
Mobile Robots
Control Architectures, Bio-Interfacing,

Navigation, Multi Robot Motion Planning
and Operator Training

Edited by Janusz Będkowski

Edited by Janusz Będkowski

The objective of this book is to cover advances of mobile robotics and related
technologies applied for multi robot systems’ design and development. Design
of control system is a complex issue, requiring the application of information

technologies to link the robots into a single network. Human robot interface becomes a
demanding task, especially when we try to use sophisticated methods for brain signal
processing. Generated electrophysiological signals can be used to command different

devices, such as cars, wheelchair or even video games. A number of developments
in navigation and path planning, including parallel programming, can be observed.

Cooperative path planning, formation control of multi robotic agents, communication
and distance measurement between agents are shown. Training of the mobile robot

operators is very difficult task also because of several factors related to different task
execution. The presented improvement is related to environment model generation

based on autonomous mobile robot observations.

Photo by PhonlamaiPhoto / iStock

ISBN 978-953-307-842-7

M
obile Robots - C

ontrol A
rchitectures, Bio-Interfacing, N

avigation,
M

ulti Robot M
otion Planning and O

perator Training

MOBILE ROBOTS –
CONTROL ARCHITECTURES,

BIO-INTERFACING,
NAVIGATION, MULTI

ROBOT MOTION PLANNING
AND OPERATOR TRAINING

Edited by Janusz Będkowski

INTECHOPEN.COM

MOBILE ROBOTS –
CONTROL ARCHITECTURES,

BIO-INTERFACING,
NAVIGATION, MULTI

ROBOT MOTION PLANNING
AND OPERATOR TRAINING

Edited by Janusz Będkowski

INTECHOPEN.COM

Mobile Robots - Control Architectures, Bio-Interfacing, Navigation,
Multi Robot Motion Planning and Operator Training
http://dx.doi.org/10.5772/2304
Edited by Janusz Będkowski

Contributors

Songdong Xue, Haiwei Dong, Janusz Będkowski, Dayang Jawawi, Suzila Sabil, Rosbi Mamat, Mufti Mahmud,
Alessandra Bertoldo, Stefano Vassanelli, Mihai Micea, Andrei Stancovici, Sinziana Indreica, Jerzy Barchanski, Xie
Wei, Andrew McKenzie, Fei Hu, Qingquan Sun, Michela Chiappalone, Antonio Novellino, Enrico Defranchi, Jacopo
Tessadori, Paolo D’Angelo, Sergio Martinoia, Stephan Opfer, Hendrik Skubch, Kurt Geihs, Kuppan Chetty Ramanathan,
Singaperumal Makaram, T Nagarajan, Kao-Shing Hwang, Wei-Cheng Jiang, Hung-Hsiu Yu, Hsin-Yi Lin, Mohd Azizi Bin
Abdul Rahman, Takasu Takahiro, Makoto Mizukawa, Katsuhiro Mayama, Yasuda Akira, Alexandre Guitton, Nassima
Hadid, Michel Misson, Bálint Kiss, István Komlósi

© The Editor(s) and the Author(s) 2011
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2011 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Mobile Robots - Control Architectures, Bio-Interfacing, Navigation,
Multi Robot Motion Planning and Operator Training
Edited by Janusz Będkowski

p. cm.

ISBN 978-953-307-842-7

eBook (PDF) ISBN 978-953-51-5622-2

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,000+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International authors and editors

120M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editor

Janusz Bedkowski, Ph.D. in Automation and Robotics,
adjunct in Institute of Automation and Robotics-Warsaw
University of Technology. From 2006 to 2011, he collab-
orated with Industrial Research Institute for Automation
and Measurements, Warsaw, Poland, concerning multi
robotic inspection-intervention system development
and integration. From 2009 to 2011, he collaborated

with Institute of Mathematical Machines, Warsaw, Poland concerning
mobile robot operator training tool development and semantic mapping.
Dr. Bedkowski was granted a postdoctoral scholarship (CAS/19/POKL
15.05.2011-15.11.2011) in the Royal Military Academy (RMA), Brussels,
Belgium, funded by Center for Advanced Studies, Warsaw University of
Technology. His research interests are in inspection intervention robot
systems, semantic mapping including 3D cloud of points processing, 6D
SLAM, mobile robot operator training with AR techniques, and GPGPU
computing applied for mobile robotics.

Contents

Preface IX

Introductory Chapter 1
Janusz Będkowski

Part 1 Mobile Robot Control Design and Development 19

Chapter 1 Model-Driven Development of Intelligent Mobile Robot
Using Systems Modeling Language (SysML) 21
Mohd Azizi Abdul Rahman, Katsuhiro Mayama,
Takahiro Takasu, Akira Yasuda and Makoto Mizukawa

Chapter 2 Development of Safe and Secure Control Software
for Autonomous Mobile Robots 39
Jerzy A. Barchanski

Chapter 3 Control Strategies of Human Interactive Robot Under
Uncertain Environments 55
Haiwei Dong and Zhiwei Luo

Chapter 4 Research on Building Mechanism
of System for Intelligent Service Mobile Robot 81
Xie Wei, Ma Jiachen and Yang Mingli

Chapter 5 A Robotic Wheelchair Component-Based
Software Development 101
Dayang N. A. Jawawi, Suzila Sabil,
Rosbi Mamat, Mohd Zulkifli Mohd Zaki,
Mahmood Aghajani Siroos Talab, Radziah Mohamad,
Norazian M. Hamdan and Khadijah Kamal

Part 2 Brain-Machine Interfacing 127

Chapter 6 EEG Based Brain-Machine Interfacing:
Navigation of Mobile Robotic Device 129
Mufti Mahmud, Alessandra Bertoldo
and Stefano Vassanelli

Contents

Preface XI

Introductory Chapter 1
Janusz Będkowski

Part 1 Mobile Robot Control Design and Development 19

Chapter 1 Model-Driven Development of Intelligent Mobile Robot
Using Systems Modeling Language (SysML) 21
Mohd Azizi Abdul Rahman, Katsuhiro Mayama,
Takahiro Takasu, Akira Yasuda and Makoto Mizukawa

Chapter 2 Development of Safe and Secure Control Software
for Autonomous Mobile Robots 39
Jerzy A. Barchanski

Chapter 3 Control Strategies of Human Interactive Robot Under
Uncertain Environments 55
Haiwei Dong and Zhiwei Luo

Chapter 4 Research on Building Mechanism
of System for Intelligent Service Mobile Robot 81
Xie Wei, Ma Jiachen and Yang Mingli

Chapter 5 A Robotic Wheelchair Component-Based
Software Development 101
Dayang N. A. Jawawi, Suzila Sabil,
Rosbi Mamat, Mohd Zulkifli Mohd Zaki,
Mahmood Aghajani Siroos Talab, Radziah Mohamad,
Norazian M. Hamdan and Khadijah Kamal

Part 2 Brain-Machine Interfacing 127

Chapter 6 EEG Based Brain-Machine Interfacing:
Navigation of Mobile Robotic Device 129
Mufti Mahmud, Alessandra Bertoldo
and Stefano Vassanelli

X Contents

Chapter 7 Bioartificial Brains and Mobile Robots 145
Antonio Novellino, Michela Chiappalone, Jacopo Tessadori,
Paolo D’Angelo, Enrico Defranchi and Sergio Martinoia

Part 3 Navigation and Path Planning 163

Chapter 8 Parallel Computing in Mobile Robotics for RISE 165
Janusz Będkowski

Chapter 9 Multi-Flock Flocking for Multi-Agent Dynamic Systems 185
Andrew McKenzie, Qingquan Sun and Fei Hu

Chapter 10 Cooperative Formation Planning and Control of
Multiple Mobile Robots 203
R. M. Kuppan Chetty, M. Singaperumal and T. Nagarajan

Chapter 11 Cooperative Path Planning for Multi-Robot
Systems in Dynamic Domains 237
Stephan Opfer, Hendrik Skubch and Kurt Geihs

Chapter 12 Motion Planning for Multiple Mobile Robots
Using Time-Scaling 259
István Komlósi and Bálint Kiss

Chapter 13 Cooperative Reinforcement Learning
Based on Zero-Sum Games 289
Kao-Shing Hwang, Wei-Cheng Jiang,
Hung-Hsiu Yu and Shin-Yi Lin

Part 4 Communication and Distance Measurement
for Swarm Robots 309

Chapter 14 Synchronous and Asynchronous Communication
Modes for Swarm Robotic Search 311
Songdong Xue, Jin Li, Jianchao Zeng,
Xiaojuan He and Guoyou Zhang

Chapter 15 Using a Meeting Channel and Relay Nodes to
Interconnect Mobile Robots 329
Nassima Hadid, Alexandre Guitton and Michel Misson

Chapter 16 Distance Measurement for Indoor Robotic Collectives 353
Mihai V. Micea, Andrei Stancovici and Sînziana Indreica

Part 5 Mobile Robot Operator Training 373

Chapter 17 Improvement of RISE Mobile Robot
Operator Training Tool 375
Janusz Będkowski and Andrzej Masłowski

Preface

The objective of this book is to cover the advances of mobile robotic systems and
related technologies applied especially for multi robot systems' design and
development. The design of mobile robots control system is an important and complex
issue, requiring the application of information technologies to link the robots into a
single network. In recent years, a great number of studies of mobile robot applications
have been proposed but still there is a need to provide software tools to integrate
hardware and software of the robotic platforms. The robot control software consists of
many interacting components and often possible accidents and problems arise from
components interactions rather than the failure of individual ones. Autonomous
robots may operate unattended and through an unsafe operation which can cause
significant human, economic, or mission losses. Hence, to minimize the losses,
software becomes crucial in robot control. This book discusses several robot control
architectures, especially those considering safety and security.

Human robot interface becomes a demanding issue, especially when we try to use
sophisticated methods for brain signal processing. Many researchers are interested in
using neurophysiological recordings. The interaction between bioartificial brains and
mobile robots is also an important issue, where new technologies for direct transfer of
information between natural neuronal systems and artificial devices are investigated.
The electrophysiological signals generated from the brain can be used to command
different devices, such as cars, wheelchair or even video games. Devices that can
interpret brain activity and use it to control artificial components are referred to as
brain–machine interfaces and are rapidly developed for not only scientific but also
commercial purposes.

During the last decade a number of developments in navigation and path planning
including parallel programming improving the performance of classic approaches
could be observed. Real applications often require the collaboration of mobile robots
in order to perform required tasks. A cooperative path planning and a formation
control of multi robotic agents will be discussed. Also, technical problems related to
communication and distance measurement between agents will be shown. The
design of a network architecture that allows mobile robots to cooperate efficiently,
without negatively impacting the performance of each intra-robot communication is
proposed.

VI Contents

Chapter 7 Bioartificial Brains and Mobile Robots 145
Antonio Novellino, Michela Chiappalone, Jacopo Tessadori,
Paolo D’Angelo, Enrico Defranchi and Sergio Martinoia

Part 3 Navigation and Path Planning 163

Chapter 8 Parallel Computing in Mobile Robotics for RISE 165
Janusz Będkowski

Chapter 9 Multi-Flock Flocking for Multi-Agent Dynamic Systems 185
Andrew McKenzie, Qingquan Sun and Fei Hu

Chapter 10 Cooperative Formation Planning and Control of
Multiple Mobile Robots 203
R. M. Kuppan Chetty, M. Singaperumal and T. Nagarajan

Chapter 11 Cooperative Path Planning for Multi-Robot
Systems in Dynamic Domains 237
Stephan Opfer, Hendrik Skubch and Kurt Geihs

Chapter 12 Motion Planning for Multiple Mobile Robots
Using Time-Scaling 259
István Komlósi and Bálint Kiss

Chapter 13 Cooperative Reinforcement Learning
Based on Zero-Sum Games 289
Kao-Shing Hwang, Wei-Cheng Jiang,
Hung-Hsiu Yu and Shin-Yi Lin

Part 4 Communication and Distance Measurement
for Swarm Robots 309

Chapter 14 Synchronous and Asynchronous Communication
Modes for Swarm Robotic Search 311
Songdong Xue, Jin Li, Jianchao Zeng,
Xiaojuan He and Guoyou Zhang

Chapter 15 Using a Meeting Channel and Relay Nodes to
Interconnect Mobile Robots 329
Nassima Hadid, Alexandre Guitton and Michel Misson

Chapter 16 Distance Measurement for Indoor Robotic Collectives 353
Mihai V. Micea, Andrei Stancovici and Sînziana Indreica

Part 5 Mobile Robot Operator Training 373

Chapter 17 Improvement of RISE Mobile Robot
Operator Training Tool 375
Janusz Będkowski and Andrzej Masłowski

Preface

The objective of this book is to cover the advances of mobile robotic systems and
related technologies applied especially for multi robot systems' design and
development. The design of mobile robots control system is an important and complex
issue, requiring the application of information technologies to link the robots into a
single network. In recent years, a great number of studies of mobile robot applications
have been proposed but still there is a need to provide software tools to integrate
hardware and software of the robotic platforms. The robot control software consists of
many interacting components and often possible accidents and problems arise from
components interactions rather than the failure of individual ones. Autonomous
robots may operate unattended and through an unsafe operation which can cause
significant human, economic, or mission losses. Hence, to minimize the losses,
software becomes crucial in robot control. This book discusses several robot control
architectures, especially those considering safety and security.

Human robot interface becomes a demanding issue, especially when we try to use
sophisticated methods for brain signal processing. Many researchers are interested in
using neurophysiological recordings. The interaction between bioartificial brains and
mobile robots is also an important issue, where new technologies for direct transfer of
information between natural neuronal systems and artificial devices are investigated.
The electrophysiological signals generated from the brain can be used to command
different devices, such as cars, wheelchair or even video games. Devices that can
interpret brain activity and use it to control artificial components are referred to as
brain–machine interfaces and are rapidly developed for not only scientific but also
commercial purposes.

During the last decade a number of developments in navigation and path planning
including parallel programming improving the performance of classic approaches
could be observed. Real applications often require the collaboration of mobile robots
in order to perform required tasks. A cooperative path planning and a formation
control of multi robotic agents will be discussed. Also, technical problems related to
communication and distance measurement between agents will be shown. The
design of a network architecture that allows mobile robots to cooperate efficiently,
without negatively impacting the performance of each intra-robot communication is
proposed.

XII Preface

Training of mobile robot operators is a very difficult task, not only because of the
complexity of the mobile robot, but also because of several factors related to different
task execution. The presented improvement is related to the problem of automatic
environment model generation based on autonomous mobile robot observations. The
approach related to semantic mapping is used and, in consequence, semantic
simulation engine is implemented. The presented result is a new approach and can
potentially improve the process of advanced mobile robot application design and
professional training of the operators.

We have included seventeen reviewed chapters organized into five sections. We
would like to thank all the authors for their contributions.

Janusz Będkowski, Ph.D.
Warsaw University of Technology

Poland

1. Introduction

This chapter is related to the recent advances in the mobile robotics for RISE (Risky
Intervention and Surveillance Environment) applications. In RISE applications mobile robots
are used for assisting human in risky tasks such as: victim search, victim transportation,
hazardous materials disposal etc.
The State of The Art of the information systems Ahmad & Sumari (2008), artificial intelligence
Ullman (2002) Herbert (1995), and mobile robotics Choset (2001) Braunl (2006) allows for
development of increasingly sophisticated multi-robot systems Maslowski (2004) Baudoin
et al. (2009) Arai et al. (2002). Available computing power of modern computers, and
miniaturization has repeatedly increased the possibility of computational capabilities of new
robots in the field of pattern recognition Cao et al. (2006), the construction of maps Yu & Hang
(2006) Xiang & Zhou (2006) Thrun et al. (2001), communication Okada & Murakami (2007) in
order to execute the mission. It is no longer a problem to execute complex calculations directly
on the onboard PC of mobile robot, and as a result these machines become more autonomous.
The following description of available technical solutions was limited to the representative
examples of inspection - intervention robots.
The chapter is organized as follows: in section 2 State of the Art concerning inspection
- intervention systems is shown. Section 3 concerns the examples of autonomous mobile
robots and section 4 concerns the examples of remote-controlled mobile robots used in RISE
applications. An example of command base stations is shown in section 5. Control systems of
mobile robots are described in section 6. In section 7 an important aspect in RISE application
SLAM is described and in section 8 the training systems for RISE are discussed. Section 9
concludes the chapter.

2. Inspection - intervention system

Mobile robot systems are used in inspection-intervention activities Maslowski
(2005) Maslowski (2006). The basic element of the system is a mobile platform that is
equipped with an advanced measurement system. The main task of the robot is to provide
maximum amount of information concerning the environment directly to command center.
The system of mobile inspection - intervention robots should enable the identification of

Introductory Chapter
Janusz B dkowski

Institute of Automation and Robotics, Warsaw University of Technology
Industrial Research Institute for Automation and Measurements

Poland

X Preface

Training of mobile robot operators is a very difficult task, not only because of the
complexity of the mobile robot, but also because of several factors related to different
task execution. The presented improvement is related to the problem of automatic
environment model generation based on autonomous mobile robot observations. The
approach related to semantic mapping is used and, in consequence, semantic
simulation engine is implemented. The presented result is a new approach and can
potentially improve the process of advanced mobile robot application design and
professional training of the operators.

We have included seventeen reviewed chapters organized into five sections. We
would like to thank all the authors for their contributions.

Janusz Będkowski, Ph.D.

Warsaw University of Technology
Poland

1. Introduction

This chapter is related to the recent advances in the mobile robotics for RISE (Risky
Intervention and Surveillance Environment) applications. In RISE applications mobile robots
are used for assisting human in risky tasks such as: victim search, victim transportation,
hazardous materials disposal etc.
The State of The Art of the information systems Ahmad & Sumari (2008), artificial intelligence
Ullman (2002) Herbert (1995), and mobile robotics Choset (2001) Braunl (2006) allows for
development of increasingly sophisticated multi-robot systems Maslowski (2004) Baudoin
et al. (2009) Arai et al. (2002). Available computing power of modern computers, and
miniaturization has repeatedly increased the possibility of computational capabilities of new
robots in the field of pattern recognition Cao et al. (2006), the construction of maps Yu & Hang
(2006) Xiang & Zhou (2006) Thrun et al. (2001), communication Okada & Murakami (2007) in
order to execute the mission. It is no longer a problem to execute complex calculations directly
on the onboard PC of mobile robot, and as a result these machines become more autonomous.
The following description of available technical solutions was limited to the representative
examples of inspection - intervention robots.
The chapter is organized as follows: in section 2 State of the Art concerning inspection
- intervention systems is shown. Section 3 concerns the examples of autonomous mobile
robots and section 4 concerns the examples of remote-controlled mobile robots used in RISE
applications. An example of command base stations is shown in section 5. Control systems of
mobile robots are described in section 6. In section 7 an important aspect in RISE application
SLAM is described and in section 8 the training systems for RISE are discussed. Section 9
concludes the chapter.

2. Inspection - intervention system

Mobile robot systems are used in inspection-intervention activities Maslowski
(2005) Maslowski (2006). The basic element of the system is a mobile platform that is
equipped with an advanced measurement system. The main task of the robot is to provide
maximum amount of information concerning the environment directly to command center.
The system of mobile inspection - intervention robots should enable the identification of

Introductory Chapter
Janusz B dkowski

Institute of Automation and Robotics, Warsaw University of Technology
Industrial Research Institute for Automation and Measurements

Poland

2 Will-be-set-by-IN-TECH

hazards in the area and the possible intervention by remote-controlled robot equipped with
a specialized arm. It is important to emphasize that mobile robots are usually a part of multi
agent systems Leitao & Putnik (2001). It is possible to use different types of mobile units
in an unknown terrain, thus there is the need of integration of incompatible interfaces in
terms of systems from different manufacturers Alami et al. (1998). Integration is necessary to
obtain a web connected mobile robot system. The illustration 1 shows a simplified diagram
of the architecture of View Finder VF (2009) system. View-Finder system Baudoin et al.
(2009) "Vision and Chemiresistor Equipped Web-connected Finding Robots" is a structure of
web connected mobile robots, with the task of carrying out the inspection of area in which
human life and health are highly threatened, cooperating with the services of the fire brigade
during an inspection of chemically contaminated area. In the system, the autonomous robots
are used for acquiring information from sensors installed on them, and remotely controlled
robots performing intervention tasks. Robots first transmit measured data to a mobile base
station, and then the data are available on CMIS system (Crisis Management Information
System).

Fig. 1. Simplified diagram of the system architecture View-Finder VF (2009).

An example of an advanced mobile robot system is a border inspection system TALOS TALOS
(2010). The system comprises three basic elements: unmanned ground vehicles and aircraft,
whose job is to patrol the border, ground observation towers located on mobile platforms and
command center to ensure the connectivity between components located on the ground, and
the appropriate unit of the Border Guard. Another example of new ideas associated with
inspection - intervention systems is the PROTEUS project PROTEUS (2011). A new element
of the system is unmanned air vehicles supporting ground units.
In general multi-robot inspection-intervention system includes remote-controlled
inspection-intervention robots with elements of autonomy, a fully autonomous mobile
robots and mobile base station. All system components should be equipped with appropriate
sensors to recognize the conditions in the environment and being able to share this
information between system nodes.

3. Autonomous mobile robots

In this section a crucial examples from RISE applications point of view of autonomous mobile
robots which are constructed for working in difficult circumstances Railhet et al. (2007), to
search for victims, in the areas of high risk to human Murphy et al. (2000) Jacoff et al. (2002)

2
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 3

are shown. These robots are equipped with: a stereo microphone, accelerometer, camera Lee
et al. (2005), chemical sensors Stetter et al. (2003), infrared sensors, infrared camera, sound
sensors Valin et al. (2007), ultrasonic sensors and laser range finders.
CASTER robot (Figure 2) is an example robot capable of working under difficult conditions.
The advantage over other robots is advanced construction, with an extensive module for
victims detection, an advanced module for map building and modern human-machine
interface. It uses sophisticated mapping technology based on 3D sensor-time-of-flight range
camera Kadous et al. (2005).

Fig. 2. Robot Caster Kadous et al. (2005).

Figure 3 shows commercially available robots designed for scientific and research purposes
with potential application in developing inspection - intervention systems. ATRVJr
robot Lima et al. (2003) is equipped with basic sensors used for navigation and map
construction. The construction of four-wheel differential drive is designed to overcome
substantial obstacles, which makes the robot attractive in terms of test application. SeekurJr
robot is successor of ATRVJr robot and it is designed also for scientific and research purposes.
A distinguishing feature of this design is the integration of advanced laser sensors to the robot
housing, so that achieved a greater degree of integrity of the mobile base. In addition use
of waterproof materials in the robot chassis should be noted. This makes this design very
attractive compared to another available solutions.

4. Remote-controlled mobile robots

The remote-controlled robots are developed in different sizes depending on the applications,
which consequently affects their functionality. One can distinguish several classes of remotely
controlled robots dedicated to the inspection-intervention tasks. They are:

• heavy inspection - intervention robots;

• medium inspection - intervention robots;

• lightweight inspection - intervention robots;

3Introductory Chapter

2 Will-be-set-by-IN-TECH

hazards in the area and the possible intervention by remote-controlled robot equipped with
a specialized arm. It is important to emphasize that mobile robots are usually a part of multi
agent systems Leitao & Putnik (2001). It is possible to use different types of mobile units
in an unknown terrain, thus there is the need of integration of incompatible interfaces in
terms of systems from different manufacturers Alami et al. (1998). Integration is necessary to
obtain a web connected mobile robot system. The illustration 1 shows a simplified diagram
of the architecture of View Finder VF (2009) system. View-Finder system Baudoin et al.
(2009) "Vision and Chemiresistor Equipped Web-connected Finding Robots" is a structure of
web connected mobile robots, with the task of carrying out the inspection of area in which
human life and health are highly threatened, cooperating with the services of the fire brigade
during an inspection of chemically contaminated area. In the system, the autonomous robots
are used for acquiring information from sensors installed on them, and remotely controlled
robots performing intervention tasks. Robots first transmit measured data to a mobile base
station, and then the data are available on CMIS system (Crisis Management Information
System).

Fig. 1. Simplified diagram of the system architecture View-Finder VF (2009).

An example of an advanced mobile robot system is a border inspection system TALOS TALOS
(2010). The system comprises three basic elements: unmanned ground vehicles and aircraft,
whose job is to patrol the border, ground observation towers located on mobile platforms and
command center to ensure the connectivity between components located on the ground, and
the appropriate unit of the Border Guard. Another example of new ideas associated with
inspection - intervention systems is the PROTEUS project PROTEUS (2011). A new element
of the system is unmanned air vehicles supporting ground units.
In general multi-robot inspection-intervention system includes remote-controlled
inspection-intervention robots with elements of autonomy, a fully autonomous mobile
robots and mobile base station. All system components should be equipped with appropriate
sensors to recognize the conditions in the environment and being able to share this
information between system nodes.

3. Autonomous mobile robots

In this section a crucial examples from RISE applications point of view of autonomous mobile
robots which are constructed for working in difficult circumstances Railhet et al. (2007), to
search for victims, in the areas of high risk to human Murphy et al. (2000) Jacoff et al. (2002)

2
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 3

are shown. These robots are equipped with: a stereo microphone, accelerometer, camera Lee
et al. (2005), chemical sensors Stetter et al. (2003), infrared sensors, infrared camera, sound
sensors Valin et al. (2007), ultrasonic sensors and laser range finders.
CASTER robot (Figure 2) is an example robot capable of working under difficult conditions.
The advantage over other robots is advanced construction, with an extensive module for
victims detection, an advanced module for map building and modern human-machine
interface. It uses sophisticated mapping technology based on 3D sensor-time-of-flight range
camera Kadous et al. (2005).

Fig. 2. Robot Caster Kadous et al. (2005).

Figure 3 shows commercially available robots designed for scientific and research purposes
with potential application in developing inspection - intervention systems. ATRVJr
robot Lima et al. (2003) is equipped with basic sensors used for navigation and map
construction. The construction of four-wheel differential drive is designed to overcome
substantial obstacles, which makes the robot attractive in terms of test application. SeekurJr
robot is successor of ATRVJr robot and it is designed also for scientific and research purposes.
A distinguishing feature of this design is the integration of advanced laser sensors to the robot
housing, so that achieved a greater degree of integrity of the mobile base. In addition use
of waterproof materials in the robot chassis should be noted. This makes this design very
attractive compared to another available solutions.

4. Remote-controlled mobile robots

The remote-controlled robots are developed in different sizes depending on the applications,
which consequently affects their functionality. One can distinguish several classes of remotely
controlled robots dedicated to the inspection-intervention tasks. They are:

• heavy inspection - intervention robots;

• medium inspection - intervention robots;

• lightweight inspection - intervention robots;

3Introductory Chapter

4 Will-be-set-by-IN-TECH

(a) ATRVJr (b) SeecurJr

Fig. 3. Autonomous mobile robots used in research.

• miniature inspection robots.

Inspection - intervention robots, depending on the application, differ not only in dimensions,
but also equipment, including the type of sensors that are used. Figure 4 shows the heavy
inspection - intervention Robot T-52 Enryu Hiyama (2004). This robot is distinguished by
two arms mounted to move heavy objects of considerable size. This mobile unit is used, for
example, for searching the rubble of disaster zones.

(a) Robot T-52 Enryu. (b) RISE task execution.

Fig. 4. Remote-controlled mobile robot T-52 Enryu.

Figure 5 shows a commercially available inspection - intervention INSPECTOR robot of
middle class. This robot Maslowski (2001) is dedicated for supporting special forces in risky
interventions Szynkarczyk (2005). INSPECTOR robot is built using modular construction, so
that when damage occur to one of the modules as a result of a failure, the rest of the robot
system retains its functionality, which has a positive impact on the completion of the mission
task.

4
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 5

Fig. 5. Remotely controlled robot INSPECTOR.

In the area of direct rescue of human life, robots are used to transport victims of the crisis.
Performing safe transport of humans is a difficult task from the perspective of remote control
of mobile robot. Figure 6 shows an example of a robot equipped with two arms, performing
the task of transporting accident victims.

Fig. 6. Transporting accident victim.

Another group of inspection robots are small-size mobile robots. Figure 7 left shows the robot
YUKO-SHITA developed by Sanyo. Figure 7 right shows a miniature robot TerminatorBot
Voyles et al. (2004). It is able to effectively move in tight spaces with a pair of mechanical
limbs. It is equipped with miniature video cameras, and is being used to search for victims in
complex environment.
Figure 8 presents a hybrid technical solution dedicated to inspection - intervention system,
unmanned ground/surface vehicle LEWIATAN Typiak (2008), which is able to overcome
watery obstacles.
Based on these few examples given above it can be concluded that there are enough different
types of mobile platforms to build a robotic inspection - intervention system. However, the
major concern remains the development of multi - agent system structure, based on the robots
of different manufacturers, designed to perform inspection - intervention tasks. Therefore the
main effort is usually related to the integration technologies.

5Introductory Chapter

4 Will-be-set-by-IN-TECH

(a) ATRVJr (b) SeecurJr

Fig. 3. Autonomous mobile robots used in research.

• miniature inspection robots.

Inspection - intervention robots, depending on the application, differ not only in dimensions,
but also equipment, including the type of sensors that are used. Figure 4 shows the heavy
inspection - intervention Robot T-52 Enryu Hiyama (2004). This robot is distinguished by
two arms mounted to move heavy objects of considerable size. This mobile unit is used, for
example, for searching the rubble of disaster zones.

(a) Robot T-52 Enryu. (b) RISE task execution.

Fig. 4. Remote-controlled mobile robot T-52 Enryu.

Figure 5 shows a commercially available inspection - intervention INSPECTOR robot of
middle class. This robot Maslowski (2001) is dedicated for supporting special forces in risky
interventions Szynkarczyk (2005). INSPECTOR robot is built using modular construction, so
that when damage occur to one of the modules as a result of a failure, the rest of the robot
system retains its functionality, which has a positive impact on the completion of the mission
task.

4
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 5

Fig. 5. Remotely controlled robot INSPECTOR.

In the area of direct rescue of human life, robots are used to transport victims of the crisis.
Performing safe transport of humans is a difficult task from the perspective of remote control
of mobile robot. Figure 6 shows an example of a robot equipped with two arms, performing
the task of transporting accident victims.

Fig. 6. Transporting accident victim.

Another group of inspection robots are small-size mobile robots. Figure 7 left shows the robot
YUKO-SHITA developed by Sanyo. Figure 7 right shows a miniature robot TerminatorBot
Voyles et al. (2004). It is able to effectively move in tight spaces with a pair of mechanical
limbs. It is equipped with miniature video cameras, and is being used to search for victims in
complex environment.
Figure 8 presents a hybrid technical solution dedicated to inspection - intervention system,
unmanned ground/surface vehicle LEWIATAN Typiak (2008), which is able to overcome
watery obstacles.
Based on these few examples given above it can be concluded that there are enough different
types of mobile platforms to build a robotic inspection - intervention system. However, the
major concern remains the development of multi - agent system structure, based on the robots
of different manufacturers, designed to perform inspection - intervention tasks. Therefore the
main effort is usually related to the integration technologies.

5Introductory Chapter

6 Will-be-set-by-IN-TECH

(a) Inspection robot YUKO-SHITA Sanyo. (b) Miniature robot TerminatorBot.

Fig. 7. Small-size inspection mobile robots.

Fig. 8. Unmanned ground/surface vehicle LEWIATAN.

5. Command base stations

An important subsystem of multi robot inspection - intervention system is the mobile
command base station. Figure 9 a) shows the command base station of the robot Hiyama
(2004) T-52 Enryu. The station has a collection of many displays of the view from the robot’s
cameras, and advanced ergonomic manipulator, to facilitate remote control of the robot’s
arm. Another example is the mobile command base station Typiak (2008) constructed in the
Military University of Technology in Warsaw is shown in Figure 9 b). Mobile command base
station (in this case operator’s console) provides possibility to control the unmanned vehicle
through the steering wheel and series of specialized switches. The construction of the control
station limits the ergonomics and provides complex functionality in the form of numerous
displays of robot state, the measurements from the sensors of the mobile platform and the
view from on-board cameras. Figure 10 shows the functional architecture of the mobile base
station developed in View Finder project Warlet et al. (2009). View Finder mobile base station
is one of the two components of a mobile command center, a second component is a CMIS
- Crisis Management Information System. The base station can distinguish the following
components: BSC - the core of the base station which is a basic functionality of the station,
MTE - mission editor, a tool for editing the mission, MPSEM - mission planning and execution
monitoring module, MDRD - data recording during the execution of missions and sharing

6
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 7

them with other system components, HMI Clients - programs for human-machine interface,
SDP - processing the data from sensors, interface for CMIS- crisis management information
system, interface for robots and sensors.
To conclude this section it can be stated that modern mobile command base stations are using
advanced information technologies in the field of: interactive computer graphics, distributed
programming, databases, artificial intelligence, work with peripherals.

(a) Command base station of
robot T-52 Enryu.

(b) Command base station of unmanned
ground/surface vehicle LEWIATAN.

Fig. 9. Example of command base stations.

Fig. 10. Functional architecture of the mobile base station working in the View-Finder system
Warlet et al. (2009).

7Introductory Chapter

6 Will-be-set-by-IN-TECH

(a) Inspection robot YUKO-SHITA Sanyo. (b) Miniature robot TerminatorBot.

Fig. 7. Small-size inspection mobile robots.

Fig. 8. Unmanned ground/surface vehicle LEWIATAN.

5. Command base stations

An important subsystem of multi robot inspection - intervention system is the mobile
command base station. Figure 9 a) shows the command base station of the robot Hiyama
(2004) T-52 Enryu. The station has a collection of many displays of the view from the robot’s
cameras, and advanced ergonomic manipulator, to facilitate remote control of the robot’s
arm. Another example is the mobile command base station Typiak (2008) constructed in the
Military University of Technology in Warsaw is shown in Figure 9 b). Mobile command base
station (in this case operator’s console) provides possibility to control the unmanned vehicle
through the steering wheel and series of specialized switches. The construction of the control
station limits the ergonomics and provides complex functionality in the form of numerous
displays of robot state, the measurements from the sensors of the mobile platform and the
view from on-board cameras. Figure 10 shows the functional architecture of the mobile base
station developed in View Finder project Warlet et al. (2009). View Finder mobile base station
is one of the two components of a mobile command center, a second component is a CMIS
- Crisis Management Information System. The base station can distinguish the following
components: BSC - the core of the base station which is a basic functionality of the station,
MTE - mission editor, a tool for editing the mission, MPSEM - mission planning and execution
monitoring module, MDRD - data recording during the execution of missions and sharing

6
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 7

them with other system components, HMI Clients - programs for human-machine interface,
SDP - processing the data from sensors, interface for CMIS- crisis management information
system, interface for robots and sensors.
To conclude this section it can be stated that modern mobile command base stations are using
advanced information technologies in the field of: interactive computer graphics, distributed
programming, databases, artificial intelligence, work with peripherals.

(a) Command base station of
robot T-52 Enryu.

(b) Command base station of unmanned
ground/surface vehicle LEWIATAN.

Fig. 9. Example of command base stations.

Fig. 10. Functional architecture of the mobile base station working in the View-Finder system
Warlet et al. (2009).

7Introductory Chapter

8 Will-be-set-by-IN-TECH

6. Control systems of mobile robots

Control system of mobile robots is an important and complex issue, requiring the application
of information technologies to link the robots into a single network. It is possible to use
multi-agent system architecture Kramer & Scheutz (2007), a network of agents Tambe et al.
(1995) and co-applicants Guilbert et al. (2003). Agents are characterized by autonomous
action, mostly heterogeneous Baumann (1999) Hilaire et al. (2000). Such control system
architecture is characterized by a variety of hardware components and software, often
working under different operating systems. From the standpoint of software engineering it
can be concluded, that several tools supporting the development of systems for mobile robots
control had been developed. Below most common of them are described:

6.1 GenoM
It is an environment for supporting the design of control systems operating in real time
Alami et al. (1998) Alami (2000). Environment helps in the process of software components
integration available through numerous independent functional modules. The module can be
remotely switched on, off, paused, and parameterized. Software modules are implemented
in a form of standardized servers. Each module consists of two basic parts: a controller
cooperating with the client program and the controller performing the current task.

6.2 DCA
Distributed Control Architecture DCA is designed to implement a robot arm control
system Peterson et al. (2001). DCA architecture provides application messaging environment
ACE (Adaptive Communication Environment), it can provide compatibility with other control
systems. DCA architecture is characterized by a hierarchical structure, consisting of modules,
supervisors and controllers.

6.3 MIRO
Architecture Miro (Middleware for Robots) Miro (2005) is object-oriented. The core of
the architecture has been developed in C++ in Linux environment using CORBA and ACE
technology. In connection with the use of CORBA, MIRO is independent of operating system
or programming language. MIRO allows to control several robots, B21 and MobileRobots
Pioneer. There have been many studies using MIRO, including maps construction algorithm
and simultaneous localization SLAM Kraetzschmar et al. (2004), the algorithm of planning
and navigation Kraetzschmar et al. (2000), a hierarchical behavior algorithm Utz et al. (2005)
and multi - robot systems H. Utz (2004).

6.4 MARIE
Architecture MARIE Cote et al. (2004) (Mobile and Autonomous Robotics Integration
Environment) supports designing cross-platform applications. MARIE is implemented
in C++ using ACE. MARIE consists of following components: applications component,
communication component, communication manager and manager applications. For the
compatibility purpose the corresponding components for Player, CARMEN and Aria are
delivered. There have been many systems using this architecture Lemay et al. (2004).

6.5 Player
The Player environment provides servers for configuration of multi - robot control system
acting on the basis of defined interfaces Gerkey & Matari’c (2002) Gerkey et al. (2003) Gerkey

8
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 9

& Matari’c (2004) Gerkey et al. (2005). Therefore, the communication based on TCP /
IP control system for mobile robots can be fully distributed and implemented in different
programming languages (including C, C++, Tcl, Python, Java, Common Lisp). Player allows
to connect multiple clients to one server, giving a degree of design freedom. It is important to
emphasize that Player is common in research community.

6.6 MCA2
Architecture MCA2 (2009) (Modular Control Architecture) can be used for real time robot
operating system design. Mainly dedicated to multi - robot applications. All features are
implemented as modules that can be associated to groups. MCA2 distinctive feature is the
usage of only floating point numbers as input and output between software components.
Communication occurs through the use of low-level mechanisms that support SOCKETS API.
MCA2 advantage is the ability to implement modules in real-time systems in the RT-Linux.

6.7 TeamBots
TeamBots is a collection of programs implemented using the Java language, dedicated to
multi - agent systems Balch & Arkin (1999) Balch (2000) Balch (2004). The architecture
supports drivers for robot Nomad 150. TeamBots developed appropriate modules
implementing the control algorithms using the "hierarchical behavior" and goal oriented
control. Communication between the modules is solved using SOCKETS and serial
communication.

6.8 MissionLab
Software MissionLab Missionlab (2003) is dedicated to multi - robot systems including
mission planning based on the model of military plans. Coexistence of agents, collaboration
and coordination has been carried out in accordance with the idea of multi-agent systems. In
MissionLab, a new agent description language CDL (Configuration Description Language)
is proposed. The implementation of several drivers is available for the following robots:
MobileRobots Pioneer, Robot ATRVJr, Urban, Evolution Robotics ER-1, Nomad 150/200. CDL
language is compiled into the code CNL (Configuration Network Language) and as a result
compiled into an executable program directly on the system. There have been many studies
using MissionLab including high-level user assistance for robot mission specification Endo
et al. (2004).

6.9 ARIA
It is basic software for MobileRobots’ robots LaFary & Newton (2005). ARIA provides a set
of C++ classes for the core functionality of the robot. ARIA architecture defines the structure
of the robot consisting of sensors, effectors, and defines the physical elements of the low-level
communication mechanisms. The software is fully commercial, offering a complete set of
functionality needed to design multi - robot systems.

6.10 CARMEN
CARMEN Montemerlo et al. (2003) is written using C language to implement a uniform
layer of communication for multi - robot systems. The architecture defines three main layers:
the layer of interfaces for devices, data acquisition from sensors and control effectors, the
second layer carrying out basic tasks for a robot: navigation, localization, tracking facilities,
traffic planning, executing, and the third layer of applications designed by the user. CARMEN

9Introductory Chapter

8 Will-be-set-by-IN-TECH

6. Control systems of mobile robots

Control system of mobile robots is an important and complex issue, requiring the application
of information technologies to link the robots into a single network. It is possible to use
multi-agent system architecture Kramer & Scheutz (2007), a network of agents Tambe et al.
(1995) and co-applicants Guilbert et al. (2003). Agents are characterized by autonomous
action, mostly heterogeneous Baumann (1999) Hilaire et al. (2000). Such control system
architecture is characterized by a variety of hardware components and software, often
working under different operating systems. From the standpoint of software engineering it
can be concluded, that several tools supporting the development of systems for mobile robots
control had been developed. Below most common of them are described:

6.1 GenoM
It is an environment for supporting the design of control systems operating in real time
Alami et al. (1998) Alami (2000). Environment helps in the process of software components
integration available through numerous independent functional modules. The module can be
remotely switched on, off, paused, and parameterized. Software modules are implemented
in a form of standardized servers. Each module consists of two basic parts: a controller
cooperating with the client program and the controller performing the current task.

6.2 DCA
Distributed Control Architecture DCA is designed to implement a robot arm control
system Peterson et al. (2001). DCA architecture provides application messaging environment
ACE (Adaptive Communication Environment), it can provide compatibility with other control
systems. DCA architecture is characterized by a hierarchical structure, consisting of modules,
supervisors and controllers.

6.3 MIRO
Architecture Miro (Middleware for Robots) Miro (2005) is object-oriented. The core of
the architecture has been developed in C++ in Linux environment using CORBA and ACE
technology. In connection with the use of CORBA, MIRO is independent of operating system
or programming language. MIRO allows to control several robots, B21 and MobileRobots
Pioneer. There have been many studies using MIRO, including maps construction algorithm
and simultaneous localization SLAM Kraetzschmar et al. (2004), the algorithm of planning
and navigation Kraetzschmar et al. (2000), a hierarchical behavior algorithm Utz et al. (2005)
and multi - robot systems H. Utz (2004).

6.4 MARIE
Architecture MARIE Cote et al. (2004) (Mobile and Autonomous Robotics Integration
Environment) supports designing cross-platform applications. MARIE is implemented
in C++ using ACE. MARIE consists of following components: applications component,
communication component, communication manager and manager applications. For the
compatibility purpose the corresponding components for Player, CARMEN and Aria are
delivered. There have been many systems using this architecture Lemay et al. (2004).

6.5 Player
The Player environment provides servers for configuration of multi - robot control system
acting on the basis of defined interfaces Gerkey & Matari’c (2002) Gerkey et al. (2003) Gerkey

8
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 9

& Matari’c (2004) Gerkey et al. (2005). Therefore, the communication based on TCP /
IP control system for mobile robots can be fully distributed and implemented in different
programming languages (including C, C++, Tcl, Python, Java, Common Lisp). Player allows
to connect multiple clients to one server, giving a degree of design freedom. It is important to
emphasize that Player is common in research community.

6.6 MCA2
Architecture MCA2 (2009) (Modular Control Architecture) can be used for real time robot
operating system design. Mainly dedicated to multi - robot applications. All features are
implemented as modules that can be associated to groups. MCA2 distinctive feature is the
usage of only floating point numbers as input and output between software components.
Communication occurs through the use of low-level mechanisms that support SOCKETS API.
MCA2 advantage is the ability to implement modules in real-time systems in the RT-Linux.

6.7 TeamBots
TeamBots is a collection of programs implemented using the Java language, dedicated to
multi - agent systems Balch & Arkin (1999) Balch (2000) Balch (2004). The architecture
supports drivers for robot Nomad 150. TeamBots developed appropriate modules
implementing the control algorithms using the "hierarchical behavior" and goal oriented
control. Communication between the modules is solved using SOCKETS and serial
communication.

6.8 MissionLab
Software MissionLab Missionlab (2003) is dedicated to multi - robot systems including
mission planning based on the model of military plans. Coexistence of agents, collaboration
and coordination has been carried out in accordance with the idea of multi-agent systems. In
MissionLab, a new agent description language CDL (Configuration Description Language)
is proposed. The implementation of several drivers is available for the following robots:
MobileRobots Pioneer, Robot ATRVJr, Urban, Evolution Robotics ER-1, Nomad 150/200. CDL
language is compiled into the code CNL (Configuration Network Language) and as a result
compiled into an executable program directly on the system. There have been many studies
using MissionLab including high-level user assistance for robot mission specification Endo
et al. (2004).

6.9 ARIA
It is basic software for MobileRobots’ robots LaFary & Newton (2005). ARIA provides a set
of C++ classes for the core functionality of the robot. ARIA architecture defines the structure
of the robot consisting of sensors, effectors, and defines the physical elements of the low-level
communication mechanisms. The software is fully commercial, offering a complete set of
functionality needed to design multi - robot systems.

6.10 CARMEN
CARMEN Montemerlo et al. (2003) is written using C language to implement a uniform
layer of communication for multi - robot systems. The architecture defines three main layers:
the layer of interfaces for devices, data acquisition from sensors and control effectors, the
second layer carrying out basic tasks for a robot: navigation, localization, tracking facilities,
traffic planning, executing, and the third layer of applications designed by the user. CARMEN

9Introductory Chapter

10 Will-be-set-by-IN-TECH

supports the following mobile platforms MobileRobotics family, ie: Nomadic Technologies,
Scaut, XR4000, Segway, iRobot ATRV, ATRVJr, B21R. There have been many studies using
CARMEN for example related to hierarchical models of activity Osentoski et al. (2004).

6.11 MRROC++
Program structure MRROC++ framework was based on theoretical considerations Winiarski
& Zielinski (2005) on the concept of agent. MRROC++ consists of functional modules and
patterns of use. With MRROC++ it is possible to construct a multi - robot system based
on operating implementation of the relevant modules. The control system consists of the
following processes: UI (User Interface Process) - the process responsible for communication
with the operator, MP (Master Process) - the process of coordinating the work of all effectors,
ECP (Effector Control Process) - the process responsible for the implementation of the tasks
commissioned with effector, EDP (Effector Driver Process) - the process responsible for
steering the effector, VSP (Virtual Sensor Process) - the process responsible for the aggregation
of data from the sensors.

6.12 MRDS
Microsoft Robotics Developer Studio is a new project supporting the development of multi -
robot systems. It is a powerful tool, through the use of modern communication technologies
and simulation environment based on NVIDIA PhysX technology Buckhaults (2009). The
MRDS supports building multi - robot systems. In addition, MRDS offers easy HMI design
for web browsers.

6.13 CoRoBa
Architecture CoRoBa (Controlling Robots with CORBA) is organizing a mobile robot control
system or a multi - robot system into three basic types of modules: SENSOR, PROCESSOR,
ACTUATOR, where SENSOR is responsible for collecting data from the sensors, PROCESSOR
makes logical operations, and the ACTUATOR controls the effectors. Additionally CoRoBa
architecture defines mechanisms for sleep, wake and remote on / off data components.
CORBA is independent from programming language or operating system Colon (2006).

6.14 ROS
ROS (Robot Operating System) ROS (2011) is a software framework for robot software
development. It is providing operating system-like functionality for all mobile robot
components. ROS provides standard operating system services such as hardware abstraction,
low-level device control, implementation of commonly-used functionality, message-passing
between processes, and package management, therefore it is used in modern robotic
applications. Unfortunately the library is dedicated to a Unix-like systems.

7. SLAM in RISE

It seems that from RISE application point of view an interesting SLAM solution is so
called 6DSLAM Nuchter et al. (2007) Sprickerhof et al. (2009). Alignment and merging
of two 3D scans, which are obtained from different sensor coordinates, with respect to a
reference coordinate system is called 3D registration Huber & Hebert (2003) Fitzgibbon
(2001) Magnusson & Duckett (2005). Park Park et al. (2010) proposed a real-time approach
for 3D registration using GPU, where the registration technique is based on the Iterative
Projection Point (IPP) algorithm. The IPP technique is a combination of point-to-plane and

10
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 11

point-to-projection registration schemes Park & Subbarao (2003). Processing time for this
approach is about 60ms for aligning 2 3D data sets of 76800 points during 30 iterations of the
IPP algorithm. Unfortunately, the IPP algorithm has a problem concerning the scalability of
the implementation. Fast searching algorithms such as the k-d tree algorithm are usually used
to improve the performance of the closest point search Rusinkiewicz & Levoy (2001). GPU
accelerated nearest neighbor search for 3D registration is proposed in work of Qiu Qiu et al.
(2009).
A fast variant of the Iterative Closest Points (ICP) algorithm that registers the 3D scans in
a common coordinate system and relocalizes the robot is shown in Surmann et al. (2004).
Consistent 3D maps are generated using closing loop detection and a global relaxation. The
loop closing algorithm detects a loop by registering the last acquired 3D scan with earlier
acquired scans, e.g., the first scan. If a registration is possible, the computed error is in a
first step divided by the number of 3D scans in the loop and distributed over all scans. The
authors reported that the computation time of about 1 min per scan is acceptable, but that
further improvement is needed. An algorithm for efficient loop closing and consistent scan
alignment that avoids iterative scan matching over all scans is proposed in Sprickerhof et al.
(2009). Detecting loops in the path is done by using the Euclidean distance between the current
and all previous poses (distance threshold of 5 meters), or using GPS data if available. A
threshold of minimal number of intermediate scans (e.g., 20) is used to circumvent continuous
loop closing within consecutive scans.
Another scan registration approach using 3D-NDT (Normal Distribution Transform) is shown
in Magnusson et al. (2007) and automatic appearance-based loop detection from 3D laser data
using the Normal Distributions Transform is demonstrated in Magnusson et al. (2009).
Vision has also been used successfully for localization of a mobile robot Newman et al.
(2006) Newman & Ho (2005) Cummins & Newman (2008). A comparison of loop closing
techniques in monocular SLAM is show in Williams et al. (2009). Loop closure detection in
SLAM by combining visual and spatial appearance was shown in Ho & Newman (2006). This
approach relies upon matching distinctive signatures of individual local scenes to prompt
loop closure. Another advantage is the possibility to enhance robustness of loop closure
detection by incorporating heterogeneous sensory observations. The laser scan is divided into
smaller but sizeable segments and the complexity of a segment is encoded via entropy. SIFT
Lowe (2004) (Scale Invariant Feature Transform) descriptors are also used to match images. In
Leong & Newman (2005) a methodology combining visual and spatial appearance is shown,
whereas in Ho & Newman (2005), an approach based on multiple map intersection detection
based on visual features appearance is shown. The authors in Ho & Newman (2007) encode
the similarity between all possible pairings of scenes in a similarity matrix and then pose
the loop closing problem as the task of extracting statistically significant sequences of similar
scenes from this matrix. The analysis (introspection) and decomposition (remediation) of the
similarity matrix allows for the reliable detection of loops despite the presence of repetitive
and visually ambiguous scenes. Relaxing loop-closing errors in 3D maps based on planar
surface patches were shown in Kaustubh Pathak & Birk (2009).

8. Training in RISE

A detailed description of computer based simulators for unmanned vehicles is shown in
Craighead et al. (2007b). Also in Boeing & Bräunl (2007) the comparison of real-time physics
simulation systems is given, where a qualitative evaluation of a number of free publicly
available physics engines for simulation systems and game development is presented. Several

11Introductory Chapter

10 Will-be-set-by-IN-TECH

supports the following mobile platforms MobileRobotics family, ie: Nomadic Technologies,
Scaut, XR4000, Segway, iRobot ATRV, ATRVJr, B21R. There have been many studies using
CARMEN for example related to hierarchical models of activity Osentoski et al. (2004).

6.11 MRROC++
Program structure MRROC++ framework was based on theoretical considerations Winiarski
& Zielinski (2005) on the concept of agent. MRROC++ consists of functional modules and
patterns of use. With MRROC++ it is possible to construct a multi - robot system based
on operating implementation of the relevant modules. The control system consists of the
following processes: UI (User Interface Process) - the process responsible for communication
with the operator, MP (Master Process) - the process of coordinating the work of all effectors,
ECP (Effector Control Process) - the process responsible for the implementation of the tasks
commissioned with effector, EDP (Effector Driver Process) - the process responsible for
steering the effector, VSP (Virtual Sensor Process) - the process responsible for the aggregation
of data from the sensors.

6.12 MRDS
Microsoft Robotics Developer Studio is a new project supporting the development of multi -
robot systems. It is a powerful tool, through the use of modern communication technologies
and simulation environment based on NVIDIA PhysX technology Buckhaults (2009). The
MRDS supports building multi - robot systems. In addition, MRDS offers easy HMI design
for web browsers.

6.13 CoRoBa
Architecture CoRoBa (Controlling Robots with CORBA) is organizing a mobile robot control
system or a multi - robot system into three basic types of modules: SENSOR, PROCESSOR,
ACTUATOR, where SENSOR is responsible for collecting data from the sensors, PROCESSOR
makes logical operations, and the ACTUATOR controls the effectors. Additionally CoRoBa
architecture defines mechanisms for sleep, wake and remote on / off data components.
CORBA is independent from programming language or operating system Colon (2006).

6.14 ROS
ROS (Robot Operating System) ROS (2011) is a software framework for robot software
development. It is providing operating system-like functionality for all mobile robot
components. ROS provides standard operating system services such as hardware abstraction,
low-level device control, implementation of commonly-used functionality, message-passing
between processes, and package management, therefore it is used in modern robotic
applications. Unfortunately the library is dedicated to a Unix-like systems.

7. SLAM in RISE

It seems that from RISE application point of view an interesting SLAM solution is so
called 6DSLAM Nuchter et al. (2007) Sprickerhof et al. (2009). Alignment and merging
of two 3D scans, which are obtained from different sensor coordinates, with respect to a
reference coordinate system is called 3D registration Huber & Hebert (2003) Fitzgibbon
(2001) Magnusson & Duckett (2005). Park Park et al. (2010) proposed a real-time approach
for 3D registration using GPU, where the registration technique is based on the Iterative
Projection Point (IPP) algorithm. The IPP technique is a combination of point-to-plane and

10
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 11

point-to-projection registration schemes Park & Subbarao (2003). Processing time for this
approach is about 60ms for aligning 2 3D data sets of 76800 points during 30 iterations of the
IPP algorithm. Unfortunately, the IPP algorithm has a problem concerning the scalability of
the implementation. Fast searching algorithms such as the k-d tree algorithm are usually used
to improve the performance of the closest point search Rusinkiewicz & Levoy (2001). GPU
accelerated nearest neighbor search for 3D registration is proposed in work of Qiu Qiu et al.
(2009).
A fast variant of the Iterative Closest Points (ICP) algorithm that registers the 3D scans in
a common coordinate system and relocalizes the robot is shown in Surmann et al. (2004).
Consistent 3D maps are generated using closing loop detection and a global relaxation. The
loop closing algorithm detects a loop by registering the last acquired 3D scan with earlier
acquired scans, e.g., the first scan. If a registration is possible, the computed error is in a
first step divided by the number of 3D scans in the loop and distributed over all scans. The
authors reported that the computation time of about 1 min per scan is acceptable, but that
further improvement is needed. An algorithm for efficient loop closing and consistent scan
alignment that avoids iterative scan matching over all scans is proposed in Sprickerhof et al.
(2009). Detecting loops in the path is done by using the Euclidean distance between the current
and all previous poses (distance threshold of 5 meters), or using GPS data if available. A
threshold of minimal number of intermediate scans (e.g., 20) is used to circumvent continuous
loop closing within consecutive scans.
Another scan registration approach using 3D-NDT (Normal Distribution Transform) is shown
in Magnusson et al. (2007) and automatic appearance-based loop detection from 3D laser data
using the Normal Distributions Transform is demonstrated in Magnusson et al. (2009).
Vision has also been used successfully for localization of a mobile robot Newman et al.
(2006) Newman & Ho (2005) Cummins & Newman (2008). A comparison of loop closing
techniques in monocular SLAM is show in Williams et al. (2009). Loop closure detection in
SLAM by combining visual and spatial appearance was shown in Ho & Newman (2006). This
approach relies upon matching distinctive signatures of individual local scenes to prompt
loop closure. Another advantage is the possibility to enhance robustness of loop closure
detection by incorporating heterogeneous sensory observations. The laser scan is divided into
smaller but sizeable segments and the complexity of a segment is encoded via entropy. SIFT
Lowe (2004) (Scale Invariant Feature Transform) descriptors are also used to match images. In
Leong & Newman (2005) a methodology combining visual and spatial appearance is shown,
whereas in Ho & Newman (2005), an approach based on multiple map intersection detection
based on visual features appearance is shown. The authors in Ho & Newman (2007) encode
the similarity between all possible pairings of scenes in a similarity matrix and then pose
the loop closing problem as the task of extracting statistically significant sequences of similar
scenes from this matrix. The analysis (introspection) and decomposition (remediation) of the
similarity matrix allows for the reliable detection of loops despite the presence of repetitive
and visually ambiguous scenes. Relaxing loop-closing errors in 3D maps based on planar
surface patches were shown in Kaustubh Pathak & Birk (2009).

8. Training in RISE

A detailed description of computer based simulators for unmanned vehicles is shown in
Craighead et al. (2007b). Also in Boeing & Bräunl (2007) the comparison of real-time physics
simulation systems is given, where a qualitative evaluation of a number of free publicly
available physics engines for simulation systems and game development is presented. Several

11Introductory Chapter

12 Will-be-set-by-IN-TECH

frameworks are mentioned such as USARSim which is very popular in research society Wang
et al. (2003c) Wang et al. (2003a) Wang et al. (2003b) Balaguer et al. (2008) Greggio et al. (2007),
Stage, Gazebo Rusu et al. (2007) Karimian et al. (2006), Webots Hohl et al. (2006) Michel
(2004), and MRDS Buckhaults (2009) Sallé et al. (2007). Some researchers found that there are
many available simulators that offer attractive functionality, therefore they proposed a new
simulator classification system specific to mobile robots and autonomous vehicles Craighead
et al. (2007a). A classification system for robot simulators will allow researchers to identify
existing simulators which may be useful in conducting a wide variety of robotics research
from testing low level or autonomous control to human robot interaction.
Training of the mobile robot operators is very difficult task not only because of the complexity
of the mobile robot but also because of several factors related to different task execution. The
study of the human-robot interactions (HRI) during a real rescue is presented in Casper &
Murphy (2003) Bedkowski, Kowalski & Piszczek (2009). The research on simulation and
training systems for mobile robots is shown in Xuewen et al. (2006). Another simulation
engine - the Search and Rescue Game Environment (SARGE), which is a distributed
multi-player robot operator training game, is described in Craighead, Burke & Murphy (2008)
Craighead (2008) Craighead, Gutierrez, Burke & Murphy (2008). An advance computer
techniques such augmented reality approach applied in training robotics is shown in Kowalski
et al. (2008)Bravo & Alberto (2009). The simulation environment used as a testbed for
simulation based approach for unmanned system command and control is demonstrated in
Drewes (2006). The Modeling and simulation for the mobile robot operator training tool was
presented in Bedkowski, Piszczek, Kowalski & Maslowski (2009).

9. Conclusion

This chapter is related to recent advances in mobile robotics for RISE (Risky Intervention
and Surveillance Environment) applications. In RISE applications mobile robots are used
for assisting human in risky tasks such as: victim search, victim transportation, hazardous
materials disposal etc. From State of the Art discussed in this chapter it can be stated that it is
no longer a problem to execute complex calculations directly on the onboard PC of mobile
robot, and as a result these machines become more autonomous. Instead of this fact an
effort has to be done to develop new software techniques to build secure and safety robotic
platforms. Still an open problem is effective human robot interaction because of increased
autonomy of robots. Another goal is an integration of State of the Art robotic technology to
build sophisticated systems of collaborative autonomous robots.

10. References

Ahmad, A. S. & Sumari, A. D. W. (2008). Multi-Agent Information Inferencing Fusion
For Integrated Information System, Information Science and Computing Series, School
of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung,
Indonesia.

Alami, R. (2000). Around the lab in 40 days, IEEE ICRA conference 2000, San Francisco (USA),
pp. 88–94.

Alami, R., Fleury, R., Fleury, S. & Ingand, F. (1998). An architecture for autosomy, International
Journal of Robotics Research, special issue on Integrated Architectures for Robot Control and
Programming .

12
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 13

Arai, T., Pagello, E. & Parker, L. E. (2002). Advances in multi-robot systems, IEEE Transactions
on robotics and automation 18(5): 655–661.

Balaguer, B., Balakirsky, S., Carpin, S., Lewis, M. & Scrapper, C. (2008). Usarsim: a validated
simulator for research in robotics and automation, Workshop on Robot simulators:
available software, scientific applications and future trends at IEEE/RSJ IROS.

Balch, T. (2000). Hierarchic social entropy: An information theoretic measure of robot group
diversity, Autonomous Robots 8(3): 209–238.

Balch, T. (2004). Teambots, http://www.teambots.org/.
Balch, T. & Arkin, R. (1999). Behavior-based formation control for multi-robot teams, IEEE

Transactions on Robotics and Automation 20(5).
Baudoin, Y., Doroftei, D., Cubber, G. D., Berrabah, S. A., Pinzon, C., Penders, J., Maslowski,

A. & Bedkowski, J. (2009). View-finder: Robotics assistance to fire-fighting services,
International Workshop On Robotics for risky interventions and Environmental Surveillance
RISE09, Brussels.

Baumann, J. (1999). Control algorithms for mobile agents, Institut fur Parallele und Verteilte
Hochstleistungrechner der Universitat Stuttgart .

Bedkowski, J., Kowalski, P. & Piszczek, J. (2009). Hmi for multi robotic inspection system
for risky intervention and environmental surveillance, Mobile Robotics: Solutions and
Challenges, Proceedings of the Twelfth International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines.

Bedkowski, J., Piszczek, J., Kowalski, P. & Maslowski, A. (2009). Modeling and simulation for
the mobile robot operator training tool, The 5th International Conference on Information
and Communication Technology and Systems (ICTS), Surabaya, Indonesia, pp. 229–236.

Boeing, A. & Bräunl, T. (2007). Evaluation of real-time physics simulation systems, GRAPHITE
’07: Proceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia, ACM, New York, NY, USA, pp. 281–288.

Braunl, T. (2006). Embedded Robotics Mobile Robot Design and Applications, Springer Verlag.
Bravo, J. & Alberto, C. (2009). An augmented reality interface for training robotics through the

web, Proceedings of the 40th International Symposium on Robotics. Barcelona : AER-ATP,
ISBN 978-84-920933-8-0, pp. 189–194.

Buckhaults, C. (2009). Increasing computer science participation in the first robotics
competition with robot simulation, ACM-SE 47: Proceedings of the 47th Annual
Southeast Regional Conference, ACM, New York, NY, USA, pp. 1–4.

Cao, F., Tung, A. K. H. & Zhou, A. (2006). Scalable clustering using graphics processor, Lecture
Notes in Computer Science 4016/2006: 372–384.

Casper, J. & Murphy, R. R. (2003). Human-robot interactions during the robot-assisted urban
search and rescue response at the World Trade Center., IEEE transactions on systems,
man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and
Cybernetics Society 33(3): 367–385.
URL: http://dx.doi.org/10.1109/TSMCB.2003.811794

Choset, H. (2001). Coverage for robotics - a survey of recent result, Annals of Mathematical and
Artificial Intelligence 31: 113–126.

Colon, E. (2006). Installation and configuration of CoRoBa (including MoRoS3D), technical
report, royal military academy.

Cote, C., Letourneau, D., Michaud, F., Valin, J. M., Brosseau, Y., Raievsky, C., Lemay, M. &
Tran, V. (2004). Code reusability tools for programming mobile robots, Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

13Introductory Chapter

12 Will-be-set-by-IN-TECH

frameworks are mentioned such as USARSim which is very popular in research society Wang
et al. (2003c) Wang et al. (2003a) Wang et al. (2003b) Balaguer et al. (2008) Greggio et al. (2007),
Stage, Gazebo Rusu et al. (2007) Karimian et al. (2006), Webots Hohl et al. (2006) Michel
(2004), and MRDS Buckhaults (2009) Sallé et al. (2007). Some researchers found that there are
many available simulators that offer attractive functionality, therefore they proposed a new
simulator classification system specific to mobile robots and autonomous vehicles Craighead
et al. (2007a). A classification system for robot simulators will allow researchers to identify
existing simulators which may be useful in conducting a wide variety of robotics research
from testing low level or autonomous control to human robot interaction.
Training of the mobile robot operators is very difficult task not only because of the complexity
of the mobile robot but also because of several factors related to different task execution. The
study of the human-robot interactions (HRI) during a real rescue is presented in Casper &
Murphy (2003) Bedkowski, Kowalski & Piszczek (2009). The research on simulation and
training systems for mobile robots is shown in Xuewen et al. (2006). Another simulation
engine - the Search and Rescue Game Environment (SARGE), which is a distributed
multi-player robot operator training game, is described in Craighead, Burke & Murphy (2008)
Craighead (2008) Craighead, Gutierrez, Burke & Murphy (2008). An advance computer
techniques such augmented reality approach applied in training robotics is shown in Kowalski
et al. (2008)Bravo & Alberto (2009). The simulation environment used as a testbed for
simulation based approach for unmanned system command and control is demonstrated in
Drewes (2006). The Modeling and simulation for the mobile robot operator training tool was
presented in Bedkowski, Piszczek, Kowalski & Maslowski (2009).

9. Conclusion

This chapter is related to recent advances in mobile robotics for RISE (Risky Intervention
and Surveillance Environment) applications. In RISE applications mobile robots are used
for assisting human in risky tasks such as: victim search, victim transportation, hazardous
materials disposal etc. From State of the Art discussed in this chapter it can be stated that it is
no longer a problem to execute complex calculations directly on the onboard PC of mobile
robot, and as a result these machines become more autonomous. Instead of this fact an
effort has to be done to develop new software techniques to build secure and safety robotic
platforms. Still an open problem is effective human robot interaction because of increased
autonomy of robots. Another goal is an integration of State of the Art robotic technology to
build sophisticated systems of collaborative autonomous robots.

10. References

Ahmad, A. S. & Sumari, A. D. W. (2008). Multi-Agent Information Inferencing Fusion
For Integrated Information System, Information Science and Computing Series, School
of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung,
Indonesia.

Alami, R. (2000). Around the lab in 40 days, IEEE ICRA conference 2000, San Francisco (USA),
pp. 88–94.

Alami, R., Fleury, R., Fleury, S. & Ingand, F. (1998). An architecture for autosomy, International
Journal of Robotics Research, special issue on Integrated Architectures for Robot Control and
Programming .

12
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 13

Arai, T., Pagello, E. & Parker, L. E. (2002). Advances in multi-robot systems, IEEE Transactions
on robotics and automation 18(5): 655–661.

Balaguer, B., Balakirsky, S., Carpin, S., Lewis, M. & Scrapper, C. (2008). Usarsim: a validated
simulator for research in robotics and automation, Workshop on Robot simulators:
available software, scientific applications and future trends at IEEE/RSJ IROS.

Balch, T. (2000). Hierarchic social entropy: An information theoretic measure of robot group
diversity, Autonomous Robots 8(3): 209–238.

Balch, T. (2004). Teambots, http://www.teambots.org/.
Balch, T. & Arkin, R. (1999). Behavior-based formation control for multi-robot teams, IEEE

Transactions on Robotics and Automation 20(5).
Baudoin, Y., Doroftei, D., Cubber, G. D., Berrabah, S. A., Pinzon, C., Penders, J., Maslowski,

A. & Bedkowski, J. (2009). View-finder: Robotics assistance to fire-fighting services,
International Workshop On Robotics for risky interventions and Environmental Surveillance
RISE09, Brussels.

Baumann, J. (1999). Control algorithms for mobile agents, Institut fur Parallele und Verteilte
Hochstleistungrechner der Universitat Stuttgart .

Bedkowski, J., Kowalski, P. & Piszczek, J. (2009). Hmi for multi robotic inspection system
for risky intervention and environmental surveillance, Mobile Robotics: Solutions and
Challenges, Proceedings of the Twelfth International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines.

Bedkowski, J., Piszczek, J., Kowalski, P. & Maslowski, A. (2009). Modeling and simulation for
the mobile robot operator training tool, The 5th International Conference on Information
and Communication Technology and Systems (ICTS), Surabaya, Indonesia, pp. 229–236.

Boeing, A. & Bräunl, T. (2007). Evaluation of real-time physics simulation systems, GRAPHITE
’07: Proceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia, ACM, New York, NY, USA, pp. 281–288.

Braunl, T. (2006). Embedded Robotics Mobile Robot Design and Applications, Springer Verlag.
Bravo, J. & Alberto, C. (2009). An augmented reality interface for training robotics through the

web, Proceedings of the 40th International Symposium on Robotics. Barcelona : AER-ATP,
ISBN 978-84-920933-8-0, pp. 189–194.

Buckhaults, C. (2009). Increasing computer science participation in the first robotics
competition with robot simulation, ACM-SE 47: Proceedings of the 47th Annual
Southeast Regional Conference, ACM, New York, NY, USA, pp. 1–4.

Cao, F., Tung, A. K. H. & Zhou, A. (2006). Scalable clustering using graphics processor, Lecture
Notes in Computer Science 4016/2006: 372–384.

Casper, J. & Murphy, R. R. (2003). Human-robot interactions during the robot-assisted urban
search and rescue response at the World Trade Center., IEEE transactions on systems,
man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and
Cybernetics Society 33(3): 367–385.
URL: http://dx.doi.org/10.1109/TSMCB.2003.811794

Choset, H. (2001). Coverage for robotics - a survey of recent result, Annals of Mathematical and
Artificial Intelligence 31: 113–126.

Colon, E. (2006). Installation and configuration of CoRoBa (including MoRoS3D), technical
report, royal military academy.

Cote, C., Letourneau, D., Michaud, F., Valin, J. M., Brosseau, Y., Raievsky, C., Lemay, M. &
Tran, V. (2004). Code reusability tools for programming mobile robots, Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

13Introductory Chapter

14 Will-be-set-by-IN-TECH

Craighead, J. (2008). Distributed, game-based, intelligent tutoring systems - the next step in
computer based training?, Proceedings of the International Symposium on Collaborative
Technologies and Systems (CTS 2008).

Craighead, J., Burke, J. & Murphy, R. (2008). Using the unity game engine to develop sarge:
A case study, Proceedings of the 2008 Simulation Workshop at the International Conference
on Intelligent Robots and Systems (IROS 2008).

Craighead, J., Gutierrez, R., Burke, J. & Murphy, R. (2008). Validating the search and
rescue game environment as a robot simulator by performing a simulated anomaly
detection task, Proceedings of the 2008 International Conference on Intelligent Robots and
Systems (IROS 2008).

Craighead, J., Murphy, R., Burke, J. & Goldiez, B. (2007a). A robot simulator classification
system for hri, Proceedings of the 2007 International Symposium on Collaborative
Technologies and Systems (CTS 2007), pp. 93–98.

Craighead, J., Murphy, R., Burke, J. & Goldiez, B. (2007b). A survey of commercial and open
source unmanned vehicle simulators, Proceedings of ICRA.

Cummins, M. & Newman, P. (2008). Fab-map: Probabilistic localization and mapping in the
space of appearance, The International Journal of Robotics Research 27(6): 647–665.

Drewes, P. (2006). Simulation based approach for unmanned system command and control,
Conference on Recent Advances in Robotics, FCRAR Miami, Florida, pp. 189–194.

Endo, Y., MacKenzie, D. & Arkin, R. (2004). Usability evaluation of high-level user assistance
for robot mission specification, IEEE Transactions on Systems, Man, and Cybernetics
34(2): 168–180.

Fitzgibbon, A. W. (2001). Robust registration of 2d and 3d point sets, In British Machine Vision
Conference, pp. 411–420.

Gerkey, B., Howard, A. & Vaughan, R. (2005). Player/Stage, http://playerstage.
sourceforge.net/.

Gerkey, B. & Matari’c, M. (2002). Sold!: Auction methods for multi-robot coordination,
IEEE Transactions on Robotics and Automation, Special Issue on Multi-Robot Systems
18(5): 758–768.

Gerkey, B. & Matari’c, M. (2004). Are (explicit) multi-robot coordination and multi-agent
coordination really so different?, In Proceedings of the AAAI spring symposium on
bridging the multi-agent and multi-robotic research gap, pp. 1–3.

Gerkey, B., Vaughan, R. & Howard, A. (2003). The player/stage project: Tools for multi-robot
and distributed sensor systems, In Proceedings of the 11th international conference on
advanced robotics, Coimbra, Portugal, pp. 317–323.

Greggio, N., Silvestri, G., Menegatti, E. & Pagello, E. (2007). A realistic simulation of
a humanoid robot in usarsim, Proceeding of the 4th International Symposium on
Mechatronics and its Applications (ISMA07), Sharjah, U.A.E.

Guilbert, N., Beauregard, M., Michaud, F. & Lafontaine, J. (2003). Emulation of collaborative
driving systems using mobile robots, In Proceedings IEEE conference on systems, man,
and cybernetics, pp. 856–861.

H. Utz, F. Stulp, A. M. (2004). Sharing belief in teams of heterogeneous robots, RoboCup-2004:
The eighth RoboCup competitions and conferences, Springer Verlag.

Herbert, S. (1995). Artificial Intelligence: An Empirical Science, Artificial Intelligence 77 (1):
95-127.

14
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 15

Hilaire, V., Koukam, A., Guer, P. & Muller, J. P. (2000). Formal specification and prototyping
of multi-agent systems, Proc. of the First International Workshop on Engineering Societies
in the Agent World, pp. 114–127.

Hiyama, Y. (2004). Rescue robot ENRYU, SICE The 5thSI section academic lecture meeting,
pp. 999–1000.

Ho, K. L. & Newman, P. (2005). Multiple map intersection detection using visual appearance,
3rd International Conference on Computational Intelligence, Robotics and Autonomous
Systems, Singapore.

Ho, K. L. & Newman, P. (2007). Detecting loop closure with scene sequences, Int. J. Comput.
Vision 74: 261–286.

Ho, K. L. & Newman, P. M. (2006). Loop closure detection in slam by combining visual and
spatial appearance, Robotics and Autonomous Systems pp. 740–749.

Hohl, L., Tellez, R., Michel, O. & Ijspeert, A. J. (2006). Aibo and Webots: Simulation,
Wireless Remote Control and Controller Transfer, Robotics and Autonomous Systems
54(6): 472–485.

Huber, D. & Hebert, M. (2003). Fully automatic registration of multiple 3d data sets, Image and
Vision Computing 21(1): 637–650.

Jacoff, A., Messina, E. & Evans, J. (2002). Performance evaluation of autonomous mobile
robots, Industrial Robot An International Journal 29(3): 259–267.

Kadous, M. W., Sheh, R. K.-M. & Sammut, C. (2005). Caster: A robot for urban search and
resuce, Technical report, University of New South Wales, Sydney, NSW 2052, Australia,
2005 .

Karimian, P., Vaughan, R. & Brown, S. (2006). Sounds good: Simulation and evaluation
of audio communication for multi-robot exploration, In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’06, pp. 2711–2716.

Kaustubh Pathak, Max Pfingsthorn, N. V. & Birk, A. (2009). Relaxing loop-closing errors in
3d maps based on planar surface patches, 14th International Conference on Advanced
Robotics (ICAR), IEEE Press.

Kowalski, G., Bedkowski, J. & Maslowski, A. (2008). Virtual and augmented reality as a
mobile robots inspections operators training aid, Bulletin of the Transilvania University
of Brasov. Proceedings of the international conference Robotics08, special issue vol. 15(50)
series A, no. 1, vol. 2, Brasov, Romania, pp. 571–576.

Kraetzschmar, G., Gassull, G. & Uhl, K. (2004). Probabilistic quadtrees for variable-resolution
mapping of large environments, M. I. Ribeiro and J. Santos Victor (Eds.), Proceedings of
the 5th IFAC/EURON symposium on intelligent autonomous vehicles.

Kraetzschmar, G., Sablatnog, S., Enderle, S., Utz, H., Simon, S. & Palm, G. (2000).
Integration of multiple representations and navigation concepts on autonomous
mobile robots, Workshop SOAVE-2000: Selbstorganisation von adaptivem verhalten (Vol.
10/643), Ilmenau, Germany.

Kramer, J. & Scheutz, M. (2007). Development environments for autonomous mobile robots:
a survey, Autonomous Robots 22(2): 101–132.

LaFary, M. & Newton, C. (2005). Aria html documentation.
Lee, S., Jung, B., Ryu, J., Oh, S., Oh, J. & Choi, C. (2005). Variable pulse mode driving ir source

based 3d robotic camera, MVA2005 IAPR Conference on Machine Vision Applications,
Tsukuba Science City, Japan.

15Introductory Chapter

14 Will-be-set-by-IN-TECH

Craighead, J. (2008). Distributed, game-based, intelligent tutoring systems - the next step in
computer based training?, Proceedings of the International Symposium on Collaborative
Technologies and Systems (CTS 2008).

Craighead, J., Burke, J. & Murphy, R. (2008). Using the unity game engine to develop sarge:
A case study, Proceedings of the 2008 Simulation Workshop at the International Conference
on Intelligent Robots and Systems (IROS 2008).

Craighead, J., Gutierrez, R., Burke, J. & Murphy, R. (2008). Validating the search and
rescue game environment as a robot simulator by performing a simulated anomaly
detection task, Proceedings of the 2008 International Conference on Intelligent Robots and
Systems (IROS 2008).

Craighead, J., Murphy, R., Burke, J. & Goldiez, B. (2007a). A robot simulator classification
system for hri, Proceedings of the 2007 International Symposium on Collaborative
Technologies and Systems (CTS 2007), pp. 93–98.

Craighead, J., Murphy, R., Burke, J. & Goldiez, B. (2007b). A survey of commercial and open
source unmanned vehicle simulators, Proceedings of ICRA.

Cummins, M. & Newman, P. (2008). Fab-map: Probabilistic localization and mapping in the
space of appearance, The International Journal of Robotics Research 27(6): 647–665.

Drewes, P. (2006). Simulation based approach for unmanned system command and control,
Conference on Recent Advances in Robotics, FCRAR Miami, Florida, pp. 189–194.

Endo, Y., MacKenzie, D. & Arkin, R. (2004). Usability evaluation of high-level user assistance
for robot mission specification, IEEE Transactions on Systems, Man, and Cybernetics
34(2): 168–180.

Fitzgibbon, A. W. (2001). Robust registration of 2d and 3d point sets, In British Machine Vision
Conference, pp. 411–420.

Gerkey, B., Howard, A. & Vaughan, R. (2005). Player/Stage, http://playerstage.
sourceforge.net/.

Gerkey, B. & Matari’c, M. (2002). Sold!: Auction methods for multi-robot coordination,
IEEE Transactions on Robotics and Automation, Special Issue on Multi-Robot Systems
18(5): 758–768.

Gerkey, B. & Matari’c, M. (2004). Are (explicit) multi-robot coordination and multi-agent
coordination really so different?, In Proceedings of the AAAI spring symposium on
bridging the multi-agent and multi-robotic research gap, pp. 1–3.

Gerkey, B., Vaughan, R. & Howard, A. (2003). The player/stage project: Tools for multi-robot
and distributed sensor systems, In Proceedings of the 11th international conference on
advanced robotics, Coimbra, Portugal, pp. 317–323.

Greggio, N., Silvestri, G., Menegatti, E. & Pagello, E. (2007). A realistic simulation of
a humanoid robot in usarsim, Proceeding of the 4th International Symposium on
Mechatronics and its Applications (ISMA07), Sharjah, U.A.E.

Guilbert, N., Beauregard, M., Michaud, F. & Lafontaine, J. (2003). Emulation of collaborative
driving systems using mobile robots, In Proceedings IEEE conference on systems, man,
and cybernetics, pp. 856–861.

H. Utz, F. Stulp, A. M. (2004). Sharing belief in teams of heterogeneous robots, RoboCup-2004:
The eighth RoboCup competitions and conferences, Springer Verlag.

Herbert, S. (1995). Artificial Intelligence: An Empirical Science, Artificial Intelligence 77 (1):
95-127.

14
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 15

Hilaire, V., Koukam, A., Guer, P. & Muller, J. P. (2000). Formal specification and prototyping
of multi-agent systems, Proc. of the First International Workshop on Engineering Societies
in the Agent World, pp. 114–127.

Hiyama, Y. (2004). Rescue robot ENRYU, SICE The 5thSI section academic lecture meeting,
pp. 999–1000.

Ho, K. L. & Newman, P. (2005). Multiple map intersection detection using visual appearance,
3rd International Conference on Computational Intelligence, Robotics and Autonomous
Systems, Singapore.

Ho, K. L. & Newman, P. (2007). Detecting loop closure with scene sequences, Int. J. Comput.
Vision 74: 261–286.

Ho, K. L. & Newman, P. M. (2006). Loop closure detection in slam by combining visual and
spatial appearance, Robotics and Autonomous Systems pp. 740–749.

Hohl, L., Tellez, R., Michel, O. & Ijspeert, A. J. (2006). Aibo and Webots: Simulation,
Wireless Remote Control and Controller Transfer, Robotics and Autonomous Systems
54(6): 472–485.

Huber, D. & Hebert, M. (2003). Fully automatic registration of multiple 3d data sets, Image and
Vision Computing 21(1): 637–650.

Jacoff, A., Messina, E. & Evans, J. (2002). Performance evaluation of autonomous mobile
robots, Industrial Robot An International Journal 29(3): 259–267.

Kadous, M. W., Sheh, R. K.-M. & Sammut, C. (2005). Caster: A robot for urban search and
resuce, Technical report, University of New South Wales, Sydney, NSW 2052, Australia,
2005 .

Karimian, P., Vaughan, R. & Brown, S. (2006). Sounds good: Simulation and evaluation
of audio communication for multi-robot exploration, In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’06, pp. 2711–2716.

Kaustubh Pathak, Max Pfingsthorn, N. V. & Birk, A. (2009). Relaxing loop-closing errors in
3d maps based on planar surface patches, 14th International Conference on Advanced
Robotics (ICAR), IEEE Press.

Kowalski, G., Bedkowski, J. & Maslowski, A. (2008). Virtual and augmented reality as a
mobile robots inspections operators training aid, Bulletin of the Transilvania University
of Brasov. Proceedings of the international conference Robotics08, special issue vol. 15(50)
series A, no. 1, vol. 2, Brasov, Romania, pp. 571–576.

Kraetzschmar, G., Gassull, G. & Uhl, K. (2004). Probabilistic quadtrees for variable-resolution
mapping of large environments, M. I. Ribeiro and J. Santos Victor (Eds.), Proceedings of
the 5th IFAC/EURON symposium on intelligent autonomous vehicles.

Kraetzschmar, G., Sablatnog, S., Enderle, S., Utz, H., Simon, S. & Palm, G. (2000).
Integration of multiple representations and navigation concepts on autonomous
mobile robots, Workshop SOAVE-2000: Selbstorganisation von adaptivem verhalten (Vol.
10/643), Ilmenau, Germany.

Kramer, J. & Scheutz, M. (2007). Development environments for autonomous mobile robots:
a survey, Autonomous Robots 22(2): 101–132.

LaFary, M. & Newton, C. (2005). Aria html documentation.
Lee, S., Jung, B., Ryu, J., Oh, S., Oh, J. & Choi, C. (2005). Variable pulse mode driving ir source

based 3d robotic camera, MVA2005 IAPR Conference on Machine Vision Applications,
Tsukuba Science City, Japan.

15Introductory Chapter

16 Will-be-set-by-IN-TECH

Leitao, P. & Putnik, G. (2001). A multi-agent based cell controller, Proc. Of the 8th IEEE
International Conference on Emerging Technologies and Factory Automation, Antibes,
France, pp. 463–470.

Lemay, M., Michaud, F., L’etourneau, D. & Valin, J. (2004). Autonomous initialization of robot
formations, In IEEE international conference on robotics and automation.

Leong, K. & Newman, P. (2005). Combining visual and spatial appearance for loop closure
detection in slam, 2nd European Conference on Mobile Robots ECMR.

Lima, P., Ribeiro, M. I., Custodio, L. & Santos-Victor, J. (2003). The rescue project - cooperative
navigation for rescue robots, Proc. of ASER’03 - 1st International Workshop on Advances
in Service Robotics, Bardolino, Italy.

Lowe, D. G. (2004). Distinctive image features from scale invariant keypoints, Int. J. Comput.
Vision 60: 91–110.

Magnusson, M., Andreasson, H., Nüchter, A. & Lilienthal, A. J. (2009). Automatic
appearance-based loop detection from 3D laser data using the normal distributions
transform, Journal of Field Robotics 26(11–12): 892–914.

Magnusson, M. & Duckett, T. (2005). A comparison of 3d registration algorithms for
autonomous underground mining vehicles, In Proc. ECMR, pp. 86–91.

Magnusson, M., Duckett, T. & Lilienthal, A. J. (2007). 3d scan registration for autonomous
mining vehicles, Journal of Field Robotics 24(10): 803–827.

Maslowski, A. (2001). Surveillance mobile robot sr 11 inspector - from prototype to the real
application, Proc. of the Int. Conf. WESIC 2001, Enschede.

Maslowski, A. (2004). Intelligent mobile robots supporting security and defense, Proc. of
the Int. Conference IMEKO TC-17 Measurement and Control in Robotics, NASA Space
Center, Huston, Texas, U.S.A.

Maslowski, A. (2005). Applied intelligent service and surveillance robotics, key-note paper,
Int. Symposium on Measurements and Control in Robotics, IMEKO TC-17 15th, Brusseles,
Belgium.

Maslowski, A. (2006). Intervention robotics - experience in poland, key-note paper, Int.
Workshop RISE 06, Brusseles, Belgium.

MCA2 (2009). http://www.mca2.org/.
Michel, O. (2004). Webotstm: Professional mobile robot simulation, CoRR abs/cs/0412052.
Miro (2005). Miro - middleware for robots, Robotics Group, University of Ulm,

http://smart.informatik.uni-ulm.de/MIRO/index.html.
Missionlab (2003). http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/.
Montemerlo, M., Roy, N. & Thrun, S. (2003). Carmen, Carnegie Mellon Robot Navigation

Toolkit, http://carmen.sourceforge.net/.
Murphy, R., Casper, J., Hyams, J., Micire, M. & Minten, B. (2000). Mobility and sensing

demands in usar, 26th Annual Conference of Industrial Electronics Society, IECON 2000,
pp. 138 – 142.

Newman, P., Cole, D. & Ho, K. L. (2006). Outdoor slam using visual appearance and laser
ranging, Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA).

Newman, P. & Ho, K. L. (2005). Slam - loop closing with visually salient features, IEEE
International Conference on Robotics and Automation, 18-22 April.

Nuchter, A., Lingemann, K. & Hertzberg, J. (2007). Cached k-d tree search for icp algorithms,
Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling,
IEEE Computer Society, Washington, DC, USA, pp. 419–426.

16
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 17

Okada, M. & Murakami, K. (2007). Robot communication principal by motion
synchronization rusing orbit attractor, IEEE International Conference on Robotics and
Automation, Rome, Italy, pp. 2564–2569.

Osentoski, S., Manfredi, V. & Mahadevan, S. (2004). Learning hierarchical models of activity,
In IEEE/RSJ international conference on robots and systems (IROS 2004).

Park, S.-Y., Choi, S.-I., Kim, J. & Chae, J. (2010). Real-time 3d registration using gpu, Machine
Vision and Applications pp. 1–14. 10.1007/s00138-010-0282-z.
URL: http://dx.doi.org/10.1007/s00138-010-0282-z

Park, S.-Y. & Subbarao, M. (2003). An accurate and fast point-to-plane registration technique,
Pattern Recogn. Lett. 24: 2967–2976.

Peterson, L., Austin, D. & Christensen, H. (2001). Dca: A distributed control architecture for
robotics, IROS 2001 - IEEE International Conference on Intelligent Robots and Systems,
Hawai, USA.

PROTEUS (2011). http://www.projektproteus.pl/.
Qiu, D., May, S. & Nuchter, A. (2009). Gpu-accelerated nearest neighbor search for 3d

registration, Proceedings of the 7th International Conference on Computer Vision Systems:
Computer Vision Systems, ICVS ’09, Springer-Verlag, Berlin, Heidelberg, pp. 194–203.

Railhet, S., Wolf, J., Adra, A., Kabbara, R., Deshmukh, S., Garghouti, M., Nash, G., Belpaeme,
T., Culverhouse, P., Robinson, P., White, P. & Bugmann, G. (2007). Sensor systems
in a compliant geometry robot: Butlerbot, Proceedings of Taros07, Aberystwyth, UK,
pp. 176–181.

ROS (2011). www.willowgarage.com/pages/software/ros-platform.
Rusinkiewicz, S. & Levoy, M. (2001). Efficient variants of the ICP algorithm, Third International

Conference on 3D Digital Imaging and Modeling (3DIM).
Rusu, R. B., Maldonado, A., Beetz, M., Systems, I. A. & Munchen, T. U. (2007). Extending

player/stage/gazebo towards cognitive robots acting in ubiquitous sensor-equipped
environments, in Accepted for the IEEE International Conference on Robotics and
Automation (ICRA) Workshop for Network Robot System, 2007, April 14.

Sallé, D., Traonmilin, M., Canou, J. & Dupourque, V. (2007). Using microsoft robotics
studio for the design of generic robotics controllers: the robubox software, ICRA
2007 Workshop Software Development and Integration in Robotics -"Understanding Robot
Software Architectures".

Sprickerhof, J., Nuchter, A., Lingemann, K. & Hertzberg, J. (2009). An explicit loop closing
technique for 6d slam, 4th European Conference on Mobile Robots, September 23-25, 2009,
Mlini/Dubrovnik, Croatia, 229-234.

Stetter, J. R., Penrose, W. R. & Yao, S. (2003). Sensors, chemical sensors, electrochemical
sensors, ECS Journal of The Electrochemical Society 150(2).

Surmann, H., Nuchter, A., Lingemann, K. & Hertzberg, J. (2004). 6d slam - preliminary
report on closing the loop in six dimensions, Proceedings of the 5th IFAC Symposium
on Intelligent Autonomous Vehicles (IAV ’04).

Szynkarczyk, P. (2005). Neutralising and assisting robot smr-100 expert - design problematics,
Bulletin of the Polish Academy of Sciences Technical Sciences 53(1): 87–92.

TALOS (2010). http://talos-border.eu/publications.html.
Tambe, M., Johnson, W. L., Jones, R. M., Koss, F., Laird, J. E., Rosenbloom, P. S. & Schwamb,

K. B. (1995). Intelligent agents for interactive simulation environments, AI Magazine
(16): 15–39.

17Introductory Chapter

16 Will-be-set-by-IN-TECH

Leitao, P. & Putnik, G. (2001). A multi-agent based cell controller, Proc. Of the 8th IEEE
International Conference on Emerging Technologies and Factory Automation, Antibes,
France, pp. 463–470.

Lemay, M., Michaud, F., L’etourneau, D. & Valin, J. (2004). Autonomous initialization of robot
formations, In IEEE international conference on robotics and automation.

Leong, K. & Newman, P. (2005). Combining visual and spatial appearance for loop closure
detection in slam, 2nd European Conference on Mobile Robots ECMR.

Lima, P., Ribeiro, M. I., Custodio, L. & Santos-Victor, J. (2003). The rescue project - cooperative
navigation for rescue robots, Proc. of ASER’03 - 1st International Workshop on Advances
in Service Robotics, Bardolino, Italy.

Lowe, D. G. (2004). Distinctive image features from scale invariant keypoints, Int. J. Comput.
Vision 60: 91–110.

Magnusson, M., Andreasson, H., Nüchter, A. & Lilienthal, A. J. (2009). Automatic
appearance-based loop detection from 3D laser data using the normal distributions
transform, Journal of Field Robotics 26(11–12): 892–914.

Magnusson, M. & Duckett, T. (2005). A comparison of 3d registration algorithms for
autonomous underground mining vehicles, In Proc. ECMR, pp. 86–91.

Magnusson, M., Duckett, T. & Lilienthal, A. J. (2007). 3d scan registration for autonomous
mining vehicles, Journal of Field Robotics 24(10): 803–827.

Maslowski, A. (2001). Surveillance mobile robot sr 11 inspector - from prototype to the real
application, Proc. of the Int. Conf. WESIC 2001, Enschede.

Maslowski, A. (2004). Intelligent mobile robots supporting security and defense, Proc. of
the Int. Conference IMEKO TC-17 Measurement and Control in Robotics, NASA Space
Center, Huston, Texas, U.S.A.

Maslowski, A. (2005). Applied intelligent service and surveillance robotics, key-note paper,
Int. Symposium on Measurements and Control in Robotics, IMEKO TC-17 15th, Brusseles,
Belgium.

Maslowski, A. (2006). Intervention robotics - experience in poland, key-note paper, Int.
Workshop RISE 06, Brusseles, Belgium.

MCA2 (2009). http://www.mca2.org/.
Michel, O. (2004). Webotstm: Professional mobile robot simulation, CoRR abs/cs/0412052.
Miro (2005). Miro - middleware for robots, Robotics Group, University of Ulm,

http://smart.informatik.uni-ulm.de/MIRO/index.html.
Missionlab (2003). http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/.
Montemerlo, M., Roy, N. & Thrun, S. (2003). Carmen, Carnegie Mellon Robot Navigation

Toolkit, http://carmen.sourceforge.net/.
Murphy, R., Casper, J., Hyams, J., Micire, M. & Minten, B. (2000). Mobility and sensing

demands in usar, 26th Annual Conference of Industrial Electronics Society, IECON 2000,
pp. 138 – 142.

Newman, P., Cole, D. & Ho, K. L. (2006). Outdoor slam using visual appearance and laser
ranging, Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA).

Newman, P. & Ho, K. L. (2005). Slam - loop closing with visually salient features, IEEE
International Conference on Robotics and Automation, 18-22 April.

Nuchter, A., Lingemann, K. & Hertzberg, J. (2007). Cached k-d tree search for icp algorithms,
Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling,
IEEE Computer Society, Washington, DC, USA, pp. 419–426.

16
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Recent advances in mobile robotics for RISE 17

Okada, M. & Murakami, K. (2007). Robot communication principal by motion
synchronization rusing orbit attractor, IEEE International Conference on Robotics and
Automation, Rome, Italy, pp. 2564–2569.

Osentoski, S., Manfredi, V. & Mahadevan, S. (2004). Learning hierarchical models of activity,
In IEEE/RSJ international conference on robots and systems (IROS 2004).

Park, S.-Y., Choi, S.-I., Kim, J. & Chae, J. (2010). Real-time 3d registration using gpu, Machine
Vision and Applications pp. 1–14. 10.1007/s00138-010-0282-z.
URL: http://dx.doi.org/10.1007/s00138-010-0282-z

Park, S.-Y. & Subbarao, M. (2003). An accurate and fast point-to-plane registration technique,
Pattern Recogn. Lett. 24: 2967–2976.

Peterson, L., Austin, D. & Christensen, H. (2001). Dca: A distributed control architecture for
robotics, IROS 2001 - IEEE International Conference on Intelligent Robots and Systems,
Hawai, USA.

PROTEUS (2011). http://www.projektproteus.pl/.
Qiu, D., May, S. & Nuchter, A. (2009). Gpu-accelerated nearest neighbor search for 3d

registration, Proceedings of the 7th International Conference on Computer Vision Systems:
Computer Vision Systems, ICVS ’09, Springer-Verlag, Berlin, Heidelberg, pp. 194–203.

Railhet, S., Wolf, J., Adra, A., Kabbara, R., Deshmukh, S., Garghouti, M., Nash, G., Belpaeme,
T., Culverhouse, P., Robinson, P., White, P. & Bugmann, G. (2007). Sensor systems
in a compliant geometry robot: Butlerbot, Proceedings of Taros07, Aberystwyth, UK,
pp. 176–181.

ROS (2011). www.willowgarage.com/pages/software/ros-platform.
Rusinkiewicz, S. & Levoy, M. (2001). Efficient variants of the ICP algorithm, Third International

Conference on 3D Digital Imaging and Modeling (3DIM).
Rusu, R. B., Maldonado, A., Beetz, M., Systems, I. A. & Munchen, T. U. (2007). Extending

player/stage/gazebo towards cognitive robots acting in ubiquitous sensor-equipped
environments, in Accepted for the IEEE International Conference on Robotics and
Automation (ICRA) Workshop for Network Robot System, 2007, April 14.

Sallé, D., Traonmilin, M., Canou, J. & Dupourque, V. (2007). Using microsoft robotics
studio for the design of generic robotics controllers: the robubox software, ICRA
2007 Workshop Software Development and Integration in Robotics -"Understanding Robot
Software Architectures".

Sprickerhof, J., Nuchter, A., Lingemann, K. & Hertzberg, J. (2009). An explicit loop closing
technique for 6d slam, 4th European Conference on Mobile Robots, September 23-25, 2009,
Mlini/Dubrovnik, Croatia, 229-234.

Stetter, J. R., Penrose, W. R. & Yao, S. (2003). Sensors, chemical sensors, electrochemical
sensors, ECS Journal of The Electrochemical Society 150(2).

Surmann, H., Nuchter, A., Lingemann, K. & Hertzberg, J. (2004). 6d slam - preliminary
report on closing the loop in six dimensions, Proceedings of the 5th IFAC Symposium
on Intelligent Autonomous Vehicles (IAV ’04).

Szynkarczyk, P. (2005). Neutralising and assisting robot smr-100 expert - design problematics,
Bulletin of the Polish Academy of Sciences Technical Sciences 53(1): 87–92.

TALOS (2010). http://talos-border.eu/publications.html.
Tambe, M., Johnson, W. L., Jones, R. M., Koss, F., Laird, J. E., Rosenbloom, P. S. & Schwamb,

K. B. (1995). Intelligent agents for interactive simulation environments, AI Magazine
(16): 15–39.

17Introductory Chapter

18 Will-be-set-by-IN-TECH

Thrun, S., Hhnel, D. & Brugard, W. (2001). Learning compact 3d models of indoor and outdoor
environments with a mobile robot, IJCAI .

Typiak, A. (2008). Using video camera for object’s localization in surroundings of unmanned
vehicle, XII Conference on Automation - Innovations and Prospective, Warsaw, pp. 451 –
458.

Ullman, E. (2002). Programming the Post-Human: Computer science redefines life, Harper’s, Vol.
305, No. 1829: 60-70.

Utz, H., Kraetzschmar, G., Mayer, G. & Palm, G. (2005). Hierarchical behavior organization,
In Proceedings of IROS 2005, Edmonton, Canada.

Valin, J. M., Michaud, F. & Rouat, J. (2007). Robust localization and tracking of simultaneous
moving sound sources using beamforming and particle filtering, Robotics and
Autonomous Systems Journal (Elsevier) 55(3): 216–228.

VF (2009). Vision and chemiresistor equipped web-connected finding robots, project STREP
6FP EU, contract no. 045541 2006-2009.

Voyles, R., Larson, A., Lapoint, M. & Bae, J. (2004). Core-bored search-and-rescue applications
for an agile limbed robot, Proceedings of the 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 58–63.

Wang, J., Lewis, M. & Gennari, J. (2003a). A game engine based simulation of the nist urban
search and rescue arenas, Proceedings of the 35th conference on Winter simulation: driving
innovation, December 07-10, New Orleans, Louisiana.

Wang, J., Lewis, M. & Gennari, J. (2003b). Interactive simulation of the nist usar arenas, IEEE
International Conference on Systems, Man and Cybernetics, Vol. 2, pp. 1327 – 1332.

Wang, J., Lewis, M. & Gennari, J. (2003c). Usar: A game-based simulation for teleoperation,
Proceedings of the 47th Annual Meeting of the Human Factors and Ergonomics Society,
Denver, CO, Oct. 13-17.

Warlet, F., Lancet, J., Motard, E., Pinzon, C., Mees, W. & Ilzkovitz, M. (2009). Crisis
management supporting architecture in view-finder, International Workshop On
Robotics for risky interventions and Environmental Surveillance RISE’2009, Brussels.

Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I. & Tardos, J. (2009). A comparison
of loop closing techniques in monocular slam, Robotics and Autonomous Systems .

Winiarski, T. & Zielinski, C. (2005). Implementation of position-force control in MRROC++,
Proceedings of the Fifth International Workshop on Robot Motion and Control RoMoCo ’05.,
pp. 259–264.

Xiang, Z. & Zhou, W. (2006). 3d map building for mobile robots rusing a 3d laser range
finder, Lecture Notes In Control land Information Sciences, Volume 345/2006, Springer
Berlin/Heidelberg, pp. 785–790.

Xuewen, L., Cai, M., Jianhong, L. & Tianmiao, W. (2006). Research on simulation and training
system for eod robots, IEEE International Conference on Industrial Informatics, pp. 810 –
814.

Yu, C. & Hang, D. (2006). A new 3d map reconstruction based mobile robot navigation, 8th
International Conference on Signal Processing.

18
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

Part 1

Mobile Robot Control Design and Development

18 Will-be-set-by-IN-TECH

Thrun, S., Hhnel, D. & Brugard, W. (2001). Learning compact 3d models of indoor and outdoor
environments with a mobile robot, IJCAI .

Typiak, A. (2008). Using video camera for object’s localization in surroundings of unmanned
vehicle, XII Conference on Automation - Innovations and Prospective, Warsaw, pp. 451 –
458.

Ullman, E. (2002). Programming the Post-Human: Computer science redefines life, Harper’s, Vol.
305, No. 1829: 60-70.

Utz, H., Kraetzschmar, G., Mayer, G. & Palm, G. (2005). Hierarchical behavior organization,
In Proceedings of IROS 2005, Edmonton, Canada.

Valin, J. M., Michaud, F. & Rouat, J. (2007). Robust localization and tracking of simultaneous
moving sound sources using beamforming and particle filtering, Robotics and
Autonomous Systems Journal (Elsevier) 55(3): 216–228.

VF (2009). Vision and chemiresistor equipped web-connected finding robots, project STREP
6FP EU, contract no. 045541 2006-2009.

Voyles, R., Larson, A., Lapoint, M. & Bae, J. (2004). Core-bored search-and-rescue applications
for an agile limbed robot, Proceedings of the 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 58–63.

Wang, J., Lewis, M. & Gennari, J. (2003a). A game engine based simulation of the nist urban
search and rescue arenas, Proceedings of the 35th conference on Winter simulation: driving
innovation, December 07-10, New Orleans, Louisiana.

Wang, J., Lewis, M. & Gennari, J. (2003b). Interactive simulation of the nist usar arenas, IEEE
International Conference on Systems, Man and Cybernetics, Vol. 2, pp. 1327 – 1332.

Wang, J., Lewis, M. & Gennari, J. (2003c). Usar: A game-based simulation for teleoperation,
Proceedings of the 47th Annual Meeting of the Human Factors and Ergonomics Society,
Denver, CO, Oct. 13-17.

Warlet, F., Lancet, J., Motard, E., Pinzon, C., Mees, W. & Ilzkovitz, M. (2009). Crisis
management supporting architecture in view-finder, International Workshop On
Robotics for risky interventions and Environmental Surveillance RISE’2009, Brussels.

Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I. & Tardos, J. (2009). A comparison
of loop closing techniques in monocular slam, Robotics and Autonomous Systems .

Winiarski, T. & Zielinski, C. (2005). Implementation of position-force control in MRROC++,
Proceedings of the Fifth International Workshop on Robot Motion and Control RoMoCo ’05.,
pp. 259–264.

Xiang, Z. & Zhou, W. (2006). 3d map building for mobile robots rusing a 3d laser range
finder, Lecture Notes In Control land Information Sciences, Volume 345/2006, Springer
Berlin/Heidelberg, pp. 785–790.

Xuewen, L., Cai, M., Jianhong, L. & Tianmiao, W. (2006). Research on simulation and training
system for eod robots, IEEE International Conference on Industrial Informatics, pp. 810 –
814.

Yu, C. & Hang, D. (2006). A new 3d map reconstruction based mobile robot navigation, 8th
International Conference on Signal Processing.

18
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

Part 1

Mobile Robot Control Design and Development

 1

Model-Driven Development of Intelligent
 Mobile Robot Using Systems Modeling

Language (SysML)
Mohd Azizi Abdul Rahman1, Katsuhiro Mayama2,

Takahiro Takasu2, Akira Yasuda2 and Makoto Mizukawa2

1University Technology of Malaysia1

2Human-Robot-Interaction Lab, Shibaura Institute of Technology
1Malaysia

2Japan

1. Introduction
In Japan alone the number of disabled and elderly people are growing rapidly and they
usually require personal transportation vehicles such as cars and wheelchairs. However,
people currently have limited capabilities or difficulties to operate these vehicles in such
complex environments like shopping malls or tourist-attraction centers.
In recent years, a great number of studies of mobile robot applications have been proposed.
However, only few of these studies have realized the model-based design approach in their
entire development process. NEDO’s Intelligent Robot Technology (RT) Software project
(Okano et al.,2009) started to promote the robot technology as the basic knowledge and
technology to solve various problems in daily life. In this context, an intelligent mobile robot
has been developed for providing mobility to the elderly and physically unfortunate people.
Besides that, the National Institute of Advanced Industrial Science and technology, also
known as AIST has developed the RT-Middleware (RTM) in order to achieve efficiency in
developing robot software components (Ando et al., 2005).
The main idea of this research is to develop robot software modules by looking from the
system engineering analysis point of views. This is because most robotic systems are
complex embedded systems. System engineering approaches focus on designing and
constructing the complete system, and also on providing model reuse capabilities.
Moreover, these approaches can enhance communications among the development teams,
specification and design qualities and reuse of system specification and design artifacts.
Modules’ reusability is our main concern in this paper.
Past development efforts of robot software using Model Driven Architecture (OMG MDA,
2003) Model Driven Architecture® (OMG MDA, 2003) approach seem insufficient to support
the demand of current industrial-to-domestic robot transitions. Developing intelligent
robots in large scales is very demanding for experiment purposes. Thus, almost all robot
systems have some common functions. However, much usable design information went to
waste because of a serious lack of sharing and reusability. This motivates us to explore the

 1

Model-Driven Development of Intelligent
 Mobile Robot Using Systems Modeling

Language (SysML)
Mohd Azizi Abdul Rahman1, Katsuhiro Mayama2,

Takahiro Takasu2, Akira Yasuda2 and Makoto Mizukawa2

1University Technology of Malaysia1

2Human-Robot-Interaction Lab, Shibaura Institute of Technology
1Malaysia

2Japan

1. Introduction
In Japan alone the number of disabled and elderly people are growing rapidly and they
usually require personal transportation vehicles such as cars and wheelchairs. However,
people currently have limited capabilities or difficulties to operate these vehicles in such
complex environments like shopping malls or tourist-attraction centers.
In recent years, a great number of studies of mobile robot applications have been proposed.
However, only few of these studies have realized the model-based design approach in their
entire development process. NEDO’s Intelligent Robot Technology (RT) Software project
(Okano et al.,2009) started to promote the robot technology as the basic knowledge and
technology to solve various problems in daily life. In this context, an intelligent mobile robot
has been developed for providing mobility to the elderly and physically unfortunate people.
Besides that, the National Institute of Advanced Industrial Science and technology, also
known as AIST has developed the RT-Middleware (RTM) in order to achieve efficiency in
developing robot software components (Ando et al., 2005).
The main idea of this research is to develop robot software modules by looking from the
system engineering analysis point of views. This is because most robotic systems are
complex embedded systems. System engineering approaches focus on designing and
constructing the complete system, and also on providing model reuse capabilities.
Moreover, these approaches can enhance communications among the development teams,
specification and design qualities and reuse of system specification and design artifacts.
Modules’ reusability is our main concern in this paper.
Past development efforts of robot software using Model Driven Architecture (OMG MDA,
2003) Model Driven Architecture® (OMG MDA, 2003) approach seem insufficient to support
the demand of current industrial-to-domestic robot transitions. Developing intelligent
robots in large scales is very demanding for experiment purposes. Thus, almost all robot
systems have some common functions. However, much usable design information went to
waste because of a serious lack of sharing and reusability. This motivates us to explore the

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 22

use of the MDA for the design and development of robot software modules in order to
achieve module reusability.
This paper outlines the need for the MDA approach in developing reusable robot software
modules that are expressed as models. Additionally, this approach is employed to
encourage the use of model-driven engineering methodology (MDE, 2008), as it is less
attractive to robotic software developers (Bruyninckx, 2008). More detail about MDA is
presented in section 2.
The key issue is robot software module reusability and this paper concerns about the design
process of robot software modules by using a model-based approach. This is shown by how
existing RT-Components (RTCs) (Ando et al., 2008) can be mapped to the SysML models
(see Figure 1).

