy of discrete and con-
tinuous random variables is presented in this section. More
detail on information theory can be found in [10].

The entropy of a discrete random variable X with proba-
bility mass function p(x) and range X is defined as

H (X) = −
∑
x∈X

p(x) log p(x). (5)

Suppose there is another discrete random variable Y with
range Y . If X and Y have a joint mass function p(x, y), then
the conditional entropy H (X |Y) is defined as follows,

H (X |Y) = −
∑
y∈Y

∑
x∈X

p(x, y) log p(x|y). (6)

Since p(x, y) = p(x|y)p(y), we can write the conditional
entropy as the expected value of the entropy H (X |Y = y)
as follows,

H (X |Y) =
∑
y∈Y

∑
x∈X

p(x|y)p(y) log p(x|y),

= −

∑
y∈Y

p(y)
∑
x∈X

p(x|y)p(y) log p(x|y),

=

∑
y∈Y

p(y)H (X |Y = y). (7)

The concept of entropy has been extended to continuous
variables. The entropy of a continuous variable is called the
differential entropy. Let X be a continuous random variable
with probability density function p(x) and range X . The
differential entropy of X is defined as follows,

h(X) = −
∫
X
p(x) log p(x)dx. (8)

Suppose there is another continuous random variable Y with
range Y . If X and Y have a joint density function p(x, y),
then similar to the discrete case, the conditional differential
entropy h(X |Y) is defined as the entropy of the conditional
distribution as follows,

h(X |Y) = −
∫
Y

∫
X
p(x, y) log p(x|y)dxdy. (9)

Since p(x, y) = p(x|y)p(y), the conditional differential
entropy can be written as the expected value of the differential
entropy h(X |Y = y) as follows,

h(X |Y) = −
∫
Y

∫
X
p(x|y)p(y) log p(x|y)dxdy,

= −

∫
Y
p(y)

∫
X
p(x|y) log p(x|y)dxdy,

=

∫
Y
p(y)h(X |Y = y)dy. (10)

135416 VOLUME 7, 2019

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

The conditional entropy and conditional differential
entropy described in (7) and (10) are used in measuring the
degree of uncertainty for sensing action selection.

V. ACTION-ENTROPY ACTIVE-SENSING ALGORITHM
FOR DISCRETE SYSTEMS
The action-entropy active sensing algorithm for discrete sys-
tems is presented in this section. The discrete version of the
active sensing method is meant to be a proof of concept of
the algorithm that illustrates how well the method works in
its most basic form. The active sensing algorithm is a part of
the planner, as depicted in Fig. 1. The other two components
of the planner include the task planner, which provides a state-
space policy, and the coordinator, which maintains the inter-
nal belief of the planner and interacts with the environment.

FIGURE 1. The planner is divided into three submodules. The sensing
module handles active sensing, while the task planner solves the
planning problem in the state space. The coordinator maintains the
internal belief and interacts with the environment. When the planner is
initialized, the task planner solves the planning problem in the state
space for a policy π , which is passed on to the active sensing module. The
coordinator passes its internal belief b to the active sensing module. Then
the active sensing module maps the belief through the policy to obtain a
probability distribution of task-action, calculates the task-action entropy,
and returns the sensing action v that minimizes the entropy of the task
action. The coordinator obtains the sensing action, performs it, receives a
measurement z , and updates its belief according to the measurement
update in (4). Next, the coordinator selects the task action u according to
the policy based on the most likely state from the belief. Then the task
action is performed and the coordinator updates its internal belief
according to the belief prediction in (3).

A mathematical derivation of the algorithm is presented
first in Section V-A. An analysis of the algorithm is given
in Section V-B.

A. MATHEMATICAL DERIVATION
Since a policy is often non-injective, it could mapmany states
to the same action, so the same action would be taken for
all of those states. In such cases, the uncertainties among the
states that map to the same task action do not affect action
selection, and therefore, sensing action selection based on
state uncertainty could be misleading or suboptimal in terms
of task performance. In this work, the active sensing module
assists the task planner by selecting the sensing actions that
makes future task actions the least ambiguous by minimizing
the conditional entropy of the task-action distribution.

Specifically, the sensing actions are chosen tominimize the
conditional entropy of the task actions given a prior belief on
the state,

vt = argmin
vt∈V

H (ût+1|ẑt , v1:t , u1:t , z1:t−1), (11)

where ût+1 and ẑt denote the random variables of the next
task action and the observation, respectively.

The conditional entropy, H (ût+1|ẑt , v1:t , u1:t , z1:t−1),
on the right hand side of (11), is the expected entropy of the
task-action distribution with ẑt as the conditioning variable.
From (7), the conditional entropy is calculated as follows,

H (ût+1|ẑt , v1:t , u1:t , z1:t−1)

=

∑
zt∈Z

p(zt |v1:t , u1:t , z1:t−1)H (ût+1|v1:t , u1:t , z1:t) (12)

There are two components in (12). The first term in
the summation, p(zt |v1:t , u1:t , z1:t−1), is the probability of
observing zt when sensing action vt is taken, given a priori
observation and actions. This term is calculated by expanding
the probability using the law of total probability to obtain

p(zt |v1:t , u1:t , z1:t−1)

=

∑
xt∈X

p(zt |xt , v1:t , u1:t , z1:t−1)p(xt |v1:t , u1:t , z1:t−1)

=

∑
xt∈X

p(zt |xt , vt)b̄t . (13)

The first term in (13), p(zt |xt , v1:t , u1:t , z1:t−1) , reduces to
the measurement model, p(zt |xt , vt), when the state is given.
The second term in (13), p(xt |v1:t , u1:t , z1:t−1), is the prior
belief b̄t , since, without the observation zt the state xt is
independent of the sensing action vt , and the distribution over
the state is simply the a priori belief, b̄.

The second term in (12), H (ût+1|v1:t , u1:t , z1:t), is the
entropy of the next task action given the current belief. Since
the action ut+1 is selected from the state xt according to the
policy, i.e., ut+1 = π (xt), the distribution of ût+1 can be
obtained by mapping the belief distribution over the states
through π . The entropy of the task action is then calculated
from (5).

The proposed active sensing method is summarized in
Algorithm 1. The inputs to the algorithms are the policy π
and the a priori belief b̄x (the subscript x is used to distinguish
the belief over the state from the belief over the task action
in the algorithm). The conditional entropy associated with
each sensing action is initialized in Line 2. The conditional
entropy for sensing action v is calculated in Lines 3 to 13.
The probability of observing z from (13) is calculated in Lines
5 to 8, where ω in Line 7 is a dummy variable that stores the
probability of observing z. The belief is updated according to
observation z in Line 9. The belief over the next task action
is calculated in Line 10 by mapping the belief over the state
through the policy. Then the summation over z ∈ Z is carried
out in Line 11.

VOLUME 7, 2019 135417

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

Algorithm 1Active-Sensing Algorithm for Discrete Systems

1: procedure DiscreteActiveSensing(π, b̄x)
2: Hv = 0,∀v ∈ V
3: for all v ∈ V do
4: for all z ∈ Z do
5: ω = 0
6: for all x ∈ X do
7: ω += p(z|v, x)b̄x
8: end for
9: bx = ηp(z|v, x)b̄x

10: Calculate bu from π and bx
11: Hv += ωH (bu)
12: end for
13: end for
14: return argminv Hv
15: end procedure

B. ANALYSIS
This active sensing scheme is attractive for a couple of
reasons. First, the uncertainty of the task actions is defined
over the action space, which is often ‘‘smaller’’ than the
state space. From this perspective, the policy compresses the
uncertainty into a smaller space. Additionally, when many
states are mapped into the same action, the uncertainty among
those states does not contribute to the uncertainty in the
task actions. In this case, the states are clustered together
according to the policy, and the active sensing module only
has to make its decision based on the clusters.

The time complexity of this algorithm is simply
O(|V||Z||X |), where | · | is the counting measure. Time
complexity of a state-entropy active sensing algorithm has
the same order as the action-entropy algorithm. They only
differ by a constant factor because the time it takes to map
the state through the policy (line 10) is also O(|X |).

VI. ACTION-ENTROPY ACTIVE-SENSING ALGORITHM
FOR CONTINUOUS SYSTEMS
Most problems in robotics are continuous in nature, so an
active sensing algorithm for continuous systems will be com-
patible with a wider variety of applications. In this section,
the action-entropy active sensing algorithm for systems with
continuous state and action spaces is presented. There are
two classes of methods that are widely used in robotics for
dealingwith beliefs over continuous spaces. Parametricmeth-
ods such as Gaussian filters often make more assumptions on
the underlying system than nonparametric methods such as
the particle filter. In order to make our algorithm the least
restrictive, the particle filter is chosen here.

For a belief defined over a continuous space, the entropy is
replaced by the differential entropy. Since belief propagation
is represented by the particle filter, the differential entropy
has to be estimated from the particles. Estimation of the
differential entropy is presented in Section VI-A.

The structure of the system is the same as in the discrete
case, shown in Fig. 1. The mathematical derivation of the
active sensing algorithm for continuous system is presented
in Section VI-B. The analysis of the algorithm is given in
Section VI-C.

A. DIFFERENTIAL ENTROPY ESTIMATION
This section presents estimation of differential entropy from
a set of particles. Suppose there is a set of particles P con-
taining N particles. The weight and the position of the i-th
particle shall be denoted by wi and x i, respectively. A belief
is approximated by the set of particles P as follows,

bP (x) =
N∑
i=1

wiδ(x − x i), (14)

where bP denotes a belief represented by a set of particles P ,
and δ is the Dirac delta function.

An overview of nonparametric estimation of differential
entropy can be found in [4]. While some estimators are
defined for one or two dimensional datasets, nearest neighbor
methods do not share the same restriction. Kozachenko and
Leonenko propose the nearest neighbor estimator which
estimates the probability distribution function around each
sample using the distance to its nearest neighbor [19]. Singh
et al. and Goria et al. generalize the nearest neighbor estima-
tor to k-nearest neighbor estimators, where the distance to the
k-th nearest neighbor is used to approximate the local density
function [13], [36]. Mnatsakanov et al. have shown that the
root-mean-square error of the estimation is lower with k > 1,
and an empirical formula for k is proposed [27]. Ajgl and
Šimandl extend the k nearest neighbor to the case when the
underlying distribution is represented by particles instead of
samples [2]. The estimator uses the sum of the weights of
k nearest neighbors particles as well as the distance to the
k-th nearest particle to estimate differential entropy.
The estimator presented in [2] is chosen in this work

because it is capable of estimating the entropy associat-
ing with a set of particles. The estimator, denoted by ĥP ,
is defined as follows,

ĥP (X) = −
N∑
i=1

∑
j∈N i

k
wj

k
log

∑
j∈N i

k
wj

|Bn(d ik)|
+ log k −9(k),

(15)

where N i
k is the set of indices of the i-th particle’s k near-

est neighbors. |Bn(d ik)| is the volume of a ball in Rn with
radius d ik , where the radius is the distance from the i-th
particle to its k-th nearest neighbor. Finally, log k − 9(k) is
the bias term, where 9 is the digamma function.

B. MATHEMATICAL DERIVATION
The active sensing algorithm minimizes the uncertainty of
the future task action by choosing the sensing action that
minimizes the entropy of the future task action. Since the
observation is not known when the sensing action is being

135418 VOLUME 7, 2019

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

chosen, the entropy is conditioned on the observation. The
sensing action is the minimizer of the conditional entropy,
i.e.,

vt = argmin
vt∈V

h(ût+1|ẑt ; v1:t , u1:t , z1:t−1), (16)

where ût+1 denotes the random variable of the next task
action and ẑt denotes the random variable of the observation.
The conditional entropy is calculated for each sensing
action vt , and the sensing action that minimizes it is chosen.
The sensing-action space is assumed to be discrete, and if it
is continuous, sampling or discretization can be employed.