Fig. 1. SysML module to RTC block mapping concept

The scope of this study is to develop reusable intelligent RT modules that can be used to
provide safe and convenient transportation service for disabled people in order to promote a
barrier-free society. A mobile robot platform is currently developed for real implementation
purpose at Shibaura Institute of Technology, Japan. In this study, we only concentrate on the
initial phase of designing the software modules and the a mapping strategy of the SysML
module into some existing RTCs (i.e. samples taken from other robotics project).

2. Model driven architecture, its need, and systems modeling language
In order to achieve the purpose of this study, we adopt an MDA approach to using
models in robot software development. It prescribes certain kinds of models to be used,
how those models are prepared, and the association of the relationships of the different
kinds of models.

2.1 MDA approach
MDA (OMG MDA, 2003) is a software design approach for the development of software
systems that describes the content of models by developing a language-neutral and separate
from the implementation design software. MDA is a method known in model-driven
engineering and the purpose of MDA is to change design information from implemented
software into independent software by describing the coded content of a specific language-
independent model. This allows the design information to be developed independently,
making it possible to be changed without the use of implementing software. In MDA, the
abstract model of information is called platform independent models(PIMs) and the model
that corresponds to a specific programming language is called platform specific models
(PSMs).

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 23

PIM describes higher abstraction level of a system design than a program does but does
not describe anything regarding to the platform. Its content falls under the behavior and
the internal structure of the system. The application information for the platform added
into the PIM is called PSMs. Inside MDA, the PIM is converted into a coded programming
language (PSM) using a tool. With the abstract representation model, the design
information itself will become reusable and the production of the program that was
reflected immediately from design information due to the semi-auto code generation is
also improving.
The use of MDA allows the construction of design information that is no longer depending
on the specified development techniques and technologies. With the design depending on
which platform is being clearly specified, not just abstract design information, specific
system information from a voluntary platform can also be reusable. Figure 2 shows MDA
basic process and its usage in developing complex systems.

Fig. 2. MDA basic process of complex systems (OMG MDA, 2003)

2.2 The need of MDA in robotic software development
MDA is considered very useful in robotic software development. The OMGRobotics-
Domain Task Force (OMG Robotics DTF, 2005) that aims to promote and integrate the OMG
robot standards, has laid out one example of why MDA which was designed for robotic
systems should be introduced and extended throughout the robotic field.
The MDA is considered very effective in handling functional decomposition problems in the
intelligence module. Functional decomposition problems are problems that occur during the
division of a robotic system due to different development teams having different ways of
splitting functionality into components, making it difficult to use the independent
developed modules mutually.
In order to solve this problem, it is important to standardize the division unit that will suit
to robot functions. If intelligence modules are functionally decomposed with a mutual
cooperation, not only that different module can be easily applied together, but also the
exchangeability and continuity of the modules can be achieved. This can be compared to the
benefit of implementing service-oriented architecture (SOA) that highly depends on the
partition in services that is not a trivial problem. As we are concerned about reusability
issues, about reusability issue, both MDA and SOA provide a concrete solution for that, but
how we split functionality into components make an MDA approach is more preferable.

PIM PIM PIM

PSM PSM PSM

………

………

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 22

use of the MDA for the design and development of robot software modules in order to
achieve module reusability.
This paper outlines the need for the MDA approach in developing reusable robot software
modules that are expressed as models. Additionally, this approach is employed to
encourage the use of model-driven engineering methodology (MDE, 2008), as it is less
attractive to robotic software developers (Bruyninckx, 2008). More detail about MDA is
presented in section 2.
The key issue is robot software module reusability and this paper concerns about the design
process of robot software modules by using a model-based approach. This is shown by how
existing RT-Components (RTCs) (Ando et al., 2008) can be mapped to the SysML models
(see Figure 1).

Fig. 1. SysML module to RTC block mapping concept

The scope of this study is to develop reusable intelligent RT modules that can be used to
provide safe and convenient transportation service for disabled people in order to promote a
barrier-free society. A mobile robot platform is currently developed for real implementation
purpose at Shibaura Institute of Technology, Japan. In this study, we only concentrate on the
initial phase of designing the software modules and the a mapping strategy of the SysML
module into some existing RTCs (i.e. samples taken from other robotics project).

2. Model driven architecture, its need, and systems modeling language
In order to achieve the purpose of this study, we adopt an MDA approach to using
models in robot software development. It prescribes certain kinds of models to be used,
how those models are prepared, and the association of the relationships of the different
kinds of models.

2.1 MDA approach
MDA (OMG MDA, 2003) is a software design approach for the development of software
systems that describes the content of models by developing a language-neutral and separate
from the implementation design software. MDA is a method known in model-driven
engineering and the purpose of MDA is to change design information from implemented
software into independent software by describing the coded content of a specific language-
independent model. This allows the design information to be developed independently,
making it possible to be changed without the use of implementing software. In MDA, the
abstract model of information is called platform independent models(PIMs) and the model
that corresponds to a specific programming language is called platform specific models
(PSMs).

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 23

PIM describes higher abstraction level of a system design than a program does but does
not describe anything regarding to the platform. Its content falls under the behavior and
the internal structure of the system. The application information for the platform added
into the PIM is called PSMs. Inside MDA, the PIM is converted into a coded programming
language (PSM) using a tool. With the abstract representation model, the design
information itself will become reusable and the production of the program that was
reflected immediately from design information due to the semi-auto code generation is
also improving.
The use of MDA allows the construction of design information that is no longer depending
on the specified development techniques and technologies. With the design depending on
which platform is being clearly specified, not just abstract design information, specific
system information from a voluntary platform can also be reusable. Figure 2 shows MDA
basic process and its usage in developing complex systems.

Fig. 2. MDA basic process of complex systems (OMG MDA, 2003)

2.2 The need of MDA in robotic software development
MDA is considered very useful in robotic software development. The OMGRobotics-
Domain Task Force (OMG Robotics DTF, 2005) that aims to promote and integrate the OMG
robot standards, has laid out one example of why MDA which was designed for robotic
systems should be introduced and extended throughout the robotic field.
The MDA is considered very effective in handling functional decomposition problems in the
intelligence module. Functional decomposition problems are problems that occur during the
division of a robotic system due to different development teams having different ways of
splitting functionality into components, making it difficult to use the independent
developed modules mutually.
In order to solve this problem, it is important to standardize the division unit that will suit
to robot functions. If intelligence modules are functionally decomposed with a mutual
cooperation, not only that different module can be easily applied together, but also the
exchangeability and continuity of the modules can be achieved. This can be compared to the
benefit of implementing service-oriented architecture (SOA) that highly depends on the
partition in services that is not a trivial problem. As we are concerned about reusability
issues, about reusability issue, both MDA and SOA provide a concrete solution for that, but
how we split functionality into components make an MDA approach is more preferable.

PIM PIM PIM

PSM PSM PSM

………

………

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 24

In this research, the focus is the output of the module and if the output is the same as the
input, the implementation method used is considered correct. Therefore the major thing that
has to be considered during this stage is how individual modules are divided. This is no other
than the PIM in the MDA. By promoting an intelligence module with the same functional
decomposition as well as combining different intelligence module with the same purpose will
make it possible to realize a variety of application systems. If we apply MDA to the robotic
planning stage and construct the PIM with sufficiently repeated discussion on the functional
division, we will be able to develop a much proper robotic module development.

2.3 SysML
SysML is a general-purpose modeling language that is only associated with descriptive
semantics. It was developed to support the specification, analysis, design, verification and
validation of a wide range of complex systems (OMG SysML, 2010). The <<block>> is the
basic unit of structure in SysML and can be used to represent the systems that may include
hardware, software, information, processes, personnel, and facilities. The objective of SysML
is to unify the diverse modeling languages currently used by system engineers. SysML
reuses a subset of Unified Modeling Language (OMG UML, 2010) and provides additional
extensions needed to address systems engineering aspects not covered by UML2. It includes
nine diagrams (see Figure 3) that can be used to specify system requirements, behavior,
structure and parametric relationships. Requirements diagram and parametric diagrams are
the new diagram types proposed by SysML.

Fig. 3. SysML diagram taxonomy and its comparison with UML (OMG SysML, 2010)

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 25

SysML provides modeling constructs to represent text-based requirements and relate
them to other modeling elements. The requirement diagram can be used to represent the
relationships that exist between requirements and to visualize them. It provides a bridge
between traditional requirements management tools and other SysML models. It can be
used to depict the requirements in graphical, tabular, or tree structure format and
highlight their relationships between requirements and other model elements that satisfy
or verify them.

3. Modeling approach
3.1 Overview
In this paper, the progress of our model-based approach is presented by adopting the
international standard modeling language SysML throughout our design process. All
diagrams are made of SysML constructs.We study two problems for improving module
reusability such as intelligent module division and system development based on the
intelligent modules.

3.2 Purpose of this study
This paper describes our effort to adopt model-based approach to make robot models
independent from any specific hardware and software platform by deriving reusable and
versatile robot model. Thus, other developers will be able to refer to our designated models
and customize it to meet their robot specifications. For making effortless transition from
models to real system, we employ existing RT-Components developed by NEDO’s project to
reduce our burden on the development, as well as extending the reusability of RT modules.
We have the following purposes to:
 make the model for each process to develop reusable models
In this research, we adopt model-based approach to each design process from intelligent
mobile robot basic functional analysis to final system analysis, depending on the
implementation. This approach enables us to choose appropriate design decision expressed
as models. For example, if the requirement is same, developers will reuse our requirement
diagram. Otherwise, only design workflow should be reused.
 design PIM level and PSM level separately
Modeling process consists of platform independent model design and platform specified
model design as previously described in Section 2.
 improve PSM reusability
We make use the RT-Middleware in our development as a software platform to improve
software module and system reusability. Mappings between abstract blocks and RTC blocks
were achieved.

3.3 Modeling process
Modeling activity conducted in this study is shown in Figure 4. The red box means
“movement intelligence basic design” while blue box means “movement intelligence system
design”, and green box means “internal software system design”.The paper-like diagrams
are shown as the output of each analysis regarding to SysML diagrams. For brevity, we
disregard some explanations about the design steps throughout the paper. However, the
reader is advised to contact the authors for the full specifications. The following contents
explain each of the steps:

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 24

In this research, the focus is the output of the module and if the output is the same as the
input, the implementation method used is considered correct. Therefore the major thing that
has to be considered during this stage is how individual modules are divided. This is no other
than the PIM in the MDA. By promoting an intelligence module with the same functional
decomposition as well as combining different intelligence module with the same purpose will
make it possible to realize a variety of application systems. If we apply MDA to the robotic
planning stage and construct the PIM with sufficiently repeated discussion on the functional
division, we will be able to develop a much proper robotic module development.

2.3 SysML
SysML is a general-purpose modeling language that is only associated with descriptive
semantics. It was developed to support the specification, analysis, design, verification and
validation of a wide range of complex systems (OMG SysML, 2010). The <<block>> is the
basic unit of structure in SysML and can be used to represent the systems that may include
hardware, software, information, processes, personnel, and facilities. The objective of SysML
is to unify the diverse modeling languages currently used by system engineers. SysML
reuses a subset of Unified Modeling Language (OMG UML, 2010) and provides additional
extensions needed to address systems engineering aspects not covered by UML2. It includes
nine diagrams (see Figure 3) that can be used to specify system requirements, behavior,
structure and parametric relationships. Requirements diagram and parametric diagrams are
the new diagram types proposed by SysML.

Fig. 3. SysML diagram taxonomy and its comparison with UML (OMG SysML, 2010)

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 25

SysML provides modeling constructs to represent text-based requirements and relate
them to other modeling elements. The requirement diagram can be used to represent the
relationships that exist between requirements and to visualize them. It provides a bridge
between traditional requirements management tools and other SysML models. It can be
used to depict the requirements in graphical, tabular, or tree structure format and
highlight their relationships between requirements and other model elements that satisfy
or verify them.

3. Modeling approach
3.1 Overview
In this paper, the progress of our model-based approach is presented by adopting the
international standard modeling language SysML throughout our design process. All
diagrams are made of SysML constructs.We study two problems for improving module
reusability such as intelligent module division and system development based on the
intelligent modules.

3.2 Purpose of this study
This paper describes our effort to adopt model-based approach to make robot models
independent from any specific hardware and software platform by deriving reusable and
versatile robot model. Thus, other developers will be able to refer to our designated models
and customize it to meet their robot specifications. For making effortless transition from
models to real system, we employ existing RT-Components developed by NEDO’s project to
reduce our burden on the development, as well as extending the reusability of RT modules.
We have the following purposes to:
 make the model for each process to develop reusable models
In this research, we adopt model-based approach to each design process from intelligent
mobile robot basic functional analysis to final system analysis, depending on the
implementation. This approach enables us to choose appropriate design decision expressed
as models. For example, if the requirement is same, developers will reuse our requirement
diagram. Otherwise, only design workflow should be reused.
 design PIM level and PSM level separately
Modeling process consists of platform independent model design and platform specified
model design as previously described in Section 2.
 improve PSM reusability
We make use the RT-Middleware in our development as a software platform to improve
software module and system reusability. Mappings between abstract blocks and RTC blocks
were achieved.

3.3 Modeling process
Modeling activity conducted in this study is shown in Figure 4. The red box means
“movement intelligence basic design” while blue box means “movement intelligence system
design”, and green box means “internal software system design”.The paper-like diagrams
are shown as the output of each analysis regarding to SysML diagrams. For brevity, we
disregard some explanations about the design steps throughout the paper. However, the
reader is advised to contact the authors for the full specifications. The following contents
explain each of the steps:

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 26

1. Context analysis; this analysis reveals the supposed environment and is used for
deriving requirement analysis and functional analysis. As a result, a context diagram is
obtained in this analysis.

2. Requirement analysis; the functional and non-functional requirements based on the
supposed environment and limitations are organized. In the process we make the
requirements as well as making the connection between related requirements; and the
solution for each requirement is shown.

3. Use case analysis; the required functions that based on the functional requirement are
described. The use case diagram is used in this phase.

4. Hardware structure analysis enables us to organize abstracted hardware connection by
using Block Definition Diagrams.

5. Software functional analysis; shows software including its relations. Each software
block is abstracted from the necessary functions.

6. Software structure analysis defines the interface of each module using Internal Block
Diagrams (IBDs).

7. Software specification analysis shows how its internal behavior is defined.
8. Behavioral analysis; Software system behaviors are designed using Sequence Diagram

(SD) and State Machine (STM).
9. RTCs selection; RTC blocks are chosen to be mapped from the designed software

modules.
10. Implementation of the system; Final step to test and evaluate some parts of the

designed modules implemented on a real robot platform (not covered in this paper).

Fig. 4. Overall design process and modelling workflows

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 27

3.3.1 Context analysis
The PIM level modeling activity starts by abstracting information about the robot system in
environments. Our mobile robot operates in an outdoor surrounding with pedestrians,
bicycles, cars and various road conditions such as on the grass, pavement, slopes or ramps,
and so on. The robot must be able to avoid the obstacles and make a correct path in various
situations. Figure 5 shows an example of the context diagram that includes expecting objects
in the surroundings and the disturbance elements in our mobile robot operating
environments. Disturbance elements (e.g. light and building) are considered as the possible
distraction sources that may affect the robot’s sensing ability. The passenger is identified to
be a user who interacts with our robot system. This categorization of object and
environment is for deriving functional robot requirements.

Fig. 5. Context diagram for operating environment analysis

3.3.2 Functional requirement analysis
A requirement diagram is a new diagram type in SysML that can be used to model the
system requirements in more detail. Our mobile robot system requirements are described in
the following SysML’s requirement diagrams. They focus on the requirement mobility, the
safety for operating in the environment and the extension of RT modules reusability.Figure
6 shows the basic requirements derived from the previous operating environment analysis.
The top-level requirements are identified as “SafetyLocomotion” and “ExtendingRT-

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 26

1. Context analysis; this analysis reveals the supposed environment and is used for
deriving requirement analysis and functional analysis. As a result, a context diagram is
obtained in this analysis.

2. Requirement analysis; the functional and non-functional requirements based on the
supposed environment and limitations are organized. In the process we make the
requirements as well as making the connection between related requirements; and the
solution for each requirement is shown.

3. Use case analysis; the required functions that based on the functional requirement are
described. The use case diagram is used in this phase.

4. Hardware structure analysis enables us to organize abstracted hardware connection by
using Block Definition Diagrams.

5. Software functional analysis; shows software including its relations. Each software
block is abstracted from the necessary functions.

6. Software structure analysis defines the interface of each module using Internal Block
Diagrams (IBDs).

7. Software specification analysis shows how its internal behavior is defined.
8. Behavioral analysis; Software system behaviors are designed using Sequence Diagram

(SD) and State Machine (STM).
9. RTCs selection; RTC blocks are chosen to be mapped from the designed software

modules.
10. Implementation of the system; Final step to test and evaluate some parts of the

designed modules implemented on a real robot platform (not covered in this paper).

Fig. 4. Overall design process and modelling workflows

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 27

3.3.1 Context analysis
The PIM level modeling activity starts by abstracting information about the robot system in
environments. Our mobile robot operates in an outdoor surrounding with pedestrians,
bicycles, cars and various road conditions such as on the grass, pavement, slopes or ramps,
and so on. The robot must be able to avoid the obstacles and make a correct path in various
situations. Figure 5 shows an example of the context diagram that includes expecting objects
in the surroundings and the disturbance elements in our mobile robot operating
environments. Disturbance elements (e.g. light and building) are considered as the possible
distraction sources that may affect the robot’s sensing ability. The passenger is identified to
be a user who interacts with our robot system. This categorization of object and
environment is for deriving functional robot requirements.

Fig. 5. Context diagram for operating environment analysis

3.3.2 Functional requirement analysis
A requirement diagram is a new diagram type in SysML that can be used to model the
system requirements in more detail. Our mobile robot system requirements are described in
the following SysML’s requirement diagrams. They focus on the requirement mobility, the
safety for operating in the environment and the extension of RT modules reusability.Figure
6 shows the basic requirements derived from the previous operating environment analysis.
The top-level requirements are identified as “SafetyLocomotion” and “ExtendingRT-

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 28

ModuleReusability”. The “SafetyLocomotion” is composed of other sub-requirements with
respect to the locomotion strategies which are called “Controlled by Passenger”,
“AutonomousLocomotion”, and “Enhanced Safety”. Figure 7 illustrates the derived
requirements and functions of robot locomotion for manual control mode (i.e. a joy-stick
controller may be used as an input device to the system) and for autonomous locomotion
mode. These requirements represent abstract levels of functional requirements to the
concrete description with the specific devices or software modules. The autonomous
locomotion is further derived into several specific components. The ‘<<deriveReqt>>’
stereotype is associated for specifying a desired destination, planning a path, tracing
trajectory, self-localization, and obstacle avoidance functionalities. In this paper, we omit
the discussion on the “EnhancedSafety” requirement as a future work possibility by
considering safety standardization imposed in Japan.
In Figure 7, the red rectangles represent the actual hardware of the robot system with the
<<satisfy>> stereotypes associate to its upper layer blocks meaning that the chosen
hardware should satisfy the designed requirements. As we can see, they are arranged
somewhat hierarchically, with low-level derived requirements closer to the hardware.
Constructing the system in a hierarchical manner like this helps us to maintain good design
pattern. It also helps with traceability because we will have a clear understanding of the
dependencies between requirements. These abstraction layers allow for easier model re-use
and exchange.

Fig. 6. Top-level requirements derived from operating environment analysis

For necessary functional analysis, we identified the following core functions for our mobile
robot system to perform
 Specifying a destination point “InputGoal” function.
 Navigating to the specified destination by using path planning, path generating,

trajectory generating, obstacles detecting, position localizing and error detecting
modules.

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 29

Fig. 7. Functional requirements and its derivation of “SafetyLocomotion” block.

3.3.3 Software and hardware composition
This section describes how we model the required software and hardware components, and
decide the internal interfaces between these components. By implementing the common
interfaces that were proposed by the working group of the NEDO project, our robot
modules can easily adapt and apply the existing RTCs.
In addition, our designed models separate device specific components from components for
the transporting functions. As a consequence, our models are truly independent from the
specific devices especially for the wheeled platform, and easy to be reused in future. Figure
8 shows robot software composition diagram while Figure 9 shows its hardware profile’s
composition. The former diagram is made of SysML’s internal block diagram (IBD) and the
latter is made up of SysML block definition diagram (BDD). In Figure 8, we structure the
software components as identified previously during the necessary functions analysis by
connecting each software component through interface ports provided in SysML. To make

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 28

ModuleReusability”. The “SafetyLocomotion” is composed of other sub-requirements with
respect to the locomotion strategies which are called “Controlled by Passenger”,
“AutonomousLocomotion”, and “Enhanced Safety”. Figure 7 illustrates the derived
requirements and functions of robot locomotion for manual control mode (i.e. a joy-stick
controller may be used as an input device to the system) and for autonomous locomotion
mode. These requirements represent abstract levels of functional requirements to the
concrete description with the specific devices or software modules. The autonomous
locomotion is further derived into several specific components. The ‘<<deriveReqt>>’
stereotype is associated for specifying a desired destination, planning a path, tracing
trajectory, self-localization, and obstacle avoidance functionalities. In this paper, we omit
the discussion on the “EnhancedSafety” requirement as a future work possibility by
considering safety standardization imposed in Japan.
In Figure 7, the red rectangles represent the actual hardware of the robot system with the
<<satisfy>> stereotypes associate to its upper layer blocks meaning that the chosen
hardware should satisfy the designed requirements. As we can see, they are arranged
somewhat hierarchically, with low-level derived requirements closer to the hardware.
Constructing the system in a hierarchical manner like this helps us to maintain good design
pattern. It also helps with traceability because we will have a clear understanding of the
dependencies between requirements. These abstraction layers allow for easier model re-use
and exchange.

Fig. 6. Top-level requirements derived from operating environment analysis

For necessary functional analysis, we identified the following core functions for our mobile
robot system to perform
 Specifying a destination point “InputGoal” function.
 Navigating to the specified destination by using path planning, path generating,

trajectory generating, obstacles detecting, position localizing and error detecting
modules.

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 29

Fig. 7. Functional requirements and its derivation of “SafetyLocomotion” block.

3.3.3 Software and hardware composition
This section describes how we model the required software and hardware components, and
decide the internal interfaces between these components. By implementing the common
interfaces that were proposed by the working group of the NEDO project, our robot
modules can easily adapt and apply the existing RTCs.
In addition, our designed models separate device specific components from components for
the transporting functions. As a consequence, our models are truly independent from the
specific devices especially for the wheeled platform, and easy to be reused in future. Figure
8 shows robot software composition diagram while Figure 9 shows its hardware profile’s
composition. The former diagram is made of SysML’s internal block diagram (IBD) and the
latter is made up of SysML block definition diagram (BDD). In Figure 8, we structure the
software components as identified previously during the necessary functions analysis by
connecting each software component through interface ports provided in SysML. To make

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 30

the system complete, hardware configuration is shown in Figure 9 by profiling each
hardware implementation using various sensors for robot localization, obstacle avoidance,
battery malfunction, emergency switches and so on. Figure 10 displays our mobile robot
platform, the Four-X developed at Shibaura Institute of Technology, Japan. This type of
mobile platform is equipped with swivel-steered drive system. The following list specifies
some parts of its hardware components:
1. Hemisphere A100 Global Positioning System (GPS) receiver.
2. On board PC (Panasonic CF-19).
3. Emergency Switch Button.
4. On board PC for data logging.
5. Notification lamp.
6. Bumper switch.
7. Motor controller (EPOS 70/10).
8. On board power supply (intelligent battery).
9. Laser range finder (UTM-30LX).

Fig. 8. Software modules composition and ports configuration modelled with the internal
block diagram (IBD).

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 31

Fig. 9. Hardware modules composition using a block definition diagram (BDD).

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 30

the system complete, hardware configuration is shown in Figure 9 by profiling each
hardware implementation using various sensors for robot localization, obstacle avoidance,
battery malfunction, emergency switches and so on. Figure 10 displays our mobile robot
platform, the Four-X developed at Shibaura Institute of Technology, Japan. This type of
mobile platform is equipped with swivel-steered drive system. The following list specifies
some parts of its hardware components:
1. Hemisphere A100 Global Positioning System (GPS) receiver.
2. On board PC (Panasonic CF-19).
3. Emergency Switch Button.
4. On board PC for data logging.
5. Notification lamp.
6. Bumper switch.
7. Motor controller (EPOS 70/10).
8. On board power supply (intelligent battery).
9. Laser range finder (UTM-30LX).

Fig. 8. Software modules composition and ports configuration modelled with the internal
block diagram (IBD).

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 31

Fig. 9. Hardware modules composition using a block definition diagram (BDD).

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 32

Fig. 10. The Four-X mobile robot platform

3.3.4 Mapping to the RT-components
The PSM modeling activity starts from here. We adopt a sample from Tohoku University's
RT-Cs robot project to be reused in our software development. They have developed a
versatile R-TC navigation system implemented on the Segway RMP 200 platform to
complete the whole course in the Real World Robot Challenge 2009(Segway, 2009). Refer
(Yuta et al., 2010) for information about the Tsukuba Challenge event. So, it is proven that
their robot has a robust navigation system for using in outdoor environments. Outdoor
navigation capability is one of the reasons why we adopt these RTCs beside its algorithm
similarity. In addition, these RTCs also adopt a Global Positioning System (GPS) map, self-
localization by using GPS and odometry, and obstacle avoidance by laser range finder
(LRF). These similarities make our robot software development efforts slightly reduced
because the concept of reusability is applied although with a different mobile robot
platform.
In this phase, software modules are replaced with compatible RTCs blocks as we propose
to select the suitable RTCs for the functionality of each SysML modules. As depicted
in Figure 11, “SelfLocalization” module consists of four RTCs compatible modules,

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 33

which are “CorrectorGPS”, “CorrectorURG”, “CurrentVelocity”, and “PredictorOdometry”.
By making a wide variety of software elements, we can have more choices of compatible
RTCs.

Fig. 11. Software modules (IBD) mapping technique

Thus, we set the suitable RTCs for functionality of software elements. To make a better
understanding about this mapping technique, we provide a clearer mapping diagram by
using <<allocation>> stereotypes (OMG SysML, 2010). Allocations are a set of notations
(i.e. the new generic allocation dependencies) that allow different aspect of a SysML
model to be related to each other. This is one of the SysML constructs to extend the UML
capabilities. It is worth to notice that our SysML and RT-Middleware software platforms
are based on C++ language.
As shown in Figure 12, the red box represents software element blocks (i.e. previously
clarified in the analysis), and orange box determines real RTC system blocks. Therefore,
these blocks have clear functionalities when each software block is allocated to other RTC
system blocks with different specification or parameters. As a result, we model the full

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 32

Fig. 10. The Four-X mobile robot platform

3.3.4 Mapping to the RT-components
The PSM modeling activity starts from here. We adopt a sample from Tohoku University's
RT-Cs robot project to be reused in our software development. They have developed a
versatile R-TC navigation system implemented on the Segway RMP 200 platform to
complete the whole course in the Real World Robot Challenge 2009(Segway, 2009). Refer
(Yuta et al., 2010) for information about the Tsukuba Challenge event. So, it is proven that
their robot has a robust navigation system for using in outdoor environments. Outdoor
navigation capability is one of the reasons why we adopt these RTCs beside its algorithm
similarity. In addition, these RTCs also adopt a Global Positioning System (GPS) map, self-
localization by using GPS and odometry, and obstacle avoidance by laser range finder
(LRF). These similarities make our robot software development efforts slightly reduced
because the concept of reusability is applied although with a different mobile robot
platform.
In this phase, software modules are replaced with compatible RTCs blocks as we propose
to select the suitable RTCs for the functionality of each SysML modules. As depicted
in Figure 11, “SelfLocalization” module consists of four RTCs compatible modules,

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 33

which are “CorrectorGPS”, “CorrectorURG”, “CurrentVelocity”, and “PredictorOdometry”.
By making a wide variety of software elements, we can have more choices of compatible
RTCs.

Fig. 11. Software modules (IBD) mapping technique

Thus, we set the suitable RTCs for functionality of software elements. To make a better
understanding about this mapping technique, we provide a clearer mapping diagram by
using <<allocation>> stereotypes (OMG SysML, 2010). Allocations are a set of notations
(i.e. the new generic allocation dependencies) that allow different aspect of a SysML
model to be related to each other. This is one of the SysML constructs to extend the UML
capabilities. It is worth to notice that our SysML and RT-Middleware software platforms
are based on C++ language.
As shown in Figure 12, the red box represents software element blocks (i.e. previously
clarified in the analysis), and orange box determines real RTC system blocks. Therefore,
these blocks have clear functionalities when each software block is allocated to other RTC
system blocks with different specification or parameters. As a result, we model the full

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 34

specification of software modules that have been replaced with RTCs modules and its
connection. An example is given in Figure 13. This mapping technique has reduced our
development effort as well as promoting module reusability.

Fig. 12. Allocation diagram for mapping software component to compatible RTCs blocks.

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 35

Fig. 13. The SysML to RT-Cs mapping.

4. Lessons learned
This section summarizes the lesson learned from the study where we successfully applied
the model-based approach to developing mobile robot software modules for reusability
purposes. As a result, we provide a modeling process to develop those modules.

4.1 The usage of SysML constructs for robotics
Through the study, we found that the OMG SysML standard was fit as a notation for
specifying the requirements, modeling the system views (e.g. both structural and
behavioral), decomposing into objects and/or blocks, and defining relationships between
objects especially in a complex embedded system like a robotics system. Some diagrams
and notations provided in the SysML were particularly important for abstracting
information, analyzing the structure and behavior, designing the functionality, as well as

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 34

specification of software modules that have been replaced with RTCs modules and its
connection. An example is given in Figure 13. This mapping technique has reduced our
development effort as well as promoting module reusability.

Fig. 12. Allocation diagram for mapping software component to compatible RTCs blocks.

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 35

Fig. 13. The SysML to RT-Cs mapping.

4. Lessons learned
This section summarizes the lesson learned from the study where we successfully applied
the model-based approach to developing mobile robot software modules for reusability
purposes. As a result, we provide a modeling process to develop those modules.

4.1 The usage of SysML constructs for robotics
Through the study, we found that the OMG SysML standard was fit as a notation for
specifying the requirements, modeling the system views (e.g. both structural and
behavioral), decomposing into objects and/or blocks, and defining relationships between
objects especially in a complex embedded system like a robotics system. Some diagrams
and notations provided in the SysML were particularly important for abstracting
information, analyzing the structure and behavior, designing the functionality, as well as

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 36

modeling robot systems. In the case of context and requirement diagrams, functions (e.g.
functional requirements) which robot system should perform can be identified and
defined in terms of actors who are users of the robot system and use cases. Context and
requirement diagrams define the information of some aspect of the robot system without
knowing its internal structure.
Additionally, block definition diagram (BDD) notation is used to compose the structure
model, which focuses on the static structure of a robot system (i.e. both software and
hardware). The BDD also shows the blocks of objects in the system, their internal structure
that include attributes, operations, parts, and their relationships to other blocks in terms of
associations and generalization.
For internal block diagram (IBD), as its name, is used to show each part of the blocks that
participate in software or hardware modules interface with each other by defining ports and
flows in order to send and/or receive signals (see Fig.9 and Fig.11). Although SysML’s
behaviour diagrams, like sequence diagram (SD) and state machine diagram (STM) are not
specifically described in this paper, we believe that its roles in modeling the behavior of our
robot system are significantly important. SD plays its main roles in designing object
interaction arranged in time sequence and also could be used to describe the task event
sequencing logic. This is a common activity in designing real-time embedded systems
especially in robotics. As for STM, it can be used to describe how state-dependent aspects of
the system are defined by a finite state machine and can help in designing and in
developing highly state-dependent systems. As depicted in Fig.12, the SysML specification
(OMG SysML, 2010) defines an allocation notation using stereotypes to show how various
elements are allocated to and from other elements. Such allocations may be used to show
deployment or more generally to relate different parts of a model as the design progresses.
Allocation models help us to map the SysML software modules to the compatible RTCs
based on the C++ language.
In addition, by using the SysML notation for system engineering analysis, software and
system engineers not only can communicate among themselves to develop and integrate
specific components for providing various functions but also will encourage interest in
model-driven engineering approach.

4.2 The future of robotics software development
To our best knowledge, not much effort has been done especially in robotics software and
system development that use model-driven engineering (MDE) method by adopting a
general modeling language like SysML. Both MDE and MDA are interconnected in terms of
technology approaches to a broad range of systems and software engineering. The former
tends to propel the development process while the latter is the separation of the operation of
a system from the details of its platform in the development process.
According to (Bruyninckx, 2008), the robotics community is seriously neglecting the
progress in MDE, hence discarding lots of opportunities to let software engineering and
practice mature in the domain of robotics. Therefore, creating SysML profile for robotics is
one of the solutions. For instance, the robotics literature includes bunch of articles about
architecture which most of them use graphical models with boxes and arrows, but the
meaning of these models has never been standardized, and the practical constraints on real-
world implementations are implicit. In spite of that, standardization of SysML and its real-
time and embedded specialization (MARTE) provides exceptional ways to start with
reusable and semantically well-defined designs of complex software systems.

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 37

5. Conclusion and future work
In this paper, we have presented the basic specification of our mobile robot. The proposed
mobile robot software system is fully based on model-driven engineering methodology to
overcome the current difficulties of mobile robot development. The highlighted features of
our approach are really straightforward, mobile platform independent, reusable model
design, reduced development efforts, and also customizable system configuration.
Based on this specification, future work will focus on the detailed design for each module as
well as extending SysML profiles that ideally suit to the robotics domain. Then the suitable
RTCs will be selected from the RTC Centre of Intelligent RT Software Project. The
reusability of the platform independent component, such as mobile control will be further
extended by extracting the platform-independent parts.
As we believe that SysML can easily provide information models for capturing system
aspects (i.e. both structure and behavior), we continue our effort to integrate some software
tools for model-based design (e.g. Simulink and Modelica) in order to fully utilize SysML as
a platform of model integration.

6. Acknowledgment
This work is supported by NEDO Japan (New Energy and Industrial Technology
Development Organization) project on “Intelligent RT Software Project”.

7. References
Ando, N.; Suehiro, T. ; Kitagaki, K. ; Kotoku, T., & Yoon, W.-K. (2005). RT-Middleware:

Distributed Component Middleware for RT (Robot Technology), Proceedingsof
IEEE/RSJ 2005 International Conference on Robots and Intelligent Systems (IROS 2005),
pp. 3555-3560, ISBN 0-7803-8192-3, Edmonton, AB, Canada, Aug 2-6, 2005

Ando, N.; Suehiro, T. & Kotoku, T. (2008). A Software Platform for Component Based RT-
System Development : OpenRTM-Aist, Proceedingsof the 1st International Conference
on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2008), pp.
87-98, ISBN 987-3-540-89075-1, Venice, Italy, Nov 3-7, 2008

Bruyninckx, H. (2008). Robotics Software: The Future Should Be Open. IEEE Robotic &
Automation Magazine, Vol.5, No.1, (March 2008), pp. 9-11, ISSN 1070-9932

Model Driven Engineering, MDE (2008). Model-Driven Engineering. Available at
 http://www.theenterprisearchitect.au/archive/2008/model_driven_engineering/
Okano, K. & Yasukawa, K. (2009). NEDO: Overview of Intelligent RT Software Project,

Proceedingsof RSJ 27th Annual Conference on The Robotics Society of Japan, RSJ2009
AC1D1-01 (in Japanese), Tokiwadai, Hodogaya, Yokohama, Sept 15, 2009

OMG MDA, Version 1.0.1 (2003). Model Driven Architecture Guide. Available from
 http://www.omg.org/cgi-bin/doc?omg/03-06-01
OMG Robotics-DTF, (2010). The OMG Robotics Domain Task Force. Available from
 http://www.robotics.omg.org/
OMG Systems Modeling Language, Version 1.2 (2010). SysML Specification. Available from
 http://www.omg.org/spec/SysML/2.3/
OMG Unified Modeling Language, Version 2.3(2010). UML Specification. Available from
 http://www.omg.org/spec/UML/2.3/

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 36

modeling robot systems. In the case of context and requirement diagrams, functions (e.g.
functional requirements) which robot system should perform can be identified and
defined in terms of actors who are users of the robot system and use cases. Context and
requirement diagrams define the information of some aspect of the robot system without
knowing its internal structure.
Additionally, block definition diagram (BDD) notation is used to compose the structure
model, which focuses on the static structure of a robot system (i.e. both software and
hardware). The BDD also shows the blocks of objects in the system, their internal structure
that include attributes, operations, parts, and their relationships to other blocks in terms of
associations and generalization.
For internal block diagram (IBD), as its name, is used to show each part of the blocks that
participate in software or hardware modules interface with each other by defining ports and
flows in order to send and/or receive signals (see Fig.9 and Fig.11). Although SysML’s
behaviour diagrams, like sequence diagram (SD) and state machine diagram (STM) are not
specifically described in this paper, we believe that its roles in modeling the behavior of our
robot system are significantly important. SD plays its main roles in designing object
interaction arranged in time sequence and also could be used to describe the task event
sequencing logic. This is a common activity in designing real-time embedded systems
especially in robotics. As for STM, it can be used to describe how state-dependent aspects of
the system are defined by a finite state machine and can help in designing and in
developing highly state-dependent systems. As depicted in Fig.12, the SysML specification
(OMG SysML, 2010) defines an allocation notation using stereotypes to show how various
elements are allocated to and from other elements. Such allocations may be used to show
deployment or more generally to relate different parts of a model as the design progresses.
Allocation models help us to map the SysML software modules to the compatible RTCs
based on the C++ language.
In addition, by using the SysML notation for system engineering analysis, software and
system engineers not only can communicate among themselves to develop and integrate
specific components for providing various functions but also will encourage interest in
model-driven engineering approach.

4.2 The future of robotics software development
To our best knowledge, not much effort has been done especially in robotics software and
system development that use model-driven engineering (MDE) method by adopting a
general modeling language like SysML. Both MDE and MDA are interconnected in terms of
technology approaches to a broad range of systems and software engineering. The former
tends to propel the development process while the latter is the separation of the operation of
a system from the details of its platform in the development process.
According to (Bruyninckx, 2008), the robotics community is seriously neglecting the
progress in MDE, hence discarding lots of opportunities to let software engineering and
practice mature in the domain of robotics. Therefore, creating SysML profile for robotics is
one of the solutions. For instance, the robotics literature includes bunch of articles about
architecture which most of them use graphical models with boxes and arrows, but the
meaning of these models has never been standardized, and the practical constraints on real-
world implementations are implicit. In spite of that, standardization of SysML and its real-
time and embedded specialization (MARTE) provides exceptional ways to start with
reusable and semantically well-defined designs of complex software systems.

Model-Driven Development of Intelligent
Mobile Robot Using Systems Modeling Language (SysML) 37

5. Conclusion and future work
In this paper, we have presented the basic specification of our mobile robot. The proposed
mobile robot software system is fully based on model-driven engineering methodology to
overcome the current difficulties of mobile robot development. The highlighted features of
our approach are really straightforward, mobile platform independent, reusable model
design, reduced development efforts, and also customizable system configuration.
Based on this specification, future work will focus on the detailed design for each module as
well as extending SysML profiles that ideally suit to the robotics domain. Then the suitable
RTCs will be selected from the RTC Centre of Intelligent RT Software Project. The
reusability of the platform independent component, such as mobile control will be further
extended by extracting the platform-independent parts.
As we believe that SysML can easily provide information models for capturing system
aspects (i.e. both structure and behavior), we continue our effort to integrate some software
tools for model-based design (e.g. Simulink and Modelica) in order to fully utilize SysML as
a platform of model integration.

6. Acknowledgment
This work is supported by NEDO Japan (New Energy and Industrial Technology
Development Organization) project on “Intelligent RT Software Project”.

7. References
Ando, N.; Suehiro, T. ; Kitagaki, K. ; Kotoku, T., & Yoon, W.-K. (2005). RT-Middleware:

Distributed Component Middleware for RT (Robot Technology), Proceedingsof
IEEE/RSJ 2005 International Conference on Robots and Intelligent Systems (IROS 2005),
pp. 3555-3560, ISBN 0-7803-8192-3, Edmonton, AB, Canada, Aug 2-6, 2005

Ando, N.; Suehiro, T. & Kotoku, T. (2008). A Software Platform for Component Based RT-
System Development : OpenRTM-Aist, Proceedingsof the 1st International Conference
on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2008), pp.
87-98, ISBN 987-3-540-89075-1, Venice, Italy, Nov 3-7, 2008

Bruyninckx, H. (2008). Robotics Software: The Future Should Be Open. IEEE Robotic &
Automation Magazine, Vol.5, No.1, (March 2008), pp. 9-11, ISSN 1070-9932

Model Driven Engineering, MDE (2008). Model-Driven Engineering. Available at
 http://www.theenterprisearchitect.au/archive/2008/model_driven_engineering/
Okano, K. & Yasukawa, K. (2009). NEDO: Overview of Intelligent RT Software Project,

Proceedingsof RSJ 27th Annual Conference on The Robotics Society of Japan, RSJ2009
AC1D1-01 (in Japanese), Tokiwadai, Hodogaya, Yokohama, Sept 15, 2009

OMG MDA, Version 1.0.1 (2003). Model Driven Architecture Guide. Available from
 http://www.omg.org/cgi-bin/doc?omg/03-06-01
OMG Robotics-DTF, (2010). The OMG Robotics Domain Task Force. Available from
 http://www.robotics.omg.org/
OMG Systems Modeling Language, Version 1.2 (2010). SysML Specification. Available from
 http://www.omg.org/spec/SysML/2.3/
OMG Unified Modeling Language, Version 2.3(2010). UML Specification. Available from
 http://www.omg.org/spec/UML/2.3/

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 38

SEGWAY, (2009).Tohoku University team completes Tsukuba Challenge. Available from
 http://rmp.segway.com/2009/11/16/team-from-tohoku-university-completes-

tsukuba-challenge-09/
Yuta, S.; Mizukawa, M.; Hashimoto, H.; Tashiro, H. & Okubo, T. (2010). Tsukuba Challenge

2009- Towards Robots Working in the Real World: Records in 2009. Journal of
Robotics and Mechatronics, Vol.23, No.2, (April 2011), pp. 201-206, ISSN 1883-8049

2

Development of Safe and Secure Control
Software for Autonomous Mobile Robots

Jerzy A. Barchanski
Brock University

Canada

1. Introduction
It is often said that autonomous robots should be trustworthy or dependable, meaning by this
safe, secure, reliable, etc This terms are too general to be useful, so we prefer to limit the
scope of this chapter to two of their inter-related components - safety and security. They
must be built into a system from the start; it is difficult, if not impossible, to add them in an
adequate and cost-effective manner later on.
We view autonomous robots as situated, real-time embedded systems endowed with
enough intelligence to adapt to changing environment and learn from their experience. They
may operate unattended and through an unsafe operation may cause significant human,
economic or mission losses. The focus of this chapter is on safety and security of robot
control software. This software allows unprecedented complexity of robotic systems, which
goes beyond the ability of current engineering techniques for assuring acceptable risk.
Most of the publications on safety has a form of recommendations on providing safe
environment for robot operators, like the Occupational Safety and Health Administration
regulations or the more recent NASA recommendations for space robots. This approach is
effective when accidents are primarily caused by hardware components failures.
As software becomes more and more important in robot control, we have to consider ways
to prevent accidents caused by software.
Robot control software consists of many interacting components. Accidents arise in the
interactions among the components rather than the failure of individual components.
The need for safety is obvious, but how to ensure it is less obvious. Autonomous robots may
operate unattended and through an unsafe operation may cause significant human,
economic, or mission losses. Similar problems were encountered early on in manufacturing
automation; but autonomous mobile robots may change their behaviour and operate in
much less controlled environments.
We will review at first the principal concepts of system safety like risk and hazard and some
traditional approaches to dealing with them. We consider security as a subset of safety and
we will present our point of view on this issue.
The present trend to make the robots more autonomous requires new approaches to deal
with much more complex problems of their safety. After review of several robot control
architectures from the viewpoint of their safety we present an approach based on systems
theory. While the theory was developed long time ago it turns out very useful to ensure

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 38

SEGWAY, (2009).Tohoku University team completes Tsukuba Challenge. Available from
 http://rmp.segway.com/2009/11/16/team-from-tohoku-university-completes-

tsukuba-challenge-09/
Yuta, S.; Mizukawa, M.; Hashimoto, H.; Tashiro, H. & Okubo, T. (2010). Tsukuba Challenge

2009- Towards Robots Working in the Real World: Records in 2009. Journal of
Robotics and Mechatronics, Vol.23, No.2, (April 2011), pp. 201-206, ISSN 1883-8049

2

Development of Safe and Secure Control
Software for Autonomous Mobile Robots

Jerzy A. Barchanski
Brock University

Canada

1. Introduction
It is often said that autonomous robots should be trustworthy or dependable, meaning by this
safe, secure, reliable, etc This terms are too general to be useful, so we prefer to limit the
scope of this chapter to two of their inter-related components - safety and security. They
must be built into a system from the start; it is difficult, if not impossible, to add them in an
adequate and cost-effective manner later on.
We view autonomous robots as situated, real-time embedded systems endowed with
enough intelligence to adapt to changing environment and learn from their experience. They
may operate unattended and through an unsafe operation may cause significant human,
economic or mission losses. The focus of this chapter is on safety and security of robot
control software. This software allows unprecedented complexity of robotic systems, which
goes beyond the ability of current engineering techniques for assuring acceptable risk.
Most of the publications on safety has a form of recommendations on providing safe
environment for robot operators, like the Occupational Safety and Health Administration
regulations or the more recent NASA recommendations for space robots. This approach is
effective when accidents are primarily caused by hardware components failures.
As software becomes more and more important in robot control, we have to consider ways
to prevent accidents caused by software.
Robot control software consists of many interacting components. Accidents arise in the
interactions among the components rather than the failure of individual components.
The need for safety is obvious, but how to ensure it is less obvious. Autonomous robots may
operate unattended and through an unsafe operation may cause significant human,
economic, or mission losses. Similar problems were encountered early on in manufacturing
automation; but autonomous mobile robots may change their behaviour and operate in
much less controlled environments.
We will review at first the principal concepts of system safety like risk and hazard and some
traditional approaches to dealing with them. We consider security as a subset of safety and
we will present our point of view on this issue.
The present trend to make the robots more autonomous requires new approaches to deal
with much more complex problems of their safety. After review of several robot control
architectures from the viewpoint of their safety we present an approach based on systems
theory. While the theory was developed long time ago it turns out very useful to ensure

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 40

safety of complex software systems. We apply it in so called intention specification, which
allows a designer to explain why a specific decision was made and to introduce safety
constraints.

2. Principal concepts of system safety
Safety refers to the ability of a system to operate without causing an accident or an
unacceptable loss (Leveson 1995). An accident is an undesired and unplanned (not
necessarily unexpected) event that results in (at least) a specified level of loss. To prevent
accidents, something must be known about their precursors, and these precursors must be
under control of the system designer. To satisfy these requirements, system safety uses the
concept of a hazard. There are many definitions of hazards. We will define a hazard as a
state or set of conditions of a system that, together with other conditions in the environment
of the system may lead to an accident (or loss). We define therefore a hazard with respect to
the environment of the robot.
In case of physical systems, existence of a hazard depends on how the boundaries of the
system have been drawn – they must include the object that is damaged plus all the
conditions necessary for the loss.
This does not apply to software, since it is not a physical object, only an abstraction. Thus
software by itself is not safe or unsafe, although it could theoretically become unsafe when
executed on a computer. Thus we can talk only about the safety of software and its hazards
in the context of a particular system design within which it is being used. Otherwise, the
hazards associated with software do not exist. Due to this, the system safety engineers
prefer to use the term software system safety instead of software safety.
A hazard has two important characteristics: severity and likelihood of occurrence. Hazard
severity is defined as the worst possible accident that could result from the hazard given the
environment in its most unfavourable state.
The hazard likelihood of occurrence can be specified either qualitatively or quantitatively.
Unfortunately, when the system is being designed and hazards are being analysed and
ranked as to which should be eliminated first, the information needed to evaluate the
likelihood accurately is almost never available. It means, the best what can be done is to
evaluate the likelihood qualitatively.
The combination of severity and likelihood of occurrence is often called the hazard level.
Hazard level, along with two other factors related hazards, are used in the definition of risk.
Risk is the hazard level combined with (1) the likelihood of the hazard leading to an
accident and (2) hazard exposure or duration. Duration is a component of a risk, since the
longer the hazardous state exists, the greatest the chance is that the other prerequisite
conditions will occur.
The relationship between hardware and software hazards is shown on Fig.1, where:
Design dysfunction means any hazard inadvertently built-into the system design due to
design and integration, e.g.: design error, design interface error/oversight, design
integration error/oversight, tool errors;
Code error is any hazard inadvertently built-into the system design due to a coding error,
e.g.: wrong sign (+/-), endless loop, language error;
Hardware induced software error - any hazard resulting from hardware failure causing
safety critical software error, e.g. memory error, memory jump, bit error, change of value of
a critical variable.

Development of Safe and Secure Control Software for Autonomous Mobile Robots 41

Risk = ?

Risk = Probability x Severity

The 3 ways SW can cause
safety related hazards.

P = 1.0 x e-T P = 1 or 0 P = 1 or 0

Hardware
Component

Software
Component

Software
Code Error

Hardware
Induced Error

Software
Design Dysfunction

Hazard
(SW Related)

Immature SW ?
Fig. 1. Generic software hazard model

As an example of risk evaluation let’s take the case when a computer controls movements
of a robot.
The risk is then a function of the
- probability that the computer causes a spurious or unexpected robot movement,
- probability that a human is in the field of movements,
- probability that the human has no time to move or will fail to diagnose the robot failure,
- severity of worst-case consequences.
If the computer executes a robot control software monitoring the state of the system and
including some safety function, then the risk is a function of the
- probability of a dangerous condition arising,
- probability of the computer not detecting it,
- probability of the computer not initiating its safety function,
- probability of the safety function not preventing the hazard,
- probability of conditions occurring that will cause the hazard to lead to an accident,
- worst-case severity of the accident.
In almost all cases, the correct way to combine the elements of the risk function are
unknown, as are the values of the parameters of the function.
Traditional hazard analyses consist of identifying events that could lead the system to a
hazardous state. These events are usually organized into causal chains or trees. Popular
event-based hazard analysis techniques include Fault Tree Analysis (FTA) and Failure
Modes and Effects Criticality Analysis (FMECA). Because of their reliance on discrete failure
events, neither of these techniques adequately handles software or system accidents that
result from dysfunctional interactions between system components.
Hazard analysis usually requires searching for potential sources of hazards through large
system state spaces. To handle this complexity it is possible to use a State Machine Hazard
Analysis (Leveson 1987). While any state machine modeling language can be used, it is more
efficient to use a language providing higher-level abstractions, such as Statecharts (Harel 1987).

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 40

safety of complex software systems. We apply it in so called intention specification, which
allows a designer to explain why a specific decision was made and to introduce safety
constraints.

2. Principal concepts of system safety
Safety refers to the ability of a system to operate without causing an accident or an
unacceptable loss (Leveson 1995). An accident is an undesired and unplanned (not
necessarily unexpected) event that results in (at least) a specified level of loss. To prevent
accidents, something must be known about their precursors, and these precursors must be
under control of the system designer. To satisfy these requirements, system safety uses the
concept of a hazard. There are many definitions of hazards. We will define a hazard as a
state or set of conditions of a system that, together with other conditions in the environment
of the system may lead to an accident (or loss). We define therefore a hazard with respect to
the environment of the robot.
In case of physical systems, existence of a hazard depends on how the boundaries of the
system have been drawn – they must include the object that is damaged plus all the
conditions necessary for the loss.
This does not apply to software, since it is not a physical object, only an abstraction. Thus
software by itself is not safe or unsafe, although it could theoretically become unsafe when
executed on a computer. Thus we can talk only about the safety of software and its hazards
in the context of a particular system design within which it is being used. Otherwise, the
hazards associated with software do not exist. Due to this, the system safety engineers
prefer to use the term software system safety instead of software safety.
A hazard has two important characteristics: severity and likelihood of occurrence. Hazard
severity is defined as the worst possible accident that could result from the hazard given the
environment in its most unfavourable state.
The hazard likelihood of occurrence can be specified either qualitatively or quantitatively.
Unfortunately, when the system is being designed and hazards are being analysed and
ranked as to which should be eliminated first, the information needed to evaluate the
likelihood accurately is almost never available. It means, the best what can be done is to
evaluate the likelihood qualitatively.
The combination of severity and likelihood of occurrence is often called the hazard level.
Hazard level, along with two other factors related hazards, are used in the definition of risk.
Risk is the hazard level combined with (1) the likelihood of the hazard leading to an
accident and (2) hazard exposure or duration. Duration is a component of a risk, since the
longer the hazardous state exists, the greatest the chance is that the other prerequisite
conditions will occur.
The relationship between hardware and software hazards is shown on Fig.1, where:
Design dysfunction means any hazard inadvertently built-into the system design due to
design and integration, e.g.: design error, design interface error/oversight, design
integration error/oversight, tool errors;
Code error is any hazard inadvertently built-into the system design due to a coding error,
e.g.: wrong sign (+/-), endless loop, language error;
Hardware induced software error - any hazard resulting from hardware failure causing
safety critical software error, e.g. memory error, memory jump, bit error, change of value of
a critical variable.

Development of Safe and Secure Control Software for Autonomous Mobile Robots 41

Risk = ?

Risk = Probability x Severity

The 3 ways SW can cause
safety related hazards.

P = 1.0 x e-T P = 1 or 0 P = 1 or 0

Hardware
Component

Software
Component

Software
Code Error

Hardware
Induced Error

Software
Design Dysfunction

Hazard
(SW Related)

Immature SW ?
Fig. 1. Generic software hazard model

As an example of risk evaluation let’s take the case when a computer controls movements
of a robot.
The risk is then a function of the
- probability that the computer causes a spurious or unexpected robot movement,
- probability that a human is in the field of movements,
- probability that the human has no time to move or will fail to diagnose the robot failure,
- severity of worst-case consequences.
If the computer executes a robot control software monitoring the state of the system and
including some safety function, then the risk is a function of the
- probability of a dangerous condition arising,
- probability of the computer not detecting it,
- probability of the computer not initiating its safety function,
- probability of the safety function not preventing the hazard,
- probability of conditions occurring that will cause the hazard to lead to an accident,
- worst-case severity of the accident.
In almost all cases, the correct way to combine the elements of the risk function are
unknown, as are the values of the parameters of the function.
Traditional hazard analyses consist of identifying events that could lead the system to a
hazardous state. These events are usually organized into causal chains or trees. Popular
event-based hazard analysis techniques include Fault Tree Analysis (FTA) and Failure
Modes and Effects Criticality Analysis (FMECA). Because of their reliance on discrete failure
events, neither of these techniques adequately handles software or system accidents that
result from dysfunctional interactions between system components.
Hazard analysis usually requires searching for potential sources of hazards through large
system state spaces. To handle this complexity it is possible to use a State Machine Hazard
Analysis (Leveson 1987). While any state machine modeling language can be used, it is more
efficient to use a language providing higher-level abstractions, such as Statecharts (Harel 1987).

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 42

The tasks of the software development process that relates to software hazard analysis include:
- Tracing identified system hazards to the software-hardware interface and then into

requirements and constraints on software behavior.
- Showing the consistency of the software safety constraints with the software

requirements specification and demonstrating the completeness of the software
requirements specification.

In addition, because software can do more than what is specified in the requirements (the
problem of unintended functions), the code itself must be analyzed to ensure that it cannot
exhibit hazardous behavior.

3. Security as a subset of safety
Safety and security are closely related, and their similarity can be used to the advantage of
both (Barchanski J.A., 2004),. Both deal with threats or risks – one with threats to life or
property, and the other with threats to privacy or security. Both often involve negative
requirements or constraints that may conflict with some important system goals. Both involve
protection against losses, although the type of losses may be different. Both involve global
system properties that are difficult to deal with outside of the system context. Both involve
requirements that are considered of supreme importance in deciding whether the system can
and should be used – that is particularly high level of assurance may be needed, and testing
alone is insufficient to establish those levels. In fact, a higher level of assurance that a system is
safe or secure may be needed than that system performs its intended functions.
While we will consider mostly the issues of illegitimate access and usage of a robot there is
another aspect less often encountered – denial of access. It is a threat in which the
communication channel is made unusable by an attacker who transmits noise on purpose
(jamming). While it is not possible to survive jamming when the attacker is all powerful and
can make the entire spectrum unusable over the spatio-temporal range of interest, it may be
possible to drive up the cost of jamming. Two widely used techniques for this are
frequency hopping and direct sequence spread. In both techniques the receiver must know
the pseudorandom sequence of frequencies used by the transmitter. An attacker wishing to
jam the channel must either discover the sequence or jam a sufficient number of frequencies,
therefore employing much more power (and money) than the transmitter.
It should be clear that this protection is conditional on transmitter and receiver having
previously established some shared key (e.g. by imprinting as described in the following
paragraph).
There are also important differences between safety and security. Security focuses on
malicious actions, whereas safety is also concerned with well intended actions. In addition,
the primary emphasis in security traditionally has been preventing unauthorized access to
classified information, as opposed to preventing more general malicious activities. Note,
however, that if an accident or loss event may be caused by illegitimate or malicious access
or usage of a system, then security becomes a subset of safety.

4. Safety aspects of autonomous robots
The concept of autonomy plays an important role in robotics. It relates to an individual or
collective ability to decide and act consistently without outside control or intervention.
Autonomous robots hold the promise of new operation possibilities, easier design and
development, and lower operating costs.
Achieving safety of autonomous robots is much more challenging than teleoperated robots.

Development of Safe and Secure Control Software for Autonomous Mobile Robots 43

To improve safety of autonomous systems, adjustable autonomy can be used, in which the
robot is autonomous to some degree only so a human may still retain more or less control of
its behavior. While verification of the safety of a fully autonomous robot designed for a
critical mission requires extensive test and analysis, safety verification of a semi-
autonomous robot designed for the same mission is less strict – it includes only design
requirements analysis and testing.
Mobile robots control software can implement different robot control architectures.
The oldest architectures were of a hierarchical type, highly influenced by the AI research
of its time. This meant a system having an elaborate model of the world, using sensors to
update this model, and to draw conclusions based on the updated model. This is often
called the sense-plan-act paradigm or deliberative architecture. The hierarchical
architectures did not perform well partly because of the difficulty in modeling of the world,
partly because of relying too much on inadequate sensors.
In 1987 Rodney Brooks revolutionized the field by presenting an architecture based on purely
reactive behaviours with little or no knowledge of the world. The reactive architecture is
inherently parallel, fast, operates on short time scales and is scalable. There are two general
kinds of reactive architectures – subsumption and potential field (Arkin 1999). Reactive
architectures eliminate planning and any functions that involve remembering or reasoning
about the global state of the robot relative to its environment. That means that a robot cannot
plan optimal trajectories, make maps, monitor its own performance or even select the best
behaviours to use to accomplish a task (general planning).
The solutions to the drawbacks of reactive architectures appeared in hybrid architectures
combining the reactive architectures with modified deliberative architectures. They combine
different representations and time scales, combine closed-loop and open loop execution,
may re-use plans and allow dynamic replanning [Murphy 2000].
There is a number of other robot architectures designed independently of the above classes
(e.g., Alami et al, 1998). Especially interesting are architectures including learning or
adaptive components. The ability to adapt is key to survival in dynamic environments.
When robots are adaptive, the following questions need to be addressed:
1. Is learning applied to one or more robots?
2. If multiple robots are adaptive, are they competing or cooperating?
3. What element(s) of the robot(s) get adapted?
4. What techniques are used to adapt?
Learning may alter some components of robot strategy, for example, it may change the
choice of actions to take in response to a stimulus. Learning may be motivated by
observation, it could be initiated in response to success/failure, or be prompted by a general
need for performance improvement. The motivation influences the choice of learning
technique. Nearly every learning technique has been used for robots. The two most
prevalent techniques are reinforcement learning (RL) and evolutionary algorithms (EA).
A very popular form of RL is Q-learning, where robots update their probabilities of taking
actions in a given situation based on penalty/reward.
Introduction of learning makes behavior of robots significantly harder to predict. It is
necessary therefore to develop efficient methods for determining whether the behavior of
learning robots remains within the bounds of prespecified constraints (properties) after
learning. This includes verifying that properties are preserved for single robots as well as
verifying that properties are preserved for multirobot systems. We want the robots to be not
only adaptive, but as well predictable and timely. Predictability can be achieved by formal

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 42

The tasks of the software development process that relates to software hazard analysis include:
- Tracing identified system hazards to the software-hardware interface and then into

requirements and constraints on software behavior.
- Showing the consistency of the software safety constraints with the software

requirements specification and demonstrating the completeness of the software
requirements specification.

In addition, because software can do more than what is specified in the requirements (the
problem of unintended functions), the code itself must be analyzed to ensure that it cannot
exhibit hazardous behavior.

3. Security as a subset of safety
Safety and security are closely related, and their similarity can be used to the advantage of
both (Barchanski J.A., 2004),. Both deal with threats or risks – one with threats to life or
property, and the other with threats to privacy or security. Both often involve negative
requirements or constraints that may conflict with some important system goals. Both involve
protection against losses, although the type of losses may be different. Both involve global
system properties that are difficult to deal with outside of the system context. Both involve
requirements that are considered of supreme importance in deciding whether the system can
and should be used – that is particularly high level of assurance may be needed, and testing
alone is insufficient to establish those levels. In fact, a higher level of assurance that a system is
safe or secure may be needed than that system performs its intended functions.
While we will consider mostly the issues of illegitimate access and usage of a robot there is
another aspect less often encountered – denial of access. It is a threat in which the
communication channel is made unusable by an attacker who transmits noise on purpose
(jamming). While it is not possible to survive jamming when the attacker is all powerful and
can make the entire spectrum unusable over the spatio-temporal range of interest, it may be
possible to drive up the cost of jamming. Two widely used techniques for this are
frequency hopping and direct sequence spread. In both techniques the receiver must know
the pseudorandom sequence of frequencies used by the transmitter. An attacker wishing to
jam the channel must either discover the sequence or jam a sufficient number of frequencies,
therefore employing much more power (and money) than the transmitter.
It should be clear that this protection is conditional on transmitter and receiver having
previously established some shared key (e.g. by imprinting as described in the following
paragraph).
There are also important differences between safety and security. Security focuses on
malicious actions, whereas safety is also concerned with well intended actions. In addition,
the primary emphasis in security traditionally has been preventing unauthorized access to
classified information, as opposed to preventing more general malicious activities. Note,
however, that if an accident or loss event may be caused by illegitimate or malicious access
or usage of a system, then security becomes a subset of safety.

4. Safety aspects of autonomous robots
The concept of autonomy plays an important role in robotics. It relates to an individual or
collective ability to decide and act consistently without outside control or intervention.
Autonomous robots hold the promise of new operation possibilities, easier design and
development, and lower operating costs.
Achieving safety of autonomous robots is much more challenging than teleoperated robots.

Development of Safe and Secure Control Software for Autonomous Mobile Robots 43

To improve safety of autonomous systems, adjustable autonomy can be used, in which the
robot is autonomous to some degree only so a human may still retain more or less control of
its behavior. While verification of the safety of a fully autonomous robot designed for a
critical mission requires extensive test and analysis, safety verification of a semi-
autonomous robot designed for the same mission is less strict – it includes only design
requirements analysis and testing.
Mobile robots control software can implement different robot control architectures.
The oldest architectures were of a hierarchical type, highly influenced by the AI research
of its time. This meant a system having an elaborate model of the world, using sensors to
update this model, and to draw conclusions based on the updated model. This is often
called the sense-plan-act paradigm or deliberative architecture. The hierarchical
architectures did not perform well partly because of the difficulty in modeling of the world,
partly because of relying too much on inadequate sensors.
In 1987 Rodney Brooks revolutionized the field by presenting an architecture based on purely
reactive behaviours with little or no knowledge of the world. The reactive architecture is
inherently parallel, fast, operates on short time scales and is scalable. There are two general
kinds of reactive architectures – subsumption and potential field (Arkin 1999). Reactive
architectures eliminate planning and any functions that involve remembering or reasoning
about the global state of the robot relative to its environment. That means that a robot cannot
plan optimal trajectories, make maps, monitor its own performance or even select the best
behaviours to use to accomplish a task (general planning).
The solutions to the drawbacks of reactive architectures appeared in hybrid architectures
combining the reactive architectures with modified deliberative architectures. They combine
different representations and time scales, combine closed-loop and open loop execution,
may re-use plans and allow dynamic replanning [Murphy 2000].
There is a number of other robot architectures designed independently of the above classes
(e.g., Alami et al, 1998). Especially interesting are architectures including learning or
adaptive components. The ability to adapt is key to survival in dynamic environments.
When robots are adaptive, the following questions need to be addressed:
1. Is learning applied to one or more robots?
2. If multiple robots are adaptive, are they competing or cooperating?
3. What element(s) of the robot(s) get adapted?
4. What techniques are used to adapt?
Learning may alter some components of robot strategy, for example, it may change the
choice of actions to take in response to a stimulus. Learning may be motivated by
observation, it could be initiated in response to success/failure, or be prompted by a general
need for performance improvement. The motivation influences the choice of learning
technique. Nearly every learning technique has been used for robots. The two most
prevalent techniques are reinforcement learning (RL) and evolutionary algorithms (EA).
A very popular form of RL is Q-learning, where robots update their probabilities of taking
actions in a given situation based on penalty/reward.
Introduction of learning makes behavior of robots significantly harder to predict. It is
necessary therefore to develop efficient methods for determining whether the behavior of
learning robots remains within the bounds of prespecified constraints (properties) after
learning. This includes verifying that properties are preserved for single robots as well as
verifying that properties are preserved for multirobot systems. We want the robots to be not
only adaptive, but as well predictable and timely. Predictability can be achieved by formal

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 44

verification while timeliness by streamlining reverification, using the knowledge of what
learning was done. Fast reverification after learning must include proofs that certain useful
learning operators (in case of EA) are a priori guaranteed to be “safe” with respect to some
important classes of properties, i.e. if the property holds for the robot prior to learning, then
it is guaranteed to still hold after learning (Gordon-Spears, 2001). If a robot uses these
“safe” learning operators, it will be guaranteed to preserve the properties with no
reverification required.

5. Hazard analysis of an exemplary case
As an example we will consider a mobile robot acting in a world where the three Laws of
Robotics (Asimov 1950) should be satisfied. We will be concerned with the hazards resulting
from the first two Laws, which are relevant for human-robot interactions :
First Law: “A robot may not injure a human being, or through inaction, may not allow a
human being to come to harm”.
From the first half of the Law: “A robot may not injure a human being” – the hazard is a
harmful physical contact with a human.
It can be mitigated by a safety constraint inherent in the robot behavior avoid _obstacles.
The second part of the law :“A robot through inaction, may not allow a human being to
come to harm” envisioned by Asimov as a kind of action requiring sacrifice of robot
existence to protect its master, is left for future generations of roboticists. At present it may
be implemented at most aposteriori by search and rescue robots.
The second law: “A robot must obey the orders, given to it by human beings except where
such orders would conflict with the First Law.”
This law has to do with tasks commanded by a human, like: move-to-goal, grasp, collect-
pucks, etc. The robot must be able to communicate with a human operator to execute his
orders. The examples of hazards violating this law are communication security hazards – e.g.
receiving from an illegitimate operator false commands or requests which may cause wrong
actions. To eliminate such hazards it must be possible to authenticate the human operator.
Most conventional authentication protocols (e.g. Kerberos) require usage of an online
server. This is out of the question here. Another widely used authentication protocol which
seems to be more suitable is one based on public key cryptography. It was in fact proposed
for authentication of cooperating autonomous digger and dumper truck [Chandler et al
2001]. However the problem of online access to the server appears here as well. What we
need is to be able to create a secure transient association. As well as being secure, the
association must also be transient. When an operator changes, the robot has to obey the new
operator. A solution for this dilemma is to use a metaphor of a duckling emerging from its
egg – it will recognize as its mother the first moving object it sees that makes a sound,
regardless of what it looks like: this phenomenon is called imprinting. Similarly, our robot
will recognize as its owner the first entity that gives it a secret key. As soon as this
imprinting key is received, the robot is no longer a newborn and will stay faithful to its
owner for the rest of its life. The association is secure.
To make the association transient, the robot must be designed so it can die (loose its
memory) and resurrect (be imprinted again). This security policy model, called
“Resurrecting Duckling” (Stajano 2002) can be used not only in the communications
between a human and a robot but between two robots as well, enabling robot-to-robot
secure interaction.
We will focus in the following on the hazard involving collision with an obstacle, whether it
is a human or not. To deal with this hazard, a robot should be able first to detect the

Development of Safe and Secure Control Software for Autonomous Mobile Robots 45

obstacle, then recognize it and finally execute the avoidance manoeuvre. Obstacle
recognition is useful only if the robot is supposed to cooperate with a human or another
robot. Recognition of a human is quite a difficult task. It is necessary to use for this some
special sensors (e.g. a suite of vision and thermal sensors). Recognition of another robot may
be easier as it is possible to give the robot a special appearance (e.g. color). To reduce the
risk of collision, robots must have some kind of a behavior to avoid obstacles. This behavior
should be active all the time, concurrently with any other behavior active at the moment. We
will discuss in the following how efficient are the obstacle avoidance behaviors in different
robot control architectures.

6. Safety of different robot control architectures
6.1 Reactive architectures
As we have noticed above, the hierarchical architecture does not provide adequate
functionality for obstacle avoidance. Much better equipped for this purpose are reactive
architectures. The main reason for this is their direct connection of sensors to actuators. Even
though the architecture does not have a memory-based world model, but as Brooks said
“the world itself is its best model.” Continuous sensing guarantees that it is always current,
though not always correct, due to the sensors errors or failures. One of the characteristics of
reactive architectures is their ability for graceful degradation of emergent behavior (Jones
2004). Let us consider a mobile robot moving to a goal and equipped with a number of
different sensors. In the simplest case it will not discriminate between different kinds of
obstacles. Failure of a sensor to detect an obstacle is called false negative. A false positive
occurs when a sensor reports a condition that does not exists. From the viewpoint of safety a
false negative implies a hazard to be dealt with. One way to mitigate this hazard is to use a
set of different sensors invoking suitable behaviors. For example a robot may use for long
distance journey a sonar-avoid behavior. While still some distance off, the robot will turn
away from sonar detected obstacles. But sonar sensors are easily fooled. Smooth surfaces
struck at shallow angles reflect sonar beams forward, not back toward the robot – thus no
echo is ever detected, causing the sonar system to report a false negative. When this
happens, the robot believes that the path is clear, even if it is not. In this case, the sonar-
avoid behavior fails to trigger. But as the robot approaches the acoustically specular object,
typically the infrared (IR) detectors will sense an obstacle and drive the robot away. But
perhaps along with being too smooth and set at too oblique an angle, the obstacle’s surface
is also too dark to reflect IR radiation reliably back to the IR obstacle detector. Thus the IR
detector may also fail to sense the object, generating a false negative of its own.
With no signal from the IR detector, the IR-avoid behavior does not trigger and the robot
collides with the obstacle. The robot bumper now compresses and triggers the Bumper-
escape behavior. Having failed to avoid the obstacle, the robot must now back up and try to
turn away. Typically, the bump sensors can detect, at least crudely, where the collision has
occurred, say, on the right, or the left of the robot. This knowledge can give the robot an
indication of how to respond.
The performance of the robot may suffer, but the robot can still continue its mission. But
suppose there is yet another difficulty, say, that the bumper is not a full-coverage bumper or
that it has a dead spot at some point and it is exactly that point that the troublesome smooth,
dark oblique object contacts the bumper. Now the bumper fails to report the collision and
accordingly, the Bumper-escape behavior never triggers. We are left with our robot pressing
against the object with all its might. Fortunately, an over-current sensor is available to detect
this condition. When the drive motors are asked to work too hard, as can happen, when

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 44

verification while timeliness by streamlining reverification, using the knowledge of what
learning was done. Fast reverification after learning must include proofs that certain useful
learning operators (in case of EA) are a priori guaranteed to be “safe” with respect to some
important classes of properties, i.e. if the property holds for the robot prior to learning, then
it is guaranteed to still hold after learning (Gordon-Spears, 2001). If a robot uses these
“safe” learning operators, it will be guaranteed to preserve the properties with no
reverification required.

5. Hazard analysis of an exemplary case
As an example we will consider a mobile robot acting in a world where the three Laws of
Robotics (Asimov 1950) should be satisfied. We will be concerned with the hazards resulting
from the first two Laws, which are relevant for human-robot interactions :
First Law: “A robot may not injure a human being, or through inaction, may not allow a
human being to come to harm”.
From the first half of the Law: “A robot may not injure a human being” – the hazard is a
harmful physical contact with a human.
It can be mitigated by a safety constraint inherent in the robot behavior avoid _obstacles.
The second part of the law :“A robot through inaction, may not allow a human being to
come to harm” envisioned by Asimov as a kind of action requiring sacrifice of robot
existence to protect its master, is left for future generations of roboticists. At present it may
be implemented at most aposteriori by search and rescue robots.
The second law: “A robot must obey the orders, given to it by human beings except where
such orders would conflict with the First Law.”
This law has to do with tasks commanded by a human, like: move-to-goal, grasp, collect-
pucks, etc. The robot must be able to communicate with a human operator to execute his
orders. The examples of hazards violating this law are communication security hazards – e.g.
receiving from an illegitimate operator false commands or requests which may cause wrong
actions. To eliminate such hazards it must be possible to authenticate the human operator.
Most conventional authentication protocols (e.g. Kerberos) require usage of an online
server. This is out of the question here. Another widely used authentication protocol which
seems to be more suitable is one based on public key cryptography. It was in fact proposed
for authentication of cooperating autonomous digger and dumper truck [Chandler et al
2001]. However the problem of online access to the server appears here as well. What we
need is to be able to create a secure transient association. As well as being secure, the
association must also be transient. When an operator changes, the robot has to obey the new
operator. A solution for this dilemma is to use a metaphor of a duckling emerging from its
egg – it will recognize as its mother the first moving object it sees that makes a sound,
regardless of what it looks like: this phenomenon is called imprinting. Similarly, our robot
will recognize as its owner the first entity that gives it a secret key. As soon as this
imprinting key is received, the robot is no longer a newborn and will stay faithful to its
owner for the rest of its life. The association is secure.
To make the association transient, the robot must be designed so it can die (loose its
memory) and resurrect (be imprinted again). This security policy model, called
“Resurrecting Duckling” (Stajano 2002) can be used not only in the communications
between a human and a robot but between two robots as well, enabling robot-to-robot
secure interaction.
We will focus in the following on the hazard involving collision with an obstacle, whether it
is a human or not. To deal with this hazard, a robot should be able first to detect the

Development of Safe and Secure Control Software for Autonomous Mobile Robots 45

obstacle, then recognize it and finally execute the avoidance manoeuvre. Obstacle
recognition is useful only if the robot is supposed to cooperate with a human or another
robot. Recognition of a human is quite a difficult task. It is necessary to use for this some
special sensors (e.g. a suite of vision and thermal sensors). Recognition of another robot may
be easier as it is possible to give the robot a special appearance (e.g. color). To reduce the
risk of collision, robots must have some kind of a behavior to avoid obstacles. This behavior
should be active all the time, concurrently with any other behavior active at the moment. We
will discuss in the following how efficient are the obstacle avoidance behaviors in different
robot control architectures.

6. Safety of different robot control architectures
6.1 Reactive architectures
As we have noticed above, the hierarchical architecture does not provide adequate
functionality for obstacle avoidance. Much better equipped for this purpose are reactive
architectures. The main reason for this is their direct connection of sensors to actuators. Even
though the architecture does not have a memory-based world model, but as Brooks said
“the world itself is its best model.” Continuous sensing guarantees that it is always current,
though not always correct, due to the sensors errors or failures. One of the characteristics of
reactive architectures is their ability for graceful degradation of emergent behavior (Jones
2004). Let us consider a mobile robot moving to a goal and equipped with a number of
different sensors. In the simplest case it will not discriminate between different kinds of
obstacles. Failure of a sensor to detect an obstacle is called false negative. A false positive
occurs when a sensor reports a condition that does not exists. From the viewpoint of safety a
false negative implies a hazard to be dealt with. One way to mitigate this hazard is to use a
set of different sensors invoking suitable behaviors. For example a robot may use for long
distance journey a sonar-avoid behavior. While still some distance off, the robot will turn
away from sonar detected obstacles. But sonar sensors are easily fooled. Smooth surfaces
struck at shallow angles reflect sonar beams forward, not back toward the robot – thus no
echo is ever detected, causing the sonar system to report a false negative. When this
happens, the robot believes that the path is clear, even if it is not. In this case, the sonar-
avoid behavior fails to trigger. But as the robot approaches the acoustically specular object,
typically the infrared (IR) detectors will sense an obstacle and drive the robot away. But
perhaps along with being too smooth and set at too oblique an angle, the obstacle’s surface
is also too dark to reflect IR radiation reliably back to the IR obstacle detector. Thus the IR
detector may also fail to sense the object, generating a false negative of its own.
With no signal from the IR detector, the IR-avoid behavior does not trigger and the robot
collides with the obstacle. The robot bumper now compresses and triggers the Bumper-
escape behavior. Having failed to avoid the obstacle, the robot must now back up and try to
turn away. Typically, the bump sensors can detect, at least crudely, where the collision has
occurred, say, on the right, or the left of the robot. This knowledge can give the robot an
indication of how to respond.
The performance of the robot may suffer, but the robot can still continue its mission. But
suppose there is yet another difficulty, say, that the bumper is not a full-coverage bumper or
that it has a dead spot at some point and it is exactly that point that the troublesome smooth,
dark oblique object contacts the bumper. Now the bumper fails to report the collision and
accordingly, the Bumper-escape behavior never triggers. We are left with our robot pressing
against the object with all its might. Fortunately, an over-current sensor is available to detect
this condition. When the drive motors are asked to work too hard, as can happen, when

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 46

they force the robot against an object, motor current goes up. Too high current for too long a
time is sensed and is used to trigger a Stall-escape behavior. Although there is no reliable
way to tell where the blockage is located with respect to the robot, Stall-escape can at least
command the robot to retreat and spin. So, the robot still can move towards its goal. We
have assumed that all the problems are caused by a difficult-to-detect obstacle. But the same
behavior would be produced by some inoperative sensors.
Note that the emergent desirable behavior does not require writing a special code that
would explicitly instruct the robot to determine if a sensor is working properly. It is just the
feature of behavior-based architecture.

Fig. 2. Reactive architecture with graceful degradation.

The above examples show a crucial difference between the behavior-based approach of
reactive architectures and the traditional deliberative approach. In reactive architectures we
do not employ a single expensive sensor from which we must demand unattainable levels of
precision and reliability. Rather we achieve superior results using a combination of
relatively unreliable systems that work together to deliver safe behavior.
In the original subsumption architecture the speed was decided by the behavior subsuming
all the other behaviors. Quite often the speed was fixed – the same for all the winning
behaviors.
In case of reactive architecture using potential fields for coordination of behaviors (Arkin
1999) the emergent speed is the magnitude of the vector summed from all the active
behaviors. It allows therefore to avoid obstacles while moving towards a goal – providing
better overall behavior than subsumption architecture.

6.2 Hybrid architectures
The reactive architectures do not have an ability to monitor performance of the robot or to
use e.g. an optimal speed and path to a destination, while avoiding obstacle. This can be

Development of Safe and Secure Control Software for Autonomous Mobile Robots 47

mitigated by appropriately designed deliberative layer of a hybrid architecture. For
example, in managerial architectures (Murphy 2000), the deliberative layer may include a
Sensing Manager monitoring performance of the robot. If a behavior fails or a perceptual
schema detects that sensor values are not consistent or reasonable, the Sensing Manager is
alerted. It can then identify alternative perceptual schemas, or even behaviors, to replace the
problematic behaviour immediately. Imagine a mobile robot in a convoy of robots hauling
food to refugees. If the robot had a glitch in a sensor, it should not suddenly stop and think
about a problem. Instead it should immediately switch to a back-up plan or even to
smoothly slow down while it identifies a back-up plan. Otherwise, the whole convoy would
stop, there might be wrecks, etc. The sensing manager working in the background mode,
can attempt to diagnose the cause of the problem and correct it.
In some managerial architectures (e.g. SFX (Murphy 1996) speed control is considered a
separate behavior. The safe speed of a robot depends on many influences. If the robot
cannot turn in place, it will need to be operating at a slow speed to make the turn without
overshooting. Likewise, it may go slower as it goes up or down hills. These influences are
derived from sensors, and the action is a template (the robot always slows down on hills), so
speed control is a legitimate behavior. But the other behaviors should have some influence
on the speed as well. So, these other strategic behaviors contribute a strategic speed to the
speed control behaviour. If the strategic speed is less than the safe speed computed from the
tactical influences, then the output speed is the strategic speed. But if the tactical safe speed
is lower, the output speed is the tactical speed. Tactical behaviors serve as filters on strategic
commands to ensure that the robot acts in a safe manner in as close accordance with the
strategic intent as possible.

Fig. 3. Strategic and tactical behaviors for path following in SFX architecture.

An example of the Model-oriented architectures is the Task Control Architecture (TCA)
(Simmons 1999). TCA has a flavor of an operating system. There are no behaviors per se,
however many of low level tasks resemble behaviors. The reactive layer in this architecture
called Obstacle Avoidance Layer takes the desired heading and adapts it to the obstacles

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 46

they force the robot against an object, motor current goes up. Too high current for too long a
time is sensed and is used to trigger a Stall-escape behavior. Although there is no reliable
way to tell where the blockage is located with respect to the robot, Stall-escape can at least
command the robot to retreat and spin. So, the robot still can move towards its goal. We
have assumed that all the problems are caused by a difficult-to-detect obstacle. But the same
behavior would be produced by some inoperative sensors.
Note that the emergent desirable behavior does not require writing a special code that
would explicitly instruct the robot to determine if a sensor is working properly. It is just the
feature of behavior-based architecture.

Fig. 2. Reactive architecture with graceful degradation.

The above examples show a crucial difference between the behavior-based approach of
reactive architectures and the traditional deliberative approach. In reactive architectures we
do not employ a single expensive sensor from which we must demand unattainable levels of
precision and reliability. Rather we achieve superior results using a combination of
relatively unreliable systems that work together to deliver safe behavior.
In the original subsumption architecture the speed was decided by the behavior subsuming
all the other behaviors. Quite often the speed was fixed – the same for all the winning
behaviors.
In case of reactive architecture using potential fields for coordination of behaviors (Arkin
1999) the emergent speed is the magnitude of the vector summed from all the active
behaviors. It allows therefore to avoid obstacles while moving towards a goal – providing
better overall behavior than subsumption architecture.

6.2 Hybrid architectures
The reactive architectures do not have an ability to monitor performance of the robot or to
use e.g. an optimal speed and path to a destination, while avoiding obstacle. This can be

Development of Safe and Secure Control Software for Autonomous Mobile Robots 47

mitigated by appropriately designed deliberative layer of a hybrid architecture. For
example, in managerial architectures (Murphy 2000), the deliberative layer may include a
Sensing Manager monitoring performance of the robot. If a behavior fails or a perceptual
schema detects that sensor values are not consistent or reasonable, the Sensing Manager is
alerted. It can then identify alternative perceptual schemas, or even behaviors, to replace the
problematic behaviour immediately. Imagine a mobile robot in a convoy of robots hauling
food to refugees. If the robot had a glitch in a sensor, it should not suddenly stop and think
about a problem. Instead it should immediately switch to a back-up plan or even to
smoothly slow down while it identifies a back-up plan. Otherwise, the whole convoy would
stop, there might be wrecks, etc. The sensing manager working in the background mode,
can attempt to diagnose the cause of the problem and correct it.
In some managerial architectures (e.g. SFX (Murphy 1996) speed control is considered a
separate behavior. The safe speed of a robot depends on many influences. If the robot
cannot turn in place, it will need to be operating at a slow speed to make the turn without
overshooting. Likewise, it may go slower as it goes up or down hills. These influences are
derived from sensors, and the action is a template (the robot always slows down on hills), so
speed control is a legitimate behavior. But the other behaviors should have some influence
on the speed as well. So, these other strategic behaviors contribute a strategic speed to the
speed control behaviour. If the strategic speed is less than the safe speed computed from the
tactical influences, then the output speed is the strategic speed. But if the tactical safe speed
is lower, the output speed is the tactical speed. Tactical behaviors serve as filters on strategic
commands to ensure that the robot acts in a safe manner in as close accordance with the
strategic intent as possible.

Fig. 3. Strategic and tactical behaviors for path following in SFX architecture.

An example of the Model-oriented architectures is the Task Control Architecture (TCA)
(Simmons 1999). TCA has a flavor of an operating system. There are no behaviors per se,
however many of low level tasks resemble behaviors. The reactive layer in this architecture
called Obstacle Avoidance Layer takes the desired heading and adapts it to the obstacles

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 48

extracted from the evidence grid virtual sensor. The layer uses a curvature-velocity method
(CVM) to factor in not only obstacles but how to respond with a smooth trajectory for the
robot’s current velocity. Because this architecture does not have direct connection of sensors
to actuators, it may have the same problems as the hierarchical architectures of the past –
delayed response to events.

7. System-theoretic approach
To make a progress in dealing with safety in complex systems, we need new models and
conceptions of how accidents occur, that more accurately and completely reflect the types of
accidents we are experiencing today.
We use for safety analysis of robot control architectures a system-theoretical approach
(Barchanski, J.A. 2006), which allows more complex relationships between events to be
considered and also provides a way to look more deeply at why the events occurred. Whereas
industrial safety models focus on unsafe acts or conditions and reliability engineering
emphasizes failure events, a systems approach to safety takes a broader view by focusing on
what was wrong with the system’s design or operations that allowed the accident to take place.
System theory dates from the thirties and forties, and was a response to limitations to the
classic analysis techniques in coping with the increasingly complex systems being built.
Norbert Wiener applied this approach to control and communications engineering while
Ludwig von Bertalanffy developed similar ideas for biology. It was Bertalanffy who
suggested that the emerging ideas in various fields could be combined into a general theory
of systems (Bertalanffy 1969) .
The systems approach focuses on systems taken as a whole, not on the parts examined
separately. It assumes that some properties of systems can only be treated adequately in
their entirety, taking into account all facets relating the social to technical aspects. These
system properties derive from the relationships between the parts of systems: how the parts
interact and fit together. Thus the system approach concentrates on the analysis and design
of the system as a whole as distinct from the components or the parts. While components
may be constructed in a modular fashion, the original analysis and decomposition must be
performed top down.
The foundations of system theory rests on two pairs of ideas:
(1) emergence and hierarchy and (2) communication and control (Checkland 1981).

7.1 Emergence and hierarchy
A general model of complex systems can be expressed in terms of hierarchy of levels of
organization, each more complex than the one below, where a level is characterized by
having emergent properties.
Emergent properties do not exist at lower levels; they are meaningless in the language
appropriate to those levels. Thus, the operation of the processes at the higher levels of the
hierarchy results in a higher levels of complexity – that has emergent properties.
Safety is an emergent property of systems. Determining whether a plant is acceptable safe is
not possible by examining a single valve in the plant.
In fact, statements about the “safety of the valve” without information about the context in
which the valve is used, are meaningless. In a system-theoretic view of safety the emergent
safety properties are controlled or enforced by a set of safety constraints related to the
behavior of the system components.

Development of Safe and Secure Control Software for Autonomous Mobile Robots 49

A second basic part of system theory, the hierarchy theory, deals with the fundamental
differences between levels of a hierarchy. Its ultimate aim is to explain the relationship
between different levels, what generates the levels, what separates them, and what links
them. Emergent properties associated with a set of components at one level in a hierarchy
are related to constraints upon the degree of freedom of those components.
In a systems-theoretic view of safety the emergent safety properties are controlled or
enforced by a set of safety constraints related to the behavior of the system components.
Safety constraints specify those relationships among system variables or components that
constitute the non-hazardous or safe system states. Accidents result from interactions
among system components that violate these constraints – in other words, from a lack of
appropriate constraints on system behavior.

7.2 Communication and control
Regulatory or control action is the imposition of constraints upon the activity at one level of
a hierarchy, which define the “laws of behavior” at that level yielding activity meaningful at
a higher level.
Hierarchies are characterized by control processes operating at the interfaces between levels.
Any description of a control process entails an upper level imposing constraints upon the
lower. The upper level is a source of an alternative (simpler) description of the lower level in
terms of specific functions that are emergent as a result of the imposition of constraints.
Control in open systems (those that have inputs and outputs from their environment)
implies the need for communication. A system is not treated as a static design, but as a
dynamic process that is continually adapting to achieve its ends and to react to changes in
itself and its environment. To be safe, the original design must not only enforce appropriate
constraints on behavior to ensure safe operation (the enforcement of the safety constraints),
but it must continue to operate safely as changes and adaptations occur over time.

8. Intent specification
Conventional software engineering uses top-down and bottom-up hierarchies of two kinds:
- part-whole abstractions (where each level represents aggregation of components of the

lower level),
- information-hiding abstraction (where each level is a refinement of the information at a

higher level).
Higher level specifies the “what”, lower level specifies the “how”. There is no place to
specify the “why” (intent, goal, purpose) of a level.
Systems-theoretical approach allows to do this in so called Intent Specification (Leveson 2000)
which complements the conventional methodology – it implements the “means – ends”
hierarchy, where each level provides the intent (“why”) information about the level below.
The specification supports safety-driven development by tightly integrating the system
safety process and the information resulting from it into the system engineering process and
decision–making environment. The goal is to support design of safe systems rather than
simply attempt to verify safety after-the–fact. Safety-related design decisions are linked to
hazard analysis and design implementations so that assurance of safety is enhanced as well
as any analysis required when changes are proposed.
The levels are used to specify user requirements, environmental assumptions and safety
constraints.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 48

extracted from the evidence grid virtual sensor. The layer uses a curvature-velocity method
(CVM) to factor in not only obstacles but how to respond with a smooth trajectory for the
robot’s current velocity. Because this architecture does not have direct connection of sensors
to actuators, it may have the same problems as the hierarchical architectures of the past –
delayed response to events.

7. System-theoretic approach
To make a progress in dealing with safety in complex systems, we need new models and
conceptions of how accidents occur, that more accurately and completely reflect the types of
accidents we are experiencing today.
We use for safety analysis of robot control architectures a system-theoretical approach
(Barchanski, J.A. 2006), which allows more complex relationships between events to be
considered and also provides a way to look more deeply at why the events occurred. Whereas
industrial safety models focus on unsafe acts or conditions and reliability engineering
emphasizes failure events, a systems approach to safety takes a broader view by focusing on
what was wrong with the system’s design or operations that allowed the accident to take place.
System theory dates from the thirties and forties, and was a response to limitations to the
classic analysis techniques in coping with the increasingly complex systems being built.
Norbert Wiener applied this approach to control and communications engineering while
Ludwig von Bertalanffy developed similar ideas for biology. It was Bertalanffy who
suggested that the emerging ideas in various fields could be combined into a general theory
of systems (Bertalanffy 1969) .
The systems approach focuses on systems taken as a whole, not on the parts examined
separately. It assumes that some properties of systems can only be treated adequately in
their entirety, taking into account all facets relating the social to technical aspects. These
system properties derive from the relationships between the parts of systems: how the parts
interact and fit together. Thus the system approach concentrates on the analysis and design
of the system as a whole as distinct from the components or the parts. While components
may be constructed in a modular fashion, the original analysis and decomposition must be
performed top down.
The foundations of system theory rests on two pairs of ideas:
(1) emergence and hierarchy and (2) communication and control (Checkland 1981).

7.1 Emergence and hierarchy
A general model of complex systems can be expressed in terms of hierarchy of levels of
organization, each more complex than the one below, where a level is characterized by
having emergent properties.
Emergent properties do not exist at lower levels; they are meaningless in the language
appropriate to those levels. Thus, the operation of the processes at the higher levels of the
hierarchy results in a higher levels of complexity – that has emergent properties.
Safety is an emergent property of systems. Determining whether a plant is acceptable safe is
not possible by examining a single valve in the plant.
In fact, statements about the “safety of the valve” without information about the context in
which the valve is used, are meaningless. In a system-theoretic view of safety the emergent
safety properties are controlled or enforced by a set of safety constraints related to the
behavior of the system components.

Development of Safe and Secure Control Software for Autonomous Mobile Robots 49

A second basic part of system theory, the hierarchy theory, deals with the fundamental
differences between levels of a hierarchy. Its ultimate aim is to explain the relationship
between different levels, what generates the levels, what separates them, and what links
them. Emergent properties associated with a set of components at one level in a hierarchy
are related to constraints upon the degree of freedom of those components.
In a systems-theoretic view of safety the emergent safety properties are controlled or
enforced by a set of safety constraints related to the behavior of the system components.
Safety constraints specify those relationships among system variables or components that
constitute the non-hazardous or safe system states. Accidents result from interactions
among system components that violate these constraints – in other words, from a lack of
appropriate constraints on system behavior.

7.2 Communication and control
Regulatory or control action is the imposition of constraints upon the activity at one level of
a hierarchy, which define the “laws of behavior” at that level yielding activity meaningful at
a higher level.
Hierarchies are characterized by control processes operating at the interfaces between levels.
Any description of a control process entails an upper level imposing constraints upon the
lower. The upper level is a source of an alternative (simpler) description of the lower level in
terms of specific functions that are emergent as a result of the imposition of constraints.
Control in open systems (those that have inputs and outputs from their environment)
implies the need for communication. A system is not treated as a static design, but as a
dynamic process that is continually adapting to achieve its ends and to react to changes in
itself and its environment. To be safe, the original design must not only enforce appropriate
constraints on behavior to ensure safe operation (the enforcement of the safety constraints),
but it must continue to operate safely as changes and adaptations occur over time.

8. Intent specification
Conventional software engineering uses top-down and bottom-up hierarchies of two kinds:
- part-whole abstractions (where each level represents aggregation of components of the

lower level),
- information-hiding abstraction (where each level is a refinement of the information at a

higher level).
Higher level specifies the “what”, lower level specifies the “how”. There is no place to
specify the “why” (intent, goal, purpose) of a level.
Systems-theoretical approach allows to do this in so called Intent Specification (Leveson 2000)
which complements the conventional methodology – it implements the “means – ends”
hierarchy, where each level provides the intent (“why”) information about the level below.
The specification supports safety-driven development by tightly integrating the system
safety process and the information resulting from it into the system engineering process and
decision–making environment. The goal is to support design of safe systems rather than
simply attempt to verify safety after-the–fact. Safety-related design decisions are linked to
hazard analysis and design implementations so that assurance of safety is enhanced as well
as any analysis required when changes are proposed.
The levels are used to specify user requirements, environmental assumptions and safety
constraints.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 50

Especially useful feature of the intent specifications is strong support of traceability. The
structure of the intent specification is such that each level above provides rationale for why
decisions at the lower levels were made the way they were. To be able to follow this
reasoning easily, traceability links are encouraged throughout the document. For example,
each hazard would link, within the same level, to the safety design constraints that mitigate
the hazard. Each safety constraint would then link down from level one to level two where
design decisions comply with and enforce the constraint. Those design decisions would link
down to level three, the subcomponent requirements, where the subcomponent
requirements adhere to the system level design decisions. These links go from the highest
level goals of the system all the way down to the code and operator manuals. By following
these links, one follows the reasoning behind the system's behavior and can evaluate the
safety of changes to the system.
We will review in the following four levels of the intent specification

8.1 Design and safety constraints – level 1
Requirements document what things the system should do. Constraints document things
that the system should not do. Constraints provide limits on the space of possible designs
within which the system will behave as desired. Intent specifications frequently divide
constraints into those that are related to safety and those that are not. Safety constraints are
design constraints motivated by safety concerns. It is fairly easy to derive safety constraints
from hazards. For example, if a hazard for an autonomous mobile robot is having its arm
extended while it is in motion, then the safety constraint could be written that the robot
must not move while its arm is extended. Safety constraints link to the hazards that
generated them and to the design decisions that enforce them.

8.2 System design principles – level 2
The core of the level 2 of an intent specification is the set of design principles that specify
how the design will satisfy the requirements documented in level 1 while not violating any
design constraints. The functional design principles show the functional decomposition
upon which the software logic is structured. It is useful to divide the robot control
functionality into different operating modes (e.g. initialization, autonomy, operator, and
safety). The functionality for each mode should be independent of the others. This feature
allows the designers to change the internal logic of one mode without worrying about the
effect the changes will have on the other modes.
The mode selection logic implements the mode transitions.

8.3 Black box specification – level 3
Level 3 is designed to provide the system designers with a complete set of tools with which
to validate the specified requirements before implementation begins. Only black box
(externally visible) behavior is included, i.e. the input/output function to be computed by
the component. Black box models assist in the requirements review process by eliminating
implementation details that do not affect external behavior and thus are not relevant in the
validation of the requirements. For this purpose, a model of the robot control system is
produced using formal specification language SpecTRM-RL (Leveson 2002).
Most model elements in SpecTRM-RL rely on AND/OR tables. The tables pictured below
are part of the transitions for the “Distance” state in the obstacle avoidance behavior.
AND/OR tables provide a very simple way to read the behavior of a component.

Development of Safe and Secure Control Software for Autonomous Mobile Robots 51

The first column of the table contains expressions that may be true or false. In the very first
row of the table for the Unknown transition below, the expression is System Start. This
expression is true at the instant the system is first started and false at all other times. The next
row's expression is true when the Reset input has a value of High and false at other times.
When reading a table, the true or false value of this first column is matched against the values
in subsequent columns. Subsequent columns must contain T indicating true, F for false, or * for
don't care. If every row in the first column matches the values in some subsequent column, the
table as a whole is true. If no column matches, then the table is not true. Another way of saying
this is that rows are ANDed together and columns are ORed together
As an example, consider the Unknown transition below. If the table is true, then the system
will transition to the state “distance to an obstacle” being unknown. This table can be read
as saying that the distance transitions to unknown if the system is just starting, the system is
being reset, or all the sensors are in the unknown state.
All the system state variables in a SpecTRM-RL model are required to have an "Unknown"
value. A very common error found in requirements specifications and often associated with
accidents is assuming that the computer always has an accurate (up-to-date) model of the
controlled system. If input processing and feedback is disrupted for some reason (including
temporary halting of the computer itself) however, the assumed controlled-system state may
inaccurately reflect the real state. In SpecTRM-RL models, each state variable defaults to the
unknown value at startup and returns to the unknown value after interruptions in
processing or expected (and necessary) inputs are not received.

8.4 Physical and logical design – level 4
Level 4 describes the physical and logical designs of each subcomponent that allows them to
meet the subcomponent requirements described at level 3. The component may be
hardware, software, or some combination of the two.
Software Design Specifications can be represented in any design notation customarily used
for software. Intent specifications can incorporate any desirable design notation, from
formal predicate logic to UML diagrams.
Requirement specifications are mapped into design specifications of a selected robot control
architecture. The mapping can be done in one of three ways:
Uncoupled: the mappings or functions from requirements to design principles are all one-
to-one.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 50

Especially useful feature of the intent specifications is strong support of traceability. The
structure of the intent specification is such that each level above provides rationale for why
decisions at the lower levels were made the way they were. To be able to follow this
reasoning easily, traceability links are encouraged throughout the document. For example,
each hazard would link, within the same level, to the safety design constraints that mitigate
the hazard. Each safety constraint would then link down from level one to level two where
design decisions comply with and enforce the constraint. Those design decisions would link
down to level three, the subcomponent requirements, where the subcomponent
requirements adhere to the system level design decisions. These links go from the highest
level goals of the system all the way down to the code and operator manuals. By following
these links, one follows the reasoning behind the system's behavior and can evaluate the
safety of changes to the system.
We will review in the following four levels of the intent specification

8.1 Design and safety constraints – level 1
Requirements document what things the system should do. Constraints document things
that the system should not do. Constraints provide limits on the space of possible designs
within which the system will behave as desired. Intent specifications frequently divide
constraints into those that are related to safety and those that are not. Safety constraints are
design constraints motivated by safety concerns. It is fairly easy to derive safety constraints
from hazards. For example, if a hazard for an autonomous mobile robot is having its arm
extended while it is in motion, then the safety constraint could be written that the robot
must not move while its arm is extended. Safety constraints link to the hazards that
generated them and to the design decisions that enforce them.

8.2 System design principles – level 2
The core of the level 2 of an intent specification is the set of design principles that specify
how the design will satisfy the requirements documented in level 1 while not violating any
design constraints. The functional design principles show the functional decomposition
upon which the software logic is structured. It is useful to divide the robot control
functionality into different operating modes (e.g. initialization, autonomy, operator, and
safety). The functionality for each mode should be independent of the others. This feature
allows the designers to change the internal logic of one mode without worrying about the
effect the changes will have on the other modes.
The mode selection logic implements the mode transitions.

8.3 Black box specification – level 3
Level 3 is designed to provide the system designers with a complete set of tools with which
to validate the specified requirements before implementation begins. Only black box
(externally visible) behavior is included, i.e. the input/output function to be computed by
the component. Black box models assist in the requirements review process by eliminating
implementation details that do not affect external behavior and thus are not relevant in the
validation of the requirements. For this purpose, a model of the robot control system is
produced using formal specification language SpecTRM-RL (Leveson 2002).
Most model elements in SpecTRM-RL rely on AND/OR tables. The tables pictured below
are part of the transitions for the “Distance” state in the obstacle avoidance behavior.
AND/OR tables provide a very simple way to read the behavior of a component.

Development of Safe and Secure Control Software for Autonomous Mobile Robots 51

The first column of the table contains expressions that may be true or false. In the very first
row of the table for the Unknown transition below, the expression is System Start. This
expression is true at the instant the system is first started and false at all other times. The next
row's expression is true when the Reset input has a value of High and false at other times.
When reading a table, the true or false value of this first column is matched against the values
in subsequent columns. Subsequent columns must contain T indicating true, F for false, or * for
don't care. If every row in the first column matches the values in some subsequent column, the
table as a whole is true. If no column matches, then the table is not true. Another way of saying
this is that rows are ANDed together and columns are ORed together
As an example, consider the Unknown transition below. If the table is true, then the system
will transition to the state “distance to an obstacle” being unknown. This table can be read
as saying that the distance transitions to unknown if the system is just starting, the system is
being reset, or all the sensors are in the unknown state.
All the system state variables in a SpecTRM-RL model are required to have an "Unknown"
value. A very common error found in requirements specifications and often associated with
accidents is assuming that the computer always has an accurate (up-to-date) model of the
controlled system. If input processing and feedback is disrupted for some reason (including
temporary halting of the computer itself) however, the assumed controlled-system state may
inaccurately reflect the real state. In SpecTRM-RL models, each state variable defaults to the
unknown value at startup and returns to the unknown value after interruptions in
processing or expected (and necessary) inputs are not received.

8.4 Physical and logical design – level 4
Level 4 describes the physical and logical designs of each subcomponent that allows them to
meet the subcomponent requirements described at level 3. The component may be
hardware, software, or some combination of the two.
Software Design Specifications can be represented in any design notation customarily used
for software. Intent specifications can incorporate any desirable design notation, from
formal predicate logic to UML diagrams.
Requirement specifications are mapped into design specifications of a selected robot control
architecture. The mapping can be done in one of three ways:
Uncoupled: the mappings or functions from requirements to design principles are all one-
to-one.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 52

Loosely coupled: the mappings are one-to-many.
Tightly coupled: the mappings are many-to-many.
For any complex control system, a completely uncoupled designs, while allowing changes to
requirements with minimal impact, is usually not practical.
A tightly-coupled system is highly interdependent. Each part is tightly linked to many other
parts, so that a failure or unplanned behaviour in one, can rapidly affect the status of others.
This is definitely not desirable.
The most appropriate and realistic is to design the system in such a way as to reduce the
impact of requirements changes, i.e. to eliminate the rippling effects to other requirements,
by designing the mappings to be one-to-many (loosely coupled). By this, a failure of a
design element can be traced to incorrect or incomplete requirement.

8.5 Determinism analysis
A system is nondeterministic when it may display one of several behaviors for the same
sequence of inputs. Nondeterministic systems are very difficult to analyze and test because
of the element of chance in their behavior. It is strongly desirable for a safety-critical system
to behave in a deterministic fashion.
SpecTRM-RL models are models of the requirements for system components.
Nondeterminism in the behavior of a SpecTRM-RL model indicates inconsistency in the
requirements. Additional information must be added to the specification to collapse the case
of nondeterminism down to one deterministic choice. The following is an example of
nondeterminism in a SpecTRM-RL model.

This example is taken from the robot control mode. According to the first table, the robot
goes to the Operational mode any time the Reset button is pushed. According to the second
table's first column, the robot transitions to Internal Fault Detected whenever it was already
in Internal Fault Detected. This specification is ambiguous as to whether a reset command
should put the system in an operational state once a fault has been detected.

8.6 Completeness analysis
A system is complete when there is a specified response for every sequence of inputs that
might come into the system. Incomplete systems have combinations of system states and

Development of Safe and Secure Control Software for Autonomous Mobile Robots 53

inputs for which no response is specified. Incompletness occurs when there is no table in a
state or mode definition that is true for some set of conditions. Additional information must
be added to the specification to make one of the tables true.

9. Related methods
The closest to presented above approach to system safety is an industrial hazard analysis
method called HAZard Operability analysis (HAZOP) developed for the British chemical
industry in the 1950’s. The goal of a HAZOP is to identify operational deviations from
intended performance and study their impact on system safety (Soukas, 1988).
The HAZOP procedure is carried out by a HAZOP expert (the leader) and a team of system
experts. The leader poses a battery of questions to the experts in an attempt to elicit potential
system hazards. A HAZOP is potentially an exploratory analysis as neither potential faults
nor hazards have been assumed beforehand. The HAZOP leader hypothesizes an abnormal
condition and analysis proceeds in both directions, determining whether and how the
condition is possible and what effects it has on the system.
The analysis is based on a systems theory model of accidents, in that it concentrates on the
hazards that can result from components interaction, i.e. accidents are caused by deviations
in component behavior.
HAZOP has several limitations. First, it is time- and labor –intensive, in large part due to its
reliance on group discussions and manual analysis procedures. Second, HAZOP analyzes
causes and effects with respect to deviations from expected behaviour, but it does not
analyze whether the design, under normal operating conditions, yields expected behaviour
or if the expected behaviour is what is desired.
A third limitations arises from the fact that HAZOP is a flow-based analysis. Deviations from
within a component or processes are not expected directly; instead, deviation within a
component (as well as human error or other environmental disturbance) is assumed to be
manifested as a disturbed flow. A purely flow oriented approach may cause the analyst to
neglect process-related malfunctions and hazards in favour of pipe-related causes and effects.
Because HAZOP concentrates on physical properties of the system (Souskas, 1988), it is not
directly applicable to analyzing computer input and output.
There is a number of other manual methods for hazard analysis (e.g. Lear, 1993). All of these
methods suffer from two weaknesses with respect to analyzing software. First, being
manual techniques they depend on human understanding of the proposed software, which
can be quite limited. Second, the manual techniques adhere to the HAZOP principle of
identifying deviations in the connections, i.e., the computer inputs and outputs only.
Accordingly, they do not provide guidance for following deviations into the control logic.

10. Conclusion
Knowledge of how to build safe and secure autonomous mobile robots is a prerequisite for
their wide acceptance. In this chapter we have described relationship between robot autonomy
and its safety and security. In contrast to traditional hazard analysis techniques used in electro-
mechanical systems, we have introduced a technique based on system theory. We have
outlined a methodology for building safe autonomous mobile robots based on hazard analysis
and intent specification. The specification supports safety-driven development by tightly
integrating the system safety process and the information resulting from it into the system

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 52

Loosely coupled: the mappings are one-to-many.
Tightly coupled: the mappings are many-to-many.
For any complex control system, a completely uncoupled designs, while allowing changes to
requirements with minimal impact, is usually not practical.
A tightly-coupled system is highly interdependent. Each part is tightly linked to many other
parts, so that a failure or unplanned behaviour in one, can rapidly affect the status of others.
This is definitely not desirable.
The most appropriate and realistic is to design the system in such a way as to reduce the
impact of requirements changes, i.e. to eliminate the rippling effects to other requirements,
by designing the mappings to be one-to-many (loosely coupled). By this, a failure of a
design element can be traced to incorrect or incomplete requirement.