The entropy of the future task action conditioned on the
observation, according to (10), is as follows,

h(ût+1|ẑt ; v1:t , u1:t , z1:t−1)

=

∫
Z
p(zt |v1:t , u1:t , z1:t−1)h(ût+1|v1:t , u1:t , z1:t)dzt . (17)

The first term in the integration, p(zt |v1:t , u1:t , z1:t−1), is the
probability density function of the observation zt given prior
actions and observations. Using the law of total probability,
the density function can be expanded as follows,

p(zt |v1:t , u1:t , z1:t−1)

=

∫
X
p(zt |xt , v1:t , u1:t , z1:t−1)p(xt |v1:t , u1:t , z1:t−1)dxt ,

=

∫
X
p(zt |vt , xt)b̄(xt)dxt . (18)

The first term in the integral, p(zt |xt , v1:t , u1:t , z1:t−1),
reduces to the measurement model, p(zt |vt , xt), when
the state xt is given. The second term in the integral,
p(xt |v1:t , u1:t , z1:t−1), is simply the predicted belief, b̄(xt).

The remaining term in (17), h(ût+1|v1:t , u1:t , z1:t), is the
differential entropy of the next task action given all prior
actions and observations. Similar to the discrete case, the dis-
tribution of the task action is obtained by mapping the belief
particles through the policy. The entropy is then estimated
from the task-action particles using (15).

The active sensing algorithm is shown in Algorithm 2. The
inputs include the policy π and the particles Px , which rep-
resent the current belief of the coordinator, b̄. The algorithm
estimates the task-action entropy of each sensing action and
return the sensing action with minimum entropy. The integra-
tion in (17) is approximated using Monte Carlo simulation
in the inner loop, where the integral in (18) is replaced by
sampling in Lines 5 and 6. The particles are updated accord-
ing to the sampled measurement in Line 7. Then the updated
particles are mapped into task-action particles in Line 8,
and the entropy of the task-action particles are estimated
using (15) in Line 9. Finally, the sensing action that results
in the lowest conditional entropy is returned.

C. ANALYSIS
Let the number of available sensing actions be denoted by
|V|. Monte Carlo simulation is performed M times for each

Algorithm 2Minimum Task-Action Entropy Active Sensing
1: procedure GetSensingAction(π,Px)
2: for all v ∈ V do
3: hv = 0
4: for i = 1, . . . ,M do
5: sample x from Px
6: sample z from p(z|v, x)
7: P ′x = MeasurementUpdate(Px , v, z)
8: Pu = π (P ′x)
9: hv += ĥPu (u)

10: end for
11: end for
12: return argminv hv
13: end procedure

sensing action, so Lines 5 to 9 in Algorithm 1 are exe-
cuted |V|M times. Note that it is desirable to perform as
many Monte Carlo simulations as possible, so M should
be maximized such at a sensing action can be calculated
within a given time constraint of the problem. Two bottle-
necks in the algorithm are policy evaluation in Line 8 and
entropy estimation in Line 9. Entropy estimation requires k-th
nearest-neighbor search for each particle. A brute-force near-
est neighbor search is O(N 2), where N is the number of par-
ticles. It is possible to speed up nearest neighbor search using
an algorithm that preprocesses the data so that each nearest
neighbor query can be made more efficiently. A widely used
nearest neighbor algorithm is the k-d tree algorithm, which
has construction time complexity O(dN logN), where d is
the dimension of the particles, and query time complexity
O(logN) under some assumptions [12]. If policy evaluation
for each particle does not take more than O(d logN), then
entropy estimation dominates the algorithm’s time complex-
ity. In this case the action-entropy active sensing algorithm
has time complexity O(d |V|MN logN).

VII. SIMULATIONS WITH DISCRETE SYSTEMS
Three examples are presented in this section. They are
designed to represent common problems in decision making
under uncertainty. In the first example, the robot has tomake a
decision that would result in a large reward or a large penalty
in the future. The second example represents a localization
problem where the robot is placed randomly in a symmetric
corridor. The last example tests the algorithm in a more
general setting using randomly generated obstacles.

The proposed method will be compared with state-entropy
active sensing [20], [29], the expected-value maximiza-
tion method [15], and an algorithm that selects a sensing
action uniformly at random. The state-entropy active sensing
method selects the sensing action that minimizes the state
entropy, i.e.,

vt = argmin
vt∈V

H (x̂t |ẑt , v1:t , u1:t , z1:t−1).

VOLUME 7, 2019 135419

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

The expected-value active sensing method selects the sensing
action that maximizes expected future value, i.e.,

vt = argmax
vt∈V

∑
xt+1∈X

V (xt+1)p(xt+1|v1:t , u1:t , z1:t−1),

where V is the value function [40]. For simplicity,
the proposed method, the standard state-entropy method,
the expected-value method, and the randomized method shall
be abbreviated as AE (Action-Entropy), SE (State-Entropy),
EV (Expected-Value), and RN (Randomized) methods,
respectively. The results from DESPOT [37], an online
POMDP algorithm, are also presented alongside the active
sensing results.

The simulations were run on an Ubuntu 14.04 machine
with Intel Core 2 Quad 2.40 GHz processor and 4 GB mem-
ory. The active sensing algorithms are written in Python.

A. EXAMPLE: FORK IN THE ROAD
The first example is a 5 × 2 grid-world problem, shown
in Fig. 2. The robot starts at the bottom. The goal is on the
top-right corner and a trap is on the top-left corner. There is
a wall between the left and the right side of the map, so the
robot has to be able to determine the side of the wall it is on
to be able to avoid the trap and reach the goal. This example
highlights the ability to make a decision based on future
rewards, a central theme in planning. It is critical for the active
sensing algorithm to first identify the side of thewall the agent
is on. If it is on the right side of the wall, the agent will just
move upwards, but if it is on the left side of the wall, then it
must move down to the opening then to the right side. With
the uniform initial belief, sensing along the north-south and
the east-west directions are equally good for the state-entropy
method. However, sensing in the north-south direction does
not distinguish between being on the left and the right side.
So, this will lead to a lower reward. The proposed method
on the other hand, will make a sensing action along the east-
west direction first because it reduces the uncertainties in the
actions the most.

FIGURE 2. A 5 × 2 grid-world with a wall between the left and the right
sides and a small opening at the bottom. (a) The reward at each state.
(b) The initial belief. (c) The policy.

The intervals between two sensing actions are varied to
see how well the active sensing algorithms cope with less

information. Between two sensing actions, the belief is prop-
agated according to the robot’s motion model without using
observations to correct the belief. The robot follows the policy
according to the belief until the next sensing opportunity
arrives. For AE and SE, the sensing action is chosen to
minimize the sum of the entropy up until the next sensing
action is possible.

The parameters used in the simulations are as follows.
There is a wall between the left and the right sides with
one opening at the bottom. The actions are to move in the
principle directions (mov_n, mov_s, mov_e, mov_w). All
the move actions have a probability of 0.8 to end up in the
correct state, and a probability of 0.2 to end up in the same
state as before the action was taken. The sensing actions are to
sense the wall of the perimeter along the north-south and east-
west directions (sen_ns and sen_ew). The observations
are seeing a wall in a particular direction, or that no wall
is detected (wall_n, wall_s, wall_e, wall_w, none).
All the sensing actions have a probability of 0.9 to sense the
wall in the correct direction, and a probability of 0.1 to sense
thewall in the opposite direction. There is a reward of+100 at
the top-right corner, a penalty of −100 at the top-left corner,
a penalty of−1 at other states, and the discount factor is 0.99.
The initial belief is uniformly distributed in the bottom four
states. The average rewards and computational time for each
simulation are taken from 10,000 repeated trials.

The average rewards and the 95% confidence intervals
obtained from the four methods are listed in Table 1. First,
note that AE performs better than the other three methods
for all sensing intervals. The average rewards drop monoton-
ically for all methods when the sensing interval is increased.
It takes AE, SE, and EV, 0.282 ms, 0.247 ms, and 0.226 ms,
respectively, to calculate a sensing action. The average sim-
ulation time of a complete trial, including the offline time
required for solving for the policy, of AE, SE, EV, and RN, are
12.132ms, 11.735ms, 24.429ms, and 9.641ms, respectively.
Prior to the simulations, the policy for AE and SE is calcu-
lated via policy iteration, which converges in 6.034 ms. The
value function for EV is calculated via value iteration, which
converges in 18.438 ms. So, while EV is the fastest in sensing
action calculation, it takes longer to initialize. DESPOT has
an average reward of 78.97, and it takes 5.75 s on average to
complete a trial.

B. EXAMPLE: SYMMETRIC CORRIDOR
The second example, shown in Fig. 3, is also a 5 × 2 grid-
world problem. This example is inspired by the active local-
ization in a symmetric corridor problem in [40], where being
in the right state has an impact on how well the robot can
localize itself. In this example, the opening is now in the
middle instead of at the bottom. The initial belief is uniformly
distributed on the left side. The reward is the same except the
penalty at the top-left corner is now -1 instead of -100. Every-
thing else is the same as the previous example. The interval
between two sensing actions is varied to see how well the
active sensing algorithms handle diminishing information in

135420 VOLUME 7, 2019

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

TABLE 1. Fork-in-the-road simulation results.

TABLE 2. Symmetric corridor simulation results.

FIGURE 3. A 5 × 2 grid-world with a wall between the left and the right
sides and a small opening in the middle. (a) The reward at each state.
(b) The initial belief. (c) The policy.

the sameway as in the first example. The average rewards and
run times for each simulation are taken from 10,000 repeated
trials.

The average rewards and the 95% confidence intervals for
the four methods are listed in Table 2. In this example, AE,
SE, and EV perform similarly in terms of rewards across all
sensing intervals, with AE performs slightly better than SE
and EV most of the time, and RN always performs worst.
Computational time is very similar to the previous example.
It takes AE, SE, and EV, 0.281 ms, 0.249 ms, and 0.237 ms,
respectively, to calculate a sensing action. The average sim-
ulation time of a complete trial, including the offline time
required for solving for the policy, of AE, SE, EV, and RN, are
11.529ms, 11.211ms, 23.114ms, and 9.004ms, respectively.
Policy iteration for AE and SE takes 5.33 ms, while value
iteration for EV takes 17.70 ms, prior to the simulations.
DESPOThas an average reward of 76.579, and it takes 16.97 s
on average to complete a trial.

C. DISCUSSION
AE yields higher reward than the other methods in the
first example, where the early decisions can lead to a large

reward or penalty. The key difference that leads to AE per-
forming better in the fork-in-the-road example is that AE
selects the sensing action that minimizes the uncertainty in
the next task action. Thus, when the belief is distributed
between the two columns of themap, AEwill pick the sensing
action that resolves the uncertainty regarding the side of the
map the robot is in. EV seems to share the same characteristic
with AE in this regard. However, as the information become
more scarce, i.e., the interval between two sensing opportu-
nities increases, EV’s accumulated reward drops faster than
AE’s. SE performs poorly in this example because it simply
tries to minimize state uncertainty without taking the task into
consideration.

In the second example, there is no clear winner among the
decoupled methods. This is reasonable, because in this prob-
lem the robot has to be at the corner to localize itself. Since the
active sensing algorithms can only pick what to measure in a
given state, they lack the exploration characteristic presented
in POMDP. An active-localization algorithm [11], which
moves the robot to the corner first, is known to also work
well in this scenario. The results from the second example
reveal that when it comes to exploration tasks, AE does not
do much better than the other methods. In Table 2, there are
some non-monotonicity in the rewards as the sensing interval
is increased. This could be due to the fact that the problem is
rather small, so the number of steps before an action is taken
could affect the results.

In the two examples, AE takes slightly longer than the SE
because it maps the belief through the policy first. However,
entropy calculation is faster because there are less task actions
than there are states, so the AE is not significantly slower than
the SE. Since policy iteration is faster than value iteration in
general [32], AE and SE do not require asmuch preprocessing
time as the EV.

While the decoupled methods have lower rewards com-
pared to POMDP results in the two examples, they are much
faster at solving the problems. This trade-off between sub-
optimality and speed is essential in choosing the tool to

VOLUME 7, 2019 135421

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

solve a problem. In smaller problems such as in the two
examples presented in this section, a POMDP solver may be
a better tool since the problems can be solved in a reasonable
amount of time. However, if the state space is large, or even
continuous, the decoupled methods may offer a better
trade-off.