8.5 Determinism analysis
A system is nondeterministic when it may display one of several behaviors for the same
sequence of inputs. Nondeterministic systems are very difficult to analyze and test because
of the element of chance in their behavior. It is strongly desirable for a safety-critical system
to behave in a deterministic fashion.
SpecTRM-RL models are models of the requirements for system components.
Nondeterminism in the behavior of a SpecTRM-RL model indicates inconsistency in the
requirements. Additional information must be added to the specification to collapse the case
of nondeterminism down to one deterministic choice. The following is an example of
nondeterminism in a SpecTRM-RL model.

This example is taken from the robot control mode. According to the first table, the robot
goes to the Operational mode any time the Reset button is pushed. According to the second
table's first column, the robot transitions to Internal Fault Detected whenever it was already
in Internal Fault Detected. This specification is ambiguous as to whether a reset command
should put the system in an operational state once a fault has been detected.

8.6 Completeness analysis
A system is complete when there is a specified response for every sequence of inputs that
might come into the system. Incomplete systems have combinations of system states and

Development of Safe and Secure Control Software for Autonomous Mobile Robots 53

inputs for which no response is specified. Incompletness occurs when there is no table in a
state or mode definition that is true for some set of conditions. Additional information must
be added to the specification to make one of the tables true.

9. Related methods
The closest to presented above approach to system safety is an industrial hazard analysis
method called HAZard Operability analysis (HAZOP) developed for the British chemical
industry in the 1950’s. The goal of a HAZOP is to identify operational deviations from
intended performance and study their impact on system safety (Soukas, 1988).
The HAZOP procedure is carried out by a HAZOP expert (the leader) and a team of system
experts. The leader poses a battery of questions to the experts in an attempt to elicit potential
system hazards. A HAZOP is potentially an exploratory analysis as neither potential faults
nor hazards have been assumed beforehand. The HAZOP leader hypothesizes an abnormal
condition and analysis proceeds in both directions, determining whether and how the
condition is possible and what effects it has on the system.
The analysis is based on a systems theory model of accidents, in that it concentrates on the
hazards that can result from components interaction, i.e. accidents are caused by deviations
in component behavior.
HAZOP has several limitations. First, it is time- and labor –intensive, in large part due to its
reliance on group discussions and manual analysis procedures. Second, HAZOP analyzes
causes and effects with respect to deviations from expected behaviour, but it does not
analyze whether the design, under normal operating conditions, yields expected behaviour
or if the expected behaviour is what is desired.
A third limitations arises from the fact that HAZOP is a flow-based analysis. Deviations from
within a component or processes are not expected directly; instead, deviation within a
component (as well as human error or other environmental disturbance) is assumed to be
manifested as a disturbed flow. A purely flow oriented approach may cause the analyst to
neglect process-related malfunctions and hazards in favour of pipe-related causes and effects.
Because HAZOP concentrates on physical properties of the system (Souskas, 1988), it is not
directly applicable to analyzing computer input and output.
There is a number of other manual methods for hazard analysis (e.g. Lear, 1993). All of these
methods suffer from two weaknesses with respect to analyzing software. First, being
manual techniques they depend on human understanding of the proposed software, which
can be quite limited. Second, the manual techniques adhere to the HAZOP principle of
identifying deviations in the connections, i.e., the computer inputs and outputs only.
Accordingly, they do not provide guidance for following deviations into the control logic.

10. Conclusion
Knowledge of how to build safe and secure autonomous mobile robots is a prerequisite for
their wide acceptance. In this chapter we have described relationship between robot autonomy
and its safety and security. In contrast to traditional hazard analysis techniques used in electro-
mechanical systems, we have introduced a technique based on system theory. We have
outlined a methodology for building safe autonomous mobile robots based on hazard analysis
and intent specification. The specification supports safety-driven development by tightly
integrating the system safety process and the information resulting from it into the system

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 54

engineering process and decision–making environment. The goal is to support design of safe
systems rather than simply attempt to verify safety after-the–fact. Safety-related design
decisions are linked to hazard analysis and design implementations so that assurance of safety
is enhanced as well as any analysis required when changes are proposed.

11. References
Alami et al (1998), An Architecture for Autonomy, International Journal of Robotics

Research, April 1998.
Arkin, R. (1999) Behaviour-based Robotics,The MIT Press.
Asimov I. (1950), I Robot, Doubleday, Arkin, R. (1999), Behavior-Based Robotics, The MIT

Press
Barchanski J.A.(2004), Safety and Security of Autonomous Robots Software, IAESTED

International Conference on Advances in Computer Science and Technology, St.
Thomas, US Virgin Islands, November 2004.

Barchanski, J.A. (2006), System-Theoretic Approach to Safety of Robot Control
Architectures, Canadian Conference on Electrical and Computer Engineering, 6 -
10 May 2006, Ottawa.

Bertalanffy, L., (1969) General Systems Theory: Foundations, Development and
Applications, G. Braziller, New York,

Chandler, A. et al (2001) Digging into Concurrency, Technical Report, Computing
Department, Lancaster University,

Checkland, P., (1981), Systems Thinking. System Practice, John Wiley &Sons, NY Harel,
D.,(1987) Statecharts: A Visual formalism for complex systems, Science of
Computer Programming, 8:231-274,

Gordon, D. (2001). APT Agents: Agents that are adaptive, predictable, and timely. In Lecture
Notes in Artificial Intelligence, Volume 1871. Springer-Verlag.

Jones, J.L.,(2004), Robot Programming, A Practical Guide, McGraw-Hill
Murphy, R., (1996), Biological and Cognitive Foundations of Intelligent Sensor Fusion, IEEE

Transactions on Systems, Man and Cybernetics, vol. 26, No 1.
Murphy, R., (2000), Introduction to AI Robotics, The MIT Press.
Lear, J.,(1993), Computer hazard and operability studies, In Sydney University Chemical

Engineering Association Symposium: Safety and Reliability of Process Control
Systems, October 1993.

Leveson N. G.(1987), et al, Safety Analysis Using Petri Nets, IEEE Transaction on Software
Engineering, March 1987.

Leveson, N.G., (1995), Safeware: System Safety and Computers, Addison Wesley,.
Leveson, N. G. (2000), Intent Specification: An Approach to Building Human-Centered

Specifications, IEEE Trans. on Software Engineering, January 2000.
Leveson, N. G., (2002), Safety-critical Requirements Specifications using SpecTRM, Trans.

on Soft. Engineering
Simmons, R., et al, (1999), Xavier: An Autonomous Mobile Robot on the Web, Robotics and

Automation, Magazine,
Souskas, J.,(1988), The role of safety analysis in accident prevention, Accident Analysis and

Prevention,
Stajano, F., (2002), Security for Ubiquitous Computing,Wiley,

3

Control Strategies of Human Interactive
 Robot Under Uncertain Environments

Haiwei Dong and Zhiwei Luo
Japan Society of the Promotion of Science and Kobe University

Japan

1. Introduction
Actually, the research on human interactive robot (HIR) has been a topic of both science
fiction and academic speculation for a long time. The origin of HIR as a discrete issue was
stated by 20th century author Isaac Asimov in 1941, in his novel “I, Robot”. He stated the
Three Laws of Robotics1 as, “
a. A robot may not injure a human being or, through inaction, allow a human being to

come to harm.
b. A robot must obey any orders given to it by human beings, except where such orders

would conflict with the First Law.
c. A robot must protect its own existence as long as such protection does not conflict with

the First or Second Law. ”
The three laws of robotics determine the idea of safe interaction which constitutes the basic
rules of HIR. With the advances of artificial intelligence (AI), the HIR could eventually have
more proactive behaviours, planning their motion in complex unknown environments.
Nowadays, HIR are artificial agents with capacities of perception and action in the human’s
environment. Their use has been tended to be found in the most technologically advanced
societies in critical domains as search and rescue, military battle, law enforcement,
entertainment, hospital care, etc. These domains of applications imply a closer interaction
with human. The concept of closeness is to be taken in its full meaning, HIR and humans not
only share the workspace but also share goals in terms of task achievement. The HIR has to
adapt itself to human’s way of expressing desires and fulfill its task. Taking lifting up
human in elder care for example, the human interactive robot RI-MAN, designed by the
RIKEN Bio-Mimetic Control Research Center, communicates with human by listening and
speaking, which makes it understand the human will (Onish, Luo et al. 2007). To fulfil the
task, it also estimates the attitude of human body in real-time by tactile sense (Mukai, Onishi
et al. 2008). This example contains two aspects of HIR, one is to understand the human mind
and the other is to accomplish the manipulation. The former is based on AI techniques, like
language comprehension, and the latter is relied on force control.
On the other hand, human’s environments are much more complex. Thus, the HIR needs
perceiving and understanding capacities to build dynamic models of its surroundings. It

1 In science friction, the Three Laws of Robotics are a set of three rules written by Isaac Asimov, which
almost all positronic robots appearing in his friction must obey.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 54

engineering process and decision–making environment. The goal is to support design of safe
systems rather than simply attempt to verify safety after-the–fact. Safety-related design
decisions are linked to hazard analysis and design implementations so that assurance of safety
is enhanced as well as any analysis required when changes are proposed.

11. References
Alami et al (1998), An Architecture for Autonomy, International Journal of Robotics

Research, April 1998.
Arkin, R. (1999) Behaviour-based Robotics,The MIT Press.
Asimov I. (1950), I Robot, Doubleday, Arkin, R. (1999), Behavior-Based Robotics, The MIT

Press
Barchanski J.A.(2004), Safety and Security of Autonomous Robots Software, IAESTED

International Conference on Advances in Computer Science and Technology, St.
Thomas, US Virgin Islands, November 2004.

Barchanski, J.A. (2006), System-Theoretic Approach to Safety of Robot Control
Architectures, Canadian Conference on Electrical and Computer Engineering, 6 -
10 May 2006, Ottawa.

Bertalanffy, L., (1969) General Systems Theory: Foundations, Development and
Applications, G. Braziller, New York,

Chandler, A. et al (2001) Digging into Concurrency, Technical Report, Computing
Department, Lancaster University,

Checkland, P., (1981), Systems Thinking. System Practice, John Wiley &Sons, NY Harel,
D.,(1987) Statecharts: A Visual formalism for complex systems, Science of
Computer Programming, 8:231-274,

Gordon, D. (2001). APT Agents: Agents that are adaptive, predictable, and timely. In Lecture
Notes in Artificial Intelligence, Volume 1871. Springer-Verlag.

Jones, J.L.,(2004), Robot Programming, A Practical Guide, McGraw-Hill
Murphy, R., (1996), Biological and Cognitive Foundations of Intelligent Sensor Fusion, IEEE

Transactions on Systems, Man and Cybernetics, vol. 26, No 1.
Murphy, R., (2000), Introduction to AI Robotics, The MIT Press.
Lear, J.,(1993), Computer hazard and operability studies, In Sydney University Chemical

Engineering Association Symposium: Safety and Reliability of Process Control
Systems, October 1993.

Leveson N. G.(1987), et al, Safety Analysis Using Petri Nets, IEEE Transaction on Software
Engineering, March 1987.

Leveson, N.G., (1995), Safeware: System Safety and Computers, Addison Wesley,.
Leveson, N. G. (2000), Intent Specification: An Approach to Building Human-Centered

Specifications, IEEE Trans. on Software Engineering, January 2000.
Leveson, N. G., (2002), Safety-critical Requirements Specifications using SpecTRM, Trans.

on Soft. Engineering
Simmons, R., et al, (1999), Xavier: An Autonomous Mobile Robot on the Web, Robotics and

Automation, Magazine,
Souskas, J.,(1988), The role of safety analysis in accident prevention, Accident Analysis and

Prevention,
Stajano, F., (2002), Security for Ubiquitous Computing,Wiley,

3

Control Strategies of Human Interactive
 Robot Under Uncertain Environments

Haiwei Dong and Zhiwei Luo
Japan Society of the Promotion of Science and Kobe University

Japan

1. Introduction
Actually, the research on human interactive robot (HIR) has been a topic of both science
fiction and academic speculation for a long time. The origin of HIR as a discrete issue was
stated by 20th century author Isaac Asimov in 1941, in his novel “I, Robot”. He stated the
Three Laws of Robotics1 as, “
a. A robot may not injure a human being or, through inaction, allow a human being to

come to harm.
b. A robot must obey any orders given to it by human beings, except where such orders

would conflict with the First Law.
c. A robot must protect its own existence as long as such protection does not conflict with

the First or Second Law. ”
The three laws of robotics determine the idea of safe interaction which constitutes the basic
rules of HIR. With the advances of artificial intelligence (AI), the HIR could eventually have
more proactive behaviours, planning their motion in complex unknown environments.
Nowadays, HIR are artificial agents with capacities of perception and action in the human’s
environment. Their use has been tended to be found in the most technologically advanced
societies in critical domains as search and rescue, military battle, law enforcement,
entertainment, hospital care, etc. These domains of applications imply a closer interaction
with human. The concept of closeness is to be taken in its full meaning, HIR and humans not
only share the workspace but also share goals in terms of task achievement. The HIR has to
adapt itself to human’s way of expressing desires and fulfill its task. Taking lifting up
human in elder care for example, the human interactive robot RI-MAN, designed by the
RIKEN Bio-Mimetic Control Research Center, communicates with human by listening and
speaking, which makes it understand the human will (Onish, Luo et al. 2007). To fulfil the
task, it also estimates the attitude of human body in real-time by tactile sense (Mukai, Onishi
et al. 2008). This example contains two aspects of HIR, one is to understand the human mind
and the other is to accomplish the manipulation. The former is based on AI techniques, like
language comprehension, and the latter is relied on force control.
On the other hand, human’s environments are much more complex. Thus, the HIR needs
perceiving and understanding capacities to build dynamic models of its surroundings. It

1 In science friction, the Three Laws of Robotics are a set of three rules written by Isaac Asimov, which
almost all positronic robots appearing in his friction must obey.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

56

needs to categorize objects, recognize and locate humans and further their emotions. Also in
the case of human interactive robot RI-MAN (Mukai, Onishi et al. 2008), if he cannot
navigate in the hospital and further more cannot locate the human, the understanding and
good manipulation mentioned above make no sense. In our opinion, with the development
of human society and robotics technology, HIR research becomes much important (Fig. 1).

Fig. 1. Interaction relation between human, robot and environment.

As HIR interacts with human, sometimes we can model the process of human activity
accurately and the robot-human interaction process can be simulated and further done by
theoretical approach; sometimes human movement is too complex to model and in that case,
the experimental approach is a good way. However, the above thing is to make the HIR
capable to navigate in the human environment.
The chapter focuses on the issue of designing control strategies of human interactive robot
where dealing with uncertainties is a critical issue. Actually, although there are many
researches on HIR, these works do not concern too much on the uncertainty. The fact is that
there are various uncertainties in the world which comes from robot, human, environment,
etc. Developing human interactive robot, in some concept, is dealing with uncertainties.
Actually, there are kinds of solving approaches for uncertainties according to circumstances:
some uncertain can be assumed as Gaussian noise and based on the property of Gaussian
noise, we can do estimation more accurately; some uncertainty coming from model
reduction and this kind of uncertainty can be solved by control theory; some uncertainty is
neither hard to model, nor difficult to determine the source. In that case, it is a better way to
consider it as a black box and recognize it by system identification.
In our opinion, the issue of uncertainty has become a major stumbling block for the design
of capable human interactive robot. To develop a human interactive robot, it is evitable to
deal with uncertainties. Furthermore, managing uncertainty is possibly the most important
step towards robust real-world HIR systems (Thrun, Burgard et al. 2005). The basic principle
of this chapter is to design control for HIR by dealing with uncertainties. Specifically, there
are a number of factors that contribute to the uncertainty of robot, human and environment:
Firstly, robot environment is inherently unpredictable. While the degree of uncertainty in
well-structured environment such as assembly lines is small, environments such as

Control Strategies of Human Interactive Robot Under Uncertain Environments

57

highways and private homes are highly dynamic and in many ways highly unpredictable.
The uncertainty is particularly high for robots to operating in the proximity of people.
Secondly, sensors are limited in what they can perceive. Limitations arise from several
factors. The range and resolution of a sensor is subject to physical limitations. For example,
cameras cannot see through walls, and the spatial resolution of a camera image is limited.
Sensors are also subject to noise, which perturbs sensor measurements in unpredictable
ways and hence limits the information that can be extracted. And finally, sensors can break.
Detecting a faulty sensor can be extremely difficult.
Thirdly, robot actuation involves motors that are, at least to some extent, unpredictable.
Uncertainty arises from the physical structure of actuator, i.e. actuator is impossible to
achieve absolute precision. In addition, uncertainty also comes from control noise, wear-
and-tear, mechanical failure, etc.
Fourthly, some uncertainty is caused by model approximation. Models are abstractions of
the real world. As such, they only partially model the underlying physical process of the
subject. Model errors are a source of uncertainty that has a great impact on the fulfillment of
the robot task.
Fifthly, there are some uncertainties that are extremely difficult to model or are impossible
to obtain. In that case, the uncertainty is very hard to deal with by analytic methods, like
mathematical approaches. Also the evaluation of the uncertainty, both sources and
magnitude are hard to be obtained.
In summary, the uncertainties caused by the five factors can be noted as environment
uncertainty, sensor uncertainty, actuator uncertainty, model uncertainty, unmodeled
uncertainty, respectively. The above five kinds of uncertainties involve nearly all the
uncertainties human interactive robot may encounter. The control design of HIR in this
chapter takes it a clue to deal with the uncertainties mentioned above. In other words, we
correlate the basic HIR’s technical problems with the five uncertainties. By dealing with the
uncertainties, we design control for HIR and finally solve the basic technical problems of
HIR. Specifically, the first basic problem is to make HIR capable to navigate in a large
unknown environment which corresponds to dealing with environment uncertainty, sensor
uncertainty and actuator uncertainty; the second basic problem is to propose approach for
HIR to physically interact with human which has large degrees of freedom (DOF). This basic
problem corresponds to dealing with the model uncertainty. The third basic problem is to
design approach for HIR to mentally interact with human, i.e. extract the human’s intention,
which corresponds to dealing with unmodeled uncertainty. The detailed explanation on
correlation between the basic problems and corresponding uncertainties is as follows:
The first basic problem concerns two issues as robot localization and environment cognition,
i.e. to estimate the robot’s position and the feature’s position. Considering that robot’s
motion and observation are affected by Gaussian noise, its kinematics model and sensor
model are added by uncertainty. Similarly, the position of feature (or landmark from the
viewpoint of mapping) is also affected by Gaussian noise; herein we add Gaussian
uncertainty in the model. With regards to these models with uncertainty, it is better to use a
probabilistic approach to estimate robot’s and landmark’s positions, i.e. simultaneous
localization and mapping (SLAM). By definition, SLAM is the process by which a mobile
robot builds a map of an environment and at the same time uses this map to compute its
own location. By SLAM, robot is able to navigate in an unknown environment freely.
However, the problem is that the current SLAM approaches only fit the relative small

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

56

needs to categorize objects, recognize and locate humans and further their emotions. Also in
the case of human interactive robot RI-MAN (Mukai, Onishi et al. 2008), if he cannot
navigate in the hospital and further more cannot locate the human, the understanding and
good manipulation mentioned above make no sense. In our opinion, with the development
of human society and robotics technology, HIR research becomes much important (Fig. 1).

Fig. 1. Interaction relation between human, robot and environment.

As HIR interacts with human, sometimes we can model the process of human activity
accurately and the robot-human interaction process can be simulated and further done by
theoretical approach; sometimes human movement is too complex to model and in that case,
the experimental approach is a good way. However, the above thing is to make the HIR
capable to navigate in the human environment.
The chapter focuses on the issue of designing control strategies of human interactive robot
where dealing with uncertainties is a critical issue. Actually, although there are many
researches on HIR, these works do not concern too much on the uncertainty. The fact is that
there are various uncertainties in the world which comes from robot, human, environment,
etc. Developing human interactive robot, in some concept, is dealing with uncertainties.
Actually, there are kinds of solving approaches for uncertainties according to circumstances:
some uncertain can be assumed as Gaussian noise and based on the property of Gaussian
noise, we can do estimation more accurately; some uncertainty coming from model
reduction and this kind of uncertainty can be solved by control theory; some uncertainty is
neither hard to model, nor difficult to determine the source. In that case, it is a better way to
consider it as a black box and recognize it by system identification.
In our opinion, the issue of uncertainty has become a major stumbling block for the design
of capable human interactive robot. To develop a human interactive robot, it is evitable to
deal with uncertainties. Furthermore, managing uncertainty is possibly the most important
step towards robust real-world HIR systems (Thrun, Burgard et al. 2005). The basic principle
of this chapter is to design control for HIR by dealing with uncertainties. Specifically, there
are a number of factors that contribute to the uncertainty of robot, human and environment:
Firstly, robot environment is inherently unpredictable. While the degree of uncertainty in
well-structured environment such as assembly lines is small, environments such as

Control Strategies of Human Interactive Robot Under Uncertain Environments

57

highways and private homes are highly dynamic and in many ways highly unpredictable.
The uncertainty is particularly high for robots to operating in the proximity of people.
Secondly, sensors are limited in what they can perceive. Limitations arise from several
factors. The range and resolution of a sensor is subject to physical limitations. For example,
cameras cannot see through walls, and the spatial resolution of a camera image is limited.
Sensors are also subject to noise, which perturbs sensor measurements in unpredictable
ways and hence limits the information that can be extracted. And finally, sensors can break.
Detecting a faulty sensor can be extremely difficult.
Thirdly, robot actuation involves motors that are, at least to some extent, unpredictable.
Uncertainty arises from the physical structure of actuator, i.e. actuator is impossible to
achieve absolute precision. In addition, uncertainty also comes from control noise, wear-
and-tear, mechanical failure, etc.
Fourthly, some uncertainty is caused by model approximation. Models are abstractions of
the real world. As such, they only partially model the underlying physical process of the
subject. Model errors are a source of uncertainty that has a great impact on the fulfillment of
the robot task.
Fifthly, there are some uncertainties that are extremely difficult to model or are impossible
to obtain. In that case, the uncertainty is very hard to deal with by analytic methods, like
mathematical approaches. Also the evaluation of the uncertainty, both sources and
magnitude are hard to be obtained.
In summary, the uncertainties caused by the five factors can be noted as environment
uncertainty, sensor uncertainty, actuator uncertainty, model uncertainty, unmodeled
uncertainty, respectively. The above five kinds of uncertainties involve nearly all the
uncertainties human interactive robot may encounter. The control design of HIR in this
chapter takes it a clue to deal with the uncertainties mentioned above. In other words, we
correlate the basic HIR’s technical problems with the five uncertainties. By dealing with the
uncertainties, we design control for HIR and finally solve the basic technical problems of
HIR. Specifically, the first basic problem is to make HIR capable to navigate in a large
unknown environment which corresponds to dealing with environment uncertainty, sensor
uncertainty and actuator uncertainty; the second basic problem is to propose approach for
HIR to physically interact with human which has large degrees of freedom (DOF). This basic
problem corresponds to dealing with the model uncertainty. The third basic problem is to
design approach for HIR to mentally interact with human, i.e. extract the human’s intention,
which corresponds to dealing with unmodeled uncertainty. The detailed explanation on
correlation between the basic problems and corresponding uncertainties is as follows:
The first basic problem concerns two issues as robot localization and environment cognition,
i.e. to estimate the robot’s position and the feature’s position. Considering that robot’s
motion and observation are affected by Gaussian noise, its kinematics model and sensor
model are added by uncertainty. Similarly, the position of feature (or landmark from the
viewpoint of mapping) is also affected by Gaussian noise; herein we add Gaussian
uncertainty in the model. With regards to these models with uncertainty, it is better to use a
probabilistic approach to estimate robot’s and landmark’s positions, i.e. simultaneous
localization and mapping (SLAM). By definition, SLAM is the process by which a mobile
robot builds a map of an environment and at the same time uses this map to compute its
own location. By SLAM, robot is able to navigate in an unknown environment freely.
However, the problem is that the current SLAM approaches only fit the relative small

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

58

environment because of the time-consuming computation. When solving the first basic
problem, the main topic is to propose an efficient SLAM approach for large scale unknown
environment.
The second basic problem contains two issues potentially: the interactive object is human
dynamics with large degree of freedom; the interactive manipulation is physically done by
force. As the first issue, human body has numerous bones and joints and the human model
is a very complex one with large degrees of freedom. Exerting force on such a big model is
very complex and such dynamic process is impossible to be calculated in real time. Here we
use model reduction to decrease the DOF of human model whereas the reduction error (i.e.
model uncertainty) comes out. For the second issue, external force is exerted on human.
Unlike common object, human has passive moment in human joint and more complicated,
sometimes moves at his or her will. Such force character provides a big challenge to control.
To solve the basic problem two, the main topic is to propose an adaptive force control
approach for HIR when physically contacting with human. More specifically, we take a
typical case to research, i.e. how to lift human by HIR in nursing care.
The third basic problem focuses on obtaining the human’s intention. Actually, the human’s
intention is very difficult to measure. The model for human mind is also extremely hard to
build right now. For us, the human’s intention is almost full of unmodeled uncertainty, i.e.,
we have little knowledge about it. In this case, treating it as a black box is a good way. We
stimulate the black box (i.e. human dynamics system) and measure output. By choosing a
suitable function to link the stimulus signal and output, we can obtain the intention model
experimentally. The main topic here is to design an approach for extracting human’s
intention. Without loss of generality, in this chapter we consider the problem of estimating
the human’s intended walking speed.
To conclude, in this chapter, we design controls for human interactive robot by dealing with
the environment uncertainty, sensor uncertainty, actuator uncertainty, model uncertainty
and unmodeled uncertainty. Specifically, the typical problems of HIR we focus on are
designing an efficient SLAM approach for large unknown environment; proposing an
adaptive force control for lifting human up; estimating human’s intended walking speed.
The above three typical problems involve the basic problems when designing controls for
HIR. The solution of them also provides a general solving framework for HIR, which is of
great importance both in research and in application. The preceding researches relating with
the above three typical problems are shown as follows.

2. Motion control for large environment navigation
2.1 Background
Extended Information Filter SLAM (EIF-SLAM) estimates the positions of robot and
landmarks by updating information matrix and information vector. The total element
numbers of information matrix and information vector are

    2
lmdof landmark n dof robot 

and

   lmdof landmark n dof robot 

Control Strategies of Human Interactive Robot Under Uncertain Environments

59

where lmn denotes the mapped landmarks. ()dof landmark and ()dof robot denote
landmarks’ degree of freedom (DOF) and robot’s DOF, respectively. Actually, the
dimension of the information matrix increases rapidly with the increase of the landmark
number in the environment. For example, if a three-dimensional environment has 100
landmarks, the information matrix is a huge matrix with dimension of 303 by 303. Actually,
the computational burden in EIF-SLAM is mainly due to the calculation of the information
matrix.
Previous research has proven that information matrix is a naturally sparse matrix (Eustice,
Singh et al. 2005). Hence, it is a good way to make use of this feature and change
information matrix into a real sparse matrix for computation reduction. Until now, the
successful research includes Thrun et al.’s work which solved a relatively large environment
(i.e. Victoria Park) for the first time (Thrun, Koller et al. 2002); Eustice et al.’s work which
constructed the map of Titanic ship in the dark ocean (Eustice, Singh et al. 2005). Among this
work, the sparsification of information matrix was obtained by constructing a proper
topological structure of Bayes network, which needs to classify the landmarks in advance.
This is a time-consuming work and against the enhancement of efficiency. Actually, the
intuitive idea is to set the near-zero elements to zero directly. Thrun tried this way (Thrun,
Liu et al. 2004), however, Eustice proved that direct sparsification leads the algorithm
diverge (Eustice, Walter et al. 2005), which indicates the improper sparsification process
mentioned may cause the algorithm corrupt. If we want to pursue this kind of idea, we have
to clarify the condition under which the algorithm maintains stable which constitutes the
basis of this section. This section focuses on proposing an efficient stable sparsification
SLAM approach for large scale environment.

2.2 Sparsing information matrix
2.2.1 Characters of information matrix
In fact, information matrix in EIF-SLAM has special structural characters (Dong, Luo et al.
2009) where the value denotes the numerical value of the element in information matrix
located at (,)row index column index . It is convenient to divide the elements of information
matrix into two parts: Part I denotes larger part where the elements have larger values. The
elements along the main-diagonal and near the endpoints of sub diagonal line belong to this
part. Part II is composed of other elements in the information matrix. Three main characters
of information matrix can be stated as
a. Information matrix is symmetric along the main diagonal line;
b. Elements with huge values distribute in the neighborhood of the main diagonal line

and the end points of the sub diagonal line (Part I);
c. For the elements of Part II, the value of the element decreases with the distance from the

main diagonal line.
The reasons for character 1) to 3) can be explained as follows, respectively (Smith, Self et al.
1990; Liu and Thrun 2003; Eustice, Singh et al. 2005; Eustice, Singh et al. 2006).
a. Each element in the information matrix denotes the link strength between the

corresponding landmark and robot. As we all know that the link strength has symmetry,
i.e. if the link strength between A and B is  , then the link strength both from A to B
and from B to A are  . Therefore, information matrix is a symmetric matrix;

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

58

environment because of the time-consuming computation. When solving the first basic
problem, the main topic is to propose an efficient SLAM approach for large scale unknown
environment.
The second basic problem contains two issues potentially: the interactive object is human
dynamics with large degree of freedom; the interactive manipulation is physically done by
force. As the first issue, human body has numerous bones and joints and the human model
is a very complex one with large degrees of freedom. Exerting force on such a big model is
very complex and such dynamic process is impossible to be calculated in real time. Here we
use model reduction to decrease the DOF of human model whereas the reduction error (i.e.
model uncertainty) comes out. For the second issue, external force is exerted on human.
Unlike common object, human has passive moment in human joint and more complicated,
sometimes moves at his or her will. Such force character provides a big challenge to control.
To solve the basic problem two, the main topic is to propose an adaptive force control
approach for HIR when physically contacting with human. More specifically, we take a
typical case to research, i.e. how to lift human by HIR in nursing care.
The third basic problem focuses on obtaining the human’s intention. Actually, the human’s
intention is very difficult to measure. The model for human mind is also extremely hard to
build right now. For us, the human’s intention is almost full of unmodeled uncertainty, i.e.,
we have little knowledge about it. In this case, treating it as a black box is a good way. We
stimulate the black box (i.e. human dynamics system) and measure output. By choosing a
suitable function to link the stimulus signal and output, we can obtain the intention model
experimentally. The main topic here is to design an approach for extracting human’s
intention. Without loss of generality, in this chapter we consider the problem of estimating
the human’s intended walking speed.
To conclude, in this chapter, we design controls for human interactive robot by dealing with
the environment uncertainty, sensor uncertainty, actuator uncertainty, model uncertainty
and unmodeled uncertainty. Specifically, the typical problems of HIR we focus on are
designing an efficient SLAM approach for large unknown environment; proposing an
adaptive force control for lifting human up; estimating human’s intended walking speed.
The above three typical problems involve the basic problems when designing controls for
HIR. The solution of them also provides a general solving framework for HIR, which is of
great importance both in research and in application. The preceding researches relating with
the above three typical problems are shown as follows.

2. Motion control for large environment navigation
2.1 Background
Extended Information Filter SLAM (EIF-SLAM) estimates the positions of robot and
landmarks by updating information matrix and information vector. The total element
numbers of information matrix and information vector are

    2
lmdof landmark n dof robot 

and

   lmdof landmark n dof robot 

Control Strategies of Human Interactive Robot Under Uncertain Environments

59

where lmn denotes the mapped landmarks. ()dof landmark and ()dof robot denote
landmarks’ degree of freedom (DOF) and robot’s DOF, respectively. Actually, the
dimension of the information matrix increases rapidly with the increase of the landmark
number in the environment. For example, if a three-dimensional environment has 100
landmarks, the information matrix is a huge matrix with dimension of 303 by 303. Actually,
the computational burden in EIF-SLAM is mainly due to the calculation of the information
matrix.
Previous research has proven that information matrix is a naturally sparse matrix (Eustice,
Singh et al. 2005). Hence, it is a good way to make use of this feature and change
information matrix into a real sparse matrix for computation reduction. Until now, the
successful research includes Thrun et al.’s work which solved a relatively large environment
(i.e. Victoria Park) for the first time (Thrun, Koller et al. 2002); Eustice et al.’s work which
constructed the map of Titanic ship in the dark ocean (Eustice, Singh et al. 2005). Among this
work, the sparsification of information matrix was obtained by constructing a proper
topological structure of Bayes network, which needs to classify the landmarks in advance.
This is a time-consuming work and against the enhancement of efficiency. Actually, the
intuitive idea is to set the near-zero elements to zero directly. Thrun tried this way (Thrun,
Liu et al. 2004), however, Eustice proved that direct sparsification leads the algorithm
diverge (Eustice, Walter et al. 2005), which indicates the improper sparsification process
mentioned may cause the algorithm corrupt. If we want to pursue this kind of idea, we have
to clarify the condition under which the algorithm maintains stable which constitutes the
basis of this section. This section focuses on proposing an efficient stable sparsification
SLAM approach for large scale environment.

2.2 Sparsing information matrix
2.2.1 Characters of information matrix
In fact, information matrix in EIF-SLAM has special structural characters (Dong, Luo et al.
2009) where the value denotes the numerical value of the element in information matrix
located at (,)row index column index . It is convenient to divide the elements of information
matrix into two parts: Part I denotes larger part where the elements have larger values. The
elements along the main-diagonal and near the endpoints of sub diagonal line belong to this
part. Part II is composed of other elements in the information matrix. Three main characters
of information matrix can be stated as
a. Information matrix is symmetric along the main diagonal line;
b. Elements with huge values distribute in the neighborhood of the main diagonal line

and the end points of the sub diagonal line (Part I);
c. For the elements of Part II, the value of the element decreases with the distance from the

main diagonal line.
The reasons for character 1) to 3) can be explained as follows, respectively (Smith, Self et al.
1990; Liu and Thrun 2003; Eustice, Singh et al. 2005; Eustice, Singh et al. 2006).
a. Each element in the information matrix denotes the link strength between the

corresponding landmark and robot. As we all know that the link strength has symmetry,
i.e. if the link strength between A and B is  , then the link strength both from A to B
and from B to A are  . Therefore, information matrix is a symmetric matrix;

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

60

b. From the viewpoint of Bayes network, the link strength shows the correlation. In SLAM
problem, the largest correlation is the relation of robot itself and landmark itself. The
correlation between the robot and landmark becomes weak with time. If the robot is
currently observing a landmark, the correlation between the robot and the landmark is
strong. The elements in diagonal line denote the link strength of robot versus itself, or
landmark versus itself while the elements near the endpoint of information matrix
show the link strength of robot versus current observing landmark. Hence, the elements
with large value centralize in Part II;

c. The correlation becomes weak when time passes after observing it. When the robot
observes the landmark again, the correlation increases again.

The most important characteristic of information matrix is that most elements of it are
nearly zero. In other words, an information matrix is a nearly sparse matrix. The
information matrix sparsification by different threshold (1 6)i i   is shown in Fig. 2
where i is

2

1
13

1

10
(1 5)

10
i i i

 






    


 (1)

Fig. 2. Information matrix sparsification.

After computing the sparse ratios of the information matrices in Fig. 2, we can get the graph
that illustrates how the sparse ratio changes with the threshold (Fig. 3) where the x-axis
denotes the threshold and the y-axis denotes the sparse ratio. By using a curve fitting
method, it shows that the distribution of elements in the information matrix satisfies a linear
distribution in logarithmic coordinates. The sparse ratio increases with the threshold.
However, sparsification error arises from the sparsification process. Furthermore,
inappropriate sparsification may lead EIF-SLAM to diverge. Therefore, the key issue here is
to find a condition under which the estimation results converge all the time.
From the illustrations above, the information matrix in EIF-SLAM algorithm is naturally
sparse. Hence, the sparsification structure of the information matrix is very suitable to be
sparsed. Moreover, because the computations are mainly on the calculation relating with

Control Strategies of Human Interactive Robot Under Uncertain Environments

61

information estimation variables, high efficiency is predicted by sparsing the information
matrix. The following sparsification approach utilizes the characters of the information
matrix to decrease the computational burden of EIF-SLAM.

10�11 10�10 10�9 10�8 10�7 10�6 10�5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

threshold

sp
ar

se
 ra

tio

simulation data

Fig. 3. Linear relation between sparse ratio and threshold.

From the illustrations above, we obtain that the information matrix in EIF-SLAM algorithm
is naturally sparse. Hence, the sparsification structure of the information matrix is very
suitable to be sparsed. Moreover, because the computations are mainly on the calculation
relating with information estimation variables, high efficiency is predicted by sparsing the
information matrix. The following sparsification approach utilizes the characters of the
information matrix to decrease the computational burden of EIF-SLAM.

2.2.2 Sparsification approach
The mean vector  and the covariance matrix  of the environment state vector  are
written in the form

1 1 11 12 1

2 2 21 22 2

1 2

, ,

n

n

n n n n nn

    
    

 

    

     
     
        
     
     
     




     


 (2)

Assume estimation error is a Gaussian noise, we have

  
  
  

1

1

1

Prob max 0 0.68

Prob max 2 0 0.95

Prob max 3 0 0.997

i i iii n

i i iii n

i i iii n

  

  

  

 

 

 

   

   

   

 (3)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

60

b. From the viewpoint of Bayes network, the link strength shows the correlation. In SLAM
problem, the largest correlation is the relation of robot itself and landmark itself. The
correlation between the robot and landmark becomes weak with time. If the robot is
currently observing a landmark, the correlation between the robot and the landmark is
strong. The elements in diagonal line denote the link strength of robot versus itself, or
landmark versus itself while the elements near the endpoint of information matrix
show the link strength of robot versus current observing landmark. Hence, the elements
with large value centralize in Part II;

c. The correlation becomes weak when time passes after observing it. When the robot
observes the landmark again, the correlation increases again.

The most important characteristic of information matrix is that most elements of it are
nearly zero. In other words, an information matrix is a nearly sparse matrix. The
information matrix sparsification by different threshold (1 6)i i   is shown in Fig. 2
where i is

2

1
13

1

10
(1 5)

10
i i i

 






    


 (1)

Fig. 2. Information matrix sparsification.

After computing the sparse ratios of the information matrices in Fig. 2, we can get the graph
that illustrates how the sparse ratio changes with the threshold (Fig. 3) where the x-axis
denotes the threshold and the y-axis denotes the sparse ratio. By using a curve fitting
method, it shows that the distribution of elements in the information matrix satisfies a linear
distribution in logarithmic coordinates. The sparse ratio increases with the threshold.
However, sparsification error arises from the sparsification process. Furthermore,
inappropriate sparsification may lead EIF-SLAM to diverge. Therefore, the key issue here is
to find a condition under which the estimation results converge all the time.
From the illustrations above, the information matrix in EIF-SLAM algorithm is naturally
sparse. Hence, the sparsification structure of the information matrix is very suitable to be
sparsed. Moreover, because the computations are mainly on the calculation relating with

Control Strategies of Human Interactive Robot Under Uncertain Environments

61

information estimation variables, high efficiency is predicted by sparsing the information
matrix. The following sparsification approach utilizes the characters of the information
matrix to decrease the computational burden of EIF-SLAM.

10�11 10�10 10�9 10�8 10�7 10�6 10�5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

threshold

sp
ar

se
 ra

tio

simulation data

Fig. 3. Linear relation between sparse ratio and threshold.

From the illustrations above, we obtain that the information matrix in EIF-SLAM algorithm
is naturally sparse. Hence, the sparsification structure of the information matrix is very
suitable to be sparsed. Moreover, because the computations are mainly on the calculation
relating with information estimation variables, high efficiency is predicted by sparsing the
information matrix. The following sparsification approach utilizes the characters of the
information matrix to decrease the computational burden of EIF-SLAM.

2.2.2 Sparsification approach
The mean vector  and the covariance matrix  of the environment state vector  are
written in the form

1 1 11 12 1

2 2 21 22 2

1 2

, ,

n

n

n n n n nn

    
    

 

    

     
     
        
     
     
     




     


 (2)

Assume estimation error is a Gaussian noise, we have

  
  
  

1

1

1

Prob max 0 0.68

Prob max 2 0 0.95

Prob max 3 0 0.997

i i iii n

i i iii n

i i iii n

  

  

  

 

 

 

   

   

   

 (3)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

62

By taking the relation between time estimation variables and information estimation
variables

1

1

 



 

  

 (4)

into Equation (3), we obtain

   
   
   

1 1

1 1

1 1

Prob max Sqrt () 0 0.68

Prob max 2 Sqrt () 0 0.95

Prob max 3 Sqrt () 0 0.997

D

D

D

 

 

 

 

 

 

     

      

      

 (5)

Here we propose Theorem 1 to clarify the conditions for sparsification for guaranteeing the
convergence. In other words, from the viewpoint of mathematics, Theorem 1 gives the
consistency condition; from the viewpoint of geometric, the mean remains in the range of
the corresponding covariance under consistency condition.

Theorem 1

Assume the new information matrix after sparsification is written in the form of E  ,

where E is the sparsification error matrix. If   1max 0H      is satisfied, we

obtain

     1 1max Sqrt () 0E D        (6)

where

 
 

1

1

H I E E

E I E





    

    
 (7)

 ,  ,  and E are defined as

 2
2

1 3 1

0
, , ,

0 0
E

E
      

                     
 (8)

where the element positions of  are the transport element position of E . That is, the
portioned matrices E ,  ,  and  are of order of 1 2m m , 2 1m m , 2n m and 1m n ,
respectively.
The proof of Theorem 1 is shown in (Dong, Tang et al. 2010). Consider Equation (6) with
respect to Equation (5), it is shown that after sparsification, each estimated mean still inside
the scope of corresponding covariance. That is to say, the estimated position of the robot or
landmark is inside the estimation range, which indicates the estimation is reliable. In
addition, the proof of Theorem 1 also gives a quite efficient way to get covariance matrix

Control Strategies of Human Interactive Robot Under Uncertain Environments

63

from information matrix without directly computing the inversion. According to Theorem 1,
we can eliminate the information matrix under the condition of stabilization. In practice,
loop-closure is used to compensate the estimation error which comes from sparsification.
After sparsification, another theorem was proposed to evaluate sparsification error by
deriving the upper bound of relative error ratios, including mean vector error ratio and
covariance matrix error ratio (Dong, Tang et al. 2010).

2.3 Large complex environment simulation
The proposed sparsification SLAM approach was simulated in a large scale environment
(about 400 landmarks). As the landmarks are very dense, the environment is a complicated
one. Such environment can further verify the effectiveness of the proposed approach. In the
simulation, the robot applied is a two-wheel robot with three degrees of freedom and the
sensor arranged on the robot is range-bearing type sensor (such as laser, camera, etc.). The
robot moves counterclockwise for two laps while utilizing sparsification approach to
process SLAM.

2.3.1 Efficiency analysis
The main computational burden of EIF-SLAM is primarily from the three steps: motion
update, features addition and observation update. The comparison of computational time
between EIF-SLAM (denoted as stars) and sparsification method (denoted as crosses) is
shown in Fig. 4. It shows that the sparsification approach is able to solve SLAM in the
environment with 400 landmarks. Furthermore, according to the curve trend of
computational time, we can predict that our sparsification method has an efficiency
advantage for large environment.

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

M
ot

io
n

up
da

te
(s

)

EIF�SLAM sparsification approach

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

Ad
d

fe
at

ur
es

(s
)

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

Current size of environment state
O

bs
er

va
tio

n
up

da
te

(s
)

Fig. 4. Efficiency comparison between EIF-SLAM and sparsification SLAM.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

62

By taking the relation between time estimation variables and information estimation
variables

1

1

 



 

  

 (4)

into Equation (3), we obtain

   
   
   

1 1

1 1

1 1

Prob max Sqrt () 0 0.68

Prob max 2 Sqrt () 0 0.95

Prob max 3 Sqrt () 0 0.997

D

D

D

 

 

 

 

 

 

     

      

      

 (5)

Here we propose Theorem 1 to clarify the conditions for sparsification for guaranteeing the
convergence. In other words, from the viewpoint of mathematics, Theorem 1 gives the
consistency condition; from the viewpoint of geometric, the mean remains in the range of
the corresponding covariance under consistency condition.

Theorem 1

Assume the new information matrix after sparsification is written in the form of E  ,

where E is the sparsification error matrix. If   1max 0H      is satisfied, we

obtain

     1 1max Sqrt () 0E D        (6)

where

 
 

1

1

H I E E

E I E





    

    
 (7)

 ,  ,  and E are defined as

 2
2

1 3 1

0
, , ,

0 0
E

E
      

                     
 (8)

where the element positions of  are the transport element position of E . That is, the
portioned matrices E ,  ,  and  are of order of 1 2m m , 2 1m m , 2n m and 1m n ,
respectively.
The proof of Theorem 1 is shown in (Dong, Tang et al. 2010). Consider Equation (6) with
respect to Equation (5), it is shown that after sparsification, each estimated mean still inside
the scope of corresponding covariance. That is to say, the estimated position of the robot or
landmark is inside the estimation range, which indicates the estimation is reliable. In
addition, the proof of Theorem 1 also gives a quite efficient way to get covariance matrix

Control Strategies of Human Interactive Robot Under Uncertain Environments

63

from information matrix without directly computing the inversion. According to Theorem 1,
we can eliminate the information matrix under the condition of stabilization. In practice,
loop-closure is used to compensate the estimation error which comes from sparsification.
After sparsification, another theorem was proposed to evaluate sparsification error by
deriving the upper bound of relative error ratios, including mean vector error ratio and
covariance matrix error ratio (Dong, Tang et al. 2010).

2.3 Large complex environment simulation
The proposed sparsification SLAM approach was simulated in a large scale environment
(about 400 landmarks). As the landmarks are very dense, the environment is a complicated
one. Such environment can further verify the effectiveness of the proposed approach. In the
simulation, the robot applied is a two-wheel robot with three degrees of freedom and the
sensor arranged on the robot is range-bearing type sensor (such as laser, camera, etc.). The
robot moves counterclockwise for two laps while utilizing sparsification approach to
process SLAM.

2.3.1 Efficiency analysis
The main computational burden of EIF-SLAM is primarily from the three steps: motion
update, features addition and observation update. The comparison of computational time
between EIF-SLAM (denoted as stars) and sparsification method (denoted as crosses) is
shown in Fig. 4. It shows that the sparsification approach is able to solve SLAM in the
environment with 400 landmarks. Furthermore, according to the curve trend of
computational time, we can predict that our sparsification method has an efficiency
advantage for large environment.

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

M
ot

io
n

up
da

te
(s

)

EIF�SLAM sparsification approach

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

Ad
d

fe
at

ur
es

(s
)

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

Current size of environment state

O
bs

er
va

tio
n

up
da

te
(s

)

Fig. 4. Efficiency comparison between EIF-SLAM and sparsification SLAM.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

64

2.3.2 Accuracy analysis
The comparison of error and covariance is shown in Fig. 5 where dash line and solid line
denote estimation error and self-covariance of robot’s position, respectively. Horizontal axis
shows the time. Vertical axis denotes the estimation error and covariance where x and y
denote the moving directions, respectively. It shows that estimation error and covariance
decrease sharply at time 250, which indicates that there is a loop-closure at this moment.
In fact, during the first lap, the error and covariance by the sparsification method nearly
have the same magnitude, (in Fig.5 (b), the solid line nearly coincides with the dash line),
which indicates that the sparsification method eliminates considerable number of elements
under the condition of consistency. In the second lap, the estimation error by EIF-SLAM (Fig.
5 (a)) and the sparsification approach (Fig. 5 (b)) seems the same. Thus, it can be concluded
that by using loop-closure properly, the sparsification approach can obtain satisfying
accuracy with high efficiency.

0 100 200 300 400 500
�10

0

10

x
(m

)

error convariance

0 100 200 300 400 500
�20

0

20

y
(m

)

Step

a)

0 100 200 300 400 500
�10

0

10

x
(m

)

error convariance

0 100 200 300 400 500
�20

0

20

y
(m

)

Step

b)

Fig. 5. Comparison of estimation error and covariance.

2.4 Summary
In this section, a sparsification EIF-SLAM approach was proposed to enable human
interactive robot to navigate in the large unknown environment. According to the normal
structural features of information matrix, we eliminate many of the near-zero elements in
the information matrix. Such sparsification process is under the condition of consistency.

Control Strategies of Human Interactive Robot Under Uncertain Environments

65

Hence the sparsification approach stays stable. In addition, the upper bound of estimation
error is also given for evaluation. The large complex environment simulation indicates that
the sparsification approach has the advantage of high efficiency and accuracy. The outdoor
car-park experiment shows the ability to realize consistent estimation by the sparsification
approach (Dong, Luo et al. 2009).
Compared to the previous researches on efficient navigation of human interactive robot, the
sparsification approach proposed in this section gives a direct but effective way to obtain
efficiency. Concerning parameters, we can compromise the efficiency and accuracy under
the condition of stabilization. It is also noted that the consistency condition derived in this
section also has great meaning for the future research on sparsification.
This section dealt with the environment uncertainty, sensor uncertainty, actuator
uncertainty, and assumed them as Gaussian noises. The proposed sparsification SLAM
approach eliminated these uncertainties and realized high efficiency of SLAM estimation.

3. Adaptive force control for lifting human
3.1 Background
It has been thought that the human body is composed of 206 bones and numerous human
joints connecting adjacent bones. Based on the physiological structure of human joints, the
human joints can be mainly divided into three types as the hinge (1 DOF), the pivot (1 DOF)
and the ball socket (3 DOF). In dynamic equations, each DOF is expressed as one differential
equation, which indicates that the overall set of equations of human body dynamics is a
very huge one. The force interaction with such a big model needs considerable computation
for human interactive robot.
As illustrated in Section 1, in the process of lifting human, the human body has to be
considered as a free-floating multi-link rigid object with passive moments. Compared with
one-end-fixed object, like manipulator, free-floating object is much more complex. The force
acting on any part of the object would affect the attitude of the entire object. Moreover,
although the multi-link object has been researched a lot, the one with large DOF and large
redundancy has not fully been considered yet. Another problem is calculation; any
computation on such a huge model needs much computational time whereas the safe lifting
requires real-time computation.
In consideration of the difficulties mentioned above, our basic idea for lifting human comes
from the daily experience. When we human lift a person, we do not care too much about the
detailed dynamics, like the change of ankle angle, hand position and so on. What we do care
about are the head position, the vertical deflection of upper limb and the hip angle. Here we
call them “states of interest”. From the viewpoint of system theorem, we treat the human
body as a large redundant system whose dimensions are reduced by diverting the effects of
other “joints of noninterest” to the “interested ones”. The resulting body model is a reduced
one with less DOF but unfortunately, has huge uncertainties (i.e. model uncertainty). Here
we focus on proper model reduction and methods for dealing with the generating model
uncertainty, which leads to a force control for lifting human.

3.2 Force interaction modeling
If we consider human body as a rigid multi-link object, each bone corresponds to a link and
each human joint corresponds to a joint connecting adjacent links. Moreover, human joints

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

64

2.3.2 Accuracy analysis
The comparison of error and covariance is shown in Fig. 5 where dash line and solid line
denote estimation error and self-covariance of robot’s position, respectively. Horizontal axis
shows the time. Vertical axis denotes the estimation error and covariance where x and y
denote the moving directions, respectively. It shows that estimation error and covariance
decrease sharply at time 250, which indicates that there is a loop-closure at this moment.
In fact, during the first lap, the error and covariance by the sparsification method nearly
have the same magnitude, (in Fig.5 (b), the solid line nearly coincides with the dash line),
which indicates that the sparsification method eliminates considerable number of elements
under the condition of consistency. In the second lap, the estimation error by EIF-SLAM (Fig.
5 (a)) and the sparsification approach (Fig. 5 (b)) seems the same. Thus, it can be concluded
that by using loop-closure properly, the sparsification approach can obtain satisfying
accuracy with high efficiency.

0 100 200 300 400 500
�10

0

10

x
(m

)

error convariance

0 100 200 300 400 500
�20

0

20

y
(m

)

Step

a)

0 100 200 300 400 500
�10

0

10

x
(m

)

error convariance

0 100 200 300 400 500
�20

0

20

y
(m

)

Step

b)

Fig. 5. Comparison of estimation error and covariance.

2.4 Summary
In this section, a sparsification EIF-SLAM approach was proposed to enable human
interactive robot to navigate in the large unknown environment. According to the normal
structural features of information matrix, we eliminate many of the near-zero elements in
the information matrix. Such sparsification process is under the condition of consistency.

Control Strategies of Human Interactive Robot Under Uncertain Environments

65

Hence the sparsification approach stays stable. In addition, the upper bound of estimation
error is also given for evaluation. The large complex environment simulation indicates that
the sparsification approach has the advantage of high efficiency and accuracy. The outdoor
car-park experiment shows the ability to realize consistent estimation by the sparsification
approach (Dong, Luo et al. 2009).
Compared to the previous researches on efficient navigation of human interactive robot, the
sparsification approach proposed in this section gives a direct but effective way to obtain
efficiency. Concerning parameters, we can compromise the efficiency and accuracy under
the condition of stabilization. It is also noted that the consistency condition derived in this
section also has great meaning for the future research on sparsification.
This section dealt with the environment uncertainty, sensor uncertainty, actuator
uncertainty, and assumed them as Gaussian noises. The proposed sparsification SLAM
approach eliminated these uncertainties and realized high efficiency of SLAM estimation.

3. Adaptive force control for lifting human
3.1 Background
It has been thought that the human body is composed of 206 bones and numerous human
joints connecting adjacent bones. Based on the physiological structure of human joints, the
human joints can be mainly divided into three types as the hinge (1 DOF), the pivot (1 DOF)
and the ball socket (3 DOF). In dynamic equations, each DOF is expressed as one differential
equation, which indicates that the overall set of equations of human body dynamics is a
very huge one. The force interaction with such a big model needs considerable computation
for human interactive robot.
As illustrated in Section 1, in the process of lifting human, the human body has to be
considered as a free-floating multi-link rigid object with passive moments. Compared with
one-end-fixed object, like manipulator, free-floating object is much more complex. The force
acting on any part of the object would affect the attitude of the entire object. Moreover,
although the multi-link object has been researched a lot, the one with large DOF and large
redundancy has not fully been considered yet. Another problem is calculation; any
computation on such a huge model needs much computational time whereas the safe lifting
requires real-time computation.
In consideration of the difficulties mentioned above, our basic idea for lifting human comes
from the daily experience. When we human lift a person, we do not care too much about the
detailed dynamics, like the change of ankle angle, hand position and so on. What we do care
about are the head position, the vertical deflection of upper limb and the hip angle. Here we
call them “states of interest”. From the viewpoint of system theorem, we treat the human
body as a large redundant system whose dimensions are reduced by diverting the effects of
other “joints of noninterest” to the “interested ones”. The resulting body model is a reduced
one with less DOF but unfortunately, has huge uncertainties (i.e. model uncertainty). Here
we focus on proper model reduction and methods for dealing with the generating model
uncertainty, which leads to a force control for lifting human.

3.2 Force interaction modeling
If we consider human body as a rigid multi-link object, each bone corresponds to a link and
each human joint corresponds to a joint connecting adjacent links. Moreover, human joints

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

66

have passive torques corresponding to the constriction forces and moments developed by
ligaments, joint capsules and other soft tissues. Hence, we write the dynamics of human in
the from

 () (,) () passH q q C q q q G q      (9)

where
1nq  Generalized body states, including the position of head and the angles of all the

joints.
()n nH q  Inertia matrix, defined as a positive semi-definite symmetric matrix, containing

information on the body’s instantaneous mass distribution.
(,)n nC q q  Centripetal and coriolis torques. (,)C q q term contains products of angular

speeds. When the degree of freedom is rotational, the terms of (,)C q q represent the
moments of centrifugal forces.

1()nG q  Gravitational torques. Because ()G q changes as the posture configuration of the
human body model, its terms are functions of the generalized states.

1pass n  Passive joint torque, including torques and moments arising from muscular
activations and passive elastic structures surrounding the human joints.

Here the HIR’s task is to lift human, i.e. to control the position and posture of the body to
the desired states by external forces. Adding the force exertion in Equation (9), leads to:

 () (,) () pass robH q q C q q q G q        (10)

where
1rob n  The torques acted by the robot arms which is controllable.

Actually, the human interactive robot considered in this section has two manipulation arms,
like RI-MAN (Mukai, Onishi et al. 2008). Force is applied to the fixed point at back and
knees, shown as 1F and 2F . Forces 1F and 2F have relations with rob as

 1 1 2 2
T T

rob J F J F   (11)

where 1J and 2J are the Jacobian matrices of the human body model.

3.3 Human dynamics reduction
The basic idea in this section is to reduce the human body model into a small one with less
degree of freedom, which includes the following three steps:
a. Choose “states of interest”. These states include the fundamental performance

indexes of the task. In other words, based on these states, we can determine whether
the task is complete or not and furthermore, evaluate the performance is good or not.
Let us define

  1 1 1, , T
m mq q q


  (12)

as the “states of interest” and

  2 1 () 1, , T
m n n mq q q  

  (13)

Control Strategies of Human Interactive Robot Under Uncertain Environments

67

as the “uninterested states” consisting of the other states. The overall state can be written as

 1 2
Tq q q .

b. Arrange the dynamic equation set. Based on the division of generalized states in (a), we
change the element position of H , C , G , pass , rob . The expanded form of new
dynamics equation set is

 ,1 ,111 12 111 12 1 1

,2,221 22 2 221 22 2
,pass rob

robpass

C C GH H q q
H H q qC C G

 


           
              
                 

 
 

 (14)

where the dimensions of sub block matrices of 11H , 12H , 21H , 22H are m m ,  m n m  ,
 n m m  ,    n m n m   , respectively. The dimensions of the sub block matrices 11C ,

12C , 21C , 22C are m m ,  m n m  ,  n m m  ,    n m n m   , respectively. The
dimensions of vectors 1G , ,1pass , ,1rob are 1m , and 2G , ,2pass , ,2rob are   1n m  .
c. Construct the small dynamics equation set. First of all, we define the generalized states

of reduced model as

 1sq q (15)

Then extracting the parts of the human dynamics relating with sq , we get

 1 1
11 12 11 12 1 ,1 ,1

2 2
pass rob

q q
H H C C G

q q
 

   
            

   

 
 

 (16)

Considering that the dynamic model is time-varying, after arranging Equation (16), we
obtain

  11 1 11 1 1 12 2 12 2 ,1 ,1() () () () () () ()pass robH t q C t q G t H t q C t q t t          (17)

By defining the inertia matrix, centripetal matrix, gravitational matrix and torque vector of
the reduced human dynamics as

11

11

1 12 2 12 2 ,1

,1

() ()
() ()
() () () () ()
() ()

s

s

s pass

s rob

H t H t
C t C t
G t G t H t q C t q t

t t


 





   



 
 (18)

we obtain the general mechanical form of the reduced human dynamics

 () () () ()s s s s s sH t q C t q G t t    (19)

where the subscript s denotes the small system. We consider the influences from
“uninterested human joints” (in this case from state 2q) as perturbations.
We change the attitude of reduced human model adaptively by estimating the parameters of

sH , sC and sG in real time. The detailed estimation meanings are as follows.
 Estimating sH and sC --- make the system adaptively adjust itself to various people

with different weights.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

66

have passive torques corresponding to the constriction forces and moments developed by
ligaments, joint capsules and other soft tissues. Hence, we write the dynamics of human in
the from

 () (,) () passH q q C q q q G q      (9)

where
1nq  Generalized body states, including the position of head and the angles of all the

joints.
()n nH q  Inertia matrix, defined as a positive semi-definite symmetric matrix, containing

information on the body’s instantaneous mass distribution.
(,)n nC q q  Centripetal and coriolis torques. (,)C q q term contains products of angular

speeds. When the degree of freedom is rotational, the terms of (,)C q q represent the
moments of centrifugal forces.

1()nG q  Gravitational torques. Because ()G q changes as the posture configuration of the
human body model, its terms are functions of the generalized states.

1pass n  Passive joint torque, including torques and moments arising from muscular
activations and passive elastic structures surrounding the human joints.

Here the HIR’s task is to lift human, i.e. to control the position and posture of the body to
the desired states by external forces. Adding the force exertion in Equation (9), leads to:

 () (,) () pass robH q q C q q q G q        (10)

where
1rob n  The torques acted by the robot arms which is controllable.

Actually, the human interactive robot considered in this section has two manipulation arms,
like RI-MAN (Mukai, Onishi et al. 2008). Force is applied to the fixed point at back and
knees, shown as 1F and 2F . Forces 1F and 2F have relations with rob as

 1 1 2 2
T T

rob J F J F   (11)

where 1J and 2J are the Jacobian matrices of the human body model.

3.3 Human dynamics reduction
The basic idea in this section is to reduce the human body model into a small one with less
degree of freedom, which includes the following three steps:
a. Choose “states of interest”. These states include the fundamental performance

indexes of the task. In other words, based on these states, we can determine whether
the task is complete or not and furthermore, evaluate the performance is good or not.
Let us define

  1 1 1, , T
m mq q q


  (12)

as the “states of interest” and

  2 1 () 1, , T
m n n mq q q  

  (13)

Control Strategies of Human Interactive Robot Under Uncertain Environments

67

as the “uninterested states” consisting of the other states. The overall state can be written as

 1 2
Tq q q .

b. Arrange the dynamic equation set. Based on the division of generalized states in (a), we
change the element position of H , C , G , pass , rob . The expanded form of new
dynamics equation set is

 ,1 ,111 12 111 12 1 1

,2,221 22 2 221 22 2
,pass rob

robpass

C C GH H q q
H H q qC C G

 


           
              
                 

 
 

 (14)

where the dimensions of sub block matrices of 11H , 12H , 21H , 22H are m m ,  m n m  ,
 n m m  ,    n m n m   , respectively. The dimensions of the sub block matrices 11C ,

12C , 21C , 22C are m m ,  m n m  ,  n m m  ,    n m n m   , respectively. The
dimensions of vectors 1G , ,1pass , ,1rob are 1m , and 2G , ,2pass , ,2rob are   1n m  .
c. Construct the small dynamics equation set. First of all, we define the generalized states

of reduced model as

 1sq q (15)

Then extracting the parts of the human dynamics relating with sq , we get

 1 1
11 12 11 12 1 ,1 ,1

2 2
pass rob

q q
H H C C G

q q
 

   
            

   

 
 

 (16)

Considering that the dynamic model is time-varying, after arranging Equation (16), we
obtain

  11 1 11 1 1 12 2 12 2 ,1 ,1() () () () () () ()pass robH t q C t q G t H t q C t q t t          (17)

By defining the inertia matrix, centripetal matrix, gravitational matrix and torque vector of
the reduced human dynamics as

11

11

1 12 2 12 2 ,1

,1

() ()
() ()
() () () () ()
() ()

s

s

s pass

s rob

H t H t
C t C t
G t G t H t q C t q t

t t


 





   



 
 (18)

we obtain the general mechanical form of the reduced human dynamics

 () () () ()s s s s s sH t q C t q G t t    (19)

where the subscript s denotes the small system. We consider the influences from
“uninterested human joints” (in this case from state 2q) as perturbations.
We change the attitude of reduced human model adaptively by estimating the parameters of

sH , sC and sG in real time. The detailed estimation meanings are as follows.
 Estimating sH and sC --- make the system adaptively adjust itself to various people

with different weights.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

68

 Estimating sG --- eliminate the perturbations from other “uninterested joints”.
Considering the basic principle above, the approach to be proposed in this section is to
identify and control the reduced human dynamics at the same time. Assuming that the
human parameters are totally unknown in advance, for the safety in the nursing activity, the
identification process needs to be performed in real time. On the other hand, the weights
and heights etc. of the human bodies are different between individuals. Hence, the strategy
also has to be able to tolerate these individual difference.

3.4 Attitude control and human parameter identification
First of all, we assume that we do not have any priori knowledge before lifting human, i.e. the
initial value of sH , sC , sG are set to be zero matrices and zero vectors. The benefit of such
assumption is that the proposed trajectory is much more robust and can be adaptive to various
people with different heights and weights. Whereas, such assumption also leads to a problem, i.e.
it generates much model uncertainties in the dynamics. To solve the above problem, we use
robust controller to change the human attitude to the desired states. Moreover, online human
parameter identification is also done so as to estimate the human body in real time.
For the convenience of mathematical derivation, we define the actual human parameter
vector

TT T T

H C GP P P P    (20)

where

 ,11 ,12 ,1 , 1 , 2 ,
T

H s s s n s n s n s nnP H H H H H H     (21)

 ,11 ,12 ,1 , 1 , 2 ,
T

C s s s n s n s n s nnP C C C C C C     (22)

 ,1 ,2 ,
T

G s s s nP G G G    (23)

and estimated human parameter vector as

 ˆ ˆ ˆ ˆ TT T T
H C GP P P P   

 (24)

where

 ,11 ,12 ,1 , 1 , 2 ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ T
H s s s n s n s n s nnP H H H H H H     (25)

 ,11 ,12 ,1 , 1 , 2 ,
ˆ ˆ ˆ ˆ ˆ ˆˆ T

C s s s n s n s n s nnP C C C C C C     (26)

 ,1 ,2 ,
ˆ ˆ ˆˆ T

G s s s nP G G G    (27)

Then the estimation error vector can be defined as

 ˆP P P  (28)

Control Strategies of Human Interactive Robot Under Uncertain Environments

69

In fact, not any combination of H , C and G corresponds to a physical system. Therefore,
the first step is to prove that the reduced human model represents a real physical system. It
is easy to verify that by proving that 2s sH C is a skew-symmetric matrix. In other words,
the reduced human model satisfies energy conservation where the detailed derivation is in
(Dong, Luo et al. 2010).
We propose a theorem to change the “states of interest” of human body. It is composed of a
human attitude control law and a human parameter identification law. In fact, the control
process and identification process run at the same time. In the proof of Theorem 2, the
global stability is shown by proving that the derivative of the constructed Lyapunov
function candidate is less than zero.
Theorem 2
Consider a time-varying system with m-order

 () () () ()s s s s s sH t q C t q G t t    (29)

without any pre-knowledge about sH , sC and sG . The vector ,s dq means the desired states.
Define the sliding term s as

 , ,()' ()s s s s d s s ds q q q q q q         (30)

where  is a positive diagonal matrix. Define the reference velocity ,s rq and reference
acceleration ,s rq as

 ,

,

s r s

s r s

q q s
q q s

 

 

 
  

 (31)

If we choose the human attitude control law

 , ,
ˆ ˆˆ () () () sgn()s s s r s s r sH t q C t q G t k s       (32)

and human parameter identification law

 1
1 , , 1 , , 1

ˆ T T T T
s r n s r s r n s r nP s q s q s q s q s s     

       (33)

under the assumption of

 sgn()T Tk s s P P    (34)

the human dynamics tracks the desired state trajectory and the parameter estimation sH ,
sC and sG converge to the actual human parameters asymptotically, where k and  are

positive diagonal matrixes, sgn() is a signal function.
The proof of Theorem 2 is shown in (Dong, Luo et al. 2010). It is noted that the signals
required in the control law and identification law are s , ,s rq , ,s rq (Equation (32) and
Equation (33)). According to the definitions of s , ,s rq , ,s rq (Equation (30) and Equation (31)),
the basic signals required are sq , sq , sq . Actually, the “states of interest” sq , sq represent
the basic attitude element of human, i.e. position, angle, linear velocity, angular velocity.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

68

 Estimating sG --- eliminate the perturbations from other “uninterested joints”.
Considering the basic principle above, the approach to be proposed in this section is to
identify and control the reduced human dynamics at the same time. Assuming that the
human parameters are totally unknown in advance, for the safety in the nursing activity, the
identification process needs to be performed in real time. On the other hand, the weights
and heights etc. of the human bodies are different between individuals. Hence, the strategy
also has to be able to tolerate these individual difference.

3.4 Attitude control and human parameter identification
First of all, we assume that we do not have any priori knowledge before lifting human, i.e. the
initial value of sH , sC , sG are set to be zero matrices and zero vectors. The benefit of such
assumption is that the proposed trajectory is much more robust and can be adaptive to various
people with different heights and weights. Whereas, such assumption also leads to a problem, i.e.
it generates much model uncertainties in the dynamics. To solve the above problem, we use
robust controller to change the human attitude to the desired states. Moreover, online human
parameter identification is also done so as to estimate the human body in real time.
For the convenience of mathematical derivation, we define the actual human parameter
vector

TT T T

H C GP P P P    (20)

where

 ,11 ,12 ,1 , 1 , 2 ,
T

H s s s n s n s n s nnP H H H H H H     (21)

 ,11 ,12 ,1 , 1 , 2 ,
T

C s s s n s n s n s nnP C C C C C C     (22)

 ,1 ,2 ,
T

G s s s nP G G G    (23)

and estimated human parameter vector as

 ˆ ˆ ˆ ˆ TT T T
H C GP P P P   

 (24)

where

 ,11 ,12 ,1 , 1 , 2 ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ T
H s s s n s n s n s nnP H H H H H H     (25)

 ,11 ,12 ,1 , 1 , 2 ,
ˆ ˆ ˆ ˆ ˆ ˆˆ T

C s s s n s n s n s nnP C C C C C C     (26)

 ,1 ,2 ,
ˆ ˆ ˆˆ T

G s s s nP G G G    (27)

Then the estimation error vector can be defined as

 ˆP P P  (28)

Control Strategies of Human Interactive Robot Under Uncertain Environments

69

In fact, not any combination of H , C and G corresponds to a physical system. Therefore,
the first step is to prove that the reduced human model represents a real physical system. It
is easy to verify that by proving that 2s sH C is a skew-symmetric matrix. In other words,
the reduced human model satisfies energy conservation where the detailed derivation is in
(Dong, Luo et al. 2010).
We propose a theorem to change the “states of interest” of human body. It is composed of a
human attitude control law and a human parameter identification law. In fact, the control
process and identification process run at the same time. In the proof of Theorem 2, the
global stability is shown by proving that the derivative of the constructed Lyapunov
function candidate is less than zero.
Theorem 2
Consider a time-varying system with m-order

 () () () ()s s s s s sH t q C t q G t t    (29)

without any pre-knowledge about sH , sC and sG . The vector ,s dq means the desired states.
Define the sliding term s as

 , ,()' ()s s s s d s s ds q q q q q q         (30)

where  is a positive diagonal matrix. Define the reference velocity ,s rq and reference
acceleration ,s rq as

 ,

,

s r s

s r s

q q s
q q s

 

 

 
  

 (31)

If we choose the human attitude control law

 , ,
ˆ ˆˆ () () () sgn()s s s r s s r sH t q C t q G t k s       (32)

and human parameter identification law

 1
1 , , 1 , , 1

ˆ T T T T
s r n s r s r n s r nP s q s q s q s q s s     

       (33)

under the assumption of

 sgn()T Tk s s P P    (34)

the human dynamics tracks the desired state trajectory and the parameter estimation sH ,
sC and sG converge to the actual human parameters asymptotically, where k and  are

positive diagonal matrixes, sgn() is a signal function.
The proof of Theorem 2 is shown in (Dong, Luo et al. 2010). It is noted that the signals
required in the control law and identification law are s , ,s rq , ,s rq (Equation (32) and
Equation (33)). According to the definitions of s , ,s rq , ,s rq (Equation (30) and Equation (31)),
the basic signals required are sq , sq , sq . Actually, the “states of interest” sq , sq represent
the basic attitude element of human, i.e. position, angle, linear velocity, angular velocity.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

70

Hence, they are easy for measuring. The measurement can be achieved by binocular vision
technology. However, sq is hard to measure. To avoid the acceleration signal, we use
filtering technology. Specifically, let ()w t be the impulse response of a stable, proper filter.
For example, for the first-order filter /()p  where 0  , /p d dt , the impulse
response is te  . Then using partial integration, sq can be integrated as

 
0 00

0

() ()

(0) () (0) () ()

tt t
s s s

t
s s s s

dww t r q dr w t r q q dr
dr

w q w t q w t r q w t r q dr

   

     

 



  

    
 (35)

which means (,)s sq f q w  , i.e., the acceleration signal can be obtained from velocity signal.

3.5 Simulation
3.5.1 Simulation results
The simulation was implemented by coordination of three software packages, including
AUTOLEV, MATLAB and VORTEX. The detailed cooperation relations are explained as
follows. AUTOLEV is used to construct the human model (Kane and Levinson 1985). We
choose MATLAB to process the main computation of solving ordinary differential equations;
Although VORTEX is able to do physical simulation, the programming grammar is a bit
complex. Here, we just use its stereoscopic presentation function to make animations.
In the simulation, we choose the head position (denoted as ,h xP , ,h yP , ,h zP), the angle drift
off the horizontal line of lower-trunk (denoted as 1,x , 1,y , 1,z), the angle of lower-trunk
and upper-leg (denoted as 2,x , 2,y , 2,z) to constitute the “states of interest”, i.e.

 , , , 1, 1, 1, 2, 2, 2 ,, , , , , , , ,
T

s h x h y h z x y z x y zq P P P         
 (36)

The initial velocity and acceleration are set as (0) (0) 0s sq q  and the desired states are set as

  
 

,

, ,

0.2, 0.8, 0.01, 0.01, 0.01, 0.7854, 0.01, 0.01, 1.5708

0, 0, 0, 0, 0, 0, 0, 0, 0

T
s d

T
s d s d

q

q q

 

  
 (37)

Applying the human attitude control law in Equation (32) and human parameter adaptation
law in Equation (33), we obtain

 , , , 1, 1, 1, 2, 2 , 2 ,, , , , , , , ,
T

s h x h y h z x y z x y zF F F         
 (38)

Then we choose

,

1 ,

,

1, 1, 1, 2, 2 , 2, 1, 1, 1, 2 , 2, 2 ,

2 1, 1, 1, 2, 2 , 2 , 1, 1, 1, 2 , 2 , 2,

1, 1, 1, 2 , 2 , 2, 1,

(sin sin) (cos cos)
(cos cos) (sin sin)
(cos cos) (

h x

h y

h z

z z z z z z y y y y y y

z z z z z z x x x x x x

x x x x x x

F
F F

F

l l l l
F l l l l

l l

       

       
    

 
 

  
 
 

  

   
  1, 1, 2 , 2, 2 ,sin sin)y y y y y yl l  

 
 
 
  

 (39)

Control Strategies of Human Interactive Robot Under Uncertain Environments

71

where 1, 1, 1,, ,
T

x y zl l l   denotes the distance between the head position and the buttock.

2, 2, 2,, ,
T

x y zl l l   denotes the distance between the buttock and the application point of 2F .

By applying 1F and 2F , human attitude control is achieved.
The energy, position and angle changes are shown in Fig. 6. It is seen that it takes about 1
second to accomplish the process of attitude change. There is a peak of kinematics energy at
the time of about 0.2 second which means at that time, the attitude changes very quickly (Fig.
6 (a)). One reason is that we assume no pre-knowledge of the human body at the beginning
of the simulation. The head position changed to the desired (0.2m, 0.8m, 0.01m) at about 1
second (Fig. 6 (b)). Compared with other joints rotating in x or y direction, the joints rotating
in z direction change significantly. Thus, the angle changes of these joints affect the head
position in x direction greater.
In (Dong, Luo et al. 2010), it is shown that 2s sH C is a skew-symmetric matrix which
indicates that parts of the states (or their linear combination) can be controlled as a whole. In
the simulation, we constructed a new state which is the angle sum of head, chest, mid-trunk,
and lower-trunk. The angle drift off the horizontal line of the new state changes to the
desired -0.7854 rad (i.e. -45 degrees) at about 1 second as shown in Fig. 6 (c). The angle
between lower-trunk and upper-leg changes to the desired 1.5708 rad (i.e. 90 degrees) at
about 1 second (Fig. 6 (d)).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

K
in

em
at

ic
 e

ne
rg

y
(J

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-500

0

500

P
ot

en
tia

l e
ne

rg
y

(J
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-500

0

500

Time (s)

To
ta

l e
ne

rg
y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

X
 d

ire
ct

io
n

(m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

Y
 d

ire
ct

io
n

(m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

Z
di

re
ct

io
n

(m
)

Time (s)
a) b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

A
ng

le
 (r

ad
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6

-4

-2

0

2

Time (s)

A
ng

ul
ar

 v
ol

ic
ity

 (r
ad

/s
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

A
ng

le
 (r

ad
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

2.5

Time (s)

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

c) d)

Fig. 6. Energy and angle change.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

70

Hence, they are easy for measuring. The measurement can be achieved by binocular vision
technology. However, sq is hard to measure. To avoid the acceleration signal, we use
filtering technology. Specifically, let ()w t be the impulse response of a stable, proper filter.
For example, for the first-order filter /()p  where 0  , /p d dt , the impulse
response is te  . Then using partial integration, sq can be integrated as

 
0 00

0

() ()

(0) () (0) () ()

tt t
s s s

t
s s s s

dww t r q dr w t r q q dr
dr

w q w t q w t r q w t r q dr

   

     

 



  

    
 (35)

which means (,)s sq f q w  , i.e., the acceleration signal can be obtained from velocity signal.

3.5 Simulation
3.5.1 Simulation results
The simulation was implemented by coordination of three software packages, including
AUTOLEV, MATLAB and VORTEX. The detailed cooperation relations are explained as
follows. AUTOLEV is used to construct the human model (Kane and Levinson 1985). We
choose MATLAB to process the main computation of solving ordinary differential equations;
Although VORTEX is able to do physical simulation, the programming grammar is a bit
complex. Here, we just use its stereoscopic presentation function to make animations.
In the simulation, we choose the head position (denoted as ,h xP , ,h yP , ,h zP), the angle drift
off the horizontal line of lower-trunk (denoted as 1,x , 1,y , 1,z), the angle of lower-trunk
and upper-leg (denoted as 2,x , 2,y , 2,z) to constitute the “states of interest”, i.e.

 , , , 1, 1, 1, 2, 2, 2 ,, , , , , , , ,
T

s h x h y h z x y z x y zq P P P         
 (36)

The initial velocity and acceleration are set as (0) (0) 0s sq q  and the desired states are set as

  
 

,

, ,

0.2, 0.8, 0.01, 0.01, 0.01, 0.7854, 0.01, 0.01, 1.5708

0, 0, 0, 0, 0, 0, 0, 0, 0

T
s d

T
s d s d

q

q q

 

  
 (37)

Applying the human attitude control law in Equation (32) and human parameter adaptation
law in Equation (33), we obtain

 , , , 1, 1, 1, 2, 2 , 2 ,, , , , , , , ,
T

s h x h y h z x y z x y zF F F         
 (38)

Then we choose

,

1 ,

,

1, 1, 1, 2, 2 , 2, 1, 1, 1, 2 , 2, 2 ,

2 1, 1, 1, 2, 2 , 2 , 1, 1, 1, 2 , 2 , 2,

1, 1, 1, 2 , 2 , 2, 1,

(sin sin) (cos cos)
(cos cos) (sin sin)
(cos cos) (

h x

h y

h z

z z z z z z y y y y y y

z z z z z z x x x x x x

x x x x x x

F
F F

F

l l l l
F l l l l

l l

       

       
    

 
 

  
 
 

  

   
  1, 1, 2 , 2, 2 ,sin sin)y y y y y yl l  

 
 
 
  

 (39)

Control Strategies of Human Interactive Robot Under Uncertain Environments

71

where 1, 1, 1,, ,
T

x y zl l l   denotes the distance between the head position and the buttock.

2, 2, 2,, ,
T

x y zl l l   denotes the distance between the buttock and the application point of 2F .

By applying 1F and 2F , human attitude control is achieved.
The energy, position and angle changes are shown in Fig. 6. It is seen that it takes about 1
second to accomplish the process of attitude change. There is a peak of kinematics energy at
the time of about 0.2 second which means at that time, the attitude changes very quickly (Fig.
6 (a)). One reason is that we assume no pre-knowledge of the human body at the beginning
of the simulation. The head position changed to the desired (0.2m, 0.8m, 0.01m) at about 1
second (Fig. 6 (b)). Compared with other joints rotating in x or y direction, the joints rotating
in z direction change significantly. Thus, the angle changes of these joints affect the head
position in x direction greater.
In (Dong, Luo et al. 2010), it is shown that 2s sH C is a skew-symmetric matrix which
indicates that parts of the states (or their linear combination) can be controlled as a whole. In
the simulation, we constructed a new state which is the angle sum of head, chest, mid-trunk,
and lower-trunk. The angle drift off the horizontal line of the new state changes to the
desired -0.7854 rad (i.e. -45 degrees) at about 1 second as shown in Fig. 6 (c). The angle
between lower-trunk and upper-leg changes to the desired 1.5708 rad (i.e. 90 degrees) at
about 1 second (Fig. 6 (d)).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

K
in

em
at

ic
 e

ne
rg

y
(J

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-500

0

500

P
ot

en
tia

l e
ne

rg
y

(J
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-500

0

500

Time (s)

To
ta

l e
ne

rg
y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

X
 d

ire
ct

io
n

(m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

Y
 d

ire
ct

io
n

(m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

Z
di

re
ct

io
n

(m
)

Time (s)
a) b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

A
ng

le
 (r

ad
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6

-4

-2

0

2

Time (s)

A
ng

ul
ar

 v
ol

ic
ity

 (r
ad

/s
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

A
ng

le
 (r

ad
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

2.5

Time (s)

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

c) d)

Fig. 6. Energy and angle change.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

72

3.5.2 Animation
We imported the computed motion data into the VORTEX human model to make animation.
Here the human model is the visible skeleton which was built in (Dong, Luo et al. 2010).
Compared with the human model for simulation (16 links and 35 DOF), the human model
for animation is a redundant one (54 links and 61 DOF). Here we just make the
corresponding human joints rotate and maintain the redundant human joints fixed. As
assumed in the simulation that the force contact type is contingence, we choose two
cylindrical objects to represent robot arms.
The position of the head, angle drift off the horizontal line of lower-trunk, angle of lower-trunk
and upper-leg are chosen as the “states of interest” (Fig. 7 (a)). The animation of lifting up human
by the adaptive force control is shown in Fig. 7 (b) – (f). At the beginning of the simulation, we
assume that we do not have any pre-knowledge about the human parameter. Hence, the initial
values of ˆ

sH , ˆ
sC and ˆ

sG are set to zero matrices (or zero vectors). As the identification of the
human parameter goes on, ˆ

sH , ˆ
sC , ˆ

sG converge to the true values sH , sC , sG .

(a) (b)

(c) (d)

(e) (f)
Fig. 7. “States of interest” in lifting human and Snapshots of the lifting human process
(Dong, Luo et al. 2010).

Control Strategies of Human Interactive Robot Under Uncertain Environments

73

3.6 Summary
In this section, an attitude control approach was proposed to lift human without regard to
the individual differences, such as height, weight, and so on. We used robust adaptive
control to eliminate the effects from the “uninterested joints” and identify the human
parameters in real time. In addition, the convergence analysis, including tracking time and
static tracking error, was also given. The approach was simulated by lifting a normal human
body with two robot arms, which verifies the efficiency and effectiveness of the proposed
strategy.
Compared with the previous researches, there are two novelties in the proposed approach.
First is that it is not necessary to measure human, like height and weight, in advance
because the approach can automatically identify the human parameter online. Second is that
the attitude control law ensures the accuracy. Moreover, the robust controller which we
proposed also has the ability to tolerate the model uncertainty of human.
Actually, lifting human is a typical problem when interacting with human by force. As
human is such a big redundant model, a good solution is to reduce it and design controls.
Here, there are two sources of model uncertainties: one is from the unmodeled dynamics
which we cannot measure; the other is the generating model uncertainty which comes
from model reduction. The effectiveness of the adaptive force control shows that by
designing robust controller and online estimator, the two uncertainties mentioned can be
solved.

4. Speed control by human’s walking intention
4.1 Background
Human walking servo robot is a robot which adaptively adjusts its velocity to human’s
walking speed. In this section, we consider controlled treadmill as human walking servo
robot. In the previous human walking servo robot applications, the subjects had to passively
follow the given speed (Mcdermott, Ades et al. 2009; Powell, Stevens et al. 2009). However,
in many application cases, the human walking servo robot control strategy motivated by
human will is very desirable. However, human will is very complex and hard to be
measured. Even if certain models are obtained by brain signal, like brain computer interface
(BCI), the models are limited because of great unmodeled uncertainty.
Such a huge unmodeled uncertainty is very difficult to handle. Although the adaptive
control with identification can tolerate some degree of unmodeled dynamics, it requires the
unmodeled uncertainty is in some degree of limit. Once the model uncertainty is beyond the
threshold, the control strategy corrupts. Considering this, we have to find another way
which does not rely on model much. One constructive perspective is to consider the human
process as a black box with multi-input and multi-output. Based on the experimental
approach, we can evaluate the human process by the input stimulation (from 1u to mu) and
output human response (from 1x to nx). The objective is to find a relation if to satisfy

1(, ,)i i mx f u u  1 i n  where if can be linear or nonlinear function. By determing if
(1)i n  , we can evaluate the human process. This section focuses on designing control for
human walking servo robot by human’s walking intention. As we consider the human
process as a multi-input-muilti-output (MIMO) black box, the main topic is to identify the
MIMO human process.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

72

3.5.2 Animation
We imported the computed motion data into the VORTEX human model to make animation.
Here the human model is the visible skeleton which was built in (Dong, Luo et al. 2010).
Compared with the human model for simulation (16 links and 35 DOF), the human model
for animation is a redundant one (54 links and 61 DOF). Here we just make the
corresponding human joints rotate and maintain the redundant human joints fixed. As
assumed in the simulation that the force contact type is contingence, we choose two
cylindrical objects to represent robot arms.
The position of the head, angle drift off the horizontal line of lower-trunk, angle of lower-trunk
and upper-leg are chosen as the “states of interest” (Fig. 7 (a)). The animation of lifting up human
by the adaptive force control is shown in Fig. 7 (b) – (f). At the beginning of the simulation, we
assume that we do not have any pre-knowledge about the human parameter. Hence, the initial
values of ˆ

sH , ˆ
sC and ˆ

sG are set to zero matrices (or zero vectors). As the identification of the
human parameter goes on, ˆ

sH , ˆ
sC , ˆ

sG converge to the true values sH , sC , sG .

(a) (b)

(c) (d)

(e) (f)
Fig. 7. “States of interest” in lifting human and Snapshots of the lifting human process
(Dong, Luo et al. 2010).

Control Strategies of Human Interactive Robot Under Uncertain Environments

73

3.6 Summary
In this section, an attitude control approach was proposed to lift human without regard to
the individual differences, such as height, weight, and so on. We used robust adaptive
control to eliminate the effects from the “uninterested joints” and identify the human
parameters in real time. In addition, the convergence analysis, including tracking time and
static tracking error, was also given. The approach was simulated by lifting a normal human
body with two robot arms, which verifies the efficiency and effectiveness of the proposed
strategy.
Compared with the previous researches, there are two novelties in the proposed approach.
First is that it is not necessary to measure human, like height and weight, in advance
because the approach can automatically identify the human parameter online. Second is that
the attitude control law ensures the accuracy. Moreover, the robust controller which we
proposed also has the ability to tolerate the model uncertainty of human.
Actually, lifting human is a typical problem when interacting with human by force. As
human is such a big redundant model, a good solution is to reduce it and design controls.
Here, there are two sources of model uncertainties: one is from the unmodeled dynamics
which we cannot measure; the other is the generating model uncertainty which comes
from model reduction. The effectiveness of the adaptive force control shows that by
designing robust controller and online estimator, the two uncertainties mentioned can be
solved.

4. Speed control by human’s walking intention
4.1 Background
Human walking servo robot is a robot which adaptively adjusts its velocity to human’s
walking speed. In this section, we consider controlled treadmill as human walking servo
robot. In the previous human walking servo robot applications, the subjects had to passively
follow the given speed (Mcdermott, Ades et al. 2009; Powell, Stevens et al. 2009). However,
in many application cases, the human walking servo robot control strategy motivated by
human will is very desirable. However, human will is very complex and hard to be
measured. Even if certain models are obtained by brain signal, like brain computer interface
(BCI), the models are limited because of great unmodeled uncertainty.
Such a huge unmodeled uncertainty is very difficult to handle. Although the adaptive
control with identification can tolerate some degree of unmodeled dynamics, it requires the
unmodeled uncertainty is in some degree of limit. Once the model uncertainty is beyond the
threshold, the control strategy corrupts. Considering this, we have to find another way
which does not rely on model much. One constructive perspective is to consider the human
process as a black box with multi-input and multi-output. Based on the experimental
approach, we can evaluate the human process by the input stimulation (from 1u to mu) and
output human response (from 1x to nx). The objective is to find a relation if to satisfy

1(, ,)i i mx f u u  1 i n  where if can be linear or nonlinear function. By determing if
(1)i n  , we can evaluate the human process. This section focuses on designing control for
human walking servo robot by human’s walking intention. As we consider the human
process as a multi-input-muilti-output (MIMO) black box, the main topic is to identify the
MIMO human process.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

74

4.2 Human walking intention extraction
4.2.1 Characteristic index
The coordinate definition is shown in Fig. 8. Here based on the real product of force plate,
we assume that the true origin of the strain gauge force plate is not at the geometric center of
the plate surface. There is a pad on the force plate. After a series of calibrations of the true
origin, the true origin 'O is at (0,0,)h .

Fig. 8. Coordinate system.

According to the coordinate, the reaction force of ground to feet was simulated where the
human model is built by OPENSIM in Section 4.4. It is shown that in one dynamic circle, the
force zF is a bell-shape signal; yF is a sine-shape signal (Fig. 9 (a)).

0 0.2 0.4 0.6 0.8 1 1.2
�200

0

200

400

600

800

F x, F
y, F

z (N
)

0 0.2 0.4 0.6 0.8 1 1.2
�0.3

�0.2

�0.1

0

0.1

0.2

Time (s)

R
y,

z

Fx
Fy
Fz

0 1 2 3 4 5 6 7 8 9 10

-10

-5

0

5

10

Velocity

R
y,

z

acceleration phase

(a) (b)

Fig. 9. Envelope of yzR in acceleration.

We can explain the reason of such curve shape as follows. When foot gets in touch with the
surface of force plate, zF increases very rapidly. At the same time, foot has to make a break
to adjust its speed to the velocity of the force plate by fiction. After break process, foot
applies a force with inverse direction to drive the leg to take a step, i.e. make a preparation
for higher speed of leg in the next moment. It is noted that, compared with the previous
break process, yF changes its direction at this time. Until now, the foot is on the force plate.
Hence, zF maintains large (for a normal person with 70 kg weight, zF is about 700 N).

x

'x

'z z
y

'y

1F

2F

3F

4FF
zT

plate surface
pad surface




'P
P

h

Control Strategies of Human Interactive Robot Under Uncertain Environments

75

Finally, the subject alternates the other foot to support body and zF decreases rapidly.
Considering the fact that when zF is large enough, one foot is firmly on the human walking
servo robot. We define a ratio index ,y zR as

 ,

0

y
z

y z z

F
F

R F
others




 



 (40)

where  is a threshold. In normal cases,  is set as max{ } 80%zF  . According to the curve
shapes of yF and zF , the curve shape of ,y zR is a composite signal of connection of sine-
shape signals and zero signals.
To prove the above simulation result and corresponding analysis, we use Bertec treadmill
TM07-B to complete a verification experiment. It is noted that under the treadmill, there are
two force plates individually measuring the interaction force and moment. In the
experiment, the reaction data are measured when the treadmill velocity varies from 1.0 m/s
to 1.6 m/s.
Without loss of generality, the zero signals are ignored in analysis, which leads to that ,y zR
changes to a connection of various sine-shape signals with different magnitude. It can be
inferred that ,y zR is a characteristic index for the walking intention: when the subject
intends to speed up, ,y zR


 becomes large, i.e. both the magnitudes of peak value and

valley value become large. After acceleration, ,y zR returns to a new equilibrium state (Fig. 9
(b)). In other words, the envelope curve of ,y zR determines the intended walking speed. The
deceleration case can be explained in a similar way.

4.2.2 Walking intention modeling
To model the characteristic index ,y zR


, we use least-squares regression method to

identify it. Specifically, first of all define the local peak value ,y zR and local valley value
,y zR of ,y zR as

, ,0

, ,0

max{ }

min{ }

y z y zt T

y z y zt T

R R

R R



 


 




 (41)

where T is the period of ,y zR . We can get a sequence of measurements

 intend,1 , ,1 intend,2 , ,2 intend, , ,(,),(,), ,(,)y z y z n y z nV R V R V R   (42)

Assuming that ,y zR is predicted as a function of the intended walking speed intendV , then
one can model this situation by

 , intend(,)y z w w wR f V     (43)

where w is a parameter vector. The random variable w is independent of intendV and on
average it is equal to zero, i.e. () 0wE   . We want to find wf that fits the measurement data
best and we define the loss function to measure the quality of the fit as

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

74

4.2 Human walking intention extraction
4.2.1 Characteristic index
The coordinate definition is shown in Fig. 8. Here based on the real product of force plate,
we assume that the true origin of the strain gauge force plate is not at the geometric center of
the plate surface. There is a pad on the force plate. After a series of calibrations of the true
origin, the true origin 'O is at (0,0,)h .

Fig. 8. Coordinate system.

According to the coordinate, the reaction force of ground to feet was simulated where the
human model is built by OPENSIM in Section 4.4. It is shown that in one dynamic circle, the
force zF is a bell-shape signal; yF is a sine-shape signal (Fig. 9 (a)).

0 0.2 0.4 0.6 0.8 1 1.2
�200

0

200

400

600

800

F x, F
y, F

z (N
)

0 0.2 0.4 0.6 0.8 1 1.2
�0.3

�0.2

�0.1

0

0.1

0.2

Time (s)

R
y,

z

Fx
Fy
Fz

0 1 2 3 4 5 6 7 8 9 10

-10

-5

0

5

10

Velocity

R
y,

z

acceleration phase

(a) (b)

Fig. 9. Envelope of yzR in acceleration.

We can explain the reason of such curve shape as follows. When foot gets in touch with the
surface of force plate, zF increases very rapidly. At the same time, foot has to make a break
to adjust its speed to the velocity of the force plate by fiction. After break process, foot
applies a force with inverse direction to drive the leg to take a step, i.e. make a preparation
for higher speed of leg in the next moment. It is noted that, compared with the previous
break process, yF changes its direction at this time. Until now, the foot is on the force plate.
Hence, zF maintains large (for a normal person with 70 kg weight, zF is about 700 N).

x

'x

'z z
y

'y

1F

2F

3F

4FF
zT

plate surface
pad surface




'P
P

h

Control Strategies of Human Interactive Robot Under Uncertain Environments

75

Finally, the subject alternates the other foot to support body and zF decreases rapidly.
Considering the fact that when zF is large enough, one foot is firmly on the human walking
servo robot. We define a ratio index ,y zR as

 ,

0

y
z

y z z

F
F

R F
others




 



 (40)

where  is a threshold. In normal cases,  is set as max{ } 80%zF  . According to the curve
shapes of yF and zF , the curve shape of ,y zR is a composite signal of connection of sine-
shape signals and zero signals.
To prove the above simulation result and corresponding analysis, we use Bertec treadmill
TM07-B to complete a verification experiment. It is noted that under the treadmill, there are
two force plates individually measuring the interaction force and moment. In the
experiment, the reaction data are measured when the treadmill velocity varies from 1.0 m/s
to 1.6 m/s.
Without loss of generality, the zero signals are ignored in analysis, which leads to that ,y zR
changes to a connection of various sine-shape signals with different magnitude. It can be
inferred that ,y zR is a characteristic index for the walking intention: when the subject
intends to speed up, ,y zR


 becomes large, i.e. both the magnitudes of peak value and

valley value become large. After acceleration, ,y zR returns to a new equilibrium state (Fig. 9
(b)). In other words, the envelope curve of ,y zR determines the intended walking speed. The
deceleration case can be explained in a similar way.

4.2.2 Walking intention modeling
To model the characteristic index ,y zR


, we use least-squares regression method to

identify it. Specifically, first of all define the local peak value ,y zR and local valley value
,y zR of ,y zR as

, ,0

, ,0

max{ }

min{ }

y z y zt T

y z y zt T

R R

R R



 


 




 (41)

where T is the period of ,y zR . We can get a sequence of measurements

 intend,1 , ,1 intend,2 , ,2 intend, , ,(,),(,), ,(,)y z y z n y z nV R V R V R   (42)

Assuming that ,y zR is predicted as a function of the intended walking speed intendV , then
one can model this situation by

 , intend(,)y z w w wR f V     (43)

where w is a parameter vector. The random variable w is independent of intendV and on
average it is equal to zero, i.e. () 0wE   . We want to find wf that fits the measurement data
best and we define the loss function to measure the quality of the fit as

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

76

 , intend 2
(,)y z w w wL R f V     (44)

We minimize it over all choices of parameter vector w . To find the approximation function,
we write

 , intend, (,),

0
y z w w w

w

L R f V  







 (45)

In this section, we choose the other three model candidates: quadratic, cubic, 4th degree
polynomial. In the experiment, we obtain ,y zR ten times when the treadmill velocity varies
from 0.1 m/s to 1.0 m/s. The observation samples are shown in Table 1.

Velocity
(m/s) ,y zR ,y zR Velocity

(m/s) ,y zR ,y zR

0.1 0.0080 -0.0213 0.6 0.0872 -0.1172
0.2 0.0310 -0.0353 0.7 0.1078 -0.0834
0.3 0.0716 -0.0542 0.8 0.1126 -0.1224
0.4 0.0622 -0.0695 0.9 0.1153 -0.1187
0.5 0.0957 -0.0884 1.0 0.1841 -0.1421

Table 1. Observation samples.

For the purpose of evaluating the candidate models, we define residual norm as the sum of
square of deviations

  , , , , , intend2 21 1

ˆ ˆ,
n n

r y z i y z y z i w w
i i

S R R R f V   

 
     (46)

where ,
ˆ

y zR is the estimation of ,y zR based on the particular model. Take linear model for
example, , ,0 ,1 intend

ˆ ˆ ˆ
y z w wR V    . The regression results are shown in Table 2.

Regression Model Results Norm of
Residuals

linear , intend0.13 0.011y zR V    0.039887

quadratic 2
, intend intend0.067 0.2 0.00072y zR V V    0.034701

cubic
3 2

, intend intend intend0.08 0.19 0.25
0.0022

y zR V V V    


0.034094

4th degree
polynomial

4 3 2
, intend intend intend

intend

0.6 1.1 0.56
0.097 0.0021

y zR V V V
V

    

 
 0.031844

Table 2. Regression results.

Because the residual norms of the four types do not have big difference, any model of the
four is able to describe the human’s intended walking speed. Therefore, for simplicity we
choose the linear model as follows.

Control Strategies of Human Interactive Robot Under Uncertain Environments

77

 , intend0.13 0.011y zR V     (47)

To summarize, the human walking intention is extracted in four steps as follows. The first
step is to collect a sequence of measurements intend,1 , ,1 intend, , ,(,), ,(,)y z n y z nV R V R  . The
second step is to select a model type for intended walking speed based on Equation (43).
Take linear model for example, , ,0 ,1 intendy z w wR V    . The third step is to define the loss
function (Equation (44)) and compute the estimation of unknown coefficients. In the case of
linear model, ,0

ˆ
w and ,1

ˆ
w are derived in (Dong, Luo et al. 2010). The fourth step is to

compute the residual norms of the candidate models (Equation (46)). Considering model
complexity and accuracy, choose a proper model.

4.3 Adaptive speed control
Nowadays human walking servo robot’s application has become more and more popular in
many fields like athletic exercise, rehabilitation training. In the following part, a speed
control by human’s walking intention is proposed by which the subject control the speed of
human walking servo robot at his (or her) will.

4.3.1 System construction
The human walking servo robot used in the application is Bertec treadmill TM07-B. When
the user walks on the treadmill, the dual force plates (placed under the human walking
servo robot) measure the force and moment signals in x, y, z directions as xF , yF , zF , xM ,

yM , zM and output them as analog signals. After amplifying them and doing analog-to-
digital (A/D) conversion, the digital signals are transferred to PC. Based on the force
signals, human’s walking intention is identified by the least-squares method illustrated in
Section 4.2.2. Then the human’s intended walking speed is used to drive the motors
corresponding with left belt speed control and right belt speed control, respectively (Fig.
10). Here from the viewpoint of control, the control plant is Bertec treadmill TM07-B
which is controlled by the inner speed controller in the inner loop feedback (Dong,
Oshiumi et al. 2010).

Bertec Treadmill TM07-B

NI
Data Acquisition

Board

Amplifier
Forces

Moments

Velocity

Left
Belt

Amplifier

PC

Right
Belt

TCP/IP

 a) b)

Fig. 10. System construction of human walking servo robot.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

76

 , intend 2
(,)y z w w wL R f V     (44)

We minimize it over all choices of parameter vector w . To find the approximation function,
we write

 , intend, (,),

0
y z w w w

w

L R f V  







 (45)

In this section, we choose the other three model candidates: quadratic, cubic, 4th degree
polynomial. In the experiment, we obtain ,y zR ten times when the treadmill velocity varies
from 0.1 m/s to 1.0 m/s. The observation samples are shown in Table 1.

Velocity
(m/s) ,y zR ,y zR Velocity

(m/s) ,y zR ,y zR

0.1 0.0080 -0.0213 0.6 0.0872 -0.1172
0.2 0.0310 -0.0353 0.7 0.1078 -0.0834
0.3 0.0716 -0.0542 0.8 0.1126 -0.1224
0.4 0.0622 -0.0695 0.9 0.1153 -0.1187
0.5 0.0957 -0.0884 1.0 0.1841 -0.1421

Table 1. Observation samples.

For the purpose of evaluating the candidate models, we define residual norm as the sum of
square of deviations

  , , , , , intend2 21 1

ˆ ˆ,
n n

r y z i y z y z i w w
i i

S R R R f V   

 
     (46)

where ,
ˆ

y zR is the estimation of ,y zR based on the particular model. Take linear model for
example, , ,0 ,1 intend

ˆ ˆ ˆ
y z w wR V    . The regression results are shown in Table 2.

Regression Model Results Norm of
Residuals

linear , intend0.13 0.011y zR V    0.039887

quadratic 2
, intend intend0.067 0.2 0.00072y zR V V    0.034701

cubic
3 2

, intend intend intend0.08 0.19 0.25
0.0022

y zR V V V    


0.034094

4th degree
polynomial

4 3 2
, intend intend intend

intend

0.6 1.1 0.56
0.097 0.0021

y zR V V V
V

    

 
 0.031844

Table 2. Regression results.

Because the residual norms of the four types do not have big difference, any model of the
four is able to describe the human’s intended walking speed. Therefore, for simplicity we
choose the linear model as follows.

Control Strategies of Human Interactive Robot Under Uncertain Environments

77

 , intend0.13 0.011y zR V     (47)

To summarize, the human walking intention is extracted in four steps as follows. The first
step is to collect a sequence of measurements intend,1 , ,1 intend, , ,(,), ,(,)y z n y z nV R V R  . The
second step is to select a model type for intended walking speed based on Equation (43).
Take linear model for example, , ,0 ,1 intendy z w wR V    . The third step is to define the loss
function (Equation (44)) and compute the estimation of unknown coefficients. In the case of
linear model, ,0

ˆ
w and ,1

ˆ
w are derived in (Dong, Luo et al. 2010). The fourth step is to

compute the residual norms of the candidate models (Equation (46)). Considering model
complexity and accuracy, choose a proper model.

4.3 Adaptive speed control
Nowadays human walking servo robot’s application has become more and more popular in
many fields like athletic exercise, rehabilitation training. In the following part, a speed
control by human’s walking intention is proposed by which the subject control the speed of
human walking servo robot at his (or her) will.

4.3.1 System construction
The human walking servo robot used in the application is Bertec treadmill TM07-B. When
the user walks on the treadmill, the dual force plates (placed under the human walking
servo robot) measure the force and moment signals in x, y, z directions as xF , yF , zF , xM ,

yM , zM and output them as analog signals. After amplifying them and doing analog-to-
digital (A/D) conversion, the digital signals are transferred to PC. Based on the force
signals, human’s walking intention is identified by the least-squares method illustrated in
Section 4.2.2. Then the human’s intended walking speed is used to drive the motors
corresponding with left belt speed control and right belt speed control, respectively (Fig.
10). Here from the viewpoint of control, the control plant is Bertec treadmill TM07-B
which is controlled by the inner speed controller in the inner loop feedback (Dong,
Oshiumi et al. 2010).

Bertec Treadmill TM07-B

NI
Data Acquisition

Board

Amplifier
Forces

Moments

Velocity

Left
Belt

Amplifier

PC

Right
Belt

TCP/IP

 a) b)

Fig. 10. System construction of human walking servo robot.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

78

When the subject walks on the treadmill, there is some kind of perturbation adding to the
control signal. It is noted that our control objective is to control the treadmill by human’s
intended walking speed. Hence, we have to establish an outer loop feedback between the
subject’s intended speed intendV and the treadmill’s inner speed controller.

4.3.2 Experiment results
To calculate the transfer function ()G s , we use the characteristic index of intended walking
speed in Equation (47). Hence, the intended walking speed is calculated as follows.

 
intend ,

intend
,

(1) () 0
()

() 0.011 /0.13

y z

y z

V k R k
V k

R k others





   
 

 (48)

There are many reasons, like sensor noise, causing computed intended walking speed not
smooth. Here, we choose a delay-line filter to solve the problem. Finally, the intended
walking speed driving the treadmill’s inner controller is

4

treadmill intend
1

1() ()
4 i

V k V k i


  (49)

Good performance can be obtained by using the above filter for many times. Fig. 11 shows a
dynamic walking process with acceleration motion, deceleration motion and uniform
motion (constant speed motion) in the time interval [28,34] , [55,65] , [15,24] , respectively.

28 29 30 31 32 33 34
0

0.5

1

Ve
lo

ci
ty

 in

ac
ce

le
rta

tio
n

(m
/s

)

55 60 65
0

0.2

0.4

Ve
lo

ci
ty

 in

de
ce

le
ra

tio
n

(m
/s

)

15 16 17 18 19 20 21 22 23 24
0.35

0.4

0.45

0.5

Time (s)

Ve
lo

ci
ty

 in

eq
ui

lib
riu

m
 (m

/s
)

Fig. 11. Speed control result.

4.4 Summary
This section proposed a method for extracting human’s walking intention and based on it, a
speed control was proposed for adaptively driving human walking servo robot by human’s
will. The ground reaction force is considered as the indicator of the human’s intended
walking speed. By analyzing the walking simulation, we found a characteristic index which
has significant relevance with the intended walking speed. After processing least-squares
regression, four kinds of candidate models were obtained. For simplicity, we chose the

Control Strategies of Human Interactive Robot Under Uncertain Environments

79

linear model. The extracted human intention was used to control the human walking servo
robot. The control performance shows the effectiveness of the proposed method for
extracting human walking intention.
Compared with previous researches, there are two novelties to be illustrated. First is that the
proposed method for human walking intention extraction simply uses the ground reaction
forces to do estimation. The method is so easy-to-use that it even can be used on single-chip.
The second is that in the previous human walking servo robot control, the subject had to
follow the speed of human walking servo robot passively. While the proposed speed control
can adaptively adjust the velocity of human walking servo robot to the subject’s, which
shows great potential both in research and real-world applications.
Actually, when HIR interacts with human by human’s intention, it is extremely hard to
model or identify the unmodeled uncertainty because we know so little about human’s
intention. In this case, it is a good way to analyze it just from the relation between inputs
and outputs. The proposed speed control based on human’s walking intention shows that
by identifying the relation mentioned, we can deal with the unmodeled uncertainty from
human’s intention.

5. Conclusion
In this chapter, we designed kinds of control strategies of HIR and solved three typical
problems for HIR. A sparse extended information filter SLAM approach was proposed for
HIR’s navigation in a large unknown environment, which ensures HIR can fulfil its task in
human surrounding environments. An adaptive force control was designed for HIR To lift
human solving the physical interaction under an uncertainty of human dynamics of dealing
with the complex human dynamics during interaction. A speed control by human’s
intended walking speed was designed, which gives a solution to extracting human’s
intention. Compared with other HIR approach, this chapter takes fully into account of
uncertainties HIR encounters, including environment uncertainty, sensor uncertainty,
actuator uncertainty, model uncertainty and unmodeled uncertainty. The contribution of
this chapter is not only to give specific HIR controls for specific cases, but also to provide a
good solving framework for HIR problem.