VIII. SIMULATIONS WITH CONTINUOUS SYSTEMS
Two examples are presented in this section. The first example
is a different take on the classic peg-in-hole problem, which
represents a very common insertion task in assemblies [26].
The second example generalizes this to a sequential peg-in-
hole, also known as the peg-in-maze problem [5]. The purpose
of the examples is to compare the action-entropy active sens-
ing algorithmwith the state-entropy active sensing algorithms
in decision making for continuous problems. State-entropy
active sensing [20], [29] is chosen for comparison because it
is widely used and it is closely related to the proposedmethod.

The simulations were performed on a machine running
Ubuntu 14.04 with Intel Core-i5 3.10 GHz processor and
8 GB memory. The entropy estimation algorithm and the
simulations are written in C++. For brevity, the action-
entropy and the state-entropy active sensing algorithms shall
be denoted by AE and SE in this section. The two methods
are compared with a baseline method that selects a sensing
action uniformly at random, which is denoted by RN.

A. EXAMPLE: PEG-IN-HOLE PROBLEM
The peg-in-hole problem is an example of a common process
in assemblies, where a peg is inserted into a slightly larger
hole [23]. Traditionally, the peg-in-hole problem is solved by
sequentially reducing the uncertainty of the position of the
peg relative to the hole through manipulation and force feed-
back [26]. The peg-in-hole problem is chosen as an example
because it has the desired characteristic where the state space
can be decomposed into multiple subspaces depending on the
stage of the task. First, when the peg is not in front of the
hole, the peg is moved toward the hole. The subspace that is
important here is the position of the peg relative to the hole’s
axis. Once the peg is in front of the hole, it is reoriented
and inserted into the hole. In this case, the orientation and
the distance along the hole’s axis are more important. In
this paper, a planar version of the peg-in-hole problem is
considered.

The state of the peg at time t , denoted by xt ∈ R3, is the
x- and y-axis positions and the orientation of the peg with
respect to the hole. Without loss of generality, the hole’s
center is placed at the origin, with the axis pointing along
the positive y-axis. The initial belief is b0 = N (µx , σx).
The motion model is xt = xt−1 + ut min(1, α/‖ut‖) + nu,
where xt ∈ R3 is the position and orientation of the peg at
time t , and ut ∈ R3 is the control action that translates and
rotates the peg at time t , nu ∼ N (0, σu) is the motion noise,
and α is the simulation step size. The sensing action, vt ∈
{1, 2, 3} determines which dimension of the state space is to
be observed. In other words, let’s xi,t denotes the i-th element

of xt , then the measurement model is zt = xvt ,t + nv, where
nv ∼ N (0, σv) is the measurement noise. The state-space
policy for the peg-in-hole example is illustrated in Fig.4.

FIGURE 4. This flowchart illustrates the policy of the peg-in-hole
problem, where pw and ph are the peg’s width and height, and ε is the
hole’s tolerance. The policy first initializes u to zero. Then it moves the
peg along the x-axis toward to hole. The first conditional statement
checks whether or not the peg is within half of peg’s width to the hole
along the x-axis. If x-axis position is within that range, the policy
reorients the peg. The second conditional statement is a heuristic that
determines if the peg is too tilted or not. If the orientation is within that
range, the policy lowers the peg into the hole.

The parameters used in the simulation is as follows. The
peg’s width and height are 1 and 2, respectively. The hole has
a tolerance of 0.1. µx = [4, 2, 0]T , σ 2

x = diag([2, 1, 1.57]),
σ 2
u = diag([0.01, 0.01, 0.01]), and σ 2

v = 0.001, and
α = 0.1. The translation and rotation step size in the simula-
tion is 0.1 and the simulation is repeated for 1,000 trials. Each
trial terminates once the peg reaches the goal, or the number
of steps exceeds 500 iterations. If the peg is not inserted
within the iteration limit, the task ends in failure.

The results are shown in Table 3. Two metrics are used
to evaluate different active sensing methods. The first metric
is the ratio between the number of successful trials and the
number of trials. AE has higher success ratios than the other
two method across all sensing intervals. AE’s success ratio
does not drop as fast as the other two methods as the sensing
interval is increased, which indicates that when sensing is
more limited, AE is more effective in picking the sensing
action that is important to the task. Also note that the num-
ber successful trials goes down when the sensing interval

135422 VOLUME 7, 2019

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

TABLE 3. Peg-in-Hole simulation results.

TABLE 4. Peg-in-Maze simulation results.

increase, which is reasonable, since we have less information
to complete the task.

The other metric considered here is the total distance the
peg travels before reaching the goal. The average distances
and the 95% confidence intervals are listed in Table 3. The
travel distance can be thought of as the negative cost asso-
ciated with moving the peg to the goal. While the distance
generally goes up with the sensing interval, AE has the lowest
distances in all cases. For the computational time, AE and SE
use 0.139 s and 0.131 s, respectively, to calculate each sensing
action, while RN’s computational time is negligible.

B. EXAMPLE: PEG-IN-MAZE PROBLEM
This example is a generalization of the peg-in-hole problem,
in which the peg has to be inserted through a sequence
of holes. Real world examples of the peg-in-maze problem
includes clutch mating and gear meshing [5].

The system the same as in the peg-in-hole problem. The
main difference is that instead of one going one hole, the peg
has to go though a series of holes to complete the task. The
policy in Fig. 4 is used for each hole.

The parameters used in the simulation is as follows. The
peg’s width and height are 1 and 2, respectively. The holes
are centered at (4, 6), (-4, 0), (0, -6), and they have tolerances
of 0.1. µx = [0, 9, 0]T , σ 2

x = diag([2, 1, 1.57]), σ 2
u =

diag([0.01, 0.01, 0.01]), and σ 2
v = 0.001, and α = 0.1. The

configuration of the map is shown in Fig. 5. The transla-
tion and rotation step size in the simulation is 0.1 and the
simulation is repeated for 1,000 trials. Each trial terminates
once the peg reaches the goal, or the number of steps exceeds
1,500 iterations. If the peg is not inserted within the iteration
limit, the task ends in failure. In this example we continue to
increase the sensing interval from the previous example.