6. References
Dong, H., Z. Luo, et al. (2009). Sparsing of information matrix for practical application of a

robot's SLAM. IEEE/RSJ International Conference on Robotics and Automaion.
Dong, H., Z. Luo, et al. (2009). Sparsing of information matrix for practical application of a

robot's SLAM. IEEE/RSJ International Conference on Robotics and Automation.
Dong, H., Z. Luo, et al. (2010). "Adaptive attitude control for redundant time-varying

complex model of human body in the nursing activity." Journal of Robotics and
Mechatronics 22(4): 418-429.

Dong, H., Z. Luo, et al. (2010). "Adaptive attitude control for redundant time-varying
complex model of human body in the nursing activity." Japanese Journal of
Biomechanics in Sports and Exercise 14(1): 52-60.

Dong, H., Z. Luo, et al. (2010). Adaptive treadmill control by human will. 13th International
Conference on Climbing and Walking Robots and the Support Technologies for
Mobile Machines.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

78

When the subject walks on the treadmill, there is some kind of perturbation adding to the
control signal. It is noted that our control objective is to control the treadmill by human’s
intended walking speed. Hence, we have to establish an outer loop feedback between the
subject’s intended speed intendV and the treadmill’s inner speed controller.

4.3.2 Experiment results
To calculate the transfer function ()G s , we use the characteristic index of intended walking
speed in Equation (47). Hence, the intended walking speed is calculated as follows.

 
intend ,

intend
,

(1) () 0
()

() 0.011 /0.13

y z

y z

V k R k
V k

R k others





   
 

 (48)

There are many reasons, like sensor noise, causing computed intended walking speed not
smooth. Here, we choose a delay-line filter to solve the problem. Finally, the intended
walking speed driving the treadmill’s inner controller is

4

treadmill intend
1

1() ()
4 i

V k V k i


  (49)

Good performance can be obtained by using the above filter for many times. Fig. 11 shows a
dynamic walking process with acceleration motion, deceleration motion and uniform
motion (constant speed motion) in the time interval [28,34] , [55,65] , [15,24] , respectively.

28 29 30 31 32 33 34
0

0.5

1

Ve
lo

ci
ty

 in

ac
ce

le
rta

tio
n

(m
/s

)

55 60 65
0

0.2

0.4

Ve
lo

ci
ty

 in

de
ce

le
ra

tio
n

(m
/s

)

15 16 17 18 19 20 21 22 23 24
0.35

0.4

0.45

0.5

Time (s)

Ve
lo

ci
ty

 in

eq
ui

lib
riu

m
 (m

/s
)

Fig. 11. Speed control result.

4.4 Summary
This section proposed a method for extracting human’s walking intention and based on it, a
speed control was proposed for adaptively driving human walking servo robot by human’s
will. The ground reaction force is considered as the indicator of the human’s intended
walking speed. By analyzing the walking simulation, we found a characteristic index which
has significant relevance with the intended walking speed. After processing least-squares
regression, four kinds of candidate models were obtained. For simplicity, we chose the

Control Strategies of Human Interactive Robot Under Uncertain Environments

79

linear model. The extracted human intention was used to control the human walking servo
robot. The control performance shows the effectiveness of the proposed method for
extracting human walking intention.
Compared with previous researches, there are two novelties to be illustrated. First is that the
proposed method for human walking intention extraction simply uses the ground reaction
forces to do estimation. The method is so easy-to-use that it even can be used on single-chip.
The second is that in the previous human walking servo robot control, the subject had to
follow the speed of human walking servo robot passively. While the proposed speed control
can adaptively adjust the velocity of human walking servo robot to the subject’s, which
shows great potential both in research and real-world applications.
Actually, when HIR interacts with human by human’s intention, it is extremely hard to
model or identify the unmodeled uncertainty because we know so little about human’s
intention. In this case, it is a good way to analyze it just from the relation between inputs
and outputs. The proposed speed control based on human’s walking intention shows that
by identifying the relation mentioned, we can deal with the unmodeled uncertainty from
human’s intention.

5. Conclusion
In this chapter, we designed kinds of control strategies of HIR and solved three typical
problems for HIR. A sparse extended information filter SLAM approach was proposed for
HIR’s navigation in a large unknown environment, which ensures HIR can fulfil its task in
human surrounding environments. An adaptive force control was designed for HIR To lift
human solving the physical interaction under an uncertainty of human dynamics of dealing
with the complex human dynamics during interaction. A speed control by human’s
intended walking speed was designed, which gives a solution to extracting human’s
intention. Compared with other HIR approach, this chapter takes fully into account of
uncertainties HIR encounters, including environment uncertainty, sensor uncertainty,
actuator uncertainty, model uncertainty and unmodeled uncertainty. The contribution of
this chapter is not only to give specific HIR controls for specific cases, but also to provide a
good solving framework for HIR problem.

6. References
Dong, H., Z. Luo, et al. (2009). Sparsing of information matrix for practical application of a

robot's SLAM. IEEE/RSJ International Conference on Robotics and Automaion.
Dong, H., Z. Luo, et al. (2009). Sparsing of information matrix for practical application of a

robot's SLAM. IEEE/RSJ International Conference on Robotics and Automation.
Dong, H., Z. Luo, et al. (2010). "Adaptive attitude control for redundant time-varying

complex model of human body in the nursing activity." Journal of Robotics and
Mechatronics 22(4): 418-429.

Dong, H., Z. Luo, et al. (2010). "Adaptive attitude control for redundant time-varying
complex model of human body in the nursing activity." Japanese Journal of
Biomechanics in Sports and Exercise 14(1): 52-60.

Dong, H., Z. Luo, et al. (2010). Adaptive treadmill control by human will. 13th International
Conference on Climbing and Walking Robots and the Support Technologies for
Mobile Machines.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

80

Dong, H., Z. Luo, et al. (2010). Reduced model adaptive control for carrying human beings
with uncertain body dynamics in nursing care. IEEE/ASME International
Conference on Advanced Intelligent Mechatronics.

Dong, H., T. Oshiumi, et al. (2010). Development of a 3D interactive virtual market system
with adaptive treadmill control. IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Dong, H., J. Tang, et al. (2010). "A novel information matrix sparsification approach for
practical implementation of SLAM." Advanced Robotics 24(5-6): 819-838.

Eustice, R., H. Singh, et al. (2006). "Exactly sparse delayed-state filters for view based
SLAM." IEEE Transactions on Robotics 22: 1100-1114.

Eustice, R., M. Walter, et al. (2005). Sparse extended information filters: insights into
sparsification. IEEE International Conference on Intelligent Robots and Systems.

Eustice, R. M., H. Singh, et al. (2005). Exactly sparse delayed-state filters. IEEE International
Conference on Robotics and Automation.

Kane, T. R. and D. A. Levinson (1985). Dynamics: Theory and Applications, McGraw-Hill.
Liu, Y. F. and S. Thrun (2003). Results for outdoor-SLAM using sparse extended information

filters. IEEE International Conference on Robotics and Automation.
Mcdermott, M. M., P. Ades, et al. (2009). "Treadmill exercise and resistance training in

patients with peripheral arterial disease with and without intermittent claudication:
a randomized control trail." Journal of American Medical Association 301: 165-174.

Mukai, T., M. Onishi, et al. (2008). "Development of the tactile sensor system of a human-
interactive robot "RI-MAN"." IEEE Transactions on Robotics 24: 505-512.

Onish, M., Z. W. Luo, et al. (2007). Generation of human care behaviors by human-
interactive robot RI-MAN. IEEE International Conference on Robotics and
Automation.

Powell, W., B. Stevens, et al. (2009). "Treadmill interface for virtual reality vs. overground
walking: a comparison of gait in individuals with and without pain."
Cyberpsychology and Behavior 12.

Smith, R., M. Self, et al. (1990). Estimating Uncertain Spatial Relationships in Robotics,
Springer-Verlag.

Thrun, S., W. Burgard, et al. (2005). Probabilistic Robotics, The MIT Press.
Thrun, S., D. Koller, et al. (2002). Simultaneous Mapping and Localization with Sparse

Extended Information Filters: Theory and Initial Results, Carnegie Mellon
University.

Thrun, S., Y. Liu, et al. (2004). "Simultaneous localization and mapping with sparse extended
information filters." International Journal of Robotics Research 23: 693-716.

4

Research on Building Mechanism
 of System for Intelligent Service

 Mobile Robot
Xie Wei, Ma Jiachen and Yang Mingli

Harbin Institute of Technology
China

1. Introduction
With the development of computer, communication, automation and system integration
technologies, advanced research in service mobile robot has made rapid process. The
modern intelligent service mobile robot (ISMR), viewed as an every day life “partner”, has
entered a critical period of industrialization. It not only takes place of people to do dirty,
dull and dangerous (3D) work, but also becomes people’s friend and chummy assistant in
the future. But how to design robot system scientifically and efficiently is a hot issue in
robotics because the design of robotic system is often so complex that it is difficult to seek
underlying problem-solving approach. The lack of integrated methods with reuse
approaches leads robotic developers to reinvent the wheel each time a new project
starts(Chella et al., 2010) .Until today, the methods for designing intelligent robot may be
concluded two approaches which are “Trial and error “and “Repeated optimization”
(Nehmzow, 2003). So many researches have begun to study in this area from both robotic
science and engineering. To sum up, there are mainly two research ideas which are “seek for
systematic and scientific methodology” and “seek for general system architecture” for
striving to achieve “methods reuse” and “architecture reuse”.
As for seeking for systematic and scientific methodology, there are many arguments in
robotics. In the same time, there are two research thoughts for designing intelligent robot
(Joseph et al., 2004), one is “top-down” which is based on symbolic processing; and the
other is “bottom-up” which is based on principles from biology. Currently, the two research
methods are coexisting and have comprehensive integration trend. Pfeier provided the
synthetic methodology of “understanding by building”(Pfeier, 2005). They mainly include
two views of “constructing a model-computer or robot” and “abstract general principles
from the model”. He had concluded some principles including emergence, diversity-
compliance, time perspectives, frame-of-reference, three constituents, complete agent,
parallel loosely coupled process, sensory-motor coordination, cheap design, redundancy,
ecological balance and value for guiding people to design intelligent system. Yavuz had
proposed a new conceptual approach to the design of hybrid control architecture for
autonomous mobile robots (Yavuz, 2002). It took the advantages of various control structure
and then integrated them using comprehensive methods. And then, he proposed an
integrated approach to the conceptual design and development of an intelligent

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

80

Dong, H., Z. Luo, et al. (2010). Reduced model adaptive control for carrying human beings
with uncertain body dynamics in nursing care. IEEE/ASME International
Conference on Advanced Intelligent Mechatronics.

Dong, H., T. Oshiumi, et al. (2010). Development of a 3D interactive virtual market system
with adaptive treadmill control. IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Dong, H., J. Tang, et al. (2010). "A novel information matrix sparsification approach for
practical implementation of SLAM." Advanced Robotics 24(5-6): 819-838.

Eustice, R., H. Singh, et al. (2006). "Exactly sparse delayed-state filters for view based
SLAM." IEEE Transactions on Robotics 22: 1100-1114.

Eustice, R., M. Walter, et al. (2005). Sparse extended information filters: insights into
sparsification. IEEE International Conference on Intelligent Robots and Systems.

Eustice, R. M., H. Singh, et al. (2005). Exactly sparse delayed-state filters. IEEE International
Conference on Robotics and Automation.

Kane, T. R. and D. A. Levinson (1985). Dynamics: Theory and Applications, McGraw-Hill.
Liu, Y. F. and S. Thrun (2003). Results for outdoor-SLAM using sparse extended information

filters. IEEE International Conference on Robotics and Automation.
Mcdermott, M. M., P. Ades, et al. (2009). "Treadmill exercise and resistance training in

patients with peripheral arterial disease with and without intermittent claudication:
a randomized control trail." Journal of American Medical Association 301: 165-174.

Mukai, T., M. Onishi, et al. (2008). "Development of the tactile sensor system of a human-
interactive robot "RI-MAN"." IEEE Transactions on Robotics 24: 505-512.

Onish, M., Z. W. Luo, et al. (2007). Generation of human care behaviors by human-
interactive robot RI-MAN. IEEE International Conference on Robotics and
Automation.

Powell, W., B. Stevens, et al. (2009). "Treadmill interface for virtual reality vs. overground
walking: a comparison of gait in individuals with and without pain."
Cyberpsychology and Behavior 12.

Smith, R., M. Self, et al. (1990). Estimating Uncertain Spatial Relationships in Robotics,
Springer-Verlag.

Thrun, S., W. Burgard, et al. (2005). Probabilistic Robotics, The MIT Press.
Thrun, S., D. Koller, et al. (2002). Simultaneous Mapping and Localization with Sparse

Extended Information Filters: Theory and Initial Results, Carnegie Mellon
University.

Thrun, S., Y. Liu, et al. (2004). "Simultaneous localization and mapping with sparse extended
information filters." International Journal of Robotics Research 23: 693-716.

4

Research on Building Mechanism
 of System for Intelligent Service

 Mobile Robot
Xie Wei, Ma Jiachen and Yang Mingli

Harbin Institute of Technology
China

1. Introduction
With the development of computer, communication, automation and system integration
technologies, advanced research in service mobile robot has made rapid process. The
modern intelligent service mobile robot (ISMR), viewed as an every day life “partner”, has
entered a critical period of industrialization. It not only takes place of people to do dirty,
dull and dangerous (3D) work, but also becomes people’s friend and chummy assistant in
the future. But how to design robot system scientifically and efficiently is a hot issue in
robotics because the design of robotic system is often so complex that it is difficult to seek
underlying problem-solving approach. The lack of integrated methods with reuse
approaches leads robotic developers to reinvent the wheel each time a new project
starts(Chella et al., 2010) .Until today, the methods for designing intelligent robot may be
concluded two approaches which are “Trial and error “and “Repeated optimization”
(Nehmzow, 2003). So many researches have begun to study in this area from both robotic
science and engineering. To sum up, there are mainly two research ideas which are “seek for
systematic and scientific methodology” and “seek for general system architecture” for
striving to achieve “methods reuse” and “architecture reuse”.
As for seeking for systematic and scientific methodology, there are many arguments in
robotics. In the same time, there are two research thoughts for designing intelligent robot
(Joseph et al., 2004), one is “top-down” which is based on symbolic processing; and the
other is “bottom-up” which is based on principles from biology. Currently, the two research
methods are coexisting and have comprehensive integration trend. Pfeier provided the
synthetic methodology of “understanding by building”(Pfeier, 2005). They mainly include
two views of “constructing a model-computer or robot” and “abstract general principles
from the model”. He had concluded some principles including emergence, diversity-
compliance, time perspectives, frame-of-reference, three constituents, complete agent,
parallel loosely coupled process, sensory-motor coordination, cheap design, redundancy,
ecological balance and value for guiding people to design intelligent system. Yavuz had
proposed a new conceptual approach to the design of hybrid control architecture for
autonomous mobile robots (Yavuz, 2002). It took the advantages of various control structure
and then integrated them using comprehensive methods. And then, he proposed an
integrated approach to the conceptual design and development of an intelligent

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 82

autonomous mobile robot (Yavuz, 2007). A clearer view of the design approach based on
function-oriented interdisciplinary were shown and the main functions of intelligent
autonomous mobile robot were divided into Mobility, Navigation and Autonomy.
Similarily, corresponding to design needs, five non-functional requirements including
simple overall structure, cost effective, robust structure, intelligent and adaptive behaviour,
and reliable operation were provided. Finally, those requirements were decomposed into
smaller functions which could be performed by mechanical, electronic and software system
through FD tree. In short, with the increased complexity of the system, the relationship
between functional modules become more and more complex, so the overall system analysis
and design still face many difficulties.
As for seeking for general architecture, many scholars tend to explore a common system
reference model to reduce the duplication of design process. Architecture is the backbone of
building complex intelligent systems (Ève coste-Manière, 2000). It can describe clearly that
how the system is down into subsystem and how the subsystem achieves the overall
function through the interaction of organic. Appropriate architecture make the robot system
analysis become simple, so general architecture research has made some progress. For
example, NASA and NBS’s NASREM level reference model (Albus et al. 1989), Zeebo open
architecture(Bogdan, 2006), ROACS(Real-time open-architecture control system) (Gu. J.s,
2004) and Daqing Wang’s MRR (Modular and re-configurable robot) (Daqing wang, 2006),
but they sill lack of effective methods of that how to analyze and design robotic system
based on architecture systematically.
On the whole, in order to solve the difficult problems, we need to consider it from two
aspects. One is the research of the scientific, systematic analysis methods, which is related
to robotic development; and the other is the research of architecture, which is related to
system model.
In essence, the robotic system is a complex information process system. But it is different
from the computer, and its design must be considered together with the hardware and
software. The systematic and comprehensive analysis of the intelligent service robot is
still rare and not unified modelling methods and tools so far. Therefore, it is imperative to
explore new methodological guidance for building mechanism. Our proposal tries to
merge the strong points of the study methods mentioned above while minimizing their
weak points, provide an open architecture for ISMR, and then explore the building
mechanism of system for intelligent service mobile robot from metasynthesis’s point of
view.
The chapter is organized as follows. The features of analysis and design for ISMR are
introduced in section 2. The metasynthesis of open architecture for ISMR is discussed in
section 3. And the development model based on architecture is proposed in section 4. the
system model based on Agent is provided in section 5. Finally, take a specific example to
illustrate the efficiency and rationality of building mechanism in section 6. In addition,
conclude and discuss this new methodological guidance of system analysis for ISMR and
further research directions.

2. The features of system analysis and design for ISMR
2.1 The difference between robot and computer
Some people may ask, Robot system is ultimately embedded computer systems, we can use
computer analysis methods to guide design robots, and compared to computer system, are

Research on Building Mechanism of System for Intelligent Service Mobile Robot 83

there other special aspects in robotic? Robot system and logical relationship between the
flow of information structure is calculated on the basis of computer platform, but the robot
design and computer design is different.Because of the design objectives and the special
constraints, the robot design is more complex than the computer . To successfully design the
robot system, we must first understand the difference between the robot and the
computer(as shown in Table.1), and then absorb and inherit of the computer system
scientific analysis methods.

Point of difference Robot Computer
Information stype of

input
Changing stimuli information

are provided by sensors
Discrete information are

providesd by key or mouse
Environment
identification Robots themselves Computer users

Run way
Produce intelligent behavior

accoring to chance from
environment

Compute the need results from
each operation of program

Design verification Have difference between
simulation model and the actual

Good repeatability of
Simulation model

Intelligent forms Deliberative reasoning and
behaviourism Symbolic reasoning

Environmental
adaptability

Adape dynamic and unkown
environment

Adape kown environment only

Real-time Require to response changes of
environment quickly Relatively weak

Table 1. Comparative analysis between robot and computer

Overall, the robot is similar to organisms, which has a large number of complex sensors, and
provide information or stimuli by them to understand and identify the environment, after
that produce intelligent behavior through intelligent information processing to form a
comprehensive closed-loop system. So the robot system design, not only need computer
knowledge to support, but also need expertise and experience in robotics. Therefore, The
combination of scientific methodology to build a computer system, robot designed common
design theory, principle or a combination of domain modeling mechanism, are important
condition for effectively building robotic systems.

2.2 The features of ISMR
For the robot, it’s applications and the environment are very complex and there are still no
unified theory and tools, so compared with the computer system, the robot can not be
isolated only from the system of symbolic reasoning mechanisms, and it should be
integrated and designed form the impact of three factors including body, environment and
the task. In fact, the process of analysis and design is an integrated system, which turn these
three system domain model to information mechanism.
In the intelligent service robot system, the robot body, the environment and the task work
together, determine the robot's intelligent behavior. Therefore, when we conduct system
analysis and design, the main line through the design of information systems includes not

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 82

autonomous mobile robot (Yavuz, 2007). A clearer view of the design approach based on
function-oriented interdisciplinary were shown and the main functions of intelligent
autonomous mobile robot were divided into Mobility, Navigation and Autonomy.
Similarily, corresponding to design needs, five non-functional requirements including
simple overall structure, cost effective, robust structure, intelligent and adaptive behaviour,
and reliable operation were provided. Finally, those requirements were decomposed into
smaller functions which could be performed by mechanical, electronic and software system
through FD tree. In short, with the increased complexity of the system, the relationship
between functional modules become more and more complex, so the overall system analysis
and design still face many difficulties.
As for seeking for general architecture, many scholars tend to explore a common system
reference model to reduce the duplication of design process. Architecture is the backbone of
building complex intelligent systems (Ève coste-Manière, 2000). It can describe clearly that
how the system is down into subsystem and how the subsystem achieves the overall
function through the interaction of organic. Appropriate architecture make the robot system
analysis become simple, so general architecture research has made some progress. For
example, NASA and NBS’s NASREM level reference model (Albus et al. 1989), Zeebo open
architecture(Bogdan, 2006), ROACS(Real-time open-architecture control system) (Gu. J.s,
2004) and Daqing Wang’s MRR (Modular and re-configurable robot) (Daqing wang, 2006),
but they sill lack of effective methods of that how to analyze and design robotic system
based on architecture systematically.
On the whole, in order to solve the difficult problems, we need to consider it from two
aspects. One is the research of the scientific, systematic analysis methods, which is related
to robotic development; and the other is the research of architecture, which is related to
system model.
In essence, the robotic system is a complex information process system. But it is different
from the computer, and its design must be considered together with the hardware and
software. The systematic and comprehensive analysis of the intelligent service robot is
still rare and not unified modelling methods and tools so far. Therefore, it is imperative to
explore new methodological guidance for building mechanism. Our proposal tries to
merge the strong points of the study methods mentioned above while minimizing their
weak points, provide an open architecture for ISMR, and then explore the building
mechanism of system for intelligent service mobile robot from metasynthesis’s point of
view.
The chapter is organized as follows. The features of analysis and design for ISMR are
introduced in section 2. The metasynthesis of open architecture for ISMR is discussed in
section 3. And the development model based on architecture is proposed in section 4. the
system model based on Agent is provided in section 5. Finally, take a specific example to
illustrate the efficiency and rationality of building mechanism in section 6. In addition,
conclude and discuss this new methodological guidance of system analysis for ISMR and
further research directions.

2. The features of system analysis and design for ISMR
2.1 The difference between robot and computer
Some people may ask, Robot system is ultimately embedded computer systems, we can use
computer analysis methods to guide design robots, and compared to computer system, are

Research on Building Mechanism of System for Intelligent Service Mobile Robot 83

there other special aspects in robotic? Robot system and logical relationship between the
flow of information structure is calculated on the basis of computer platform, but the robot
design and computer design is different.Because of the design objectives and the special
constraints, the robot design is more complex than the computer . To successfully design the
robot system, we must first understand the difference between the robot and the
computer(as shown in Table.1), and then absorb and inherit of the computer system
scientific analysis methods.

Point of difference Robot Computer
Information stype of

input
Changing stimuli information

are provided by sensors
Discrete information are

providesd by key or mouse
Environment
identification Robots themselves Computer users

Run way
Produce intelligent behavior

accoring to chance from
environment

Compute the need results from
each operation of program

Design verification Have difference between
simulation model and the actual

Good repeatability of
Simulation model

Intelligent forms Deliberative reasoning and
behaviourism Symbolic reasoning

Environmental
adaptability

Adape dynamic and unkown
environment

Adape kown environment only

Real-time Require to response changes of
environment quickly Relatively weak

Table 1. Comparative analysis between robot and computer

Overall, the robot is similar to organisms, which has a large number of complex sensors, and
provide information or stimuli by them to understand and identify the environment, after
that produce intelligent behavior through intelligent information processing to form a
comprehensive closed-loop system. So the robot system design, not only need computer
knowledge to support, but also need expertise and experience in robotics. Therefore, The
combination of scientific methodology to build a computer system, robot designed common
design theory, principle or a combination of domain modeling mechanism, are important
condition for effectively building robotic systems.

2.2 The features of ISMR
For the robot, it’s applications and the environment are very complex and there are still no
unified theory and tools, so compared with the computer system, the robot can not be
isolated only from the system of symbolic reasoning mechanisms, and it should be
integrated and designed form the impact of three factors including body, environment and
the task. In fact, the process of analysis and design is an integrated system, which turn these
three system domain model to information mechanism.
In the intelligent service robot system, the robot body, the environment and the task work
together, determine the robot's intelligent behavior. Therefore, when we conduct system
analysis and design, the main line through the design of information systems includes not

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 84

only general information processing mechanisms, but also intelligent simulation or
generation mechanism.Different Intelligent generation mechanism corresponding to
different intelligent information processing method.
To sum up, intelligent robot with the characteristics of the following seven aspects(Zhu
miaoliang, 2001).
F1: "survival" in a real the objective environment
F2: has some intelligence (intelligent generation mechanism)
F3: autonomous (independent of the problem-solving)
F4: has some ability to learn
F5: complex structure, Full range of levels
F6: belong to hybrid intelligent systems
Compared with general robot, ISMR is developed with the aim to perform operations in
special no-industrial tasks, so it has some new features as follows excepting above(Xie wei,
2010).
F7: intelligent demanding
F8:module versatility
F9:friendly human-robot interaction
F10:secure high-performance
As can be seen from the above characteristics, building intelligent mobile robot is a complex
process of comprehensive integration. With a variety of subjects (control theory, operations
research, developmental psychology and systems theory, etc.) of the theories and methods
to the penetration of artificial intelligence, comprehensive and integrated approach is an
effective way to analyze the design of intelligent mobile robot system. Summarizing the
design of robotic systems in recent years, according to Mr. Qian Xuesen’s comprehensive
integrated methodology(Cao Longbin, Dai Ruwei, 2008), comprehensive and integrated
strategy of the robot can be summarized as the top-down and bottom-up, system abstraction
and simulation complementary, more angle comprehensive modeling approach, multi-
disciplinary, human (qualitative) and robots (quantitative) combination, complementary
non-functional and functional division and from qualitative analysis to quantitative
modeling and integration analysis.

3. The open reference architecture of ISMR
If we want to build an intelligent robotic system, the first step is to determine the
appropriate architecture. The architecture includes information processing and control
system, which ensures reasonable coordination, openness, and scalability of robotic system.
The same as the brain, the architecture is the platform “body” for realizing intelligent
behaviours, so new developments in artificial intelligence can provide some new ideological
for designing ISMR. Actually, robotic system design involves two aspects of engineering
and science. If there is no systematic analysis and design, any design methods based on
“repeated optimization” and “trial and error” are difficult to design the overall behaviour
offline. In this section, the typical reference architecture in the past 30 years are classified
and summed up systematically from system analysis perspective, and then some common
principles for design architecture are concluded on the basis of previous classified research.
Finally, the open reference architecture of ISMR is provided.

Research on Building Mechanism of System for Intelligent Service Mobile Robot 85

3.1 The classification of intelligent robotic architecture
People had provided much model architecture for intelligent robot system from different
angles since early 1980’s. The fact recognized by everyone is that three primitives including
S (sensor), P (plan) and A (action) are the foundation of constructing architecture. S
represents the ability to percept the internal and external state changes; P represents the
ability to make decisions autonomously based on conditions, status and constraints; A
represents the basic actions or behaviors of robot. According to this relationship between the
three primitives, the structure of intelligent robotic system is classified three paradigms
correspondingly including deliberative (S P A ), reactive (S A) and hybrid
(deliberative/reactive). Recently, the development of distributed artificial intelligence (DAI)
had created new conditions for realizing hybrid paradigm. Parallelism, distribution, open
and scalability will become new characteristics. Therefore, we divide previous reference
architecture into categories which are traditional architecture and agent-based distributed
architecture.

3.1.1 Traditional architecture
The traditional architecture is divided into three categories on the basis of three research
paradigm (deliberative, reactive and hybrid). We sum up their characteristics from design
thought, analysis methods, intelligent generation mechanism, and typical examples as
shown in Table 2.

Category Deliberitive Reactive Hybrid

Design thought

Simulate human
thinking such as

introspection and
deliberative

Simulate
organisms

perception-action
response mechanism

Intergration of
deliberative,

reactive
advantages

Analysis methods Top-down Bottom -up Metasynthesis
Intelligent
generation
mechanism

Symbol docytrine
 Behaviorism

Comprehensive
integration and
connectionist

Typical examples Shakey, NASREM,
4-D/RCS

Subsumption and
reactive based on

motor schema

3T, AuRA, TCA
and Sahira

Table 2. The comparison of three research paradigm

3.1.2 Agent-based distributed hybrid architecture
Recently, more and more researches have introduced multi-agent system (MAS) to construct
mobile robot system. Based on this theory, robot’s frame looks like a network that is made of
agent node. Agents are independent and of self-awareness, so the large-scale problems were
expected to solve by this way. Therefore, in the module design, there are many researchers
to replace modules with agent and the multi-agent system (MAS) mechanism based
distributed control has provided a new train of though for designing ISMR. Now, more and
more researchers use agent paradigm to solve complex problems. A multi-agent architecture
for mobile robot control was provided by Kolp (Kolp 2006), he compared it to other classical
structures such as control-loop, layered and task-trees and the results had shown that the

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 84

only general information processing mechanisms, but also intelligent simulation or
generation mechanism.Different Intelligent generation mechanism corresponding to
different intelligent information processing method.
To sum up, intelligent robot with the characteristics of the following seven aspects(Zhu
miaoliang, 2001).
F1: "survival" in a real the objective environment
F2: has some intelligence (intelligent generation mechanism)
F3: autonomous (independent of the problem-solving)
F4: has some ability to learn
F5: complex structure, Full range of levels
F6: belong to hybrid intelligent systems
Compared with general robot, ISMR is developed with the aim to perform operations in
special no-industrial tasks, so it has some new features as follows excepting above(Xie wei,
2010).
F7: intelligent demanding
F8:module versatility
F9:friendly human-robot interaction
F10:secure high-performance
As can be seen from the above characteristics, building intelligent mobile robot is a complex
process of comprehensive integration. With a variety of subjects (control theory, operations
research, developmental psychology and systems theory, etc.) of the theories and methods
to the penetration of artificial intelligence, comprehensive and integrated approach is an
effective way to analyze the design of intelligent mobile robot system. Summarizing the
design of robotic systems in recent years, according to Mr. Qian Xuesen’s comprehensive
integrated methodology(Cao Longbin, Dai Ruwei, 2008), comprehensive and integrated
strategy of the robot can be summarized as the top-down and bottom-up, system abstraction
and simulation complementary, more angle comprehensive modeling approach, multi-
disciplinary, human (qualitative) and robots (quantitative) combination, complementary
non-functional and functional division and from qualitative analysis to quantitative
modeling and integration analysis.

3. The open reference architecture of ISMR
If we want to build an intelligent robotic system, the first step is to determine the
appropriate architecture. The architecture includes information processing and control
system, which ensures reasonable coordination, openness, and scalability of robotic system.
The same as the brain, the architecture is the platform “body” for realizing intelligent
behaviours, so new developments in artificial intelligence can provide some new ideological
for designing ISMR. Actually, robotic system design involves two aspects of engineering
and science. If there is no systematic analysis and design, any design methods based on
“repeated optimization” and “trial and error” are difficult to design the overall behaviour
offline. In this section, the typical reference architecture in the past 30 years are classified
and summed up systematically from system analysis perspective, and then some common
principles for design architecture are concluded on the basis of previous classified research.
Finally, the open reference architecture of ISMR is provided.

Research on Building Mechanism of System for Intelligent Service Mobile Robot 85

3.1 The classification of intelligent robotic architecture
People had provided much model architecture for intelligent robot system from different
angles since early 1980’s. The fact recognized by everyone is that three primitives including
S (sensor), P (plan) and A (action) are the foundation of constructing architecture. S
represents the ability to percept the internal and external state changes; P represents the
ability to make decisions autonomously based on conditions, status and constraints; A
represents the basic actions or behaviors of robot. According to this relationship between the
three primitives, the structure of intelligent robotic system is classified three paradigms
correspondingly including deliberative (S P A ), reactive (S A) and hybrid
(deliberative/reactive). Recently, the development of distributed artificial intelligence (DAI)
had created new conditions for realizing hybrid paradigm. Parallelism, distribution, open
and scalability will become new characteristics. Therefore, we divide previous reference
architecture into categories which are traditional architecture and agent-based distributed
architecture.

3.1.1 Traditional architecture
The traditional architecture is divided into three categories on the basis of three research
paradigm (deliberative, reactive and hybrid). We sum up their characteristics from design
thought, analysis methods, intelligent generation mechanism, and typical examples as
shown in Table 2.

Category Deliberitive Reactive Hybrid

Design thought

Simulate human
thinking such as

introspection and
deliberative

Simulate
organisms

perception-action
response mechanism

Intergration of
deliberative,

reactive
advantages

Analysis methods Top-down Bottom -up Metasynthesis
Intelligent
generation
mechanism

Symbol docytrine
 Behaviorism

Comprehensive
integration and
connectionist

Typical examples Shakey, NASREM,
4-D/RCS

Subsumption and
reactive based on

motor schema

3T, AuRA, TCA
and Sahira

Table 2. The comparison of three research paradigm

3.1.2 Agent-based distributed hybrid architecture
Recently, more and more researches have introduced multi-agent system (MAS) to construct
mobile robot system. Based on this theory, robot’s frame looks like a network that is made of
agent node. Agents are independent and of self-awareness, so the large-scale problems were
expected to solve by this way. Therefore, in the module design, there are many researchers
to replace modules with agent and the multi-agent system (MAS) mechanism based
distributed control has provided a new train of though for designing ISMR. Now, more and
more researchers use agent paradigm to solve complex problems. A multi-agent architecture
for mobile robot control was provided by Kolp (Kolp 2006), he compared it to other classical
structures such as control-loop, layered and task-trees and the results had shown that the

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 86

structure-in-5 and joint-venture based on MAS had obvious advantages. Grelle (Grelle 2007)
used the agent paradigm to design very complex control strategy through multi-objective,
fuzzy c-means, and genetic algorithms optimization. Under the hybrid architecture, the
traditional control model was extended in agent-based distributed system. The classical
architecture including the integration architecture of MAS and collaborative (Bianca, 2008),
SC-agent architecture (Posadas, 2009) . Because the agent can decouple hardware and
software, some methods of soft computer may be used to address cooperation and
competition between agents. The approach of neural network based on evolutionary and
reinforcement to design agent were presented in (Strnislav, 2010), and the results had shown
Q learning algorithm was more adaptative for agent.

3.2 Discussion of common principles
Through classification and summary of past typical architecture, we not only can absorb
previous experience and lessons, but also induct some common design principles for
guiding follow-up study. Inspired by Pfeifer’s new ideas of embodied cognition (Pfeifer,
2005), we can understand intelligence system by building. Historical experience have
also proved that some new ideas or thought emerge from building a real physical
system. Therefore, the general methodology on the basis of previous experiences and
views are expected to get. And then, borrowing ideas from Pfeifer, we have concluded
six common design principles for constructing architecture of intelligent robot system
(Xie wei 2010).
 Principles of modular division based on S, P and A
 Hierarchical principle of architecture
 High cohesion and low coupling
 Design principle of redundancy
 Coordination principle between deliberative and reactive
 Principle of open-hardware based computer platform
Although the robot intelligence is so mysterious that people understand it only from a
different side, we still can conclude some common design principles which are guidelines
for designing efficiently robot system.

3.3 The open reference architecture of ISMR
From the development of architecture in last 30 years, we find that hybrid paradigm is
effective design methods for constructing intelligent robot system. The computing models
are the basis of robotic analysis and design, which have changed from process-oriented,
objected-oriented and component-oriented to agent-oriented. And agent-oriented
distributed hybrid architecture has more obvious advantages such as modularity,
integration capability, scalability and openness than traditional architecture. But no matter
which type of computing model is selected, it must have open reference architecture, only in
this way, the design of ISMR is expected to change from code reuse, module reuse,
component reuse to architecture reuse.
Combining six common principles above to metasynthesis, and referencing to common core
mechanism of “information-Knowledge-intelligence converter”, an open and space-oriented
reference architecture of ISMR with learning mechanism is presented in this paper as shown
in Fig.1.

Research on Building Mechanism of System for Intelligent Service Mobile Robot 87

Task layer

Physical
layer

Sensors(S) Actuators(A)

Environment

local
information
understand

current
information

monitor

Globle fusion

Task receive
or release

Coordination

B1

B2

Bn

Arbiter

level1

level2

Leveln

P1

P2

Pn

IS

level1

level2

Leveln

learning
and

evaluation

 Information knowledgeintelligence converter

Plan layer

Coordination
 layer

Behaviours
layer

D
eliberative paradigm

Reactivve p
arad

igm

Bottom-up

top-down

Task
decomposition

knowledge
learning

learning
and

supervise

behavior
learning

Intelligence are im
proving

(p)

Fig. 1. The open and space-oriented reference architecture of ISMR with learning mechanism

As can be seen from Fig.1, in the space of the layered architecture, both vertical and
horizontal dimensions are used to build the analytical framework. It is from the lower
physical layer, behaviours layer, coordination layer, plan layer to task layer in vertical
dimension, and from the left to right, it is divided into information, intelligence and
knowledge conversion mechanism. The physical layer mainly includes sensors and
actuators. And the openness is embodied in IS (intelligent strategy) and reactive intelligence
based on successive hierarchical mechanism. Under this architecture, it is easy to form a
comprehensive integrated system of division and interaction. From low to high, it shows the
intelligent space hierarchy and intelligence are increased gradually. However, from the left
to right, it reflects the intelligence produced by the common core mechanism. Therefore, this
architecture has reflected the full range of intelligent frame structure of system content.

4. The development model of ISMR based on architecture
Each robot has its own architecture, like everyone has the body. Good architecture not only
makes the problem easier to solve, but also is more conducive to the integration of complex
subsystems. This is the purpose of our study architecture. The traditional design of robotic

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 86

structure-in-5 and joint-venture based on MAS had obvious advantages. Grelle (Grelle 2007)
used the agent paradigm to design very complex control strategy through multi-objective,
fuzzy c-means, and genetic algorithms optimization. Under the hybrid architecture, the
traditional control model was extended in agent-based distributed system. The classical
architecture including the integration architecture of MAS and collaborative (Bianca, 2008),
SC-agent architecture (Posadas, 2009) . Because the agent can decouple hardware and
software, some methods of soft computer may be used to address cooperation and
competition between agents. The approach of neural network based on evolutionary and
reinforcement to design agent were presented in (Strnislav, 2010), and the results had shown
Q learning algorithm was more adaptative for agent.

3.2 Discussion of common principles
Through classification and summary of past typical architecture, we not only can absorb
previous experience and lessons, but also induct some common design principles for
guiding follow-up study. Inspired by Pfeifer’s new ideas of embodied cognition (Pfeifer,
2005), we can understand intelligence system by building. Historical experience have
also proved that some new ideas or thought emerge from building a real physical
system. Therefore, the general methodology on the basis of previous experiences and
views are expected to get. And then, borrowing ideas from Pfeifer, we have concluded
six common design principles for constructing architecture of intelligent robot system
(Xie wei 2010).
 Principles of modular division based on S, P and A
 Hierarchical principle of architecture
 High cohesion and low coupling
 Design principle of redundancy
 Coordination principle between deliberative and reactive
 Principle of open-hardware based computer platform
Although the robot intelligence is so mysterious that people understand it only from a
different side, we still can conclude some common design principles which are guidelines
for designing efficiently robot system.

3.3 The open reference architecture of ISMR
From the development of architecture in last 30 years, we find that hybrid paradigm is
effective design methods for constructing intelligent robot system. The computing models
are the basis of robotic analysis and design, which have changed from process-oriented,
objected-oriented and component-oriented to agent-oriented. And agent-oriented
distributed hybrid architecture has more obvious advantages such as modularity,
integration capability, scalability and openness than traditional architecture. But no matter
which type of computing model is selected, it must have open reference architecture, only in
this way, the design of ISMR is expected to change from code reuse, module reuse,
component reuse to architecture reuse.
Combining six common principles above to metasynthesis, and referencing to common core
mechanism of “information-Knowledge-intelligence converter”, an open and space-oriented
reference architecture of ISMR with learning mechanism is presented in this paper as shown
in Fig.1.

Research on Building Mechanism of System for Intelligent Service Mobile Robot 87

Task layer

Physical
layer

Sensors(S) Actuators(A)

Environment

local
information
understand

current
information

monitor

Globle fusion

Task receive
or release

Coordination

B1

B2

Bn

Arbiter

level1

level2

Leveln

P1

P2

Pn

IS

level1

level2

Leveln

learning
and

evaluation

 Information knowledgeintelligence converter

Plan layer

Coordination
 layer

Behaviours
layer

D
eliberative paradigm

Reactivve p
arad

igm

Bottom-up

top-down

Task
decomposition

knowledge
learning

learning
and

supervise

behavior
learning

Intelligence are im
proving

(p)

Fig. 1. The open and space-oriented reference architecture of ISMR with learning mechanism

As can be seen from Fig.1, in the space of the layered architecture, both vertical and
horizontal dimensions are used to build the analytical framework. It is from the lower
physical layer, behaviours layer, coordination layer, plan layer to task layer in vertical
dimension, and from the left to right, it is divided into information, intelligence and
knowledge conversion mechanism. The physical layer mainly includes sensors and
actuators. And the openness is embodied in IS (intelligent strategy) and reactive intelligence
based on successive hierarchical mechanism. Under this architecture, it is easy to form a
comprehensive integrated system of division and interaction. From low to high, it shows the
intelligent space hierarchy and intelligence are increased gradually. However, from the left
to right, it reflects the intelligence produced by the common core mechanism. Therefore, this
architecture has reflected the full range of intelligent frame structure of system content.

4. The development model of ISMR based on architecture
Each robot has its own architecture, like everyone has the body. Good architecture not only
makes the problem easier to solve, but also is more conducive to the integration of complex
subsystems. This is the purpose of our study architecture. The traditional design of robotic

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 88

systems’ development life cycle is divided into problem areas and the determines of the
objective function, system analysis, system design, system implementation and system
testing five stages(Zhu Miaoliang 2001). As the complexity of robotic systems are increased, it
is difficult in the requirements analysis phase of an overall understanding of the system, so the
actual development requires repeated changes and additions, more coupled subsystems, more
experience components, lower development efficiency. Once the changes in demand or
changes in the field of environment, much places needed to be modified or redesigned. The
architecture as the backbone of the system, can help us build from the system point of view of
system modules and intelligent interaction between this organization. Therefore, the section
integrates with complex systems integration strategy, based on the architecture of the software
engineering analysis method (Zhang Youshen, 2004 Hejian, 2004), and proposes development
model of intelligent robot system based on architecture as shown in Fig.2

Requirements
analysis

Architecture
design

System
implementation

System
evolution

Component library
or

design patterns

Build problems
of robot system

Knowledge
experience

Open robotic
system

Changes in demand

Iterative incremental correction

Basic structure
of prototype

General purpose
computing
platform

General framework
to extract

Fig. 2. Development model of intelligent robot system based on architecture

In Fig.2, the core is the architecture design. Architecture likes a bridge, which connect the
robot system problem solving, needs analysis and information system. Inspired by the
software architecture research ideas, the development model of Fig. 1 is divided into four
design space, which are functional design (FD)space based on demand analysis, architecture
design (AD) space based on architecture, system design (SD) space based on system
implementation and system evolution (SE) space based on evolution(including testing,
optimization and iterative modification), which are functional design (FD)space based on
demand analysis, architecture design (AD) space based on architecture, system design (SD)
space based on system implementation and system evolution (SE) space based on
evolution(including testing, optimization and iterative modification), and finally the open
robotic system are formed and some design models or components are built, then the
development life cycle is completed. Compared to traditional system development model, it
not only reflects the comprehensive and integrated methodology from the qualitative to
quantitative, but also makes the system design from code reuse, reuse components to
reusable design patterns, and improve the system development efficiency.

4.1 Requirements analysis
Robotic system requirements analysis include three aspects which are the problem
description and classification (solve problems), determine the scope (constraints) and design

Research on Building Mechanism of System for Intelligent Service Mobile Robot 89

goals (performance indicators). Has been proved(Hejian, 2004), 70% of software errors are
that the result of requirements analysis is not clear, so pre- requirements analysis for the
problem-solving and building system are critical. Description of the problem refers to
analyze problems needed to slove clearly. Define the scope of the real refers to determine
the system’s objects and the environment. Only on the basis of two points of rigorous
analysis in front, we determine the appropriate performance indicators. This is the same as
the concept of three elements of the principle of "niche" (Pfeifer, 2005) . That is to say, on the
basis of the expected behavior of the robot, we define the living environment of the robot, or
applications. Such as service robots and industrial robots, 'niche' have different
requirements, service robots are mainly used in homes, hotels and other more services social
environment, but industrial robots are used in specific occasions such as factory
environment which only need relatively simple interactions.
It can be seen from Fig.2, for demand analysis, there are two important external factors,
including qualitative experience and knowledge or some common principle which are
integrated into the design requirements analysis and combined qualitative design and
specific areas of application requirements analysis together to solve human-computer
collaborative problem. In the problem solving process, how to divide the problem is the key
problem. Function-oriented classification method are easy to decouple hardware and
software, and easy to analogy organisms, so it is generally recognized by every one. This
method considers in conjunction with hardware and software to simplify system integration
difficulties. But in the practice, the design of building robot system also face a number of
non-functional requirements such as cost, robustness, operability and openness. When the
three important aspects of requirements analysis is clear, we can use the existing experience
or knowledge to identify problem-solving approach. When the results of the requirements
analysis are converted into a functional description (the main function of the robot needs to
be done) and non-functional description (constraints and performance indicators), we can
see that requirements analysis is multidimensional. In the process of requirements analysis,
regardless of how complex the problem to be solved, the problem can be driven in the
framework of a causal relationship between the division. From different angles, this section
provides three sets of functional design space for robot system (FD) to visually describe the
needs analysis results.

  FD Fr ,NFr ,Ds (1)

In which:  1 2Fr F ,F ,...,Fn Functional requirements set
 n is a natural number
  1 2NFr NF ,NF ,...,NFn Collection of non-functional requirements
  1 2DS Ds ,Ds ,...,Dsn Set of design specifications
For example, in this analysis mode, Hakan Yavuz’s intelligent autonomous mobile robot
system functional requirements are expressed as a set:

  Fr Mobility ,Navigation,Autonomy .

Of course, the requirements analysis is not static, on the one hand, before the next system
design it should assessed and changed repeatedly, and then be formed to documented
description normative; on the hand other, after systems construction is built completely and

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 88

systems’ development life cycle is divided into problem areas and the determines of the
objective function, system analysis, system design, system implementation and system
testing five stages(Zhu Miaoliang 2001). As the complexity of robotic systems are increased, it
is difficult in the requirements analysis phase of an overall understanding of the system, so the
actual development requires repeated changes and additions, more coupled subsystems, more
experience components, lower development efficiency. Once the changes in demand or
changes in the field of environment, much places needed to be modified or redesigned. The
architecture as the backbone of the system, can help us build from the system point of view of
system modules and intelligent interaction between this organization. Therefore, the section
integrates with complex systems integration strategy, based on the architecture of the software
engineering analysis method (Zhang Youshen, 2004 Hejian, 2004), and proposes development
model of intelligent robot system based on architecture as shown in Fig.2

Requirements
analysis

Architecture
design

System
implementation

System
evolution

Component library
or

design patterns

Build problems
of robot system

Knowledge
experience

Open robotic
system

Changes in demand

Iterative incremental correction

Basic structure
of prototype

General purpose
computing
platform

General framework
to extract

Fig. 2. Development model of intelligent robot system based on architecture

In Fig.2, the core is the architecture design. Architecture likes a bridge, which connect the
robot system problem solving, needs analysis and information system. Inspired by the
software architecture research ideas, the development model of Fig. 1 is divided into four
design space, which are functional design (FD)space based on demand analysis, architecture
design (AD) space based on architecture, system design (SD) space based on system
implementation and system evolution (SE) space based on evolution(including testing,
optimization and iterative modification), which are functional design (FD)space based on
demand analysis, architecture design (AD) space based on architecture, system design (SD)
space based on system implementation and system evolution (SE) space based on
evolution(including testing, optimization and iterative modification), and finally the open
robotic system are formed and some design models or components are built, then the
development life cycle is completed. Compared to traditional system development model, it
not only reflects the comprehensive and integrated methodology from the qualitative to
quantitative, but also makes the system design from code reuse, reuse components to
reusable design patterns, and improve the system development efficiency.

4.1 Requirements analysis
Robotic system requirements analysis include three aspects which are the problem
description and classification (solve problems), determine the scope (constraints) and design

Research on Building Mechanism of System for Intelligent Service Mobile Robot 89

goals (performance indicators). Has been proved(Hejian, 2004), 70% of software errors are
that the result of requirements analysis is not clear, so pre- requirements analysis for the
problem-solving and building system are critical. Description of the problem refers to
analyze problems needed to slove clearly. Define the scope of the real refers to determine
the system’s objects and the environment. Only on the basis of two points of rigorous
analysis in front, we determine the appropriate performance indicators. This is the same as
the concept of three elements of the principle of "niche" (Pfeifer, 2005) . That is to say, on the
basis of the expected behavior of the robot, we define the living environment of the robot, or
applications. Such as service robots and industrial robots, 'niche' have different
requirements, service robots are mainly used in homes, hotels and other more services social
environment, but industrial robots are used in specific occasions such as factory
environment which only need relatively simple interactions.
It can be seen from Fig.2, for demand analysis, there are two important external factors,
including qualitative experience and knowledge or some common principle which are
integrated into the design requirements analysis and combined qualitative design and
specific areas of application requirements analysis together to solve human-computer
collaborative problem. In the problem solving process, how to divide the problem is the key
problem. Function-oriented classification method are easy to decouple hardware and
software, and easy to analogy organisms, so it is generally recognized by every one. This
method considers in conjunction with hardware and software to simplify system integration
difficulties. But in the practice, the design of building robot system also face a number of
non-functional requirements such as cost, robustness, operability and openness. When the
three important aspects of requirements analysis is clear, we can use the existing experience
or knowledge to identify problem-solving approach. When the results of the requirements
analysis are converted into a functional description (the main function of the robot needs to
be done) and non-functional description (constraints and performance indicators), we can
see that requirements analysis is multidimensional. In the process of requirements analysis,
regardless of how complex the problem to be solved, the problem can be driven in the
framework of a causal relationship between the division. From different angles, this section
provides three sets of functional design space for robot system (FD) to visually describe the
needs analysis results.

  FD Fr ,NFr ,Ds (1)

In which:  1 2Fr F ,F ,...,Fn Functional requirements set
 n is a natural number
  1 2NFr NF ,NF ,...,NFn Collection of non-functional requirements
  1 2DS Ds ,Ds ,...,Dsn Set of design specifications
For example, in this analysis mode, Hakan Yavuz’s intelligent autonomous mobile robot
system functional requirements are expressed as a set:

  Fr Mobility ,Navigation,Autonomy .

Of course, the requirements analysis is not static, on the one hand, before the next system
design it should assessed and changed repeatedly, and then be formed to documented
description normative; on the hand other, after systems construction is built completely and

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 90

fulfilled, changes are caused by increasing or reducing part of the functional and non-
functional requirements. So the analysis needs to consider the dynamic update mechanism.
These two external factors form requirements analysis process of comprehensive and
integrated robotic system.

4.2 The design of architecture
According to IEEE610.12-1990 for the definition of software architecture: "Architecture is a
system basic structure which contents component, the relationship among the components,
the relationship between component and environment and a principle of guiding the design
and evolution of the content above. " It can be seen that, components, connectors,
environment and principle are of its constituent elements. At present there are not formed
accepted general definition, but "Software Architecture = {components, connectors,
constraints}" is generally reach a consensus. In the robot system, reference to the definition
of software architecture studied by Bass, Shaw, Boehm and so on, the architecture can be
understood as an abstract system specification, mainly used to describe interconnect and the
set of various functional components, also includes guiding design principle. In the system
development model based on robot architecture, the main task of designing architecture is
to design the content based on function, to make out the content or basic structure and
achieve these content and the relationship between them clearly, to make out system
analysis model, to form the structure of the system design space (AD).

4.2.1 The abstract of system component
Robot academic generally accepted that, functions of robot are divided into three categories:
sense (S), plan (P) and achievement (A).From the existing literature, it has not find more
universal significance than these three functional classification, meanwhile S, P and A was
also seen as the three primitives of building a robot system. Although the learning (L) to
build intelligent systems as a primitive is still debated, in this section, we consider the
learning paradigm as the fourth one apply to the design of the system, because learning is
the most important manifestation of intelligence and integrated in the first three primitives.
According to "By constructing to understand intelligent systems” and the relationship
between these types of research paradigms, the robot basic system, combining to intelligent
organization, is abstracted as three species: deliberate, reaction and hybrid
(deliberate/reaction), corresponding to the three basic architecture. The characteristics of
these three basic architectures are shown in Table 2. According to these research ideas, the
components can be replaced by these four primitives. Intelligent organization form and
architecture design of system are united and then to the component model of building
intelligent systems are achieved.
Throughout development of research on intelligent abstraction mechanisms recent years, it
experienced from the symbolic intelligence (the physical symbol hypothesis as the
representative), connected intelligence (the artificial neurons as the representative), on-site
intelligence (perception - action mechanism as the representative) to the community smart
(Agent, represented in the social interaction, organization and emergence, etc.). As can be
seen from Table 2, the basic architecture design and intelligent abstraction mechanism are
integrated to consider.

4.2.2 Basic architecture analysis model
System modeling is the core of the architecture, the environment and the objects intelligent
mobile robot systems to deal with are very complex, there is no unified theory and tools.

Research on Building Mechanism of System for Intelligent Service Mobile Robot 91

Building abstract and appropriate model help us to analyze the integrated mechanism and
intelligence generation mechanism of architecture. It’s easy to do dynamic optimized
analysis, and also to predict the results of running in the environment. Recent cognitive
structure, neurological psychological structure and architecture based on learning and
emotion all can be regarded as evolutions of these three basic architectures. Therefore, if we
consider the basic architecture as the study prototype, the system model is easy to
discussed.
From a macro point of view, the level of robot intelligent will be reflected by intelligent
behavior finally. While the most important factor of affecting intelligent behaviour is the
sense of the environment (S), so if we take IB (intelligent behavior) as output, the
environment as input, then the basic architecture of a simplified model is expressed as:

 f : E IB (2)

Among them, f means mapping mechanism from environment to intelligent behaviour. In
the intelligent service robot system, the environmental status information are divided into
two categories: external and internal environment. External environment includes robot
running ecological environment and task information released by human or other robot;
internal environment includes information about robot's understanding of environment
(global and local) and introspection information (dynamic cognitive knowledge, learning,
evaluation, memory information, etc.). Intelligence mainly is showed as intelligent strategy
selection and the generation of correct behavior. In different environment, the mapping
mechanism f is different. So based on functional design space requirements and the basic
architecture, intelligent robotic systems analysis model will be built. System architecture
design space (AD) can be expressed as a set:

  1 2 3 nAD A , A , A , ...,A (3)

iA means the basic structure of subsystem
According to this conversion from function design space to structure space, how to make
mapping mechanism? This mapping mechanism must be met the real-time requirements by
relatively simple linear transformation (including general and special) or fuzzy query table.
Linear transformation method describes model f by a linear mathematical model or
ARMAX(Nehmzow, 2006)system identification method. Method of fuzzy query table  Q s, a
achieves nonlinear f mapping mechanism through off-line fuzzy logic, and complex
behavior will be real-time and dynamic completed, looking up table online. This analysis
based on bottom-up and interaction principle based on perception-reaction have laid the
foundation for the realization of reactive intelligent behavior. It is noteworthy that, in the
lowest level of response mode, closed-loop control system as chief, such as motion control
system, has the strongest instantaneity, can also be attributed to the special analysis model:
S A . The mapping mechanism is designed with control system design theory.
Deliberative style basic architecture (S P A ), is came true through intelligent
information processing mechanism (mapping or policy). Planning includes task
decomposition, scheduling decisions, global and local path planning. Online and off-line
planning are coexistence. On-line planning includes environmental awareness, sensor
fusion, task decomposition and scheduling, cooperative control and real-time path planning;

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 90

fulfilled, changes are caused by increasing or reducing part of the functional and non-
functional requirements. So the analysis needs to consider the dynamic update mechanism.
These two external factors form requirements analysis process of comprehensive and
integrated robotic system.

4.2 The design of architecture
According to IEEE610.12-1990 for the definition of software architecture: "Architecture is a
system basic structure which contents component, the relationship among the components,
the relationship between component and environment and a principle of guiding the design
and evolution of the content above. " It can be seen that, components, connectors,
environment and principle are of its constituent elements. At present there are not formed
accepted general definition, but "Software Architecture = {components, connectors,
constraints}" is generally reach a consensus. In the robot system, reference to the definition
of software architecture studied by Bass, Shaw, Boehm and so on, the architecture can be
understood as an abstract system specification, mainly used to describe interconnect and the
set of various functional components, also includes guiding design principle. In the system
development model based on robot architecture, the main task of designing architecture is
to design the content based on function, to make out the content or basic structure and
achieve these content and the relationship between them clearly, to make out system
analysis model, to form the structure of the system design space (AD).

4.2.1 The abstract of system component
Robot academic generally accepted that, functions of robot are divided into three categories:
sense (S), plan (P) and achievement (A).From the existing literature, it has not find more
universal significance than these three functional classification, meanwhile S, P and A was
also seen as the three primitives of building a robot system. Although the learning (L) to
build intelligent systems as a primitive is still debated, in this section, we consider the
learning paradigm as the fourth one apply to the design of the system, because learning is
the most important manifestation of intelligence and integrated in the first three primitives.
According to "By constructing to understand intelligent systems” and the relationship
between these types of research paradigms, the robot basic system, combining to intelligent
organization, is abstracted as three species: deliberate, reaction and hybrid
(deliberate/reaction), corresponding to the three basic architecture. The characteristics of
these three basic architectures are shown in Table 2. According to these research ideas, the
components can be replaced by these four primitives. Intelligent organization form and
architecture design of system are united and then to the component model of building
intelligent systems are achieved.
Throughout development of research on intelligent abstraction mechanisms recent years, it
experienced from the symbolic intelligence (the physical symbol hypothesis as the
representative), connected intelligence (the artificial neurons as the representative), on-site
intelligence (perception - action mechanism as the representative) to the community smart
(Agent, represented in the social interaction, organization and emergence, etc.). As can be
seen from Table 2, the basic architecture design and intelligent abstraction mechanism are
integrated to consider.

4.2.2 Basic architecture analysis model
System modeling is the core of the architecture, the environment and the objects intelligent
mobile robot systems to deal with are very complex, there is no unified theory and tools.

Research on Building Mechanism of System for Intelligent Service Mobile Robot 91

Building abstract and appropriate model help us to analyze the integrated mechanism and
intelligence generation mechanism of architecture. It’s easy to do dynamic optimized
analysis, and also to predict the results of running in the environment. Recent cognitive
structure, neurological psychological structure and architecture based on learning and
emotion all can be regarded as evolutions of these three basic architectures. Therefore, if we
consider the basic architecture as the study prototype, the system model is easy to
discussed.
From a macro point of view, the level of robot intelligent will be reflected by intelligent
behavior finally. While the most important factor of affecting intelligent behaviour is the
sense of the environment (S), so if we take IB (intelligent behavior) as output, the
environment as input, then the basic architecture of a simplified model is expressed as:

 f : E IB (2)

Among them, f means mapping mechanism from environment to intelligent behaviour. In
the intelligent service robot system, the environmental status information are divided into
two categories: external and internal environment. External environment includes robot
running ecological environment and task information released by human or other robot;
internal environment includes information about robot's understanding of environment
(global and local) and introspection information (dynamic cognitive knowledge, learning,
evaluation, memory information, etc.). Intelligence mainly is showed as intelligent strategy
selection and the generation of correct behavior. In different environment, the mapping
mechanism f is different. So based on functional design space requirements and the basic
architecture, intelligent robotic systems analysis model will be built. System architecture
design space (AD) can be expressed as a set:

  1 2 3 nAD A , A , A , ...,A (3)

iA means the basic structure of subsystem
According to this conversion from function design space to structure space, how to make
mapping mechanism? This mapping mechanism must be met the real-time requirements by
relatively simple linear transformation (including general and special) or fuzzy query table.
Linear transformation method describes model f by a linear mathematical model or
ARMAX(Nehmzow, 2006)system identification method. Method of fuzzy query table  Q s, a
achieves nonlinear f mapping mechanism through off-line fuzzy logic, and complex
behavior will be real-time and dynamic completed, looking up table online. This analysis
based on bottom-up and interaction principle based on perception-reaction have laid the
foundation for the realization of reactive intelligent behavior. It is noteworthy that, in the
lowest level of response mode, closed-loop control system as chief, such as motion control
system, has the strongest instantaneity, can also be attributed to the special analysis model:
S A . The mapping mechanism is designed with control system design theory.
Deliberative style basic architecture (S P A ), is came true through intelligent
information processing mechanism (mapping or policy). Planning includes task
decomposition, scheduling decisions, global and local path planning. Online and off-line
planning are coexistence. On-line planning includes environmental awareness, sensor
fusion, task decomposition and scheduling, cooperative control and real-time path planning;

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 92

off-line planning includes building a library of knowledge and experience, the identification
of demonstration representation and trajectory planning. The generation of intelligent
strategies come from planning. Driven by goals or tasks, the sensor information are fused
and processed into knowledge, intelligent strategies are self-generated and then intelligent
behaviours are expected. The traditional deliberative design focuses on logical reasoning-
search. In recent years, some soft calculation methods (such as fuzzy logic, neural networks,
evolutionary computation, etc.) are applied to the deliberative reasoning design which
reflect the comprehensive integration trend. For example, ANN hybrid architecture (Xu Yu-
ru, 2007) used by XU Yu-ru combined with symbolic reasoning and artificial neural
network, fully embodied the strengths of complementary of fusion.
Of course, if you reuse the basic architecture, then the corresponding mapping mechanism
can be reused. This gives convenience to system analysis and design. For example, obstacle
avoidance and along the wall of the differential behavior robot studied by Joseph (Jones, J.L.
2004), the same type of obstacle avoidance sensors are equipped on robot’s left and right
sides. He took mapping mechanism as common linear transformation model A , provided
us with general ideas based on behavior analysis model. Simply select the appropriate
transformation matrix A , reactive intelligent behavior can be achieved.
Intelligent behavior IB matrix expressed as:

  IB Tr R Tri (4)

Tr : Translation speed; R : Rotation speed; Tri : Trigger flag
Assuming the sensor input El and Er , The matrix is expressed as:

  1E El Er (5)

Status signal: 1 indicates that this behavior is triggered, 0 indicates that this behavior is not
triggered
Then there exists a common linear transformation matrix T .Such that IB ET .
In its light-seeking robot design, if Tr V , V means speed navigation; R K(El Er)  , K
for the normalization factor, the corresponding linear transformation matrix is:

0 0
0 0

0 1

K
T K

V

 
   
  

 (6)

4.2.3 Architecture of the spatial distribution
Currently, the concept that intelligent system should be layered has been widely recognized
by everyone. The four-model computer systems and the seven-model computer network
architecture, fully reflects the level of modeling ideas. Intelligent robot system with multi-
level, three-dimensional and flexible, dynamic organizational structure and other features,
are the same as cognitive scientists believe that animals have different levels of spatial
capacity (reflection, integration, learning and cognitive). Therefore, the simulated biological
process of intelligent systems also run through this philosophy. For example, the
hierarchical structure of Saridis, level from low to high and intelligent increasing, the control

Research on Building Mechanism of System for Intelligent Service Mobile Robot 93

precision is decreasing. The subsumption structure of Brooks, with that the high-level
tolerant and include the low-level behavior and have the characteristics of stacked layers,
this hierarchy has provided a convenient for building robotic system. In this framework, or
the distribution of each layer, the component form of organization may be divided into
centralized, distributed and hybrid (centralized/ distributed). The intelligence are
increasing with the level of compatibility, from low to high. The comparison of three kinds
of organization for designing system in Fig.1 are described in Table 3.

Category Centralized Distributed Hybrid

Describe
Ci is component C1

C0

C2 C3 C0 C1 C2 C3

Bus
C0 C1

C2 C3

Bus

Scheduling
C0 plans and

schedulings global
information

Every component
has local

information
Balance the first two

Advantages
Facilitate unified

planning and
management

Distributed
management and
Heterogeneous

components can be
integrated

Metasynthesis

Disadvatages
Single information

flow and weak
rebustness

Difficult to deal
with global

information and
need collaboration
and competition

Design complexity
and diffcult to

integrate

Table 3. Comparison of three organized manner based on component

4.2.4 The comprehensive integration of structure space
In the process of function design space are converted into the structure designing space, the
functional set is converted into the basic architecture by the primitive. Then the non-
functional requirements and performance indicators are reflected in the architecture of the
constraints. If we use these components to achieve the function of Fr set, the connection
between components and the algorithm can reflect the constraints of Ds and NFr set. Thus,
according to functional and non functional requirements, we determine the basic structure
of the analysis model, and select appropriate mapping mechanism to realize, and achieve a
function designing space completely transforms into a subset of structure designing space
(basic structure). Then the problems are transformed into that how to use these form the
basic structure of the whole system model.
From the view of system theory, complex systems have a Character of "hierarchy" and
typically have a structure of modular, so we use the method of hierarchical – aggregation and
block-integrate modeling to solve this problem. Nearly 30 years analysis research of robot
architecture shows that hybrid architecture is still dominant when the basic model and its
organization are identified, we use the comprehensive integrated spatial structure of
intelligent service as Fig.1 to build system gradually.
The robotic system building process are descried simply as following after the AD set of
structure design space is determined, we can use the method of combination modeling to

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 92

off-line planning includes building a library of knowledge and experience, the identification
of demonstration representation and trajectory planning. The generation of intelligent
strategies come from planning. Driven by goals or tasks, the sensor information are fused
and processed into knowledge, intelligent strategies are self-generated and then intelligent
behaviours are expected. The traditional deliberative design focuses on logical reasoning-
search. In recent years, some soft calculation methods (such as fuzzy logic, neural networks,
evolutionary computation, etc.) are applied to the deliberative reasoning design which
reflect the comprehensive integration trend. For example, ANN hybrid architecture (Xu Yu-
ru, 2007) used by XU Yu-ru combined with symbolic reasoning and artificial neural
network, fully embodied the strengths of complementary of fusion.
Of course, if you reuse the basic architecture, then the corresponding mapping mechanism
can be reused. This gives convenience to system analysis and design. For example, obstacle
avoidance and along the wall of the differential behavior robot studied by Joseph (Jones, J.L.
2004), the same type of obstacle avoidance sensors are equipped on robot’s left and right
sides. He took mapping mechanism as common linear transformation model A , provided
us with general ideas based on behavior analysis model. Simply select the appropriate
transformation matrix A , reactive intelligent behavior can be achieved.
Intelligent behavior IB matrix expressed as:

  IB Tr R Tri (4)

Tr : Translation speed; R : Rotation speed; Tri : Trigger flag
Assuming the sensor input El and Er , The matrix is expressed as:

  1E El Er (5)

Status signal: 1 indicates that this behavior is triggered, 0 indicates that this behavior is not
triggered
Then there exists a common linear transformation matrix T .Such that IB ET .
In its light-seeking robot design, if Tr V , V means speed navigation; R K(El Er)  , K
for the normalization factor, the corresponding linear transformation matrix is:

0 0
0 0

0 1

K
T K

V

 
   
  

 (6)

4.2.3 Architecture of the spatial distribution
Currently, the concept that intelligent system should be layered has been widely recognized
by everyone. The four-model computer systems and the seven-model computer network
architecture, fully reflects the level of modeling ideas. Intelligent robot system with multi-
level, three-dimensional and flexible, dynamic organizational structure and other features,
are the same as cognitive scientists believe that animals have different levels of spatial
capacity (reflection, integration, learning and cognitive). Therefore, the simulated biological
process of intelligent systems also run through this philosophy. For example, the
hierarchical structure of Saridis, level from low to high and intelligent increasing, the control

Research on Building Mechanism of System for Intelligent Service Mobile Robot 93

precision is decreasing. The subsumption structure of Brooks, with that the high-level
tolerant and include the low-level behavior and have the characteristics of stacked layers,
this hierarchy has provided a convenient for building robotic system. In this framework, or
the distribution of each layer, the component form of organization may be divided into
centralized, distributed and hybrid (centralized/ distributed). The intelligence are
increasing with the level of compatibility, from low to high. The comparison of three kinds
of organization for designing system in Fig.1 are described in Table 3.

Category Centralized Distributed Hybrid

Describe
Ci is component C1

C0

C2 C3 C0 C1 C2 C3

Bus
C0 C1

C2 C3

Bus

Scheduling
C0 plans and

schedulings global
information

Every component
has local

information
Balance the first two

Advantages
Facilitate unified

planning and
management

Distributed
management and
Heterogeneous

components can be
integrated

Metasynthesis

Disadvatages
Single information

flow and weak
rebustness

Difficult to deal
with global

information and
need collaboration
and competition

Design complexity
and diffcult to

integrate

Table 3. Comparison of three organized manner based on component

4.2.4 The comprehensive integration of structure space
In the process of function design space are converted into the structure designing space, the
functional set is converted into the basic architecture by the primitive. Then the non-
functional requirements and performance indicators are reflected in the architecture of the
constraints. If we use these components to achieve the function of Fr set, the connection
between components and the algorithm can reflect the constraints of Ds and NFr set. Thus,
according to functional and non functional requirements, we determine the basic structure
of the analysis model, and select appropriate mapping mechanism to realize, and achieve a
function designing space completely transforms into a subset of structure designing space
(basic structure). Then the problems are transformed into that how to use these form the
basic structure of the whole system model.
From the view of system theory, complex systems have a Character of "hierarchy" and
typically have a structure of modular, so we use the method of hierarchical – aggregation and
block-integrate modeling to solve this problem. Nearly 30 years analysis research of robot
architecture shows that hybrid architecture is still dominant when the basic model and its
organization are identified, we use the comprehensive integrated spatial structure of
intelligent service as Fig.1 to build system gradually.
The robotic system building process are descried simply as following after the AD set of
structure design space is determined, we can use the method of combination modeling to

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 94

integrate 1 2 3 nAD { A , A ,A ,...,A } as the spatial structure under the frame in Fig.1. Each iA
represents a basic architecture, including components, connectors and constraints, which are
used to form the overall system model. In this modelling process, according to the constraints,
used the basic modular architecture, based on deliberative and reactive paradigms and
different three-dimensional spatial structure of the 5-layer classification method, the
association model is established , and then the various subsystems are comprehensive
integrated organically. Finally, the overall model are formed. Since the independence of each
layer, it enables the level of the surface to be extended independently. Combined with bottom-
up, coordination ensures the deliberation and reaction layer to perform in parallel, thus, the
openness and real-time have greatly improved.

4.2.5 Architecture assessment
The specific evaluation of architecture mainly comes from the constraints of FD. After FD
are transformed into AD, these constraints were implicated in the design of architecture.
Architecture evaluation requires a certain standard. Kolp(Kolp, 2006), based on research in
Akin, derived from four qualitative evaluation criterias : support for modular, well-targeted
features, easy to transplant to other areas and robustness. Anders Oreback (Anders, 2003)
comprehensively evaluates the architecture of the mobile robot from aspects of hardware
abstraction, scalability, uptime, software features, the implementing agency control
modeling, tools, methods, documentation and others. Kolp put forward four qualitative
evaluation standards from the perspective of organization theory: coherence, predictability,
fault tolerance and adaptability, emphasis on evaluation of software systems . Drawing on
these assessment criteria, particularly on the base of Anders Oreback, and the architecture
design and analysis phase, we propose eight quality attributes to qualitatively assess the
architecture design’s reasonabilityas shown in Table 4. The architecture trade off analysis
method(ATAM) is used to assess the architecture overall.

No Quality attributes Describe

1 Niche targetability Functional integrity of the design space and
consistency to architecture mapping

2 Modularity Support modular, tight cohesion and loose coupling
3 Openess Scalability, portability and reconfigurability

4 Adapt to the
environment Have adapt to the unkown and dynamic environment

5 robustness Anti-interference ability and measures

6 Real-time response
capacity Real-time response

7 Security Meet the three principles of Asimov
8 Document Well detailed decumants

Table 4. Quality attributes of architecture structure assessment

4.3 System implementation
When the structure of the architecture design space is established, we form the specific
system design space (SD), according to the whole comprehensive integration of assessed
architecture. On this basis, we choose a suitable computing platform designed to achieve
specific functions, and then to form the model for engineering system design. System

Research on Building Mechanism of System for Intelligent Service Mobile Robot 95

designing model includes the selections of computing platform and computational model.
Therefore, the system design space is expressed as a collection of
SD = {computing platform, computing mode}.
Robot system is an information processing system in essence, whether deliberative plan or
the acts reactive of synthesis, ultimately it comes down to a collection of computer-based
hardware and software platform. Therefore, at this stage, we can use computer software
engineering approach to modeling and analysis.
The difference between system design and architecture model is that the step of the former
faces up with implementation and its main indicators are achievability and operability.We
must firstly analyze quantitatively design specifications according to AD space including
functional requirements and non-functional requirements from FD. Depending on the selected
computer platform, we identified to achieve the basic architecture structure of the software
modules (algorithms) and hardware modules (sensors, actuators and computing platforms),
scope and interaction protocol between modules. In the design of architecture, when hardware
module division has been very clear, we can determine the technology solutions of the
hardware, according to the algorithm complexity of basic architecture model and the spatial
and temporal distribution of the whole architecture. Next, the solution of the core issue is to
choose the appropriate mode of computing, and use the appropriate tools to analyze and
design a specific algorithm, so as to achieve comprehensive integrated modelling from
different modular granularity. According to this idea, the design process of robotic system is
converted into the next software engineering design problems for specific applications.
To sum up, the robot software design, there are four key application computing models:
process-oriented (Process-oriented) approach, object-oriented (Object-oriented) approach for
the component (Component-oriented) methods and agent-oriented (Agent-oriented)
approach. In order to select the appropriate computing model, we conduct a comparative
analysis from six areas, as shown in Table 5.

Category Process-
oriented Object-oriented Component-

oriented Agent-oriented

Basic unit Sub program object component agent
Computer

process Function call Message,
response Message, response Message,

response

Abstrct
element Function Object, class,

modular Component

Include
organization,
actor, target

etc. excepting
object and
component

Granularity small smller thicker thick

Model tools Flow chart
UML, ROSE,

Usecase
Diagram etc.

COM/DCOM
Java Bean
CORBA

AML, AUML,
Gaia etc.

Typical
applications

MCU, DSP
program, etc

PC, ARM
program

and ROS design

Design of ditributed
system based on

WEB

Construction of
complex

intelligent
system

Table 5. Comparison of computing model

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 94

integrate 1 2 3 nAD { A , A ,A ,...,A } as the spatial structure under the frame in Fig.1. Each iA
represents a basic architecture, including components, connectors and constraints, which are
used to form the overall system model. In this modelling process, according to the constraints,
used the basic modular architecture, based on deliberative and reactive paradigms and
different three-dimensional spatial structure of the 5-layer classification method, the
association model is established , and then the various subsystems are comprehensive
integrated organically. Finally, the overall model are formed. Since the independence of each
layer, it enables the level of the surface to be extended independently. Combined with bottom-
up, coordination ensures the deliberation and reaction layer to perform in parallel, thus, the
openness and real-time have greatly improved.

4.2.5 Architecture assessment
The specific evaluation of architecture mainly comes from the constraints of FD. After FD
are transformed into AD, these constraints were implicated in the design of architecture.
Architecture evaluation requires a certain standard. Kolp(Kolp, 2006), based on research in
Akin, derived from four qualitative evaluation criterias : support for modular, well-targeted
features, easy to transplant to other areas and robustness. Anders Oreback (Anders, 2003)
comprehensively evaluates the architecture of the mobile robot from aspects of hardware
abstraction, scalability, uptime, software features, the implementing agency control
modeling, tools, methods, documentation and others. Kolp put forward four qualitative
evaluation standards from the perspective of organization theory: coherence, predictability,
fault tolerance and adaptability, emphasis on evaluation of software systems . Drawing on
these assessment criteria, particularly on the base of Anders Oreback, and the architecture
design and analysis phase, we propose eight quality attributes to qualitatively assess the
architecture design’s reasonabilityas shown in Table 4. The architecture trade off analysis
method(ATAM) is used to assess the architecture overall.

No Quality attributes Describe

1 Niche targetability Functional integrity of the design space and
consistency to architecture mapping

2 Modularity Support modular, tight cohesion and loose coupling
3 Openess Scalability, portability and reconfigurability

4 Adapt to the
environment Have adapt to the unkown and dynamic environment

5 robustness Anti-interference ability and measures

6 Real-time response
capacity Real-time response

7 Security Meet the three principles of Asimov
8 Document Well detailed decumants

Table 4. Quality attributes of architecture structure assessment

4.3 System implementation
When the structure of the architecture design space is established, we form the specific
system design space (SD), according to the whole comprehensive integration of assessed
architecture. On this basis, we choose a suitable computing platform designed to achieve
specific functions, and then to form the model for engineering system design. System

Research on Building Mechanism of System for Intelligent Service Mobile Robot 95

designing model includes the selections of computing platform and computational model.
Therefore, the system design space is expressed as a collection of
SD = {computing platform, computing mode}.
Robot system is an information processing system in essence, whether deliberative plan or
the acts reactive of synthesis, ultimately it comes down to a collection of computer-based
hardware and software platform. Therefore, at this stage, we can use computer software
engineering approach to modeling and analysis.
The difference between system design and architecture model is that the step of the former
faces up with implementation and its main indicators are achievability and operability.We
must firstly analyze quantitatively design specifications according to AD space including
functional requirements and non-functional requirements from FD. Depending on the selected
computer platform, we identified to achieve the basic architecture structure of the software
modules (algorithms) and hardware modules (sensors, actuators and computing platforms),
scope and interaction protocol between modules. In the design of architecture, when hardware
module division has been very clear, we can determine the technology solutions of the
hardware, according to the algorithm complexity of basic architecture model and the spatial
and temporal distribution of the whole architecture. Next, the solution of the core issue is to
choose the appropriate mode of computing, and use the appropriate tools to analyze and
design a specific algorithm, so as to achieve comprehensive integrated modelling from
different modular granularity. According to this idea, the design process of robotic system is
converted into the next software engineering design problems for specific applications.
To sum up, the robot software design, there are four key application computing models:
process-oriented (Process-oriented) approach, object-oriented (Object-oriented) approach for
the component (Component-oriented) methods and agent-oriented (Agent-oriented)
approach. In order to select the appropriate computing model, we conduct a comparative
analysis from six areas, as shown in Table 5.

Category Process-
oriented Object-oriented Component-

oriented Agent-oriented

Basic unit Sub program object component agent
Computer

process Function call Message,
response Message, response Message,

response

Abstrct
element Function Object, class,

modular Component

Include
organization,
actor, target

etc. excepting
object and
component

Granularity small smller thicker thick

Model tools Flow chart
UML, ROSE,

Usecase
Diagram etc.

COM/DCOM
Java Bean
CORBA

AML, AUML,
Gaia etc.

Typical
applications

MCU, DSP
program, etc

PC, ARM
program

and ROS design

Design of ditributed
system based on

WEB

Construction of
complex

intelligent
system

Table 5. Comparison of computing model

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 96

On the view of the application of the robot engineering, these four computing modes are co-
existence in the system design. We select the appropriate calculation patterns according to
the algorithm, organizational structure identified in the system model and spatial
distribution of the system. Then design the sub-module and the sub-system and determine
the software development environment, following the corresponding modeling tools. So it is
easy to build robot system software architecture. In addition, when we have completed the
transition from system architecture space mode to system design space mode, we can test
and evolve the algorithm of structure designing space through the simulation space or
combination of hardware. modify the architecture design model by iterative incremental
ways, until it meets system-related design specifications, finially establish a table or graph
form the detailed system design documentation.

4.4 System evolution
Robot systems analysis and design is a dynamic iterative process. In the life cycle of systems
analysis and design, the need of users and application areas of the environment may all
change. Therefore, in architecture design, we need to consider the openness and scalability of
architecture, in order to create conditions for the evolution of the system. Following successful
tests, the system will extract some of the common framework to form the evolution of the
design space (SE). If the system needs change, we must first update the functional design
space, then search the evolution space (SE) that if there are ready component, and select add or
reuse an existing structure, to achieve this function to find the basic architecture, in order to
build a system design model. Accordingly, if the system tests have problems, we can date back
to FD design space via the elements of SD design space. In the systems analysis and design of
the architecture-based design and development model, system evolution is divided into two
main lines. The first one is done to the structure design space from the functional design space,
and done to system design space from the design space. Another is the change in demand, the
use of the basic architecture and components extracted from homogeneous to update (add or
delete) AD and SD elements. The dynamic evolution of the model shown in Fig. 3, this figure
showing the relationship between the four design space.
When we decompose the robot system development process model into FD, AD, SD, SE
four design space, we can use the collection analysis methods of robotic systems to get the
qualitative and quantitative information. Here, we introduce a collection of characteristic
functions, in order to complete the conversion of the four design space and structural
modeling.

FD AD SD

Changes in
demand SE

Track Track

maping

Architecture
update

maping
component
update

Extract

Prototype

Fig. 3. Models the dynamic evolution of the system

Research on Building Mechanism of System for Intelligent Service Mobile Robot 97

Based on the U of A is a subset of the function:

1
0A

x A
(x)

x A



  

 (7)

Set A is called the characteristic function. According to the nature of the characteristic
function, the development model can be represented by equation (8) to. For any ix FD ,

iy AD , iz SD and, ik SE , 1 2 3i , , ,...,n , present 'f , 'f : FD AD SD  , satisfies the
equation:

1FD i AD i SD i

SE j SD i

(x) (y) (z)
(k) (z)

  
 


 

 (8)

5. Case study
Let us take a specific example to illustrate theory above. The intelligent gas-check service
mobile robot (IGSMR) is used to check toxic gas autonomously through roaming or default
route in chemical industry zone. And it can cooperate with human and help people detect
gas leakage. Under the open and space-oriented reference architecture of ISMR with
learning mechanism, according to the development model of ISMR based on architecture,
the building process of IGSMR is divided into the design of FD, AD, SD and SE. And the
design steps can be described as following.
1. Design functional space according to requirement analysis and ouput FD set.
2. Design the basic aechitecture analysis model accoring to FD set, and then integrate

comprehensively the architecture space, output system reference architecture and AD set.
3. Select approprite computing model according AD set and Table 3, and then form

system design model, finally output SD set and cooresponding physical
implementation model.

4. Evolve (interative incremental correction) in the light of Fig.3 and test system, if it does
not meet the requirements, return 1), otherwise, extract common components to SE.

5. Output detailed and standard documents after finishing the first four steps.

Fig. 4. Mulan No.1

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 96

On the view of the application of the robot engineering, these four computing modes are co-
existence in the system design. We select the appropriate calculation patterns according to
the algorithm, organizational structure identified in the system model and spatial
distribution of the system. Then design the sub-module and the sub-system and determine
the software development environment, following the corresponding modeling tools. So it is
easy to build robot system software architecture. In addition, when we have completed the
transition from system architecture space mode to system design space mode, we can test
and evolve the algorithm of structure designing space through the simulation space or
combination of hardware. modify the architecture design model by iterative incremental
ways, until it meets system-related design specifications, finially establish a table or graph
form the detailed system design documentation.

4.4 System evolution
Robot systems analysis and design is a dynamic iterative process. In the life cycle of systems
analysis and design, the need of users and application areas of the environment may all
change. Therefore, in architecture design, we need to consider the openness and scalability of
architecture, in order to create conditions for the evolution of the system. Following successful
tests, the system will extract some of the common framework to form the evolution of the
design space (SE). If the system needs change, we must first update the functional design
space, then search the evolution space (SE) that if there are ready component, and select add or
reuse an existing structure, to achieve this function to find the basic architecture, in order to
build a system design model. Accordingly, if the system tests have problems, we can date back
to FD design space via the elements of SD design space. In the systems analysis and design of
the architecture-based design and development model, system evolution is divided into two
main lines. The first one is done to the structure design space from the functional design space,
and done to system design space from the design space. Another is the change in demand, the
use of the basic architecture and components extracted from homogeneous to update (add or
delete) AD and SD elements. The dynamic evolution of the model shown in Fig. 3, this figure
showing the relationship between the four design space.
When we decompose the robot system development process model into FD, AD, SD, SE
four design space, we can use the collection analysis methods of robotic systems to get the
qualitative and quantitative information. Here, we introduce a collection of characteristic
functions, in order to complete the conversion of the four design space and structural
modeling.

FD AD SD

Changes in
demand SE

Track Track

maping

Architecture
update

maping
component
update

Extract

Prototype

Fig. 3. Models the dynamic evolution of the system

Research on Building Mechanism of System for Intelligent Service Mobile Robot 97

Based on the U of A is a subset of the function:

1
0A

x A
(x)

x A



  

 (7)

Set A is called the characteristic function. According to the nature of the characteristic
function, the development model can be represented by equation (8) to. For any ix FD ,

iy AD , iz SD and, ik SE , 1 2 3i , , ,...,n , present 'f , 'f : FD AD SD  , satisfies the
equation:

1FD i AD i SD i

SE j SD i

(x) (y) (z)
(k) (z)

  
 


 

 (8)

5. Case study
Let us take a specific example to illustrate theory above. The intelligent gas-check service
mobile robot (IGSMR) is used to check toxic gas autonomously through roaming or default
route in chemical industry zone. And it can cooperate with human and help people detect
gas leakage. Under the open and space-oriented reference architecture of ISMR with
learning mechanism, according to the development model of ISMR based on architecture,
the building process of IGSMR is divided into the design of FD, AD, SD and SE. And the
design steps can be described as following.
1. Design functional space according to requirement analysis and ouput FD set.
2. Design the basic aechitecture analysis model accoring to FD set, and then integrate

comprehensively the architecture space, output system reference architecture and AD set.
3. Select approprite computing model according AD set and Table 3, and then form

system design model, finally output SD set and cooresponding physical
implementation model.

4. Evolve (interative incremental correction) in the light of Fig.3 and test system, if it does
not meet the requirements, return 1), otherwise, extract common components to SE.

5. Output detailed and standard documents after finishing the first four steps.

Fig. 4. Mulan No.1

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 98

Fig. 5. Mulan No.2

Subset of AD Basic
architecture

Environment
sensor(E)

Intelligent
Behaviors(IB)

Mapping
Mechanism(f)

A1 Reactive Code/decode Differential drive PID

A2 Reactive Infrared Obstacle avoidance
Generalized

linear
transformation

A3 Deliberative Magnetic sensor Navigation Fuzzy logic

A4 Reactive Ultrasound Own roaming
Fuzzy logic and
Reinforcement

learning

A5 Deliberative Network signal Runing state control
Generalized

linear
transformation

A6 Deliberative Power check Independent charge Fuzzy logic

A7 Reactive
State detection

within
environment

Status indication linear
transformation

A8 Deliberative Sound Sound identification Fuzzy logic and
leaining on-line

A9 Deliberative Photosensitive Image processing Soft computing

A10 Deliberative Gas-check
sensors

Alarm or pre-
process

Generalized
linear

transformation

Table 6. Architecture design space of IGSMR

From this design process, we can see that the design steps above are easy realized by
computer. Because of space restrictions of this article, we manily focus on the architecture
design of space. The architecture design is the core of buidling IGSMR, and the core of basic
architecture is the mapping mechanism. If we grasp the core mechanism, we build robot ic
system easily according to Fig.1. The physicals of IGSMR with navigation(Mulan No.1) and
own roaming (Mulan No.2) are shown such as Fig.4 and Fig.5.

Research on Building Mechanism of System for Intelligent Service Mobile Robot 99

6. Conclusion
In this article, we have presented a new building mechanism of system for intelligent service
mobile robot employed to address the robot system analysis and design problems. On the
basis of previous studies, we provide firstly an open and space-oriented reference
architecture of ISMR with learning mechanism, and then learning from software research
methods, we present the development model of intelligent service robot system based on
architecture which provide some engineering principles and theory foundation for building
robot system effectively.
The design processes of ISMR are divided into four dynamic design spaces (FD, AD, SD and
SE) which are contributed to integrate comprehensively. In addition, the three-dimensional
spatial structure and how to design it, and formal theoretical model based on set analysis is
provided. Compared to methods of conceptual design and integration (Yavuz, 2007), the
methods in this paper have some obvious merits including intuitive, level clear, detailed
size classification and easy computer-aided analysis, etc. From the case study of IGSMR, we
conclude that this strategy not only have clear organization of intelligence, but also have
high scalability and efficiency compared with traditional design methods. During the
process of developing IGSMR, we use this method based on architecture to make overall
efficiency increased by 40%. Moreover, the methods of analysis and design for ISMR have
provided a new thought for architecture optimization and reuse of intelligent robotic
system.

7. Acknowledgment
The authors wish to thank the helpful comments and suggestions from our teachers and
colleagues in intelligent detection and control lab of HIT at Weihai. And thank the Shanghai
Chemical industry park public pipe gallery Co.,Ltd.This work is supported by the study
fund of HIT at Weihai (No.IMVQ02020003 and IMJQ21080002).

8. References
Albus.J.S, McCain, R. Lumia(1989), NASA/NBS standard reference model for telerobot

control system architecture. National instutute of standards and technology, technical
Report.

Anders Orebäck and Henrik I.Christensen(2003). Evaluation of architecture for mobile
robotics. Autonomous robots, Vol.13, pp.33-49

Bogdan.R, Radu.R, Robotin, et al. (2006). Towards open architecture for mobile robots :Zee
Ro, Proceedings of IEEE international conference on automation, quality and testing,
robotics, pp. 260-265.

Cao longbin, Dai Ruwei (2008), Fundamentals, conceptss, analysis and design and
implementation, Post and Telecom press, China

Chelloa. A. ; Cossentino.M. ; et al. (2010). Agent-oritented software patterns for rapid and
afforable robot programing.The Journal of system and software, Vol.83, pp. 557-573.

Daqing Wang, (2006), Developmentn of hybrid architecture of the control system for modular and
reconfigurable robot(MRR) manipulators, University of Toronto

Ève coste-Manière, Reid simmons (2000). The backbone of robotic system, Proceedings of 2000
IEEE international conference on robotics & Automation, pp. 67-72.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 98

Fig. 5. Mulan No.2

Subset of AD Basic
architecture

Environment
sensor(E)

Intelligent
Behaviors(IB)

Mapping
Mechanism(f)

A1 Reactive Code/decode Differential drive PID

A2 Reactive Infrared Obstacle avoidance
Generalized

linear
transformation

A3 Deliberative Magnetic sensor Navigation Fuzzy logic

A4 Reactive Ultrasound Own roaming
Fuzzy logic and
Reinforcement

learning

A5 Deliberative Network signal Runing state control
Generalized

linear
transformation

A6 Deliberative Power check Independent charge Fuzzy logic

A7 Reactive
State detection

within
environment

Status indication linear
transformation

A8 Deliberative Sound Sound identification Fuzzy logic and
leaining on-line

A9 Deliberative Photosensitive Image processing Soft computing

A10 Deliberative Gas-check
sensors

Alarm or pre-
process

Generalized
linear

transformation

Table 6. Architecture design space of IGSMR

From this design process, we can see that the design steps above are easy realized by
computer. Because of space restrictions of this article, we manily focus on the architecture
design of space. The architecture design is the core of buidling IGSMR, and the core of basic
architecture is the mapping mechanism. If we grasp the core mechanism, we build robot ic
system easily according to Fig.1. The physicals of IGSMR with navigation(Mulan No.1) and
own roaming (Mulan No.2) are shown such as Fig.4 and Fig.5.

Research on Building Mechanism of System for Intelligent Service Mobile Robot 99

6. Conclusion
In this article, we have presented a new building mechanism of system for intelligent service
mobile robot employed to address the robot system analysis and design problems. On the
basis of previous studies, we provide firstly an open and space-oriented reference
architecture of ISMR with learning mechanism, and then learning from software research
methods, we present the development model of intelligent service robot system based on
architecture which provide some engineering principles and theory foundation for building
robot system effectively.
The design processes of ISMR are divided into four dynamic design spaces (FD, AD, SD and
SE) which are contributed to integrate comprehensively. In addition, the three-dimensional
spatial structure and how to design it, and formal theoretical model based on set analysis is
provided. Compared to methods of conceptual design and integration (Yavuz, 2007), the
methods in this paper have some obvious merits including intuitive, level clear, detailed
size classification and easy computer-aided analysis, etc. From the case study of IGSMR, we
conclude that this strategy not only have clear organization of intelligence, but also have
high scalability and efficiency compared with traditional design methods. During the
process of developing IGSMR, we use this method based on architecture to make overall
efficiency increased by 40%. Moreover, the methods of analysis and design for ISMR have
provided a new thought for architecture optimization and reuse of intelligent robotic
system.

7. Acknowledgment
The authors wish to thank the helpful comments and suggestions from our teachers and
colleagues in intelligent detection and control lab of HIT at Weihai. And thank the Shanghai
Chemical industry park public pipe gallery Co.,Ltd.This work is supported by the study
fund of HIT at Weihai (No.IMVQ02020003 and IMJQ21080002).

8. References
Albus.J.S, McCain, R. Lumia(1989), NASA/NBS standard reference model for telerobot

control system architecture. National instutute of standards and technology, technical
Report.

Anders Orebäck and Henrik I.Christensen(2003). Evaluation of architecture for mobile
robotics. Autonomous robots, Vol.13, pp.33-49

Bogdan.R, Radu.R, Robotin, et al. (2006). Towards open architecture for mobile robots :Zee
Ro, Proceedings of IEEE international conference on automation, quality and testing,
robotics, pp. 260-265.

Cao longbin, Dai Ruwei (2008), Fundamentals, conceptss, analysis and design and
implementation, Post and Telecom press, China

Chelloa. A. ; Cossentino.M. ; et al. (2010). Agent-oritented software patterns for rapid and
afforable robot programing.The Journal of system and software, Vol.83, pp. 557-573.

Daqing Wang, (2006), Developmentn of hybrid architecture of the control system for modular and
reconfigurable robot(MRR) manipulators, University of Toronto

Ève coste-Manière, Reid simmons (2000). The backbone of robotic system, Proceedings of 2000
IEEE international conference on robotics & Automation, pp. 67-72.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 100

Grelle.C, et al. (2006) Agent-based architecture for designing hybrid control systems.
Information science, Vol.176, No. 9, pp. 1103-1130

Gu.J.S, C.W .de Silva(2004). Development and implementation of a real-time open-
architecture control system for industrial robot systems. Engineering Applicationa of
artifical intelligence, Vol.17, No.5, pp. 469-483

Hejian, Jia xiaolin, et.al (2004). Model of software analysis and design process based on
architecture. Journal of Xi,an Jiaotong university, Vol.38. No.6, pp.591-594.

Inniceni.B, et al.(2007) A multi-agent architecture with cooperative fuzzy control for a
mobile robot. Robotics and autonomous system, Vol.55, No.12, pp. 881-891

Jones, J.L(2004), Robot programing –A-practical guide to behavior-based Robotics, McGraw-Hill
Companies.inc

Manuel Kolp, P.G.J.M (2006), Muti-agent architecture as organizational structures. Auton
Agent Multi-Agent sys, Vol.13, No. 3, pp. 3-25

Nehmzow.U. (2006)., Scientific methods in mobile robotics-quantitative analysis of agent
behaviour, Spring-Verlag london

Pfeifer.R, Fumiya Iida, Josh Bongard (2005). New robotics : Design principles for intelligent
system. Artifical life, Vol.11, No.2, pp. 99-120

Posadas, J.L.. et al.(2008) Agent-based distributed architecture for mobile robot control
Engineering applications of artificial intelligence, Vol.21, No. 6, pp. 805-823

Slusn, S., R.Neruda and P.Vidnerov(2010) Comparison of behaviour-based and planning
techniques on the small robot maze exploration problem. Neural networks, Vol.23,
No. 4, pp. 560-567

Tan zhen, hejian, et al.(2002). Software architecture, Xi’an Jiaotong university press, China
Xie Wei, Ma jiachen, Yang mingli (2010). Agent-oriented architecture for intelligent service

robot. Proceedings of the 8th world congress on intelligent control and automation, pp.
5964-5967

Xie Wei, Ma jiachen, Yang mingli (2010). Design of hybrid architecture for intelligent service
mobile robot. Proceedings of IEEE international conference on electrical and control
engineering, pp. 740-743

Xu Yu-ru, Xiao kun(2007). Technology development of autonomous ocean vehicle. Acta
automatica sinica, Vol.33, No.5, pp.518-521

Yavuz.H (2002). A new conceptual approach to the design of hybrid control architecture for
autonomous mobile robots. Journal of intelligent and robotic system, Vol.34, pp. 1-26

Yavuz.H (2007). An integrated approach the conceptual design and development of an
intelligent autonomous mobile robot. Robotics and autonomous systems, Vol.55, pp.
498-512

Zhang yousheng(2004). Architecture-based software development model. Compute
engineering and application, Vol.34, pp. 29-32, China

Zhu Miaoliang (2001), Autonomous intelligent system, Zhejiang university press, China

5

A Robotic Wheelchair Component-Based
Software Development

Dayang N. A. Jawawi et al.*
Universiti Teknologi Malaysia

Malaysia

1. Introduction
A robotic wheelchair system provides mobility for handicapped and elderly people who are
unable to operate classical wheelchair system. Software development for such system is
challenged by requirement for multi-disciplines expert knowledge which includes
embedded systems, real-time software issues, control theories and artificial intelligence
aspects. Software reuse is an approach to provide a way to reuse expertise that can be used
across domains in software engineering. Software reuse can be a mechanism to support the
attempts to transfer technology from other engineering fields to rehabilitation engineering.
For example, (Bonail et al., 2009) and (Cheein et al., 2009) have attempted to transfer
software platform and algorithms from robotic technologies to rehabilitation engineering
software development. The technologies transfer requires a methodological support to
enable a systematic software reuse of the multi-disciplines expert knowledge.
Software reuse is one of the promising approaches to increase software productivity and
improve its quality, as well as to decrease the costs of software development. This is because
of software reuse uses existing software either in the form of component or knowledge to
construct new software. Yet, applying software reuse in Embedded Real-Time (ERT)
domain, such as robotic wheelchair sets major challenges to the software development
process due to the resource-constrained and real-time requirements of the system.
In order to overcome multi-constraints and multi-disciplinary knowledge in ERT software
development problems, Component-Based Development (CBD) method becomes a
promising approach for ERT software development (Bunse & Gross, 2006; Carlson et al.,
2006). Existing industrial component technologies such as OMG’s CORBA Component
Model (CCM), Microsoft’s (D) COM/COM++, .NET, SUN Microsystems’ JavaBeans and
enterprise JavaBeans, are not suitable to develop ERT systems because they do not address
the non-functional properties in ERT systems.
With the purpose to meet the requirements of ERT systems, a number of component
technologies such as Koala (Ommering, 2000), PECOS (Nierstrasz, et al., 2002) and KobrA
(Atkinson, et al., 2002) have emerged. However, these component technologies still have some
weaknesses. Koala and PECOS cannot support multi-disciplinary knowledge, but they can

* Suzila Sabil, Rosbi Mamat, Mohd Zulkifli Mohd Zaki, Mahmood Aghajani Siroos Talab,
Radziah Mohamad, Norazian M. Hamdan and Khadijah Kamal
Universiti Teknologi Malaysia, Malaysia

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 100

Grelle.C, et al. (2006) Agent-based architecture for designing hybrid control systems.
Information science, Vol.176, No. 9, pp. 1103-1130

Gu.J.S, C.W .de Silva(2004). Development and implementation of a real-time open-
architecture control system for industrial robot systems. Engineering Applicationa of
artifical intelligence, Vol.17, No.5, pp. 469-483

Hejian, Jia xiaolin, et.al (2004). Model of software analysis and design process based on
architecture. Journal of Xi,an Jiaotong university, Vol.38. No.6, pp.591-594.

Inniceni.B, et al.(2007) A multi-agent architecture with cooperative fuzzy control for a
mobile robot. Robotics and autonomous system, Vol.55, No.12, pp. 881-891

Jones, J.L(2004), Robot programing –A-practical guide to behavior-based Robotics, McGraw-Hill
Companies.inc

Manuel Kolp, P.G.J.M (2006), Muti-agent architecture as organizational structures. Auton
Agent Multi-Agent sys, Vol.13, No. 3, pp. 3-25

Nehmzow.U. (2006)., Scientific methods in mobile robotics-quantitative analysis of agent
behaviour, Spring-Verlag london

Pfeifer.R, Fumiya Iida, Josh Bongard (2005). New robotics : Design principles for intelligent
system. Artifical life, Vol.11, No.2, pp. 99-120

Posadas, J.L.. et al.(2008) Agent-based distributed architecture for mobile robot control
Engineering applications of artificial intelligence, Vol.21, No. 6, pp. 805-823

Slusn, S., R.Neruda and P.Vidnerov(2010) Comparison of behaviour-based and planning
techniques on the small robot maze exploration problem. Neural networks, Vol.23,
No. 4, pp. 560-567

Tan zhen, hejian, et al.(2002). Software architecture, Xi’an Jiaotong university press, China
Xie Wei, Ma jiachen, Yang mingli (2010). Agent-oriented architecture for intelligent service

robot. Proceedings of the 8th world congress on intelligent control and automation, pp.
5964-5967

Xie Wei, Ma jiachen, Yang mingli (2010). Design of hybrid architecture for intelligent service
mobile robot. Proceedings of IEEE international conference on electrical and control
engineering, pp. 740-743

Xu Yu-ru, Xiao kun(2007). Technology development of autonomous ocean vehicle. Acta
automatica sinica, Vol.33, No.5, pp.518-521

Yavuz.H (2002). A new conceptual approach to the design of hybrid control architecture for
autonomous mobile robots. Journal of intelligent and robotic system, Vol.34, pp. 1-26

Yavuz.H (2007). An integrated approach the conceptual design and development of an
intelligent autonomous mobile robot. Robotics and autonomous systems, Vol.55, pp.
498-512

Zhang yousheng(2004). Architecture-based software development model. Compute
engineering and application, Vol.34, pp. 29-32, China

Zhu Miaoliang (2001), Autonomous intelligent system, Zhejiang university press, China

5

A Robotic Wheelchair Component-Based
Software Development

Dayang N. A. Jawawi et al.*
Universiti Teknologi Malaysia

Malaysia

1. Introduction
A robotic wheelchair system provides mobility for handicapped and elderly people who are
unable to operate classical wheelchair system. Software development for such system is
challenged by requirement for multi-disciplines expert knowledge which includes
embedded systems, real-time software issues, control theories and artificial intelligence
aspects. Software reuse is an approach to provide a way to reuse expertise that can be used
across domains in software engineering. Software reuse can be a mechanism to support the
attempts to transfer technology from other engineering fields to rehabilitation engineering.
For example, (Bonail et al., 2009) and (Cheein et al., 2009) have attempted to transfer
software platform and algorithms from robotic technologies to rehabilitation engineering
software development. The technologies transfer requires a methodological support to
enable a systematic software reuse of the multi-disciplines expert knowledge.
Software reuse is one of the promising approaches to increase software productivity and
improve its quality, as well as to decrease the costs of software development. This is because
of software reuse uses existing software either in the form of component or knowledge to
construct new software. Yet, applying software reuse in Embedded Real-Time (ERT)
domain, such as robotic wheelchair sets major challenges to the software development
process due to the resource-constrained and real-time requirements of the system.
In order to overcome multi-constraints and multi-disciplinary knowledge in ERT software
development problems, Component-Based Development (CBD) method becomes a
promising approach for ERT software development (Bunse & Gross, 2006; Carlson et al.,
2006). Existing industrial component technologies such as OMG’s CORBA Component
Model (CCM), Microsoft’s (D) COM/COM++, .NET, SUN Microsystems’ JavaBeans and
enterprise JavaBeans, are not suitable to develop ERT systems because they do not address
the non-functional properties in ERT systems.
With the purpose to meet the requirements of ERT systems, a number of component
technologies such as Koala (Ommering, 2000), PECOS (Nierstrasz, et al., 2002) and KobrA
(Atkinson, et al., 2002) have emerged. However, these component technologies still have some
weaknesses. Koala and PECOS cannot support multi-disciplinary knowledge, but they can

* Suzila Sabil, Rosbi Mamat, Mohd Zulkifli Mohd Zaki, Mahmood Aghajani Siroos Talab,
Radziah Mohamad, Norazian M. Hamdan and Khadijah Kamal
Universiti Teknologi Malaysia, Malaysia

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 102

support different multi-constraint extra-functionality requirement. On the contrary, Koala
supports resource constraint and PECOS supports timing problems. KobrA does not support
ERT system development, but it has an extension that calls MARMOT (Bunse & Gross, 2006)
to support multi-disciplinary knowledge in ERT system development. The only limitation of
MARMOT is minimum support for multi-constraint extra-functionality requirement.
Therefore, PECOS is suitable to support multi-constraint in extra-functionality requirements
whereby, MARMOT is good to support multi-disciplinary knowledge. An integration of
PECOS and MARMOT can be a promising strategy to support the two issues. Implying a
methodological support to enable a systematic CBD can be an important approach with
consideration of the two issues. Currently, there are many Object-Oriented Analysis and
Design (OOAD) methodology available, but for Component-Oriented Analysis and Design
(COAD) method, the focus is still on PC based domain such as the web application (Lee and
Shirani, 2004) and simulation systems (Gong et al., 2010). Component technologies also
improved along with engineering practices, but they lack of a methodology that uses
components within such a paradigm (Dogru & Tanik, 2003).
Motivated by these challenges, the focus of this chapter is to propose a method for
developing robotic wheelchair software using a set of reusable software components
obtained from mobile robot software. The method was adapted from general ERT
component technologies and was applied to a robotic wheelchair CBD. The method is a
combination of MARMOT and PECOS technologies aiming to support CBD methodological
with purpose to solve multi-constraint extra-functionality requirement and multi-
disciplinary knowledge that are required in the robotic wheelchair software development.
The proposed systematic CBD process model is based on the Component-Based Software
Engineering (CBSE) that is defined by Wang and Qian (2005). CBSE is a combination of
Component-Oriented Analysis (COA), Component-Oriented Design (COD) and
Component-Oriented Programming (COP) and Component-Oriented Management (COM).
This chapter focuses on COA, COD and COP process of development, and this chapter
defines the COA, COD and COP modelling and deployment activities of the method in a
form of process model representation. The process model depicts understandable
integration between MARMOT and PECOS.
This chapter documented the applicability of the process model in a wheelchair software
development and implementation. This implementation showed how the process model
helped the wheelchair hardware and software engineer to identify the possible software
reused component in the early stage of the system and software development. The amount
of software component reused in the wheelchair CBD from a mobile robot system was
discussed and compared with a reused case from a mobile robot to another mobile robot
CBD. The objective of the comparison was to identify the differences between the software
reuse to support technologies transfer from robotic technologies to rehabilitation
engineering with software reuse within robotics systems. Software reuse in robotics domain
is one of the focuses area in current robotic research, example of the study are by Nesnas et
al. (2006), Jang et al (2010) and Mallet et al. (2007).
The layout of this chapter is as follows: Section 2 discusses the robotic wheelchair design
considerations and the hardware description. In section 3 the strategy to define the process
model to support the CBD of the wheelchair software are described. The process model to
support the CBD method is described in Section 4. Section 5 illustrates the process model in a
CBD of the robotic wheelchair software. The comparison result to compare the process model
with other models will be discussed in detail in Section 6. The Section 7 concludes the chapter.

A Robotic Wheelchair Component-Based Software Development 103

2. The robotic wheelchair system
A prototype of robotic wheelchair was developed to support our researches in ERT software
engineering and rehabilitation robotics. The main considerations when developing this
prototype were to have a low cost and ‘open’ system such that it enables different aspects of
hardware and software experimentations to be performed.
Due to these considerations, rather than basing the prototype on a standard power
wheelchair such as the smart wheelchair system developed by Simpson et al. (2004), a
commercially available manual wheelchair was used as the base for the robotic wheelchair
prototype. An easily detachable add-on unit was developed to be attached to the manual
wheelchair without significant modifications to the manual wheelchair. This add on unit
consists of two geared direct current (DC) motors, two 12V batteries and a control box with
embedded processor and associated electronics. Fig. 1 shows the prototype of robotic
wheelchair which consists of a standard manual wheelchair and add on unit. The DC
motors together with two small wheels provide the motorized wheels for mobility. The DC
motors are powered by the 24V 14 Ampere obtained from the two 12V batteries. The voltage
regulators in the control box provide 5V supplies for the sensors and the embedded
processor from the two batteries.