FIGURE 5. TThis figure shows the configuration of the peg-in-maze
problem.

From the results in Table 4, the AE’s success ratios are
higher than the other two methods in all cases. AE’s travel
distances are also lower than SE’s, but higher than RN’s.
Success ratios of the three methods decrease monotonically
when the sensing interval goes up.

C. DISCUSSION
In both the peg-in-hole and peg-in-maze examples, AE per-
forms better than SE and RN, while the computation time
is comparable to the state-entropy method. The reason the
computational time is comparable to the state-entropymethod
is that the active sensing calculation of AE is dominated by
entropy estimation.

VOLUME 7, 2019 135423

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

The reason why AE performs better in the two examples
is due to the fact AE takes advantage of how the tasks can
be decomposed into searching and insertion stages. When
the peg is far away from the hole, AE only considers the
uncertainty on the distance of the peg with respect to the
hole’s axis. Once the peg is close enough, AE considers
the orientation. Similarly, when the orientation is sufficiently
small, AE focuses on the insertion distance. In other words,
AE minimizes the uncertainty of the action as required by the
policy.

While it is possible to model some continuous deci-
sion making under uncertainty problems as continuous
POMDPs [30], there are restrictions on the model, e.g.,
Gaussian mixture reward function, and the computation time
is likely to be high as suggested by discrete POMDPs. The
expected-value method is not included in the continuous
examples because the expected-valuemethod requires a value
function. Continuous MDP is an active research topic that is
beyond the scope of this paper.

The sensing actions in the two examples are observing
the x-coordinate position, the y-coordinate position, and the
orientation. The sensing actions in the two continuous exam-
ples are meant to illustrate the point that different subspaces
are important during different stages of the tasks. In a more
realistic setting, the measurement model can be replaced
by a mobile stereo camera system, where depth perception
along the axis perpendicular to the image plane is limited.
So, we can obtain more information by moving the camera
around and looking at different angles.

IX. DISCUSSION AND CONCLUSION
This paper presents action-entropy active sensing algorithms
that are designed to be used in conjunction with a task planner
to perform tasks in discrete and continuous environments.
The proposed method incorporates the objective of the task
into active sensing by selecting the sensing action that min-
imizes the ambiguity of the next task action. For discrete
systems, the active sensing algorithm selects the sensing
action that minimizes the conditional entropy of the next task
action. The basic characteristics of the proposed algorithm
is explored in two simulation examples. For continuous sys-
tems, belief propagation is approximated by the particle filter,
and the active sensing algorithm minimizes an estimate of
the conditional differential entropy based on the particles.
Two examples demonstrate the performance of the proposed
method in comparison with the state-entropy method. The
proposed method not only has higher success rates, but it also
completes the tasks with lowest cost (travel distance).

POMDP is a general framework that allows many sequen-
tial decisionmaking under uncertainty problems to be defined
in a consistent manner. Problems that cannot be decoupled
into sensing and acting aspects can be modeled and solved
more effectively as POMDPs. This is demonstrated in the
symmetric corridor example in Section VII-B, where the
states at the end of the hallway on the left is essential for local-
ization. Consequently, the difference in the reward between

the proposed method and DESPOT is larger in the symmetric
corridor example than in the fork-in-the-road example.

The proposed solution to the decision making uncertainty
problem is to combine a state-space policy with an active
sensing algorithm. Motion uncertainty can be considered in
calculating the state-space policy. In the discrete examples,
we solve the state-space planning problems as MDPs, which
inherently consider motion uncertainty. For the continuous
examples, the policies are ‘‘funnel-like’’, in the sense that
they funnel the states into smaller and smaller regions [26].
For the discrete examples, we have included POMDP results,
which show that while the proposed method is suboptimal,
they are much faster than POMDPs.

The proposed decoupled method borrows from the
principle of separation in classical control, where we sepa-
rate state estimation from control when the system can be
described well enough locally using a linear approximation
with Gaussian noise. This leads to the LQG controller, where
we have the LQR controller designed in the state space, and
EKF as the state estimator.

One possible limitation of the action entropy method is
when the policy does not decompose the state space into
subspaces. For example, when the policy is a simple linear
feedback control law π (x) = −x, the action-entropy method
becomes the state-entropymethod. Or in general, if the policy
is ‘‘too smooth’’, then the belief in the action space will be
similar to belief in the state space, and there will be little
benefit in using action entropy. Conversely, if the policy maps
all of the states to the same action, which can happen in
the case that the policy or the actuator saturates, then action
entropy becomes negative infinity for all sensing actions.
In this case, it might be useful to use a hybrid method, where
the active sensing algorithm switches to state-entropy when
the belief in the state space is mapped to one point in the
action space.

Algorithm 2 assumes the availability of a policy that maps
a state into an action. A very common family of planning
methods in robotics is sampling-based methods. In practical
implementations, the sampling-based methods are used in
conjunction with a feedback controller. In this case, policy
evaluation takes O(d logN) because we have to find the
closest node for all the particles, and AE’s computation
complexity will be different from SE’s by a constant factor,
as discussed in Section VI-C. This planner-controller scheme
provides a finite-parametric planner that couldworkwell with
the active sensing algorithm. A feedback planner that has a
built-in feedback controller is also a good candidate for the
state-space planner. Examples of feedback planners include
LQR-tree [39], Sampling-Based Neighborhood Graph [43],
etc. While it is possible to use an online planner as the policy,
the online planner could make the action-entropy method
much slower than the state-entropy method if online planning
has to be done inside of the active sensing algorithm, i.e., in
Line 8 of Algorithm 2. However, if the online planner gen-
erates a plan concurrently with the active sensing algorithm,
i.e., a receding horizon plan is generated independently with

135424 VOLUME 7, 2019

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

the active sensing algorithm, then the active sensing algo-
rithm can potentially use the policy as if it is precomputed.