Fig. 1. The prototype of robotic wheelchair. The motorized wheels are under the add on unit

To provide the capability for sensing the environment, sets of sensors are attached to the
robotic wheelchair. Infra red (IR) distance sensors are used to detect obstacles in the
direction of the robotic wheelchair movement. Four IR sensors are mounted at the front and
two IR sensors are mounted at the back. Sonar sensor is used to map room environment or
detect far obstacles. It is mounted on the pole above the user head.
Currently, the robotic wheelchair supports two ways of controlling. The first way is through
the usual joystick or keypad control. The second way is through the movements of head. Head
movements control is particularly useful for severely-handicapped people who have spinal
cord injury or quadriplegia which cannot use their hands to control the wheelchair. In the
developed prototype, the head movement control of the robotic wheelchair is achieved with
the help of accelerometer or tilt sensor. The accelerometer senses head movements and based

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 102

support different multi-constraint extra-functionality requirement. On the contrary, Koala
supports resource constraint and PECOS supports timing problems. KobrA does not support
ERT system development, but it has an extension that calls MARMOT (Bunse & Gross, 2006)
to support multi-disciplinary knowledge in ERT system development. The only limitation of
MARMOT is minimum support for multi-constraint extra-functionality requirement.
Therefore, PECOS is suitable to support multi-constraint in extra-functionality requirements
whereby, MARMOT is good to support multi-disciplinary knowledge. An integration of
PECOS and MARMOT can be a promising strategy to support the two issues. Implying a
methodological support to enable a systematic CBD can be an important approach with
consideration of the two issues. Currently, there are many Object-Oriented Analysis and
Design (OOAD) methodology available, but for Component-Oriented Analysis and Design
(COAD) method, the focus is still on PC based domain such as the web application (Lee and
Shirani, 2004) and simulation systems (Gong et al., 2010). Component technologies also
improved along with engineering practices, but they lack of a methodology that uses
components within such a paradigm (Dogru & Tanik, 2003).
Motivated by these challenges, the focus of this chapter is to propose a method for
developing robotic wheelchair software using a set of reusable software components
obtained from mobile robot software. The method was adapted from general ERT
component technologies and was applied to a robotic wheelchair CBD. The method is a
combination of MARMOT and PECOS technologies aiming to support CBD methodological
with purpose to solve multi-constraint extra-functionality requirement and multi-
disciplinary knowledge that are required in the robotic wheelchair software development.
The proposed systematic CBD process model is based on the Component-Based Software
Engineering (CBSE) that is defined by Wang and Qian (2005). CBSE is a combination of
Component-Oriented Analysis (COA), Component-Oriented Design (COD) and
Component-Oriented Programming (COP) and Component-Oriented Management (COM).
This chapter focuses on COA, COD and COP process of development, and this chapter
defines the COA, COD and COP modelling and deployment activities of the method in a
form of process model representation. The process model depicts understandable
integration between MARMOT and PECOS.
This chapter documented the applicability of the process model in a wheelchair software
development and implementation. This implementation showed how the process model
helped the wheelchair hardware and software engineer to identify the possible software
reused component in the early stage of the system and software development. The amount
of software component reused in the wheelchair CBD from a mobile robot system was
discussed and compared with a reused case from a mobile robot to another mobile robot
CBD. The objective of the comparison was to identify the differences between the software
reuse to support technologies transfer from robotic technologies to rehabilitation
engineering with software reuse within robotics systems. Software reuse in robotics domain
is one of the focuses area in current robotic research, example of the study are by Nesnas et
al. (2006), Jang et al (2010) and Mallet et al. (2007).
The layout of this chapter is as follows: Section 2 discusses the robotic wheelchair design
considerations and the hardware description. In section 3 the strategy to define the process
model to support the CBD of the wheelchair software are described. The process model to
support the CBD method is described in Section 4. Section 5 illustrates the process model in a
CBD of the robotic wheelchair software. The comparison result to compare the process model
with other models will be discussed in detail in Section 6. The Section 7 concludes the chapter.

A Robotic Wheelchair Component-Based Software Development 103

2. The robotic wheelchair system
A prototype of robotic wheelchair was developed to support our researches in ERT software
engineering and rehabilitation robotics. The main considerations when developing this
prototype were to have a low cost and ‘open’ system such that it enables different aspects of
hardware and software experimentations to be performed.
Due to these considerations, rather than basing the prototype on a standard power
wheelchair such as the smart wheelchair system developed by Simpson et al. (2004), a
commercially available manual wheelchair was used as the base for the robotic wheelchair
prototype. An easily detachable add-on unit was developed to be attached to the manual
wheelchair without significant modifications to the manual wheelchair. This add on unit
consists of two geared direct current (DC) motors, two 12V batteries and a control box with
embedded processor and associated electronics. Fig. 1 shows the prototype of robotic
wheelchair which consists of a standard manual wheelchair and add on unit. The DC
motors together with two small wheels provide the motorized wheels for mobility. The DC
motors are powered by the 24V 14 Ampere obtained from the two 12V batteries. The voltage
regulators in the control box provide 5V supplies for the sensors and the embedded
processor from the two batteries.

Fig. 1. The prototype of robotic wheelchair. The motorized wheels are under the add on unit

To provide the capability for sensing the environment, sets of sensors are attached to the
robotic wheelchair. Infra red (IR) distance sensors are used to detect obstacles in the
direction of the robotic wheelchair movement. Four IR sensors are mounted at the front and
two IR sensors are mounted at the back. Sonar sensor is used to map room environment or
detect far obstacles. It is mounted on the pole above the user head.
Currently, the robotic wheelchair supports two ways of controlling. The first way is through
the usual joystick or keypad control. The second way is through the movements of head. Head
movements control is particularly useful for severely-handicapped people who have spinal
cord injury or quadriplegia which cannot use their hands to control the wheelchair. In the
developed prototype, the head movement control of the robotic wheelchair is achieved with
the help of accelerometer or tilt sensor. The accelerometer senses head movements and based

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 104

on the predetermined direction of movements, the robotic wheelchair can be controlled
accordingly. Fig. 2 shows the side view of the robotic wheelchair with the locations of sensors.

Fig. 2. The side view of robotic wheelchair prototype with sensors locations.

The embedded processor provides the intelligent decision making and motor control. All
the sensors outputs are processed by the embedded processor and control the two DC
motors as desired by the user. Automatic reactions such as stop or avoid when obstacles are
detected are also handled by the embedded processor.
In the robotic wheelchair prototype an ATMEL ATMega32 8-bit single-chip microcontroller
is used as the embedded processor. The ATMega32 has 32 Kbytes of flash program memory,
and 2 Kbytes internal Random Access Memory (RAM). The ATMega32 also includes an 8-
channels 10-bit analogue-to-digital converter (ADC), three timers, parallel input-output
ports and several serial communication interfaces including Serial Peripheral Interface (SPI),
Inter-Integrated Circuit (I2C) and Universal Synchronous Asynchronous Receiver
Transmitter (USART). Fig. 3 shows the interfaces between the embedded processor, sensors
and actuators in the robotic wheelchair.

Fig. 3. The sensors and actuators in the robotic wheelchair.

A Robotic Wheelchair Component-Based Software Development 105

3. The strategy to define the component-based development phases
A strategy is needed to allow the mapping of MARMOT and PECOS methods in order to
identify overlapping phases in between the two methods. The mapping of these two
methods is required in order to propose a new component-oriented developed method
based on the two selected component models. Fig. 4 shows the models and phases of the
methods. It comprises of three development process which are COA, COD and COP. The
development process is then divided into five phases, which are analysis, early design,
detailed design, composition and implementation. COA level involves the analysis phase;
COD level involves two phases, which are early design and detailed design; and COP level
involves composition and implementation phase.
The analysis phase includes two strategies, which are preliminary information and system
architecture planning. Preliminary information consists of the basic requirements of the use
case diagram, use case description and interaction model. The system architecture planning
transforms the circuit into Unified Modelling Language (UML) representation and in turn
produces a preliminary containment hierarchy of the whole system.
The early design phase contains the finer-grain component of software that further divides
into two parts, which are specification and realization. In specification of components, three
models are produced, which are functional model, behavioural model, and structural
model. The structural model is also produced in realization of components, as well as the
activity model and interaction model.

LEVEL CBD PROCESS MODEL DIAGRAM CM

COA

Analysis Phase

Preliminary Information

MARMOT
Method

Integration
Point

PECOS

Component
Model

- Use Case Diagram
- Use Case Description
- Interaction model

System Architecture Planning
- Hardware UML representation
- Preliminary Containment Hierarchy

COD

Early Design
Phase

Finer-Grain Component
Specification

- Functional
Model

- Behavioural
Model

- Structural
Model

Realization
- Structural

Model
- Activity Model
- Interaction

Model

Detailed Design
Phase

Details Information
Regular Containment Hierarchy

COP

Composition
Phase

Integration Process
Composition Diagram

Implementation
Phase

Generation Code
Code Template

Fig. 4. Models and phases of the method

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 104

on the predetermined direction of movements, the robotic wheelchair can be controlled
accordingly. Fig. 2 shows the side view of the robotic wheelchair with the locations of sensors.

Fig. 2. The side view of robotic wheelchair prototype with sensors locations.

The embedded processor provides the intelligent decision making and motor control. All
the sensors outputs are processed by the embedded processor and control the two DC
motors as desired by the user. Automatic reactions such as stop or avoid when obstacles are
detected are also handled by the embedded processor.
In the robotic wheelchair prototype an ATMEL ATMega32 8-bit single-chip microcontroller
is used as the embedded processor. The ATMega32 has 32 Kbytes of flash program memory,
and 2 Kbytes internal Random Access Memory (RAM). The ATMega32 also includes an 8-
channels 10-bit analogue-to-digital converter (ADC), three timers, parallel input-output
ports and several serial communication interfaces including Serial Peripheral Interface (SPI),
Inter-Integrated Circuit (I2C) and Universal Synchronous Asynchronous Receiver
Transmitter (USART). Fig. 3 shows the interfaces between the embedded processor, sensors
and actuators in the robotic wheelchair.

Fig. 3. The sensors and actuators in the robotic wheelchair.

A Robotic Wheelchair Component-Based Software Development 105

3. The strategy to define the component-based development phases
A strategy is needed to allow the mapping of MARMOT and PECOS methods in order to
identify overlapping phases in between the two methods. The mapping of these two
methods is required in order to propose a new component-oriented developed method
based on the two selected component models. Fig. 4 shows the models and phases of the
methods. It comprises of three development process which are COA, COD and COP. The
development process is then divided into five phases, which are analysis, early design,
detailed design, composition and implementation. COA level involves the analysis phase;
COD level involves two phases, which are early design and detailed design; and COP level
involves composition and implementation phase.
The analysis phase includes two strategies, which are preliminary information and system
architecture planning. Preliminary information consists of the basic requirements of the use
case diagram, use case description and interaction model. The system architecture planning
transforms the circuit into Unified Modelling Language (UML) representation and in turn
produces a preliminary containment hierarchy of the whole system.
The early design phase contains the finer-grain component of software that further divides
into two parts, which are specification and realization. In specification of components, three
models are produced, which are functional model, behavioural model, and structural
model. The structural model is also produced in realization of components, as well as the
activity model and interaction model.

LEVEL CBD PROCESS MODEL DIAGRAM CM

COA

Analysis Phase

Preliminary Information

MARMOT
Method

Integration
Point

PECOS

Component
Model

- Use Case Diagram
- Use Case Description
- Interaction model

System Architecture Planning
- Hardware UML representation
- Preliminary Containment Hierarchy

COD

Early Design
Phase

Finer-Grain Component
Specification

- Functional
Model

- Behavioural
Model

- Structural
Model

Realization
- Structural

Model
- Activity Model
- Interaction

Model

Detailed Design
Phase

Details Information
Regular Containment Hierarchy

COP

Composition
Phase

Integration Process
Composition Diagram

Implementation
Phase

Generation Code
Code Template

Fig. 4. Models and phases of the method

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 106

In order to elaborate upon the preliminary hierarchy containment based on the finer-grain
component, regular containment hierarchy is produced at the detailed design phase. Thus at
implementation phase, the integration process is performed, and it is represented by the
component composition diagram. Based on the component composition diagram, a code
template is generated, which includes single component code template and component
composition code template.
The models and phases in this research are derived from MARMOT and PECOS models to
create a new method; the MARMOT method is applied at analysis, early design and detailed
design phase while PECOS is applied at detailed design, composition and implementation
phase. The integration point between MARMOT method and PECOS component model is at
the detailed design phase, as shown in Fig. 4.
The central notion in COA and COD is the component. COP supports constructing software
systems by composing independent components into software architecture. Software
component is grouped with its component infrastructure. Component infrastructures
include three elements, which are component model, component connection and component
deployment. The analysis phase supports COA method, whereas early design and detailed
design phases support COD. COP method is supported by two phases, which are
composition and implementation phase. The next section provides detailed discussion on
the process model of the integrated MARMOT and PECOS method. The process model
clarifies the integration point of the two methods.

4. A component-based development process model for embedded real time
software
Defining the integrated process of MARMOT and PECOS methods in a systematic form is
important to enable and support the development of CASE tool for ERT system. Here, the
process is represented using Software Process Engineering Meta-model (SPEM)
(Schuppenies & Steinhauer, 2002). SPEM is a meta-model that is used to describe a concrete
software development process or family of related software development process. The Fig. 5
below shows the SPEM icons that are used in this project:
a. Activity: is the main subclass of Work Definition, it describes a piece of work performed

by one Process Role.
b. Document: a stereotype of work product.
c. Process Role: the performer of Activities and responsible for a set of Work Products.
d. Phase: a specialization of Work Definition such that its precondition defines the phase

entry criteria and its goal (often called a "milestone") defines the phase exit criteria.
e. Work Definition: kind of Operation that describes the work performed in the process.
f. Work Product: an artifact is anything produced, consumed, or modified by a process.
There are five phases in the process model; analysis phase, early design phase, detail
design phase, composition phase and implementation phase. Each of these phases
produces a work product for the related activities and has its own responsibilities in
designing one or more artefacts. Fig. 6 illustrates the phases in COA, COD and COP
process using SPEM. The details for each phase are discussed in the following
subsection.
Fig. 7 illustrates the use case diagram for analysis phase, whereas Fig. 8 represents the use
case for early design and detailed design phase. Meanwhile, Fig. 9 illustrates the use case
diagram for composition and implementation phase. These use case diagrams show the

A Robotic Wheelchair Component-Based Software Development 107

Fig. 5. SPEM Icons

Fig. 6. Process model phases for the method

Fig. 7. Use case diagram for analysis phase

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 106

In order to elaborate upon the preliminary hierarchy containment based on the finer-grain
component, regular containment hierarchy is produced at the detailed design phase. Thus at
implementation phase, the integration process is performed, and it is represented by the
component composition diagram. Based on the component composition diagram, a code
template is generated, which includes single component code template and component
composition code template.
The models and phases in this research are derived from MARMOT and PECOS models to
create a new method; the MARMOT method is applied at analysis, early design and detailed
design phase while PECOS is applied at detailed design, composition and implementation
phase. The integration point between MARMOT method and PECOS component model is at
the detailed design phase, as shown in Fig. 4.
The central notion in COA and COD is the component. COP supports constructing software
systems by composing independent components into software architecture. Software
component is grouped with its component infrastructure. Component infrastructures
include three elements, which are component model, component connection and component
deployment. The analysis phase supports COA method, whereas early design and detailed
design phases support COD. COP method is supported by two phases, which are
composition and implementation phase. The next section provides detailed discussion on
the process model of the integrated MARMOT and PECOS method. The process model
clarifies the integration point of the two methods.

4. A component-based development process model for embedded real time
software
Defining the integrated process of MARMOT and PECOS methods in a systematic form is
important to enable and support the development of CASE tool for ERT system. Here, the
process is represented using Software Process Engineering Meta-model (SPEM)
(Schuppenies & Steinhauer, 2002). SPEM is a meta-model that is used to describe a concrete
software development process or family of related software development process. The Fig. 5
below shows the SPEM icons that are used in this project:
a. Activity: is the main subclass of Work Definition, it describes a piece of work performed

by one Process Role.
b. Document: a stereotype of work product.
c. Process Role: the performer of Activities and responsible for a set of Work Products.
d. Phase: a specialization of Work Definition such that its precondition defines the phase

entry criteria and its goal (often called a "milestone") defines the phase exit criteria.
e. Work Definition: kind of Operation that describes the work performed in the process.
f. Work Product: an artifact is anything produced, consumed, or modified by a process.
There are five phases in the process model; analysis phase, early design phase, detail
design phase, composition phase and implementation phase. Each of these phases
produces a work product for the related activities and has its own responsibilities in
designing one or more artefacts. Fig. 6 illustrates the phases in COA, COD and COP
process using SPEM. The details for each phase are discussed in the following
subsection.
Fig. 7 illustrates the use case diagram for analysis phase, whereas Fig. 8 represents the use
case for early design and detailed design phase. Meanwhile, Fig. 9 illustrates the use case
diagram for composition and implementation phase. These use case diagrams show the

A Robotic Wheelchair Component-Based Software Development 107

Fig. 5. SPEM Icons

Fig. 6. Process model phases for the method

Fig. 7. Use case diagram for analysis phase

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 108

relationships between the process and the main activities in the software process based on
the three level developments, which are COA, COD and COP.
In the COA level, analysis phase is divided into two main activities. The first activity is
collecting preliminary information which consists of three processes; requirement
specification, requirement analyzing and interaction analyzing. The second activity is
planning the system architecture which includes two processes; manually transforming
electrical schematic diagram into UML representation and identifying the preliminary
component.

Fig. 8. Use case diagram for early design and detailed design phase

The COD level includes two phases, which are early design and detailed design phase. In
the early design phase, the finer-grain component includes two activities. The first activity is
identifying component specification that will produce a functional model, behavioural
model and structural model. The second activity identifies component realization that

Fig. 9. Use case diagram for composition and implementation phase

A Robotic Wheelchair Component-Based Software Development 109

produces a structural model, activity model and interaction model. 1 Meanwhile, in detailed
design the component information is transformed into a graphical representation. The
activities are refining design component, constructing detail component information and
generating the code template for single component.
The COP level of CBD process consists of composition and implementation phase. Process
integration starts at the composition phase and includes three activities, which are
identifying the possible component, component integration and component composition.
The implementation phase is to generate component composition code template.

4.1 Analysis phase
The purpose of analysis phase is to analyze the ERT system requirement. As was previously
mentioned, ERT system requirement involves multi-disciplinary knowledge. Therefore,
analyzing the ERT system requirement does not focus on software only but also on the
hardware. In this analysis phase, the MARMOT method is used to support the multi-
disciplinary knowledge required for ERT system. It is divided into two parts; the first part is
collecting the preliminary information and the second part is planning the system
architecture. Collection of the preliminary information can be further divided into three
activities, which are problem analysis, requirement description and interaction analysis.
System architecture planning includes two activities, which are transforming electrical
schematic diagram and identifying a preliminary component based on transformation
electrical schematic diagram into UML representation.
The analysis phase starts with analyzing the requirement, by identifying the problems and
by looking at the application functionalities. It also identifies the user who is interacting
with the application. This process produces the use case model of the system. The next
activity involved is describing the requirement description thoroughly so as to produce the
use case description table. This description table describes the multi-disciplinary knowledge
of ERT system requirements. After that, interaction analysis is carried out to briefly draft the
interaction between each state in order to produce the interaction model. Fig. 10 shows the
flow of the activity in analysis phase, which is described in terms of work definition and
work product as input.
The next step involves in obtaining the information directly from the electrical schematic
diagram in order to identify the possible preliminary component software. The electrical
schematic diagram is manually transformed into UML and all hardware parts are removed
to obtain a list consisting of only software parts. The software parts can be a component
with a stereotype <>. The list of the possible software components is represented by the
containment hierarchy diagram. Fig. 10 shows the work definition and work product of
analysis phase.

Fig. 10. The analysis phase description in terms of work definition and work product

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 108

relationships between the process and the main activities in the software process based on
the three level developments, which are COA, COD and COP.
In the COA level, analysis phase is divided into two main activities. The first activity is
collecting preliminary information which consists of three processes; requirement
specification, requirement analyzing and interaction analyzing. The second activity is
planning the system architecture which includes two processes; manually transforming
electrical schematic diagram into UML representation and identifying the preliminary
component.

Fig. 8. Use case diagram for early design and detailed design phase

The COD level includes two phases, which are early design and detailed design phase. In
the early design phase, the finer-grain component includes two activities. The first activity is
identifying component specification that will produce a functional model, behavioural
model and structural model. The second activity identifies component realization that

Fig. 9. Use case diagram for composition and implementation phase

A Robotic Wheelchair Component-Based Software Development 109

produces a structural model, activity model and interaction model. 1 Meanwhile, in detailed
design the component information is transformed into a graphical representation. The
activities are refining design component, constructing detail component information and
generating the code template for single component.
The COP level of CBD process consists of composition and implementation phase. Process
integration starts at the composition phase and includes three activities, which are
identifying the possible component, component integration and component composition.
The implementation phase is to generate component composition code template.

4.1 Analysis phase
The purpose of analysis phase is to analyze the ERT system requirement. As was previously
mentioned, ERT system requirement involves multi-disciplinary knowledge. Therefore,
analyzing the ERT system requirement does not focus on software only but also on the
hardware. In this analysis phase, the MARMOT method is used to support the multi-
disciplinary knowledge required for ERT system. It is divided into two parts; the first part is
collecting the preliminary information and the second part is planning the system
architecture. Collection of the preliminary information can be further divided into three
activities, which are problem analysis, requirement description and interaction analysis.
System architecture planning includes two activities, which are transforming electrical
schematic diagram and identifying a preliminary component based on transformation
electrical schematic diagram into UML representation.
The analysis phase starts with analyzing the requirement, by identifying the problems and
by looking at the application functionalities. It also identifies the user who is interacting
with the application. This process produces the use case model of the system. The next
activity involved is describing the requirement description thoroughly so as to produce the
use case description table. This description table describes the multi-disciplinary knowledge
of ERT system requirements. After that, interaction analysis is carried out to briefly draft the
interaction between each state in order to produce the interaction model. Fig. 10 shows the
flow of the activity in analysis phase, which is described in terms of work definition and
work product as input.
The next step involves in obtaining the information directly from the electrical schematic
diagram in order to identify the possible preliminary component software. The electrical
schematic diagram is manually transformed into UML and all hardware parts are removed
to obtain a list consisting of only software parts. The software parts can be a component
with a stereotype <>. The list of the possible software components is represented by the
containment hierarchy diagram. Fig. 10 shows the work definition and work product of
analysis phase.

Fig. 10. The analysis phase description in terms of work definition and work product

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 110

4.2 Early design and detailed design phase
The purpose of an early design phase is to fine-grain the preliminary component
containment hierarchy that is identified from the analysis phase. The preliminary
component containment hierarchy at analysis phase is used as input for early design
phase.
The early design phase has two main activities, which are identifying component
specification and component realization for each software component. These two activities
produce UML diagram artefacts. Component specification produces three models, which
are structural, behaviour and functional model whereas component realization also
produces three models, which are structural, activity and interaction model. In this stage,
multi-constraint extra-functionality requirement which focuses on timing is considered as
model for the software component specification and realization, and is represented by
timing diagram.
At the detailed design phase, the integration point between the MARMOT and PECOS
concept is produced. The detailed design phase includes three activities, which are refining
the design component, constructing detail component information, generating the code
template for single component and storing component into the component repository.
Refinement of the design component involves some additional component to model the
software behaviour. As a result, it produced a new version of preliminary component
containment hierarchy. The process repeats until the component containment hierarchy
fulfils the multi-disciplinary requirement. After the preliminary component containment
hierarchy matures, the detailed component information is constructed.
In this phase, PECOS modification is integrated whereby each component includes not only
the functional requirement but also multi-constraint extra-functionality requirement. In this
research, the focus is on timing of extra-functionality requirement. Therefore, regular
component containment hierarchy is produced where the component includes timing,
priority, outport and inport. Based on the detailed information of each component, the code
template produces and stores the component into the component repository. It then
produces component lists of the entire application. Fig. 11 shows the steps at early design
and detail design phase.

Fig. 11. Design phase description in terms of work definition and work product

A Robotic Wheelchair Component-Based Software Development 111

4.3 Composition and implementation phase
The purpose of this phase is to integrate the components and generate the composition
component code template for the entire application. The integration process integrates more
than one component. In this stage, a component can have a sub-component, and it produces
the composition component diagrams for the application.
Once the composition is completed, the next step is to allocate property bundles value such
as period and priority for active components using real-time scheduling theory. Meanwhile,
the code template for the composition diagram is generated in the implementation phase.
Fig. 12 illustrates each step at composition and implementation phase.

Fig. 12. Composition and implementation phase description in terms of work definition and
work product

5. The wheelchair software development
The Intelligent Wheelchair (I-Wheelchair) case study, described in Section 2, was
implemented to apply the integrated process model and show how the reuse activities from
mobile robot systems to the I-Wheelchair were performed. The I-Wheelchair case study is an
embedded system and it is relatable with the resource constraint of real-time and multi-
disciplinary requirements.
I-Wheelchair software development as represented by the process model includes five
different phases, which are analysis, early design, detailed design, composition and
implementation phase. The following sub-section further elaborates each phase.

5.1 Analysis phase
As mentioned before, MARMOT method is implemented at the analysis phase. In this case,
this phase involves processes like defining diagrams and textual specifications from the
context realization of the I-Wheelchair system. It is divided into two parts, which are
preliminary information and system architecture planning. Preliminary information
produces use case diagrams, use case description and interaction model; and system
architecture planning produces hardware UML diagram and preliminary containment
hierarchy. The following sub-sections will be based on the I-Wheelchair case study.

5.1.1 Preliminary information
Preliminary information includes three activities which are requirement specification,
analysis requirement and analysis interaction. The requirement specification of I-Wheelchair
system is represented by the use case diagram, in which it consists of a textual and a
graphical representation as shown in Fig. 13.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 110

4.2 Early design and detailed design phase
The purpose of an early design phase is to fine-grain the preliminary component
containment hierarchy that is identified from the analysis phase. The preliminary
component containment hierarchy at analysis phase is used as input for early design
phase.
The early design phase has two main activities, which are identifying component
specification and component realization for each software component. These two activities
produce UML diagram artefacts. Component specification produces three models, which
are structural, behaviour and functional model whereas component realization also
produces three models, which are structural, activity and interaction model. In this stage,
multi-constraint extra-functionality requirement which focuses on timing is considered as
model for the software component specification and realization, and is represented by
timing diagram.
At the detailed design phase, the integration point between the MARMOT and PECOS
concept is produced. The detailed design phase includes three activities, which are refining
the design component, constructing detail component information, generating the code
template for single component and storing component into the component repository.
Refinement of the design component involves some additional component to model the
software behaviour. As a result, it produced a new version of preliminary component
containment hierarchy. The process repeats until the component containment hierarchy
fulfils the multi-disciplinary requirement. After the preliminary component containment
hierarchy matures, the detailed component information is constructed.
In this phase, PECOS modification is integrated whereby each component includes not only
the functional requirement but also multi-constraint extra-functionality requirement. In this
research, the focus is on timing of extra-functionality requirement. Therefore, regular
component containment hierarchy is produced where the component includes timing,
priority, outport and inport. Based on the detailed information of each component, the code
template produces and stores the component into the component repository. It then
produces component lists of the entire application. Fig. 11 shows the steps at early design
and detail design phase.

Fig. 11. Design phase description in terms of work definition and work product

A Robotic Wheelchair Component-Based Software Development 111

4.3 Composition and implementation phase
The purpose of this phase is to integrate the components and generate the composition
component code template for the entire application. The integration process integrates more
than one component. In this stage, a component can have a sub-component, and it produces
the composition component diagrams for the application.
Once the composition is completed, the next step is to allocate property bundles value such
as period and priority for active components using real-time scheduling theory. Meanwhile,
the code template for the composition diagram is generated in the implementation phase.
Fig. 12 illustrates each step at composition and implementation phase.

Fig. 12. Composition and implementation phase description in terms of work definition and
work product

5. The wheelchair software development
The Intelligent Wheelchair (I-Wheelchair) case study, described in Section 2, was
implemented to apply the integrated process model and show how the reuse activities from
mobile robot systems to the I-Wheelchair were performed. The I-Wheelchair case study is an
embedded system and it is relatable with the resource constraint of real-time and multi-
disciplinary requirements.
I-Wheelchair software development as represented by the process model includes five
different phases, which are analysis, early design, detailed design, composition and
implementation phase. The following sub-section further elaborates each phase.

5.1 Analysis phase
As mentioned before, MARMOT method is implemented at the analysis phase. In this case,
this phase involves processes like defining diagrams and textual specifications from the
context realization of the I-Wheelchair system. It is divided into two parts, which are
preliminary information and system architecture planning. Preliminary information
produces use case diagrams, use case description and interaction model; and system
architecture planning produces hardware UML diagram and preliminary containment
hierarchy. The following sub-sections will be based on the I-Wheelchair case study.

5.1.1 Preliminary information
Preliminary information includes three activities which are requirement specification,
analysis requirement and analysis interaction. The requirement specification of I-Wheelchair
system is represented by the use case diagram, in which it consists of a textual and a
graphical representation as shown in Fig. 13.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 112

Fig. 13. I-Wheelchair use case diagram

The actor User initiates the task of controlling the I-Wheelchair movement whereby the
actor Obstacle initiates the task of avoiding an obstacle around its environment. Control
Movement and View Status use cases is controlled by User actor. Meanwhile, Detect
Obstacle use case is controlled by Obstacle actor and extended by Avoid Obstacle use case.
The use case description table is used to provide more information with regards to the I-
Wheelchair use case diagram. An example of a detailed use case description table for Detect
Obstacle use case is as shown in Table 1. The description table provided detailed
information of Detect Obstacle use case which includes the name of use case, responsible
actors, use case goals, use case descriptions, exceptions, rules, quality requirements,
input/output, pre and post-conditions of the use case.

Name Detect Obstacle
Actor Obstacle
Goal To detect any obstacle at front or back using IR sensor
Description Get input data from sensor (HMC) or signal (joystick) to detect

obstacle at the front or back in range distance min=30 cm and
max=80 cm.

Exception N/A
Rules N/A
Quality Requirement N/A
Input/Output Input:

IR sensor back
IR sensor front
Output:
Motor

Pre-Conditions Detect any objects that defend the movement whether at the front
or back

Post-Condition Move follow current direction

Table 1. Detect Obstacle Use Case Description

To analyze the interaction of the I-Wheelchair system, the interaction model diagram is used
as shown in Fig. 14. The purpose of an interaction model is to represent the general flow of
the I-Wheelchair control movement and obstacles avoidance by the two actors; User and
Obstacle. It also illustrates several alternative actions that can be performed, and represents
typical interaction of the operation for the overall system.

A Robotic Wheelchair Component-Based Software Development 113

Fig. 14. Obstacle interaction model for avoiding obstacles

Fig. 14 shows the interaction model for Obstacle use case. This model represents behaviour
of the Obstacle use case, in which includes two behaviour: if the I-Wheelchair system detects
an obstacle, it will stop moving and change the direction of its movement, and after that it
will start to detect other obstacles; if no obstacle is detected, the system will move according
to the current direction that is given by the user and it will start to detect other obstacles. A
semaphore used in the implementation of the Obstacle interaction model to avoid deadlock
situation.
The infrared distance sensors at the back and front of the I-Wheelchair system are used to
detect obstacles that labelled as input to the system as mentioned in Table 1. Therefore, the
use case diagram, use case description table and interaction model can be useful for the ERT
system developer to translate the hardware requirement into software requirement at the
analysis phase.

5.1.2 System architecture planning
In this stage, the system architecture is planned by identifying the preliminary components.
The identification of the component hardware is done based on the electrical microcontroller
schematic diagram. As it requires software to calculate the control signal to be sent to
motors, the motor is considered one of the initial hardware components. The
microcontroller schematic diagram will be transformed into the UML presentation
manually. The UML representation diagram represents the hardware component that may
include software component.
Therefore, the five hardware components identified are Sensor, Controller, Joystick, Motor
and Human Computer/Robot Interaction (HCI or HRI). These components are represented
by a component tree called preliminary containment hierarchy as shown in Fig. 15. The I-
Wheelchair is composed of both hardware and software components. The Controller
hardware component consists of Driver and Application, with the Driver acting as the
communicator between the software and the hardware components or called “wrapper
hardware” in MARMOT. Hence, software component should be under the Driver
component and an Application component refers to the behaviour of the software
component.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 112

Fig. 13. I-Wheelchair use case diagram

The actor User initiates the task of controlling the I-Wheelchair movement whereby the
actor Obstacle initiates the task of avoiding an obstacle around its environment. Control
Movement and View Status use cases is controlled by User actor. Meanwhile, Detect
Obstacle use case is controlled by Obstacle actor and extended by Avoid Obstacle use case.
The use case description table is used to provide more information with regards to the I-
Wheelchair use case diagram. An example of a detailed use case description table for Detect
Obstacle use case is as shown in Table 1. The description table provided detailed
information of Detect Obstacle use case which includes the name of use case, responsible
actors, use case goals, use case descriptions, exceptions, rules, quality requirements,
input/output, pre and post-conditions of the use case.

Name Detect Obstacle
Actor Obstacle
Goal To detect any obstacle at front or back using IR sensor
Description Get input data from sensor (HMC) or signal (joystick) to detect

obstacle at the front or back in range distance min=30 cm and
max=80 cm.

Exception N/A
Rules N/A
Quality Requirement N/A
Input/Output Input:

IR sensor back
IR sensor front
Output:
Motor

Pre-Conditions Detect any objects that defend the movement whether at the front
or back

Post-Condition Move follow current direction

Table 1. Detect Obstacle Use Case Description

To analyze the interaction of the I-Wheelchair system, the interaction model diagram is used
as shown in Fig. 14. The purpose of an interaction model is to represent the general flow of
the I-Wheelchair control movement and obstacles avoidance by the two actors; User and
Obstacle. It also illustrates several alternative actions that can be performed, and represents
typical interaction of the operation for the overall system.

A Robotic Wheelchair Component-Based Software Development 113

Fig. 14. Obstacle interaction model for avoiding obstacles

Fig. 14 shows the interaction model for Obstacle use case. This model represents behaviour
of the Obstacle use case, in which includes two behaviour: if the I-Wheelchair system detects
an obstacle, it will stop moving and change the direction of its movement, and after that it
will start to detect other obstacles; if no obstacle is detected, the system will move according
to the current direction that is given by the user and it will start to detect other obstacles. A
semaphore used in the implementation of the Obstacle interaction model to avoid deadlock
situation.
The infrared distance sensors at the back and front of the I-Wheelchair system are used to
detect obstacles that labelled as input to the system as mentioned in Table 1. Therefore, the
use case diagram, use case description table and interaction model can be useful for the ERT
system developer to translate the hardware requirement into software requirement at the
analysis phase.

5.1.2 System architecture planning
In this stage, the system architecture is planned by identifying the preliminary components.
The identification of the component hardware is done based on the electrical microcontroller
schematic diagram. As it requires software to calculate the control signal to be sent to
motors, the motor is considered one of the initial hardware components. The
microcontroller schematic diagram will be transformed into the UML presentation
manually. The UML representation diagram represents the hardware component that may
include software component.
Therefore, the five hardware components identified are Sensor, Controller, Joystick, Motor
and Human Computer/Robot Interaction (HCI or HRI). These components are represented
by a component tree called preliminary containment hierarchy as shown in Fig. 15. The I-
Wheelchair is composed of both hardware and software components. The Controller
hardware component consists of Driver and Application, with the Driver acting as the
communicator between the software and the hardware components or called “wrapper
hardware” in MARMOT. Hence, software component should be under the Driver
component and an Application component refers to the behaviour of the software
component.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 114

5.2 Early design phase
MARMOT was implemented based on the software requirement documentation of the I-
Wheelchair. The discussion on the modelling for the I-Wheelchair was divided into two
separate descriptions; specification and realization. As mentioned before, specification
produced three types of model; functional, behavioural and structural model, represented
by the operation specification table, UML state diagram and class diagram respectively.
Realization produced the activity and structural model as well as the interaction model
which are represented by the activity diagram, class diagram and interaction diagram
respectively. The difference between the specification and the realization class diagrams
are the details of the information provided where the specification class diagram only
included the basic information while the realization class diagrams provided more
detailed information such as the operation and the attribute. Fig. 16 and Fig. 17 show the
examples of realization models, i.e. the Sensor class diagram and the Sensor interaction
diagram.

Fig. 15. Preliminary Containment Hierarchy

A Robotic Wheelchair Component-Based Software Development 115

Fig. 16. Structural Model (Class Diagram)-Realization (Sensor)

Fig. 17. Interaction Model-Realization (Sensor)

5.3 Detailed design phase
The integration of MARMOT and PECOS was implemented in this phase by extending the
MARMOT Regular Containment Hierarchy diagram. The hierarchy diagram of the I-
Wheelchair system in this phase is derived and extended from the Preliminary Containment
Hierarchy diagram from Fig. 15, which included the component name and also has the
detailed description of the component diagram information. The regular containment
hierarchy of the I-Wheelchair shown in Fig. 18 includes the hardware and software
components. The hardware component is represented by the <component> stereotype with
six hardware components such as sensor, LED, controller, joystick, motor and accelerometer

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 114

5.2 Early design phase
MARMOT was implemented based on the software requirement documentation of the I-
Wheelchair. The discussion on the modelling for the I-Wheelchair was divided into two
separate descriptions; specification and realization. As mentioned before, specification
produced three types of model; functional, behavioural and structural model, represented
by the operation specification table, UML state diagram and class diagram respectively.
Realization produced the activity and structural model as well as the interaction model
which are represented by the activity diagram, class diagram and interaction diagram
respectively. The difference between the specification and the realization class diagrams
are the details of the information provided where the specification class diagram only
included the basic information while the realization class diagrams provided more
detailed information such as the operation and the attribute. Fig. 16 and Fig. 17 show the
examples of realization models, i.e. the Sensor class diagram and the Sensor interaction
diagram.

Fig. 15. Preliminary Containment Hierarchy

A Robotic Wheelchair Component-Based Software Development 115

Fig. 16. Structural Model (Class Diagram)-Realization (Sensor)

Fig. 17. Interaction Model-Realization (Sensor)

5.3 Detailed design phase
The integration of MARMOT and PECOS was implemented in this phase by extending the
MARMOT Regular Containment Hierarchy diagram. The hierarchy diagram of the I-
Wheelchair system in this phase is derived and extended from the Preliminary Containment
Hierarchy diagram from Fig. 15, which included the component name and also has the
detailed description of the component diagram information. The regular containment
hierarchy of the I-Wheelchair shown in Fig. 18 includes the hardware and software
components. The hardware component is represented by the <component> stereotype with
six hardware components such as sensor, LED, controller, joystick, motor and accelerometer

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 116

and was initially derived from the schematic diagram. The Controller component interacts
with the I-Wheelchair application using the device driver to support software component
structural modelling.
The component definition used in this work was extended from the original PECOS model
(Jawawi et al., 2006). Fig. 19 shows an example of a composite component definition. The
component diagram also contained component types such as active and passive. In order to
represent an active component, initial time and priority are set in the right side of the
component. If there is no set value for timing and priority in that component, it means that
the component is a passive component.
Furthermore, each component has port information which consisted of two types of port;
inport and outport. The port name is represented by a code such as IP00, signifying that the
component has an inport port at the first position followed by IP01 for the inport port at the
second position as illustrated in Fig. 19. The same rules were applied for the outport port.
The components without shadow represent a leaf component (without any sub-components
inside) while the components with shadow indicate that it has sub-components called
composite components as illustrated in Fig. 18.

Fig. 18. Regular Containment Hierarchy

A Robotic Wheelchair Component-Based Software Development 117

 MotorControl

PID
IP00

IP02

IP01 OP00
Motor

IP00

IP01

Set speed:
0..5000 IP00

IP01

IP02

OP00
Encoder

OP00

Direction:
1- forwad 0- stop
-1- reverse

Period Priority

Current
speed:
0..5000

PID Settings:
[Kc, Ti, Td, Ts]

Fig. 19. MotorControl composite component

The Driver component is made up of four software components which are Sensor, HCI,
Motorctrl and Joystick as shown in Fig. 18. These four software components were initially
derived from hardware components where some modifications have been made based on
the software design; for example, the Battery hardware component was not utilized as a
Battery software component because Battery is one of the sensors.
The purpose of the Application software component is to support behaviour modelling of
the I-Wheelchair application. Behaviour Based Contol (BBC) was used in the I-Wheelchair
application to support behaviour modelling where BBC controls the behaviour of the I-
Wheelchair with its six different behaviours including AvoidObstacle, Stop, Forward,
Reverse, TurnRight and TurnLeft. BBC software components require 12 input ports to
receive data from six behaviours: Avoid, Stop, Forward, Reverse, TurnRight and TurnLeft
software components behaviour. Two output ports from the BBC software component were
sent to the motorctrl_left software component while two other output ports were sent to
motorctrl_right software component and one output port was sent to the HCI component.

5.4 Composition and implementation phase
Fig. 20 illustrates the I-Wheelchair component composition which includes 11 active and
seven passive components, consisting of eight leaf components (without sub-component)
and nine composite components (with sub-component) as shown by the blocks with
shadow. Every single component provides the ports and connection lines to show the
overall composition of the intelligent wheelchair.
From this composition diagram, code template was generated based a Component-Oriented
Programming (COP) framework as proposed in Jawawi et. al (2007). The code consists of
three block codes, which are the synchronization part, execution part, initialization part. The
synchronization part synchronizes the connection port, the execution part chooses a
behaviour based on the current command and the initialization part gives a default value.
The COP is supported by an experimental component composition tool. Fig. 21 shows an
interface of component composition using the COP tool and all the new and reusable
components from other application are listed on the right hand site of the composition. The
COP tool is still at development stage, current version of our tool supports component
integration, composition and code generation of the structure composition. The designer
needs to manually code the functional behaviour of each component. Once the composition
is completed, the next step is to analyse the property bundles value such as period and
priority for active components using real-time scheduling theory. The scheduling analysis of
the composition can be done since the timing required for the analysis were documented
with the designed composition.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 116

and was initially derived from the schematic diagram. The Controller component interacts
with the I-Wheelchair application using the device driver to support software component
structural modelling.
The component definition used in this work was extended from the original PECOS model
(Jawawi et al., 2006). Fig. 19 shows an example of a composite component definition. The
component diagram also contained component types such as active and passive. In order to
represent an active component, initial time and priority are set in the right side of the
component. If there is no set value for timing and priority in that component, it means that
the component is a passive component.
Furthermore, each component has port information which consisted of two types of port;
inport and outport. The port name is represented by a code such as IP00, signifying that the
component has an inport port at the first position followed by IP01 for the inport port at the
second position as illustrated in Fig. 19. The same rules were applied for the outport port.
The components without shadow represent a leaf component (without any sub-components
inside) while the components with shadow indicate that it has sub-components called
composite components as illustrated in Fig. 18.

Fig. 18. Regular Containment Hierarchy

A Robotic Wheelchair Component-Based Software Development 117

 MotorControl

PID
IP00

IP02

IP01 OP00
Motor

IP00

IP01

Set speed:
0..5000 IP00

IP01

IP02

OP00
Encoder

OP00

Direction:
1- forwad 0- stop
-1- reverse

Period Priority

Current
speed:
0..5000

PID Settings:
[Kc, Ti, Td, Ts]

Fig. 19. MotorControl composite component

The Driver component is made up of four software components which are Sensor, HCI,
Motorctrl and Joystick as shown in Fig. 18. These four software components were initially
derived from hardware components where some modifications have been made based on
the software design; for example, the Battery hardware component was not utilized as a
Battery software component because Battery is one of the sensors.
The purpose of the Application software component is to support behaviour modelling of
the I-Wheelchair application. Behaviour Based Contol (BBC) was used in the I-Wheelchair
application to support behaviour modelling where BBC controls the behaviour of the I-
Wheelchair with its six different behaviours including AvoidObstacle, Stop, Forward,
Reverse, TurnRight and TurnLeft. BBC software components require 12 input ports to
receive data from six behaviours: Avoid, Stop, Forward, Reverse, TurnRight and TurnLeft
software components behaviour. Two output ports from the BBC software component were
sent to the motorctrl_left software component while two other output ports were sent to
motorctrl_right software component and one output port was sent to the HCI component.

5.4 Composition and implementation phase
Fig. 20 illustrates the I-Wheelchair component composition which includes 11 active and
seven passive components, consisting of eight leaf components (without sub-component)
and nine composite components (with sub-component) as shown by the blocks with
shadow. Every single component provides the ports and connection lines to show the
overall composition of the intelligent wheelchair.
From this composition diagram, code template was generated based a Component-Oriented
Programming (COP) framework as proposed in Jawawi et. al (2007). The code consists of
three block codes, which are the synchronization part, execution part, initialization part. The
synchronization part synchronizes the connection port, the execution part chooses a
behaviour based on the current command and the initialization part gives a default value.
The COP is supported by an experimental component composition tool. Fig. 21 shows an
interface of component composition using the COP tool and all the new and reusable
components from other application are listed on the right hand site of the composition. The
COP tool is still at development stage, current version of our tool supports component
integration, composition and code generation of the structure composition. The designer
needs to manually code the functional behaviour of each component. Once the composition
is completed, the next step is to analyse the property bundles value such as period and
priority for active components using real-time scheduling theory. The scheduling analysis of
the composition can be done since the timing required for the analysis were documented
with the designed composition.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 118

Fig. 20. I-Wheelchair component composition

Fig. 21. COP tool’s interface to support component composition and code generation

A Robotic Wheelchair Component-Based Software Development 119

5.5 The software reuse results
The case study application showed how the process model can be used to support the CBD
activities of the wheelchair software. The result of implementing these activities on the I-
Wheelchair was software with 3583 lines of C codes which generates firmware with code
size of about 8.6 Kb with RAM usage of about 1.6 Kb. The software was implemented on an
ATMEGA32 8-bit microcontroller with 2 Kb RAM, which illustrated an implementation on a
self-contained I-Wheelchair system. This size proves a light-weight solutions integrated in
the developed process model is suitable for resource-constrained ERT systems. The real-
time performance of the system was predicted during components composition. This
prediction was verified in performance testing during implementation phase where the
wheelchair showed a reliable behaviour especially on hard real-time tasks.
The design and implementation of the wheelchair software design components were derived
from our previous studies and development of mobile robot software systems. One of the
studies was the component engineering process of the reusable design components in the
Autonomous Mobile Robot (AMR) software development documented in Jawawi et. al (2007).
Each component in the reused component repository was modeled using the COP framework.
The reusing process of the software components from an AMR system to the I-Wheelchair
aims to analyze the reuse level resulting from the implementation of the process model
activities. Amount of reused components were used to assess a reuse improvement effort by
tracking percentages of reused components with two types of component reuse: reuse as is
and instantiated reuse.
The main concern in this amount of reused components is to measure the reuse of the
software components on different platforms and different physical sizes of the AMR and the
I-Wheelchair systems. The strategy adopted in analyzing the amount of reused components
in this work is to compare the percentage of component reused in two cases:
1. Case 1 Reuse: MobileRobot1 to MobileRobot2 software reuse as reported in Jawawi et.

al (2007) and
2. Case 2 Reuse: MobileRobot1 to I-Wheelchair software reuse as shown in this section.
The differences between the three systems are tabulated in Table 2 and Table 3. Table 2 is to
differentiate the platform and size of the systems and Table 3 is to differentiate the number
of hardware used in the systems. The code used in the table is as: Mtr – Motor, Fan, Enc –
Encoder, DS - Distance sensor, PS - Proximity sensor, TS - Temperature sensor, LS - Light
sensor, AS - Accelerometer sensor and KP – Keypad.

Case-studies Processor Type Size
(cm) Shape EPROM

(Kilobytes)
RAM

(Kilobyte)

MobileRobot1 AMD188ES (16
bits) 40 round 64 128

MobileRobot2

ATMEL AVR
MEGA32 (8 bits) 16 octagonal 32 2

I-Wheelchair ATMEL AVR
MEGA32 (8 bits)

Standard
size

Standard
manual 32 2

Table 2. The AMR and wheelchair systems processor platform and size

From Table 3, two hardware components exist in both systems are motor and distance
sensor. The types of distance sensor used in three case-studies are the same but the types of
motor used in the three cases studies are different.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 118

Fig. 20. I-Wheelchair component composition

Fig. 21. COP tool’s interface to support component composition and code generation

A Robotic Wheelchair Component-Based Software Development 119

5.5 The software reuse results
The case study application showed how the process model can be used to support the CBD
activities of the wheelchair software. The result of implementing these activities on the I-
Wheelchair was software with 3583 lines of C codes which generates firmware with code
size of about 8.6 Kb with RAM usage of about 1.6 Kb. The software was implemented on an
ATMEGA32 8-bit microcontroller with 2 Kb RAM, which illustrated an implementation on a
self-contained I-Wheelchair system. This size proves a light-weight solutions integrated in
the developed process model is suitable for resource-constrained ERT systems. The real-
time performance of the system was predicted during components composition. This
prediction was verified in performance testing during implementation phase where the
wheelchair showed a reliable behaviour especially on hard real-time tasks.
The design and implementation of the wheelchair software design components were derived
from our previous studies and development of mobile robot software systems. One of the
studies was the component engineering process of the reusable design components in the
Autonomous Mobile Robot (AMR) software development documented in Jawawi et. al (2007).
Each component in the reused component repository was modeled using the COP framework.
The reusing process of the software components from an AMR system to the I-Wheelchair
aims to analyze the reuse level resulting from the implementation of the process model
activities. Amount of reused components were used to assess a reuse improvement effort by
tracking percentages of reused components with two types of component reuse: reuse as is
and instantiated reuse.
The main concern in this amount of reused components is to measure the reuse of the
software components on different platforms and different physical sizes of the AMR and the
I-Wheelchair systems. The strategy adopted in analyzing the amount of reused components
in this work is to compare the percentage of component reused in two cases:
1. Case 1 Reuse: MobileRobot1 to MobileRobot2 software reuse as reported in Jawawi et.

al (2007) and
2. Case 2 Reuse: MobileRobot1 to I-Wheelchair software reuse as shown in this section.
The differences between the three systems are tabulated in Table 2 and Table 3. Table 2 is to
differentiate the platform and size of the systems and Table 3 is to differentiate the number
of hardware used in the systems. The code used in the table is as: Mtr – Motor, Fan, Enc –
Encoder, DS - Distance sensor, PS - Proximity sensor, TS - Temperature sensor, LS - Light
sensor, AS - Accelerometer sensor and KP – Keypad.

Case-studies Processor Type Size
(cm) Shape EPROM

(Kilobytes)
RAM

(Kilobyte)

MobileRobot1 AMD188ES (16
bits) 40 round 64 128

MobileRobot2

ATMEL AVR
MEGA32 (8 bits) 16 octagonal 32 2

I-Wheelchair ATMEL AVR
MEGA32 (8 bits)

Standard
size

Standard
manual 32 2

Table 2. The AMR and wheelchair systems processor platform and size

From Table 3, two hardware components exist in both systems are motor and distance
sensor. The types of distance sensor used in three case-studies are the same but the types of
motor used in the three cases studies are different.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 120

Case-studies Mtr Fan Enc DS PS TS LS AS KP
MobileRobot1 2 0 2 2 2 0 0 0 0
MobileRobot2 2 2 0 1 0 1 1 0 0
I-Wheelchair 2 0 0 6 0 0 0 1 1

Table 3. The AMR and wheelchair systems sensors and actuators

To measure the software reuse rate, the number of reused component from the components
repository will be analyzed. The parameters identified to analyze the amount of reused
components in the two reused cases are: reused 100% from design components repository
without changes (reuse as is), new components developed (new) and reused components by
instantiating the components from MobileRobot1 for the MobileRobot2 or the I-Wheelchair
software development (instantiated reuse). Table 4 shows the number of reused components
in the two reused cases and the components are grouped into five groups according to our
components repository groups.

Component
Groups

MobileRobot1 to
MobileRobot2 MobileRobot1 to I-Wheelchair

Reused
as is

Instantiated
reuse New Reused

as is
Instantiated

reuse New

Sensors 2 1 1 2 1 1
Actuators and
Motor Control 0 5 0 0 4 0

Behavior and
Subsumption 3 1 1 2 2 3

Human-Robot
Interfaces 3 0 0 2 0 3

Input-Output 0 3 0 0 4 0
Total
components 8 10 2 6 11 7

Table 4. The number of reused and new components in the reuse cases

Table 4 shows higher number of components reused without changes in robot to robot
reused case as compared to robot to wheelchair reuse case. This was due to the differences
in the components in HRI group and Behavior and Subsumption group. The wheelchair
system required different HRI devices and the behavior of wheelchair is not fully
autonomous, which still require human control to navigate the wheelchair system. It led to
more number of new behavior components or changes to the existing behavior components.
Apart from HRI group and Behavior and Subsumption group, other groups showed the
same reused pattern.
The analysis work was to identify the rate of components reused from the design repository
integrated in the proposed process model. The component reused percentage is the
calculation of percentage of reused software components over total software components in
the composition. The summary of the component reused percentage for both reused cases
are shown in Fig. 22. The figure shows up to 90% component reused rate achieved in
designing MobileRobot2 software from the MobileRobot1 design components and 71%
components reuse achieved in designing I-Wheelchair software from MobileRobot1
components. It showed that the reuse as is percentage for Case 1 is higher than Case 2. The
instantiated reuse rate in both reused cases were about the same but the reused as is rate

A Robotic Wheelchair Component-Based Software Development 121

was higher in Case 1. This was due to high number of new components required in the
wheelchair system as shown in Table 4.

 (a) Case 1: MobileRobot1 to MobileRobot2 (b) Case 2: MobileRobot1 to I-Wheelchair

Fig. 22. Component reused percentage in the two reused cases

The amount of component reuse analyzed in this implementation aims to study the
possibility to achieve software reuse from mobile robot software to robotic wheelchair
software. The component reused results showed a high rate of component reused was
shown in mobile robot to wheelchair reused case, but this rate is lower than mobile robot to
mobile robot reused case. This high rate was possible in this implementation due to the
same behavior-based control paradigm (Brooks, 1986) and sensors’ types used in both
wheelchair and mobile robot systems. The systematic process model used in this wheelchair
implementation help the wheelchair developers to identify the possible reused component
in at the early stage of the software development.

6. Comparison results of component-based development process models
This section discusses the results comparison between the integrated MARMOT and PECOS
method with other method, based on the criteria as shown in Table 5.

No. Groups Criteria

1 Evaluate the domain
application of CBD method Application domain

2
Evaluate the representation of
component in the respective phase
of the development process

Component representation in analysis
Component representation in design
Component representation in implementation

3
Evaluate which process
development is supported in
the CBD method

Component support in a development process
Reusability

4

Evaluate the supportive tool,
modelling techniques used and
supportive ERT requirements of
the CBD methods

Modelling techniques use
Tool support
Multidisciplinary support
Multiple constrain support

Table 5. Summary of the evaluation criteria

Reused
as is

40%

Instantiated
 reuse

50%

New
10%

Reused
as is

25%

Instantiated reuse
46%

New
29%

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 120

Case-studies Mtr Fan Enc DS PS TS LS AS KP
MobileRobot1 2 0 2 2 2 0 0 0 0
MobileRobot2 2 2 0 1 0 1 1 0 0
I-Wheelchair 2 0 0 6 0 0 0 1 1

Table 3. The AMR and wheelchair systems sensors and actuators

To measure the software reuse rate, the number of reused component from the components
repository will be analyzed. The parameters identified to analyze the amount of reused
components in the two reused cases are: reused 100% from design components repository
without changes (reuse as is), new components developed (new) and reused components by
instantiating the components from MobileRobot1 for the MobileRobot2 or the I-Wheelchair
software development (instantiated reuse). Table 4 shows the number of reused components
in the two reused cases and the components are grouped into five groups according to our
components repository groups.

Component
Groups

MobileRobot1 to
MobileRobot2 MobileRobot1 to I-Wheelchair

Reused
as is

Instantiated
reuse New Reused

as is
Instantiated

reuse New

Sensors 2 1 1 2 1 1
Actuators and
Motor Control 0 5 0 0 4 0

Behavior and
Subsumption 3 1 1 2 2 3

Human-Robot
Interfaces 3 0 0 2 0 3

Input-Output 0 3 0 0 4 0
Total
components 8 10 2 6 11 7

Table 4. The number of reused and new components in the reuse cases

Table 4 shows higher number of components reused without changes in robot to robot
reused case as compared to robot to wheelchair reuse case. This was due to the differences
in the components in HRI group and Behavior and Subsumption group. The wheelchair
system required different HRI devices and the behavior of wheelchair is not fully
autonomous, which still require human control to navigate the wheelchair system. It led to
more number of new behavior components or changes to the existing behavior components.
Apart from HRI group and Behavior and Subsumption group, other groups showed the
same reused pattern.
The analysis work was to identify the rate of components reused from the design repository
integrated in the proposed process model. The component reused percentage is the
calculation of percentage of reused software components over total software components in
the composition. The summary of the component reused percentage for both reused cases
are shown in Fig. 22. The figure shows up to 90% component reused rate achieved in
designing MobileRobot2 software from the MobileRobot1 design components and 71%
components reuse achieved in designing I-Wheelchair software from MobileRobot1
components. It showed that the reuse as is percentage for Case 1 is higher than Case 2. The
instantiated reuse rate in both reused cases were about the same but the reused as is rate

A Robotic Wheelchair Component-Based Software Development 121

was higher in Case 1. This was due to high number of new components required in the
wheelchair system as shown in Table 4.

 (a) Case 1: MobileRobot1 to MobileRobot2 (b) Case 2: MobileRobot1 to I-Wheelchair

Fig. 22. Component reused percentage in the two reused cases

The amount of component reuse analyzed in this implementation aims to study the
possibility to achieve software reuse from mobile robot software to robotic wheelchair
software. The component reused results showed a high rate of component reused was
shown in mobile robot to wheelchair reused case, but this rate is lower than mobile robot to
mobile robot reused case. This high rate was possible in this implementation due to the
same behavior-based control paradigm (Brooks, 1986) and sensors’ types used in both
wheelchair and mobile robot systems. The systematic process model used in this wheelchair
implementation help the wheelchair developers to identify the possible reused component
in at the early stage of the software development.

6. Comparison results of component-based development process models
This section discusses the results comparison between the integrated MARMOT and PECOS
method with other method, based on the criteria as shown in Table 5.

No. Groups Criteria

1 Evaluate the domain
application of CBD method Application domain

2
Evaluate the representation of
component in the respective phase
of the development process

Component representation in analysis
Component representation in design
Component representation in implementation

3
Evaluate which process
development is supported in
the CBD method

Component support in a development process
Reusability

4

Evaluate the supportive tool,
modelling techniques used and
supportive ERT requirements of
the CBD methods

Modelling techniques use
Tool support
Multidisciplinary support
Multiple constrain support

Table 5. Summary of the evaluation criteria

Reused
as is

40%

Instantiated
 reuse

50%

New
10%

Reused
as is

25%

Instantiated reuse
46%

New
29%

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 122

The comparisons were made on two existing CBD methods; COMponent-based design of
software for Distributed Embedded Systems – version II (COMDES-II) (Ke et al., 2007) and
ACCORD/UML (Gerard et al., 2002). ACCORD/UML’s targeted audience includes
engineers who are not software experts and COMDES-II is a component based software
framework intended for efficient development of distributed embedded control systems
with hard real-time requirements. Table 6 shows the evaluation summary of CBD methods
based on the evaluation criteria.

Criteria/CBD
Methods

COMDES-II ACCORD Integrated MARMOT
& PECOS

Application
Domain

Hard real time
requirement

Real time
application
engineering for
engineer (not
software expert)

Multi-disciplinary and
multi-constraint
development

Component
representation in
analysis

Actor Model DAM (detailed
Analysis Modelling)
model

Preliminary
containment hierarchy

Component
representation in
design

Not applicable Not applicable Block diagram

Component
representation in
implementation

Function Block DAM (detailed
Analysis Modelling)
model

Graphical component
composition and code
template

Modelling
techniques use

Actor model and
function block
model

UML with
extension

UML 2.0 and COP
composition

Tools support Workbench UML based tool Any tool that supports
UML 2.0, and COP tool

Component
support in a
development
process

Design and
implementation

Analysis and
prototyping

Analysis, design and
implementation

Reusability Function block
model

State-machine
inheritance

Detailed design
component block and
code template

Multidisciplinary
support

Software Software Hardware and
software

Multiple
constraints
support

Concurrency,
time multitasking

High level
concurrency

Timing Analysis

Table 6. Comparison of CBD methods

A Robotic Wheelchair Component-Based Software Development 123

Based on the general criteria evaluation results, it showed all three methods support
component at analysis phase and implementation phase. Only the proposed integrated
method represent components at design phase using block diagram introduced by
MARMOT to be included as part of it containment hierarchy diagram and represented in
component composition diagram at implementation phase.
COMDES-II and ACCORD methods combine the design phase component representation
with the analysis phase. The integrated method defines the component representation in
each phase, this enable all multi-disciplines experts for a system like the robotic wheelchair
systems to define and specify their own components. Both the integrated method and
ACCORD modelling techniques use UML except COMDES-II method that using actor
model and function block model. The UML modelling enables multi-disciplines engineers to
communicate and share their software components.
The integration of MARMOT and PECOS is shown to support both multi-disciplinary and
multi-constraint real-time requirement. ERT CBD methods criteria showed that only the
integrated MARMOT and PECOS method supported multi-disciplinary including software
and hardware and multi-constraint ERT requirement. COMDES-II and ACCORD only
support software disciplinary element. All three CBD methods support different level of
real-time constraints; for example ACCORD supports high level concurrency, the integrated
method supports timing analysis and COMDES-II supports concurrency and time
multitasking. This is due to different nature of ERT systems targeted by different methods
and different real-time requirements supported such soft real-time, hard real-time, time-
triggered or event triggered.
The integrated MARMOT and PECOS aims to produce a systematic CBD process model of
ERT system where the development process model can support multi-disciplinary
knowledge and multi-constraint extra-functionality requirement. The component
representation systematically supported all phases: the analysis, design and implementation
phases, this can provide more reusability facilities in all phases.
The systematic CBD process model allows the multi-disciplines experts in the robotics
wheelchair CBD development to develop their reusable components and integrates their
components with other. Among the software components developed by different discipline
reused in the I-Wheelchair system development are such as BBC component, motors
component, sensors and input-output components.

7. Conclusion
This chapter proposed a method to enable reuse of mobile robot software into a robotic
wheelchair (I-Wheelchair) software system. The robotic wheelchair system prototype was
developed to test the implementation result of the proposed method. The component-based
development (CBD) of the robotic wheelchair software using a set of reusable components,
and the software composition of the wheelchair software were illustrated. The integration of
PECOS into MARMOT method would produces a systematic CBD process model in terms
of multi-disciplinary knowledge and multi-constraint extra-functionality requirement. The
application of the CBD method in the I-Wheelchair system illustrated how the MARMOT
and PECOS were integrated to produce a systematic development method for CBD. The
method guides developers to model and deploy the robotic wheelchair software using the

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 122

The comparisons were made on two existing CBD methods; COMponent-based design of
software for Distributed Embedded Systems – version II (COMDES-II) (Ke et al., 2007) and
ACCORD/UML (Gerard et al., 2002). ACCORD/UML’s targeted audience includes
engineers who are not software experts and COMDES-II is a component based software
framework intended for efficient development of distributed embedded control systems
with hard real-time requirements. Table 6 shows the evaluation summary of CBD methods
based on the evaluation criteria.

Criteria/CBD
Methods

COMDES-II ACCORD Integrated MARMOT
& PECOS

Application
Domain

Hard real time
requirement

Real time
application
engineering for
engineer (not
software expert)

Multi-disciplinary and
multi-constraint
development

Component
representation in
analysis

Actor Model DAM (detailed
Analysis Modelling)
model

Preliminary
containment hierarchy

Component
representation in
design

Not applicable Not applicable Block diagram

Component
representation in
implementation

Function Block DAM (detailed
Analysis Modelling)
model

Graphical component
composition and code
template

Modelling
techniques use

Actor model and
function block
model

UML with
extension

UML 2.0 and COP
composition

Tools support Workbench UML based tool Any tool that supports
UML 2.0, and COP tool

Component
support in a
development
process

Design and
implementation

Analysis and
prototyping

Analysis, design and
implementation

Reusability Function block
model

State-machine
inheritance

Detailed design
component block and
code template

Multidisciplinary
support

Software Software Hardware and
software

Multiple
constraints
support

Concurrency,
time multitasking

High level
concurrency

Timing Analysis

Table 6. Comparison of CBD methods

A Robotic Wheelchair Component-Based Software Development 123

Based on the general criteria evaluation results, it showed all three methods support
component at analysis phase and implementation phase. Only the proposed integrated
method represent components at design phase using block diagram introduced by
MARMOT to be included as part of it containment hierarchy diagram and represented in
component composition diagram at implementation phase.
COMDES-II and ACCORD methods combine the design phase component representation
with the analysis phase. The integrated method defines the component representation in
each phase, this enable all multi-disciplines experts for a system like the robotic wheelchair
systems to define and specify their own components. Both the integrated method and
ACCORD modelling techniques use UML except COMDES-II method that using actor
model and function block model. The UML modelling enables multi-disciplines engineers to
communicate and share their software components.
The integration of MARMOT and PECOS is shown to support both multi-disciplinary and
multi-constraint real-time requirement. ERT CBD methods criteria showed that only the
integrated MARMOT and PECOS method supported multi-disciplinary including software
and hardware and multi-constraint ERT requirement. COMDES-II and ACCORD only
support software disciplinary element. All three CBD methods support different level of
real-time constraints; for example ACCORD supports high level concurrency, the integrated
method supports timing analysis and COMDES-II supports concurrency and time
multitasking. This is due to different nature of ERT systems targeted by different methods
and different real-time requirements supported such soft real-time, hard real-time, time-
triggered or event triggered.
The integrated MARMOT and PECOS aims to produce a systematic CBD process model of
ERT system where the development process model can support multi-disciplinary
knowledge and multi-constraint extra-functionality requirement. The component
representation systematically supported all phases: the analysis, design and implementation
phases, this can provide more reusability facilities in all phases.
The systematic CBD process model allows the multi-disciplines experts in the robotics
wheelchair CBD development to develop their reusable components and integrates their
components with other. Among the software components developed by different discipline
reused in the I-Wheelchair system development are such as BBC component, motors
component, sensors and input-output components.

7. Conclusion
This chapter proposed a method to enable reuse of mobile robot software into a robotic
wheelchair (I-Wheelchair) software system. The robotic wheelchair system prototype was
developed to test the implementation result of the proposed method. The component-based
development (CBD) of the robotic wheelchair software using a set of reusable components,
and the software composition of the wheelchair software were illustrated. The integration of
PECOS into MARMOT method would produces a systematic CBD process model in terms
of multi-disciplinary knowledge and multi-constraint extra-functionality requirement. The
application of the CBD method in the I-Wheelchair system illustrated how the MARMOT
and PECOS were integrated to produce a systematic development method for CBD. The
method guides developers to model and deploy the robotic wheelchair software using the

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 124

CBD activities and the phases are defined by the process model. With the strengths of
MARMOT and PECOS integrated into the method, it enabled the functional and non-
functional requirements, especially the timing properties, to be modelled explicitly in all
phases. Furthermore, the method also considered multi-disciplinary requirements in its
models which help software engineers to focus on their problem-solving of the robotic
wheelchair system development. The activities to reuse software from existing robotics
systems were explicitly supported in the proposed process model.
The implementation of the I-Wheelchair case study, demonstrated that the proposed
method has helped to guide the CBD of the software system from the analysis of the
product to the implementation phase through the defined process model. The component
reused rate achieved in the wheelchair implementation from a mobile robot design
repository was high up to 71% and this implementation was compared with components
reuse from the same mobile robot design repository to another mobile robot system to
identify the pattern of reuse in both reused cases. No direct relation between the process
model proposed and the reused rate studied in this chapter but the process model helped
developer to identify and implement the component in all CBD phases. For future works,
the existing component-based development tools will be refined further to support COD
and COP methods and to integrate the tools with the UML models produced in the COA
method.

8. Acknowledgment
Special thanks to the Universiti Teknologi Malaysia for financing and funding this research
through Research University Grant and also to our Embedded & Real-Time Software
Engineering Laboratory (EReTSEL) members for their continuous support.

9. References
Atkinson, C.; Bayer, J.; Bunse, C.; Kamsties, E.; Laitenberger, O.; Laqua, R.; Muthig, D.;

Paech, B.; Wust, J. & Zettel J. (2002). Component-Based Product Line Engineering with
UML, Addison Wesley Professional, ISBN 978-0201737912, Boston, USA.

Bonail, B.; Abascal, J. & Gardeazaba,l L. (2009). Wheelchair-based Open Robotic Platform
and its Performance within the AmbienNet Project, Proceedings of the 2nd
International Conference on PErvasive Technologies Related to Assistive Environments
(PETRA '09), ISBN 978-1-60558-409-6, Corfu, Greece, June 09-13, 2009.

Brooks R.A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of
Robotics and Automation. RA-2(1): 14-23.

Bunse, C. & Gross, H. G. (2006), Unifying Hardware and Software Components for
Embedded System Development, In: Architecting Systems with Trustworthy
Components, Reussner R. H., Stafford J. A. and Szyperski C. A., pp. 120-136,
Springer-Verlag, ISBN 978-3540358008, Berlin, Germany.

Carlsona, J.; Håkanssonb, J. & Pettersson, P. (2006). Save CCM: An Analysable Component
Model for Real-Time Systems, Proceedings of the International Workshop on Formal
Aspects of Component Software (FACS 2005), vol. 160 , Macao, October 24-25, pp.127-
140.

A Robotic Wheelchair Component-Based Software Development 125

Cheein, F. A. A.; Cruz, C.; Bastos, T. F. & Carelli, R. (2009). SLAM-based Cross-a-Door
Solution Approach for a Robotic Wheelchair. International Journal of Advanced
Robotic Systems, Vol. 6, No. 3. pp. 239-248, ISSN 1729-8806.

Dogru, A. H. & Tanik M. M. (2003). A Process Model for Component-Oriented Software
Engineering. IEEE Software, Vol. 20 No. 2, (March 2003), pp. 34-41.

Gerard, S; Terrier, F. & Tanguy, Y. (2002). Using the Model Paradigm for Real-Time Systems
Development ACCORD/UML. Proceedings of the Workshops on Advances in Object-
Oriented Information Systems (OOIS '02), Montpellier, France, September 2, pg. 260-
269.

Gong, J.; Peng, Y.; Hao, J.; Huang J., & Huang, K. (2010), Research on Component-Oriented
Methodology for Constructing Simulation Systems. Journal of System Simulation, pp.
1-10.

Jang, C; Lee, S-I; Jung, S-W; Song, B; Kim, R; Kim, S & Lee, C-H. (2010). OPRoS: A New
Component-Based Robot Software Platform. ETRI Journal, Vol. 32, No. 5, (October
2010), pp 646-656.

Jawawi, D.N.A; Deris, S. & Mamat, R. (2006). “Enhancements of PECOS Embedded Real-
Time Component Model for Autonomous Mobile Robot Application”. Proceeding of
The 4th ACS/IEEE International Conference on Computer Systems and Applications, pp.
882 – 889. Dubai/Sharjah, March 8-11 2006.

Jawawi, D. N. A.; Mamat, R. & Deris, S. (2007). A Component-Oriented Programming for
Embedded Mobile Robot Software. International Journal of Advanced Robotic Systems,
Vol. 4, No. 2, (September 2007), pp. 371-380. ISSN 1729-8806.

Ke, X.; Sierszecki, K. & Angelov, C., (2007). COMDES-II: A Component –Based Framework
for Generative Development of Distributed Real-Time Control Systems, Proceeding
of 13th IEEE International Conference on Embedded Real Time Computing System and
Applications (RTCSA 2007), pp. 199 – 208, ISBN 978-0-7695-2975-2, Daegu, Korea,
August 21-23, 2007.

Lee, S. C. & Shirani A. I. (2004). A Component Based Methodology for Web Application
Development. Journal of Systems and Software, Vol.71, No. 1-2, (April 2004), pp.177-
187.

Mallet A.; Kanehiro F.; Fleury S. & Herrb M. (2007). Reusable Robotics Software Collection.
Proceedings of Second Int. Workshop on Software Development and Integration in Robotics
(SDIR). Roma, Italy, April 2007.

Nesnas I. A.D.; Simmons R.; Gaines D.; Kunz C.; Diaz-Calderon A.; Estlin T.; Madison R.;
Guineau J.; McHenry M.; Shu I-H. & Apfelbaum D. (2006). CLARAty: Challenges
and Steps Toward Reusable Robotic Software. International Journal of Advanced
Robotic Systems, Vol. 3, No. 1, (2006), pp. 23-30. ISSN 1729-8806.

Nierstrasz, O.; Arévalo, G.; Ducasse, S.; Wuyts, R.; Black, A.; Müller, P.; Zeidler, C.;
Genssler, T. & van den Born, R. (2002). A Component Model for Field Devices.
Proceedings First International IFIP/ACM Working Conference on Component
Deployment, pg. 200-209, June 20-21, ISBN 3-540-43847-5. Berlin, Germany, June 20-
21, 2002.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 124

CBD activities and the phases are defined by the process model. With the strengths of
MARMOT and PECOS integrated into the method, it enabled the functional and non-
functional requirements, especially the timing properties, to be modelled explicitly in all
phases. Furthermore, the method also considered multi-disciplinary requirements in its
models which help software engineers to focus on their problem-solving of the robotic
wheelchair system development. The activities to reuse software from existing robotics
systems were explicitly supported in the proposed process model.
The implementation of the I-Wheelchair case study, demonstrated that the proposed
method has helped to guide the CBD of the software system from the analysis of the
product to the implementation phase through the defined process model. The component
reused rate achieved in the wheelchair implementation from a mobile robot design
repository was high up to 71% and this implementation was compared with components
reuse from the same mobile robot design repository to another mobile robot system to
identify the pattern of reuse in both reused cases. No direct relation between the process
model proposed and the reused rate studied in this chapter but the process model helped
developer to identify and implement the component in all CBD phases. For future works,
the existing component-based development tools will be refined further to support COD
and COP methods and to integrate the tools with the UML models produced in the COA
method.

8. Acknowledgment
Special thanks to the Universiti Teknologi Malaysia for financing and funding this research
through Research University Grant and also to our Embedded & Real-Time Software
Engineering Laboratory (EReTSEL) members for their continuous support.

9. References
Atkinson, C.; Bayer, J.; Bunse, C.; Kamsties, E.; Laitenberger, O.; Laqua, R.; Muthig, D.;

Paech, B.; Wust, J. & Zettel J. (2002). Component-Based Product Line Engineering with
UML, Addison Wesley Professional, ISBN 978-0201737912, Boston, USA.

Bonail, B.; Abascal, J. & Gardeazaba,l L. (2009). Wheelchair-based Open Robotic Platform
and its Performance within the AmbienNet Project, Proceedings of the 2nd
International Conference on PErvasive Technologies Related to Assistive Environments
(PETRA '09), ISBN 978-1-60558-409-6, Corfu, Greece, June 09-13, 2009.

Brooks R.A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of
Robotics and Automation. RA-2(1): 14-23.

Bunse, C. & Gross, H. G. (2006), Unifying Hardware and Software Components for
Embedded System Development, In: Architecting Systems with Trustworthy
Components, Reussner R. H., Stafford J. A. and Szyperski C. A., pp. 120-136,
Springer-Verlag, ISBN 978-3540358008, Berlin, Germany.

Carlsona, J.; Håkanssonb, J. & Pettersson, P. (2006). Save CCM: An Analysable Component
Model for Real-Time Systems, Proceedings of the International Workshop on Formal
Aspects of Component Software (FACS 2005), vol. 160 , Macao, October 24-25, pp.127-
140.

A Robotic Wheelchair Component-Based Software Development 125

Cheein, F. A. A.; Cruz, C.; Bastos, T. F. & Carelli, R. (2009). SLAM-based Cross-a-Door
Solution Approach for a Robotic Wheelchair. International Journal of Advanced
Robotic Systems, Vol. 6, No. 3. pp. 239-248, ISSN 1729-8806.

Dogru, A. H. & Tanik M. M. (2003). A Process Model for Component-Oriented Software
Engineering. IEEE Software, Vol. 20 No. 2, (March 2003), pp. 34-41.

Gerard, S; Terrier, F. & Tanguy, Y. (2002). Using the Model Paradigm for Real-Time Systems
Development ACCORD/UML. Proceedings of the Workshops on Advances in Object-
Oriented Information Systems (OOIS '02), Montpellier, France, September 2, pg. 260-
269.

Gong, J.; Peng, Y.; Hao, J.; Huang J., & Huang, K. (2010), Research on Component-Oriented
Methodology for Constructing Simulation Systems. Journal of System Simulation, pp.
1-10.

Jang, C; Lee, S-I; Jung, S-W; Song, B; Kim, R; Kim, S & Lee, C-H. (2010). OPRoS: A New
Component-Based Robot Software Platform. ETRI Journal, Vol. 32, No. 5, (October
2010), pp 646-656.

Jawawi, D.N.A; Deris, S. & Mamat, R. (2006). “Enhancements of PECOS Embedded Real-
Time Component Model for Autonomous Mobile Robot Application”. Proceeding of
The 4th ACS/IEEE International Conference on Computer Systems and Applications, pp.
882 – 889. Dubai/Sharjah, March 8-11 2006.

Jawawi, D. N. A.; Mamat, R. & Deris, S. (2007). A Component-Oriented Programming for
Embedded Mobile Robot Software. International Journal of Advanced Robotic Systems,
Vol. 4, No. 2, (September 2007), pp. 371-380. ISSN 1729-8806.

Ke, X.; Sierszecki, K. & Angelov, C., (2007). COMDES-II: A Component –Based Framework
for Generative Development of Distributed Real-Time Control Systems, Proceeding
of 13th IEEE International Conference on Embedded Real Time Computing System and
Applications (RTCSA 2007), pp. 199 – 208, ISBN 978-0-7695-2975-2, Daegu, Korea,
August 21-23, 2007.

Lee, S. C. & Shirani A. I. (2004). A Component Based Methodology for Web Application
Development. Journal of Systems and Software, Vol.71, No. 1-2, (April 2004), pp.177-
187.

Mallet A.; Kanehiro F.; Fleury S. & Herrb M. (2007). Reusable Robotics Software Collection.
Proceedings of Second Int. Workshop on Software Development and Integration in Robotics
(SDIR). Roma, Italy, April 2007.

Nesnas I. A.D.; Simmons R.; Gaines D.; Kunz C.; Diaz-Calderon A.; Estlin T.; Madison R.;
Guineau J.; McHenry M.; Shu I-H. & Apfelbaum D. (2006). CLARAty: Challenges
and Steps Toward Reusable Robotic Software. International Journal of Advanced
Robotic Systems, Vol. 3, No. 1, (2006), pp. 23-30. ISSN 1729-8806.

Nierstrasz, O.; Arévalo, G.; Ducasse, S.; Wuyts, R.; Black, A.; Müller, P.; Zeidler, C.;
Genssler, T. & van den Born, R. (2002). A Component Model for Field Devices.
Proceedings First International IFIP/ACM Working Conference on Component
Deployment, pg. 200-209, June 20-21, ISBN 3-540-43847-5. Berlin, Germany, June 20-
21, 2002.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 126

Ommering, R.; Linden, F.; Kramer, J. & Magee, J. (2000). The Koala Component Model for
Consumer Electronics Software. IEEE Computer, Vol. 33, No. 3, (Mar 2000). pp. 78 –
85, ISSN 0018-9162.

Schuppenies, R. & Steinhauer, S. (2001). Software Process Engineering Metamodel, OMG
group, November 2002.

Simpson, R.; Lopresti, A. E.; Hayashi, S.; Nourbakhsh, I. & Miller, D. (2004). The Smart
Wheelchair Component System. Journal of Rehabilitation Research & Development.
Vol. 41, No. 3B, (May/June 2004), pp 429–442.

Wang, A. J. A. & Qian, K. (2005). Component-Oriented Programming. Wiley-Interscience, ISBN
0471644463, Danvers, USA.

Part 2

Brain-Machine Interfacing

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 126

Ommering, R.; Linden, F.; Kramer, J. & Magee, J. (2000). The Koala Component Model for
Consumer Electronics Software. IEEE Computer, Vol. 33, No. 3, (Mar 2000). pp. 78 –
85, ISSN 0018-9162.

Schuppenies, R. & Steinhauer, S. (2001). Software Process Engineering Metamodel, OMG
group, November 2002.

Simpson, R.; Lopresti, A. E.; Hayashi, S.; Nourbakhsh, I. & Miller, D. (2004). The Smart
Wheelchair Component System. Journal of Rehabilitation Research & Development.
Vol. 41, No. 3B, (May/June 2004), pp 429–442.

Wang, A. J. A. & Qian, K. (2005). Component-Oriented Programming. Wiley-Interscience, ISBN
0471644463, Danvers, USA.

Part 2

Brain-Machine Interfacing

 0

EEG Based Brain-Machine Interfacing:
Navigation of Mobile Robotic Device

Mufti Mahmud1, Alessandra Bertoldo2 and Stefano Vassanelli3
1NeuroChip Laboratory, Department of Human Anatomy and physiology,

University of Padova
2Department of Information Engineering, University of Padova

3NeuroChip Laboratory, Department of Human Anatomy and physiology,
University of Padova

Italy

1. Introduction

During the last decade, rapid development of sophisticated methods for brain signal
recordings along with availability of various efficient computational resources and the
improving knowledge about brain dysfunctions have turned many researchers’ interest in
using large scale neurophysiological recordings for therapeutic and replacement strategies
(Mason & Birch, 2003; Millán et al., 2003). Many patients with physiological disorders such
as Amyotrophic Lateral Sclerosis (ALS) or injuries such as high-level spinal cord injury suffer
from disruption of the communication path between the brain and the body. People with
severe motor disabilities may lose much of their voluntary muscle control. The disabled
people with the above mentioned problems are forced to accept a reduced quality of life,
resulting in dependence on caretakers and escalating social costs (Vaughan et al., 2003). Most
of the existing assistive technology devices for these patients are not usable because these
devices are dependent on motor activities from specific parts of the body. Alternative control
paradigms for these individuals are thus desirable (Fatourechi, 2008).
The electrophysiological signals generated from the brain can be used to command different
devices, provided that the person who will control the device should also be able to control
the generation of these signals. Studies showed that with sufficient training, people can
control the generation of certain brain signals (Ohno et al., 2006). Having generated these
signals, they can be conditioned and processed to perform the specific work for which they
are generated. In other words, the interface can be made able to adapt and understand the
meaning of these signals and work accordingly. If this type of Brain-Machine Interface (BMI)
is successfully implemented, they can be used in developing sophisticated assistive devices
(such as, a robotic wheelchair) to carry the people with motor dysfunction (Ferreira et al.,
2008).
Previous works in development of BMI show that the signal acquisition and processing are
getting complicated with the growing availability of more sophisticated recording devices
(Cheein & Postigo, 2005; Ferreira et al., 2008; Moon et al., 2005; Mourino, 2003; Rani & Sarkar,
2005). To overcome these complexities rather simple method is required to couple easily
recordable neuronal signals with the robotic device (Mahmud et al., 2010; 2009). This chapter
illustrates a simple BMI system using EEG signals recorded through conventional EEG

6

 0

EEG Based Brain-Machine Interfacing:
Navigation of Mobile Robotic Device

Mufti Mahmud1, Alessandra Bertoldo2 and Stefano Vassanelli3
1NeuroChip Laboratory, Department of Human Anatomy and physiology,

University of Padova
2Department of Information Engineering, University of Padova

3NeuroChip Laboratory, Department of Human Anatomy and physiology,
University of Padova

Italy

1. Introduction

During the last decade, rapid development of sophisticated methods for brain signal
recordings along with availability of various efficient computational resources and the
improving knowledge about brain dysfunctions have turned many researchers’ interest in
using large scale neurophysiological recordings for therapeutic and replacement strategies
(Mason & Birch, 2003; Millán et al., 2003). Many patients with physiological disorders such
as Amyotrophic Lateral Sclerosis (ALS) or injuries such as high-level spinal cord injury suffer
from disruption of the communication path between the brain and the body. People with
severe motor disabilities may lose much of their voluntary muscle control. The disabled
people with the above mentioned problems are forced to accept a reduced quality of life,
resulting in dependence on caretakers and escalating social costs (Vaughan et al., 2003). Most
of the existing assistive technology devices for these patients are not usable because these
devices are dependent on motor activities from specific parts of the body. Alternative control
paradigms for these individuals are thus desirable (Fatourechi, 2008).
The electrophysiological signals generated from the brain can be used to command different
devices, provided that the person who will control the device should also be able to control
the generation of these signals. Studies showed that with sufficient training, people can
control the generation of certain brain signals (Ohno et al., 2006). Having generated these
signals, they can be conditioned and processed to perform the specific work for which they
are generated. In other words, the interface can be made able to adapt and understand the
meaning of these signals and work accordingly. If this type of Brain-Machine Interface (BMI)
is successfully implemented, they can be used in developing sophisticated assistive devices
(such as, a robotic wheelchair) to carry the people with motor dysfunction (Ferreira et al.,
2008).
Previous works in development of BMI show that the signal acquisition and processing are
getting complicated with the growing availability of more sophisticated recording devices
(Cheein & Postigo, 2005; Ferreira et al., 2008; Moon et al., 2005; Mourino, 2003; Rani & Sarkar,
2005). To overcome these complexities rather simple method is required to couple easily
recordable neuronal signals with the robotic device (Mahmud et al., 2010; 2009). This chapter
illustrates a simple BMI system using EEG signals recorded through conventional EEG

6

2 Will-be-set-by-IN-TECH

acquisition devices and use these signals in commanding a robotic device’s navigation. The
figure 1 shows the schematic diagram of the proposed BMI.

Fig. 1. The schematic diagram of the proposed Brain-Machine interface system where the
devices can be controlled only with conditioned brain signals.

The BMI model was implemented using a two-layer approach. The first layer (also referred
as upper layer) dealt with the signal acquisition and generation of control signals from
the acquired EEG signals. The second layer (also referred as lower layer) contained the
commanding and controlling modules of the robotic device, where the calculated binary
control signals (BCS) were fed into the robotic device and its navigation was controlled.
The two-layered approach separated the signal acquisition and processing phase from the
robotic device commanding and controlling phase. This separation allowed a higher level
of abstraction in programming sophisticated signal processing and analysis algorithms to
calculate the BCS. Also, being separated from the signal processing and analysis layer, the
robotic device interfacing was further simplified just to respond to the BCS to command and
control the robotic device, thus enhancing reusability of the method. The figure 2 shows the
schematic flowchart outlining the major steps of the BMI method. The first and second boxes
from the top belong to the upper layer performing signal acquisition and processing and the
third and fourth boxes belong to the lower layer doing the communication with the robotic
device for commanding and controlling.
Considering the two-layered design of the BMI, the model was successfully tested with EEG
signals generated by two distinctive actions and these two approaches will be elaborated in
this chapter. The two distinctive event information extracted from the EEG in generating the
BCS were:

• ERD (Event Related De-synchronization) and ERS (Event Related Synchronization) of the
EEG signal (Pfurtscheller & daSilva, 1999).

• The event related evoked response (as in case of saccadic eye movement) is used as a
second approach (Ohno et al., 2006).

The EEG signals generated by the above mentioned phenomena were used in calculating the
BCS. Once the BCS was calculated, it was transmitted into another computer to command and
control the mobile robot accordingly.
In the upper layer, the EEG signal acquisition was performed using a framework built in
Matlab Simulink (http://www.mathworks.com) and the signal processing was performed

130
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 3

Simulink:
Acquisi�on
framework

Matlab
scrip�ng:
Signal
processing

IQR:
Interfacing
with the
robot

Raw EEG

Binary Control
Signal (BCS)

Command
Robot

Acquire EEG

Process EEG

Process BCS

Robot Movement

Upper layer for
signal acquisi�on
and processing to
calculate the BCS

Lower layer for
communica�ng
with the mobile
robot for its
naviga�on

Fig. 2. Flowchart outlining the major steps of the BMI system, and their inputs and outputs.
The curly braces on the right side categorize the steps based on the tools used in
implementing those steps for the interfacing system. The curly braces on the left side show
the two-layers and their components.

using Matlab scripting. In the lower layer, the interfacing with the robotic device was done
using an open-source program called ’IQR’ (Bernardet et al., 2002; Bernardet & Verschure,
2010) capable of mimicking neuronal network behavior based on the BCS.
After successful completion of signal acquisition, processing, and interfacing, the mobile robot
was able to navigate through a predefined path showing the bright possibility of this method
is designing assistive devices for the disabled.

2. The brain-machine interface system

2.1 The Electroencephalogram (EEG)
The Electroencephalogram (EEG) signals are widely used in the medical field for diagnosing
diseases and studying brain functions. They are generated by firing of neuronal populations
in the brain that propagates through the cortex. These propagated signals are recorded
along the scalp using standard Ag-AgCl electrodes. A mapping of these electrode positions
according to the 10-20 international system is shown in the figure 3. In general, EEG refers
to the recording of the brain’s spontaneous electrical activity over a short period of time,
usually 20-40 minutes. Through the EEG technique evoked potentials (EP) and event-related
potentials (ERPs) are recorded. The EP involves averaging the EEG activity time-locked to
the presentation of a stimulus of some sort (visual, somatosensory, or auditory). Whereas,
ERPs refer to averaged EEG responses that are time-locked to more complex processing
of stimuli and used in cognitive science, cognitive psychology, and psychophysiological
research. Necessary information related to a part of the brain can be obtained from the signals
recorded by the corresponding electrodes placed in that part. For example, the visual cortex
is located at the caudal portion of the brain (occipital lobe), thus, the signals recorded by the
electrodes placed at the occipital lobe will provide information regarding the brain activity of
the occipital lobe caused by visual stimuli.

131EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

2 Will-be-set-by-IN-TECH

acquisition devices and use these signals in commanding a robotic device’s navigation. The
figure 1 shows the schematic diagram of the proposed BMI.

Fig. 1. The schematic diagram of the proposed Brain-Machine interface system where the
devices can be controlled only with conditioned brain signals.

The BMI model was implemented using a two-layer approach. The first layer (also referred
as upper layer) dealt with the signal acquisition and generation of control signals from
the acquired EEG signals. The second layer (also referred as lower layer) contained the
commanding and controlling modules of the robotic device, where the calculated binary
control signals (BCS) were fed into the robotic device and its navigation was controlled.
The two-layered approach separated the signal acquisition and processing phase from the
robotic device commanding and controlling phase. This separation allowed a higher level
of abstraction in programming sophisticated signal processing and analysis algorithms to
calculate the BCS. Also, being separated from the signal processing and analysis layer, the
robotic device interfacing was further simplified just to respond to the BCS to command and
control the robotic device, thus enhancing reusability of the method. The figure 2 shows the
schematic flowchart outlining the major steps of the BMI method. The first and second boxes
from the top belong to the upper layer performing signal acquisition and processing and the
third and fourth boxes belong to the lower layer doing the communication with the robotic
device for commanding and controlling.
Considering the two-layered design of the BMI, the model was successfully tested with EEG
signals generated by two distinctive actions and these two approaches will be elaborated in
this chapter. The two distinctive event information extracted from the EEG in generating the
BCS were:

• ERD (Event Related De-synchronization) and ERS (Event Related Synchronization) of the
EEG signal (Pfurtscheller & daSilva, 1999).

• The event related evoked response (as in case of saccadic eye movement) is used as a
second approach (Ohno et al., 2006).

The EEG signals generated by the above mentioned phenomena were used in calculating the
BCS. Once the BCS was calculated, it was transmitted into another computer to command and
control the mobile robot accordingly.
In the upper layer, the EEG signal acquisition was performed using a framework built in
Matlab Simulink (http://www.mathworks.com) and the signal processing was performed

130
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 3

Simulink:
Acquisi�on
framework

Matlab
scrip�ng:
Signal
processing

IQR:
Interfacing
with the
robot

Raw EEG

Binary Control
Signal (BCS)

Command
Robot

Acquire EEG

Process EEG

Process BCS

Robot Movement

Upper layer for
signal acquisi�on
and processing to
calculate the BCS

Lower layer for
communica�ng
with the mobile
robot for its
naviga�on

Fig. 2. Flowchart outlining the major steps of the BMI system, and their inputs and outputs.
The curly braces on the right side categorize the steps based on the tools used in
implementing those steps for the interfacing system. The curly braces on the left side show
the two-layers and their components.

using Matlab scripting. In the lower layer, the interfacing with the robotic device was done
using an open-source program called ’IQR’ (Bernardet et al., 2002; Bernardet & Verschure,
2010) capable of mimicking neuronal network behavior based on the BCS.
After successful completion of signal acquisition, processing, and interfacing, the mobile robot
was able to navigate through a predefined path showing the bright possibility of this method
is designing assistive devices for the disabled.

2. The brain-machine interface system

2.1 The Electroencephalogram (EEG)
The Electroencephalogram (EEG) signals are widely used in the medical field for diagnosing
diseases and studying brain functions. They are generated by firing of neuronal populations
in the brain that propagates through the cortex. These propagated signals are recorded
along the scalp using standard Ag-AgCl electrodes. A mapping of these electrode positions
according to the 10-20 international system is shown in the figure 3. In general, EEG refers
to the recording of the brain’s spontaneous electrical activity over a short period of time,
usually 20-40 minutes. Through the EEG technique evoked potentials (EP) and event-related
potentials (ERPs) are recorded. The EP involves averaging the EEG activity time-locked to
the presentation of a stimulus of some sort (visual, somatosensory, or auditory). Whereas,
ERPs refer to averaged EEG responses that are time-locked to more complex processing
of stimuli and used in cognitive science, cognitive psychology, and psychophysiological
research. Necessary information related to a part of the brain can be obtained from the signals
recorded by the corresponding electrodes placed in that part. For example, the visual cortex
is located at the caudal portion of the brain (occipital lobe), thus, the signals recorded by the
electrodes placed at the occipital lobe will provide information regarding the brain activity of
the occipital lobe caused by visual stimuli.

131EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

4 Will-be-set-by-IN-TECH

Fig. 3. Electrode mapping as per the 10-20 international system for EEG recording.

The spontaneous activity of the brain produces the signal with amplitude usually under 100
μV and a frequency ranging from little above the DC voltage up to 100 Hz. The EEG signal
is recorded from the scalp and is extracellular in nature consisting of a few individual signals
with different frequency bands, namely - delta (δ) with a frequency range of 0-3 Hz, theta (θ)
ranges from 4-7 Hz, alpha (α) varies from 8-12 Hz, beta (β) is from 12-30 Hz, and gamma (γ)
has a band of 34-100 Hz. These different signals have their own clinical implications in disease
diagnosis (Niedermeyer & Lopes da Silva, 2005).

2.2 Event information selection from the EEG
As mentioned earlier, in this work we used two approaches to extract two different signal
events from the recorded EEG signals to generate the BCS:

• In the first approach, the EEG signals were processed to extract the ERD and ERS, which
appear in the α band (8 to 12 Hz) of the EEG spectrum. These ERS and ERD are
event-related phenomena corresponding to a decrease (ERD) or an increase (ERS) in the
signal power. These phenomena can be easily visualized by observing the alpha band
power of the signal. The ERD and ERS patterns are usually associated to a decrease or to
an increase, respectively, in the level of synchrony of the underlying neuronal populations.
During the ERD and the ERS, the EEG signal changes sharply which can be detected in the
α band of the EEG spectrum.

• In the second approach, the EEG signals were processed to extract the information related
to the saccadic eye movement in the signals recorded from the occipital region of the
scalp (indicated by ’O1’ and ’O2’ in the surface view of the electrode mapping, figure 3).
Based on the work done by K. Ohno (Ohno et al., 2006), it is evident that the saccadic eye
movement is well represented in the EEG during the memory tasks prior to the actual
eye movement. These phenomena of changing EEG can be visualized by observing the
signals recorded from the ’O1’ and ’O2’ electrodes (see figure 11 for the acquired signal).
Depending on the direction of the saccade, the recording from the contralateral electrode
changes sharply in the EEG which can be detected easily in the EEG spectrum.

These sharp changes were transformed into BCS and were sent to the robotic device for its
navigation. In case of the saccade evoked EEG, refresh rate and discrimination between left
and right decisions were important, but due to our work’s scope (proof-of-principle) these
aspects were not considered.
The point to be noted here is that, the approaches discussed here (the ERS and ERD and
/ or the EEG evoked by saccadic eye movement) are proof-of-principles of a simple BMI

132
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 5

model. The choice of using these type of signals was an arbitrary decision to show the model’s
workability and thus do not impose a restriction for this BMI to use EEG signals generated
by any other phenomena that can be transformed or conditioned using sophisticated signal
processing tools to a BCS. Also, it is possible to model imaginary movement in the EEG by
means of Hidden Markov Models and coherence (Souza et al., 2010) which can also be used
in this BMI.

2.3 The e-puk mobile robot
In the BMI system, we used the e-puck (Mondada et al., 2009) mobile robot to demonstrate
the system’s workability. The e-puck is an educational desktop mobile robot developed at
the Ecole Polytechnique Fédérale de Lausanne (EPFL) for a broad exploitation in teaching
activities. The basic configuration of an e-puk contains:

• A microcontroller

• A set of sensors and actuators:
– Eight infrared (IR) proximity sensors
– A 3D accelerometer
– Three microphones
– A color CMOS camera
– Two stepper motors
– A speaker
– Eight red light emitting diodes (LED)
– A set of green LEDs
– A red front LED placed beside the camera

• A user interface containing:
– Two LEDs show the status of the battery
– An interfacing connector to an in-circuit debugger
– An infrared remote control receiver
– A classic RS232 serial interface
– A Bluetooth radio link
– A reset button

• Mechanics

The specification provided above is the basic configuration of the e-puk. There are possibilities
to extend the e-puk to perform many other tasks. Detailed information about e-puk’s design
and devices can be found at http://www.e-puck.org/index.php.
Figure 4 shows the e-puk robot’s electronic design outline and the figure 5 depicts the
mechanical architecture.

2.4 Overview of the BMI system
The figure 6 shows the schematic cartoon of the BMI system with each numbered element
representing an interface in the process of communicating to the mobile robotic device. The
number 1 in the diagram represents the EEG recording cap with the electrodes (figure 7, (a));
the signals acquired by the electrodes were sent to number 2, which represents the electrode
connector and/or multiplexer (figure 7, (b)). The multiplexed signal from each channel was
then sent to the preamplifier, (number 3 in the diagram, figure 7, (c)) where the signals were
amplified with a predefined gain and transferred to the computer for digitization at 256

133EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

4 Will-be-set-by-IN-TECH

Fig. 3. Electrode mapping as per the 10-20 international system for EEG recording.

The spontaneous activity of the brain produces the signal with amplitude usually under 100
μV and a frequency ranging from little above the DC voltage up to 100 Hz. The EEG signal
is recorded from the scalp and is extracellular in nature consisting of a few individual signals
with different frequency bands, namely - delta (δ) with a frequency range of 0-3 Hz, theta (θ)
ranges from 4-7 Hz, alpha (α) varies from 8-12 Hz, beta (β) is from 12-30 Hz, and gamma (γ)
has a band of 34-100 Hz. These different signals have their own clinical implications in disease
diagnosis (Niedermeyer & Lopes da Silva, 2005).

2.2 Event information selection from the EEG
As mentioned earlier, in this work we used two approaches to extract two different signal
events from the recorded EEG signals to generate the BCS:

• In the first approach, the EEG signals were processed to extract the ERD and ERS, which
appear in the α band (8 to 12 Hz) of the EEG spectrum. These ERS and ERD are
event-related phenomena corresponding to a decrease (ERD) or an increase (ERS) in the
signal power. These phenomena can be easily visualized by observing the alpha band
power of the signal. The ERD and ERS patterns are usually associated to a decrease or to
an increase, respectively, in the level of synchrony of the underlying neuronal populations.
During the ERD and the ERS, the EEG signal changes sharply which can be detected in the
α band of the EEG spectrum.

• In the second approach, the EEG signals were processed to extract the information related
to the saccadic eye movement in the signals recorded from the occipital region of the
scalp (indicated by ’O1’ and ’O2’ in the surface view of the electrode mapping, figure 3).
Based on the work done by K. Ohno (Ohno et al., 2006), it is evident that the saccadic eye
movement is well represented in the EEG during the memory tasks prior to the actual
eye movement. These phenomena of changing EEG can be visualized by observing the
signals recorded from the ’O1’ and ’O2’ electrodes (see figure 11 for the acquired signal).
Depending on the direction of the saccade, the recording from the contralateral electrode
changes sharply in the EEG which can be detected easily in the EEG spectrum.

These sharp changes were transformed into BCS and were sent to the robotic device for its
navigation. In case of the saccade evoked EEG, refresh rate and discrimination between left
and right decisions were important, but due to our work’s scope (proof-of-principle) these
aspects were not considered.
The point to be noted here is that, the approaches discussed here (the ERS and ERD and
/ or the EEG evoked by saccadic eye movement) are proof-of-principles of a simple BMI

132
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 5

model. The choice of using these type of signals was an arbitrary decision to show the model’s
workability and thus do not impose a restriction for this BMI to use EEG signals generated
by any other phenomena that can be transformed or conditioned using sophisticated signal
processing tools to a BCS. Also, it is possible to model imaginary movement in the EEG by
means of Hidden Markov Models and coherence (Souza et al., 2010) which can also be used
in this BMI.

2.3 The e-puk mobile robot
In the BMI system, we used the e-puck (Mondada et al., 2009) mobile robot to demonstrate
the system’s workability. The e-puck is an educational desktop mobile robot developed at
the Ecole Polytechnique Fédérale de Lausanne (EPFL) for a broad exploitation in teaching
activities. The basic configuration of an e-puk contains:

• A microcontroller

• A set of sensors and actuators:
– Eight infrared (IR) proximity sensors
– A 3D accelerometer
– Three microphones
– A color CMOS camera
– Two stepper motors
– A speaker
– Eight red light emitting diodes (LED)
– A set of green LEDs
– A red front LED placed beside the camera

• A user interface containing:
– Two LEDs show the status of the battery
– An interfacing connector to an in-circuit debugger
– An infrared remote control receiver
– A classic RS232 serial interface
– A Bluetooth radio link
– A reset button

• Mechanics

The specification provided above is the basic configuration of the e-puk. There are possibilities
to extend the e-puk to perform many other tasks. Detailed information about e-puk’s design
and devices can be found at http://www.e-puck.org/index.php.
Figure 4 shows the e-puk robot’s electronic design outline and the figure 5 depicts the
mechanical architecture.

2.4 Overview of the BMI system
The figure 6 shows the schematic cartoon of the BMI system with each numbered element
representing an interface in the process of communicating to the mobile robotic device. The
number 1 in the diagram represents the EEG recording cap with the electrodes (figure 7, (a));
the signals acquired by the electrodes were sent to number 2, which represents the electrode
connector and/or multiplexer (figure 7, (b)). The multiplexed signal from each channel was
then sent to the preamplifier, (number 3 in the diagram, figure 7, (c)) where the signals were
amplified with a predefined gain and transferred to the computer for digitization at 256

133EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

6 Will-be-set-by-IN-TECH

Fig. 4. The electronic design outline of the e-puk robot as described in Mondada et al. (2009).

Hz (number 4 in the diagram) and further process them to extract the relevant information
(either ERS/ERD or events caused by saccadic eye movement) from the raw EEG signals. The
number 5 shows the user-diagram protocol (UDP) transfer of the conditioned signal to another
computer (represented by number 6) running on Linux for generating the BCS to be sent to the
mobile robotic device. Finally these command signals were sent to the robotic device using
Bluetooth (number 7). The numbers 1 to 5 shows the processing interfaces at the upper layer
and 6 to 8 are the interfaces at the lower layer (see figure 2).

2.5 Data acquisition
The EEG signals were acquired using a four channel commercial EEG recording
device, g®.MOBIlab, manufactured by the g.tec medical engineering GmbH, Austria
(http://www.gtec.at/) as seen in figure 7. Two different configurations of channels were
used in selecting the two different signal features as listed below:

• In case of ERS/ERD: two of the four channels were used in recording simultaneous signals
from two healthy subjects skulls. One of the electrodes was placed in the ’O1’ to acquire
the EEG activity with reference to the other one placed at the ’F’ or ’FP’. The acquired EEG
signals were then processed to extract the ERS/ERD complex.

• In case of saccade related evoked potential: three out of the four channels were used during
the recording. Two of them were used in recording simultaneous signals from ’O1’ and

134
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 7

Fig. 5. The mechanical architecture of the e-puk robot as described in Mondada et al. (2009).

’O2’ and the third electrode was used as a reference, placed at ’F’ or ’FP’ position. EEG
signals recorded using the ’O1’ and ’O2’ electrodes were processed to extract the saccade
related event information.

The manufacturing body provided a module and a framework to acquire and further process
the EEG signals to extract feature information. This module was designed using Matlab
Simulink with a possibility to incorporate S-functions written in Matlab Script for signal
processing. The module worked as an interface between the recording device and the
computer used for EEG recording. It also provided a framework which was extended to suit
the necessity of on-line signal processing based on the applications. Therefore, the module
was reengineered to analyze and process the EEG signals acquired from the occipital region
of the subject. After having read the data, they were amplified with a certain gain and sent
on-the-fly to the computer for on-line processing. The figure 8 shows the schematic diagram of
the signal acquisition and processing module. The signals detected by the recording electrodes
were fed into a preamplifier, where the signals from different channels were separated and
then amplified by a predefined gain (shown as right faced triangles). These amplified signals

135EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

6 Will-be-set-by-IN-TECH

Fig. 4. The electronic design outline of the e-puk robot as described in Mondada et al. (2009).

Hz (number 4 in the diagram) and further process them to extract the relevant information
(either ERS/ERD or events caused by saccadic eye movement) from the raw EEG signals. The
number 5 shows the user-diagram protocol (UDP) transfer of the conditioned signal to another
computer (represented by number 6) running on Linux for generating the BCS to be sent to the
mobile robotic device. Finally these command signals were sent to the robotic device using
Bluetooth (number 7). The numbers 1 to 5 shows the processing interfaces at the upper layer
and 6 to 8 are the interfaces at the lower layer (see figure 2).

2.5 Data acquisition
The EEG signals were acquired using a four channel commercial EEG recording
device, g®.MOBIlab, manufactured by the g.tec medical engineering GmbH, Austria
(http://www.gtec.at/) as seen in figure 7. Two different configurations of channels were
used in selecting the two different signal features as listed below:

• In case of ERS/ERD: two of the four channels were used in recording simultaneous signals
from two healthy subjects skulls. One of the electrodes was placed in the ’O1’ to acquire
the EEG activity with reference to the other one placed at the ’F’ or ’FP’. The acquired EEG
signals were then processed to extract the ERS/ERD complex.

• In case of saccade related evoked potential: three out of the four channels were used during
the recording. Two of them were used in recording simultaneous signals from ’O1’ and

134
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 7

Fig. 5. The mechanical architecture of the e-puk robot as described in Mondada et al. (2009).

’O2’ and the third electrode was used as a reference, placed at ’F’ or ’FP’ position. EEG
signals recorded using the ’O1’ and ’O2’ electrodes were processed to extract the saccade
related event information.