There are several possible directions for futurework. In this
work, we have studied the effect of the scarcity of informa-
tion on the performance by increasing the interval between
two sensing opportunities. It will be interesting to solve the
inverse problem where we use the action entropy to mea-
sure the degree of uncertainty, and determine when a sens-
ing action has to be performed. Physical robot implementa-
tion or more sophisticated simulations are two possible future
directions. Kulick et al. propose a new objective function for
information gathering based on cross entropy [21], which
will be explored in future work. Another interesting future
direction is to try different ways of selecting the task action
from the belief in the state space. In this paper, we focus on
the sensing aspect of decision make and select task actions
based on the most likely state from the belief. Other possi-
bilities include, the expected value of action value function
as in QMDP [24], minimizing regret by select the action that
maximized the minimum value, etc.

ACKNOWLEDGMENT
This article was presented in part at the IEEE/RSJ Inter-
national Conference on Intelligence Robots and Systems,
Daejeon, South Korea, 2016.

REFERENCES
[1] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, ‘‘FIRM:

Sampling-based feedback motion-planning under motion uncertainty and
imperfect measurements,’’ Int. J. Robot. Res., vol. 33, no. 2, pp. 268–304,
2014.

[2] J. Ajgl and M. Šimandl, ‘‘Differential entropy estimation by particles,’’
IFAC Proc. Volumes, vol. 44, no. 1, pp. 11991–11996, 2011.

[3] M. Araya, O. Buffet, V. Thomas, and F. Charpillet, ‘‘A POMDP exten-
sion with belief-dependent rewards,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 23. Red Hook, NY, USA: Curran Associates, 2010,
pp. 64–72.

[4] J. Beirlant, E. J. Dudewicz, L. Györfi, and E. C. Van der Meulen, ‘‘Non-
parametric entropy estimation: An overview,’’ Int. J. Math. Stat. Sci., vol. 6,
no. 1, pp. 17–39, 1997.

[5] M. S. Branicky and S. R. Chhatpar, ‘‘A computational framework for the
simulation, verification, and synthesis of force-guided robotic assembly
strategies,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 3,
Oct./Nov. 2001, pp. 1471–1476.

[6] S. Chakravorty and R. S. Erwin, ‘‘Information space receding horizon
control,’’ in Proc. IEEE Symp. Adapt. Dyn. Program. Reinforcement
Learn. (ADPRL), Apr. 2011, pp. 302–309.

[7] B. Charrow, V. Kumar, and N. Michael, ‘‘Approximate representations
for multi-robot control policies that maximize mutual information,’’ in
Robotics: Science and Systems. Berlin, Germany, Jun. 2013.

[8] S. R. Chhatpar and M. S. Branicky, ‘‘Particle filtering for localization in
robotic assemblies with position uncertainty,’’ inProc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Aug. 2005, pp. 3610–3617.

[9] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algo-
rithms, and Implementation. Cambridge, MA, USA: A Bradford Book,
May 2005.

[10] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 1991.

[11] D. Fox, W. Burgard, and S. Thrun, ‘‘Active Markov localization for mobile
robots,’’ Robot. Auto. Syst., vol. 25, nos. 3–4, pp. 195–207, Nov. 1998.

[12] J. H. Friedman, J. L. Bentley, and R. A. Finkel, ‘‘An algorithm for finding
best matches in logarithmic expected time,’’ ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 209–226, 1997.

[13] M. N. Goria, N. N. Leonenko, V. V. Mergel, and P. L. N. Inverardi,
‘‘A new class of random vector entropy estimators and its applications in
testing statistical hypotheses,’’ J. Nonparametric Statist., vol. 17, no. 3,
pp. 277–297, 2005.

[14] T. Greigarn andM. C. Çavuşoğlu, ‘‘Active sensing for continuous state and
action spaces via task-action entropy minimization,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Oct. 2016, pp. 4678–4684.

[15] P. Guerrero, J. Ruiz-Del-Solar, M. Romero, and S. Angulo, ‘‘Task-oriented
probabilistic active vision,’’ Int. J. Humanoid Robot., vol. 7, no. 3,
pp. 451–476, 2010.

[16] M. Hauskrecht, ‘‘Value-function approximations for partially observable
Markov decision processes,’’ J. Artif. Intell. Res., vol. 13, pp. 33–94,
Aug. 2000.

[17] G. M. Hoffman and C. J. Tomlin, ‘‘Mobile sensor network control using
mutual information methods and particle filters,’’ IEEE Trans. Autom.
Control, vol. 55, no. 1, pp. 32–47, Jan. 2010.

[18] S. Javdani, Y. Chen, A. Karbasi, A. Krause, J. A. Bagnell, and S. Srinivasa,
‘‘Near optimal Bayesian active learning for decision making,’’ in Proc.
17th Int. Conf. Artif. Intell. Statist., 2014, pp. 430–438.

[19] L. F. Kozachenko and N. N. Leonenko, ‘‘Sample estimate of the entropy
of a random vector,’’ Problemy Peredachi Inform., vol. 23, no. 2, pp. 9–16,
1987.

[20] C. Kreucher, K. Kastella, and A. O. Hero, III, ‘‘Sensor management using
an active sensing approach,’’ Signal Process., vol. 85, no. 3, pp. 607–624,
2005.

[21] J. Kulick, R. Lieck, and M. Toussaint, ‘‘The advantage of cross entropy
over entropy in iterative information gathering,’’ Sep. 2014, arXiv:1409.
7552. [Online]. Available: https://arxiv.org/abs/1409.7552

[22] C. Kwok and D. Fox, ‘‘Reinforcement learning for sensing strate-
gies,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), vol. 4,
Sep./Oct. 2004, pp. 3158–3163.

[23] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[24] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, ‘‘Learning policies
for partially observable environments: Scaling up,’’ in Proc. 12th Int. Conf.
Int. Conf. Mach. Learn., 1995, pp. 362–370.

[25] J. M. Manyika and H. F. Durrant-Whyte, ‘‘Information-theoretic approach
to management in decentralized data fusion,’’ Proc. SPIE, vol. 1828,
Nov. 1992, pp. 202–213.