The manufacturing body provided a module and a framework to acquire and further process
the EEG signals to extract feature information. This module was designed using Matlab
Simulink with a possibility to incorporate S-functions written in Matlab Script for signal
processing. The module worked as an interface between the recording device and the
computer used for EEG recording. It also provided a framework which was extended to suit
the necessity of on-line signal processing based on the applications. Therefore, the module
was reengineered to analyze and process the EEG signals acquired from the occipital region
of the subject. After having read the data, they were amplified with a certain gain and sent
on-the-fly to the computer for on-line processing. The figure 8 shows the schematic diagram of
the signal acquisition and processing module. The signals detected by the recording electrodes
were fed into a preamplifier, where the signals from different channels were separated and
then amplified by a predefined gain (shown as right faced triangles). These amplified signals

135EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

8 Will-be-set-by-IN-TECH

Fig. 6. The schematic cartoon of the Brain-machine Interface system.

(a) (b) (c)

Fig. 7. EEG acquisition devices: (a) cap with electrodes, (b) connector and/or multiplexer,
and (c) preamplifier.

from both the channels were then fed into the computer at a sampling rate of 256 Hz through
a universal serial bus (USB) port for further processing.

2.6 Processing of EEG signals and BCS generation at the upper layer
The processing of raw EEG signals acquired by the electrodes for the generation of BCS
was performed in the upper layer of the BMI flow (see figure 2). The following subsections
describe the pre-, post-processing, and extraction of event related information from the EEG.

2.6.1 Pre- and post-processing
After the detection of the EEG signals by the electrodes and before extracting the signal events
(ERS/ERD or event caused by saccadic eye movements) to generate the BCS, artifact removal
was performed on-the-fly to remove artifacts related to eye blink, cardiac rhythms, and body
movements from the signals using processes proposed in Haas et al. (2003); Rohalova et al.

136
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 9

Fig. 8. Schematic of EEG signal acquisition and conditioning process.

(2001). The power line noise (50-60 Hz components) was removed using a stop-band filter of
50 and 60 Hz.
As our targeted events changed sharply from the baseline, we implemented a dynamic
threshold based on the EEG signal’s standard deviation to detect the occurrence of an event.
A detected event denoted a high (i.e., 1) signal in the BCS, and the absence of an event was
represented by a low (i.e., 0) signal. In figure 8, the green rectangular boxes at the center
represent the signal processing steps mentioned above. These processed individual channels
were then multiplexed and sent to another computer running on Linux through an UDP port
using a crossover ethernet cable for interfacing with the robot to control it.

2.6.2 Processing for ERS/ERD
Generally, presence of a visual stimuli, i.e., when the eyes are open, the signal power in
the alpha band decreases, characterizing an ERD, and when the eyes are closed (providing
with a few or even no visual stimuli), the visual cortex is relaxed, the signal power increases
denoting an ERS. This type of potential is believed to arise from the oscillation of postsynaptic
potentials in the neocortex. Functionally, alpha wave has been interpreted as an idling rhythm
that diminishes when eyes are opened or during mental activity. It is not clear whether
alpha rhythms are pure noise or the product of chaotic processes, nor whether there are
distinct generators of alpha activity (Laufs et al., 2003). The detected and artifact removed
EEG signals were continuously scanned for occurrence of ERD/ERS to isolate them with a
high signal-to-noise-ratio (SNR). An important issue in the EEG based signal processing was
that, the levels of EEG change very often, therefore, a calibration step was required to detect
the basic ERS/ERD level or baseline before sending the signals to the robotic device. To extract
only the alpha wave, the recorded EEG signals were filtered through an on-line band-pass
filter with pass-band and stop-band cutoff frequencies as 8 Hz and 12 Hz respectively.
Through this filtering all kind of artifacts were removed from the EEG leaving only the clean
alpha wave containing the ERD and the ERS. Finally, using the dynamic threshold the BCS
was generated.

137EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

8 Will-be-set-by-IN-TECH

Fig. 6. The schematic cartoon of the Brain-machine Interface system.

(a) (b) (c)

Fig. 7. EEG acquisition devices: (a) cap with electrodes, (b) connector and/or multiplexer,
and (c) preamplifier.

from both the channels were then fed into the computer at a sampling rate of 256 Hz through
a universal serial bus (USB) port for further processing.

2.6 Processing of EEG signals and BCS generation at the upper layer
The processing of raw EEG signals acquired by the electrodes for the generation of BCS
was performed in the upper layer of the BMI flow (see figure 2). The following subsections
describe the pre-, post-processing, and extraction of event related information from the EEG.

2.6.1 Pre- and post-processing
After the detection of the EEG signals by the electrodes and before extracting the signal events
(ERS/ERD or event caused by saccadic eye movements) to generate the BCS, artifact removal
was performed on-the-fly to remove artifacts related to eye blink, cardiac rhythms, and body
movements from the signals using processes proposed in Haas et al. (2003); Rohalova et al.

136
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 9

Fig. 8. Schematic of EEG signal acquisition and conditioning process.

(2001). The power line noise (50-60 Hz components) was removed using a stop-band filter of
50 and 60 Hz.
As our targeted events changed sharply from the baseline, we implemented a dynamic
threshold based on the EEG signal’s standard deviation to detect the occurrence of an event.
A detected event denoted a high (i.e., 1) signal in the BCS, and the absence of an event was
represented by a low (i.e., 0) signal. In figure 8, the green rectangular boxes at the center
represent the signal processing steps mentioned above. These processed individual channels
were then multiplexed and sent to another computer running on Linux through an UDP port
using a crossover ethernet cable for interfacing with the robot to control it.

2.6.2 Processing for ERS/ERD
Generally, presence of a visual stimuli, i.e., when the eyes are open, the signal power in
the alpha band decreases, characterizing an ERD, and when the eyes are closed (providing
with a few or even no visual stimuli), the visual cortex is relaxed, the signal power increases
denoting an ERS. This type of potential is believed to arise from the oscillation of postsynaptic
potentials in the neocortex. Functionally, alpha wave has been interpreted as an idling rhythm
that diminishes when eyes are opened or during mental activity. It is not clear whether
alpha rhythms are pure noise or the product of chaotic processes, nor whether there are
distinct generators of alpha activity (Laufs et al., 2003). The detected and artifact removed
EEG signals were continuously scanned for occurrence of ERD/ERS to isolate them with a
high signal-to-noise-ratio (SNR). An important issue in the EEG based signal processing was
that, the levels of EEG change very often, therefore, a calibration step was required to detect
the basic ERS/ERD level or baseline before sending the signals to the robotic device. To extract
only the alpha wave, the recorded EEG signals were filtered through an on-line band-pass
filter with pass-band and stop-band cutoff frequencies as 8 Hz and 12 Hz respectively.
Through this filtering all kind of artifacts were removed from the EEG leaving only the clean
alpha wave containing the ERD and the ERS. Finally, using the dynamic threshold the BCS
was generated.

137EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

10 Will-be-set-by-IN-TECH

2.6.3 Processing for saccadic events
To extract the events from the EEG signals related to the saccadic activity, both the channels
signals were filtered using a band-pass filter with the low-pass and high-pass cut-off
frequencies as 15 Hz and 100 Hz, respectively. This filtering eliminated the possibility of
recording the alpha wave generated by the occipital region of the brain. Then the signals
were scanned for the occurrence of the sharp change in their amplitude using the dynamic
threshold mentioned earlier. The system was trained before the actual experiment due to
the signal variability from person to person. This threshold got renewed every 100 ms by
calculating the ratio between the usual electrical activity and the existing threshold.

2.7 Interfacing with the robotic device at the lower layer
At the lower layer of the BMI system, interfacing with the robotic device was performed
through processing of the BCS (see figure 2). To process the BCS and to command the robotic
device an open source software named ’IQR’ (Bernardet et al., 2002; Bernardet & Verschure,
2010) was used. The IQR provides a flexible platform for simulating large scale neural
networks and developing robust applications to interface with robotic devices. Using
this software it is possible to design large scale neuronal populations, interconnect these
populations, and control their activation or inactivation by providing excitatory or inhibitory
synapses.
To achieve our goal of steering wheels of the robotic device (number 8 in schematic diagram
of figure 6) using the BCS (i.e., the extracted information from the EEG, ERS/ERD or saccadic
events), three modules were developed in the IQR as shown in figure 9 (a), (b), and (c).
As seen in figure 9 (a), two main processes were designed to receive the BCS coming from
the UDP port (’simulink IN’ process) and sending a command to the mobile robot (’Robot’
process). These processes (figure 9 (b) and (c)) were carefully designed, each with a number of
neuronal populations creating a neuronal network to perform the desired task . The ’Simulink
IN’ process received the binary control signals from each EEG channel in the upper layer
(indicated by the ’M’ and an inward arrow to the square boxes in figure 9 (c)); on the other
hand, the ’Robot’ process was designed to control the movement of the robot’s wheels (the
communication with the mobile robotic device is indicated by the outward arrow and ’M’ at
the bottom square box of figure 9 (b)). Due to the binary control signals’ binary nature they
were used to act as synapse, either excitatory or inhibitory, to make a population of neurons
active or inactive.
The ’Simulink IN’ process contained two neuronal populations: ’Channel 1’ and ’Channel 2’.
’Channel 1’ neuronal population received the input from one EEG channel and ’Channel 2’
from the other. The main purpose of this process was to continuously scan the BCS and send
the relevant synaptic signal (high in case of a 1 and no synapse in case of a 0) to the ’Robot’
process to communicate with the mobile robotic device.
The ’Robot’ process was designed to communicate and command the robotic device. This
was done by five neuronal populations (as seen in figure 9 (b)). These neuronal populations
were connected, as required, using excitatory and inhibitory connections to form a network
capable of driving the robotic device. The five populations were to perform their predefined
tasks based on the input they received from the ’Simulink IN’ process. The name and purpose
of the neuronal populations are:

• Motor: This neuronal population represented and communicated with the motor of the
robotic device. The robotic device was mainly commanded using this neuronal population.

• Left Wheel: This neuronal population received input from the ’Channel 1’ and was
connected to three other populations. It was mainly responsible to make the left wheel
to move forward.

138
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 11

(a)

(b)

(c)

Fig. 9. IQR modules for generating and commanding the robotic device. The square boxes
represent neuronal populations and the lines represent connectivity between two
populations. The excitatory and inhibitory connections are shown using red and blue lines,
respectively.

• Right Wheel: Contrarily, this neuronal population received input from the ’Channel 2’ and
was mainly responsible for the right wheel’s forward movement. This was also connected
to three other neuronal populations.

• FWD: This neuronal population represented the combined movement of the left and the
right wheels. When a synapse was made to the ’motor’ neuronal population, both the
wheels would move forward.

• Robot’s Will: This neuronal population represented the robot’s will to move, thus, always
provided high synapses to the population it was connected to (i.e., ’FWD’).

At rest (when there was no input), the ’Robot’s will’ neuronal population constantly generated
excitatory synapse to the ’Motor’ through the ’FWD’ neuronal population that kept the robotic
device moving forward. However, to enable turning of the robotic device, the input control

139EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

10 Will-be-set-by-IN-TECH

2.6.3 Processing for saccadic events
To extract the events from the EEG signals related to the saccadic activity, both the channels
signals were filtered using a band-pass filter with the low-pass and high-pass cut-off
frequencies as 15 Hz and 100 Hz, respectively. This filtering eliminated the possibility of
recording the alpha wave generated by the occipital region of the brain. Then the signals
were scanned for the occurrence of the sharp change in their amplitude using the dynamic
threshold mentioned earlier. The system was trained before the actual experiment due to
the signal variability from person to person. This threshold got renewed every 100 ms by
calculating the ratio between the usual electrical activity and the existing threshold.

2.7 Interfacing with the robotic device at the lower layer
At the lower layer of the BMI system, interfacing with the robotic device was performed
through processing of the BCS (see figure 2). To process the BCS and to command the robotic
device an open source software named ’IQR’ (Bernardet et al., 2002; Bernardet & Verschure,
2010) was used. The IQR provides a flexible platform for simulating large scale neural
networks and developing robust applications to interface with robotic devices. Using
this software it is possible to design large scale neuronal populations, interconnect these
populations, and control their activation or inactivation by providing excitatory or inhibitory
synapses.
To achieve our goal of steering wheels of the robotic device (number 8 in schematic diagram
of figure 6) using the BCS (i.e., the extracted information from the EEG, ERS/ERD or saccadic
events), three modules were developed in the IQR as shown in figure 9 (a), (b), and (c).
As seen in figure 9 (a), two main processes were designed to receive the BCS coming from
the UDP port (’simulink IN’ process) and sending a command to the mobile robot (’Robot’
process). These processes (figure 9 (b) and (c)) were carefully designed, each with a number of
neuronal populations creating a neuronal network to perform the desired task . The ’Simulink
IN’ process received the binary control signals from each EEG channel in the upper layer
(indicated by the ’M’ and an inward arrow to the square boxes in figure 9 (c)); on the other
hand, the ’Robot’ process was designed to control the movement of the robot’s wheels (the
communication with the mobile robotic device is indicated by the outward arrow and ’M’ at
the bottom square box of figure 9 (b)). Due to the binary control signals’ binary nature they
were used to act as synapse, either excitatory or inhibitory, to make a population of neurons
active or inactive.
The ’Simulink IN’ process contained two neuronal populations: ’Channel 1’ and ’Channel 2’.
’Channel 1’ neuronal population received the input from one EEG channel and ’Channel 2’
from the other. The main purpose of this process was to continuously scan the BCS and send
the relevant synaptic signal (high in case of a 1 and no synapse in case of a 0) to the ’Robot’
process to communicate with the mobile robotic device.
The ’Robot’ process was designed to communicate and command the robotic device. This
was done by five neuronal populations (as seen in figure 9 (b)). These neuronal populations
were connected, as required, using excitatory and inhibitory connections to form a network
capable of driving the robotic device. The five populations were to perform their predefined
tasks based on the input they received from the ’Simulink IN’ process. The name and purpose
of the neuronal populations are:

• Motor: This neuronal population represented and communicated with the motor of the
robotic device. The robotic device was mainly commanded using this neuronal population.

• Left Wheel: This neuronal population received input from the ’Channel 1’ and was
connected to three other populations. It was mainly responsible to make the left wheel
to move forward.

138
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 11

(a)

(b)

(c)

Fig. 9. IQR modules for generating and commanding the robotic device. The square boxes
represent neuronal populations and the lines represent connectivity between two
populations. The excitatory and inhibitory connections are shown using red and blue lines,
respectively.

• Right Wheel: Contrarily, this neuronal population received input from the ’Channel 2’ and
was mainly responsible for the right wheel’s forward movement. This was also connected
to three other neuronal populations.

• FWD: This neuronal population represented the combined movement of the left and the
right wheels. When a synapse was made to the ’motor’ neuronal population, both the
wheels would move forward.

• Robot’s Will: This neuronal population represented the robot’s will to move, thus, always
provided high synapses to the population it was connected to (i.e., ’FWD’).

At rest (when there was no input), the ’Robot’s will’ neuronal population constantly generated
excitatory synapse to the ’Motor’ through the ’FWD’ neuronal population that kept the robotic
device moving forward. However, to enable turning of the robotic device, the input control

139EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

12 Will-be-set-by-IN-TECH

signals from the channels were fed to the neuronal populations representing the wheels.
These two populations were connected to the ’Motor’ which controlled the movement of
the individual wheels. Each time a neuronal population corresponding to a wheel fired:
an excitatory synapse was sent to the ’Motor’, an inhibitory synapse to the other wheel
inactivating that wheel’s activity, and another inhibitory synapse to the ’FWD’ neuronal
population making the physical stepper motor to stop working for the previous command
and to get ready to process the new command.

Move forward

Move forward

Stop Right wheel

Start stopped wheel

Stop Left wheel

Robot’s will

Control
Signal (CS)

?

CH1 (LW)
or CH2 (RW)

?

still
CH1CS?

Yes

Yes Yes

No

No No

Move Left wheel
forward

Move Right wheel
forward

 CS from Channel 1/
Left wheel

CS from Channel 2/
Right wheel

still
CH 2CS?

A

A

Fig. 10. Flowchart of the IQR modules’ communication for the robotic device’s navigation.

The Figure 10 depicts the flowchart of the IQR modules’ communication strategy for the
robotic device’s navigation. As explained earlier, at the beginning the robotic device kept
on moving in the forward direction and waited for a command. Once a neuronal population
corresponding to a wheel received a synaptic input, based on the channel from where it was
generated, the wheel corresponding to the other channel was stopped and the forward driving
motor was initiated for the wheel corresponding to the control signal generating channel. This
operation caused the robot to take a turn (right or left) based on the received control signal.
During the turn the robot constantly scanned for continuation of high control signal (i.e., a

140
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 13

stream of continuous 1s) and once the control signal was low (i.e., 0), the stopped wheel was
restarted thus continuing the forward movement.
For instance, let us assume that the ’Left wheel’ neuronal population received a synaptic input.
This inactivated the ’Right wheel’ and the ’FWD’ neuronal populations through inhibitory
synapses, and activated the ’Motor’ neuronal population by an excitatory synapse; as a result,
the right wheel was stopped, but the left wheel kept on rotating allowing the robotic device
to turn right. Therefore, a synapse from a wheel was required to stop the other wheel to steer
the robotic device to follow a predefined course by taking a left and a right turn.

3. Discussion

The BMI model was thoroughly tested with EEG signals containing both the event evoked
responses (ERD/ERS and events caused by saccadic eye movement). As an example of the
BMI system’s workability, here we demonstrate it using the event information caused by
the saccadic eye movements. The ERD/ERS based interfacing can be found in a previous
publication (Mahmud et al., 2009).

Fig. 11. Signals recorded by EOG and ’O1’, ’O2’ electrodes of the EEG from one subject while
performing the saccadic movement during an experiment.

Healthy subjects were plugged in with the necessary equipments of EEG signal detection
(see figure 7). The recorded and artifact removed EEG signals related to the saccadic eye
movement is shown in figure 11. The saccadic movement direction of the subject was clearly
reflected through sharp changes of amplitudes in the recorded signals from the contralateral
electrodes. The dynamic threshold detected this sharp change and generated the controls

141EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

12 Will-be-set-by-IN-TECH

signals from the channels were fed to the neuronal populations representing the wheels.
These two populations were connected to the ’Motor’ which controlled the movement of
the individual wheels. Each time a neuronal population corresponding to a wheel fired:
an excitatory synapse was sent to the ’Motor’, an inhibitory synapse to the other wheel
inactivating that wheel’s activity, and another inhibitory synapse to the ’FWD’ neuronal
population making the physical stepper motor to stop working for the previous command
and to get ready to process the new command.

Move forward

Move forward

Stop Right wheel

Start stopped wheel

Stop Left wheel

Robot’s will

Control
Signal (CS)

?

CH1 (LW)
or CH2 (RW)

?

still
CH1CS?

Yes

Yes Yes

No

No No

Move Left wheel
forward

Move Right wheel
forward

 CS from Channel 1/
Left wheel

CS from Channel 2/
Right wheel

still
CH 2CS?

A

A

Fig. 10. Flowchart of the IQR modules’ communication for the robotic device’s navigation.

The Figure 10 depicts the flowchart of the IQR modules’ communication strategy for the
robotic device’s navigation. As explained earlier, at the beginning the robotic device kept
on moving in the forward direction and waited for a command. Once a neuronal population
corresponding to a wheel received a synaptic input, based on the channel from where it was
generated, the wheel corresponding to the other channel was stopped and the forward driving
motor was initiated for the wheel corresponding to the control signal generating channel. This
operation caused the robot to take a turn (right or left) based on the received control signal.
During the turn the robot constantly scanned for continuation of high control signal (i.e., a

140
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 13

stream of continuous 1s) and once the control signal was low (i.e., 0), the stopped wheel was
restarted thus continuing the forward movement.
For instance, let us assume that the ’Left wheel’ neuronal population received a synaptic input.
This inactivated the ’Right wheel’ and the ’FWD’ neuronal populations through inhibitory
synapses, and activated the ’Motor’ neuronal population by an excitatory synapse; as a result,
the right wheel was stopped, but the left wheel kept on rotating allowing the robotic device
to turn right. Therefore, a synapse from a wheel was required to stop the other wheel to steer
the robotic device to follow a predefined course by taking a left and a right turn.

3. Discussion

The BMI model was thoroughly tested with EEG signals containing both the event evoked
responses (ERD/ERS and events caused by saccadic eye movement). As an example of the
BMI system’s workability, here we demonstrate it using the event information caused by
the saccadic eye movements. The ERD/ERS based interfacing can be found in a previous
publication (Mahmud et al., 2009).

Fig. 11. Signals recorded by EOG and ’O1’, ’O2’ electrodes of the EEG from one subject while
performing the saccadic movement during an experiment.

Healthy subjects were plugged in with the necessary equipments of EEG signal detection
(see figure 7). The recorded and artifact removed EEG signals related to the saccadic eye
movement is shown in figure 11. The saccadic movement direction of the subject was clearly
reflected through sharp changes of amplitudes in the recorded signals from the contralateral
electrodes. The dynamic threshold detected this sharp change and generated the controls

141EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

14 Will-be-set-by-IN-TECH

Fig. 12. Navigation result of the robotic device during an experiment to follow a predefined
course.

signals which in turn triggered the activation / inactivation of particular neuronal populations
by providing an excitatory / inhibitory synapses for taking a turn. The excitatory synapse
from the forward movement neuronal population kept the robot moving forward; to turn the
robotic device left, the left wheel was stopped through an inhibitory synapse generated by
the right wheel neuronal population, and vice-versa for a right turn. A combination of these
saccadic movements can guide the robot to follow a predefined course, as seen in the figure
12.
The time course analysis of the robot’s movement was not performed during the experiments.
However, the robot could move at a speed of 13.816 cm/s, and in an ideal situation it could
travel a 1 m straight path in around 8 s 1.

4. Conclusion

This Brain-machine interface based on the EEG demonstrated here is a proof-of-principle
to reduce the complexity that is gradually prevailing upon the very potential field of
rehabilitation. By applying this technique it is possible to provide mobility to the people with
motor dysfunction. The system was tested thoroughly using ERD/ERS events of the α and

1 Each wheel of the e-puk had a diameter of 41 mm and the stepper motor could rotate 1000 steps/s
denoting a single revolution of a wheel (http://www.e-puck.org/index.php).

142
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 15

the events caused by the saccadic eye movement. However, the usage of saccade evoked EEG
signals in this work is just to demonstrate the proposed model’s workability. It is very much
possible to adapt and extend the BMI model to use any other type of signal (voluntary or
involuntary) through proper signal processing techniques capable of transforming the input
signal to a binary decision signal. The work in progress is to extend this technique to control
assistive robotic devices (e.g., robotic wheelchair) for the disabled.

5. References

Bernardet, U., Blanchard, M. & Verschure, P. (2002). Iqr: a distributed system for real-time
real-world neuronal simulation, Neurocomputing 44(46): 1043–1048.

Bernardet, U. & Verschure, P. (2010). iqr: A tool for the construction of multi-level simulations
of brain and behaviour, Neurocomputing 8(2): 113–134.

Cheein, F. & Postigo, J. (2005). A fast finite state machine design for a brain computer interface,
Proceedings of the XI Reunion de Trabajo en Processamiento de la Informacion y Control,
Argentina.

Fatourechi, M. (2008). Design of a self-paced brain computer interface system using features
extracted from three neurological phenomena, Ph.D. Dissertation, The University of
British Colombia, Canada.

Ferreira, A., Celeste, W., Cheein, F., Bastos-Filho, T., Sarcinelli-Filho, M. & Carelli, R. (2008).
Human-machine interfaces based on emg and eeg applied to robotic systems, Journal
of NeuroEngineering and Rehabilitation 5(1): 10.

Haas, S., Frei, M., Osorio, I., Pasik-Duncan, B. & Radel, J. (2003). Eeg ocular artifact
removal through armax model system identification using extended least squares,
Communications in Information and Systems 3: 19–40.

Laufs, H., Kleinschmidta, A., Beyerlea, A., Egera, E., Salek-Haddadib, A., C., P. & Krakow, K.
(2003). Eeg-correlated fmri of human alpha activity, NeuroImage 19(4): 1463–1476.

Mahmud, M., Hawellek, D. & Bertoldo, A. (2010). Eeg based brain-machine interface for
navigation of robotic device, Proceedings of the 3rd IEEE/RAS-EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob2010), Tokyo, Japan,
pp. 168–172.

Mahmud, M., Hawellek, D. & Valjamae, A. (2009). A brain-machine interface based on
eeg: extracted alpha waved applied to mobile robot, Proceedings of the 2009 ECSIS
Symposium on Advanced Technologies for Enhanced Quality of Life (AT-EQUAL 2009),
Iasi, Romania, pp. 28–31.

Mason, S. & Birch, G. (2003). A general framework for brain-computer interface design, IEEE
Trans. Neural Syst. Rehabil. Eng. 11(1): 70–85.

Millán, J., Renkens, F., Mouriño, J. & W., G. (2003). Non-invasive brain-actuated control
of a mobile robot, Proceedings of the 18th International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, pp. 1121–1126.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey,
J., Floreano, D. & Martinoli, A. (2009). The e-puck, a robot designed for education
in engineering, Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions, Castelo Branco, Portugal, pp. 59–65.

Moon, I., Lee, M., Chu, J. & M., M. (2005). Wearable emg-based hci for electric-powered
wheelchair users with motor disabilities, Proceedings of 2005 IEEE International
Conference on Robotics and Automation (ICRA 2005), Barcelona, Spain, pp. 2649–2654.

Mourino, J. (2003). EEG-based analysis for the design of adaptive brain interfaces, Ph.D.
Dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.

143EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

14 Will-be-set-by-IN-TECH

Fig. 12. Navigation result of the robotic device during an experiment to follow a predefined
course.

signals which in turn triggered the activation / inactivation of particular neuronal populations
by providing an excitatory / inhibitory synapses for taking a turn. The excitatory synapse
from the forward movement neuronal population kept the robot moving forward; to turn the
robotic device left, the left wheel was stopped through an inhibitory synapse generated by
the right wheel neuronal population, and vice-versa for a right turn. A combination of these
saccadic movements can guide the robot to follow a predefined course, as seen in the figure
12.
The time course analysis of the robot’s movement was not performed during the experiments.
However, the robot could move at a speed of 13.816 cm/s, and in an ideal situation it could
travel a 1 m straight path in around 8 s 1.

4. Conclusion

This Brain-machine interface based on the EEG demonstrated here is a proof-of-principle
to reduce the complexity that is gradually prevailing upon the very potential field of
rehabilitation. By applying this technique it is possible to provide mobility to the people with
motor dysfunction. The system was tested thoroughly using ERD/ERS events of the α and

1 Each wheel of the e-puk had a diameter of 41 mm and the stepper motor could rotate 1000 steps/s
denoting a single revolution of a wheel (http://www.e-puck.org/index.php).

142
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device 15

the events caused by the saccadic eye movement. However, the usage of saccade evoked EEG
signals in this work is just to demonstrate the proposed model’s workability. It is very much
possible to adapt and extend the BMI model to use any other type of signal (voluntary or
involuntary) through proper signal processing techniques capable of transforming the input
signal to a binary decision signal. The work in progress is to extend this technique to control
assistive robotic devices (e.g., robotic wheelchair) for the disabled.

5. References

Bernardet, U., Blanchard, M. & Verschure, P. (2002). Iqr: a distributed system for real-time
real-world neuronal simulation, Neurocomputing 44(46): 1043–1048.

Bernardet, U. & Verschure, P. (2010). iqr: A tool for the construction of multi-level simulations
of brain and behaviour, Neurocomputing 8(2): 113–134.

Cheein, F. & Postigo, J. (2005). A fast finite state machine design for a brain computer interface,
Proceedings of the XI Reunion de Trabajo en Processamiento de la Informacion y Control,
Argentina.

Fatourechi, M. (2008). Design of a self-paced brain computer interface system using features
extracted from three neurological phenomena, Ph.D. Dissertation, The University of
British Colombia, Canada.

Ferreira, A., Celeste, W., Cheein, F., Bastos-Filho, T., Sarcinelli-Filho, M. & Carelli, R. (2008).
Human-machine interfaces based on emg and eeg applied to robotic systems, Journal
of NeuroEngineering and Rehabilitation 5(1): 10.

Haas, S., Frei, M., Osorio, I., Pasik-Duncan, B. & Radel, J. (2003). Eeg ocular artifact
removal through armax model system identification using extended least squares,
Communications in Information and Systems 3: 19–40.

Laufs, H., Kleinschmidta, A., Beyerlea, A., Egera, E., Salek-Haddadib, A., C., P. & Krakow, K.
(2003). Eeg-correlated fmri of human alpha activity, NeuroImage 19(4): 1463–1476.

Mahmud, M., Hawellek, D. & Bertoldo, A. (2010). Eeg based brain-machine interface for
navigation of robotic device, Proceedings of the 3rd IEEE/RAS-EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob2010), Tokyo, Japan,
pp. 168–172.

Mahmud, M., Hawellek, D. & Valjamae, A. (2009). A brain-machine interface based on
eeg: extracted alpha waved applied to mobile robot, Proceedings of the 2009 ECSIS
Symposium on Advanced Technologies for Enhanced Quality of Life (AT-EQUAL 2009),
Iasi, Romania, pp. 28–31.

Mason, S. & Birch, G. (2003). A general framework for brain-computer interface design, IEEE
Trans. Neural Syst. Rehabil. Eng. 11(1): 70–85.

Millán, J., Renkens, F., Mouriño, J. & W., G. (2003). Non-invasive brain-actuated control
of a mobile robot, Proceedings of the 18th International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, pp. 1121–1126.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey,
J., Floreano, D. & Martinoli, A. (2009). The e-puck, a robot designed for education
in engineering, Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions, Castelo Branco, Portugal, pp. 59–65.

Moon, I., Lee, M., Chu, J. & M., M. (2005). Wearable emg-based hci for electric-powered
wheelchair users with motor disabilities, Proceedings of 2005 IEEE International
Conference on Robotics and Automation (ICRA 2005), Barcelona, Spain, pp. 2649–2654.

Mourino, J. (2003). EEG-based analysis for the design of adaptive brain interfaces, Ph.D.
Dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.

143EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device

16 Will-be-set-by-IN-TECH

Niedermeyer, E. & Lopes da Silva, F. (2005). Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields, Lippincott Williams & Wilkins, Philadelphia, USA.

Ohno, K., Funase, A., Cichocki, A. & Takumi, I. (2006). Analysis of eeg signals in memory
guided saccade tasks, IFMBE Proceedings of World Congress on Medical Physics and
Biomedical Engineering, COEX Seoul, Korea, pp. 2664–2667.

Pfurtscheller, G. & daSilva, F. (1999). Event - related eeg / meg synchronization and
desynchronization: basic principles, Clinical Neurophysiology 110(11): 1842–1857.

Rani, P. & Sarkar, M. (2005). Emg-based high level human-robot interaction system for people
with disability, Proceedings of 2005 IEEE International Workshop on Robot and Human
Interactive Communication (ROMAN 2005), Nashville, Tennessee, USA, pp. 280–285.

Rohalova, M., Sykacek, P., Koska, M. & Dorffner, G. (2001). Detection of the eeg artifacts by
the means of the (extended) kalman filter, Measurement Science Review 1: 59–62.

Souza, A., Santos-Filho, S., Xavier, P., Felix, L., Maia, C. & Tierra-Crioulo, C. (2010). Modeling
movement and imaginary movement eeg by means of hidden markov models and
coherence, Proceedings of the ISSNIP Biosignals and Biorobotics Conference (BRC2010),
Vitoria, Brazil, pp. 86–91.

Vaughan, T., Heetderks, W., Trejo, L., Rymer, W., Weinrich, M., Moore, M., Kübler, A., Dobkin,
B., Birbaumer, N., Donchin, E., Wolpaw, E. & Wolpaw, J. (2003). Brain-computer
interface technology: a review of the second international meeting, IEEE Trans. Neural
Syst. Rehabil. Eng. 11(2): 94–109.

144
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

7

Bioartificial Brains and Mobile Robots
Antonio Novellino1, Michela Chiappalone2, Jacopo Tessadori2,

Paolo D’Angelo1, Enrico Defranchi1 and Sergio Martinoia2,3
1ETT S.r.l.,

2Italian Institute of Technology,
3Dept. Electronics and Biophysical Engineering – University of Genova,

 Italy

1. Introduction
The growth in neuroscience discoveries continues to be explosive, with new frontiers being
reached every year in the understanding of new principles of the central and peripheral
nervous system (CNS and PNS), in the interplay between structure and function at different
scales (from molecules to behavior), and with the introduction of new technologies for
direct transfer of information between natural neuronal systems and artificial devices.
Rapid advances in biomedical engineering and computer science are producing the
methodologies required for predictive models of neural function that can interact with the
brain in real time. The continuous achievements in microelectronics that allow ever-greater
circuitry miniaturization together with increased speed and computational capacity are
providing the next-generation hardware platforms for neuroprostheses and Brain Computer
Interfaces (BCIs) or Brain Machine Interfaces (BMIs). On the other hand, in the last ten years,
demonstrations of direct, real-time interfaces between living brain tissues and artificial
devices, such as computer cursors, robots and mechanical prostheses, have opened new
avenues for experimental and clinical investigations (Nicolelis and Lebedev, 2009). Interest
in these BMIs has been kindled by the contribution that they may make to the treatment or
rehabilitation of patients suffering from severe motor disabilities (Daly and Wolpaw, 2008;
Hatsopoulos and Donoghue, 2009). When motor pathways fail, BMIs offer a physical bridge
for movement intention to reach the external world (Donoghue, 2008). The first
experimental demonstration that ensemble of cortical neurons could directly control a
robotic manipulator was given in 1999 by the group of M. Nicolelis at the Duke University
(USA) (Chapin et al., 1999). Since then, a continuous stream of research papers in the BMI
field came out. Many groups (Nicolelis and Chapin, 2002; Taylor et al., 2002; Andersen et al.,
2004; Schwartz, 2004; Hochberg et al., 2006; Velliste et al., 2008) have successfully shown the
possibility of using cortical signals, recorded from different subjects, like rats, monkeys or
humans, to move an artificial effector and, in these systems, the feedback was constituted by
vision, tactile information and proprioception. BMIs have also been recently used as a tool
for studying neural processing of information (Nicolelis and Lebedev, 2009). Nevertheless
the limitations arising from the reduced possibility of a full control and observation of the
system do not allow a systematic study on how information is processed and transmitted
within and among cell-assemblies.

16 Will-be-set-by-IN-TECH

Niedermeyer, E. & Lopes da Silva, F. (2005). Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields, Lippincott Williams & Wilkins, Philadelphia, USA.

Ohno, K., Funase, A., Cichocki, A. & Takumi, I. (2006). Analysis of eeg signals in memory
guided saccade tasks, IFMBE Proceedings of World Congress on Medical Physics and
Biomedical Engineering, COEX Seoul, Korea, pp. 2664–2667.

Pfurtscheller, G. & daSilva, F. (1999). Event - related eeg / meg synchronization and
desynchronization: basic principles, Clinical Neurophysiology 110(11): 1842–1857.

Rani, P. & Sarkar, M. (2005). Emg-based high level human-robot interaction system for people
with disability, Proceedings of 2005 IEEE International Workshop on Robot and Human
Interactive Communication (ROMAN 2005), Nashville, Tennessee, USA, pp. 280–285.

Rohalova, M., Sykacek, P., Koska, M. & Dorffner, G. (2001). Detection of the eeg artifacts by
the means of the (extended) kalman filter, Measurement Science Review 1: 59–62.

Souza, A., Santos-Filho, S., Xavier, P., Felix, L., Maia, C. & Tierra-Crioulo, C. (2010). Modeling
movement and imaginary movement eeg by means of hidden markov models and
coherence, Proceedings of the ISSNIP Biosignals and Biorobotics Conference (BRC2010),
Vitoria, Brazil, pp. 86–91.

Vaughan, T., Heetderks, W., Trejo, L., Rymer, W., Weinrich, M., Moore, M., Kübler, A., Dobkin,
B., Birbaumer, N., Donchin, E., Wolpaw, E. & Wolpaw, J. (2003). Brain-computer
interface technology: a review of the second international meeting, IEEE Trans. Neural
Syst. Rehabil. Eng. 11(2): 94–109.

144
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

7

Bioartificial Brains and Mobile Robots
Antonio Novellino1, Michela Chiappalone2, Jacopo Tessadori2,

Paolo D’Angelo1, Enrico Defranchi1 and Sergio Martinoia2,3
1ETT S.r.l.,

2Italian Institute of Technology,
3Dept. Electronics and Biophysical Engineering – University of Genova,

 Italy

1. Introduction
The growth in neuroscience discoveries continues to be explosive, with new frontiers being
reached every year in the understanding of new principles of the central and peripheral
nervous system (CNS and PNS), in the interplay between structure and function at different
scales (from molecules to behavior), and with the introduction of new technologies for
direct transfer of information between natural neuronal systems and artificial devices.
Rapid advances in biomedical engineering and computer science are producing the
methodologies required for predictive models of neural function that can interact with the
brain in real time. The continuous achievements in microelectronics that allow ever-greater
circuitry miniaturization together with increased speed and computational capacity are
providing the next-generation hardware platforms for neuroprostheses and Brain Computer
Interfaces (BCIs) or Brain Machine Interfaces (BMIs). On the other hand, in the last ten years,
demonstrations of direct, real-time interfaces between living brain tissues and artificial
devices, such as computer cursors, robots and mechanical prostheses, have opened new
avenues for experimental and clinical investigations (Nicolelis and Lebedev, 2009). Interest
in these BMIs has been kindled by the contribution that they may make to the treatment or
rehabilitation of patients suffering from severe motor disabilities (Daly and Wolpaw, 2008;
Hatsopoulos and Donoghue, 2009). When motor pathways fail, BMIs offer a physical bridge
for movement intention to reach the external world (Donoghue, 2008). The first
experimental demonstration that ensemble of cortical neurons could directly control a
robotic manipulator was given in 1999 by the group of M. Nicolelis at the Duke University
(USA) (Chapin et al., 1999). Since then, a continuous stream of research papers in the BMI
field came out. Many groups (Nicolelis and Chapin, 2002; Taylor et al., 2002; Andersen et al.,
2004; Schwartz, 2004; Hochberg et al., 2006; Velliste et al., 2008) have successfully shown the
possibility of using cortical signals, recorded from different subjects, like rats, monkeys or
humans, to move an artificial effector and, in these systems, the feedback was constituted by
vision, tactile information and proprioception. BMIs have also been recently used as a tool
for studying neural processing of information (Nicolelis and Lebedev, 2009). Nevertheless
the limitations arising from the reduced possibility of a full control and observation of the
system do not allow a systematic study on how information is processed and transmitted
within and among cell-assemblies.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

146

On the contrary, cultured cells or tissue allow for a proper control and observation of the
phenomena taking place at cellular and cell-assembly levels but lack of an actual
physiological situation in which the brain has a body and the body can interact with a
specific environment. Since behavior emerges from complicate interactions of the nervous
system with the body and the environment (Chiel and Beer, 1997), “embodiment” and
“situatedness” are likely to be crucial in studying the mechanisms of sensory information
processing, control and adaptation in living systems. For these reasons, closed-loop systems
interfacing nerve cells to external devices have been used as an electrophysiological tool for
studying adaptation and coding properties (Reger et al., 2000; DeMarse et al., 2001). More
precisely, this framework allows to study interactions within cells and cell assemblies and to
investigate the cellular and population mechanisms underlying learning and memory.
These mechanisms can be studied at different complexity levels. Networks of cultured
neurons coupled to Micro Electrode Arrays (MEA) represent a kind of intermediate level
where the control over the system is high and where it is possible to study universals of
learning and memory, regardless of specific realizations (Marom and Shahaf, 2002). It
should be noted that this neural preparation is an extremely simplified model of the brain:
first of all it has a bi-dimensional structure, in spite of tri-dimensional brain organization;
furthermore neural cells are dissociated and they re-organize autonomously even if they
preserve functional synaptic interconnections. Nonetheless, the general morphological and
physiological properties of the cell populations in culture correspond closely to the features
of the original tissue (Shahaf and Marom, 2001).
Following the “embodied neurophysiology” approach, we interfaced a mobile robot with a
population of neurons, extracted from rat embryos and cultured over a MEA (Novellino et
al., 2007). The proposed paradigm represents an innovative, simplified and controllable bi-
directional closed loop system where it is possible to investigate the dynamic and adaptive
properties of a neural population interacting with an external environment by means of an
artificial body (i.e., the mobile robot). Similar closed-loop approaches have been used to
quantify the complexity of neural dynamics (Kositsky et al., 2009), to investigate the
transition among different electrophysiological regimes (Wagenaar et al., 2005) and to
investigate basic mechanisms of learning (Shahaf and Marom, 2001; le Feber et al., 2010).
Closed-loop experiments are also relevant to the technology of neural interfaces (Mussa-
Ivaldi and Miller, 2003; Nicolelis, 2003).
Along this line, Mussa-Ivaldi and coworkers (Reger et al., 2000) at Northwestern University
proposed the first hybrid neuro-robotic system, an innovative experimental paradigm
aimed at studying learning (in particular, sensorimotor adaptation) and synaptic plasticity
in the nervous system (Fig. 1A). They bi-directionally connected the brain of a lamprey,
maintained alive in vitro, to a small mobile robot. The robot had the function of an artificial
body (physical embodiment) that provided sensory feedback to the brain and was
controlled by the recorded electrophysiological signal converted in motor commands. In
particular, the brain of a sea lamprey larvae was extracted and placed in a recording
chamber where it was maintained at a constant temperature in a Ringer’s solution. The
activity was recorded from the visually identified neurons of the left and right Posterior
Rhomb-encephalic Reticular Nuclei (PRRN) of the lamprey brain, and a simple interface
decoder converted the spiking activities into driving signals for the corresponding wheels of
the small robot. In parallel, an electrical stimulus, whose frequency was modulated by the
light intensity perceived by the sensors housed in the robotic body, was delivered near the

Bioartificial Brains and Mobile Robots

147

region in which the axons of the Intermediate and Posterior Octavo-motor nuclei (nOMI and
nOMP) cross.

Fig. 1. A) Implementation of the first BMI realized at Northwestern University: a hybrid
neuro-robotic system connecting a lamprey’s brainstem to a small mobile robot. Signals
from the optical sensors of the robot (bottom) are encoded by the communication interface
into electrical stimuli, whose frequency depends linearly upon the light intensity. Stimuli
are delivered by tungsten microelectrodes to the right and left vestibular pathways (top.
nOMI and nOMP: intermediate and posterior octavomotor nuclei). Glass microelectrodes
record extracellular responses to the stimuli from the posterior rhombencephalic reticular
nuclei (PRRN). Recorded signals from right and left PRRNs are decoded by the interface,
which generates the commands to the robot’s wheels. These commands are set to be
proportional to the average firing rate calculated from the corresponding side of the
lamprey’s brainstem. The robot is placed in a circular arena with light sources on the
periphery. The neural system between stimulation and recording electrodes determines the
motions in response to each light source. Modified from Mussa-Ivaldi et al., 2010, with
permission. B) Implementation of the closed-loop system involving a bioartificial brain and
a mobile robot. Dissociated cortical cells from a rat brain are grown onto a MEA. Once the in
vitro neuronal network is formed, it is inspected under a microscope for visual compliance
with internal standards. Furthermore, after three weeks of culturing, it is tested for activity,
which should be synchronous in the whole network. If such criteria are met, the network is
connected to the amplifier and its activity is recorded from selected electrodes to be decoded
into motor commands for the artificial body, thus enabling interaction with the physical
environment. C) General computational architecture of the closed-loop system: the signals
coming from the infrared sensors (IR) of the robot are translated into patterns of stimuli that
are delivered to the neural preparation through a set of selected stimulating electrodes. Then
the activity recorded by two groups of electrodes is evaluated in terms of firing rate (i.e.,
mean number of detected spikes/s) and used as driving speed for each of the robot’s wheel.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

146

On the contrary, cultured cells or tissue allow for a proper control and observation of the
phenomena taking place at cellular and cell-assembly levels but lack of an actual
physiological situation in which the brain has a body and the body can interact with a
specific environment. Since behavior emerges from complicate interactions of the nervous
system with the body and the environment (Chiel and Beer, 1997), “embodiment” and
“situatedness” are likely to be crucial in studying the mechanisms of sensory information
processing, control and adaptation in living systems. For these reasons, closed-loop systems
interfacing nerve cells to external devices have been used as an electrophysiological tool for
studying adaptation and coding properties (Reger et al., 2000; DeMarse et al., 2001). More
precisely, this framework allows to study interactions within cells and cell assemblies and to
investigate the cellular and population mechanisms underlying learning and memory.
These mechanisms can be studied at different complexity levels. Networks of cultured
neurons coupled to Micro Electrode Arrays (MEA) represent a kind of intermediate level
where the control over the system is high and where it is possible to study universals of
learning and memory, regardless of specific realizations (Marom and Shahaf, 2002). It
should be noted that this neural preparation is an extremely simplified model of the brain:
first of all it has a bi-dimensional structure, in spite of tri-dimensional brain organization;
furthermore neural cells are dissociated and they re-organize autonomously even if they
preserve functional synaptic interconnections. Nonetheless, the general morphological and
physiological properties of the cell populations in culture correspond closely to the features
of the original tissue (Shahaf and Marom, 2001).
Following the “embodied neurophysiology” approach, we interfaced a mobile robot with a
population of neurons, extracted from rat embryos and cultured over a MEA (Novellino et
al., 2007). The proposed paradigm represents an innovative, simplified and controllable bi-
directional closed loop system where it is possible to investigate the dynamic and adaptive
properties of a neural population interacting with an external environment by means of an
artificial body (i.e., the mobile robot). Similar closed-loop approaches have been used to
quantify the complexity of neural dynamics (Kositsky et al., 2009), to investigate the
transition among different electrophysiological regimes (Wagenaar et al., 2005) and to
investigate basic mechanisms of learning (Shahaf and Marom, 2001; le Feber et al., 2010).
Closed-loop experiments are also relevant to the technology of neural interfaces (Mussa-
Ivaldi and Miller, 2003; Nicolelis, 2003).
Along this line, Mussa-Ivaldi and coworkers (Reger et al., 2000) at Northwestern University
proposed the first hybrid neuro-robotic system, an innovative experimental paradigm
aimed at studying learning (in particular, sensorimotor adaptation) and synaptic plasticity
in the nervous system (Fig. 1A). They bi-directionally connected the brain of a lamprey,
maintained alive in vitro, to a small mobile robot. The robot had the function of an artificial
body (physical embodiment) that provided sensory feedback to the brain and was
controlled by the recorded electrophysiological signal converted in motor commands. In
particular, the brain of a sea lamprey larvae was extracted and placed in a recording
chamber where it was maintained at a constant temperature in a Ringer’s solution. The
activity was recorded from the visually identified neurons of the left and right Posterior
Rhomb-encephalic Reticular Nuclei (PRRN) of the lamprey brain, and a simple interface
decoder converted the spiking activities into driving signals for the corresponding wheels of
the small robot. In parallel, an electrical stimulus, whose frequency was modulated by the
light intensity perceived by the sensors housed in the robotic body, was delivered near the

Bioartificial Brains and Mobile Robots

147

region in which the axons of the Intermediate and Posterior Octavo-motor nuclei (nOMI and
nOMP) cross.

Fig. 1. A) Implementation of the first BMI realized at Northwestern University: a hybrid
neuro-robotic system connecting a lamprey’s brainstem to a small mobile robot. Signals
from the optical sensors of the robot (bottom) are encoded by the communication interface
into electrical stimuli, whose frequency depends linearly upon the light intensity. Stimuli
are delivered by tungsten microelectrodes to the right and left vestibular pathways (top.
nOMI and nOMP: intermediate and posterior octavomotor nuclei). Glass microelectrodes
record extracellular responses to the stimuli from the posterior rhombencephalic reticular
nuclei (PRRN). Recorded signals from right and left PRRNs are decoded by the interface,
which generates the commands to the robot’s wheels. These commands are set to be
proportional to the average firing rate calculated from the corresponding side of the
lamprey’s brainstem. The robot is placed in a circular arena with light sources on the
periphery. The neural system between stimulation and recording electrodes determines the
motions in response to each light source. Modified from Mussa-Ivaldi et al., 2010, with
permission. B) Implementation of the closed-loop system involving a bioartificial brain and
a mobile robot. Dissociated cortical cells from a rat brain are grown onto a MEA. Once the in
vitro neuronal network is formed, it is inspected under a microscope for visual compliance
with internal standards. Furthermore, after three weeks of culturing, it is tested for activity,
which should be synchronous in the whole network. If such criteria are met, the network is
connected to the amplifier and its activity is recorded from selected electrodes to be decoded
into motor commands for the artificial body, thus enabling interaction with the physical
environment. C) General computational architecture of the closed-loop system: the signals
coming from the infrared sensors (IR) of the robot are translated into patterns of stimuli that
are delivered to the neural preparation through a set of selected stimulating electrodes. Then
the activity recorded by two groups of electrodes is evaluated in terms of firing rate (i.e.,
mean number of detected spikes/s) and used as driving speed for each of the robot’s wheel.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

148

One of the main achievements provided by these experiments was that the alteration of the
sensory input caused short- and long-term adaptive changes in the robot behaviors. This
suggests that this system can be used as an experimental paradigm for investigating the
properties of synaptic plasticity in the context of sensorimotor adaptation. However, one of
the major limitations of this experimental set-up was the small number of electrodes used
and the simple neuronal circuitry involved in such studies.
An alternative approach for investigating how neuronal information is processed was then
proposed by Steve Potter’s group at the GeorgiaTech where a new system, to interface an in
vitro neuronal population to a computer-simulated environment, was developed. In
particular, they employed Micro Electrode Arrays (MEA) dishes to record the neural activity
from a population of neurons and use that activity to control a simulated animal, called
‘Neurally Controlled Animat’ (DeMarse et al., 2001). According to the developers, this
approach makes possible a correlation between neural morphology, connectivity, and
distributed activity, not feasible with in vivo neural interfaces (Nicolelis et al., 1998;
Wessberg et al., 2000). In the preliminary experiment (DeMarse et al., 2001) they created a
virtual environment where a simulated body was moved by the spatio-temporal patterns of
activity across the living neuronal network coupled to a MEA. The motor commands for the
Animat were computed from spatio-temporal patterns that were detected in real time from
neural activity. A feedback signal was provided for each movement resulting in a collision
with walls or barriers within the virtual environment, by means of electrical pulses. The
main achievement of this work relies in the possibility to investigate a system where a living
neuronal network communicates in real-time with an external agent which provides
feedback to the network, thus generating electrophysiological patterns that can be
associated with different behaviors. The concept was then extended to further hybrid
devices that Potter and collaborators called “Hybrots”, built by interfacing neuronal
networks to other artificial devices (Bakkum et al., 2004; Bakkum et al., 2007). The
preliminary results indicated that modifications in neural behaviors may occur as a
consequence of the inner characteristics (timing) of the sensory feedback stimulation.
The proposed paradigm was not that far from having a simplified tool for studying
“learning”, seen as an “experience dependent” process (i.e. adaptive process) where the
wiring process of the brain needs to be led by experience and by incoming sensory
information.
With these premises, following what have been specifically proposed by our group, in the
next sections we present the architecture and the developed closed-loop neuro-robotic
system (Fig. 1B), the achieved results, limitations of the proposed paradigm and future
prospects. Finally we introduce and discuss some open issues and future visions in the field
of neuro-hybrid systems and BMIs.

2. A bioartificial brain bi-directionally connected to a mobile robot
Embodiment has been suggested to be an essential condition for the emergence of
‘intelligent’ behaviors (Chiel and Beer, 1997). This has been shown by pioneer publications
(DeMarse et al., 2001; Shahaf and Marom, 2001; Martinoia et al., 2004), in which experiments
have been performed with populations of neurons, micro-electrode arrays (MEAs) and then
further extended to an actual neuro-robotic platform (Bakkum et al., 2007; Novellino et al.,
2007) up to a neural inspired control in a biomimetic robot (von Twickel et al., 2011) and to
a “ratcar” in which a vehicle is moved following electrophysiological signals extracted by

Bioartificial Brains and Mobile Robots

149

the cortical motor area of a rat (Fukayama et al., 2010). Among the possible approaches
related to the choice of the robotic platform and of the control system (artificial, bioartificial
or biological), there are common issues that can be explored by means of this experimental
paradigm, namely: (i) how to convey information to the brain and (ii) how to extract
information from the brain. In this framework, we designed an experimental paradigm in
which the neuronal cortical culture coupled to a MEA is used as a central processing unit,
i.e. the “bioartificial” brain, and it is then connected to an artificial body, i.e. the mobile
robot (Fig. 1B). The proposed system acts as a BCI with the general purpose of enabling
embodied in vitro experiments on sensorimotor adaptation and learning.

2.1 The bioartificial brain and the electrophysiology recording system
The brain model is an in vitro neuronal network of neurons and glia. In particular, the
primary cultures of cortical neurons were prepared from fetal day 18 Wistar SPF rats
according to previously described procedures (Chiappalone et al., 2006). Briefly, the cortex
was dissociated through enzymatic and mechanical dissociation (0.125% Trypsin – DNAse I
0,025mg/ml – BSA 0.3% solution in HBSS without calcium and magnesium). The cells were
seeded on standard and ad-hoc (Berdondini et al., 2005) 60-electrode TiN-SiN MEA chips
with internal reference (Multi Channel Systems, Reutlingen, Germany) pre-coated with
poly-D-lysine and laminin (0.1 mg/ml diluted in sterile MilliQ water) as 50 µl droplets
(1500-2000 cells/mm2), with subsequent addition of 1 ml of medium after the cells were
attached (approximately 2 hours). Cultures were maintained in neurobasal medium (NB)
supplemented with 2% B27 and 1% Glutamax-I, and half volume of the medium was
exchanged once a week. Cells were maintained at 37oC in a humidified atmosphere of 5%
CO2 until their use.
In these conditions, neuronal cells spontaneously grow by extending their dendritic and
axonal arborisations re-establishing synapses. Within a few days of in vitro culture, the
neurons already form a functionally connected network reaching the mature state in three
weeks (Novellino and Zaldivar, 2010; Hogberg et al., 2011). The neuronal networks coupled
to MEA forms a long-term non-destructive two-way interface with the cultured neuronal
tissue; and under healthy conditions it is possible to maintain such cultures for months
(Potter and DeMarse, 2001).
Experiments were performed in the range 18–42 DIVs, when the neuronal network reaches
its “mature” state (Fig. 2), consisting of synchronized clustered activity with minute-to-
minute fluctuations in the probability of firing (Marom and Shahaf, 2002).
If a network is electrically stimulated, the neuronal dynamics can deeply change (Novellino
et al., 2003); however when weak stimuli are applied, the network shows dynamics whose
spatio-temporal features are reproducible to a good degree (Jimbo et al., 2000; Vajda et al.,
2008). For this reason, a very critical issue in neuroscience is the definition of a procedure
able to induce pathway-specific synaptic changes at the network level either in the direction
of potentiation or depression. In literature there are only a few examples of plasticity on
cultured networks of cortical neurons (Jimbo et al., 1999; Tateno and Jimbo, 1999; Shahaf
and Marom, 2001). More recently, our group demonstrated that a ‘network potentiation’
could be achieved by using a novel experimental protocol of electrical stimulation
(Chiappalone et al., 2008). A high frequency sequence of bursts (internal frequency 20Hz)
called ‘tetanus’ is delivered from one site of the MEA, coupled to a low frequency
stimulation, either in-phase or out phase with respect of the tetanic burst, delivered from
another electrode called ‘co-activation’ site.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

148

One of the main achievements provided by these experiments was that the alteration of the
sensory input caused short- and long-term adaptive changes in the robot behaviors. This
suggests that this system can be used as an experimental paradigm for investigating the
properties of synaptic plasticity in the context of sensorimotor adaptation. However, one of
the major limitations of this experimental set-up was the small number of electrodes used
and the simple neuronal circuitry involved in such studies.
An alternative approach for investigating how neuronal information is processed was then
proposed by Steve Potter’s group at the GeorgiaTech where a new system, to interface an in
vitro neuronal population to a computer-simulated environment, was developed. In
particular, they employed Micro Electrode Arrays (MEA) dishes to record the neural activity
from a population of neurons and use that activity to control a simulated animal, called
‘Neurally Controlled Animat’ (DeMarse et al., 2001). According to the developers, this
approach makes possible a correlation between neural morphology, connectivity, and
distributed activity, not feasible with in vivo neural interfaces (Nicolelis et al., 1998;
Wessberg et al., 2000). In the preliminary experiment (DeMarse et al., 2001) they created a
virtual environment where a simulated body was moved by the spatio-temporal patterns of
activity across the living neuronal network coupled to a MEA. The motor commands for the
Animat were computed from spatio-temporal patterns that were detected in real time from
neural activity. A feedback signal was provided for each movement resulting in a collision
with walls or barriers within the virtual environment, by means of electrical pulses. The
main achievement of this work relies in the possibility to investigate a system where a living
neuronal network communicates in real-time with an external agent which provides
feedback to the network, thus generating electrophysiological patterns that can be
associated with different behaviors. The concept was then extended to further hybrid
devices that Potter and collaborators called “Hybrots”, built by interfacing neuronal
networks to other artificial devices (Bakkum et al., 2004; Bakkum et al., 2007). The
preliminary results indicated that modifications in neural behaviors may occur as a
consequence of the inner characteristics (timing) of the sensory feedback stimulation.
The proposed paradigm was not that far from having a simplified tool for studying
“learning”, seen as an “experience dependent” process (i.e. adaptive process) where the
wiring process of the brain needs to be led by experience and by incoming sensory
information.
With these premises, following what have been specifically proposed by our group, in the
next sections we present the architecture and the developed closed-loop neuro-robotic
system (Fig. 1B), the achieved results, limitations of the proposed paradigm and future
prospects. Finally we introduce and discuss some open issues and future visions in the field
of neuro-hybrid systems and BMIs.

2. A bioartificial brain bi-directionally connected to a mobile robot
Embodiment has been suggested to be an essential condition for the emergence of
‘intelligent’ behaviors (Chiel and Beer, 1997). This has been shown by pioneer publications
(DeMarse et al., 2001; Shahaf and Marom, 2001; Martinoia et al., 2004), in which experiments
have been performed with populations of neurons, micro-electrode arrays (MEAs) and then
further extended to an actual neuro-robotic platform (Bakkum et al., 2007; Novellino et al.,
2007) up to a neural inspired control in a biomimetic robot (von Twickel et al., 2011) and to
a “ratcar” in which a vehicle is moved following electrophysiological signals extracted by

Bioartificial Brains and Mobile Robots

149

the cortical motor area of a rat (Fukayama et al., 2010). Among the possible approaches
related to the choice of the robotic platform and of the control system (artificial, bioartificial
or biological), there are common issues that can be explored by means of this experimental
paradigm, namely: (i) how to convey information to the brain and (ii) how to extract
information from the brain. In this framework, we designed an experimental paradigm in
which the neuronal cortical culture coupled to a MEA is used as a central processing unit,
i.e. the “bioartificial” brain, and it is then connected to an artificial body, i.e. the mobile
robot (Fig. 1B). The proposed system acts as a BCI with the general purpose of enabling
embodied in vitro experiments on sensorimotor adaptation and learning.

2.1 The bioartificial brain and the electrophysiology recording system
The brain model is an in vitro neuronal network of neurons and glia. In particular, the
primary cultures of cortical neurons were prepared from fetal day 18 Wistar SPF rats
according to previously described procedures (Chiappalone et al., 2006). Briefly, the cortex
was dissociated through enzymatic and mechanical dissociation (0.125% Trypsin – DNAse I
0,025mg/ml – BSA 0.3% solution in HBSS without calcium and magnesium). The cells were
seeded on standard and ad-hoc (Berdondini et al., 2005) 60-electrode TiN-SiN MEA chips
with internal reference (Multi Channel Systems, Reutlingen, Germany) pre-coated with
poly-D-lysine and laminin (0.1 mg/ml diluted in sterile MilliQ water) as 50 µl droplets
(1500-2000 cells/mm2), with subsequent addition of 1 ml of medium after the cells were
attached (approximately 2 hours). Cultures were maintained in neurobasal medium (NB)
supplemented with 2% B27 and 1% Glutamax-I, and half volume of the medium was
exchanged once a week. Cells were maintained at 37oC in a humidified atmosphere of 5%
CO2 until their use.
In these conditions, neuronal cells spontaneously grow by extending their dendritic and
axonal arborisations re-establishing synapses. Within a few days of in vitro culture, the
neurons already form a functionally connected network reaching the mature state in three
weeks (Novellino and Zaldivar, 2010; Hogberg et al., 2011). The neuronal networks coupled
to MEA forms a long-term non-destructive two-way interface with the cultured neuronal
tissue; and under healthy conditions it is possible to maintain such cultures for months
(Potter and DeMarse, 2001).
Experiments were performed in the range 18–42 DIVs, when the neuronal network reaches
its “mature” state (Fig. 2), consisting of synchronized clustered activity with minute-to-
minute fluctuations in the probability of firing (Marom and Shahaf, 2002).
If a network is electrically stimulated, the neuronal dynamics can deeply change (Novellino
et al., 2003); however when weak stimuli are applied, the network shows dynamics whose
spatio-temporal features are reproducible to a good degree (Jimbo et al., 2000; Vajda et al.,
2008). For this reason, a very critical issue in neuroscience is the definition of a procedure
able to induce pathway-specific synaptic changes at the network level either in the direction
of potentiation or depression. In literature there are only a few examples of plasticity on
cultured networks of cortical neurons (Jimbo et al., 1999; Tateno and Jimbo, 1999; Shahaf
and Marom, 2001). More recently, our group demonstrated that a ‘network potentiation’
could be achieved by using a novel experimental protocol of electrical stimulation
(Chiappalone et al., 2008). A high frequency sequence of bursts (internal frequency 20Hz)
called ‘tetanus’ is delivered from one site of the MEA, coupled to a low frequency
stimulation, either in-phase or out phase with respect of the tetanic burst, delivered from
another electrode called ‘co-activation’ site.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

150

Fig. 2. The mean firing rate (MFR) reports the average spike number during the
investigation period (i.e., 10 minutes) and it is an indicator of the spontaneous neuronal
activity. Random spiking activity can be recorded at a very early stage of the network
development, that is, DIV 2 or 3. The network is still immature and spiking is slow,
sporadic, and sparse (i.e., active channels are likely to be far and unsynchronized). After one
week of in vitro culture (e.g., DIV10) it is possible to record more frequent activity. The
network reaches its maturity at the third week in vitro when activity reaches its peak, and
the maximum number of active channels is recorded (top right), and then it starts
decreasing. Burst behavior appears during the second week of culture (bottom right). We
monitored the network behaviour up to DIV 42.

Experiments regarding the neuronal network electrical stimulation provide a lot of
information about the possible functional states in which the network can fall in response to
a well-defined stimulation. To mimic this natural morphological condition a specifically
designed chip for studying in vitro neuronal network dynamic in interconnected sub-
populations of neurons has been used. In particular the device presents physical barriers
that induce a minimal constraint of the network in sub-populations and these clusters are
interconnected via integrated microchannels (Berdondini et al., 2005). The described devices
were demonstrated to guarantee a spontaneous synchronized global behavior and at the
same time the sub-population of the stimulated cluster presents a higher probability of
evoked response without preventing the stimulus propagation and activation of other sub-
populations (Berdondini et al., 2005).
In order to record activity, the neuronal network has been coupled to the MEA60 system
supplied by Multi Channel Systems (MCS, Reutlingen, Germany). Briefly the experimental
setup is constituted by the following elements (Figure 1.B): a neuronal preparation cultured
over an MEA, a mounting support with a 60-channel amplifier (gain 1200x), a homemade 8-
channel stimulus generator, to deliver both current and voltage desired stimulating signals,
an inverted optical microscope, connected to a CCD camera (Hamamatsu, Japan), to visually
monitor the cells during the experiment, an antivibration table and a Faraday cage (for
further details see Novellino et al. 2007).

Bioartificial Brains and Mobile Robots

151

Fig. 3. Example of the neuronal activity recorded while applying an electrical stimulation to
cell preparation. Top left, Zoom of the response after a stimulus: a “delayed” burst on
channel 51 is evoked by the stimulus from channel 12. Top right, An early burst on channel
51 evoked by the stimulus from channel 72. Bottom left, Comparison between the PSTHs
built by means of the activity arising from channels 56 and 77 after stimulation from
electrode 12. The shape of the PSTH is the same on the two considered channels (“delayed
response”). Bottom right, Comparison between the PSTHs built by means of the activity
arising from channels 56 and 77 after stimulation from electrode 16. The shape of the PSTH
is the same on the two considered channels (“early response”).

The artificial body is a small mobile robot (Khepera II, K-team, http://www.k-team.com)
equipped with eight infrared (IR) proximity sensors that provide information about the
distance of the robot from obstacles and two wheels whose speeds are determined by
neurons activity. These allow movements of the robot inside a circular arena (80 cm
diameter), and interaction with several cylindrical obstacles.

2.2 Computational architecture, coding and decoding of information
To specifically implement a demonstration and to carry out experiments in the direction of
adaptation in a closed-loop scenario, we developed an experimental set-up in which a
bioartificial brain (the neuronal network) and its body (the mobile robot) were challenged to
learn by experience a simple ‘intelligent’ adaptive behavior: to move in an unknown
environment avoiding obstacles.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

150

Fig. 2. The mean firing rate (MFR) reports the average spike number during the
investigation period (i.e., 10 minutes) and it is an indicator of the spontaneous neuronal
activity. Random spiking activity can be recorded at a very early stage of the network
development, that is, DIV 2 or 3. The network is still immature and spiking is slow,
sporadic, and sparse (i.e., active channels are likely to be far and unsynchronized). After one
week of in vitro culture (e.g., DIV10) it is possible to record more frequent activity. The
network reaches its maturity at the third week in vitro when activity reaches its peak, and
the maximum number of active channels is recorded (top right), and then it starts
decreasing. Burst behavior appears during the second week of culture (bottom right). We
monitored the network behaviour up to DIV 42.

Experiments regarding the neuronal network electrical stimulation provide a lot of
information about the possible functional states in which the network can fall in response to
a well-defined stimulation. To mimic this natural morphological condition a specifically
designed chip for studying in vitro neuronal network dynamic in interconnected sub-
populations of neurons has been used. In particular the device presents physical barriers
that induce a minimal constraint of the network in sub-populations and these clusters are
interconnected via integrated microchannels (Berdondini et al., 2005). The described devices
were demonstrated to guarantee a spontaneous synchronized global behavior and at the
same time the sub-population of the stimulated cluster presents a higher probability of
evoked response without preventing the stimulus propagation and activation of other sub-
populations (Berdondini et al., 2005).
In order to record activity, the neuronal network has been coupled to the MEA60 system
supplied by Multi Channel Systems (MCS, Reutlingen, Germany). Briefly the experimental
setup is constituted by the following elements (Figure 1.B): a neuronal preparation cultured
over an MEA, a mounting support with a 60-channel amplifier (gain 1200x), a homemade 8-
channel stimulus generator, to deliver both current and voltage desired stimulating signals,
an inverted optical microscope, connected to a CCD camera (Hamamatsu, Japan), to visually
monitor the cells during the experiment, an antivibration table and a Faraday cage (for
further details see Novellino et al. 2007).

Bioartificial Brains and Mobile Robots

151

Fig. 3. Example of the neuronal activity recorded while applying an electrical stimulation to
cell preparation. Top left, Zoom of the response after a stimulus: a “delayed” burst on
channel 51 is evoked by the stimulus from channel 12. Top right, An early burst on channel
51 evoked by the stimulus from channel 72. Bottom left, Comparison between the PSTHs
built by means of the activity arising from channels 56 and 77 after stimulation from
electrode 12. The shape of the PSTH is the same on the two considered channels (“delayed
response”). Bottom right, Comparison between the PSTHs built by means of the activity
arising from channels 56 and 77 after stimulation from electrode 16. The shape of the PSTH
is the same on the two considered channels (“early response”).

The artificial body is a small mobile robot (Khepera II, K-team, http://www.k-team.com)
equipped with eight infrared (IR) proximity sensors that provide information about the
distance of the robot from obstacles and two wheels whose speeds are determined by
neurons activity. These allow movements of the robot inside a circular arena (80 cm
diameter), and interaction with several cylindrical obstacles.

2.2 Computational architecture, coding and decoding of information
To specifically implement a demonstration and to carry out experiments in the direction of
adaptation in a closed-loop scenario, we developed an experimental set-up in which a
bioartificial brain (the neuronal network) and its body (the mobile robot) were challenged to
learn by experience a simple ‘intelligent’ adaptive behavior: to move in an unknown
environment avoiding obstacles.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

152

A model of adaptive behavior is represented by an agent who is motivated in trying to
survive in a defined environment, without any external (i.e., human) help. The agent may
generate its actions exclusively from the available sensory information, or may use some
kind of previous “experience.” The former type of agent is generally referred as “reactive”
(Maes, 1994; Brooks, 2002).
To establish a bidirectional communication between the neuronal preparation and a mobile
robot, the electrophysiological signals need to be translated into motor commands for the
robot (decoding of neural activity), and at the same time the sensory signal from the robot
need to be translated into a pattern of electrical stimulation (coding of sensory information).
Figure 1C presents the general computational architecture of the proposed closed-loop
system that can be summarized in the following three main logical blocks (i.e., from left to
right in Figure 1.C).
1. Coding (i.e. the representation of the external sensory input in terms of electrical

stimulation from the robot to the neural network): while the robot freely moves into the
playground, its IR sensors see whether or not an obstacle is in the proximity and where
it is (left or right side). The IR signals are weighted according to a sensory receptive
field law and the two resulting stimulation signals, relative to the right and left eye of
the robot, are then coded into a feedback stimulation according to a “binary”
information coding (i.e. 0 or 1 Hz). The electrical stimulus is delivered when the sensory
feedback overcomes a threshold, corresponding approximately to the presence of an
obstacle at 5 cm distance.

2. Processing of electrophysiological signals: the spontaneous or evoked
electrophysiological activity is sampled at 10 kHz and processed by means of an event
detection algorithm (i.e. spike detection, see further), which also removes stimulation
artifacts.

3. Decoding (from the neural preparation to the robot): the processed electrophysiological
signals are translated into motor commands for the robot. In particular the
instantaneous firing rate is low pass filtered to compute the “neural activity” that is
then decoded into motor commands (wheels speed) according to a winner-takes-all
(WTA) algorithm (see below).

The motor commands ω(t), that is, the angular speeds of the wheels, are obtained by
implementing the following winner-takes-all (WTA) mechanism:

 

 

0
1

0
1

ˆ*
()

ˆ*
()

N

i i
L i R

b

N

i i
R i L

b

C r t
t

C r t
t















  
        
  


  
          

 





L R

L R

R L

R L

 
 

 
 







where b is a constant angular speed (up to 2 rad/s), 0 is the maximum angular speed
(i.e., 5 rad/s);  îr t is the instantaneous firing rate of the recording site i, iC is a
normalization coefficient and represent the inverse of the estimation of the maximum value
that can be reached by the instantaneous firing rate on each group (left versus right) of
electrodes. L and R indicate signals pertaining respectively to the left and the right wheel.

Bioartificial Brains and Mobile Robots

153

The control law implements inhibitory crossed connections between inputs and outputs:
in absence of neural activity, the robot moves according to the maximum angular speed of
both the wheels, whereas an increase in the activity results in a fixed decrease of the speed
of the opposite wheel. WTA helps the robot turning away from the obstacle by increasing
its rotational speed, on equal evoked response. This allows to better achieve a reactive
control task, overcoming the problems caused by the short range of the IR sensors of the
robot.

2.3 Data processing and statistics
Spike detection. The electrophysiological signals y(t) acquired from MEA electrodes must be
pre-processed in order to remove the stimulus artifact and to isolate spikes from noise. The
spike detection algorithm uses a differential peak-to-peak threshold to follow the variability
of the signal (Bove et al., 1997). A time window, sized to contain at most one single spike
(4ms), is shifted along the signal, sampled at the frequency of 10 kHz. Within the window,
when the difference between the maximum and the minimum exceeds the threshold, a spike
is found and its time stamp is saved. In this way, the resulting spike train signal is sampled
at 250 Hz. The threshold is proportional to the noise standard deviation (SD) and is
calculated separately for each individual channel (typically as 7 × SD) before the beginning
of the actual experiment.
Blanking of stimulus artifact. Stimulus artifacts are detected when the recorded signal exceeds
a second, higher threshold. The artifact is then suppressed by cancelling the first sample in
the spike train occurring immediately after it, corresponding to a signal blanking of 4ms
after stimulus delivery.
Post-stimulus Time Histogram. To investigate the neural activity evoked by stimulation, we
computed the post-stimulus time histogram (i.e., PSTH), which represents the impulse
response of each site of the neural preparation to electrical stimulation (see Fig. 3). The
PSTHs were calculated by taking 400 ms time windows from the recordings that follow each
stimulus. We then counted the number of spikes occurring in a 2-4 ms bin and divided this
measure by the number of stimuli (Rieke et al., 1997). For our cultures, typical PSTHs show
an “early” (less than 50 ms) and a “late” (50–250 milliseconds) component (Marom and
Shahaf, 2002; Cozzi et al., 2006).
Functional Connectivity Index (FCI). The amplitude of the early response to stimuli can be
taken as an indicator of the functional connectivity between stimulation and recording
site (Cozzi et al., 2006). The PSTH area over 100ms from stimulus averages the early
evoked network response and thus it represents the network Functional Connectivity
Index (CFI) and helps in differentiating strong and weak functional input/output
connection.
Stimulus-Triggered Speed. The stimulus-triggered speed (STS) is constructed by averaging
the speed waveform due to each stimulus. The STS indicated the average wheel speed
(that is proportional to the neuronal activity of the “brain” region connected to that
wheel) in response to each stimulus (sensory feedback). The 4 STS curves (i.e., the
variations of the speed of the left and the right wheels in response to the left stimulus are
the first two curves and constitute the first STS, and the variation of the speed of the left
and the right wheels in response to the right stimulus constitute the second STS with the
latter two curves) are a representation of the sensory-motor pathways and also indicate

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

152

A model of adaptive behavior is represented by an agent who is motivated in trying to
survive in a defined environment, without any external (i.e., human) help. The agent may
generate its actions exclusively from the available sensory information, or may use some
kind of previous “experience.” The former type of agent is generally referred as “reactive”
(Maes, 1994; Brooks, 2002).
To establish a bidirectional communication between the neuronal preparation and a mobile
robot, the electrophysiological signals need to be translated into motor commands for the
robot (decoding of neural activity), and at the same time the sensory signal from the robot
need to be translated into a pattern of electrical stimulation (coding of sensory information).
Figure 1C presents the general computational architecture of the proposed closed-loop
system that can be summarized in the following three main logical blocks (i.e., from left to
right in Figure 1.C).
1. Coding (i.e. the representation of the external sensory input in terms of electrical

stimulation from the robot to the neural network): while the robot freely moves into the
playground, its IR sensors see whether or not an obstacle is in the proximity and where
it is (left or right side). The IR signals are weighted according to a sensory receptive
field law and the two resulting stimulation signals, relative to the right and left eye of
the robot, are then coded into a feedback stimulation according to a “binary”
information coding (i.e. 0 or 1 Hz). The electrical stimulus is delivered when the sensory
feedback overcomes a threshold, corresponding approximately to the presence of an
obstacle at 5 cm distance.

2. Processing of electrophysiological signals: the spontaneous or evoked
electrophysiological activity is sampled at 10 kHz and processed by means of an event
detection algorithm (i.e. spike detection, see further), which also removes stimulation
artifacts.

3. Decoding (from the neural preparation to the robot): the processed electrophysiological
signals are translated into motor commands for the robot. In particular the
instantaneous firing rate is low pass filtered to compute the “neural activity” that is
then decoded into motor commands (wheels speed) according to a winner-takes-all
(WTA) algorithm (see below).

The motor commands ω(t), that is, the angular speeds of the wheels, are obtained by
implementing the following winner-takes-all (WTA) mechanism:

 

 

0
1

0
1

ˆ*
()

ˆ*
()

N

i i
L i R

b

N

i i
R i L

b

C r t
t

C r t
t















  
        
  


  
          

 





L R

L R

R L

R L

 
 

 
 







where b is a constant angular speed (up to 2 rad/s), 0 is the maximum angular speed
(i.e., 5 rad/s);  îr t is the instantaneous firing rate of the recording site i, iC is a
normalization coefficient and represent the inverse of the estimation of the maximum value
that can be reached by the instantaneous firing rate on each group (left versus right) of
electrodes. L and R indicate signals pertaining respectively to the left and the right wheel.

Bioartificial Brains and Mobile Robots

153

The control law implements inhibitory crossed connections between inputs and outputs:
in absence of neural activity, the robot moves according to the maximum angular speed of
both the wheels, whereas an increase in the activity results in a fixed decrease of the speed
of the opposite wheel. WTA helps the robot turning away from the obstacle by increasing
its rotational speed, on equal evoked response. This allows to better achieve a reactive
control task, overcoming the problems caused by the short range of the IR sensors of the
robot.

2.3 Data processing and statistics
Spike detection. The electrophysiological signals y(t) acquired from MEA electrodes must be
pre-processed in order to remove the stimulus artifact and to isolate spikes from noise. The
spike detection algorithm uses a differential peak-to-peak threshold to follow the variability
of the signal (Bove et al., 1997). A time window, sized to contain at most one single spike
(4ms), is shifted along the signal, sampled at the frequency of 10 kHz. Within the window,
when the difference between the maximum and the minimum exceeds the threshold, a spike
is found and its time stamp is saved. In this way, the resulting spike train signal is sampled
at 250 Hz. The threshold is proportional to the noise standard deviation (SD) and is
calculated separately for each individual channel (typically as 7 × SD) before the beginning
of the actual experiment.
Blanking of stimulus artifact. Stimulus artifacts are detected when the recorded signal exceeds
a second, higher threshold. The artifact is then suppressed by cancelling the first sample in
the spike train occurring immediately after it, corresponding to a signal blanking of 4ms
after stimulus delivery.
Post-stimulus Time Histogram. To investigate the neural activity evoked by stimulation, we
computed the post-stimulus time histogram (i.e., PSTH), which represents the impulse
response of each site of the neural preparation to electrical stimulation (see Fig. 3). The
PSTHs were calculated by taking 400 ms time windows from the recordings that follow each
stimulus. We then counted the number of spikes occurring in a 2-4 ms bin and divided this
measure by the number of stimuli (Rieke et al., 1997). For our cultures, typical PSTHs show
an “early” (less than 50 ms) and a “late” (50–250 milliseconds) component (Marom and
Shahaf, 2002; Cozzi et al., 2006).
Functional Connectivity Index (FCI). The amplitude of the early response to stimuli can be
taken as an indicator of the functional connectivity between stimulation and recording
site (Cozzi et al., 2006). The PSTH area over 100ms from stimulus averages the early
evoked network response and thus it represents the network Functional Connectivity
Index (CFI) and helps in differentiating strong and weak functional input/output
connection.
Stimulus-Triggered Speed. The stimulus-triggered speed (STS) is constructed by averaging
the speed waveform due to each stimulus. The STS indicated the average wheel speed
(that is proportional to the neuronal activity of the “brain” region connected to that
wheel) in response to each stimulus (sensory feedback). The 4 STS curves (i.e., the
variations of the speed of the left and the right wheels in response to the left stimulus are
the first two curves and constitute the first STS, and the variation of the speed of the left
and the right wheels in response to the right stimulus constitute the second STS with the
latter two curves) are a representation of the sensory-motor pathways and also indicate

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

154

the robot behavior performance and side-selectivity relationship between stimuli and
speeds.
The behavior of the neurorobotic system can be evaluated by means of the stimulus-triggered
speed (STS), that is, the average linear speed elicited by a single electrical stimulus, and, as
already showed (Novellino et al., 2007) this is the best parameters to catch the relationship
between electrophysiology and robot performance and its evolution.

2.4 Experimental procedure
The experimental protocol consisted of the following steps:
1. baseline:
a. spontaneous activity recording (5 minutes);
b. pre-processing: test stimulus from 8 channels (serial stimulation). To test the

response to stimulation from different sites in different areas of the neuronal
network, trains of 50 electrical stimuli are delivered (±750mV amplitude, 500μs
duration, and duty cycle 50%).

A

B

Fig. 4. Schematic representation of the sensory feedback stimulation as well as the
conditioning stimulation protocol. A. Let’s assume the robot is approaching the obstacle.
When the robot is close enough to the obstacle, the robot’s eyes detect the obstacle and the
sensory feedback (1Hz) is delivered from the input neurons (red circle) to evoke activity
in the output neurons (black neurons). If the robot bumps into the obstacle we can have
two different stimulations: if the system is running the “non-conditioning phase” of phase
3.a and 3.c, the stimulation is only delivered from the input neuron, as shown in this
panel. B. If the system is running the conditioning phase (i.e. the experimental phase is
3.b), and the robot bumps into the obstacle the co-activation neurons (i.e. red dashed
circle) are enabled to deliver the “in-phase tetanic stimulation” in parallel with the normal
feedback stimulation (bottom) to enhance the robot reactive behavior performance for
obstacle avoidance.

1 sec

Bioartificial Brains and Mobile Robots

155

2. input-output mapping:
Reactive behavior means the robot is able to immediately react to the presence of an obstacle
where immediately means in a time shorter than 100ms, that is, we need input-output
pathways characterized by a relatively early (up to 50 ms) and sustained response meaning
a “high strength” in the functional connectivity (Novellino 2007). Practically at least 2
channels for input (sensors), 2 channels for conditioning input (sensors), and 2 channels for
output (motors) were chosen according the stimuli induced activity and “selectivity maps”.
3. closed–loop experiment: Robot running (5 + 5 + 5minutes):
a. free running;
b. obstacle avoidance with the application of the in-phase tetanic protocol (when the robot

hits an obstacle, a conditioning stimulus is delivered from the collision side), according
to our previous studies (Chiappalone et al., 2008).

c. free running.
4. Input/output mapping checking:
a. spontaneous activity recording (5minutes);
b. test stimulus from the chosen stimulating channels.
To avoid manual removal of the robot and possible damage due to wheels’ motors heating
in case of a collision against an obstacle, a step-back mechanism has been enabled. Figure 4
schematizes the 3rd step.

3. Results and discussion
3.1 Spontaneous activity requirements
We applied a quite restrictive selection of the experimental chips. In particular we only
selected mature cells (i.e. after the third week in vitro) which presented synchronized native
bursting activity (minimal bursting rate 0.2Hz) all over the network. I/O pathways (and co-
activation sites) selection consisted in serial delivery of 50 stimuli from at least 7 different
sites (i.e. 350 stimuli).

3.2 Identification of input-output sites
In order to obtain a reactive behavior, we need the network to promptly respond after the
feedback stimulation, that is, we need input-output pathways characterized by a relatively
early (up to 50 ms) and sustained response meaning a “high strength” in the functional
connectivity. If the network reacts to the sensory feedback and the evoked
electrophysiological response is characterized by a relatively long activation phase (up to
200–300 ms), the robot would not be able to react to the presence of an obstacle in 100 ms
(i.e., the delay among successive serial communications between the system and the robot).
This is one of the reasons why we need to accurately select the input-output pathways. We
need the stimulus-evoked response to be fast, prolonged, reliable, and therefore effective for
the entire duration of the experiments (i.e., all day long). As already said, the general aim is
to have a robot that follows a specific task on the basis of the spontaneous/stimulated
electrophysiological activity shown by the neuronal culture. To this end, it is a fundamental
prerequisite to characterize the collective activity of the network that will be connected to
the robot (i.e., analysis of both spontaneous and stimulus evoked neuronal activity).
The post-stimulus time histogram (PSTH) (i.e., the average number of spikes obtained in
response to a stimulus, at different latencies) is then used for quantifying the strength of
connections between a specific stimulating sites and all the other recording sites (Figure 4).

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

154

the robot behavior performance and side-selectivity relationship between stimuli and
speeds.
The behavior of the neurorobotic system can be evaluated by means of the stimulus-triggered
speed (STS), that is, the average linear speed elicited by a single electrical stimulus, and, as
already showed (Novellino et al., 2007) this is the best parameters to catch the relationship
between electrophysiology and robot performance and its evolution.

2.4 Experimental procedure
The experimental protocol consisted of the following steps:
1. baseline:
a. spontaneous activity recording (5 minutes);
b. pre-processing: test stimulus from 8 channels (serial stimulation). To test the

response to stimulation from different sites in different areas of the neuronal
network, trains of 50 electrical stimuli are delivered (±750mV amplitude, 500μs
duration, and duty cycle 50%).

A

B

Fig. 4. Schematic representation of the sensory feedback stimulation as well as the
conditioning stimulation protocol. A. Let’s assume the robot is approaching the obstacle.
When the robot is close enough to the obstacle, the robot’s eyes detect the obstacle and the
sensory feedback (1Hz) is delivered from the input neurons (red circle) to evoke activity
in the output neurons (black neurons). If the robot bumps into the obstacle we can have
two different stimulations: if the system is running the “non-conditioning phase” of phase
3.a and 3.c, the stimulation is only delivered from the input neuron, as shown in this
panel. B. If the system is running the conditioning phase (i.e. the experimental phase is
3.b), and the robot bumps into the obstacle the co-activation neurons (i.e. red dashed
circle) are enabled to deliver the “in-phase tetanic stimulation” in parallel with the normal
feedback stimulation (bottom) to enhance the robot reactive behavior performance for
obstacle avoidance.

1 sec

Bioartificial Brains and Mobile Robots

155

2. input-output mapping:
Reactive behavior means the robot is able to immediately react to the presence of an obstacle
where immediately means in a time shorter than 100ms, that is, we need input-output
pathways characterized by a relatively early (up to 50 ms) and sustained response meaning
a “high strength” in the functional connectivity (Novellino 2007). Practically at least 2
channels for input (sensors), 2 channels for conditioning input (sensors), and 2 channels for
output (motors) were chosen according the stimuli induced activity and “selectivity maps”.
3. closed–loop experiment: Robot running (5 + 5 + 5minutes):
a. free running;
b. obstacle avoidance with the application of the in-phase tetanic protocol (when the robot

hits an obstacle, a conditioning stimulus is delivered from the collision side), according
to our previous studies (Chiappalone et al., 2008).

c. free running.
4. Input/output mapping checking:
a. spontaneous activity recording (5minutes);
b. test stimulus from the chosen stimulating channels.
To avoid manual removal of the robot and possible damage due to wheels’ motors heating
in case of a collision against an obstacle, a step-back mechanism has been enabled. Figure 4
schematizes the 3rd step.

3. Results and discussion
3.1 Spontaneous activity requirements
We applied a quite restrictive selection of the experimental chips. In particular we only
selected mature cells (i.e. after the third week in vitro) which presented synchronized native
bursting activity (minimal bursting rate 0.2Hz) all over the network. I/O pathways (and co-
activation sites) selection consisted in serial delivery of 50 stimuli from at least 7 different
sites (i.e. 350 stimuli).

3.2 Identification of input-output sites
In order to obtain a reactive behavior, we need the network to promptly respond after the
feedback stimulation, that is, we need input-output pathways characterized by a relatively
early (up to 50 ms) and sustained response meaning a “high strength” in the functional
connectivity. If the network reacts to the sensory feedback and the evoked
electrophysiological response is characterized by a relatively long activation phase (up to
200–300 ms), the robot would not be able to react to the presence of an obstacle in 100 ms
(i.e., the delay among successive serial communications between the system and the robot).
This is one of the reasons why we need to accurately select the input-output pathways. We
need the stimulus-evoked response to be fast, prolonged, reliable, and therefore effective for
the entire duration of the experiments (i.e., all day long). As already said, the general aim is
to have a robot that follows a specific task on the basis of the spontaneous/stimulated
electrophysiological activity shown by the neuronal culture. To this end, it is a fundamental
prerequisite to characterize the collective activity of the network that will be connected to
the robot (i.e., analysis of both spontaneous and stimulus evoked neuronal activity).
The post-stimulus time histogram (PSTH) (i.e., the average number of spikes obtained in
response to a stimulus, at different latencies) is then used for quantifying the strength of
connections between a specific stimulating sites and all the other recording sites (Figure 4).

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

156

Fig. 5. A) (left) Selectivity Map for a representative experiment: each point represents the
evoked activity in a channel from the two stimulation channels, i.e. x-coordinate is the PSTH
area in response to electrical stimulation delivered from Stim 16 (S1), and y-coordinate is is
the PSTH area in response to electrical stimulation delivered from Stim 48 (S2). The circled

Bioartificial Brains and Mobile Robots

157

channels are the channels that answer with the best selectivity. (right) Connectivity Map for
a representative experiment: displacements of the right and left recording channels during
the four acquisition phases in closed-loop on the basis of their PSTH areas with respect to
the right and left stimulating channels. Phase 1 indicates the first ‘unconditioned’ phase. B)
PSTH and STS in a neurorobotic experiment. (a) PSTHs for two electrodes (chosen as
recording—motor electrodes) with respect to two stimulating sites. Electrode 15 responds
well to stimulation from electrode 16 and poorly to stimulation from electrode 48; on the
contrary electrode 45 responds well to 48 and poorly to 16. This tendency is maintained and
even improved after the robotic experiment (b). The STS graphs before (c) and after (d) the
robotic experiment proves again the selectivity of the chosen electrodes and the
improvement in the performances (increased STS area).

It is the impulse response (in terms of instantaneous firing rate) to a single test stimulus. The
algorithm for the selection of the output (motor) and input (sensory) sites supplies the I/O
pairs corresponding to maximum selectivity and it is based on network effective functional
interconnectivity, i.e. Selectivity Map, then it is used to check the evolution of the selected
I/O pairs, i.e. Connectivity Map (Figure 5A).
The ideal case is described in the following: given two (or more) stimulating channels (e.g.,
S1 and S2) and two groups of recording sites (e.g., R1 and R2), the strength of the
connectivity S1-R1 and S2-R2 is “high” and simultaneously, the strength of the connectivity
S1-R2, and S2-R1 is “low” (i.e., good selectivity in input-output pairs). The described scheme
guarantees, somehow, that the responses in the two (groups of) recording sites are different
on the basis of the stimulating electrodes. Of course the above is an ideal situation and, since
the mean connectivity of the network is high, also due to the high density of plated cells, it is
hard to get highly specific responses in the input-output pathways.
The methodology that we developed to make a selection of the pathways is the
“selectivity map”. Each dot represents the PSTH area at a specific recording site given that
there was a stimulation from a couple of stimulating sites (Fig. 5A). All the possible input-
output combinations are explored and only the pathways producing responses lying more
distant from the diagonal (i.e., closer to the axis) are selected. Those specific pathways (of
sensory-motor activations) can be then conveniently utilized for driving the robot and for
implementing simple reactive behaviors (e.g., obstacle avoidance), as presented in
previous sections.

3.3 The robot behavior
Figure 6 shows an example of the robot behavior during three phases of the experiment. The
mobile robot starting position was indicated by a green circle, robot position was sampled at
0.5Hz. The robot was moving inside its playground and occasionally it hit either obstacles or
playground walls (red dots). During the learning phase when the mobile robot bumped into
any obstacle the punishing-conditioning feedback stimulation (11pulses at 20Hz) from the
co-activation site was delivered. The robot performed its explorative-obstacle avoidance
reactive behavior into the playground for 10 minutes for any phase (see Methods).
Robot behavior performance parameters, such as number of hits, covered space etc, do not
allow quantifying any relationship between the motor response and the sensory information,
but, considering different phases, if the robot covered the same area and the trajectories are
in the same order of length, then the two phases are comparable. A reduction of the number
of hits should indicate an improvement of the robot’s behavior; anyhow any improvement
in the robot’s behavior must correspond to an improvement in the relationship

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

156

Fig. 5. A) (left) Selectivity Map for a representative experiment: each point represents the
evoked activity in a channel from the two stimulation channels, i.e. x-coordinate is the PSTH
area in response to electrical stimulation delivered from Stim 16 (S1), and y-coordinate is is
the PSTH area in response to electrical stimulation delivered from Stim 48 (S2). The circled

Bioartificial Brains and Mobile Robots

157

channels are the channels that answer with the best selectivity. (right) Connectivity Map for
a representative experiment: displacements of the right and left recording channels during
the four acquisition phases in closed-loop on the basis of their PSTH areas with respect to
the right and left stimulating channels. Phase 1 indicates the first ‘unconditioned’ phase. B)
PSTH and STS in a neurorobotic experiment. (a) PSTHs for two electrodes (chosen as
recording—motor electrodes) with respect to two stimulating sites. Electrode 15 responds
well to stimulation from electrode 16 and poorly to stimulation from electrode 48; on the
contrary electrode 45 responds well to 48 and poorly to 16. This tendency is maintained and
even improved after the robotic experiment (b). The STS graphs before (c) and after (d) the
robotic experiment proves again the selectivity of the chosen electrodes and the
improvement in the performances (increased STS area).

It is the impulse response (in terms of instantaneous firing rate) to a single test stimulus. The
algorithm for the selection of the output (motor) and input (sensory) sites supplies the I/O
pairs corresponding to maximum selectivity and it is based on network effective functional
interconnectivity, i.e. Selectivity Map, then it is used to check the evolution of the selected
I/O pairs, i.e. Connectivity Map (Figure 5A).
The ideal case is described in the following: given two (or more) stimulating channels (e.g.,
S1 and S2) and two groups of recording sites (e.g., R1 and R2), the strength of the
connectivity S1-R1 and S2-R2 is “high” and simultaneously, the strength of the connectivity
S1-R2, and S2-R1 is “low” (i.e., good selectivity in input-output pairs). The described scheme
guarantees, somehow, that the responses in the two (groups of) recording sites are different
on the basis of the stimulating electrodes. Of course the above is an ideal situation and, since
the mean connectivity of the network is high, also due to the high density of plated cells, it is
hard to get highly specific responses in the input-output pathways.
The methodology that we developed to make a selection of the pathways is the
“selectivity map”. Each dot represents the PSTH area at a specific recording site given that
there was a stimulation from a couple of stimulating sites (Fig. 5A). All the possible input-
output combinations are explored and only the pathways producing responses lying more
distant from the diagonal (i.e., closer to the axis) are selected. Those specific pathways (of
sensory-motor activations) can be then conveniently utilized for driving the robot and for
implementing simple reactive behaviors (e.g., obstacle avoidance), as presented in
previous sections.

3.3 The robot behavior
Figure 6 shows an example of the robot behavior during three phases of the experiment. The
mobile robot starting position was indicated by a green circle, robot position was sampled at
0.5Hz. The robot was moving inside its playground and occasionally it hit either obstacles or
playground walls (red dots). During the learning phase when the mobile robot bumped into
any obstacle the punishing-conditioning feedback stimulation (11pulses at 20Hz) from the
co-activation site was delivered. The robot performed its explorative-obstacle avoidance
reactive behavior into the playground for 10 minutes for any phase (see Methods).
Robot behavior performance parameters, such as number of hits, covered space etc, do not
allow quantifying any relationship between the motor response and the sensory information,
but, considering different phases, if the robot covered the same area and the trajectories are
in the same order of length, then the two phases are comparable. A reduction of the number
of hits should indicate an improvement of the robot’s behavior; anyhow any improvement
in the robot’s behavior must correspond to an improvement in the relationship

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

158

(a) (b) (c)

(d)
Fig. 6. Robot trajectories and performances in a neurorobotic experiment. (a) Robot
trajectory during the first free running phase. (b) Robot trajectory during the learning phase.
(c) Robot trajectory during the last free running phase. (d) From top: right feedback
stimulus, right co-activation stimulus, left stimulus, left co-activation stimulus, two right
output channels and two left channels. The window is 5 sec. It is possible to note that
according to the WTA method (see Methods) only the right co-activation stimulus was
delivered.

between the motor response and the feedback sensory information (i.e., the STSs).
Furthermore the shapes of the PSTHs must be similar to those of the PSTHs obtained during
the characterization phase in order to ensure the stability of the response of the neuronal
culture. If the area of the PSTHs drastically decreases at the end of the closed loop phases it
means that the neuronal network has been fatigued by excessive repeated stimulations
(Shahaf and Marom, 2001). The wellness and stability of the culture are “sine qua non”
conditions to be verified before describing the neurorobotic behavior by means of the
robot’s performance indicators. Under these conditions, the performance of the neural
preparation in controlling the robot can be represented by the STSs, depicted in Figures
13(c) and 13(d). The STS is the only parameter that permits to understand and demonstrate
whether a different behavior of the robot actually corresponds to a different dynamics of the
neuronal activity, and for this reason it can be considered the best indicator of the
performance of the overall neurorobotic system. The comparison of the STSs and

Bioartificial Brains and Mobile Robots

159

connectivity maps obtained during each phase illustrates that a modification in the robot’s
behavior has occurred.

4. Conclusions and perspectives
The possibility to control actions from thoughts is becoming reality thanks to recent
advances in Brain Machine Interfaces (Donoghue, 2008). However modern BMIs are mostly
unidirectional (i.e. without providing sensory information to the subject) and aimed at
restoring lost motor functions at the level of the Peripheral Nervous System. In a wider
perspective, neural interfaces must be bi-directional devices that substitute motor, sensory
or cognitive circuits within the brain, which might have been damaged as a result of an
injury or a disease. In this context it becomes crucial to gain the necessary knowledge to be
able to efficiently interact with the nervous system to realize new class of neuroprostheses
and BMIs aimed at treating those diseases where a portion of CNS or PNS is damaged.
An in-vitro bi-directional closed-loop neuro-robotic interface, as the one we presented here,
goes in the direction of elucidating and optimizing means to interact with the nervous
system. Using simplified experiment models, the proposed approach aims at shedding some
light into the mechanisms of information coding and of efficient bi-directional interaction
with external artificial devices. At the same time, the proposed system has indeed some
important biological limitations, such as: lacking of a specific structure-architecture (as in
brain slices); lacking of any 3D structure (as the layers in a cortical brain region). One way to
overcome this limit relies in the possibility to ‘confine’ the network in interacting cell sub-
populations (Berdondini et al., 2005) that can behave as dynamically connected cell
assemblies, as done by the cortical areas within the brain or to move to 3D neuronal culture
(Pautot et al., 2008). Indeed, all that can be usefully tested and studied in such a simplified
experimental framework then need to be translated to an in-vivo situation in which an
external devices is connected to specific areas of the CNS. With specific reference to the
results reported here, still there are things that need to be further addressed. The
understanding of input/output mapping is fundamental and site selections is still
representing a major factor of the overall system performance. Successful modification and
improvement of robot behavior was recorded for 30% of performed recorded experiments.
90% of the unsuccessful experiments (i.e., 70%) did not even satisfy the preliminary
requirements for input to output connection/correlation, meaning that a deeper
understanding of how input-output mapping can be wired and re-wired has still to be fully
understood.
In spite of the discussed limitations, the finalized experiments represent a fundamental step
towards a better understanding of the biological principles of information processing that
can be obtained by multi-site parallel recordings and multi-modal stimulation. Such
information will be extremely valuable for developing our understanding of how real
neuronal networks wire up, process information and change their connectivity (i.e.
plasticity). More specifically, the use of a bi-directional neuro-robotic system allows to focus
along three main research lines: (i-IN/OUT transformation, transfer function) investigate
network dynamics and derive the input-output function of neuronal assemblies; (ii-
CODING and DECODING) design new strategies for effectively sending appropriate
information to cell assemblies, by developing stimulation protocols, and for efficiently
extracting information from those assemblies; (iii-PROCESSING) derive the coding and
information transmission properties of neuronal assemblies by designing computational

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

158

(a) (b) (c)

(d)
Fig. 6. Robot trajectories and performances in a neurorobotic experiment. (a) Robot
trajectory during the first free running phase. (b) Robot trajectory during the learning phase.
(c) Robot trajectory during the last free running phase. (d) From top: right feedback
stimulus, right co-activation stimulus, left stimulus, left co-activation stimulus, two right
output channels and two left channels. The window is 5 sec. It is possible to note that
according to the WTA method (see Methods) only the right co-activation stimulus was
delivered.

between the motor response and the feedback sensory information (i.e., the STSs).
Furthermore the shapes of the PSTHs must be similar to those of the PSTHs obtained during
the characterization phase in order to ensure the stability of the response of the neuronal
culture. If the area of the PSTHs drastically decreases at the end of the closed loop phases it
means that the neuronal network has been fatigued by excessive repeated stimulations
(Shahaf and Marom, 2001). The wellness and stability of the culture are “sine qua non”
conditions to be verified before describing the neurorobotic behavior by means of the
robot’s performance indicators. Under these conditions, the performance of the neural
preparation in controlling the robot can be represented by the STSs, depicted in Figures
13(c) and 13(d). The STS is the only parameter that permits to understand and demonstrate
whether a different behavior of the robot actually corresponds to a different dynamics of the
neuronal activity, and for this reason it can be considered the best indicator of the
performance of the overall neurorobotic system. The comparison of the STSs and

Bioartificial Brains and Mobile Robots

159

connectivity maps obtained during each phase illustrates that a modification in the robot’s
behavior has occurred.

4. Conclusions and perspectives
The possibility to control actions from thoughts is becoming reality thanks to recent
advances in Brain Machine Interfaces (Donoghue, 2008). However modern BMIs are mostly
unidirectional (i.e. without providing sensory information to the subject) and aimed at
restoring lost motor functions at the level of the Peripheral Nervous System. In a wider
perspective, neural interfaces must be bi-directional devices that substitute motor, sensory
or cognitive circuits within the brain, which might have been damaged as a result of an
injury or a disease. In this context it becomes crucial to gain the necessary knowledge to be
able to efficiently interact with the nervous system to realize new class of neuroprostheses
and BMIs aimed at treating those diseases where a portion of CNS or PNS is damaged.
An in-vitro bi-directional closed-loop neuro-robotic interface, as the one we presented here,
goes in the direction of elucidating and optimizing means to interact with the nervous
system. Using simplified experiment models, the proposed approach aims at shedding some
light into the mechanisms of information coding and of efficient bi-directional interaction
with external artificial devices. At the same time, the proposed system has indeed some
important biological limitations, such as: lacking of a specific structure-architecture (as in
brain slices); lacking of any 3D structure (as the layers in a cortical brain region). One way to
overcome this limit relies in the possibility to ‘confine’ the network in interacting cell sub-
populations (Berdondini et al., 2005) that can behave as dynamically connected cell
assemblies, as done by the cortical areas within the brain or to move to 3D neuronal culture
(Pautot et al., 2008). Indeed, all that can be usefully tested and studied in such a simplified
experimental framework then need to be translated to an in-vivo situation in which an
external devices is connected to specific areas of the CNS. With specific reference to the
results reported here, still there are things that need to be further addressed. The
understanding of input/output mapping is fundamental and site selections is still
representing a major factor of the overall system performance. Successful modification and
improvement of robot behavior was recorded for 30% of performed recorded experiments.
90% of the unsuccessful experiments (i.e., 70%) did not even satisfy the preliminary
requirements for input to output connection/correlation, meaning that a deeper
understanding of how input-output mapping can be wired and re-wired has still to be fully
understood.
In spite of the discussed limitations, the finalized experiments represent a fundamental step
towards a better understanding of the biological principles of information processing that
can be obtained by multi-site parallel recordings and multi-modal stimulation. Such
information will be extremely valuable for developing our understanding of how real
neuronal networks wire up, process information and change their connectivity (i.e.
plasticity). More specifically, the use of a bi-directional neuro-robotic system allows to focus
along three main research lines: (i-IN/OUT transformation, transfer function) investigate
network dynamics and derive the input-output function of neuronal assemblies; (ii-
CODING and DECODING) design new strategies for effectively sending appropriate
information to cell assemblies, by developing stimulation protocols, and for efficiently
extracting information from those assemblies; (iii-PROCESSING) derive the coding and
information transmission properties of neuronal assemblies by designing computational

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

160

models which might substitute the dynamic behavior of neuronal population under
observation (test).
In the field of BMI and neuroprosthesis, focused investigations by using a neuro-robotic
paradigm are expected to give a relevant boost to the development of next generation of
devices. Particularly, a significant improvement over current BMIs is expected from the
newly gained capability to efficiently extract information from stimulus evoked activity,
which will provide new algorithms and tools (i.e. optimized decoding scheme).
A second aspect relies directly in the bi-directional interface that plays a central role in the
entire embodied system and from which the capability to optimally code information will
constitute the basic of the new interfaces (i.e. optimized coding scheme) when missing
sensory information has to be conveyed to the brain.
Finally, the paradigm of an artificially embodied network can provide a new investigation
tool in the field of neuroscience where plasticity, dynamics and functional architecture can
be studied in a context in which the brain tissue is not isolated but benefits of a direct
interaction with the external environment. As a whole, this framework of study mainly
targeting advanced BMI and neuroprosthetic applications is aimed at offering a future hope
for potential therapy for the rehabilitation of severely impaired patients but also an useful
platform to test various ideas on how population of neurons encode information in the
brain.

5. References
Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain-machine

interface. Current Opinion in Neurobiology 14:720-726.
Bakkum DJ, Gamblen PM, Ben-Ary G, Chao ZC, Potter SM (2007) MEART: The Semi-Living

Artist. Frontiers in Neurorobotics 1:5.
Bakkum DJ, Shkolnik AC, Ben-Ary G, Gamblen P, DeMarse TB, Potter SM (2004) Removing

some 'A' from AI: Embodied cultured networks. Lect Notes Artif Int 3139:130-145.
Berdondini L, Chiappalone M, van der Wal PD, Imfeld K, de Rooij NF, Koudelka-Hep M,

Tedesco M, Martinoia S, van Pelt J, Le Masson G, Garenne A (2005) A
microelectrode array (MEA) integrated with clustering structures for investigating
in vitro neurodynamics in confined interconnected sub-populations of neurons.
Sensors and Actuators B: Chemical 114:530-541.

Bove M, Grattarola M, Verreschi G (1997) In vitro 2D networks of neurons characterized by
processing the signals recorded with a planar microtransducer array. IEEE
Transactions on Biomedical Engineering 44:964-977.

Brooks RA (2002) Robot: the future of flesh and machines. London, UK: The Penguin Press.
Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot

arm using simultaneously recorded neurons in the motor cortex. Nature
Neuroscience 2:664-670.

Chiappalone M, Massobrio P, Martinoia S (2008) Network plasticity in cortical assemblies.
European Journal of Neuroscience 28:221-237.

Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S (2006) Dissociated cortical
networks show spontaneously correlated activity patterns during in vitro
development. Brain Research 1093:41-53.

Bioartificial Brains and Mobile Robots

161

Chiappalone M, Vato A, Berdondini L, Koudelka-Hep M, Martinoia S (2007) Network
dynamics and synchronous activity in cultured cortical neurons. International
Journal of Neural Systems 17:87-103.

Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions
of nervous system, body and environment. Trends in Neurosciences 20:553-557.

Cozzi L, D'Angelo P, Sanguineti V (2006) Encoding of time-varying stimuli in population of
cultured neurons. Biological Cybernetics 94:335-349.

Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet
Neurology 7:1032-1043.

DeMarse TB, Wagenaar DA, Blau AW, Potter SM (2001) The neurally controlled animat:
biological brains acting with simulated bodies. Auton Robot 11:305-310.

Donoghue JP (2008) Bridging the brain to the world: a perspective on neural interface
system. Neuron 60:511-521.

Fukayama O, Suzuki T, Mabuchi K (2010) RatCar: A vehicular neuro-robotic platform for a
rat with a sustaining structure of the rat body under the vehicle. In: 32nd Annual
International Conference of the IEEE EMBS, pp 4168-4171. Buenos Aires, Argentina:
IEEE.

Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annual
Review of Neuroscience 32:249-266.

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen
D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices
by a human with tetraplegia. Nature 442:164-171.

Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK (2011)
Application of micro-electrode arrays (MEAs) as an emerging technology for
developmental neurotoxicity: evaluation of domoic acid-induced effects in primary
cultures of rat cortical neurons. Neurotoxicology 32:158-168.

Jimbo Y, Tateno Y, Robinson HPC (1999) Simultaneous induction of pathway-specific
potentiation and depression in networks of cortical neurons. Biophysical Journal
76:670-678.

Jimbo Y, Kawana A, Parodi P, Torre V (2000) The dynamics of a neuronal culture of
dissociated cortical neurons of neonatal rats. Biological Cybernetics 83:1-20.

Kositsky M, Chiappalone M, Alford ST, Mussa-Ivaldi FA (2009) Brain-Machine Interactions
for Assessing the Dynamics of Neural Systems. Front Neurorobotics 3:1.

le Feber J, Stegenga J, Rutten WL (2010) The effect of slow electrical stimuli to achieve
learning in cultured networks of rat cortical neurons. PLoS One 5:e8871.