[26] M. Mason, ‘‘The mechanics of manipulation,’’ in Proc. IEEE Int. Conf.
Robot. Automat., vol. 2, Mar. 1985, pp. 544–548.

[27] R. M. Mnatsakanov, N. Misra, S. Li, and E. J. Harner, ‘‘Kn-nearest
neighbor estimators of entropy,’’ Math. Methods Statist., vol. 17, no. 3,
pp. 261–277, 2008.

[28] J. Pineau, G. Gordon, and S. Thrun, ‘‘Point-based value iteration: An any-
time algorithm for POMDPs,’’ in Proc. 18th Int. Joint Conf. Artif.
Intell. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2003,
pp. 1025–1030.

[29] J. M. Porta, B. Terwijn, and B. Krose, ‘‘Efficient entropy-based action
selection for appearance-based robot localization,’’ in Proc. IEEE Int.
Conf. Robot. Automat. (ICRA), Sep. 2003, pp. 2842–2847.

[30] J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart, ‘‘Point-based
value iteration for continuous POMDPs,’’ J. Mach. Learn. Res., vol. 7,
pp. 2329–2367, Nov. 2006.

[31] S. Prentice and N. Roy, ‘‘The belief roadmap: Efficient planning in belief
space by factoring the covariance,’’ Int. J. Robot. Res., vol. 28, nos. 11–12,
pp. 1448–1465, Jul. 2009.

[32] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ, USA: Prentice-Hall, 2009.

[33] A. Ryan and J. K. Hedrick, ‘‘Particle filter based information-theoretic
active sensing,’’ Robot. Auto. Syst., vol. 58, pp. 574–584, May 2010.

[34] Y. Satsangi, S. Whiteson, and F. A. Oliehoek, ‘‘Exploiting submodular
value functions for faster dynamic sensor selection,’’ in Proc. 29th AAAI
Conf. Artif. Intell., 2015, pp. 3356–3363.

[35] W. W. Schmaedeke, ‘‘Information-based sensor management,’’ Proc.
SPIE, vol. 1955, Sep. 1993, pp. 156–164.

[36] H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, and E. Demchuk, ‘‘Nearest
neighbor estimates of entropy,’’ Amer. J. Math. Manage. Sci., vol. 23,
nos. 3–4, pp. 301–321, 2003.

[37] A. Somani, N. Ye, D. Hsu, and W. S. Lee, ‘‘DESPOT: Online POMDP
planning with regularization,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, 2013,
pp. 1772–1780.

VOLUME 7, 2019 135425

T. Greigarn et al.: Task-Oriented Active Sensing via Action Entropy Minimization

[38] M. T. J. Spaan, T. S. Veiga, and P. U. Lima, ‘‘Decision-theoretic planning
under uncertainty with information rewards for active cooperative per-
ception,’’ Auton. Agents Multi-Agent Syst., vol. 29, no. 6, pp. 1157–1185,
Nov. 2015.

[39] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, ‘‘LQR-
Trees: Feedback motion planning via sums-of-squares verification,’’ Int.
J. Robot. Res., vol. 29, no. 8, pp. 1038–1052, 2010.

[40] S. Thrun,W. Burgard, andD. Fox,Probabilistic Robotics. Cambridge,MA,
USA: MIT Press, 2005.

[41] J. van den Berg, S. Patil, and R. Alterovitz, ‘‘Motion planning under
uncertainty using iterative local optimization in belief space,’’ Int. J. Robot.
Res., vol. 31, no. 11, pp. 1263–1278, 2012.

[42] M. Wang, S. Canu, and R. Dearden, ‘‘Improving robot plans for informa-
tion gathering tasks through execution monitoring,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Nov. 2013, pp. 5285–5291.

[43] L. Yang and S. M. LaValle, ‘‘The sampling-based neighborhood graph: An
approach to computing and executing feedback motion strategies,’’ IEEE
Trans. Robot. Autom., vol. 20, no. 3, pp. 419–432, Jun. 2004.

TIPAKORN GREIGARN (S’14) received the
B.S. degree in electrical engineering from
Chulalongkorn University, Bangkok, Thailand,
in 2008, and the M.S. and Ph.D. degrees in sys-
tems and control engineering from Case West-
ern University, in 2011 and 2018, respectively.
He is currently a Senior Robotics Engineer
with Transenterix, Inc. His research interests
include robotics, systems and control, andmachine
learning.

MICHAEL S. BRANICKY (M’87–SM’01–F’16)
received the Sc.D. degree from the Massachusetts
Institute of Technology. He is currently theDean of
engineering and a Professor of electrical engineer-
ing and computer science with The University of
Kansas. His research interests include control sys-
tems, robotics, hybrid systems, intelligent control,
and learning.

M. CENK ÇAVUŞOĞLU (S’93–M’01–SM’06)
received the B.S. degree in electrical and electronic
engineering from Middle East Technical Univer-
sity, Ankara, Turkey, in 1995, and the M.S. and
Ph.D. degrees in electrical engineering and com-
puter sciences from the University of California,
at Berkeley, in 1997 and 2000, respectively.

He was a Visiting Researcher with the INRIA
Rhones-Alpes Research Center, Grenoble, France,
in 1998, a Postdoctoral Researcher and a Lecturer

with the University of California at Berkeley, from 2000 to 2002, and a Visit-
ing Associate Professor with Bilkent University, Ankara, from 2009 to 2010.
He is currently a Professor of electrical engineering and computer science,
biomedical engineering, and mechanical and aerospace engineering with
Case Western Reserve University, Cleveland, OH, USA. His research inter-
ests include robotics, systems and control theory, and human–machine inter-
faces, with an emphasis on medical robotics, haptics, virtual environments,
surgical simulation, and bio-system modeling and simulation. His current
research involves the applications of robotics and control engineering to
biomedical and biologically inspired engineered systems. He has served as
an Associate Editor for the IEEE TRANSACTIONS ON ROBOTICS and a Technical
Editor for the IEEE/ASME TRANSACTIONS ON MECHATRONICS.

135426 VOLUME 7, 2019