Maes P (1994) Modeling adaptive autonomous agents. Artificial Life 1:135-162.
Marom S, Shahaf G (2002) Development, learning and memory in large random networks of

cortical neurons: lessons beyond anatomy. Quarterly Reviews of Biophysics 35:63-
87.

Martinoia S, Sanguineti V, Cozzi L, Berdondini L, Van Pelt J, Tomas J, Le Masson G, Davide
FA (2004) Towards an embodied in-vitro electrophysiology: the NeuroBIT project.
Neurocomputing 58-60:1065-1072.

Mussa-Ivaldi FA, Miller LE (2003) Brain-machine interfaces: computational demands and
clinical needs meet basic neuroscience. Trends Neurosci 26:329-334.

Nicolelis MA (2003) Brain-machine interfaces to restore motor function and probe neural
circuits. Nat Rev Neurosci 4:417-422.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

160

models which might substitute the dynamic behavior of neuronal population under
observation (test).
In the field of BMI and neuroprosthesis, focused investigations by using a neuro-robotic
paradigm are expected to give a relevant boost to the development of next generation of
devices. Particularly, a significant improvement over current BMIs is expected from the
newly gained capability to efficiently extract information from stimulus evoked activity,
which will provide new algorithms and tools (i.e. optimized decoding scheme).
A second aspect relies directly in the bi-directional interface that plays a central role in the
entire embodied system and from which the capability to optimally code information will
constitute the basic of the new interfaces (i.e. optimized coding scheme) when missing
sensory information has to be conveyed to the brain.
Finally, the paradigm of an artificially embodied network can provide a new investigation
tool in the field of neuroscience where plasticity, dynamics and functional architecture can
be studied in a context in which the brain tissue is not isolated but benefits of a direct
interaction with the external environment. As a whole, this framework of study mainly
targeting advanced BMI and neuroprosthetic applications is aimed at offering a future hope
for potential therapy for the rehabilitation of severely impaired patients but also an useful
platform to test various ideas on how population of neurons encode information in the
brain.

5. References
Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain-machine

interface. Current Opinion in Neurobiology 14:720-726.
Bakkum DJ, Gamblen PM, Ben-Ary G, Chao ZC, Potter SM (2007) MEART: The Semi-Living

Artist. Frontiers in Neurorobotics 1:5.
Bakkum DJ, Shkolnik AC, Ben-Ary G, Gamblen P, DeMarse TB, Potter SM (2004) Removing

some 'A' from AI: Embodied cultured networks. Lect Notes Artif Int 3139:130-145.
Berdondini L, Chiappalone M, van der Wal PD, Imfeld K, de Rooij NF, Koudelka-Hep M,

Tedesco M, Martinoia S, van Pelt J, Le Masson G, Garenne A (2005) A
microelectrode array (MEA) integrated with clustering structures for investigating
in vitro neurodynamics in confined interconnected sub-populations of neurons.
Sensors and Actuators B: Chemical 114:530-541.

Bove M, Grattarola M, Verreschi G (1997) In vitro 2D networks of neurons characterized by
processing the signals recorded with a planar microtransducer array. IEEE
Transactions on Biomedical Engineering 44:964-977.

Brooks RA (2002) Robot: the future of flesh and machines. London, UK: The Penguin Press.
Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot

arm using simultaneously recorded neurons in the motor cortex. Nature
Neuroscience 2:664-670.

Chiappalone M, Massobrio P, Martinoia S (2008) Network plasticity in cortical assemblies.
European Journal of Neuroscience 28:221-237.

Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S (2006) Dissociated cortical
networks show spontaneously correlated activity patterns during in vitro
development. Brain Research 1093:41-53.

Bioartificial Brains and Mobile Robots

161

Chiappalone M, Vato A, Berdondini L, Koudelka-Hep M, Martinoia S (2007) Network
dynamics and synchronous activity in cultured cortical neurons. International
Journal of Neural Systems 17:87-103.

Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions
of nervous system, body and environment. Trends in Neurosciences 20:553-557.

Cozzi L, D'Angelo P, Sanguineti V (2006) Encoding of time-varying stimuli in population of
cultured neurons. Biological Cybernetics 94:335-349.

Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet
Neurology 7:1032-1043.

DeMarse TB, Wagenaar DA, Blau AW, Potter SM (2001) The neurally controlled animat:
biological brains acting with simulated bodies. Auton Robot 11:305-310.

Donoghue JP (2008) Bridging the brain to the world: a perspective on neural interface
system. Neuron 60:511-521.

Fukayama O, Suzuki T, Mabuchi K (2010) RatCar: A vehicular neuro-robotic platform for a
rat with a sustaining structure of the rat body under the vehicle. In: 32nd Annual
International Conference of the IEEE EMBS, pp 4168-4171. Buenos Aires, Argentina:
IEEE.

Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annual
Review of Neuroscience 32:249-266.

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen
D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices
by a human with tetraplegia. Nature 442:164-171.

Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK (2011)
Application of micro-electrode arrays (MEAs) as an emerging technology for
developmental neurotoxicity: evaluation of domoic acid-induced effects in primary
cultures of rat cortical neurons. Neurotoxicology 32:158-168.

Jimbo Y, Tateno Y, Robinson HPC (1999) Simultaneous induction of pathway-specific
potentiation and depression in networks of cortical neurons. Biophysical Journal
76:670-678.

Jimbo Y, Kawana A, Parodi P, Torre V (2000) The dynamics of a neuronal culture of
dissociated cortical neurons of neonatal rats. Biological Cybernetics 83:1-20.

Kositsky M, Chiappalone M, Alford ST, Mussa-Ivaldi FA (2009) Brain-Machine Interactions
for Assessing the Dynamics of Neural Systems. Front Neurorobotics 3:1.

le Feber J, Stegenga J, Rutten WL (2010) The effect of slow electrical stimuli to achieve
learning in cultured networks of rat cortical neurons. PLoS One 5:e8871.

Maes P (1994) Modeling adaptive autonomous agents. Artificial Life 1:135-162.
Marom S, Shahaf G (2002) Development, learning and memory in large random networks of

cortical neurons: lessons beyond anatomy. Quarterly Reviews of Biophysics 35:63-
87.

Martinoia S, Sanguineti V, Cozzi L, Berdondini L, Van Pelt J, Tomas J, Le Masson G, Davide
FA (2004) Towards an embodied in-vitro electrophysiology: the NeuroBIT project.
Neurocomputing 58-60:1065-1072.

Mussa-Ivaldi FA, Miller LE (2003) Brain-machine interfaces: computational demands and
clinical needs meet basic neuroscience. Trends Neurosci 26:329-334.

Nicolelis MA (2003) Brain-machine interfaces to restore motor function and probe neural
circuits. Nat Rev Neurosci 4:417-422.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

162

Nicolelis MAL, Chapin JK (2002) Controlling robots with the mind. Scientific American
287:46-53.

Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying
the operation of brain-machine interfaces. Nature Reviews Neuroscience 10:530-
540.

Novellino A, Zaldivar J-M (2010) Recurrence quantification analysis of spontaneous
electrophysiological activity during development: characterization of In vitro
neuronal networks cultured on multi electrode array chips. Advances in Artificial
Intelligence Volume 2010:10 pages.

Novellino A, Chiappalone M, Vato A, Bove M, Tedesco M, Martinoia S (2003) Behaviors
from an electrically stimulated spinal cord neuronal network cultured on
microelectrode arrays. Neurocomputing 52-54C:661-669.

Novellino A, D'Angelo P, Cozzi L, Chiappalone M, Sanguineti V, Martinoia S (2007)
Connecting neurons to a mobile Robot: an in vitro bidirectional neural interface.
Computational Intelligence and Neuroscience 2007:13 pages.

Pautot S, Wyart C, Isacoff EY (2008) Colloid-guided assembly of oriented 3D neuronal
networks. Nature Methods 8:735-40.

Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-term studies.
Journal of Neuroscience Methods 110:17-24.

Reger BD, Fleming KM, Sanguineti V, Alford S, Mussa-Ivaldi FA (2000) Connecting brains
to robots: an artificial body for studying the computational properties of neural
tissues. Artificial Life 6:307-324.

Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the
neural code. Cambridge, Massachusetts: The MIT Press.

Schwartz AB (2004) Cortical neural prosthetics. Annual Review of Neuroscience 27:487-507.
Shahaf G, Marom S (2001) Learning in networks of cortical neurons. J Neurosci 21:8782-8788.
Tateno T, Jimbo Y (1999) Activity-dependent enhancement in the reliability of correlated

spike timings in cultured cortical neurons. Biological Cybernetics 80:45-55.
Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic

devices. Science 296:1829-1832.
Vajda I, van Pelt J, Wolters P, Chiappalone M, Martinoia S, van Someren E, van OOyen A

(2008) Low-frequency stimulation induces stable transitions in stereotypical activity
in cortical networks. Biophysical Journal 94:5028-5039.

Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a
prosthetic arm for self-feeding. Nature 453:1098-1101.

von Twickel A, Büschges A, Pasemann F (2011) Deriving neural network controllers from
neuro-biological data:implementation of a single-leg stick insect controller.
Biological Cybernetics 104:95-119.

Wagenaar DA, Madhavan R, Pine J, Potter SM (2005) Controlling bursting in cortical
cultures with closed-loop multi-electrode stimulation. J Neurosci 25:680-688.

Part 3

Navigation and Path Planning

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

162

Nicolelis MAL, Chapin JK (2002) Controlling robots with the mind. Scientific American
287:46-53.

Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying
the operation of brain-machine interfaces. Nature Reviews Neuroscience 10:530-
540.

Novellino A, Zaldivar J-M (2010) Recurrence quantification analysis of spontaneous
electrophysiological activity during development: characterization of In vitro
neuronal networks cultured on multi electrode array chips. Advances in Artificial
Intelligence Volume 2010:10 pages.

Novellino A, Chiappalone M, Vato A, Bove M, Tedesco M, Martinoia S (2003) Behaviors
from an electrically stimulated spinal cord neuronal network cultured on
microelectrode arrays. Neurocomputing 52-54C:661-669.

Novellino A, D'Angelo P, Cozzi L, Chiappalone M, Sanguineti V, Martinoia S (2007)
Connecting neurons to a mobile Robot: an in vitro bidirectional neural interface.
Computational Intelligence and Neuroscience 2007:13 pages.

Pautot S, Wyart C, Isacoff EY (2008) Colloid-guided assembly of oriented 3D neuronal
networks. Nature Methods 8:735-40.

Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-term studies.
Journal of Neuroscience Methods 110:17-24.

Reger BD, Fleming KM, Sanguineti V, Alford S, Mussa-Ivaldi FA (2000) Connecting brains
to robots: an artificial body for studying the computational properties of neural
tissues. Artificial Life 6:307-324.

Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the
neural code. Cambridge, Massachusetts: The MIT Press.

Schwartz AB (2004) Cortical neural prosthetics. Annual Review of Neuroscience 27:487-507.
Shahaf G, Marom S (2001) Learning in networks of cortical neurons. J Neurosci 21:8782-8788.
Tateno T, Jimbo Y (1999) Activity-dependent enhancement in the reliability of correlated

spike timings in cultured cortical neurons. Biological Cybernetics 80:45-55.
Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic

devices. Science 296:1829-1832.
Vajda I, van Pelt J, Wolters P, Chiappalone M, Martinoia S, van Someren E, van OOyen A

(2008) Low-frequency stimulation induces stable transitions in stereotypical activity
in cortical networks. Biophysical Journal 94:5028-5039.

Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a
prosthetic arm for self-feeding. Nature 453:1098-1101.

von Twickel A, Büschges A, Pasemann F (2011) Deriving neural network controllers from
neuro-biological data:implementation of a single-leg stick insect controller.
Biological Cybernetics 104:95-119.

Wagenaar DA, Madhavan R, Pine J, Potter SM (2005) Controlling bursting in cortical
cultures with closed-loop multi-electrode stimulation. J Neurosci 25:680-688.

Part 3

Navigation and Path Planning

 0

Parallel Computing in Mobile
Robotics for RISE

Janusz Będkowski
Institute of Automation and Robotics, Warsaw University of Technology

Industrial Research Institute for Automation and Measurements
Poland

1. Introduction

RISE − Risky Intervention and Surveillance Environment is very demanding task for mobile
robot where time is crucial. It can be assumed that on-line task execution is very important,
therefore the research in parallel computing applied in mobile robotics is needed. Nowadays
many researchers are focused on such approaches that uses GPGPU (General Purpose
Graphics Processing Unit) for improvement State of The Art (SoA) algorithms. In this chapter
three areas of research are shown such as 3D data registration, robot navigation and 3D
cloud of points processing for normal vector computation, all are improved by GPGPU
computation. The on − line data registration problem is discussed. The approach based
on robust KNN k-nearest neighborhood search applied for improvement of ICP algorithm is
shown. The path planning parallel approach based on modified diffusion method is shown.
On − line 3D cloud of points’ segmentation based on normal vector computation is presented.
The set of proposed algorithms where tested on GPGPU NVIDIA CUDA GF 580, the results
are satisfying. The improvement of SoA algorithms based on CUDA implementation shows
on-line advantages during real task execution.
Robust ICP algorithm is needed in mobile robotics applications where data registration has to
be performed on−line. New generation of Time of Flight and RGB-D cameras will offer better
accuracy and resolution, therefore GPU accelerated data registration algorithms will improve
robot navigation, obstacle avoidance and map building. It can be stated that commercial 3D
scanners based on rotated lasers offer data acquisition time < 3 seconds, therefore ICP that
works in this time will be enough for on-line map building in stop-scan fashion. For this
reason robust data registration algorithm based on 3D space decomposition is proposed and
the ICP (Iterative Closest Point) approach is chosen as registration method. Algorithm in
current version performs matching of two cloud of points up to 512 × 512 = 262144 in 300ms
for 30 ICP iterations (NVIDIA GF 580). The proposed solution is efficient since it performs
nearest neighbor search using a bucket data structure (sorted using CUDA primitive) and
computes the correlation matrix using parallel CUDA all-prefix-sum instruction. The amount
of processed points can be increased by implementation on NVIDIA GPU with Compute
Capability 2.1.

8

 0

Parallel Computing in Mobile
Robotics for RISE

Janusz Będkowski
Institute of Automation and Robotics, Warsaw University of Technology

Industrial Research Institute for Automation and Measurements
Poland

1. Introduction

RISE − Risky Intervention and Surveillance Environment is very demanding task for mobile
robot where time is crucial. It can be assumed that on-line task execution is very important,
therefore the research in parallel computing applied in mobile robotics is needed. Nowadays
many researchers are focused on such approaches that uses GPGPU (General Purpose
Graphics Processing Unit) for improvement State of The Art (SoA) algorithms. In this chapter
three areas of research are shown such as 3D data registration, robot navigation and 3D
cloud of points processing for normal vector computation, all are improved by GPGPU
computation. The on − line data registration problem is discussed. The approach based
on robust KNN k-nearest neighborhood search applied for improvement of ICP algorithm is
shown. The path planning parallel approach based on modified diffusion method is shown.
On − line 3D cloud of points’ segmentation based on normal vector computation is presented.
The set of proposed algorithms where tested on GPGPU NVIDIA CUDA GF 580, the results
are satisfying. The improvement of SoA algorithms based on CUDA implementation shows
on-line advantages during real task execution.
Robust ICP algorithm is needed in mobile robotics applications where data registration has to
be performed on−line. New generation of Time of Flight and RGB-D cameras will offer better
accuracy and resolution, therefore GPU accelerated data registration algorithms will improve
robot navigation, obstacle avoidance and map building. It can be stated that commercial 3D
scanners based on rotated lasers offer data acquisition time < 3 seconds, therefore ICP that
works in this time will be enough for on-line map building in stop-scan fashion. For this
reason robust data registration algorithm based on 3D space decomposition is proposed and
the ICP (Iterative Closest Point) approach is chosen as registration method. Algorithm in
current version performs matching of two cloud of points up to 512 × 512 = 262144 in 300ms
for 30 ICP iterations (NVIDIA GF 580). The proposed solution is efficient since it performs
nearest neighbor search using a bucket data structure (sorted using CUDA primitive) and
computes the correlation matrix using parallel CUDA all-prefix-sum instruction. The amount
of processed points can be increased by implementation on NVIDIA GPU with Compute
Capability 2.1.

8

2 Will-be-set-by-IN-TECH

Robot navigation is very important task that can be improved using parallel computation
since robot environment is represented by grid of cells. This report focuses on graphics
processing units (GPUs) in particular applied for modified diffusion method. The experiments
performed with 512 × 512 pixels grid maps show an advantage of GPU that results on−line
path planning in static environment that can be expanded by dynamic obstacles.
Fast data segmentation technique based on local neighborhood search is implemented. The
result of segmentation is colored map where different colors correspond to different objects
such as {wall, floor...}. The research is related to the problem of collecting 3D data with
DGB-D camera mounted on rotated head and 3D laser scanner, to be used in mobile robot
applications. Assumed performance of data registration algorithm is achieved, therefore it
can used as on−line. Robust nearest neighbor search procedure is obtaining normal vectors
for each range point. Normal vectors are represented as r,g,b values, therefore similar colors
correspond to one plane.
The experiments where performed using different type of 3D sensors including PMD Photonic
Mixer Devices camera, X-BOX 360 Kinect sensor and rotated LMS SICK 200 (3DLSN Unit).
Results are satisfying and it is planned to continue research and expand into another areas
from mobile robotics such as 6D SLAM and semantic mapping.
The paper is organized as follows: in Related work the State of The Art concerning parallel
computing applied in mobile robotics is described. In section 3D data registration the ICP
Iterative Closest Point algorithm improved by parallel KNN (k-nearest neighborhood search)
approach is shown. Section Path planning is demonstrating parallel approach for robot
navigation purpose. In Cloud o f points processing section the implementation of parallel
normal vector computation for 3D cloud of points segmentation is described. In Experiments
the results are shown. Conclusion and f uture work finalize the paper.

2. Related work

Several researches of 3D mapping are based on the simulation of 3D laser range finder to
obtain 3D cloud of points Magnusson et al. (2007). In most cases 3D laser simulator is built on
the basis of a rotated 2D range finder. The rotation axis can be horizontal Nüchter et al. (2003),
vertical Montemerlo & Thrun (2004) or the rotational axis in the middle of the scanner’s field
of view Kohlhepp et al. (2004). Another approach of obtaining 3D cloud of points using 2
orthogonal lasers is shown in the work of Thrun Thrun et al. (2000). The applications are
related with urban mapping Ortega et al. (2009).
Alignment and merging of two 3D scans, which are obtained from different sensor
coordinates, with respect to a reference coordinate system is called 3D registration Huber
& Hebert (2003) Fitzgibbon (2001) Magnusson & Duckett (2005). Park Park et al.
(2010) proposed a real-time approach for 3D registration using GPU, where the registration
technique is based on the Iterative Projection Point (IPP) algorithm. IPP technique is a
combination of point-to-plane and point-to-projection registration schemes Park & Subbarao
(2003). Processing time for this approach is about 60ms for aligning 2 3D data sets of 76800
points during 30 iterations of the IPP algorithm. Fast searching algorithms such as the k-d tree
algorithm are usually used to improve the performance of the closest point search Nuchter,
Lingemann & Hertzberg (2007) Rusinkiewicz & Levoy (2001). GPU accelerated nearest
neighbor search for 3D registration is proposed in work of Qiu Qiu et al. (2009), where
the advantage of Arya’s priority search algorithm described in Arya & Mount (1993) to fit

166
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 3

NNS in the SIMD (Single Instruction Multiple Data) model was used for GPU acceleration
purpose. Purcell suggested that k-d tree and priority queue methods are efficient but difficult
to be implemented on GPU Purcell et al. (2003). Garcia proves, that a brute force NNS
approach using NVidia Compute Unified Device Architecture (CUDA) is 400 times faster
over the CPU k-d tree implementation Garcia et al. (2008). GPU-based NNS with advanced
search structures is also used in the context of ray tracing Foley & Sugerman (2005), where
NNS procedure builds trees with a different manner from a triangle soup, and takes these
triangles as the objects of interest. To convert k-d tree into serialized flat array that can be
easily loaded into CUDA device, left-balanced k-d tree was proposed Jensen (2001) Qiu et al.
(2009). Another technique for 3D registration using Fast Point Feature Histograms (FPFH) is
shown in the work of Rusu Rusu et al. (2009). Rusu also proposed a way of characterizing
the local geometry of 3D points, using persistent feature histograms, where the relationships
between the neighbors of a point are analyzed and the resulted values are stored in a 16-bin
histogram Rusu et al. (2008). The histograms are pose and point cloud density invariant
and cope well with noisy datasets. An alternative concept to ICP algorithm which relies on
instantaneous kinematics and on the geometry of the squared distance function of a surface
is shown in the work of Pottmann Pottmann et al. (2002). The proposed algorithm exhibits
faster convergence than ICP, which is supported both by results of a local convergence analysis
and by experiments. The ICP algorithm is used in SLAM 6D (Simultaneous Localization and
Mapping), where 6 DOF (Degree of freedom) of robot position is computed based on aliment
of 3D clouds of points and loop-closing technique Sprickerhof et al. (2009).

3. 3D data registration

Classic Iterative Closest Points algorithm ICP was improved using GPGPU computation to
obtain on-line execution. The implementation performs nearest neighbor search using a
bucket data structure (sorted using CUDA primitive) and computes the correlation matrix
using parallel CUDA all-prefix-sum instruction.

3.1 GPU architecture
NVIDIA GPGPUs are programmable multi core chips built around an array of processors
working in parallel. The GPU is composed of an array of streaming multiprocessors (SM),
where each of them can launch up to 1024 co-resident concurrent threads. Currently available
graphics units are in the range from 1 SM up to 30 SMs for the high end products. Each
single SM contains 8 scalar processors (SP) each with 1024 32-bit registers. The total of
64KB of register space is available for each SM. Each SM is also equipped with a 16KB
on-chip memory that is characterized by low access latency and high bandwidth. Thread
management (creation, scheduling, synchronization) is performed in hardware and the
overhead is extremely low. SM works in SIMT scheme (Single Instruction, Multiple Thread),
where threads are executed in groups of 32 called warps. CUDA programming model defines
the host and the device. Host executes CPU sequential procedures while the device executes
parallel GPU programs - kernels. A kernel works in a SPMD scheme (Single Program,
Multiple Data). CUDA gives an advantage of using massively parallel computation for several
applications. Detailed GPU architecture can be found in the original documentation NVIDIA
CUDA C Programming Guide 3.2 (2010). Useful additional programming issues are published
in best practices guide CUDA (2010b).

167Parallel Computing in Mobile Robotics for RISE

2 Will-be-set-by-IN-TECH

Robot navigation is very important task that can be improved using parallel computation
since robot environment is represented by grid of cells. This report focuses on graphics
processing units (GPUs) in particular applied for modified diffusion method. The experiments
performed with 512 × 512 pixels grid maps show an advantage of GPU that results on−line
path planning in static environment that can be expanded by dynamic obstacles.
Fast data segmentation technique based on local neighborhood search is implemented. The
result of segmentation is colored map where different colors correspond to different objects
such as {wall, floor...}. The research is related to the problem of collecting 3D data with
DGB-D camera mounted on rotated head and 3D laser scanner, to be used in mobile robot
applications. Assumed performance of data registration algorithm is achieved, therefore it
can used as on−line. Robust nearest neighbor search procedure is obtaining normal vectors
for each range point. Normal vectors are represented as r,g,b values, therefore similar colors
correspond to one plane.
The experiments where performed using different type of 3D sensors including PMD Photonic
Mixer Devices camera, X-BOX 360 Kinect sensor and rotated LMS SICK 200 (3DLSN Unit).
Results are satisfying and it is planned to continue research and expand into another areas
from mobile robotics such as 6D SLAM and semantic mapping.
The paper is organized as follows: in Related work the State of The Art concerning parallel
computing applied in mobile robotics is described. In section 3D data registration the ICP
Iterative Closest Point algorithm improved by parallel KNN (k-nearest neighborhood search)
approach is shown. Section Path planning is demonstrating parallel approach for robot
navigation purpose. In Cloud o f points processing section the implementation of parallel
normal vector computation for 3D cloud of points segmentation is described. In Experiments
the results are shown. Conclusion and f uture work finalize the paper.

2. Related work

Several researches of 3D mapping are based on the simulation of 3D laser range finder to
obtain 3D cloud of points Magnusson et al. (2007). In most cases 3D laser simulator is built on
the basis of a rotated 2D range finder. The rotation axis can be horizontal Nüchter et al. (2003),
vertical Montemerlo & Thrun (2004) or the rotational axis in the middle of the scanner’s field
of view Kohlhepp et al. (2004). Another approach of obtaining 3D cloud of points using 2
orthogonal lasers is shown in the work of Thrun Thrun et al. (2000). The applications are
related with urban mapping Ortega et al. (2009).
Alignment and merging of two 3D scans, which are obtained from different sensor
coordinates, with respect to a reference coordinate system is called 3D registration Huber
& Hebert (2003) Fitzgibbon (2001) Magnusson & Duckett (2005). Park Park et al.
(2010) proposed a real-time approach for 3D registration using GPU, where the registration
technique is based on the Iterative Projection Point (IPP) algorithm. IPP technique is a
combination of point-to-plane and point-to-projection registration schemes Park & Subbarao
(2003). Processing time for this approach is about 60ms for aligning 2 3D data sets of 76800
points during 30 iterations of the IPP algorithm. Fast searching algorithms such as the k-d tree
algorithm are usually used to improve the performance of the closest point search Nuchter,
Lingemann & Hertzberg (2007) Rusinkiewicz & Levoy (2001). GPU accelerated nearest
neighbor search for 3D registration is proposed in work of Qiu Qiu et al. (2009), where
the advantage of Arya’s priority search algorithm described in Arya & Mount (1993) to fit

166
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 3

NNS in the SIMD (Single Instruction Multiple Data) model was used for GPU acceleration
purpose. Purcell suggested that k-d tree and priority queue methods are efficient but difficult
to be implemented on GPU Purcell et al. (2003). Garcia proves, that a brute force NNS
approach using NVidia Compute Unified Device Architecture (CUDA) is 400 times faster
over the CPU k-d tree implementation Garcia et al. (2008). GPU-based NNS with advanced
search structures is also used in the context of ray tracing Foley & Sugerman (2005), where
NNS procedure builds trees with a different manner from a triangle soup, and takes these
triangles as the objects of interest. To convert k-d tree into serialized flat array that can be
easily loaded into CUDA device, left-balanced k-d tree was proposed Jensen (2001) Qiu et al.
(2009). Another technique for 3D registration using Fast Point Feature Histograms (FPFH) is
shown in the work of Rusu Rusu et al. (2009). Rusu also proposed a way of characterizing
the local geometry of 3D points, using persistent feature histograms, where the relationships
between the neighbors of a point are analyzed and the resulted values are stored in a 16-bin
histogram Rusu et al. (2008). The histograms are pose and point cloud density invariant
and cope well with noisy datasets. An alternative concept to ICP algorithm which relies on
instantaneous kinematics and on the geometry of the squared distance function of a surface
is shown in the work of Pottmann Pottmann et al. (2002). The proposed algorithm exhibits
faster convergence than ICP, which is supported both by results of a local convergence analysis
and by experiments. The ICP algorithm is used in SLAM 6D (Simultaneous Localization and
Mapping), where 6 DOF (Degree of freedom) of robot position is computed based on aliment
of 3D clouds of points and loop-closing technique Sprickerhof et al. (2009).

3. 3D data registration

Classic Iterative Closest Points algorithm ICP was improved using GPGPU computation to
obtain on-line execution. The implementation performs nearest neighbor search using a
bucket data structure (sorted using CUDA primitive) and computes the correlation matrix
using parallel CUDA all-prefix-sum instruction.

3.1 GPU architecture
NVIDIA GPGPUs are programmable multi core chips built around an array of processors
working in parallel. The GPU is composed of an array of streaming multiprocessors (SM),
where each of them can launch up to 1024 co-resident concurrent threads. Currently available
graphics units are in the range from 1 SM up to 30 SMs for the high end products. Each
single SM contains 8 scalar processors (SP) each with 1024 32-bit registers. The total of
64KB of register space is available for each SM. Each SM is also equipped with a 16KB
on-chip memory that is characterized by low access latency and high bandwidth. Thread
management (creation, scheduling, synchronization) is performed in hardware and the
overhead is extremely low. SM works in SIMT scheme (Single Instruction, Multiple Thread),
where threads are executed in groups of 32 called warps. CUDA programming model defines
the host and the device. Host executes CPU sequential procedures while the device executes
parallel GPU programs - kernels. A kernel works in a SPMD scheme (Single Program,
Multiple Data). CUDA gives an advantage of using massively parallel computation for several
applications. Detailed GPU architecture can be found in the original documentation NVIDIA
CUDA C Programming Guide 3.2 (2010). Useful additional programming issues are published
in best practices guide CUDA (2010b).

167Parallel Computing in Mobile Robotics for RISE

4 Will-be-set-by-IN-TECH

3.2 Improved classic Iterative Closest Point
In this subsection classic Iterative Closest Point algorithm proposed by Besl & McKay
(1992) and implementation proposed by Nüchter, Lingemann, Hertzberg & Surmann (2007)
improved by GPGPU computing is described. Aligning two-view range images with respect
to the reference coordinate system is performed by the ICP (Iterative Closest Points) algorithm.
Range images are defined as a model set M and data set D, Nm and Nd denotes the number
of the elements in the respective set. The alignment of these two data sets is solved by
minimization with respect to R,t of the following cost function:

E (R, t) =
Nm

∑
i=1

Nd

∑
j=1

wij

∥∥∥mi −
(

Rdj + t
)∥∥∥2

(1)

wij is assigned 1 if the i-th point of M correspond to the j-th point in D in the
same bucket (or neighbor bucket). Otherwise wij=0. R is a rotation matrix, t is
a translation matrix. mi and di corresponds to the i-th point from model set M
and D respectively. The ICP algorithm using CUDA parallel programming is given:

Algorithm 1 ICP - parallel computing approach

allocate the memory
copy data from the host(Mhost, Dhost) to the device(Mdevice, Ddevice)
for iter = 0 to max_iterations do

select closest points between Mdevice and Ddevice
calculate (R, t) that minimizes equation 1
transform Ddevice by (R, t) and put the results into DdeviceRt
copy DdeviceRt to Ddevice

end for
copy Ddevice to Dhost
free memory

3.2.1 Calculation of (R,t)

Calculation of the rotation and translation (R,t) is performed using reduced equation
1:

E (R, t) ∝
1
N

N

∑
i=1

�mi − (Rdi + t)�2 (2)

where

N =
Nm

∑
i=1

Nd

∑
j=1

wij (3)

Rotation R is decoupled from computation of translation t using the centroids cm and cd of
points:

cm =
1
N

N

∑
i=1

mi (4)

168
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 5

cd =
1
N

N

∑
i=1

di (5)

and modified data sets:

M� =
�

mi
� = mi − cm

�
1,...,N (6)

D� =
�

di
� = di − cd

�
1,...,N (7)

After applying equations 4, 5, 6 and 7 to the mean square error function E(R, t), the equation
2 takes the following form:

E (R, t) ∝
1
N

N

∑
i=1

��mi
� − Rdi

� − (t − cm + Rcd)
��2 (8)

Assuming that:
t − cm + Rcd = �t (9)

equation 8 takes following form:

E (R, t) ∝ 1
N ∑N

i=1 �mi
� − Rdi

��2 −

2
N
�t · ∑N

i=1 (mi
� − Rdi

�) + 1
N ∑N

i=1
���t��2

(10)

To minimize 10 the algorithm has to minimize the following term:

N

∑
i=1

��mi
� − Rdi

���2 (11)

with the assumption:
�t = 0 (12)

The optimal rotation is calculated by R= VUT , where matrices V and U are derived from the
Singular Value Decomposition (SVD) described in section 3.2.8 of a correlation matrix C =
USVT given by:

C =
N

∑
i=1

mi
�Tdi

� =

⎡
⎣

cxx cxy cxz
cyx cyy cyz
czx czy czz

⎤
⎦ (13)

where:

cxx =
N

∑
i=1

mix
�dix

�, cxy =
N

∑
i=1

mix
�diy

�, ..., czz =
N

∑
i=1

miz
�diz

� (14)

Correlation matrix elements are computed using optimized parallel reduction described in
section 3.2.7. The optimal translation t is derived from equation 12 and 9, therefore

t = cm − Rcd (15)

169Parallel Computing in Mobile Robotics for RISE

4 Will-be-set-by-IN-TECH

3.2 Improved classic Iterative Closest Point
In this subsection classic Iterative Closest Point algorithm proposed by Besl & McKay
(1992) and implementation proposed by Nüchter, Lingemann, Hertzberg & Surmann (2007)
improved by GPGPU computing is described. Aligning two-view range images with respect
to the reference coordinate system is performed by the ICP (Iterative Closest Points) algorithm.
Range images are defined as a model set M and data set D, Nm and Nd denotes the number
of the elements in the respective set. The alignment of these two data sets is solved by
minimization with respect to R,t of the following cost function:

E (R, t) =
Nm

∑
i=1

Nd

∑
j=1

wij

∥∥∥mi −
(

Rdj + t
)∥∥∥2

(1)

wij is assigned 1 if the i-th point of M correspond to the j-th point in D in the
same bucket (or neighbor bucket). Otherwise wij=0. R is a rotation matrix, t is
a translation matrix. mi and di corresponds to the i-th point from model set M
and D respectively. The ICP algorithm using CUDA parallel programming is given:

Algorithm 1 ICP - parallel computing approach

allocate the memory
copy data from the host(Mhost, Dhost) to the device(Mdevice, Ddevice)
for iter = 0 to max_iterations do

select closest points between Mdevice and Ddevice
calculate (R, t) that minimizes equation 1
transform Ddevice by (R, t) and put the results into DdeviceRt
copy DdeviceRt to Ddevice

end for
copy Ddevice to Dhost
free memory

3.2.1 Calculation of (R,t)

Calculation of the rotation and translation (R,t) is performed using reduced equation
1:

E (R, t) ∝
1
N

N

∑
i=1

�mi − (Rdi + t)�2 (2)

where

N =
Nm

∑
i=1

Nd

∑
j=1

wij (3)

Rotation R is decoupled from computation of translation t using the centroids cm and cd of
points:

cm =
1
N

N

∑
i=1

mi (4)

168
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 5

cd =
1
N

N

∑
i=1

di (5)

and modified data sets:

M� =
�

mi
� = mi − cm

�
1,...,N (6)

D� =
�

di
� = di − cd

�
1,...,N (7)

After applying equations 4, 5, 6 and 7 to the mean square error function E(R, t), the equation
2 takes the following form:

E (R, t) ∝
1
N

N

∑
i=1

��mi
� − Rdi

� − (t − cm + Rcd)
��2 (8)

Assuming that:
t − cm + Rcd = �t (9)

equation 8 takes following form:

E (R, t) ∝ 1
N ∑N

i=1 �mi
� − Rdi

��2 −

2
N
�t · ∑N

i=1 (mi
� − Rdi

�) + 1
N ∑N

i=1
���t��2

(10)

To minimize 10 the algorithm has to minimize the following term:

N

∑
i=1

��mi
� − Rdi

���2 (11)

with the assumption:
�t = 0 (12)

The optimal rotation is calculated by R= VUT , where matrices V and U are derived from the
Singular Value Decomposition (SVD) described in section 3.2.8 of a correlation matrix C =
USVT given by:

C =
N

∑
i=1

mi
�Tdi

� =

⎡
⎣

cxx cxy cxz
cyx cyy cyz
czx czy czz

⎤
⎦ (13)

where:

cxx =
N

∑
i=1

mix
�dix

�, cxy =
N

∑
i=1

mix
�diy

�, ..., czz =
N

∑
i=1

miz
�diz

� (14)

Correlation matrix elements are computed using optimized parallel reduction described in
section 3.2.7. The optimal translation t is derived from equation 12 and 9, therefore

t = cm − Rcd (15)

169Parallel Computing in Mobile Robotics for RISE

6 Will-be-set-by-IN-TECH

3.2.2 Memory allocation on device and copy from host
Figure 1 and algorithm 2 shows main data used in presented approach. The
table_o f _ f ound_buckets, table_o f _sorted_buckets, table_o f _sorted_points consist of 512 × 512
integer elements, table_o f _amount_o f _points_in_bucket and table_o f _bucket_indexes consist
of 256 × 256 × 256 integer elements. M (reference data) and D (data to be align) data sets
are stored in six 512 × 512 tables consisting float values stored in one dimensional array. For
sorting the table of buckets routine described in section 3.2.4 and used in algorithm 2 the
CUDA Radix Sort class available in CUDA (2010a) briefly described in Satish et al. (2008) and
Satish et al. (2009) is used. The method initialize() called by the constructor of Radix Sort Class
allocates temporary storage for the sort and the prefix sum that it uses. Temporary storage is
(2*NUMBER_OF_POINTS + 3*8*M/CTA_SIZE) unsigned ints, with a default CTA_SIZE of
256 threads and NUMBER_OF_POINTS = 512 × 512. Amount of data is large, therefore the
procedure of memory allocation is done initially.

Fig. 1. Initial steps: selection of closest points procedure - example related to figure 4.

3.2.3 Selection of closest points
The distance between two points in Euclidean distance metric for point p1 = {x1, y1, z1} and
p2 = {x2, y2, z2} is:

distance(p1, p2) =
[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
] 1

2 (16)

To find pairs of closest points between model set M and data set D, the decomposition
of XYZ space, where x,y,z ∈ < −1, 1 >, into 28x28x28 buckets is proposed. The idea of
the decomposition will be discussed for 22x22x22 case. Figure 2 shows decision tree that
decomposes XYZ space into 64 buckets. Each node of the decision tree includes boundary
decision, therefore points are categorized into left or right branch. Nodes that do not have
branches assign buckets. Each bucket has unique index and is related to cubic subspace with
length,width,height = 2/22,2/22,2/22. Each bucket that does not belong to border has 26
neighbors. The 27 neighboring cubic subspaces are shown in figure 3 where also the way of

170
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 7

indexing is given. Figure 4 demonstrates the idea of nearest neighbor (NN) search technique
on 2 dimensional example. Assuming that we are looking for nearest neighbor that satisfies
condition R < 2/28 and circleR=2/28 ⊂ bucket3R NN will be found in the same bucket or
in neighboring bucket (in this example NN of point d is m5). Algorithm 2 describes the
procedure of selection of closest points. For better explanation figure 1 shows initial steps of
this algorithm where set M of 10 points from figure 4 is used for NN search. The details of the
algorithm will be discussed in next subsections.

Fig. 2. Tree structure used for XYZ space decomposition into 64 buckets. From root to the
leaf/bucket chosen left or right brunch depends on the current separation line.

Fig. 3. Cubic subspaces - neighboring buckets, the way of indexing is explained in section
3.2.6.

3.2.4 Sort buckets
Radix sort class CUDA (2010a) is used to sort unsigned integer key-value pairs. Keys
correspond to the elements of table of buckets and value corresponds to elements from table
of points. Procedure outputs sorted table of buckets. Figure 1 shows an example of sorting

171Parallel Computing in Mobile Robotics for RISE

6 Will-be-set-by-IN-TECH

3.2.2 Memory allocation on device and copy from host
Figure 1 and algorithm 2 shows main data used in presented approach. The
table_o f _ f ound_buckets, table_o f _sorted_buckets, table_o f _sorted_points consist of 512 × 512
integer elements, table_o f _amount_o f _points_in_bucket and table_o f _bucket_indexes consist
of 256 × 256 × 256 integer elements. M (reference data) and D (data to be align) data sets
are stored in six 512 × 512 tables consisting float values stored in one dimensional array. For
sorting the table of buckets routine described in section 3.2.4 and used in algorithm 2 the
CUDA Radix Sort class available in CUDA (2010a) briefly described in Satish et al. (2008) and
Satish et al. (2009) is used. The method initialize() called by the constructor of Radix Sort Class
allocates temporary storage for the sort and the prefix sum that it uses. Temporary storage is
(2*NUMBER_OF_POINTS + 3*8*M/CTA_SIZE) unsigned ints, with a default CTA_SIZE of
256 threads and NUMBER_OF_POINTS = 512 × 512. Amount of data is large, therefore the
procedure of memory allocation is done initially.

Fig. 1. Initial steps: selection of closest points procedure - example related to figure 4.

3.2.3 Selection of closest points
The distance between two points in Euclidean distance metric for point p1 = {x1, y1, z1} and
p2 = {x2, y2, z2} is:

distance(p1, p2) =
[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
] 1

2 (16)

To find pairs of closest points between model set M and data set D, the decomposition
of XYZ space, where x,y,z ∈ < −1, 1 >, into 28x28x28 buckets is proposed. The idea of
the decomposition will be discussed for 22x22x22 case. Figure 2 shows decision tree that
decomposes XYZ space into 64 buckets. Each node of the decision tree includes boundary
decision, therefore points are categorized into left or right branch. Nodes that do not have
branches assign buckets. Each bucket has unique index and is related to cubic subspace with
length,width,height = 2/22,2/22,2/22. Each bucket that does not belong to border has 26
neighbors. The 27 neighboring cubic subspaces are shown in figure 3 where also the way of

170
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 7

indexing is given. Figure 4 demonstrates the idea of nearest neighbor (NN) search technique
on 2 dimensional example. Assuming that we are looking for nearest neighbor that satisfies
condition R < 2/28 and circleR=2/28 ⊂ bucket3R NN will be found in the same bucket or
in neighboring bucket (in this example NN of point d is m5). Algorithm 2 describes the
procedure of selection of closest points. For better explanation figure 1 shows initial steps of
this algorithm where set M of 10 points from figure 4 is used for NN search. The details of the
algorithm will be discussed in next subsections.

Fig. 2. Tree structure used for XYZ space decomposition into 64 buckets. From root to the
leaf/bucket chosen left or right brunch depends on the current separation line.

Fig. 3. Cubic subspaces - neighboring buckets, the way of indexing is explained in section
3.2.6.

3.2.4 Sort buckets
Radix sort class CUDA (2010a) is used to sort unsigned integer key-value pairs. Keys
correspond to the elements of table of buckets and value corresponds to elements from table
of points. Procedure outputs sorted table of buckets. Figure 1 shows an example of sorting

171Parallel Computing in Mobile Robotics for RISE

8 Will-be-set-by-IN-TECH

Fig. 4. 2 dimensional example of NN search in neighboring buckets.

Algorithm 2 Selection of closest points

for all points mxyz in parallel do
find bucketm
update table_o f _ f ound_buckets

end for
in parallel sort table_o f _ f ound_buckets {radix sort}
in parallel count points in each bucket
for all points dxyz in parallel do

find bucketd
for all neighbors of bucketd do

find NN for dxyz {nearest neighbor is one from mxyz}
end for

end for

result. Radix sort is a well known sorting algorithm, very efficient on sequential machines for
sorting small keys. It assumes that the keys are d-digit numbers and sorts on one digit of the
keys at a time, starting from least and finishing on most significant. The complexity of sorting
n keys will be O(n). The details of GPU based radix sort implementation can be found in
Satish et al. (2008) Satish et al. (2009). The implementation of GPU based radix sort is robust,
therefore it can be used for on-line computation.

3.2.5 Count points in bucket and find index of bucket
In the procedure of counting points that belong to the same bucket the counting is based on
table_o f _sorted_buckets (see figure 1). It is important to notice, that also the index of the found
bucket is computed. This index, along with the information concerning an amount of points
in the bucket, will be used for searching nearest neighbor in algorithm 2.

3.2.6 Find bucket
Figure 2 shows tree structure used for indexing of 22x22x22 buckets. The concept of finding
bucket index for point mxyz is shown on the scheme 5, where x corresponds to border for
current level in the tree and 0, 1, 2, 3, ... 14, ... correspond to actual bucket index during
its computation. The bucket indexing procedure is executed in parallel, where each CUDA
kernel computes bucket index for different pointxyz.

172
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 9

Fig. 5. The scheme of bucket indexing procedure.

3.2.7 Correlation matrix elements computation using optimized parallel reduction
For correlation matrix (equation 13) parallel prefix sum Harris et al. (2007) available in
CUDA (2010a) is used. The all-prefix-sums operations take a binary associate operator ⊕
with identity I, and an array of n elements

[a0, a1, ..., an−1] (17)

and returns the array
[I, a0, (a0 ⊕ a1) , ..., (a0 ⊕ a1 ⊕ ... ⊕ an−2)] (18)

All-prefix-sums operations on array of data is commonly known as scan. The parallel
implementation uses multiple thread blocks for processing an array of 512 × 512 data points
stored in one dimensional array. The strategy is to keep all multiprocessors on the GPU busy
to increase the performance. An assumption is that each thread block reduces a portion of
the array. To avoid problem of global synchronization the computation is decomposed into
multi kernel invocations. Optimized kernel available in CUDA (2010a) is used in parallel
computation.

3.2.8 Singular Value Decomposition (SVD)
The equation for singular value decomposition of A 3 × 3 matrix is the following:

A = UΣVT (19)

where U is an 3 × 3 matrix, Σ is an 3 × 3 diagonal matrix, and VT is also an 3 × 3 matrix. The
columns of U are called the left singular vectors, { uk }, and form an orthonormal basis. The
rows of VT contain the elements of the right singular vectors, { vk }. The elements of Σ are
only nonzero on the diagonal, and are called the singular values. Thus, Σ = diag(σ1, ..., σn).
Furthermore, σk > 0 for 1 ≤ k ≤ r, and σi = 0 for (r+1) ≤ k ≤ n. The ordering of the singular
vectors is determined by high-to-low sorting of singular values, with the highest singular
value in the upper left index of the Σ matrix. In this particular application we need to compute
the SVD of a 3x3 matrix. For such a small matrix, generalized SVD algorithms from libraries
like LAPACK (Linear Algebra PACKage) LAPACK (2011) are not beneficial especially when
we have to implement it on GPGPU. Our implementation computes the singular values by
solving for the roots of a cubic polynomial and then eigenvectors of AT A for V, then it uses A
and V to compute U. The algorithm is executed in 5 steps.
1. Compute AT and AT A.
2. Determine the eigenvalues of AT A (by solving for the roots of a cubic polynomial) and sort
these in descending order. Compute square roots to obtain singular values of A.

173Parallel Computing in Mobile Robotics for RISE

8 Will-be-set-by-IN-TECH

Fig. 4. 2 dimensional example of NN search in neighboring buckets.

Algorithm 2 Selection of closest points

for all points mxyz in parallel do
find bucketm
update table_o f _ f ound_buckets

end for
in parallel sort table_o f _ f ound_buckets {radix sort}
in parallel count points in each bucket
for all points dxyz in parallel do

find bucketd
for all neighbors of bucketd do

find NN for dxyz {nearest neighbor is one from mxyz}
end for

end for

result. Radix sort is a well known sorting algorithm, very efficient on sequential machines for
sorting small keys. It assumes that the keys are d-digit numbers and sorts on one digit of the
keys at a time, starting from least and finishing on most significant. The complexity of sorting
n keys will be O(n). The details of GPU based radix sort implementation can be found in
Satish et al. (2008) Satish et al. (2009). The implementation of GPU based radix sort is robust,
therefore it can be used for on-line computation.

3.2.5 Count points in bucket and find index of bucket
In the procedure of counting points that belong to the same bucket the counting is based on
table_o f _sorted_buckets (see figure 1). It is important to notice, that also the index of the found
bucket is computed. This index, along with the information concerning an amount of points
in the bucket, will be used for searching nearest neighbor in algorithm 2.

3.2.6 Find bucket
Figure 2 shows tree structure used for indexing of 22x22x22 buckets. The concept of finding
bucket index for point mxyz is shown on the scheme 5, where x corresponds to border for
current level in the tree and 0, 1, 2, 3, ... 14, ... correspond to actual bucket index during
its computation. The bucket indexing procedure is executed in parallel, where each CUDA
kernel computes bucket index for different pointxyz.

172
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 9

Fig. 5. The scheme of bucket indexing procedure.

3.2.7 Correlation matrix elements computation using optimized parallel reduction
For correlation matrix (equation 13) parallel prefix sum Harris et al. (2007) available in
CUDA (2010a) is used. The all-prefix-sums operations take a binary associate operator ⊕
with identity I, and an array of n elements

[a0, a1, ..., an−1] (17)

and returns the array
[I, a0, (a0 ⊕ a1) , ..., (a0 ⊕ a1 ⊕ ... ⊕ an−2)] (18)

All-prefix-sums operations on array of data is commonly known as scan. The parallel
implementation uses multiple thread blocks for processing an array of 512 × 512 data points
stored in one dimensional array. The strategy is to keep all multiprocessors on the GPU busy
to increase the performance. An assumption is that each thread block reduces a portion of
the array. To avoid problem of global synchronization the computation is decomposed into
multi kernel invocations. Optimized kernel available in CUDA (2010a) is used in parallel
computation.

3.2.8 Singular Value Decomposition (SVD)
The equation for singular value decomposition of A 3 × 3 matrix is the following:

A = UΣVT (19)

where U is an 3 × 3 matrix, Σ is an 3 × 3 diagonal matrix, and VT is also an 3 × 3 matrix. The
columns of U are called the left singular vectors, { uk }, and form an orthonormal basis. The
rows of VT contain the elements of the right singular vectors, { vk }. The elements of Σ are
only nonzero on the diagonal, and are called the singular values. Thus, Σ = diag(σ1, ..., σn).
Furthermore, σk > 0 for 1 ≤ k ≤ r, and σi = 0 for (r+1) ≤ k ≤ n. The ordering of the singular
vectors is determined by high-to-low sorting of singular values, with the highest singular
value in the upper left index of the Σ matrix. In this particular application we need to compute
the SVD of a 3x3 matrix. For such a small matrix, generalized SVD algorithms from libraries
like LAPACK (Linear Algebra PACKage) LAPACK (2011) are not beneficial especially when
we have to implement it on GPGPU. Our implementation computes the singular values by
solving for the roots of a cubic polynomial and then eigenvectors of AT A for V, then it uses A
and V to compute U. The algorithm is executed in 5 steps.
1. Compute AT and AT A.
2. Determine the eigenvalues of AT A (by solving for the roots of a cubic polynomial) and sort
these in descending order. Compute square roots to obtain singular values of A.

173Parallel Computing in Mobile Robotics for RISE

10 Will-be-set-by-IN-TECH

3. Construct diagonal matrix Σ by placing singular values in descending order along its
diagonal. Compute Σ−1.
4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of AT A. Place these
eigenvectors along the columns of V and compute VT .
5. Compute U = AVΣ−1

4. Path planning

Motion planning is very important task for mobile robot working in unknown environment.
Assuming that we have grid map describing robot environment, a trajectory of the robot can
be computed using the modification of diffusion method described in Siemiatkowska (2008)
improved by GPU computation. GPGPU implementation is using two 2 dimensional grids
of 512x512 cells. One grid is used for initiation, where each cell can be free, occupied by
the obstacle, occupied by a robot or occupied by a goal. Second grid is used for diffusion
computation. The idea of usage GPU is to perform computation for each cell in parallel till
diffusion reach robot position. To obtain robot trajectory we start from robot position and
iteratively by finding local maximum in neighboring cells we are approaching the goal.

5. Cloud of points processing

Main idea is to decompose 3 dimensional space into grid of buckets. For each bucket local
approximation plane is computed (if more than 3 points belong to bucket) and for each point
in bucket normal vector is assigned. The advantage of proposed method is satisfactory result
obtained with noisy data set. The procedure of normal vectors computation for registered
range images is given in algorithm 3, it uses CUDA for robust nearest neighbors search
briefly described in previous sections. The parameter maxnumbero f planes in algorithm 3
is assigned experimentally as 10. This value guarantee robust procedure execution with
satisfying heuristic of random planes generation.

Algorithm 3 Compute normal vectors (r,g,b)

for all range points (x,y,z) in parallel do
bucket = findbucket(x,y,z)
for allneighboringbuckets do

add points from bucket to listo f points
end for
for i = 0 to maxnumbero f planes do

compute plane based on 3 random points
sumi = 0
for all points in listo f points do

sumi += distance(point,plane)
end for

end for
normalvector = plane for min(sumi)

end for

174
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 11

6. Experiments

All experiments were performed using NVIDIA GF 580 GPGPU. Following subsections
demonstrate results in area of accelerated ICP, path planning and normal vector computation.

6.1 GPU accelerated ICP
Experiments where performed using different type of sensors: Time of Flight camera (see
figure 6), Kinect sensor (see figure 8) and 3DLSN unit (see figure 10). Data registration
result with low cost Time of Flight camera IFM O3D201 is not satisfactory because of the
low resolution of sensor (figure 7). New RGB-D Kinect camera (figure 8) offers high
resolution with acceptable level of noise, therefore the registration result is acceptable (figure
9). Unfortunately Kinect sensor is not designed for robotics application especially working
in outdoor environments, therefore usage is limited. The most optimistic result is obtained

Fig. 6. Time of Flight camera type IFM O3D201.

Fig. 7. Data registration using Time of Flight camera type IFM O3D201. The result is not
satisfactory because of low resolution of sensor.

175Parallel Computing in Mobile Robotics for RISE

10 Will-be-set-by-IN-TECH

3. Construct diagonal matrix Σ by placing singular values in descending order along its
diagonal. Compute Σ−1.
4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of AT A. Place these
eigenvectors along the columns of V and compute VT .
5. Compute U = AVΣ−1

4. Path planning

Motion planning is very important task for mobile robot working in unknown environment.
Assuming that we have grid map describing robot environment, a trajectory of the robot can
be computed using the modification of diffusion method described in Siemiatkowska (2008)
improved by GPU computation. GPGPU implementation is using two 2 dimensional grids
of 512x512 cells. One grid is used for initiation, where each cell can be free, occupied by
the obstacle, occupied by a robot or occupied by a goal. Second grid is used for diffusion
computation. The idea of usage GPU is to perform computation for each cell in parallel till
diffusion reach robot position. To obtain robot trajectory we start from robot position and
iteratively by finding local maximum in neighboring cells we are approaching the goal.

5. Cloud of points processing

Main idea is to decompose 3 dimensional space into grid of buckets. For each bucket local
approximation plane is computed (if more than 3 points belong to bucket) and for each point
in bucket normal vector is assigned. The advantage of proposed method is satisfactory result
obtained with noisy data set. The procedure of normal vectors computation for registered
range images is given in algorithm 3, it uses CUDA for robust nearest neighbors search
briefly described in previous sections. The parameter maxnumbero f planes in algorithm 3
is assigned experimentally as 10. This value guarantee robust procedure execution with
satisfying heuristic of random planes generation.

Algorithm 3 Compute normal vectors (r,g,b)

for all range points (x,y,z) in parallel do
bucket = findbucket(x,y,z)
for allneighboringbuckets do

add points from bucket to listo f points
end for
for i = 0 to maxnumbero f planes do

compute plane based on 3 random points
sumi = 0
for all points in listo f points do

sumi += distance(point,plane)
end for

end for
normalvector = plane for min(sumi)

end for

174
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 11

6. Experiments

All experiments were performed using NVIDIA GF 580 GPGPU. Following subsections
demonstrate results in area of accelerated ICP, path planning and normal vector computation.

6.1 GPU accelerated ICP
Experiments where performed using different type of sensors: Time of Flight camera (see
figure 6), Kinect sensor (see figure 8) and 3DLSN unit (see figure 10). Data registration
result with low cost Time of Flight camera IFM O3D201 is not satisfactory because of the
low resolution of sensor (figure 7). New RGB-D Kinect camera (figure 8) offers high
resolution with acceptable level of noise, therefore the registration result is acceptable (figure
9). Unfortunately Kinect sensor is not designed for robotics application especially working
in outdoor environments, therefore usage is limited. The most optimistic result is obtained

Fig. 6. Time of Flight camera type IFM O3D201.

Fig. 7. Data registration using Time of Flight camera type IFM O3D201. The result is not
satisfactory because of low resolution of sensor.

175Parallel Computing in Mobile Robotics for RISE

12 Will-be-set-by-IN-TECH

Fig. 8. Robot PIONEER 3AT equipped with Kinect sensor. Photo taken during Land Robot
Trial CELROB 2011.

Fig. 9. Data registration using Kinect sensor. Result is satisfactory because of high resolution
of Kinect sensor with acceptable level of noise.

for commercially available 3DLSN unit (figure 10) composed of laser measurement system
LMS SICK 200 offering accurate data acquisition working in INDOOR and OUTDOOR
environments. The disadvantage is the limitation of data acquisition in stop-scan fashion.
Data where acquired in INDOOR and OUTOOR environments shown in figures 11 and
14. Results of ICP algorithm for 30 and 100 iterations are shown in figures 12 and 13.
Average time of 30 iterations of GPGPU based ICP is less than 300ms and 100 iterations is
less than 1 second. Empirical evaluation shows that 30 iteration enough for accurate data

176
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 13

registration, therefore it is assumed that ICP takes 300ms in average for alignment of two data
sets containing 512 x 512 data points.

Fig. 10. Robot PIONEER 3AT equipped with 3DLSN sensor.

Fig. 11. Data acquisition using robot equipped with 3DLSN unit in INDOOR and OUTDOOR
environments (Faculty of Mechatronics, Warsaw University of Technology).

177Parallel Computing in Mobile Robotics for RISE

12 Will-be-set-by-IN-TECH

Fig. 8. Robot PIONEER 3AT equipped with Kinect sensor. Photo taken during Land Robot
Trial CELROB 2011.

Fig. 9. Data registration using Kinect sensor. Result is satisfactory because of high resolution
of Kinect sensor with acceptable level of noise.

for commercially available 3DLSN unit (figure 10) composed of laser measurement system
LMS SICK 200 offering accurate data acquisition working in INDOOR and OUTDOOR
environments. The disadvantage is the limitation of data acquisition in stop-scan fashion.
Data where acquired in INDOOR and OUTOOR environments shown in figures 11 and
14. Results of ICP algorithm for 30 and 100 iterations are shown in figures 12 and 13.
Average time of 30 iterations of GPGPU based ICP is less than 300ms and 100 iterations is
less than 1 second. Empirical evaluation shows that 30 iteration enough for accurate data

176
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 13

registration, therefore it is assumed that ICP takes 300ms in average for alignment of two data
sets containing 512 x 512 data points.

Fig. 10. Robot PIONEER 3AT equipped with 3DLSN sensor.

Fig. 11. Data acquisition using robot equipped with 3DLSN unit in INDOOR and OUTDOOR
environments (Faculty of Mechatronics, Warsaw University of Technology).

177Parallel Computing in Mobile Robotics for RISE

14 Will-be-set-by-IN-TECH

Fig. 12. Result of data registration in INDOOR environment from figure 11. It is shown a
small difference of the result of ICP with 30 and 100 iterations.

Fig. 13. Result of data registration in INDOOR environment from figure 11. It is shown a
small difference of the result of ICP with 30 and 100 iterations.

Fig. 14. Data registration result (Royal Military Academy Campus, Brussels, Belgium).

178
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 15

6.2 Path planing simulation results
Path planning was tested using simulated environments with different amount of random
obstacles (figure 15, 16, 17, 18). Robot environment is represented by two dimensional grid
of cells (512 x 512). Goal is located on the left and robot position is located on the right, path is
visualized as black and white line. Diffusion process is visualized in gray scale, where white
pixels correspond to max values and black pixels correspond to min values. The average time
of CUDA kernel execution of elementary diffusion process takes 0.06 ms, and total diffusion

Fig. 15. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with no obstacles.

Fig. 16. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 100 random obstacles.

179Parallel Computing in Mobile Robotics for RISE

14 Will-be-set-by-IN-TECH

Fig. 12. Result of data registration in INDOOR environment from figure 11. It is shown a
small difference of the result of ICP with 30 and 100 iterations.

Fig. 13. Result of data registration in INDOOR environment from figure 11. It is shown a
small difference of the result of ICP with 30 and 100 iterations.

Fig. 14. Data registration result (Royal Military Academy Campus, Brussels, Belgium).

178
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 15

6.2 Path planing simulation results
Path planning was tested using simulated environments with different amount of random
obstacles (figure 15, 16, 17, 18). Robot environment is represented by two dimensional grid
of cells (512 x 512). Goal is located on the left and robot position is located on the right, path is
visualized as black and white line. Diffusion process is visualized in gray scale, where white
pixels correspond to max values and black pixels correspond to min values. The average time
of CUDA kernel execution of elementary diffusion process takes 0.06 ms, and total diffusion

Fig. 15. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with no obstacles.

Fig. 16. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 100 random obstacles.

179Parallel Computing in Mobile Robotics for RISE

16 Will-be-set-by-IN-TECH

process for 512 iterations takes in average 30ms. The result is satisfactory because it is showing
on-line capability of proposed implementation.

Fig. 17. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 200 random obstacles.

Fig. 18. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 300 random obstacles.

180
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 17

6.3 Normal vector computation
GPGPU accelerated normal vector computation was tested for data acquired using Kinect
sensor (figure 19) and 3DLSN unit (figure 20). The average time of normal vector
computation is less than 100ms for data set of 512 x 512 data points. The implementation
is robust for noisy data delivered by Kinect sensor.

Fig. 19. Normal vector computation for data acquired by Kinect sensor (see also figure 9).
Vectors (x,y,z) are represented by colors (r,g,b).

Fig. 20. Normal vector computation for data acquired by 3DLSN unit. Vectors (x,y,z) are
represented by colors (r,g,b).

181Parallel Computing in Mobile Robotics for RISE

16 Will-be-set-by-IN-TECH

process for 512 iterations takes in average 30ms. The result is satisfactory because it is showing
on-line capability of proposed implementation.

Fig. 17. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 200 random obstacles.

Fig. 18. Path planning result (goal- circle on the left, robot position - circle on the right).
Environment with 300 random obstacles.

180
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 17

6.3 Normal vector computation
GPGPU accelerated normal vector computation was tested for data acquired using Kinect
sensor (figure 19) and 3DLSN unit (figure 20). The average time of normal vector
computation is less than 100ms for data set of 512 x 512 data points. The implementation
is robust for noisy data delivered by Kinect sensor.

Fig. 19. Normal vector computation for data acquired by Kinect sensor (see also figure 9).
Vectors (x,y,z) are represented by colors (r,g,b).

Fig. 20. Normal vector computation for data acquired by 3DLSN unit. Vectors (x,y,z) are
represented by colors (r,g,b).

181Parallel Computing in Mobile Robotics for RISE

18 Will-be-set-by-IN-TECH

7. Conclusion and future work

In this chapter three areas of research where shown such as 3D data registration, robot
navigation and 3D cloud of points processing. All approaches are improved using GPGPU
parallel computation. The on − line data registration problem was discussed. New
approach based on robust KNN nearest neighborhood search applied for improvement of
ICP algorithm where shown. The implementation is using Radix Sort for bucket sorting. Data
registration implementation was tested for data sets delivered by different sensors in different
environments. The average ICP time computation for 30 iteration is less than 300ms.
The path planning parallel approach based on modified diffusion method was shown. It was
tested using simulated environment compound from different amount of random obstacles.
The result is satisfactory because 30 ms of computation guarantee on-line execution in
practical application.
On − line 3D cloud of points’ segmentation based on normal vector computation was
presented. The result is satisfactory even for noisy data obtained by Kinect sensors. 100ms
average time is optimistic to use this implementation in practical application.
The set of proposed algorithms was tested on GPGPU NVIDIA CUDA GF 580. The
improvement of SoA algorithms based on CUDA implementation shows the possibility to
use in real RISE applications because of decreased time of execution. Future work will be
related to development of 6DSLAM using GPU-ICP as odometry correction and normal vector
computation for obtaining semantic images for Loop Closing procedure.

8. References

Arya, S. & Mount, D. M. (1993). Algorithms for fast vector quantization, Proc. of DCC ’93: Data
Compression Conference, IEEE Press, pp. 381–390.

Besl, P. J. & McKay, N. D. (1992). A method for registration of 3-d shapes, IEEE Trans. Pattern
Anal. Mach. Intell. 14: 239–256.
URL: http://portal.acm.org/citation.cfm?id=132013.132022

CUDA (2010a). http://www.nvidia.com/cuda.
CUDA (2010b). CUDA C Best Practices Guide 3.2, http://www.nvidia.com/cuda.
Fitzgibbon, A. W. (2001). Robust registration of 2d and 3d point sets, In British Machine Vision

Conference, pp. 411–420.
Foley, T. & Sugerman, J. (2005). Kd-tree acceleration structures for a gpu raytracer, Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS ’05,
ACM, New York, NY, USA, pp. 15–22.

Garcia, V., Debreuve, E. & Barlaud, M. (2008). Fast k nearest neighbor search using gpu,
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, pp. 1–6.

Harris, M., Sengupta, S. & Owens, J. D. (2007). GPU Gems 3, Parallel Prefix Sum (Scan) with
CUDA, Addison-Wesley, chapter 39, pp. 851–876.

Huber, D. & Hebert, M. (2003). Fully automatic registration of multiple 3d data sets, Image and
Vision Computing 21(1): 637–650.

Jensen, H. W. (2001). Realistic image synthesis using photon mapping, A. K. Peters, Ltd., Natick,
MA, USA.

182
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 19

Kohlhepp, P., Pozzo, P., Walther, M. & Dillmann, R. (2004). Sequential 3d-slam for mobile
action planning, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, pp. 722–729.

LAPACK (2011). http://www.netlib.org/lapack.
Magnusson, M. & Duckett, T. (2005). A comparison of 3d registration algorithms for

autonomous underground mining vehicles, In Proc. ECMR, pp. 86–91.
Magnusson, M., Duckett, T. & Lilienthal, A. J. (2007). 3d scan registration for autonomous

mining vehicles, Journal of Field Robotics 24(10): 803–827.
Montemerlo, M. & Thrun, S. (2004). A multi-resolution pyramid for outdoor robot terrain

perception, AAAI’04: Proceedings of the 19th national conference on Artifical intelligence,
AAAI Press, pp. 464–469.

Nuchter, A., Lingemann, K. & Hertzberg, J. (2007). Cached k-d tree search for icp algorithms,
Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling,
IEEE Computer Society, Washington, DC, USA, pp. 419–426.

Nüchter, A., Lingemann, K., Hertzberg, J. & Surmann, H. (2007). 6d slam for 3d mapping
outdoor environments, Journal of Field Robotics (JFR), Special Issue on Quantitative
Performance Evaluation of Robotic and Intelligent Systems 24: 699–722.

Nüchter, A., Surmann, H. & Hertzberg, J. (2003). Automatic model refinement for 3D
reconstruction with mobile robots, Fourth International Conference on 3-D Digital
Imaging and Modeling 3DIM 03, p. 394.

NVIDIA CUDA C Programming Guide 3.2 (2010). http://www.nvidia.com/cuda.
Ortega, A., Haddad, I. & Andrade-Cetto, J. (2009). Graph-based segmentation of range data

with applications to 3d urban mapping, 4th European Conference on Mobile Robots
ECMR 09, September 23-25, 2009, Mlini Dubrovnik, Croatia, pp. 193–198.

Park, S.-Y., Choi, S.-I., Kim, J. & Chae, J. (2010). Real-time 3d registration using gpu, Machine
Vision and Applications pp. 1–14. 10.1007/s00138-010-0282-z.

Park, S.-Y. & Subbarao, M. (2003). An accurate and fast point-to-plane registration technique,
Pattern Recogn. Lett. 24: 2967–2976.

Pottmann, H., Leopoldseder, S. & Hofer, M. (2002). Registration without icp, Computer Vision
and Image Understanding 95: 54–71.

Purcell, T. J., Donner, C., Cammarano, M., Jensen, H. W. & Hanrahan, P. (2003).
Photon mapping on programmable graphics hardware, Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, Eurographics
Association, pp. 41–50.

Qiu, D., May, S. & Nuchter, A. (2009). Gpu-accelerated nearest neighbor search for 3d
registration, Proceedings of the 7th International Conference on Computer Vision Systems:
Computer Vision Systems, ICVS ’09, Springer-Verlag, Berlin, Heidelberg, pp. 194–203.

Rusinkiewicz, S. & Levoy, M. (2001). Efficient variants of the ICP algorithm, Third International
Conference on 3D Digital Imaging and Modeling (3DIM).

Rusu, R. B., Blodow, N. & Beetz, M. (2009). Fast point feature histograms (fpfh) for
3d registration, Proceedings of the 2009 IEEE international conference on Robotics and
Automation, ICRA’09, IEEE Press, Piscataway, NJ, USA, pp. 1848–1853.

Rusu, R. B., Marton, Z. C., Blodow, N. & Beetz, M. (2008). Persistent Point Feature Histograms
for 3D Point Clouds, Proceedings of the 10th International Conference on Intelligent
Autonomous Systems (IAS-10), Baden-Baden, Germany.

183Parallel Computing in Mobile Robotics for RISE

18 Will-be-set-by-IN-TECH

7. Conclusion and future work

In this chapter three areas of research where shown such as 3D data registration, robot
navigation and 3D cloud of points processing. All approaches are improved using GPGPU
parallel computation. The on − line data registration problem was discussed. New
approach based on robust KNN nearest neighborhood search applied for improvement of
ICP algorithm where shown. The implementation is using Radix Sort for bucket sorting. Data
registration implementation was tested for data sets delivered by different sensors in different
environments. The average ICP time computation for 30 iteration is less than 300ms.
The path planning parallel approach based on modified diffusion method was shown. It was
tested using simulated environment compound from different amount of random obstacles.
The result is satisfactory because 30 ms of computation guarantee on-line execution in
practical application.
On − line 3D cloud of points’ segmentation based on normal vector computation was
presented. The result is satisfactory even for noisy data obtained by Kinect sensors. 100ms
average time is optimistic to use this implementation in practical application.
The set of proposed algorithms was tested on GPGPU NVIDIA CUDA GF 580. The
improvement of SoA algorithms based on CUDA implementation shows the possibility to
use in real RISE applications because of decreased time of execution. Future work will be
related to development of 6DSLAM using GPU-ICP as odometry correction and normal vector
computation for obtaining semantic images for Loop Closing procedure.

8. References

Arya, S. & Mount, D. M. (1993). Algorithms for fast vector quantization, Proc. of DCC ’93: Data
Compression Conference, IEEE Press, pp. 381–390.

Besl, P. J. & McKay, N. D. (1992). A method for registration of 3-d shapes, IEEE Trans. Pattern
Anal. Mach. Intell. 14: 239–256.
URL: http://portal.acm.org/citation.cfm?id=132013.132022

CUDA (2010a). http://www.nvidia.com/cuda.
CUDA (2010b). CUDA C Best Practices Guide 3.2, http://www.nvidia.com/cuda.
Fitzgibbon, A. W. (2001). Robust registration of 2d and 3d point sets, In British Machine Vision

Conference, pp. 411–420.
Foley, T. & Sugerman, J. (2005). Kd-tree acceleration structures for a gpu raytracer, Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS ’05,
ACM, New York, NY, USA, pp. 15–22.

Garcia, V., Debreuve, E. & Barlaud, M. (2008). Fast k nearest neighbor search using gpu,
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, pp. 1–6.

Harris, M., Sengupta, S. & Owens, J. D. (2007). GPU Gems 3, Parallel Prefix Sum (Scan) with
CUDA, Addison-Wesley, chapter 39, pp. 851–876.

Huber, D. & Hebert, M. (2003). Fully automatic registration of multiple 3d data sets, Image and
Vision Computing 21(1): 637–650.

Jensen, H. W. (2001). Realistic image synthesis using photon mapping, A. K. Peters, Ltd., Natick,
MA, USA.

182
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Parallel Computing in Mobile
Robotics for RISE 19

Kohlhepp, P., Pozzo, P., Walther, M. & Dillmann, R. (2004). Sequential 3d-slam for mobile
action planning, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, pp. 722–729.

LAPACK (2011). http://www.netlib.org/lapack.
Magnusson, M. & Duckett, T. (2005). A comparison of 3d registration algorithms for

autonomous underground mining vehicles, In Proc. ECMR, pp. 86–91.
Magnusson, M., Duckett, T. & Lilienthal, A. J. (2007). 3d scan registration for autonomous

mining vehicles, Journal of Field Robotics 24(10): 803–827.
Montemerlo, M. & Thrun, S. (2004). A multi-resolution pyramid for outdoor robot terrain

perception, AAAI’04: Proceedings of the 19th national conference on Artifical intelligence,
AAAI Press, pp. 464–469.

Nuchter, A., Lingemann, K. & Hertzberg, J. (2007). Cached k-d tree search for icp algorithms,
Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling,
IEEE Computer Society, Washington, DC, USA, pp. 419–426.

Nüchter, A., Lingemann, K., Hertzberg, J. & Surmann, H. (2007). 6d slam for 3d mapping
outdoor environments, Journal of Field Robotics (JFR), Special Issue on Quantitative
Performance Evaluation of Robotic and Intelligent Systems 24: 699–722.

Nüchter, A., Surmann, H. & Hertzberg, J. (2003). Automatic model refinement for 3D
reconstruction with mobile robots, Fourth International Conference on 3-D Digital
Imaging and Modeling 3DIM 03, p. 394.

NVIDIA CUDA C Programming Guide 3.2 (2010). http://www.nvidia.com/cuda.
Ortega, A., Haddad, I. & Andrade-Cetto, J. (2009). Graph-based segmentation of range data

with applications to 3d urban mapping, 4th European Conference on Mobile Robots
ECMR 09, September 23-25, 2009, Mlini Dubrovnik, Croatia, pp. 193–198.

Park, S.-Y., Choi, S.-I., Kim, J. & Chae, J. (2010). Real-time 3d registration using gpu, Machine
Vision and Applications pp. 1–14. 10.1007/s00138-010-0282-z.

Park, S.-Y. & Subbarao, M. (2003). An accurate and fast point-to-plane registration technique,
Pattern Recogn. Lett. 24: 2967–2976.

Pottmann, H., Leopoldseder, S. & Hofer, M. (2002). Registration without icp, Computer Vision
and Image Understanding 95: 54–71.

Purcell, T. J., Donner, C., Cammarano, M., Jensen, H. W. & Hanrahan, P. (2003).
Photon mapping on programmable graphics hardware, Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, Eurographics
Association, pp. 41–50.

Qiu, D., May, S. & Nuchter, A. (2009). Gpu-accelerated nearest neighbor search for 3d
registration, Proceedings of the 7th International Conference on Computer Vision Systems:
Computer Vision Systems, ICVS ’09, Springer-Verlag, Berlin, Heidelberg, pp. 194–203.

Rusinkiewicz, S. & Levoy, M. (2001). Efficient variants of the ICP algorithm, Third International
Conference on 3D Digital Imaging and Modeling (3DIM).

Rusu, R. B., Blodow, N. & Beetz, M. (2009). Fast point feature histograms (fpfh) for
3d registration, Proceedings of the 2009 IEEE international conference on Robotics and
Automation, ICRA’09, IEEE Press, Piscataway, NJ, USA, pp. 1848–1853.

Rusu, R. B., Marton, Z. C., Blodow, N. & Beetz, M. (2008). Persistent Point Feature Histograms
for 3D Point Clouds, Proceedings of the 10th International Conference on Intelligent
Autonomous Systems (IAS-10), Baden-Baden, Germany.

183Parallel Computing in Mobile Robotics for RISE

20 Will-be-set-by-IN-TECH

Satish, N., Harris, M. & Garland, M. (2008). Designing efficient sorting algorithms for
manycore gpus, NVIDIA Technical Report NVR-2008-001, NVIDIA Corporation.

Satish, N., Harris, M. & Garland, M. (2009). Designing efficient sorting algorithms
for manycore gpus, Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, IEEE Computer Society, Washington, DC, USA,
pp. 1–10.

Siemiatkowska, B. (2008). Coordinating the motion of mobile robots using cellular neural
network, Journal of Automation, Mobile Robotics and Intelligent Systems 2(2): 65–69.

Sprickerhof, J., Nüchter, A., Lingemann, K. & Hertzberg, J. (2009). An explicit loop closing
technique for 6d slam, 4th European Conference on Mobile Robots ECMR 09, September
23-25, 2009, Mlini/Dubrovnik, Croatia, pp. 229–234.

Thrun, S., Burgard, W. & Fo, D. (2000). A real-time algorithm for mobile robot mapping with
applications to multi-robot and 3d mapping, ICRA, pp. 321–328.

184
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

1. Introduction

There has been much research done on single-flock flocking Shaw (1975), Partridge (1984),
Partridge (1982), Okubo (1986), Reynolds (1987), Vicsek et al. (1995), Toner & Tu (1998),
Shimoyama et al. (1996), Mogilner & Edelstein-Keshet (1999), Helbing et al. (2000), Vicsek
(2001), Parrish et al. (2002), Olfati-Saber (2006), but none done on multi-flock flocking
Gazi & Fidan (2007). One might ask, "Why would we need multiple flock flocking?" Consider
the following scenario: there are two groups (squads/flocks) of Unmanned Vehicles (UV),
both being in between the other group and the other groups’ objective/goal. If both groups
had the same capabilities then all we would need to do is to swap the groups goals.
Unfortunately the groups have different sensing capabilities. One group of UV’s is equipped
with infrared cameras and the other with high-resolution cameras. Since each group is in the
way of the other, it would be great if they could move out of each other’s way. This in turn
would decrease the amount of time for both groups to meet their goals.
We propose a new flocking algorithm that allows flocks to maneuver around other flocks (if
needed) decreasing the amount of time each flock takes to reach their respective goals. We will
do this by adding an additional agent, τ, to Olfati-Saber’s Olfati-Saber (2006) existing α, β and
γ-agents. The resulting algorithm will be compared to Olfati-Saber’s flocking algorithm. Both
algorithms will be simulated in multiple scenarios using Matlab. The scenarios will consist
of both flock’s being in-between the other flock and the other flocks goal, using different size
flocks and only 1 group for a baseline. Section 2 presents related works. Section 3 includes
our approach and multi-flock flocking algorithm. Section 4 contains our simulation setup.
The simulation results are in 5; followed by the analysis in Section 6. Conclusions and future
directions are in Section 7.

2. Related works

2.1 Flocking
Flocking is a kind of group behavior that includes a common objective and local interactions
over a large number of group members. We find the emergence of flocking from many animals
such as birds, fish, penguins, bees, and crowds, as well as swarming, and schooling Reynolds
(1987), Partridge (1982), Toner & Tu (1998), Shimoyama et al. (1996).

Multi-Flock Flocking for
Multi-Agent Dynamic Systems
Andrew McKenzie, Qingquan Sun and Fei Hu

Department of Electrical and Computer Engineering
University of Alabama

USA

9

20 Will-be-set-by-IN-TECH

Satish, N., Harris, M. & Garland, M. (2008). Designing efficient sorting algorithms for
manycore gpus, NVIDIA Technical Report NVR-2008-001, NVIDIA Corporation.

Satish, N., Harris, M. & Garland, M. (2009). Designing efficient sorting algorithms
for manycore gpus, Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, IEEE Computer Society, Washington, DC, USA,
pp. 1–10.

Siemiatkowska, B. (2008). Coordinating the motion of mobile robots using cellular neural
network, Journal of Automation, Mobile Robotics and Intelligent Systems 2(2): 65–69.

Sprickerhof, J., Nüchter, A., Lingemann, K. & Hertzberg, J. (2009). An explicit loop closing
technique for 6d slam, 4th European Conference on Mobile Robots ECMR 09, September
23-25, 2009, Mlini/Dubrovnik, Croatia, pp. 229–234.

Thrun, S., Burgard, W. & Fo, D. (2000). A real-time algorithm for mobile robot mapping with
applications to multi-robot and 3d mapping, ICRA, pp. 321–328.

184
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

1. Introduction

There has been much research done on single-flock flocking Shaw (1975), Partridge (1984),
Partridge (1982), Okubo (1986), Reynolds (1987), Vicsek et al. (1995), Toner & Tu (1998),
Shimoyama et al. (1996), Mogilner & Edelstein-Keshet (1999), Helbing et al. (2000), Vicsek
(2001), Parrish et al. (2002), Olfati-Saber (2006), but none done on multi-flock flocking
Gazi & Fidan (2007). One might ask, "Why would we need multiple flock flocking?" Consider
the following scenario: there are two groups (squads/flocks) of Unmanned Vehicles (UV),
both being in between the other group and the other groups’ objective/goal. If both groups
had the same capabilities then all we would need to do is to swap the groups goals.
Unfortunately the groups have different sensing capabilities. One group of UV’s is equipped
with infrared cameras and the other with high-resolution cameras. Since each group is in the
way of the other, it would be great if they could move out of each other’s way. This in turn
would decrease the amount of time for both groups to meet their goals.
We propose a new flocking algorithm that allows flocks to maneuver around other flocks (if
needed) decreasing the amount of time each flock takes to reach their respective goals. We will
do this by adding an additional agent, τ, to Olfati-Saber’s Olfati-Saber (2006) existing α, β and
γ-agents. The resulting algorithm will be compared to Olfati-Saber’s flocking algorithm. Both
algorithms will be simulated in multiple scenarios using Matlab. The scenarios will consist
of both flock’s being in-between the other flock and the other flocks goal, using different size
flocks and only 1 group for a baseline. Section 2 presents related works. Section 3 includes
our approach and multi-flock flocking algorithm. Section 4 contains our simulation setup.
The simulation results are in 5; followed by the analysis in Section 6. Conclusions and future
directions are in Section 7.

2. Related works

2.1 Flocking
Flocking is a kind of group behavior that includes a common objective and local interactions
over a large number of group members. We find the emergence of flocking from many animals
such as birds, fish, penguins, bees, and crowds, as well as swarming, and schooling Reynolds
(1987), Partridge (1982), Toner & Tu (1998), Shimoyama et al. (1996).

Multi-Flock Flocking for
Multi-Agent Dynamic Systems
Andrew McKenzie, Qingquan Sun and Fei Hu

Department of Electrical and Computer Engineering
University of Alabama

USA

9

2 Will-be-set-by-IN-TECH

Currently the flocking technique is mainly used in massive sensing using mobile sensor
networks, self-assembly of connected mobile networks, and performing military missions
such as reconnaissance, and surveillance. The self-organized feature of flocks can provide
a heuristic conception in the design of mobile sensor networks and robotics systems.
The development of flocking techniques has had three phases. The first phase was primarily
from a theoretical perspective. The typical researchers include: Viscek et al. Vicsek et al.
(1995), whose work was mainly focused on alignment in self-driven particle systems; Toner
and Tu Toner & Tu (1998) proposed a new scheme called continuum mechanics; and Levine
et al. Levine et al. (2000), who developed a novel algorithm called rotating swarms to
simulate ant mills with the all-to-all interactions. Additionally, several other continuum
models of swarms were proposed which include works by Mogilner and Eldstein-Keshet
Mogilner & Edelstein-Keshet (1996), Mogilner & Edelstein-Keshet (1999), and Topaz and
Bertozzi Topaz & Bertozzi (2004). Helbing et al. Helbing et al. (2000) designed an empirical
particle-based flocking model to study the escape panic phenomenon.
The second phase focused on the consensus problem and network topology. The contributions
were mainly made by Olfati-Saber and Murray Saber & Murray (2003) Olfati-Saber & Murray
(2004), Jadbabaie et al. Jadbabaie et al. (2003), Moreau Moreau (2005), and Ren and Beard
Ren & Beard (2005). Although in the alignment problem, there is no constraint on the
consensus value, when used for networked dynamic systems, the objective is distributed
computation of a function via agreement Saber & Murray (2003), Olfati-Saber et al. (2007).
Olfati-Saber and Murray Saber & Murray (2003) Olfati-Saber & Murray (2004) created a
graph-induced potential function based structural formation control. Another work that
belongs to this phase is on formation control and graph Laplacian by Fax and Murray
Fax & Murray (2004).
Nowadays, the stability analysis of particles or agents with all-to-all interactions draws more
attention. With respect to this issue, Tanner et al. Tanner et al. (2007) proposed a centralized
algorithm for a particle system which leads to irregular collapse. They also proposed a
distributed algorithm that leads to irregular fragmentation. Since collapse and fragmentation
are two usual pitfalls of flocking, stability analysis on collapse and fragmentation is the
evaluation method used for modern flocking algorithms.

2.2 Distributed intelligence in multi-robot systems
In Parker (2008), Parker gives an overview of the distributed intelligence field and its
use in multi-robot systems. She first defines distributed intelligence and then defines the
domain space of distributed intelligence. She defined four types of interactions in distributed
intelligence: collective; cooperative; collaborative; and coordinative.
Collective interaction is defined as when entities are not aware of other entities on their team
but share the same goals. The entities also help each other even though they are not planned
to do so. An example of collective interaction is swarm robotics. Cooperative interaction is
defined by entities being aware of the others and share goals. They also benefit each other
with their actions. An example of cooperative interaction would be a team of robots who
share map information and are trying to explore an unknown area. Collaborative interaction
is defined by the entities having individual goals, and being aware of other entities on the
team. The entities actions help the others achieve their own goals. Coordinative interaction
occurs when entities have individual goals and can communicate with other entities. They do

186
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 3

not have a common goal and their actions are not helpful to the other entities. Essentially all
of the entities are selfish and only care about their own goal.
She also defined three paradigms for distributed intelligence, which are: bio inspired,
emergent swarms paradigm; organizational and social paradigms; and knowledge-based,
ontological, and semantic paradigms. The main message of her paper can only be come
from her words when she wrote “The main message of these discussions is that the choice of
paradigm is not always obvious, and is dependent upon the requirements of the application
to be addressed. We also note that complex systems of multiple robots can make use of several
different paradigms simultaneously”Parker (2008).

3. Approach

In this section we will present two distributed algorithms for multi-flock flocking algorithms.
The first algorithm is Olfati-Saber’s from Olfati-Saber (2006) and the second algorithm is our
algorithm, which extends Olfati-Saber’s but adds an additional agent that adds coordinative
interaction.

3.1 Olfait-Saber’s flocking algorithm
Olfati-Saber’s algorithm includes 3 agents: alpha, beta and gamma. All entities, such as a single
bird in a flock of birds, are physical agent’s with dynamics q̈i = ui called an alpha-agent. The
other two agents, beta and gamma, are virtual agents which model the effects of obstacles and
the groups collective objective. The flocking algorithm has the capability to perform multiple
obstacle avoidance. The equation consists of three terms:

ui = uα
i + uβ

i + uγ
i (1)

where uα
i denotes the (α, α) interaction terms, uβ

i denotes the (α, β) interaction terms, and uγ
i is

the groups distributed navigational feedback. The (α, α) interaction is used to keep the agents
in a lattice /flock form. The (α, β) interaction term is used for obstacle avoidance, where a
virtual β-agent is on the closest point of the obstacle from the α-agent. The γ-agent is a virtual
leader, used to lead the flock to the desired location. Each term in equation 1 is explained as:

uα
i = cα

1 ∑
j∈Nα

i

φα(
∥∥∥qj − qi

∥∥∥
σ
)ni,j

+ cα
2 ∑

j∈Nα
i

aij(q)(pj − pi)

uβ
i = cβ

1 ∑
k∈Nβ

i

φβ(
∥∥q̂i,k − qi

∥∥
σ)n̂i,k (2)

+ cβ
2 ∑

j∈Nβ
i

bi,k(q)(p̂i,k − pi)

uγ
i = −cγ

1 σ1(qi − qr)− cγ
2 (pi − pr)

187Multi-Flock Flocking for Multi-Agent Dynamic Systems

2 Will-be-set-by-IN-TECH

Currently the flocking technique is mainly used in massive sensing using mobile sensor
networks, self-assembly of connected mobile networks, and performing military missions
such as reconnaissance, and surveillance. The self-organized feature of flocks can provide
a heuristic conception in the design of mobile sensor networks and robotics systems.
The development of flocking techniques has had three phases. The first phase was primarily
from a theoretical perspective. The typical researchers include: Viscek et al. Vicsek et al.
(1995), whose work was mainly focused on alignment in self-driven particle systems; Toner
and Tu Toner & Tu (1998) proposed a new scheme called continuum mechanics; and Levine
et al. Levine et al. (2000), who developed a novel algorithm called rotating swarms to
simulate ant mills with the all-to-all interactions. Additionally, several other continuum
models of swarms were proposed which include works by Mogilner and Eldstein-Keshet
Mogilner & Edelstein-Keshet (1996), Mogilner & Edelstein-Keshet (1999), and Topaz and
Bertozzi Topaz & Bertozzi (2004). Helbing et al. Helbing et al. (2000) designed an empirical
particle-based flocking model to study the escape panic phenomenon.
The second phase focused on the consensus problem and network topology. The contributions
were mainly made by Olfati-Saber and Murray Saber & Murray (2003) Olfati-Saber & Murray
(2004), Jadbabaie et al. Jadbabaie et al. (2003), Moreau Moreau (2005), and Ren and Beard
Ren & Beard (2005). Although in the alignment problem, there is no constraint on the
consensus value, when used for networked dynamic systems, the objective is distributed
computation of a function via agreement Saber & Murray (2003), Olfati-Saber et al. (2007).
Olfati-Saber and Murray Saber & Murray (2003) Olfati-Saber & Murray (2004) created a
graph-induced potential function based structural formation control. Another work that
belongs to this phase is on formation control and graph Laplacian by Fax and Murray
Fax & Murray (2004).
Nowadays, the stability analysis of particles or agents with all-to-all interactions draws more
attention. With respect to this issue, Tanner et al. Tanner et al. (2007) proposed a centralized
algorithm for a particle system which leads to irregular collapse. They also proposed a
distributed algorithm that leads to irregular fragmentation. Since collapse and fragmentation
are two usual pitfalls of flocking, stability analysis on collapse and fragmentation is the
evaluation method used for modern flocking algorithms.

2.2 Distributed intelligence in multi-robot systems
In Parker (2008), Parker gives an overview of the distributed intelligence field and its
use in multi-robot systems. She first defines distributed intelligence and then defines the
domain space of distributed intelligence. She defined four types of interactions in distributed
intelligence: collective; cooperative; collaborative; and coordinative.
Collective interaction is defined as when entities are not aware of other entities on their team
but share the same goals. The entities also help each other even though they are not planned
to do so. An example of collective interaction is swarm robotics. Cooperative interaction is
defined by entities being aware of the others and share goals. They also benefit each other
with their actions. An example of cooperative interaction would be a team of robots who
share map information and are trying to explore an unknown area. Collaborative interaction
is defined by the entities having individual goals, and being aware of other entities on the
team. The entities actions help the others achieve their own goals. Coordinative interaction
occurs when entities have individual goals and can communicate with other entities. They do

186
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 3

not have a common goal and their actions are not helpful to the other entities. Essentially all
of the entities are selfish and only care about their own goal.
She also defined three paradigms for distributed intelligence, which are: bio inspired,
emergent swarms paradigm; organizational and social paradigms; and knowledge-based,
ontological, and semantic paradigms. The main message of her paper can only be come
from her words when she wrote “The main message of these discussions is that the choice of
paradigm is not always obvious, and is dependent upon the requirements of the application
to be addressed. We also note that complex systems of multiple robots can make use of several
different paradigms simultaneously”Parker (2008).

3. Approach

In this section we will present two distributed algorithms for multi-flock flocking algorithms.
The first algorithm is Olfati-Saber’s from Olfati-Saber (2006) and the second algorithm is our
algorithm, which extends Olfati-Saber’s but adds an additional agent that adds coordinative
interaction.

3.1 Olfait-Saber’s flocking algorithm
Olfati-Saber’s algorithm includes 3 agents: alpha, beta and gamma. All entities, such as a single
bird in a flock of birds, are physical agent’s with dynamics q̈i = ui called an alpha-agent. The
other two agents, beta and gamma, are virtual agents which model the effects of obstacles and
the groups collective objective. The flocking algorithm has the capability to perform multiple
obstacle avoidance. The equation consists of three terms:

ui = uα
i + uβ

i + uγ
i (1)

where uα
i denotes the (α, α) interaction terms, uβ

i denotes the (α, β) interaction terms, and uγ
i is

the groups distributed navigational feedback. The (α, α) interaction is used to keep the agents
in a lattice /flock form. The (α, β) interaction term is used for obstacle avoidance, where a
virtual β-agent is on the closest point of the obstacle from the α-agent. The γ-agent is a virtual
leader, used to lead the flock to the desired location. Each term in equation 1 is explained as:

uα
i = cα

1 ∑
j∈Nα

i

φα(
∥∥∥qj − qi

∥∥∥
σ
)ni,j

+ cα
2 ∑

j∈Nα
i

aij(q)(pj − pi)

uβ
i = cβ

1 ∑
k∈Nβ

i

φβ(
∥∥q̂i,k − qi

∥∥
σ)n̂i,k (2)

+ cβ
2 ∑

j∈Nβ
i

bi,k(q)(p̂i,k − pi)

uγ
i = −cγ

1 σ1(qi − qr)− cγ
2 (pi − pr)

187Multi-Flock Flocking for Multi-Agent Dynamic Systems

4 Will-be-set-by-IN-TECH

where σ1(z) = z√
1+�z�2

and cν
η are positive constants for all η = 1, 2 and ν = α, β, γ. Each

α-agent’s state is denoted by (qi, pi), where qi is the position and pi is the velocity of the agent.
The pair (qr, pr) is the state of a static or dynamic γ-agent. The vectors ni,j and n̂i,k are given

by ni,j =
qj−qi√

1+ε�qj−qi�2
) , n̂i,k =

q̂i,k−qi√
1+ε�q̂i,k−qi�2

.

3.2 Our flocking algorithm with coordinative interaction
Our equation has four agents: α, β, γ and τ. Where the α, β and γ agents are the same as in
Olfati-Saber’s Algorithm. The τ-agent is a virtual agent which is used to add Coordinative
Interaction between the α agents. The equation consists of four terms:

ui = uα
i + uβ

i + uγ
i + uτ (3)

where uα
i , uβ

i and uγ
i are the same as in equation 1. The coordinative interaction is added using

the τ-agent. Each term in equation 3 is explained as:

uα
i = cα

1 ∑
j∈Nα

i

φα(
∥∥∥qj − qi

∥∥∥
σ
)ni,j

+ cα
2 ∑

j∈Nα
i

aij(q)(pj − pi)

uβ
i = cβ

1 ∑
k∈Nβ

i

φβ(
∥∥q̂i,k − qi

∥∥
σ)n̂i,k

+ cβ
2 ∑

j∈Nβ
i

bi,k(q)(p̂i,k − pi) (4)

uγ
i = −cγ

1 σ1(qi − qr)− cγ
2 (pi − pr)

uτ
i = −cτ

1 σ2(qi − qr)

[
0 1
1 0

]

− cτ
2 σ2(pi − pr)

[
0 1
1 0

]

As in equation 2, each α-agent’s state is denoted by (qi, pi), where qi is the position (with
an x and y component) and pi is the velocity of the agent. The pair (qr, pr) is the state of a
static/dynamic γ-agent. The other components are defined as σ1(z) = z√

1+�z�2
; σ2(z) is 1 if

π
2 ≥ θi−j ≥ 3π

2 else it is 0; z ≤ dc; θi = tan(piy /pix), where piy and pix are x and y components
of the agents velocity respectively; θi−j = θi − θj; and dc is the cooperation distance for all j
α-agents in both flocks. Essentially the τ agent is applied if two agents’ (i and j) trajectories
are going to intersect and their distance is less then dc. cν

η are positive constants for all η =

1, 2 and ν = α, β, γ, τ. The vectors ni,j and n̂i,k are given by ni,j =
qj−qi√

1+ε�qj−qi�2
) , n̂i,k =

q̂i,k−qi√
1+ε�q̂i,k−qi�2

.

188
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 5

4. Simulation setup

Both flocking algorithms, Olfati-Saber’s algorithm (equation 1) and our algorithm (equation
3), were implemented using Matlab. Matlab version 7.6.0 (R2008a) was used to run the
simulations. The following parameters were used for both algorithms: d = 7 meters, r = 1.2d,
the time step size is 0.01 seconds. Both algorithms used the same values for all constants:
(cα

1 , cα
2 , cβ

1 , cβ
2 , cγ

1 andcγ
2).

Simulations were run using 1 and 2 groups of agents, consisting of 5, 10, 15, 20, 25, 30, 35, 40,
45 and 50 agents in each group. The groups were initially positioned into lattices with lines
of 10 agents. Each group started a distance of 150 meters from their goal. If 2 groups were
used, the groups were put directly in-between the other group and its respective goal. The
groups were started 100 meters apart from each other. The agents were limited to a maximum
speed of 7 m/s. Agents were considered to have reached their groups goal if they got within
14 meters (2d) of the goal. Each simulation was run until all agents reached their goal or until
480 seconds, in simulation time, had passed. Each simulation’s time to finish was recorded.
The time to finish recorded the time from the start of the simulation till all agents had reached
their goal. One image was saved every second of all simulations.

5. Simulation results

The simulations were broken into two groups for analysis. Group A contains the results from
the simulations where the agents start in a symmetric lattice (i.e. groups that had a multiple
of 10 agents in them as in Figure 1 a). The results for group A can be seen in Table 1 as well as
in Figure 2.

Agents 1 Group 2 Groups
per with and without with Tao without

group Tao agent agent Tao agent
10 139.11 134.37 did not finish
20 143.6 167.15 190.19
30 148.01 170.93 212.19
40 152.69 183.39 218.18
50 159.23 186.28 227.9

Table 1. Simulation results showing the total time to finish for symmetric lattices, group A.

Group B contains the results from the simulations when the agents started in a non-symmetric
lattice (i.e. groups that did not have a multiple of 10 agents in them, as in Figure 3). The results
for group B can be seen in Table 2 and in Figure 4. The combined results of both groups can
be seen in Figure 5.
Selected images from group 1 at key points in the experiments can be seen in Figures: 6, 7,
1, 8 and 9. Selected images from group 2 can be seen in Figure 3. Figure 6 shows images
for 2 groups with 10 agents per group using the τ agent flocking algorithm. Images from the
experiments with 2 groups with 50 agents per group using the τ agent are shown in figure 1,
and without using the τ agent in figures 8 and 9.

189Multi-Flock Flocking for Multi-Agent Dynamic Systems

4 Will-be-set-by-IN-TECH

where σ1(z) = z√
1+�z�2

and cν
η are positive constants for all η = 1, 2 and ν = α, β, γ. Each

α-agent’s state is denoted by (qi, pi), where qi is the position and pi is the velocity of the agent.
The pair (qr, pr) is the state of a static or dynamic γ-agent. The vectors ni,j and n̂i,k are given

by ni,j =
qj−qi√

1+ε�qj−qi�2
) , n̂i,k =

q̂i,k−qi√
1+ε�q̂i,k−qi�2

.

3.2 Our flocking algorithm with coordinative interaction
Our equation has four agents: α, β, γ and τ. Where the α, β and γ agents are the same as in
Olfati-Saber’s Algorithm. The τ-agent is a virtual agent which is used to add Coordinative
Interaction between the α agents. The equation consists of four terms:

ui = uα
i + uβ

i + uγ
i + uτ (3)

where uα
i , uβ

i and uγ
i are the same as in equation 1. The coordinative interaction is added using

the τ-agent. Each term in equation 3 is explained as:

uα
i = cα

1 ∑
j∈Nα

i

φα(
∥∥∥qj − qi

∥∥∥
σ
)ni,j

+ cα
2 ∑

j∈Nα
i

aij(q)(pj − pi)

uβ
i = cβ

1 ∑
k∈Nβ

i

φβ(
∥∥q̂i,k − qi

∥∥
σ)n̂i,k

+ cβ
2 ∑

j∈Nβ
i

bi,k(q)(p̂i,k − pi) (4)

uγ
i = −cγ

1 σ1(qi − qr)− cγ
2 (pi − pr)

uτ
i = −cτ

1 σ2(qi − qr)

[
0 1
1 0

]

− cτ
2 σ2(pi − pr)

[
0 1
1 0

]

As in equation 2, each α-agent’s state is denoted by (qi, pi), where qi is the position (with
an x and y component) and pi is the velocity of the agent. The pair (qr, pr) is the state of a
static/dynamic γ-agent. The other components are defined as σ1(z) = z√

1+�z�2
; σ2(z) is 1 if

π
2 ≥ θi−j ≥ 3π

2 else it is 0; z ≤ dc; θi = tan(piy /pix), where piy and pix are x and y components
of the agents velocity respectively; θi−j = θi − θj; and dc is the cooperation distance for all j
α-agents in both flocks. Essentially the τ agent is applied if two agents’ (i and j) trajectories
are going to intersect and their distance is less then dc. cν

η are positive constants for all η =

1, 2 and ν = α, β, γ, τ. The vectors ni,j and n̂i,k are given by ni,j =
qj−qi√

1+ε�qj−qi�2
) , n̂i,k =

q̂i,k−qi√
1+ε�q̂i,k−qi�2

.

188
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 5

4. Simulation setup

Both flocking algorithms, Olfati-Saber’s algorithm (equation 1) and our algorithm (equation
3), were implemented using Matlab. Matlab version 7.6.0 (R2008a) was used to run the
simulations. The following parameters were used for both algorithms: d = 7 meters, r = 1.2d,
the time step size is 0.01 seconds. Both algorithms used the same values for all constants:
(cα

1 , cα
2 , cβ

1 , cβ
2 , cγ

1 andcγ
2).

Simulations were run using 1 and 2 groups of agents, consisting of 5, 10, 15, 20, 25, 30, 35, 40,
45 and 50 agents in each group. The groups were initially positioned into lattices with lines
of 10 agents. Each group started a distance of 150 meters from their goal. If 2 groups were
used, the groups were put directly in-between the other group and its respective goal. The
groups were started 100 meters apart from each other. The agents were limited to a maximum
speed of 7 m/s. Agents were considered to have reached their groups goal if they got within
14 meters (2d) of the goal. Each simulation was run until all agents reached their goal or until
480 seconds, in simulation time, had passed. Each simulation’s time to finish was recorded.
The time to finish recorded the time from the start of the simulation till all agents had reached
their goal. One image was saved every second of all simulations.

5. Simulation results

The simulations were broken into two groups for analysis. Group A contains the results from
the simulations where the agents start in a symmetric lattice (i.e. groups that had a multiple
of 10 agents in them as in Figure 1 a). The results for group A can be seen in Table 1 as well as
in Figure 2.

Agents 1 Group 2 Groups
per with and without with Tao without

group Tao agent agent Tao agent
10 139.11 134.37 did not finish
20 143.6 167.15 190.19
30 148.01 170.93 212.19
40 152.69 183.39 218.18
50 159.23 186.28 227.9

Table 1. Simulation results showing the total time to finish for symmetric lattices, group A.

Group B contains the results from the simulations when the agents started in a non-symmetric
lattice (i.e. groups that did not have a multiple of 10 agents in them, as in Figure 3). The results
for group B can be seen in Table 2 and in Figure 4. The combined results of both groups can
be seen in Figure 5.
Selected images from group 1 at key points in the experiments can be seen in Figures: 6, 7,
1, 8 and 9. Selected images from group 2 can be seen in Figure 3. Figure 6 shows images
for 2 groups with 10 agents per group using the τ agent flocking algorithm. Images from the
experiments with 2 groups with 50 agents per group using the τ agent are shown in figure 1,
and without using the τ agent in figures 8 and 9.

189Multi-Flock Flocking for Multi-Agent Dynamic Systems

6 Will-be-set-by-IN-TECH

(a) With τ-agent, n=50, t=2s (b) With τ-agent, n=50, t=13s

(c) With τ-agent, n=50, t=15s (d) With τ-agent, n=50, t=30s

(e) With τ-agent, n=50, t=76s

Fig. 1. With τ-agent, 2 Groups, 50 agents per group

190
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 7

Fig. 2. Symmetric lattice finish times, Group 1

Fig. 3. Non-symmetric lattice, with τ, 2 groups and 45 agents per group

Agents 1 Group 2 Groups
per with and without with Tao without

group Tao agent agent Tao agent
5 113.23 112.61 did not finish

15 127.92 148.04 162.44
25 139.77 167 187.46
35 145.17 177.98 201.2
45 153.66 186.41 222.04

Table 2. Simulation results for Non-symmetric Lattice, group B.

Images comparing experiments with and without the τ agent, showing side by side images,
can be seen in figures 10 and 11 for 10 agents per group and figures 12 and 13 for 50 agents
per group.

191Multi-Flock Flocking for Multi-Agent Dynamic Systems

6 Will-be-set-by-IN-TECH

(a) With τ-agent, n=50, t=2s (b) With τ-agent, n=50, t=13s

(c) With τ-agent, n=50, t=15s (d) With τ-agent, n=50, t=30s

(e) With τ-agent, n=50, t=76s

Fig. 1. With τ-agent, 2 Groups, 50 agents per group

190
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 7

Fig. 2. Symmetric lattice finish times, Group 1

Fig. 3. Non-symmetric lattice, with τ, 2 groups and 45 agents per group

Agents 1 Group 2 Groups
per with and without with Tao without

group Tao agent agent Tao agent
5 113.23 112.61 did not finish

15 127.92 148.04 162.44
25 139.77 167 187.46
35 145.17 177.98 201.2
45 153.66 186.41 222.04

Table 2. Simulation results for Non-symmetric Lattice, group B.

Images comparing experiments with and without the τ agent, showing side by side images,
can be seen in figures 10 and 11 for 10 agents per group and figures 12 and 13 for 50 agents
per group.

191Multi-Flock Flocking for Multi-Agent Dynamic Systems

8 Will-be-set-by-IN-TECH

Fig. 4. Non-symmetric lattice finish times, group B

Fig. 5. Non-symmetric and symmetric lattice finish times

6. Analysis

One can deduce from figure 5, that our additional τ agent, eq 3, improves the Olfati-Saber
algorithm, eq 1. This is because without the τ agent, when the two flocks come close to
each other a huge traffic jam occurs because the two flocks want to go the same direction.
This can be seen in figures 7, 8 and 9. What is interesting is that a deadlock occurred in the
experiments with 5 and 10 agents per group. Although, the deadlock was unexpected, it
is easily explainable. The reason the deadlock occurs is because the flocks do not have the
additional velocity, essentially a push, from the additional rows of agents behind them as in
all of the other experiments.
Another interesting result is that all of the 1 group experiments, group B finished faster then
their counterpart in group A, n=15 vs. n=10, n=25 vs. n=20, n=35 vs. n=30, and n=45 vs. n=40).
This also occurred in the without τ, equation 1, experiments except for n=15 vs. n=10, because
the agents did not finish in n=5 and n=10 This result is due to the fact that the groups are not
symmetric but rather rotated versions of the other which can be seen in figure 3. Because of
the non symmetric lattices the groups actions are different from each other when the traffic
jam occurs, which in turn allows the groups to get around each other faster.

192
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 9

(a) With τ-agent, n=10, t=2s (b) With τ-agent, n=10, t=18s

(c) With τ-agent, n=10, t=21s (d) With τ-agent, n=10, t=56s

(e) With τ-agent, n=10, t=94s

Fig. 6. With Tao Agent, 2 Groups, 10 agents per group

193Multi-Flock Flocking for Multi-Agent Dynamic Systems

8 Will-be-set-by-IN-TECH

Fig. 4. Non-symmetric lattice finish times, group B

Fig. 5. Non-symmetric and symmetric lattice finish times

6. Analysis

One can deduce from figure 5, that our additional τ agent, eq 3, improves the Olfati-Saber
algorithm, eq 1. This is because without the τ agent, when the two flocks come close to
each other a huge traffic jam occurs because the two flocks want to go the same direction.
This can be seen in figures 7, 8 and 9. What is interesting is that a deadlock occurred in the
experiments with 5 and 10 agents per group. Although, the deadlock was unexpected, it
is easily explainable. The reason the deadlock occurs is because the flocks do not have the
additional velocity, essentially a push, from the additional rows of agents behind them as in
all of the other experiments.
Another interesting result is that all of the 1 group experiments, group B finished faster then
their counterpart in group A, n=15 vs. n=10, n=25 vs. n=20, n=35 vs. n=30, and n=45 vs. n=40).
This also occurred in the without τ, equation 1, experiments except for n=15 vs. n=10, because
the agents did not finish in n=5 and n=10 This result is due to the fact that the groups are not
symmetric but rather rotated versions of the other which can be seen in figure 3. Because of
the non symmetric lattices the groups actions are different from each other when the traffic
jam occurs, which in turn allows the groups to get around each other faster.

192
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 9

(a) With τ-agent, n=10, t=2s (b) With τ-agent, n=10, t=18s

(c) With τ-agent, n=10, t=21s (d) With τ-agent, n=10, t=56s

(e) With τ-agent, n=10, t=94s

Fig. 6. With Tao Agent, 2 Groups, 10 agents per group

193Multi-Flock Flocking for Multi-Agent Dynamic Systems

10 Will-be-set-by-IN-TECH

(a) Without τ-agent, n=10, t=2s (b) Without τ-agent, n=10, t=18s

(c) Without τ-agent, n=10, t=21s (d) Without τ-agent, n=10, t=40s

(e) Without τ-agent, n=10, t=480s

Fig. 7. Without Tao Agent, 2 Groups, 10 agents per group

194
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 11

(a) Without τ-agent, n=50, t=2s (b) Without τ-agent, n=50, t=14s

(c) Without τ-agent, n=50, t=16s (d) Without τ-agent, n=50, t=86s

(e) Without τ-agent, n=50, t=101s (f) Without τ-agent, n=50, t=122s

Fig. 8. Without τ-agent, 2 Groups, 50 agents per group

195Multi-Flock Flocking for Multi-Agent Dynamic Systems

10 Will-be-set-by-IN-TECH

(a) Without τ-agent, n=10, t=2s (b) Without τ-agent, n=10, t=18s

(c) Without τ-agent, n=10, t=21s (d) Without τ-agent, n=10, t=40s

(e) Without τ-agent, n=10, t=480s

Fig. 7. Without Tao Agent, 2 Groups, 10 agents per group

194
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 11

(a) Without τ-agent, n=50, t=2s (b) Without τ-agent, n=50, t=14s

(c) Without τ-agent, n=50, t=16s (d) Without τ-agent, n=50, t=86s

(e) Without τ-agent, n=50, t=101s (f) Without τ-agent, n=50, t=122s

Fig. 8. Without τ-agent, 2 Groups, 50 agents per group

195Multi-Flock Flocking for Multi-Agent Dynamic Systems

12 Will-be-set-by-IN-TECH

(a) Without τ-agent, n=50, t=138s (b) Without τ-agent, n=50, t=146s

(c) Without τ-agent, n=50, t=159s (d) Without τ-agent, n=50, t=189s

Fig. 9. Without τ-agent, 2 Groups, 50 agents per group

196
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 13

(a) Without τ-agent, n=10, t=2s (b) With τ-agent, n=10, t=2s

(c) Without τ-agent, n=10, t=18s (d) With τ-agent, n=10, t=18s

(e) Without τ-agent, n=10, t=21s (f) With τ-agent, n=10, t=21s

Fig. 10. With and Without τ-agent, 2 Groups, 10 agents per group

197Multi-Flock Flocking for Multi-Agent Dynamic Systems

12 Will-be-set-by-IN-TECH

(a) Without τ-agent, n=50, t=138s (b) Without τ-agent, n=50, t=146s

(c) Without τ-agent, n=50, t=159s (d) Without τ-agent, n=50, t=189s

Fig. 9. Without τ-agent, 2 Groups, 50 agents per group

196
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 13

(a) Without τ-agent, n=10, t=2s (b) With τ-agent, n=10, t=2s

(c) Without τ-agent, n=10, t=18s (d) With τ-agent, n=10, t=18s

(e) Without τ-agent, n=10, t=21s (f) With τ-agent, n=10, t=21s

Fig. 10. With and Without τ-agent, 2 Groups, 10 agents per group

197Multi-Flock Flocking for Multi-Agent Dynamic Systems

14 Will-be-set-by-IN-TECH

(a) Without τ-agent, n=10, t=40s (b) With τ-agent, n=10, t=56s

(c) Without τ-agent, n=10, t=480s (d) With τ-agent, n=10, t=94s

Fig. 11. With and Without τ-agent, 2 Groups, 10 agents per group

198
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 15

(a) Without τ-agent, n=50, t=2s (b) With τ-agent, n=50, t=2s

(c) Without τ-agent, n=50, t=14s (d) With τ-agent, n=50, t=13s

(e) Without τ-agent, n=50, t=16s (f) With τ-agent, n=50, t=15s

Fig. 12. With and Without τ-agent, 2 Groups, 50 agents per group

199Multi-Flock Flocking for Multi-Agent Dynamic Systems

14 Will-be-set-by-IN-TECH

(a) Without τ-agent, n=10, t=40s (b) With τ-agent, n=10, t=56s

(c) Without τ-agent, n=10, t=480s (d) With τ-agent, n=10, t=94s

Fig. 11. With and Without τ-agent, 2 Groups, 10 agents per group

198
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 15

(a) Without τ-agent, n=50, t=2s (b) With τ-agent, n=50, t=2s

(c) Without τ-agent, n=50, t=14s (d) With τ-agent, n=50, t=13s

(e) Without τ-agent, n=50, t=16s (f) With τ-agent, n=50, t=15s

Fig. 12. With and Without τ-agent, 2 Groups, 50 agents per group

199Multi-Flock Flocking for Multi-Agent Dynamic Systems

16 Will-be-set-by-IN-TECH

(a) Without τ-agent, n=50, t=86s (b) With τ-agent, n=50, t=30s

(c) Without τ-agent, n=50, t=101s (d) With τ-agent, n=50, t=76s

Fig. 13. With and Without τ-agent, 2 Groups, 50 agents per group

200
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 17

7. Conclusion and future work

In this paper we presented an improved multi flock flocking algorithm (equation 3),
that added coordinative interaction to Olfati-Saber’s flocking algorithm Olfati-Saber (2006)
(equation 1). Our algorithm performed better than Olfati-Saber’s algorithm in simulations
where two groups were in between the other group and the other groups’ goal. It performed
exactly as Olfati-Saber’s algorithm when there was only one flock. This was because our
algorithm was based on Olfati-Saber’s, and the only difference was when two flocks were
close enough to the other flock and the flocks trajectories were set to intersect the other.
The next stage of this work would be to improve the algorithm by modifying our τ agent to
change the agent’s trajectory based on the trajectory of both agents instead of just rotating
τ agent 90 degrees. Another improvement would be to weight the τ agent based on the
number of agents in the other flocks. These improvements should allow for a better interaction
between multiple flocks instead.

8. References

Fax, J. & Murray, R. (2004). Information flow and cooperative control of vehicle formations,
Automatic Control, IEEE Transactions on 49(9): 1465–1476.

Gazi, V. & Fidan, B. (2007). Coordination and control of multi-agent dynamic systems: models
and approaches, Proceedings of the 2nd international conference on Swarm robotics,
SAB’06, Springer-Verlag, Berlin, Heidelberg, pp. 71–102.
URL: http://portal.acm.org/citation.cfm?id=1763837.1763843

Helbing, D., Farkas, I. & Vicsek, T. (2000). Simulating dynamical features of escape panic,
Nature 407(6803): 487–490.
URL: http://dx.doi.org/10.1038/35035023

Jadbabaie, A., Lin, J. & Morse, A. (2003). Coordination of groups of mobile autonomous agents
using nearest neighbor rules, Automatic Control, IEEE Transactions on 48(6): 988–1001.

Levine, H., Rappel, W.-J. & Cohen, I. (2000). Self-organization in systems of self-propelled
particles, Phys. Rev. E 63(1): 017101.

Mogilner, A. & Edelstein-Keshet, L. (1996). Spatio-temporal order in populations of
self-aligning objects: formation of oriented patches, Physica D 89: 346–367.

Mogilner, A. & Edelstein-Keshet, L. (1999). A non-local model for a swarm, Journal of
Mathematical Biology 38: 534–570. 10.1007/s002850050158.
URL: http://dx.doi.org/10.1007/s002850050158

Moreau, L. (2005). Stability of multiagent systems with time-dependent communication links,
Automatic Control, IEEE Transactions on 50(2): 169–182.

Okubo, A. (1986). Dynamical aspects of animal grouping: swarms, schools, flocks. and herds,
Advances in Biophysics 22: 1–94.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: algorithms and theory,
Automatic Control, IEEE Transactions on 51(3): 401 – 420.

Olfati-Saber, R., Fax, J. & Murray, R. (2007). Consensus and cooperation in networked
multi-agent systems, Proceedings of the IEEE 95(1): 215–233.

Olfati-Saber, R. & Murray, R. (2004). Consensus problems in networks of agents
with switching topology and time-delays, Automatic Control, IEEE Transactions on
49(9): 1520–1533.

201Multi-Flock Flocking for Multi-Agent Dynamic Systems

16 Will-be-set-by-IN-TECH

(a) Without τ-agent, n=50, t=86s (b) With τ-agent, n=50, t=30s

(c) Without τ-agent, n=50, t=101s (d) With τ-agent, n=50, t=76s

Fig. 13. With and Without τ-agent, 2 Groups, 50 agents per group

200
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Multi-Flock Flocking for Multi-Agent
Dynamic Systems 17

7. Conclusion and future work

In this paper we presented an improved multi flock flocking algorithm (equation 3),
that added coordinative interaction to Olfati-Saber’s flocking algorithm Olfati-Saber (2006)
(equation 1). Our algorithm performed better than Olfati-Saber’s algorithm in simulations
where two groups were in between the other group and the other groups’ goal. It performed
exactly as Olfati-Saber’s algorithm when there was only one flock. This was because our
algorithm was based on Olfati-Saber’s, and the only difference was when two flocks were
close enough to the other flock and the flocks trajectories were set to intersect the other.
The next stage of this work would be to improve the algorithm by modifying our τ agent to
change the agent’s trajectory based on the trajectory of both agents instead of just rotating
τ agent 90 degrees. Another improvement would be to weight the τ agent based on the
number of agents in the other flocks. These improvements should allow for a better interaction
between multiple flocks instead.

8. References

Fax, J. & Murray, R. (2004). Information flow and cooperative control of vehicle formations,
Automatic Control, IEEE Transactions on 49(9): 1465–1476.

Gazi, V. & Fidan, B. (2007). Coordination and control of multi-agent dynamic systems: models
and approaches, Proceedings of the 2nd international conference on Swarm robotics,
SAB’06, Springer-Verlag, Berlin, Heidelberg, pp. 71–102.
URL: http://portal.acm.org/citation.cfm?id=1763837.1763843

Helbing, D., Farkas, I. & Vicsek, T. (2000). Simulating dynamical features of escape panic,
Nature 407(6803): 487–490.
URL: http://dx.doi.org/10.1038/35035023

Jadbabaie, A., Lin, J. & Morse, A. (2003). Coordination of groups of mobile autonomous agents
using nearest neighbor rules, Automatic Control, IEEE Transactions on 48(6): 988–1001.

Levine, H., Rappel, W.-J. & Cohen, I. (2000). Self-organization in systems of self-propelled
particles, Phys. Rev. E 63(1): 017101.

Mogilner, A. & Edelstein-Keshet, L. (1996). Spatio-temporal order in populations of
self-aligning objects: formation of oriented patches, Physica D 89: 346–367.

Mogilner, A. & Edelstein-Keshet, L. (1999). A non-local model for a swarm, Journal of
Mathematical Biology 38: 534–570. 10.1007/s002850050158.
URL: http://dx.doi.org/10.1007/s002850050158

Moreau, L. (2005). Stability of multiagent systems with time-dependent communication links,
Automatic Control, IEEE Transactions on 50(2): 169–182.

Okubo, A. (1986). Dynamical aspects of animal grouping: swarms, schools, flocks. and herds,
Advances in Biophysics 22: 1–94.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: algorithms and theory,
Automatic Control, IEEE Transactions on 51(3): 401 – 420.

Olfati-Saber, R., Fax, J. & Murray, R. (2007). Consensus and cooperation in networked
multi-agent systems, Proceedings of the IEEE 95(1): 215–233.

Olfati-Saber, R. & Murray, R. (2004). Consensus problems in networks of agents
with switching topology and time-delays, Automatic Control, IEEE Transactions on
49(9): 1520–1533.

201Multi-Flock Flocking for Multi-Agent Dynamic Systems

18 Will-be-set-by-IN-TECH

Parker, L. (2008). Distributed intelligence: Overview of the field and its application in
multi-robot systems, Journal of Physical Agents 2(1).
URL: http://www.jopha.net/index.php/jopha/article/view/18/14

Parrish, J. K., Viscido, S. V. & GrÃijnbaum, D. (2002). Self-organized fish schools: An
examination of emergent properties, Biol. Bull 202: 296–305.

Partridge, B. L. (1982). The structure and function of fish schools, Scientific American
246(6): 114–123.

Partridge, B. L. (1984). The chorus-line hypothesis of maneuver in avian flocks, Nature 309: 344
– 345.

Ren, W. & Beard, R. (2005). Consensus seeking in multiagent systems under dynamically
changing interaction topologies, Automatic Control, IEEE Transactions on 50(5): 655 –
661.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model, Proceedings
of the 14th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’87, ACM, New York, NY, USA, pp. 25–34.
URL: http://doi.acm.org/10.1145/37401.37406

Saber, R. & Murray, R. (2003). Consensus protocols for networks of dynamic agents, American
Control Conference, 2003. Proceedings of the 2003, Vol. 2, pp. 951–956.

Shaw, E. (1975). Fish in schools, Natural History 84(8): 40–45.
Shimoyama, N., Sugawara, K., Mizuguchi, T., Hayakawa, Y. & Sano, M. (1996). Collective

motion in a system of motile elements, Phys. Rev. Lett. 76(20): 3870–3873.
Tanner, H. G., Jadbabaie, A. & Pappas, G. J. (2007). Flocking in fixed and switching networks,

Automatic Control, IEEE Transactions on 52(5): 863–868.
Toner, J. & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking, Phys.

Rev. E 58(4): 4828–4858.
Topaz, C. & Bertozzi, A. L. (2004). Swarming patterns in a two-dimensional kinematic model

for biological groups, SIAM Journal on Applied Mathematics 65(1): 152–174.
Vicsek, T. (2001). A question of scale, NATURE 411: 421.

URL: doi:10.1038/35078161
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. (1995). Novel type of phase

transition in a system of self-driven particles, Phys. Rev. Lett. 75(6): 1226–1229.

202
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

10

Cooperative Formation Planning and
Control of Multiple Mobile Robots

R. M. Kuppan Chetty1, M. Singaperumal2 and T. Nagarajan3
1Monash University

2Indian Institute of Technology Madras
3Universiti Teknologi PETRONAS

 1,3Malaysia

2India

1. Introduction
Application of intelligent Wheeled Mobile Robots (WMR) for material handling in the
manufacturing environment has been the topic of research in the past decade. Even though
researchers have succeeded in applying mobile robots for material handling purpose in the
shop floor environment, transporting heavy objects in the assembly line is still a challenge.
The dynamical characteristics of a manufacturing environment impose particular abilities a
mobile robot should have if it is to operate on the shop floor efficiently, accurately and
successfully. Consequently, a WMR needs to adapt itself to everlasting changes. Under such
conditions, the use of multiple WMR in closed defined geometric spatial pattern/ formation
can be a solution for such applications.
One of the essential problems in guiding multiple mobile robots in such dynamically
changing environments is to plan, navigate and coordinate the motion of robots, avoiding
obstacles as well as each other while transporting the materials/objects towards the goal.
Further it requires the robots to control their relative position and orientation between them
on the fly. Hence the control of group of mobile robots performing such tasks requires
coordination at different levels starting from navigation to formation (Sugar et al., 2001).
A variety of strategies and control approaches for formation control of group of coordinated
robots, have been adopted in the literature such as Graph Theory (Desai, 2002), Vector
Potential Field (Yamaguchi et al., 2001), Virtual Structure (Belta & Kumar, 2004), Leader
Follower (Fierro et al., 2002) and Behaviour Based Approaches (Arkin, 1998; Goldberg &
Matarić, 2002). Further, a comprehensive review of robotic formation, control approaches
and algorithms, applications and their advantages and disadvantages have also been
addressed (Chen & Wang, 2005). Among all the approaches mentioned in the literature,
behaviour – based and leader – follower approach has been widely adopted and well
recognized by the researchers because of their simplicity and scalability.
Even though robots are able to move in a closed defined formation when controlled using
the various methods reported in the literature, the major limitation has been the difficulty to
achieve a stable formation between the robots in the group in dynamically changing,
unknown environments filled with obstacles. Under such circumstances, as the number of
robots increases, the control methods such as the virtual structure, leader follower and

18 Will-be-set-by-IN-TECH

Parker, L. (2008). Distributed intelligence: Overview of the field and its application in
multi-robot systems, Journal of Physical Agents 2(1).
URL: http://www.jopha.net/index.php/jopha/article/view/18/14

Parrish, J. K., Viscido, S. V. & GrÃijnbaum, D. (2002). Self-organized fish schools: An
examination of emergent properties, Biol. Bull 202: 296–305.

Partridge, B. L. (1982). The structure and function of fish schools, Scientific American
246(6): 114–123.

Partridge, B. L. (1984). The chorus-line hypothesis of maneuver in avian flocks, Nature 309: 344
– 345.

Ren, W. & Beard, R. (2005). Consensus seeking in multiagent systems under dynamically
changing interaction topologies, Automatic Control, IEEE Transactions on 50(5): 655 –
661.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model, Proceedings
of the 14th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’87, ACM, New York, NY, USA, pp. 25–34.
URL: http://doi.acm.org/10.1145/37401.37406

Saber, R. & Murray, R. (2003). Consensus protocols for networks of dynamic agents, American
Control Conference, 2003. Proceedings of the 2003, Vol. 2, pp. 951–956.

Shaw, E. (1975). Fish in schools, Natural History 84(8): 40–45.
Shimoyama, N., Sugawara, K., Mizuguchi, T., Hayakawa, Y. & Sano, M. (1996). Collective

motion in a system of motile elements, Phys. Rev. Lett. 76(20): 3870–3873.
Tanner, H. G., Jadbabaie, A. & Pappas, G. J. (2007). Flocking in fixed and switching networks,

Automatic Control, IEEE Transactions on 52(5): 863–868.
Toner, J. & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking, Phys.

Rev. E 58(4): 4828–4858.
Topaz, C. & Bertozzi, A. L. (2004). Swarming patterns in a two-dimensional kinematic model

for biological groups, SIAM Journal on Applied Mathematics 65(1): 152–174.
Vicsek, T. (2001). A question of scale, NATURE 411: 421.

URL: doi:10.1038/35078161
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. (1995). Novel type of phase

transition in a system of self-driven particles, Phys. Rev. Lett. 75(6): 1226–1229.

202
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

10

Cooperative Formation Planning and
Control of Multiple Mobile Robots

R. M. Kuppan Chetty1, M. Singaperumal2 and T. Nagarajan3
1Monash University

2Indian Institute of Technology Madras
3Universiti Teknologi PETRONAS

 1,3Malaysia

2India

1. Introduction
Application of intelligent Wheeled Mobile Robots (WMR) for material handling in the
manufacturing environment has been the topic of research in the past decade. Even though
researchers have succeeded in applying mobile robots for material handling purpose in the
shop floor environment, transporting heavy objects in the assembly line is still a challenge.
The dynamical characteristics of a manufacturing environment impose particular abilities a
mobile robot should have if it is to operate on the shop floor efficiently, accurately and
successfully. Consequently, a WMR needs to adapt itself to everlasting changes. Under such
conditions, the use of multiple WMR in closed defined geometric spatial pattern/ formation
can be a solution for such applications.
One of the essential problems in guiding multiple mobile robots in such dynamically
changing environments is to plan, navigate and coordinate the motion of robots, avoiding
obstacles as well as each other while transporting the materials/objects towards the goal.
Further it requires the robots to control their relative position and orientation between them
on the fly. Hence the control of group of mobile robots performing such tasks requires
coordination at different levels starting from navigation to formation (Sugar et al., 2001).
A variety of strategies and control approaches for formation control of group of coordinated
robots, have been adopted in the literature such as Graph Theory (Desai, 2002), Vector
Potential Field (Yamaguchi et al., 2001), Virtual Structure (Belta & Kumar, 2004), Leader
Follower (Fierro et al., 2002) and Behaviour Based Approaches (Arkin, 1998; Goldberg &
Matarić, 2002). Further, a comprehensive review of robotic formation, control approaches
and algorithms, applications and their advantages and disadvantages have also been
addressed (Chen & Wang, 2005). Among all the approaches mentioned in the literature,
behaviour – based and leader – follower approach has been widely adopted and well
recognized by the researchers because of their simplicity and scalability.
Even though robots are able to move in a closed defined formation when controlled using
the various methods reported in the literature, the major limitation has been the difficulty to
achieve a stable formation between the robots in the group in dynamically changing,
unknown environments filled with obstacles. Under such circumstances, as the number of
robots increases, the control methods such as the virtual structure, leader follower and

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 204

graph theory fail due to their centralization and requirement of higher communication
bandwidth. Further it is difficult to design and model the system in a traditional manner
and necessitates the implementation of a distributed control strategy with wide
communication capabilities between the group members to have knowledge about their
states and actions of their teammates. Hence, the control of group of mobile robots
performing such tasks requires coordination at different levels starting from navigation to
formation (Sugar et al., 2001).
Further, in most of the studies found in the literature, the researchers have dealt the
Formation planning and Navigation problems separately, in spite of considering them as
combined entity. However, as in the case of guiding the robot group in an unknown
environment, in addition to formation planning, robots also need other navigational
capabilities to plan their paths to reach their particular goal by avoiding collision between
themselves and obstacles in the environment of interest, which have not been addressed in
the literature. Another important challenge for formation control is active obstacle
avoidance on follower robots, which are not studied in detail in the literature (Chaimowicz
et al., 2004; Shi-cai et al., 2007). Therefore the more challenging and important problem is to
combine the formation planning and active obstacle avoidance on the follower path, because
the follower robot not only needs to perform obstacle avoidance but also has to control itself
to remain in the desired formation in relation to the other robots in the group.
In view of the limitations summarized above, three important issues related to distributed
formation planning and control of multiple mobile robots namely i) distributed layered
formation control framework ii) dynamic role switching algorithm and iii) real-time
implementations are addressed in this chapter. Towards acheiving these goals, a new
distributed methodology for the multi robot formation platoons of unicycle robots is
presented in this chapter. The presented methodology combines the formation planning and
navigation based on the hierarchical architecture composed of layers, whose components
are the fundamental behaviours/motion states of the robots. Apart from combining
formation planning and navigation, one of the most important problems and the major
challenge is the avoidance of obstacles in the path of the robots designated other than the
leader while guiding the robot group in an unknown environment. To address this
problem, a dynamic switching of roles, based on the exchange of leadership between the
robots, is incorporated in the control methodology. This is an peculiar feature that
distinguishes the presented methodology from the others that exist in the literature.
In the first part of the chapter, the detailed description and methodology regarding the
layered approach developed in this work, for solving the multi robot formation control
problem is addressed. The control problem combines together formation planning,
navigation and active obstacle avoidance, when operating in an unknown environment. In
the subsequent parts, the detail about the method of selection of the individual layers and
behaviours of the presented approach is presented. Detailed description about how the
individual task achieving layers and behaviours are formulated is also provided. The
theoretical formulation of formation behaviour based on the leader referenced model and
the development of the tracking controller, which is used to minimize the tracking error
asymptotically zero and makes the robot in the desired tight formation, is also addressed. In
addition to that, the dynamic role switching methodology through the exchange of
leadership between the robots and its behaviours, adopted by the robots other than leader in
the group, to actively avoid obstacles in their path is presented. Finally the contributions on
the development of the presented formation control methodology and its advantages over
the other methods found in the literature are summarized and concluded.

Cooperative Formation Planning and Control of Multiple Mobile Robots 205

2. Multi robot formation control
The detailed description and method of the formation control approach is presented in this
section. The main purpose of this approach is to achieve a formation control which guides a
group of mobile robots in a closed defined formation relative to each other, while navigating in
an unknown unstructured environment. To perform this collective task, layered distributed
control architecture whose components are the fundamental behaviours/motion states of the
robots, similar to (modified form of) the pack and homogeneous controller (Harry Chia et al.,
2005), is developed and presented as shown in Fig .1 (Kuppan Chetty et al., 2010, 2011). In this
layered architecture, to achieve the desired objective of the formation planning and navigation
in a distributed manner, the total functionality of the multi-robot system is decomposed into
functional behaviours. The behaviours such as Navigation and Formation are obtained, based
on the motion states of the robots, utilizing the methodology of the behavior based reactive
approach, as given in (Arkin, 1998; Xiaoming Hu et al., 2003; Goldberg & Matarić, 2001).
The fundamental behaviours/motion states of the robots are derived based on the
advantages of the behaviour based approach and the objective of the entire system. The
states are arranged into two levels, a lower level navigation and a higher supervisor level
formation, which works on individual goals concurrently and asynchronously. These two
levels yield the collective task upon integration. Both these layers and behaviours are related
using the priority based arbitration technique, where the entire sets of behaviours are
swapped in and out of execution for achieving the goals such as navigation and formation.
Therefore, the robots select a particular behaviour/motion state, based on the sensory
information perceived by the robot sensors from environment during the fly.

Fig. 1. Layered formation control architecture with task achieving behaviours classified into
supervisor level formation and lower level navigation

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 204

graph theory fail due to their centralization and requirement of higher communication
bandwidth. Further it is difficult to design and model the system in a traditional manner
and necessitates the implementation of a distributed control strategy with wide
communication capabilities between the group members to have knowledge about their
states and actions of their teammates. Hence, the control of group of mobile robots
performing such tasks requires coordination at different levels starting from navigation to
formation (Sugar et al., 2001).
Further, in most of the studies found in the literature, the researchers have dealt the
Formation planning and Navigation problems separately, in spite of considering them as
combined entity. However, as in the case of guiding the robot group in an unknown
environment, in addition to formation planning, robots also need other navigational
capabilities to plan their paths to reach their particular goal by avoiding collision between
themselves and obstacles in the environment of interest, which have not been addressed in
the literature. Another important challenge for formation control is active obstacle
avoidance on follower robots, which are not studied in detail in the literature (Chaimowicz
et al., 2004; Shi-cai et al., 2007). Therefore the more challenging and important problem is to
combine the formation planning and active obstacle avoidance on the follower path, because
the follower robot not only needs to perform obstacle avoidance but also has to control itself
to remain in the desired formation in relation to the other robots in the group.
In view of the limitations summarized above, three important issues related to distributed
formation planning and control of multiple mobile robots namely i) distributed layered
formation control framework ii) dynamic role switching algorithm and iii) real-time
implementations are addressed in this chapter. Towards acheiving these goals, a new
distributed methodology for the multi robot formation platoons of unicycle robots is
presented in this chapter. The presented methodology combines the formation planning and
navigation based on the hierarchical architecture composed of layers, whose components
are the fundamental behaviours/motion states of the robots. Apart from combining
formation planning and navigation, one of the most important problems and the major
challenge is the avoidance of obstacles in the path of the robots designated other than the
leader while guiding the robot group in an unknown environment. To address this
problem, a dynamic switching of roles, based on the exchange of leadership between the
robots, is incorporated in the control methodology. This is an peculiar feature that
distinguishes the presented methodology from the others that exist in the literature.
In the first part of the chapter, the detailed description and methodology regarding the
layered approach developed in this work, for solving the multi robot formation control
problem is addressed. The control problem combines together formation planning,
navigation and active obstacle avoidance, when operating in an unknown environment. In
the subsequent parts, the detail about the method of selection of the individual layers and
behaviours of the presented approach is presented. Detailed description about how the
individual task achieving layers and behaviours are formulated is also provided. The
theoretical formulation of formation behaviour based on the leader referenced model and
the development of the tracking controller, which is used to minimize the tracking error
asymptotically zero and makes the robot in the desired tight formation, is also addressed. In
addition to that, the dynamic role switching methodology through the exchange of
leadership between the robots and its behaviours, adopted by the robots other than leader in
the group, to actively avoid obstacles in their path is presented. Finally the contributions on
the development of the presented formation control methodology and its advantages over
the other methods found in the literature are summarized and concluded.

Cooperative Formation Planning and Control of Multiple Mobile Robots 205

2. Multi robot formation control
The detailed description and method of the formation control approach is presented in this
section. The main purpose of this approach is to achieve a formation control which guides a
group of mobile robots in a closed defined formation relative to each other, while navigating in
an unknown unstructured environment. To perform this collective task, layered distributed
control architecture whose components are the fundamental behaviours/motion states of the
robots, similar to (modified form of) the pack and homogeneous controller (Harry Chia et al.,
2005), is developed and presented as shown in Fig .1 (Kuppan Chetty et al., 2010, 2011). In this
layered architecture, to achieve the desired objective of the formation planning and navigation
in a distributed manner, the total functionality of the multi-robot system is decomposed into
functional behaviours. The behaviours such as Navigation and Formation are obtained, based
on the motion states of the robots, utilizing the methodology of the behavior based reactive
approach, as given in (Arkin, 1998; Xiaoming Hu et al., 2003; Goldberg & Matarić, 2001).
The fundamental behaviours/motion states of the robots are derived based on the
advantages of the behaviour based approach and the objective of the entire system. The
states are arranged into two levels, a lower level navigation and a higher supervisor level
formation, which works on individual goals concurrently and asynchronously. These two
levels yield the collective task upon integration. Both these layers and behaviours are related
using the priority based arbitration technique, where the entire sets of behaviours are
swapped in and out of execution for achieving the goals such as navigation and formation.
Therefore, the robots select a particular behaviour/motion state, based on the sensory
information perceived by the robot sensors from environment during the fly.

Fig. 1. Layered formation control architecture with task achieving behaviours classified into
supervisor level formation and lower level navigation

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 206

A reactive controller made up of simple prepositional representation comprising of if –then
–else model with task specific sensing, reasoning and planning is used to formulate the
behaviours at the navigational level. This controller provides the necessary navigational
capabilities and deals with the dynamic control of robots while guiding them in the
environment of interest. Further, to have the theoretical formalization and the convergence
of the robots into the desired formation, a closed-loop tracking controller at the supervisor
level formation is realized using the kinematic model of robots employed in the group in the
leader follower model. This controller handles the higher-level objective of multi robot
formation. Hence, the proposed approach conquers the deficiencies of the leader follower
approach and the behavior based approach, by wrapping up the former with the later, and
has the advantages of both the approaches. Thus, the proposed controllers have the
capability to address the combined problem of formation planning and navigation through
obstacle avoidance.
Referring to Fig. 1 the rectangles in the architecture represent the robot sensors, with the
sensor values being transmitted to the behaviors along the long dashed lines. The behaviors
themselves are drawn as rectangles with rounded corners arranged in three levels of
hierarchical layers namely avoid obstacle layer, explore layer and supervisor layer. The
dotted lines represent the command signals sent by the behaviors to the actuators and the
inter behavior control signals. The arrowheads in the command lines indicate the priority of
the behaviors, which constitutes the pathway to the actuator. The subsumption style priority
based arbitration scheme is represented by ‘’ with the actuator command coming from the
upper level layer taking the precedence. The next section gives the details of the layers, their
corresponding behaviors, and the functionality of each behavior in the architecture.

3. Layers and behaviors
This section briefs about the selection of layers and their corresponding task achieving
behaviors and how these behaviors are formulated and coordinated to achieve the objective
of formation maintenance and navigation tasks.

3.1 Selection of layers and behaviours
In order to have the distributed control nature, the collective task of formation planning and
navigation, is divided into three primitive tasks such as Formation, Navigation and Obstacle
avoidance, based on the motion states of the robot. These primitive motion states are
considered as the basic fundamental behaviors of the robot and are placed in two separate
hierarchical levels called the control levels, termed as the supervisor level and the
navigational level in the control architecture. The navigational level is the controller’s low
level. This is responsible for the robot designated as the leader to safely guide the team
members towards the goal, without colliding with obstacles or with other team members in
the environment of interest, using the behaviors/ motion states present in this level. The
supervisor level is the controller’s top level, which helps the robots designated as followers
to remain in the closed defined formation with their leader using the formation behavior
present in this level. The selection of control levels by the robots are based on the priority
number assigned to them.
While considering the specific problem of navigation, the leader robot has to perform
numerous motion states such as estimating the destination from current location, avoiding
collisions with obstacles and other robots, and guiding the follower robots to move in the

Cooperative Formation Planning and Control of Multiple Mobile Robots 207

absence of obstacles to cover large areas. To do this the navigational behaviour is further
decomposed into lower level behaviours such as Proceed, Avoid obstacles, Safe-wander and
Pit-sensing. All these behaviours are placed in the avoid obstacle and explore layers in the
navigational level as shown in Fig. 1. Further, it is necessary to retain the robots in a closed
defined formation and to minimize the separation error between the robots. Hence, the
formation behaviour is chosen to provide the necessary tracking control for the robots and
placed in the supervisor layer in the controller top level. In order to retain the robot
formation, it is necessary for the robots to have the postures, orientation and
behaviour/state information of the other robots in the group. This helps the robots
designated as follower to position themselves relative to the leader with the desired relative
separation and orientation, while the leader maneuvers independently. Therefore, the
behaviour of message passing is used to provide the explicit communication between the
robots using the wireless TCP/IP protocol and placed in the supervisor level.
Initially by default, safe wander behaviour is activated in the controller’s leader level and
others are suppressed. If one of the other behaviours becomes active, transition from the safe
wander to the avoid obstacle occurs accordingly. If the robot is in the follower mode, it
executes the formation behaviour which is responsible to keep the robot in a desired
formation by minimizing the separation error to zero. Therefore, there are totally five
behaviours which are derived based on the objective of the collective task and motion states
of the robots, arranged in three layers and in two levels as shown in the Fig 1.
Even though the task of maintenance of formation has the highest priority in the approach,
the obstacle avoidance priority also finds the higher order of priority based on the role of the
robots in the group. The formation behavior has the highest priority in the follower robot
and the obstacle avoidance is considered as the critical behavior, while in the leader robot
the obstacle avoidance has the higher priority and the Pit sensing behavior is considered as
the critical behavior. The next section presents the details on how these layers and the
behaviours on the control architecture are formulated.

3.2 Description of layers and behaviors
The lower level navigational controller of layered formation control architecture consists of
two layers such as explore and avoid obstacle layer, which are necessary to provide the
navigation capability to the robots. The higher-level formation control consists of supervisor
layer, necessary for high-level missions such as formation and communication. The details
of the behaviours in the above mentioned layers are given below.
a. Proceed: This behaviour processes the positioning data and provides approximate

proceed values for the safe wandering and the obstacle avoidance behaviours. This
provides the robot current position and orientation information at every instant in the
two-dimensional workspace using dead reckoning principle and the kinematic
configurations of the robots and makes the robot to head towards the goal. Hence this
behaviour is placed under avoid obstacle layer in the architecture.

b. Avoid Obstacle: This behaviour makes the robot to avoid obstacles / objects without
colliding and to manoeuvre within the workspace based on the information received
from its sensors as shown in Fig 2 (a). When the robot sensors finds an obstacle/object
within the workspace enclosed by the semicircle ‘d’, the avoid obstacle behaviour is
activated and it manipulates the wheel velocities of the robot, as given by Eqn. 1 (a) and
(b) necessary to avoid the obstacle.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 206

A reactive controller made up of simple prepositional representation comprising of if –then
–else model with task specific sensing, reasoning and planning is used to formulate the
behaviours at the navigational level. This controller provides the necessary navigational
capabilities and deals with the dynamic control of robots while guiding them in the
environment of interest. Further, to have the theoretical formalization and the convergence
of the robots into the desired formation, a closed-loop tracking controller at the supervisor
level formation is realized using the kinematic model of robots employed in the group in the
leader follower model. This controller handles the higher-level objective of multi robot
formation. Hence, the proposed approach conquers the deficiencies of the leader follower
approach and the behavior based approach, by wrapping up the former with the later, and
has the advantages of both the approaches. Thus, the proposed controllers have the
capability to address the combined problem of formation planning and navigation through
obstacle avoidance.
Referring to Fig. 1 the rectangles in the architecture represent the robot sensors, with the
sensor values being transmitted to the behaviors along the long dashed lines. The behaviors
themselves are drawn as rectangles with rounded corners arranged in three levels of
hierarchical layers namely avoid obstacle layer, explore layer and supervisor layer. The
dotted lines represent the command signals sent by the behaviors to the actuators and the
inter behavior control signals. The arrowheads in the command lines indicate the priority of
the behaviors, which constitutes the pathway to the actuator. The subsumption style priority
based arbitration scheme is represented by ‘’ with the actuator command coming from the
upper level layer taking the precedence. The next section gives the details of the layers, their
corresponding behaviors, and the functionality of each behavior in the architecture.

3. Layers and behaviors
This section briefs about the selection of layers and their corresponding task achieving
behaviors and how these behaviors are formulated and coordinated to achieve the objective
of formation maintenance and navigation tasks.

3.1 Selection of layers and behaviours
In order to have the distributed control nature, the collective task of formation planning and
navigation, is divided into three primitive tasks such as Formation, Navigation and Obstacle
avoidance, based on the motion states of the robot. These primitive motion states are
considered as the basic fundamental behaviors of the robot and are placed in two separate
hierarchical levels called the control levels, termed as the supervisor level and the
navigational level in the control architecture. The navigational level is the controller’s low
level. This is responsible for the robot designated as the leader to safely guide the team
members towards the goal, without colliding with obstacles or with other team members in
the environment of interest, using the behaviors/ motion states present in this level. The
supervisor level is the controller’s top level, which helps the robots designated as followers
to remain in the closed defined formation with their leader using the formation behavior
present in this level. The selection of control levels by the robots are based on the priority
number assigned to them.
While considering the specific problem of navigation, the leader robot has to perform
numerous motion states such as estimating the destination from current location, avoiding
collisions with obstacles and other robots, and guiding the follower robots to move in the

Cooperative Formation Planning and Control of Multiple Mobile Robots 207

absence of obstacles to cover large areas. To do this the navigational behaviour is further
decomposed into lower level behaviours such as Proceed, Avoid obstacles, Safe-wander and
Pit-sensing. All these behaviours are placed in the avoid obstacle and explore layers in the
navigational level as shown in Fig. 1. Further, it is necessary to retain the robots in a closed
defined formation and to minimize the separation error between the robots. Hence, the
formation behaviour is chosen to provide the necessary tracking control for the robots and
placed in the supervisor layer in the controller top level. In order to retain the robot
formation, it is necessary for the robots to have the postures, orientation and
behaviour/state information of the other robots in the group. This helps the robots
designated as follower to position themselves relative to the leader with the desired relative
separation and orientation, while the leader maneuvers independently. Therefore, the
behaviour of message passing is used to provide the explicit communication between the
robots using the wireless TCP/IP protocol and placed in the supervisor level.
Initially by default, safe wander behaviour is activated in the controller’s leader level and
others are suppressed. If one of the other behaviours becomes active, transition from the safe
wander to the avoid obstacle occurs accordingly. If the robot is in the follower mode, it
executes the formation behaviour which is responsible to keep the robot in a desired
formation by minimizing the separation error to zero. Therefore, there are totally five
behaviours which are derived based on the objective of the collective task and motion states
of the robots, arranged in three layers and in two levels as shown in the Fig 1.
Even though the task of maintenance of formation has the highest priority in the approach,
the obstacle avoidance priority also finds the higher order of priority based on the role of the
robots in the group. The formation behavior has the highest priority in the follower robot
and the obstacle avoidance is considered as the critical behavior, while in the leader robot
the obstacle avoidance has the higher priority and the Pit sensing behavior is considered as
the critical behavior. The next section presents the details on how these layers and the
behaviours on the control architecture are formulated.

3.2 Description of layers and behaviors
The lower level navigational controller of layered formation control architecture consists of
two layers such as explore and avoid obstacle layer, which are necessary to provide the
navigation capability to the robots. The higher-level formation control consists of supervisor
layer, necessary for high-level missions such as formation and communication. The details
of the behaviours in the above mentioned layers are given below.
a. Proceed: This behaviour processes the positioning data and provides approximate

proceed values for the safe wandering and the obstacle avoidance behaviours. This
provides the robot current position and orientation information at every instant in the
two-dimensional workspace using dead reckoning principle and the kinematic
configurations of the robots and makes the robot to head towards the goal. Hence this
behaviour is placed under avoid obstacle layer in the architecture.

b. Avoid Obstacle: This behaviour makes the robot to avoid obstacles / objects without
colliding and to manoeuvre within the workspace based on the information received
from its sensors as shown in Fig 2 (a). When the robot sensors finds an obstacle/object
within the workspace enclosed by the semicircle ‘d’, the avoid obstacle behaviour is
activated and it manipulates the wheel velocities of the robot, as given by Eqn. 1 (a) and
(b) necessary to avoid the obstacle.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 208

(a)

(b)

Fig. 2. (a) Emergence of Obstacle Avoidance behaviour – A top view look of robot and
obstacle, (b) Safewander Behavior

 * ()obs
avoid

d hv v
d


 (1a)

 (* ())t sign    (1b)

where, v and  correspond to the translational and rotational velocities in mm/s and rad/s
respectively. vavoid is the avoid velocity in mm/s, dobs is the distance of the obstacle with the
robot, where the maximum distance is less than 5 m , d is the desired threshold distance
necessary to avoid the obstacle, h is the distance between the sensor assembly from the axis
of rotation of the robot. t is the angle of turn in radians and  is the angle of the obstacle
with respect to the robot frame. This behaviour is placed in the avoid obstacle layer, whose
functionality is to prevent the collision of robot with obstacle or with other robots and to
ensure the safety of the robot.

Heading

Turn
Left

Turn
Right

after 25s
after 90

turn right

after 90
turn left

after 25s

Safe wandering

Cooperative Formation Planning and Control of Multiple Mobile Robots 209

c. Pit sensing: Existence of pit in the environment is a very critical issue, which has to be
avoided by robots manoeuvring the environment of interest. This behaviour makes the
robot to avoid pits by controlling the motion of the robot in the backward direction to a
predetermined distance, based on the sensor information. Hence this critical behaviour
is placed with the highest priority in the explore layer.

d. Safe–wandering: This behaviour guides the robot through the workspace/environment
with piece wise constant velocity by turning left or right at regular intervals with
predetermined angles as shown in Fig. 2(b). This makes the robot to wander through
the environment thoroughly and to look for goals if specified. Hence this behaviour is
placed under the explore layer in the architecture.

e. Message passing: Message passing behaviour provides the necessary interaction
between the robots allowing them to exchange their motion states, position, orientation
and velocity information, using the explicit socket communication capability through
wireless links (Hu et al., 1998; Crowley & Reignier, 1993). A 5 - 10 Hz updation rate is
provided making the inter-robot communication feasible. This helps other robots in the
group to know the current task or behaviour of their teammates. This in turn helps the
individual robot in the group to make suitable decisions. Hence this behaviour is
assigned with highest priority and is placed on top of all the layers.

f. Formation: When the followers know the trajectory or plan of the leader, this behaviour
manipulates the necessary wheel velocities of the follower to maintain its position
relative to the leader with desired separation and orientation through the tracking
controller. This behaviour is placed in the supervisor level, since our main objective is
to maintain the desired formation between the leader and the follower with the robots
manoeuvring the workspace/environment. Mathematical modelling of this behavioural
function is given in detail in the next section.

4. Mathematical modeling of formation behavior
Formation behavior is made up of mathematical formulation of tracking controller based on
the kinematics of the wheeled mobile robot. This section details the formulation of such
model to keep the multiple mobile robots in a defined geometric spatial pattern. In
formation control problem of multiple wheeled mobile robots, the objective of the robots is
to remain in the closed defined geometrical pattern with their teammates. There are several
approaches discussed in the literature for formation control. One of the prominent
approaches is the leader follower approach where one or more robots acts as the leader and
other robots designated as followers follow them. Therefore, the major critical task is to
derive a control methodology for the followers to maintain their desired linear and angular
separation with their leader to remain in the defined formation topology. This section details
about the methodology adopted in deriving a control strategy for the formation behavior,
which plays a major role for the robots. To derive a suitable control methodology the
following assumptions are made.

4.1 Research assumptions
- Robots employed in the group are identical in their kinematic model, and have same set

of sensors, actuators and control strategies.
- Tire differences, model uncertainties, odometry errors by slide and skid are ignored.
- Cartesian coordinate representation as mentioned in (Xiaohai Li et al., 2004) is utilized

to develop the control algorithm.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 208

(a)

(b)

Fig. 2. (a) Emergence of Obstacle Avoidance behaviour – A top view look of robot and
obstacle, (b) Safewander Behavior

 * ()obs
avoid

d hv v
d


 (1a)

 (* ())t sign    (1b)

where, v and  correspond to the translational and rotational velocities in mm/s and rad/s
respectively. vavoid is the avoid velocity in mm/s, dobs is the distance of the obstacle with the
robot, where the maximum distance is less than 5 m , d is the desired threshold distance
necessary to avoid the obstacle, h is the distance between the sensor assembly from the axis
of rotation of the robot. t is the angle of turn in radians and  is the angle of the obstacle
with respect to the robot frame. This behaviour is placed in the avoid obstacle layer, whose
functionality is to prevent the collision of robot with obstacle or with other robots and to
ensure the safety of the robot.

Heading

Turn
Left

Turn
Right

after 25s
after 90

turn right

after 90
turn left

after 25s

Safe wandering

Cooperative Formation Planning and Control of Multiple Mobile Robots 209

c. Pit sensing: Existence of pit in the environment is a very critical issue, which has to be
avoided by robots manoeuvring the environment of interest. This behaviour makes the
robot to avoid pits by controlling the motion of the robot in the backward direction to a
predetermined distance, based on the sensor information. Hence this critical behaviour
is placed with the highest priority in the explore layer.

d. Safe–wandering: This behaviour guides the robot through the workspace/environment
with piece wise constant velocity by turning left or right at regular intervals with
predetermined angles as shown in Fig. 2(b). This makes the robot to wander through
the environment thoroughly and to look for goals if specified. Hence this behaviour is
placed under the explore layer in the architecture.

e. Message passing: Message passing behaviour provides the necessary interaction
between the robots allowing them to exchange their motion states, position, orientation
and velocity information, using the explicit socket communication capability through
wireless links (Hu et al., 1998; Crowley & Reignier, 1993). A 5 - 10 Hz updation rate is
provided making the inter-robot communication feasible. This helps other robots in the
group to know the current task or behaviour of their teammates. This in turn helps the
individual robot in the group to make suitable decisions. Hence this behaviour is
assigned with highest priority and is placed on top of all the layers.

f. Formation: When the followers know the trajectory or plan of the leader, this behaviour
manipulates the necessary wheel velocities of the follower to maintain its position
relative to the leader with desired separation and orientation through the tracking
controller. This behaviour is placed in the supervisor level, since our main objective is
to maintain the desired formation between the leader and the follower with the robots
manoeuvring the workspace/environment. Mathematical modelling of this behavioural
function is given in detail in the next section.

4. Mathematical modeling of formation behavior
Formation behavior is made up of mathematical formulation of tracking controller based on
the kinematics of the wheeled mobile robot. This section details the formulation of such
model to keep the multiple mobile robots in a defined geometric spatial pattern. In
formation control problem of multiple wheeled mobile robots, the objective of the robots is
to remain in the closed defined geometrical pattern with their teammates. There are several
approaches discussed in the literature for formation control. One of the prominent
approaches is the leader follower approach where one or more robots acts as the leader and
other robots designated as followers follow them. Therefore, the major critical task is to
derive a control methodology for the followers to maintain their desired linear and angular
separation with their leader to remain in the defined formation topology. This section details
about the methodology adopted in deriving a control strategy for the formation behavior,
which plays a major role for the robots. To derive a suitable control methodology the
following assumptions are made.

4.1 Research assumptions
- Robots employed in the group are identical in their kinematic model, and have same set

of sensors, actuators and control strategies.
- Tire differences, model uncertainties, odometry errors by slide and skid are ignored.
- Cartesian coordinate representation as mentioned in (Xiaohai Li et al., 2004) is utilized

to develop the control algorithm.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 210

- Robots employed are assumed as perfect velocity controlled robot without considering
the dynamics. Hence, the kinematic model is used for development of multi robot
leader follower formation framework.

- Robots are aware of each other through explicit inter robot communication with
onboard sensing, computation and communication capability.

- The relative information between the robots is utilized rather than the global
information systems.

- Leader Referenced model is used, in which other robots maintain the desired position
to the leader.

4.2 Leader referenced multi robot system
Let us consider a simple system consisting of two robots in a leader-follower framework and
assume that the pose vectors of both the robots are given in the global reference frame of the
cartesian coordinate representation as given by Eqn. 3. Fig. 3 shows the kinematic model of
non-holonomic differential drive wheeled mobile robots arranged in such a configuration.
Here RL represents the leader robot, RF represents the follower robot and Rr represent the
desired position to be reached by the follower robot to remain in closed formation with the
leader by keeping the leader as its reference. In the formation control of pair or robots as
shown in figure 3, there are two critical parameters l and  that determine the geometric
shape of the two-vehicle sub system as given by the following representation

  d d
i i i iSF L l (2)

Where, i = 1, 2, 3…n denotes the robots identification number and SFi denotes the shape of
the formation.

Fig. 3. Kinematic model of the robots in Leader – Follower Formation

F

L

d

l ld

F
d=L

L

F

xL, xF
d xF

yF

yF
d

yF

y
x

RL

RF

Rr

Cooperative Formation Planning and Control of Multiple Mobile Robots 211

Let l and ld be the relative and desired linear separation and  and d be the relative and the
desired angular separation between the robots respectively. To achieve the desired
formation the control has to make l  ld and   d and to bring the separation and
orientation errors asymptotically to zero. In this case, the control problem reduces to a
trajectory tracking control problem rather than the regulation problem of the follower,
where it plans its path to efficiently position itself relative to its leader by observing the
leader’s information. Hence, a tracking controller is to be designed for the follower robots to
remain in the closed formation. Therefore, the objective of the tracking controller is to find
the velocities of the follower robots.

4.3 Tracking controller
In formation control, the objective of the tracking controller is to find the values of the
translational and rotational wheel velocities vF and F of the follower robots in such a way
that the formation/separation errors (linear and angular) decay asymptotically to zero, and
position the follower in the desired geometric pattern with its leader.
In order to formulate the tracking control algorithm to find out the wheel velocities of the
follower, let the position of the leader and the follower robot in a unit time as in Fig. 3; be
given by XL, YL and XF, YF respectively in the fixed ground coordinate system. Let Xr and Yr
be the position of the reference robot, which is the desired position to be reached by the
follower to remain in a formation with the desired linear and angular separation with the
leader. The orientation of leader and follower robots is given by L and F respectively, and
the orientation of the reference robot r is same as the orientation of the leader, which is the
basic requirement for the formation platoons.

4.3.1 Generalized tracking controller in global frame
The motion for a non-holonomic differential drive wheeled mobile robot is governed by Eqn. 3,

cos 0
sin 0

0 1

x
v v

y J



 


   
                       





 (3)

Where, J is the Jacobian matrix which defines the kinematics of the WMR. Here, the robot
pose vectors are assumed in the global (inertial) reference frame of the cartesian coordinate
representation.
Based on the above kinematic model, the velocity equations of the leader robot in the
ground frame is given by

cos
sin

L L L

L

L L

x v
y vL L




 











 (4)

Similarly, for the robot designated as follower, the velocity equations are

cos
sin

F F F

F

F F

x v
y vF F




 











 (5)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 210

- Robots employed are assumed as perfect velocity controlled robot without considering
the dynamics. Hence, the kinematic model is used for development of multi robot
leader follower formation framework.

- Robots are aware of each other through explicit inter robot communication with
onboard sensing, computation and communication capability.

- The relative information between the robots is utilized rather than the global
information systems.

- Leader Referenced model is used, in which other robots maintain the desired position
to the leader.

4.2 Leader referenced multi robot system
Let us consider a simple system consisting of two robots in a leader-follower framework and
assume that the pose vectors of both the robots are given in the global reference frame of the
cartesian coordinate representation as given by Eqn. 3. Fig. 3 shows the kinematic model of
non-holonomic differential drive wheeled mobile robots arranged in such a configuration.
Here RL represents the leader robot, RF represents the follower robot and Rr represent the
desired position to be reached by the follower robot to remain in closed formation with the
leader by keeping the leader as its reference. In the formation control of pair or robots as
shown in figure 3, there are two critical parameters l and  that determine the geometric
shape of the two-vehicle sub system as given by the following representation

  d d
i i i iSF L l (2)

Where, i = 1, 2, 3…n denotes the robots identification number and SFi denotes the shape of
the formation.

Fig. 3. Kinematic model of the robots in Leader – Follower Formation

F

L

d

l ld

F
d=L

L

F

xL, xF
d xF

yF

yF
d

yF

y
x

RL

RF

Rr

Cooperative Formation Planning and Control of Multiple Mobile Robots 211

Let l and ld be the relative and desired linear separation and  and d be the relative and the
desired angular separation between the robots respectively. To achieve the desired
formation the control has to make l  ld and   d and to bring the separation and
orientation errors asymptotically to zero. In this case, the control problem reduces to a
trajectory tracking control problem rather than the regulation problem of the follower,
where it plans its path to efficiently position itself relative to its leader by observing the
leader’s information. Hence, a tracking controller is to be designed for the follower robots to
remain in the closed formation. Therefore, the objective of the tracking controller is to find
the velocities of the follower robots.

4.3 Tracking controller
In formation control, the objective of the tracking controller is to find the values of the
translational and rotational wheel velocities vF and F of the follower robots in such a way
that the formation/separation errors (linear and angular) decay asymptotically to zero, and
position the follower in the desired geometric pattern with its leader.
In order to formulate the tracking control algorithm to find out the wheel velocities of the
follower, let the position of the leader and the follower robot in a unit time as in Fig. 3; be
given by XL, YL and XF, YF respectively in the fixed ground coordinate system. Let Xr and Yr
be the position of the reference robot, which is the desired position to be reached by the
follower to remain in a formation with the desired linear and angular separation with the
leader. The orientation of leader and follower robots is given by L and F respectively, and
the orientation of the reference robot r is same as the orientation of the leader, which is the
basic requirement for the formation platoons.

4.3.1 Generalized tracking controller in global frame
The motion for a non-holonomic differential drive wheeled mobile robot is governed by Eqn. 3,

cos 0
sin 0

0 1

x
v v

y J



 


   
                       





 (3)

Where, J is the Jacobian matrix which defines the kinematics of the WMR. Here, the robot
pose vectors are assumed in the global (inertial) reference frame of the cartesian coordinate
representation.
Based on the above kinematic model, the velocity equations of the leader robot in the
ground frame is given by

cos
sin

L L L

L

L L

x v
y vL L




 











 (4)

Similarly, for the robot designated as follower, the velocity equations are

cos
sin

F F F

F

F F

x v
y vF F




 











 (5)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 212

In order to minimize the separation errors, the follower robot adjusts its position relative to
its leader by estimating the leader’s current posture and velocity information. However, as
in the real case, the estimation of information in the global coordinates in the real time
requires complex estimation methods. There exists a reference position, which is obtained
based on the desired linear and angular separation relative with the leader, since the
reference position cannot be estimated directly in the real world. This reference position is
used as the desired position for the follower robot to be reached to remain in the formation
and to minimize the separation error. Therefore the pose vector of the reference/desired
position to be reached by the follower from its position relative with the leader is given by

cos sin

sin cos

d dx v lr L L
d dy v lr L L

r L L

 

 

  

 

 

 




 

 (6)

Fig. 4 shows the block diagram of the tracking controller assuming that the robots are in the
global coordinate frames.

Fig. 4. Block Diagram of the Tracking Controller

The next step is to find the tracking error vector between the reference and actual position
for the follower robot. This is given by the Eqn. 7.

()

()

()

e

e

e

x xx r F
y y yr F

r F
  

                 

 
  
  

 (7)

(Xe, Ye,e) (VF,F)

Information about
Leader Robot

Leader Posture
(XL,YL,L)

Desired Posture
(Xr,Yr,r)

Separation values
(ld,d)

Robot Posture
(XF,YF,F)

Tracking
Controller

Actuator
Control

Leader Velocity
(VL,L)

Robot
Motion

Cooperative Formation Planning and Control of Multiple Mobile Robots 213

By substituting Eqn. 5 and Eqn. 6 in the above Eqn. 7, the tracking error becomes

 (cos cos sin())d d
e r F L L F Fx x x v v l         (8)

 (sin sin cos())d d
e d F L L F Fy y y v v l         (9)

 e d F L F          (10)

The above equations are nonlinear. In order to derive a controller, the non linear nature of
the above equations are linearized by Input-Output linearization technique and by choosing

1 2,e e e ex K x y K y     and 3e eK  
The control equation becomes

 1 2(cos sin) cos sin
(cos sin)

d d d d
L L L

F F
F

Xe K Ye l lV KV    

 

    


 (11)

 3)(F L F LK     (12)

4.3.2 Tracking controller with mapping of coordinate frames
As in the first case, the state of the robot is described in relation to the global coordinate
system. But in the real case of the robots, their coordinate system is different from the global
coordinate system. In this case, X-axis represents the forward motion of the robot. Hence, to
describe the robot motion in terms of component motion, it is necessary to map the motion
along the axes of the global reference frame to motion along the axes of the robot local
reference frame as shown in Fig. 3. The following orthogonal rotational transformation
matrix is used to accomplish the mapping.

cos sin 0

() sin cos 0
0 0 1

R
 

  
 
 
 
  


 (13)

Further in the case of the Multi Robot Systems (MRS), different robots in the group as
members must be able to compare measurements and coordinate their actions with in a
common frame of reference. Hence, it is necessary to match the coordinate frame of robots
designated as the followers relative to the leader coordinate frames, using the relationship
between the inertial and relative coordinate representation of the robots.
When the leader is subjected to only rotation by an angle, it is reflected in the reference
robot (desired position to be reached by the follower) as a combination of translation and
rotation, following a circular path with linear separation as the radius. Hence, the velocity
equations of the reference robot in the ground frame is given by

cos sin()

sin cos()

d dX v lr L L L L
d dY v lr L L L L

r L L

   

   

  

  

  

 

 

 

 
 (14)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 212

In order to minimize the separation errors, the follower robot adjusts its position relative to
its leader by estimating the leader’s current posture and velocity information. However, as
in the real case, the estimation of information in the global coordinates in the real time
requires complex estimation methods. There exists a reference position, which is obtained
based on the desired linear and angular separation relative with the leader, since the
reference position cannot be estimated directly in the real world. This reference position is
used as the desired position for the follower robot to be reached to remain in the formation
and to minimize the separation error. Therefore the pose vector of the reference/desired
position to be reached by the follower from its position relative with the leader is given by

cos sin

sin cos

d dx v lr L L
d dy v lr L L

r L L

 

 

  

 

 

 




 

 (6)

Fig. 4 shows the block diagram of the tracking controller assuming that the robots are in the
global coordinate frames.

Fig. 4. Block Diagram of the Tracking Controller

The next step is to find the tracking error vector between the reference and actual position
for the follower robot. This is given by the Eqn. 7.

()

()

()

e

e

e

x xx r F
y y yr F

r F
  

                 

 
  
  

 (7)

(Xe, Ye,e) (VF,F)

Information about
Leader Robot

Leader Posture
(XL,YL,L)

Desired Posture
(Xr,Yr,r)

Separation values
(ld,d)

Robot Posture
(XF,YF,F)

Tracking
Controller

Actuator
Control

Leader Velocity
(VL,L)

Robot
Motion

Cooperative Formation Planning and Control of Multiple Mobile Robots 213

By substituting Eqn. 5 and Eqn. 6 in the above Eqn. 7, the tracking error becomes

 (cos cos sin())d d
e r F L L F Fx x x v v l         (8)

 (sin sin cos())d d
e d F L L F Fy y y v v l         (9)

 e d F L F          (10)

The above equations are nonlinear. In order to derive a controller, the non linear nature of
the above equations are linearized by Input-Output linearization technique and by choosing

1 2,e e e ex K x y K y     and 3e eK  
The control equation becomes

 1 2(cos sin) cos sin
(cos sin)

d d d d
L L L

F F
F

Xe K Ye l lV KV    

 

    


 (11)

 3)(F L F LK     (12)

4.3.2 Tracking controller with mapping of coordinate frames
As in the first case, the state of the robot is described in relation to the global coordinate
system. But in the real case of the robots, their coordinate system is different from the global
coordinate system. In this case, X-axis represents the forward motion of the robot. Hence, to
describe the robot motion in terms of component motion, it is necessary to map the motion
along the axes of the global reference frame to motion along the axes of the robot local
reference frame as shown in Fig. 3. The following orthogonal rotational transformation
matrix is used to accomplish the mapping.

cos sin 0

() sin cos 0
0 0 1

R
 

  
 
 
 
  


 (13)

Further in the case of the Multi Robot Systems (MRS), different robots in the group as
members must be able to compare measurements and coordinate their actions with in a
common frame of reference. Hence, it is necessary to match the coordinate frame of robots
designated as the followers relative to the leader coordinate frames, using the relationship
between the inertial and relative coordinate representation of the robots.
When the leader is subjected to only rotation by an angle, it is reflected in the reference
robot (desired position to be reached by the follower) as a combination of translation and
rotation, following a circular path with linear separation as the radius. Hence, the velocity
equations of the reference robot in the ground frame is given by

cos sin()

sin cos()

d dX v lr L L L L
d dY v lr L L L L

r L L

   

   

  

  

  

 

 

 

 
 (14)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 214

Similarly, the velocity equations of the follower robot is given by

cos sin

sin cos

X v hF F F F F
Y v hF F F F F

F F

  

  

 

 

 








 (15)

The next step in deriving the tracking controller is to obtain the error dynamics of the
system in the robot frame by choosing the error coordinates xe in the direction of v and ye

perpendicular to this direction as depicted in Fig. 3.4. Therefore, to obtain the error in the
common local reference/ robot frame, where the coordinate system of the follower is related
with leaders system, the orthogonal rotation matrix given above takes the form as

()cos sin 0

sin cos 0 . ()

0 0 1 ()

x X Xe r FF F
y Y Ye F F r F

e r F

 

 

  

    
    
     
            

 (16)

where,

cos sin 0

() sin cos 0

0 0 1

F F
R F F

 

  

 
 

  
 
 

is the orthogonal rotation matrix.

Fig. 5 shows the block diagram of tracking controller in which the tracking error is
represented in the new coordinate system of robot frame.

Fig. 5. Block diagram of tracking controller in the robot frame

(Xe, Ye,e) (VF,F)

Information
about Leader

Leader
Posture

Desired
Posture

Separation
values

Robot Posture
(XF,YF,F)

Tracking
Controller

Actuator
Control

Leader Velocity
(VL,L)

Robot
Motion

Coordinate
Transformati

Cooperative Formation Planning and Control of Multiple Mobile Robots 215

By substituting Eqn. 14 and Eqn. 15 in the above Eqn. 16, the tracking error in the new
coordinate system is obtained as,

cos sin() () 0

().
sin cos 0() ()

r F r Fe F e

e F er F r F

X X X Xx xF FR
y yY Y Y YF F

  


  

          
                          

    
   

 (17)

 cos() sin()d d
e F L L F L L F F ex v v l y              (18)

 sin() cos()d d
e L L F L L F F e Fy v l x b               (19)

The next step is to find a control law for the velocity input and to position the follower in the
desired position w.r.t the leader and to minimize the tracking error to zero. An obvious
complexity of the above equations of the error dynamics is that the presence of the terms

F ey and F ex indirectly relating the output x and y with the inputs vF and F through the
state variable. Thus, in turn makes the system model to be nonlinear in nature.
In order to find the control law for the velocity inputs of the tracking controller, the Eqn. 18
and 19 are linearized using suitable linearization technique. Here the idea is to algebraically
transform the nonlinear system dynamics in to a fully or partly one, so that the linear control
theory can be applied. Hence, Feedback linearization technique finds the best solution to
linearize the above nonlinear system model especially for tracking controllers (Khalil, 1996;
Shankar Shastry, 1999) where the approach involves coming up with a transformation of the
nonlinear system into an equivalent linear system through a change of variables and a
suitable control input. The difficulty of the tracking controller design is decreased by finding
a simple and direct relation between the system output ‘y’ and the control input ‘u = [v ]T’
by applying

 1

2

e F e e

e e F e

x y k x
y k y x




 
  




 (20)

and hence, after the feedback linearization the control law for vF and F is obtained as

1

2

cos sin() 0

sin cos() 0

d d
e e

F L ed d
e eF L e

l kv v x
kl y
hh h

  

   

                               

 (21)

where,

    cos() cos sin() sind d d d
e L L F F L L F Fx X l X Y l Y               (22)

    cos() sin sin() sind d d d
e L L F F L L F Fy X l X Y l Y                (23)

stands for the position error between the desired position i.e. position of the reference robot,
and the position of the follower robot in the new coordinate system and k1 and k2 are
controller gains that are constant positive integers greater than zero, which guarantee the
system stability.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 214

Similarly, the velocity equations of the follower robot is given by

cos sin

sin cos

X v hF F F F F
Y v hF F F F F

F F

  

  

 

 

 








 (15)

The next step in deriving the tracking controller is to obtain the error dynamics of the
system in the robot frame by choosing the error coordinates xe in the direction of v and ye

perpendicular to this direction as depicted in Fig. 3.4. Therefore, to obtain the error in the
common local reference/ robot frame, where the coordinate system of the follower is related
with leaders system, the orthogonal rotation matrix given above takes the form as

()cos sin 0

sin cos 0 . ()

0 0 1 ()

x X Xe r FF F
y Y Ye F F r F

e r F

 

 

  

    
    
     
            

 (16)

where,

cos sin 0

() sin cos 0

0 0 1

F F
R F F

 

  

 
 

  
 
 

is the orthogonal rotation matrix.

Fig. 5 shows the block diagram of tracking controller in which the tracking error is
represented in the new coordinate system of robot frame.

Fig. 5. Block diagram of tracking controller in the robot frame

(Xe, Ye,e) (VF,F)

Information
about Leader

Leader
Posture

Desired
Posture

Separation
values

Robot Posture
(XF,YF,F)

Tracking
Controller

Actuator
Control

Leader Velocity
(VL,L)

Robot
Motion

Coordinate
Transformati

Cooperative Formation Planning and Control of Multiple Mobile Robots 215

By substituting Eqn. 14 and Eqn. 15 in the above Eqn. 16, the tracking error in the new
coordinate system is obtained as,

cos sin() () 0

().
sin cos 0() ()

r F r Fe F e

e F er F r F

X X X Xx xF FR
y yY Y Y YF F

  


  

          
                          

    
   

 (17)

 cos() sin()d d
e F L L F L L F F ex v v l y              (18)

 sin() cos()d d
e L L F L L F F e Fy v l x b               (19)

The next step is to find a control law for the velocity input and to position the follower in the
desired position w.r.t the leader and to minimize the tracking error to zero. An obvious
complexity of the above equations of the error dynamics is that the presence of the terms

F ey and F ex indirectly relating the output x and y with the inputs vF and F through the
state variable. Thus, in turn makes the system model to be nonlinear in nature.
In order to find the control law for the velocity inputs of the tracking controller, the Eqn. 18
and 19 are linearized using suitable linearization technique. Here the idea is to algebraically
transform the nonlinear system dynamics in to a fully or partly one, so that the linear control
theory can be applied. Hence, Feedback linearization technique finds the best solution to
linearize the above nonlinear system model especially for tracking controllers (Khalil, 1996;
Shankar Shastry, 1999) where the approach involves coming up with a transformation of the
nonlinear system into an equivalent linear system through a change of variables and a
suitable control input. The difficulty of the tracking controller design is decreased by finding
a simple and direct relation between the system output ‘y’ and the control input ‘u = [v ]T’
by applying

 1

2

e F e e

e e F e

x y k x
y k y x




 
  




 (20)

and hence, after the feedback linearization the control law for vF and F is obtained as

1

2

cos sin() 0

sin cos() 0

d d
e e

F L ed d
e eF L e

l kv v x
kl y
hh h

  

   

                               

 (21)

where,

    cos() cos sin() sind d d d
e L L F F L L F Fx X l X Y l Y               (22)

    cos() sin sin() sind d d d
e L L F F L L F Fy X l X Y l Y                (23)

stands for the position error between the desired position i.e. position of the reference robot,
and the position of the follower robot in the new coordinate system and k1 and k2 are
controller gains that are constant positive integers greater than zero, which guarantee the
system stability.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 216

4.4 Obstacle avoidance on follower
One of the most important problems and the major challenge is the avoidance of obstacles in
the path of the robots designated other than the leader while guiding the robots group in an
unknown environment. To avoid this problem, a dynamic role switching methodology
based on the exchange of leadership between the robots is incorporated in the developed
formation control methodology. The principle behind the switching strategy is that the robot
designated as the leader in the real time takes the responsibility of guiding the group
through the environment by executing the navigational part of the controller and the robot
designated as the follower follows the leader by executing the formation controller. The
Follower only leads the group during short time periods in the fly when it has to avoid the
obstacle present on its path. Therefore, at any moment during the coordination motion, the
robot performing the leading role can become a follower, and any follower can take over the
leadership of the team and makes the robot controller to exchange their control modes from
navigation to formation and formation to navigation, based on their previous roles and
sensory information through explicit inter-robot communication.
As the follower perceives the obstacle on its path based on the sensory information received
from its sensors, it sends a request packet to the leader to release the leadership. When the
current leader receives the request of releasing the leadership, it immediately releases the
leadership to the follower, through an explicit inter-robot socket communication
mechanism. Once the follower attains the leadership, it switches its role from follower to
leader. Hence, the follower switches from the controllers formation mode to the navigational
mode and starts navigating the environment as a temporary leader. In the other side leader
robot switches its control to the formation mode and plans its path to track the temporary
leader in the defined spatial pattern until the obstacle has been avoided. Under such
conditions, the desired linear separation of the follower remains the same and the angular
separation changes based on the geometric relationship between the robots as given by Eqn.
24 and shown in Fig. 6.

;

;

d d d

d d
    

   

  

  
 (24)

Fig. 7 shows three robots R1, R2 and R3 in a wedge shaped formation topology, with R1
designated as leader and R2 and R3 designated as followers. When any one of the follower
robots R2 and R3 perceives the obstacle on its path, the analogous robot attains the
leadership temporarily.
Let us consider that the follower robot R2 perceives the obstacle in it paths. Under such
conditions, the Robot R2 attains the leadership, the desired formation parameter between R1
and R2 is obtained as given by the Eqn. 25, and the other robot R3 tracks the robot R1 as its
reference, without changing the formation parameters between them, which in turn tracks
the temporary leader R2 using the simple geometrical relationship between the robots.
Similarly, when robot R3 attains the leadership temporarily, desired formation parameter
between R3 and R1 is obtained as given by the Eqn. 26, and the other robot R2 tracks the
robot R1 as its reference. This methodology reduces the computational and inter-robot
communication complexity, and helps to minimize the transitory errors between the robots,
due to the abrupt change in the formation parameters and the switching of leadership
between the robots.

Cooperative Formation Planning and Control of Multiple Mobile Robots 217

(a) (b)

Fig. 6. Role of angular separation while role switching when (a) R1 as leader and R2 as
follower, (b) R2 as leader and R1 as follower

Fig. 7. Role of angular and linear separation while role switching when more than two
robots in the group

 12 12 12

12 12

;

;

d d d

d d
    

   

  

  
; When obstacle is on R2 (25)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 216

4.4 Obstacle avoidance on follower
One of the most important problems and the major challenge is the avoidance of obstacles in
the path of the robots designated other than the leader while guiding the robots group in an
unknown environment. To avoid this problem, a dynamic role switching methodology
based on the exchange of leadership between the robots is incorporated in the developed
formation control methodology. The principle behind the switching strategy is that the robot
designated as the leader in the real time takes the responsibility of guiding the group
through the environment by executing the navigational part of the controller and the robot
designated as the follower follows the leader by executing the formation controller. The
Follower only leads the group during short time periods in the fly when it has to avoid the
obstacle present on its path. Therefore, at any moment during the coordination motion, the
robot performing the leading role can become a follower, and any follower can take over the
leadership of the team and makes the robot controller to exchange their control modes from
navigation to formation and formation to navigation, based on their previous roles and
sensory information through explicit inter-robot communication.
As the follower perceives the obstacle on its path based on the sensory information received
from its sensors, it sends a request packet to the leader to release the leadership. When the
current leader receives the request of releasing the leadership, it immediately releases the
leadership to the follower, through an explicit inter-robot socket communication
mechanism. Once the follower attains the leadership, it switches its role from follower to
leader. Hence, the follower switches from the controllers formation mode to the navigational
mode and starts navigating the environment as a temporary leader. In the other side leader
robot switches its control to the formation mode and plans its path to track the temporary
leader in the defined spatial pattern until the obstacle has been avoided. Under such
conditions, the desired linear separation of the follower remains the same and the angular
separation changes based on the geometric relationship between the robots as given by Eqn.
24 and shown in Fig. 6.

;

;

d d d

d d
    

   

  

  
 (24)

Fig. 7 shows three robots R1, R2 and R3 in a wedge shaped formation topology, with R1
designated as leader and R2 and R3 designated as followers. When any one of the follower
robots R2 and R3 perceives the obstacle on its path, the analogous robot attains the
leadership temporarily.
Let us consider that the follower robot R2 perceives the obstacle in it paths. Under such
conditions, the Robot R2 attains the leadership, the desired formation parameter between R1
and R2 is obtained as given by the Eqn. 25, and the other robot R3 tracks the robot R1 as its
reference, without changing the formation parameters between them, which in turn tracks
the temporary leader R2 using the simple geometrical relationship between the robots.
Similarly, when robot R3 attains the leadership temporarily, desired formation parameter
between R3 and R1 is obtained as given by the Eqn. 26, and the other robot R2 tracks the
robot R1 as its reference. This methodology reduces the computational and inter-robot
communication complexity, and helps to minimize the transitory errors between the robots,
due to the abrupt change in the formation parameters and the switching of leadership
between the robots.

Cooperative Formation Planning and Control of Multiple Mobile Robots 217

(a) (b)

Fig. 6. Role of angular separation while role switching when (a) R1 as leader and R2 as
follower, (b) R2 as leader and R1 as follower

Fig. 7. Role of angular and linear separation while role switching when more than two
robots in the group

 12 12 12

12 12

;

;

d d d

d d
    

   

  

  
; When obstacle is on R2 (25)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 218

 13 13 13

13 13

;

;

d d d

d d
    

   

  

  
; When obstacle is on R3 (26)

Another important problem in the three-robot formation is, when the follower robots R2 and
R3 perceive the obstacle in their path at the same time. In these circumstances, Robot R1
retains the leadership by itself and commands the follower robots to change the type of
formation to inline formation from their initial formation. Therefore, the required change in
the desired formation parameters is obtained based on the simple geometric relationship
between the robots, and are given by Eqn. 27 and 28.
For Robot R2

 12 12 12

12

;

;

d d d

d
    

  

   

 
and 12

d dl l (27)

and for Robot R3

 13 13

13 13

;

;

d d

d d
   

   

 

   
 and 13 13 13

13 13

;
;

d d d

d d
l l l

l
 

 
   

 
 (28)

This kind of change in formation topology is preferred to avoid the deadlock situation in the
release of leadership, when more than one robot requests the leadership simultaneously.
After avoiding the obstacle, temporary leader releases the leadership back to the previous
leader, starts executing the formation behaviour, and plans its path according to the leader.
Hence, the dynamic switching roles/behaviours in the control architecture allow the robots
to trade their roles between them and to actively avoid obstacles on the robots designated as
follower’s path while maintaining the desired formation.

5. Simulation studies
5.1 Simulation description
The main objective of the simulation studies is to evaluate the different aspects of the control
architecture, i.e. to measure the emergence of all possible reactive behaviours/AFSM of the
layered approach. The response of the active behaviour yield the motor control output to the
robot actuator, which determines the motion of the robot.
Simulation studies are carried out in a phased manner. Before going into the study of multi
Robot formation systems, simulation studies to measure the response of the reactive task
achieving behaviours of the navigational controller are carried out. The relationship
between the formation parameters such as the Instantaneous Centre of Radius/Curvature
(ICR/ICC), linear separation (ld) and the angular separation (d), and their effects on the
tracking controller are investigated. Then the error dynamics of the tracking controller
which are responsible for positioning the follower robots in the desired separation and
orientation with the leader is tested for various formation topologies. In this simulation
study, the leader robot is made to move in a predefined trajectory such as ‘straight line’,
‘arc’, ‘S-shaped’ and ‘eight shaped’ trajectories, with the generalized parameters obtained
from the simulation studies. Formation strategies such as in-line, parallel and wedge shaped

Cooperative Formation Planning and Control of Multiple Mobile Robots 219

have been simulated for both two and three robots in the group. Finally, the dynamic
switching of roles for active obstacle avoidance in the follower is incorporated along with
the formation planning and navigation.
Matlab – SIMULINK/ Stateflow environment as the simulation tool to evaluate the different
aspects of the proposed formation control architecture, since it is an interactive graphical
design and development tool that works with Simulink to model and simulate complex
systems modeled as finite state machines, also called reactive event driven systems
(Stormont & Chen, 2005; Dougherty et al., 2004). In this simulation model, simulation is
carried out for 160 units in the time frame with two robots R1 and R2 performing the Leader
– Follower formation. Leader is made to navigate the environment using the lower level
navigational behaviour, with a piecewise constant wheel velocity of 100 mm/s and the
Instantaneous Centre of Rotation (ICR) of 5732mm. Follower is made to track the leader
with the desired separation and orientation using the supervisor level formation behaviour.
Wheel velocities, wheel direction of rotation and the position and orientation information of
the robots are taken as the behavioural outputs and are logged into the data loggers.
Simulation parameters and the threshold values for the behavioural activation are provided
in the simulation environment taking the kinematics of the robots into account. The wheel
velocities obtained as behavioural outputs are constrained and bounded by the conditions
v < vmax < 300 mm/s and  < max < 50°/s

5.2 Simulation results
5.2.1 Relationship between the formation parameters and ICR / ICC
Fig. 8 shows the simulation results that are obtained to address the generalized relationship
between the formation parameters such as the linear separation (ld), angular separation (d)
and the Instantaneous center of curvature ICC/ICR. The critical value of the ICC/ICR
needed for the robots to remain in the closed defined formation is obtained for various
values of linear separation (ld) starting from 500mm to 3000 mm, in several formation
topologies starting from parallel line to inline formation, using the eqn. 21. The various
values of angular separation (d) represent the type of formation topology employed
between the leader and follower robots as shown in Fig. 9. The desired angular separation
values of 90° and 270° represents the parallel line, 180° represents the inline and the values
between 91° and 179° & 181° and 269° represents the collateral line spatial pattern between
the robots.
It is observed from Fig. 8, that for a particular type of formation topology either for a
parallel, inline or collateral spatial pattern, as the value of the linear separation increases
the value of the ICC/ICR also increases making it to be directly proportional in nature. It
is also observed that the maximum ICR/ICC is at the collateral formation topology with
the desired angular separation of ((d) = 157° and 202°, in which the follower robots are
placed in the II and IV quadrant of the cartesian coordinates w.r.t the robot frame as
shown in Fig. 9. For the further investigations, the line representing the collateral
formation of d = 157° and 202° is taken as the reference based on the consideration of the
length and the diameter of the real robots, which are 420mm and 345mm respectively,
used in the experimental setup. With this information, in order to have the closed defined
stable formation between the robots in all formation topologies, the value of the linear
separation and ICC/ICR of 1000mm and 2.3m is chosen as generalized values, by
considering the wheel base of the robot.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 218

 13 13 13

13 13

;

;

d d d

d d
    

   

  

  
; When obstacle is on R3 (26)

Another important problem in the three-robot formation is, when the follower robots R2 and
R3 perceive the obstacle in their path at the same time. In these circumstances, Robot R1
retains the leadership by itself and commands the follower robots to change the type of
formation to inline formation from their initial formation. Therefore, the required change in
the desired formation parameters is obtained based on the simple geometric relationship
between the robots, and are given by Eqn. 27 and 28.
For Robot R2

 12 12 12

12

;

;

d d d

d
    

  

   

 
and 12

d dl l (27)

and for Robot R3

 13 13

13 13

;

;

d d

d d
   

   

 

   
 and 13 13 13

13 13

;
;

d d d

d d
l l l

l
 

 
   

 
 (28)

This kind of change in formation topology is preferred to avoid the deadlock situation in the
release of leadership, when more than one robot requests the leadership simultaneously.
After avoiding the obstacle, temporary leader releases the leadership back to the previous
leader, starts executing the formation behaviour, and plans its path according to the leader.
Hence, the dynamic switching roles/behaviours in the control architecture allow the robots
to trade their roles between them and to actively avoid obstacles on the robots designated as
follower’s path while maintaining the desired formation.

5. Simulation studies
5.1 Simulation description
The main objective of the simulation studies is to evaluate the different aspects of the control
architecture, i.e. to measure the emergence of all possible reactive behaviours/AFSM of the
layered approach. The response of the active behaviour yield the motor control output to the
robot actuator, which determines the motion of the robot.
Simulation studies are carried out in a phased manner. Before going into the study of multi
Robot formation systems, simulation studies to measure the response of the reactive task
achieving behaviours of the navigational controller are carried out. The relationship
between the formation parameters such as the Instantaneous Centre of Radius/Curvature
(ICR/ICC), linear separation (ld) and the angular separation (d), and their effects on the
tracking controller are investigated. Then the error dynamics of the tracking controller
which are responsible for positioning the follower robots in the desired separation and
orientation with the leader is tested for various formation topologies. In this simulation
study, the leader robot is made to move in a predefined trajectory such as ‘straight line’,
‘arc’, ‘S-shaped’ and ‘eight shaped’ trajectories, with the generalized parameters obtained
from the simulation studies. Formation strategies such as in-line, parallel and wedge shaped

Cooperative Formation Planning and Control of Multiple Mobile Robots 219

have been simulated for both two and three robots in the group. Finally, the dynamic
switching of roles for active obstacle avoidance in the follower is incorporated along with
the formation planning and navigation.
Matlab – SIMULINK/ Stateflow environment as the simulation tool to evaluate the different
aspects of the proposed formation control architecture, since it is an interactive graphical
design and development tool that works with Simulink to model and simulate complex
systems modeled as finite state machines, also called reactive event driven systems
(Stormont & Chen, 2005; Dougherty et al., 2004). In this simulation model, simulation is
carried out for 160 units in the time frame with two robots R1 and R2 performing the Leader
– Follower formation. Leader is made to navigate the environment using the lower level
navigational behaviour, with a piecewise constant wheel velocity of 100 mm/s and the
Instantaneous Centre of Rotation (ICR) of 5732mm. Follower is made to track the leader
with the desired separation and orientation using the supervisor level formation behaviour.
Wheel velocities, wheel direction of rotation and the position and orientation information of
the robots are taken as the behavioural outputs and are logged into the data loggers.
Simulation parameters and the threshold values for the behavioural activation are provided
in the simulation environment taking the kinematics of the robots into account. The wheel
velocities obtained as behavioural outputs are constrained and bounded by the conditions
v < vmax < 300 mm/s and  < max < 50°/s

5.2 Simulation results
5.2.1 Relationship between the formation parameters and ICR / ICC
Fig. 8 shows the simulation results that are obtained to address the generalized relationship
between the formation parameters such as the linear separation (ld), angular separation (d)
and the Instantaneous center of curvature ICC/ICR. The critical value of the ICC/ICR
needed for the robots to remain in the closed defined formation is obtained for various
values of linear separation (ld) starting from 500mm to 3000 mm, in several formation
topologies starting from parallel line to inline formation, using the eqn. 21. The various
values of angular separation (d) represent the type of formation topology employed
between the leader and follower robots as shown in Fig. 9. The desired angular separation
values of 90° and 270° represents the parallel line, 180° represents the inline and the values
between 91° and 179° & 181° and 269° represents the collateral line spatial pattern between
the robots.
It is observed from Fig. 8, that for a particular type of formation topology either for a
parallel, inline or collateral spatial pattern, as the value of the linear separation increases
the value of the ICC/ICR also increases making it to be directly proportional in nature. It
is also observed that the maximum ICR/ICC is at the collateral formation topology with
the desired angular separation of ((d) = 157° and 202°, in which the follower robots are
placed in the II and IV quadrant of the cartesian coordinates w.r.t the robot frame as
shown in Fig. 9. For the further investigations, the line representing the collateral
formation of d = 157° and 202° is taken as the reference based on the consideration of the
length and the diameter of the real robots, which are 420mm and 345mm respectively,
used in the experimental setup. With this information, in order to have the closed defined
stable formation between the robots in all formation topologies, the value of the linear
separation and ICC/ICR of 1000mm and 2.3m is chosen as generalized values, by
considering the wheel base of the robot.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 220

Fig. 8. Relationship between Formation Parameters

Fig. 9. Robot formation topologies

5.2.2 Formation control combined with dynamic switching of roles
From the several simulation studies carried out, the results obtained from the state based
simulation studies, in which the dynamic switching control strategy is incorporated along
with formation planning and navigation between the robots is presented. The input
parameters for simulation studies are given in Table 1
Fig. 10 shows the trajectory of robots R1 and R2, where the leader robot navigates the
environment by switching between safe wandering, avoid obstacle, and pit sensing
behaviours marked as ‘S’, ‘O’ and ‘P’ respectively. The dynamic switching of roles and
exchange of leadership between the robots are indicated by the dotted circles in the figures.
At these places R2 encounters obstacles/pit. Hence robot R1 acts as the follower and adjusts
its wheel velocities to track its temporary leader ‘R2’ maintaining the linear and angular
separations as required. Fig. 11 shows the orientation profile of both the robots, where it is
observed that both robots remain in the same orientation throughout the workspace. This

Cooperative Formation Planning and Control of Multiple Mobile Robots 221

Parameter Value

Formation topology Parallel

Desired Linear separation (ld) 1000 mm

Desired Angular separation (d)
R1 acts as leader
R2 acts as leader

270°
90°

ICR/ICC 2.3 m

Translational and Rotational velocity 100 mm/s; 2.5° /s

Initial Positions of the Robots
Robot R1
Robot R2

(0,0)mm
(-1000, -2000)mm

Simulation time 1600 s

Table 1. Simulation Parameters

Fig. 10. Trajectory of two robots in parallel line formation.

type of formation is best suited for the application of platoon of vehicles in search and
surveillance and industrial transport systems. Fig. 12 (a) and (b) provides the individual
behavioural/state output of the robots R1 and R2 for the given set of sensory information, in
which ‘logical 1’ represents the behaviours that are active at that time instant to have control
over the robot actuator. Fig. 13 shows the relative linear and angular separation between the
robots being traded to meet the desired one, where d = 270° and 90 shows the desired
angular separation of the robots when R1 and R2 acts as the leader respectively. The dynamic
motions of the follower robots to remain in the tight spatial pattern with its leader were

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 220

Fig. 8. Relationship between Formation Parameters

Fig. 9. Robot formation topologies

5.2.2 Formation control combined with dynamic switching of roles
From the several simulation studies carried out, the results obtained from the state based
simulation studies, in which the dynamic switching control strategy is incorporated along
with formation planning and navigation between the robots is presented. The input
parameters for simulation studies are given in Table 1
Fig. 10 shows the trajectory of robots R1 and R2, where the leader robot navigates the
environment by switching between safe wandering, avoid obstacle, and pit sensing
behaviours marked as ‘S’, ‘O’ and ‘P’ respectively. The dynamic switching of roles and
exchange of leadership between the robots are indicated by the dotted circles in the figures.
At these places R2 encounters obstacles/pit. Hence robot R1 acts as the follower and adjusts
its wheel velocities to track its temporary leader ‘R2’ maintaining the linear and angular
separations as required. Fig. 11 shows the orientation profile of both the robots, where it is
observed that both robots remain in the same orientation throughout the workspace. This

Cooperative Formation Planning and Control of Multiple Mobile Robots 221

Parameter Value

Formation topology Parallel

Desired Linear separation (ld) 1000 mm

Desired Angular separation (d)
R1 acts as leader
R2 acts as leader

270°
90°

ICR/ICC 2.3 m

Translational and Rotational velocity 100 mm/s; 2.5° /s

Initial Positions of the Robots
Robot R1
Robot R2

(0,0)mm
(-1000, -2000)mm

Simulation time 1600 s

Table 1. Simulation Parameters

Fig. 10. Trajectory of two robots in parallel line formation.

type of formation is best suited for the application of platoon of vehicles in search and
surveillance and industrial transport systems. Fig. 12 (a) and (b) provides the individual
behavioural/state output of the robots R1 and R2 for the given set of sensory information, in
which ‘logical 1’ represents the behaviours that are active at that time instant to have control
over the robot actuator. Fig. 13 shows the relative linear and angular separation between the
robots being traded to meet the desired one, where d = 270° and 90 shows the desired
angular separation of the robots when R1 and R2 acts as the leader respectively. The dynamic
motions of the follower robots to remain in the tight spatial pattern with its leader were

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 222

observed from the translational and rotational velocity profiles plots obtained during
simulation as shown in Fig. 14. A positive spike in the follower’s wheel is due to the
transitory error that persisted in the controller when a sudden reversal of the wheel velocity
are involved in the non-holonomic robot systems, when pit sensing behaviour is executed to
overcome a pit in both the robots.

Fig. 11. Orientation profiles of robots in parallel line formation

 (a) (b)

Fig. 12. Individual Behavior/state output of (a) Robot R1 and (b) Robot R2

Cooperative Formation Planning and Control of Multiple Mobile Robots 223

Fig. 13. Formation errors with role switching.

Fig. 14. Velocity profiles of robots with role switching

The dynamic switching of roles and exchange of leadership between the robots are marked
by a dotted circle in the above figures, which can also be observed from the encircled
portions of the Fig. 14, where robot R1 acts as the follower and adjusts its wheel velocities to
track its temporary leader ‘R2’ by keeping the linear separation of 1000mm and angular
separation as given by Eqn. 25; to avoid the obstacle found in the path of ‘R2’. Similarly, the
formation errors in both linear and angular separation for several formation topologies are
tabulated in Table 2. From the simulation studies, it is seen that the tracking error between
the robots is around 1.8% and 0.44% in the linear and angular separation respectively, even
though the roles and behaviours of the robots are interchanged dynamically

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 222

observed from the translational and rotational velocity profiles plots obtained during
simulation as shown in Fig. 14. A positive spike in the follower’s wheel is due to the
transitory error that persisted in the controller when a sudden reversal of the wheel velocity
are involved in the non-holonomic robot systems, when pit sensing behaviour is executed to
overcome a pit in both the robots.

Fig. 11. Orientation profiles of robots in parallel line formation

 (a) (b)

Fig. 12. Individual Behavior/state output of (a) Robot R1 and (b) Robot R2

Cooperative Formation Planning and Control of Multiple Mobile Robots 223

Fig. 13. Formation errors with role switching.

Fig. 14. Velocity profiles of robots with role switching

The dynamic switching of roles and exchange of leadership between the robots are marked
by a dotted circle in the above figures, which can also be observed from the encircled
portions of the Fig. 14, where robot R1 acts as the follower and adjusts its wheel velocities to
track its temporary leader ‘R2’ by keeping the linear separation of 1000mm and angular
separation as given by Eqn. 25; to avoid the obstacle found in the path of ‘R2’. Similarly, the
formation errors in both linear and angular separation for several formation topologies are
tabulated in Table 2. From the simulation studies, it is seen that the tracking error between
the robots is around 1.8% and 0.44% in the linear and angular separation respectively, even
though the roles and behaviours of the robots are interchanged dynamically

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 224

Input Parameters for Leader Robot R1:
K1=0.55, K2 =-0.55; ICC/ICR of 2.3m

% Error

Formation
Topology

ld
(mm)

d
(deg)

e
(deg)

| ld- l |
(mm)

|d- |
(deg)

l  

Parallel 1000 270 1 4 0.5 0.4 0.2 0.45
Parallel 1000 90 2 6 0 0.6 0 0.55
Wedge 1000 247 1 10 0.5 1 0.2 0.70
Wedge 1000 112 2 8 0.5 0.8 0.45 0.30
Wedge 1000 225 2 25 1 2.5 0.44 0.55
Wedge 1000 135 2 30 1 3 0.74 0.55
Wedge 1000 202 1 36 0.7 3.6 0.35 0.30
Wedge 1000 157 1 32 0.5 3.2 0.32 0.36
Mean Value of error 1.88 0.34 0.43

Table 2. Formation errors in simulation

5.2.3 Switching of formation topology
Fig 15 (a) and (b) shows the results for the simulation studies carried out to measure the
error dynamics and formation convergence of the controller when the formation between
the robots are switched from one topology to another. This study has been carried out to
investigate the application of switching of formation topologies between the robots to avoid
the deadlock situation that occurs when more than two follower robots requests for
leadership. In this case the follower robots are made to change their initial formation into an
inline formation with the leader, to avoid the deadlock situation encountered while taking
up the leadership. Two different configurations are simulated which can be used to solve
the deadlock when two or more than two robots are used in the formation framework.
In the first configuration, the formation topology between the robots is varied by changing
the angular separation at a defined rate w.r.t time and the linear separation between the
robots is kept constant. This is used when only two robots are in the group. When more than
two robots are involved in the formation framework, the linear separation between the
robots are also varied at a defined rate along with the angular separation, inorder to avoid
the positioning of the robots to overlap each other.
Fig. 15 (a) shows the results of the simulation study, where the leader is made to move in a
straight line trajectory and the follower is made to switch from parallel line to inline
formation by varying its angular separation at a continuous rate. In this simulation study,
initial positions of the leader and follower robots are taken as (0,0) and (-200, -1000) and the
desired linear separation between the robots is set as 800 mm. The change in the formation
topology is initiated as a continuous change in the angular separation at various rates to find
the optimum value that can be used in the experimental studies. It is also clearly observed
that the design of the tracking controller makes the follower robot to switches its formation
topology from parallel line to inline spatial pattern with the leader. Fig. 15 (b) shows the
linear separation errors between the robots for various rate of change of the angular
separation values that determines the change in formation topology. It can be clearly
observed from the above results that the continuous rate of change of angular separation at
a value of 3°/s, makes the robot to gradually change its formation topology to inline
topology with minimum error even though it takes more time when compared with other
values. Further, it takes around 39s to settle in the desired linear separation with the leader

Cooperative Formation Planning and Control of Multiple Mobile Robots 225

which includes 30 s taken by the controller to change its angular separation at a rate of 3°/s
until it changes from 270° to 180°.

(a)

(b)

Fig. 15. Switching of Formation topology with variations in angular separation (a) trajectory
of robots switching from Parallel line (b) Separation plot of robots

6. Real time implementations and experimental investigations
6.1 Experimental environment
Experiments are carried out with two commercially available Pioneer P3DX Robot research
platforms, named as PEIL R1 and R2 as shown in Fig. 16. These have identical sensor,
actuator and kinematic configurations. A Bi-directional multiple Client-Server architecture
incorporating the Pioneer platforms is developed as an experimental architecture. Robot R1
is designated as server/leader and Robot R2 as client/follower performing the combined
task of navigation and formation.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 224

Input Parameters for Leader Robot R1:
K1=0.55, K2 =-0.55; ICC/ICR of 2.3m

% Error

Formation
Topology

ld
(mm)

d
(deg)

e
(deg)

| ld- l |
(mm)

|d- |
(deg)

l  

Parallel 1000 270 1 4 0.5 0.4 0.2 0.45
Parallel 1000 90 2 6 0 0.6 0 0.55
Wedge 1000 247 1 10 0.5 1 0.2 0.70
Wedge 1000 112 2 8 0.5 0.8 0.45 0.30
Wedge 1000 225 2 25 1 2.5 0.44 0.55
Wedge 1000 135 2 30 1 3 0.74 0.55
Wedge 1000 202 1 36 0.7 3.6 0.35 0.30
Wedge 1000 157 1 32 0.5 3.2 0.32 0.36
Mean Value of error 1.88 0.34 0.43

Table 2. Formation errors in simulation

5.2.3 Switching of formation topology
Fig 15 (a) and (b) shows the results for the simulation studies carried out to measure the
error dynamics and formation convergence of the controller when the formation between
the robots are switched from one topology to another. This study has been carried out to
investigate the application of switching of formation topologies between the robots to avoid
the deadlock situation that occurs when more than two follower robots requests for
leadership. In this case the follower robots are made to change their initial formation into an
inline formation with the leader, to avoid the deadlock situation encountered while taking
up the leadership. Two different configurations are simulated which can be used to solve
the deadlock when two or more than two robots are used in the formation framework.
In the first configuration, the formation topology between the robots is varied by changing
the angular separation at a defined rate w.r.t time and the linear separation between the
robots is kept constant. This is used when only two robots are in the group. When more than
two robots are involved in the formation framework, the linear separation between the
robots are also varied at a defined rate along with the angular separation, inorder to avoid
the positioning of the robots to overlap each other.
Fig. 15 (a) shows the results of the simulation study, where the leader is made to move in a
straight line trajectory and the follower is made to switch from parallel line to inline
formation by varying its angular separation at a continuous rate. In this simulation study,
initial positions of the leader and follower robots are taken as (0,0) and (-200, -1000) and the
desired linear separation between the robots is set as 800 mm. The change in the formation
topology is initiated as a continuous change in the angular separation at various rates to find
the optimum value that can be used in the experimental studies. It is also clearly observed
that the design of the tracking controller makes the follower robot to switches its formation
topology from parallel line to inline spatial pattern with the leader. Fig. 15 (b) shows the
linear separation errors between the robots for various rate of change of the angular
separation values that determines the change in formation topology. It can be clearly
observed from the above results that the continuous rate of change of angular separation at
a value of 3°/s, makes the robot to gradually change its formation topology to inline
topology with minimum error even though it takes more time when compared with other
values. Further, it takes around 39s to settle in the desired linear separation with the leader

Cooperative Formation Planning and Control of Multiple Mobile Robots 225

which includes 30 s taken by the controller to change its angular separation at a rate of 3°/s
until it changes from 270° to 180°.

(a)

(b)

Fig. 15. Switching of Formation topology with variations in angular separation (a) trajectory
of robots switching from Parallel line (b) Separation plot of robots

6. Real time implementations and experimental investigations
6.1 Experimental environment
Experiments are carried out with two commercially available Pioneer P3DX Robot research
platforms, named as PEIL R1 and R2 as shown in Fig. 16. These have identical sensor,
actuator and kinematic configurations. A Bi-directional multiple Client-Server architecture
incorporating the Pioneer platforms is developed as an experimental architecture. Robot R1
is designated as server/leader and Robot R2 as client/follower performing the combined
task of navigation and formation.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 226

Fig. 16. Experimental Robot Research Platforms

The individual task achieving behaviours are programmed as parallel motion functions, and
they are integrated as the functional classes/library files in the application interfaces of the
mobile robots. An explicit wireless socket communication mechanism is developed by using
the ‘Net packet’ functional library classes of the mobile robots, to provide the necessary
inter-robot communication and to initiate the exchange of leadership between the robots. A
trapezoidal acceleration function with the acceleration and deceleration value of 50% is used
as the velocity function. During startup, the robots are considered to be in the origin
position of 0, 0, 0 in X, Y and . The initial velocities of the robots are considered to be zero.
Further, the Leader robot is made to initiate its motion, only if the connection between the
follower robots is established by the wireless socket communication protocol. Hence, when
two robots are employed in the formation framework, leader robot is powered first and then
the followers are started up.
Several experiments have been carried out to measure the performance of the proposed
formation control approach for formation convergence and as a supplement to the
investigation of the same in the simulation studies reported in the previous section.
First experiment is carried out to investigate the performance of the tracking controller
and the formation errors when applied to multiple WMRs moving as a whole in a tightly
coupled coordination in all formation topologies. In this experiment, the robot R1
designated as leader is made to move in the environment in predefined trajectories such
as ‘arc’, ‘S-shaped’ and ‘eight shaped trajectories, with the generalized parameters
obtained from the simulation studies. These trajectories are preferred, since they provide
both translational and rotational profiles to the robot and the translational and rotational
changes can be considered as step changes in the input to the controller as considered in
the simulation studies.
Second experiment is carried out to measure the performance of the proposed formation
control architecture combined with lower level navigation and supervisor level formation.
In this experiment, the initial and desired separation values are taken as 1414 mm, 262 and
1000 mm, 270 respectively and both the robots are employed with the layered control
architecture. The leader is made to navigate an environment of 12m by 10m rectangular
workspace filled with rectangular obstacles of size 200 x 180 mm and 550 x 400 mm. Leader
velocities are fixed at 160 mm/s and 4/s, obstacle distance of 800 mm and safe wander time
of 6 s, and the follower is made to follow the leader with the desired separation and
orientation as mentioned earlier.

Cooperative Formation Planning and Control of Multiple Mobile Robots 227

Experimental study on dynamic switching of roles is carried out as the third experiment, to
test the performance of the approach on combined formation and navigation capability of
multi-robot systems, to have active obstacle avoidance in the follower path. Experiment is
conducted in a similar environment as used in the second experiment with the robots
moving in a parallel line formation. The initial and desired separation values are taken as
1019 mm, 258 and 800mm, 270 between the robots. In this experiment, both the robots are
employed with the same control configuration, having the capability to perform both
navigation and formation and they are allowed to trade their roles between themselves
using the leadership exchange method. These experiments have been carried out in a
workspace of 12 m by 10 m with three obstacles of size 200 x 180 mm, 200 x 180 mm and 550
x 400 mm as shown in Fig. 17.

Fig. 17. Arrangement of robots and obstacles in the 2D workspace

Finally, experiments on switching of formation topology between the robots are carried out
to measure the capability of the proposed approach to avoid from the deadlock situation
when three robots are used in the formation study. The idea is to measure the adaptability
of the proposed approach and convergence of the tracking controller, when the robots
designated as followers encounter obstacle on their path simultaneously. In this case the
follower robots are made to change their initial formation into an inline formation with the
leader, to avoid the deadlock situation encountered while taking up the leadership. This
experiment is conducted with two robots instead of three robots due to the limited
availability of research platforms, and the robots designated as leader is made to navigate a
straight line in the workspace and the follower is made to switch from the parallel line to the
in-line formation to measure the formation convergence. In this experiment, the initial and
desired separation between the robots are taken as 0, 0 and -1044 mm, 264 and 800 mm,
180 respectively and are given by the following relationship. The change in formation is
initiated with constant linear separation and varying the angular separation at the rate of

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 226

Fig. 16. Experimental Robot Research Platforms

The individual task achieving behaviours are programmed as parallel motion functions, and
they are integrated as the functional classes/library files in the application interfaces of the
mobile robots. An explicit wireless socket communication mechanism is developed by using
the ‘Net packet’ functional library classes of the mobile robots, to provide the necessary
inter-robot communication and to initiate the exchange of leadership between the robots. A
trapezoidal acceleration function with the acceleration and deceleration value of 50% is used
as the velocity function. During startup, the robots are considered to be in the origin
position of 0, 0, 0 in X, Y and . The initial velocities of the robots are considered to be zero.
Further, the Leader robot is made to initiate its motion, only if the connection between the
follower robots is established by the wireless socket communication protocol. Hence, when
two robots are employed in the formation framework, leader robot is powered first and then
the followers are started up.
Several experiments have been carried out to measure the performance of the proposed
formation control approach for formation convergence and as a supplement to the
investigation of the same in the simulation studies reported in the previous section.
First experiment is carried out to investigate the performance of the tracking controller
and the formation errors when applied to multiple WMRs moving as a whole in a tightly
coupled coordination in all formation topologies. In this experiment, the robot R1
designated as leader is made to move in the environment in predefined trajectories such
as ‘arc’, ‘S-shaped’ and ‘eight shaped trajectories, with the generalized parameters
obtained from the simulation studies. These trajectories are preferred, since they provide
both translational and rotational profiles to the robot and the translational and rotational
changes can be considered as step changes in the input to the controller as considered in
the simulation studies.
Second experiment is carried out to measure the performance of the proposed formation
control architecture combined with lower level navigation and supervisor level formation.
In this experiment, the initial and desired separation values are taken as 1414 mm, 262 and
1000 mm, 270 respectively and both the robots are employed with the layered control
architecture. The leader is made to navigate an environment of 12m by 10m rectangular
workspace filled with rectangular obstacles of size 200 x 180 mm and 550 x 400 mm. Leader
velocities are fixed at 160 mm/s and 4/s, obstacle distance of 800 mm and safe wander time
of 6 s, and the follower is made to follow the leader with the desired separation and
orientation as mentioned earlier.

Cooperative Formation Planning and Control of Multiple Mobile Robots 227

Experimental study on dynamic switching of roles is carried out as the third experiment, to
test the performance of the approach on combined formation and navigation capability of
multi-robot systems, to have active obstacle avoidance in the follower path. Experiment is
conducted in a similar environment as used in the second experiment with the robots
moving in a parallel line formation. The initial and desired separation values are taken as
1019 mm, 258 and 800mm, 270 between the robots. In this experiment, both the robots are
employed with the same control configuration, having the capability to perform both
navigation and formation and they are allowed to trade their roles between themselves
using the leadership exchange method. These experiments have been carried out in a
workspace of 12 m by 10 m with three obstacles of size 200 x 180 mm, 200 x 180 mm and 550
x 400 mm as shown in Fig. 17.

Fig. 17. Arrangement of robots and obstacles in the 2D workspace

Finally, experiments on switching of formation topology between the robots are carried out
to measure the capability of the proposed approach to avoid from the deadlock situation
when three robots are used in the formation study. The idea is to measure the adaptability
of the proposed approach and convergence of the tracking controller, when the robots
designated as followers encounter obstacle on their path simultaneously. In this case the
follower robots are made to change their initial formation into an inline formation with the
leader, to avoid the deadlock situation encountered while taking up the leadership. This
experiment is conducted with two robots instead of three robots due to the limited
availability of research platforms, and the robots designated as leader is made to navigate a
straight line in the workspace and the follower is made to switch from the parallel line to the
in-line formation to measure the formation convergence. In this experiment, the initial and
desired separation between the robots are taken as 0, 0 and -1044 mm, 264 and 800 mm,
180 respectively and are given by the following relationship. The change in formation is
initiated with constant linear separation and varying the angular separation at the rate of

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 228

3/s. The results of all the above experiments are reported and discussed in detail in the
following sub section.

6.2 Experimental results
Fig. 18 to Fig. 21 shows the results of the experiments illustrating the good performance of
the control algorithm (Kuppan Chetty et al., 2010). For the first experiment, Fig. 18 (a) shows
the trajectory of the robots in the parallel line formation, where the leader robot navigates
the environment by switching between safe wandering, avoid obstacle behaviours marked
as ‘S’, ‘O’ respectively whenever it perceives the obstacle information from the environment.
Moreover the performance of the formation controller is also observed from figure 18, where
follower tracks the behaviour of the leader form its initial linear and angular separation and
remains in the desired formation relative to the leader throughout the workspace. It also
shows that, the formation controller minimizes the separation error to zero, keeping the
robots in the tight coupled formation in the environment filled with obstacles.
Fig. 18 (b) shows the orientation plot of the above experiments, where it can be observed
that the tracking controller makes the follower to remain in the same orientation with the
leader throughout the fly, making the system suitable for transporting objects from one
location to the goal in the dynamic industrial environments.
Fig. 19 and 20 shows the experimental results on dynamic switching of roles, carried out to
test the obstacle avoidance in the follower path. Fig. 19(a) shows the trajectory of leader and
follower robots performing the combined task of navigation, formation and obstacle
avoidance where 'O' represents the obstacles in the path of the robots and the dotted
rectangles represents the switching of roles and leadership between the robots to reach the
desired goal. Fig. 19 (b) shows the behavioural / state output of the robots R1 and R2

involved in the experiments. Initially, robot R1 is designated as the leader and leads R2

which follows the motion of the leader in the parallel line formation with the desired
separation of 800 mm and 270. At t = 8.4 and 26s, follower finds the obstacle on its path,
request for exchange of leadership with the leader, acquires the leadership and performs
obstacle avoidance on its path. After avoiding the obstacle, robot R2 relinquishes the
leadership back to the leader at t=14 and 30s. This can be clearly observed from Fig. 19 (b),
where the role switching behaviour takes precedence which intern activates obstacle
avoidance behaviour present in the control architecture of robot R2. This clearly indicates
that at any moment during the coordinated motion, the follower robot, which experiences
obstacle on its path, can take over the leadership from the leader and the robot performing
the lead role can become a follower by switching their leadership between themselves. Fig.
20 shows the variation in the linear and angular separation errors, where the robot R2

performs obstacle avoidance on its path by switching its roles with R1 and preserves the
formation by adjusting its angular separation as given by Eqn. 25. It is also observed; that
the formation controller takes 9s to settle in the desired formation with the leader and the
formation errors is estimated to be less than 1.4% and 0.5% in both linear and angular
separation between the robots.
Figs. 21 (a) and (b) show a comparison between the simulation and experimental results
indicating the behaviour of the tracking controller to position the follower robots even after
switching of formation topology from parallel line to inline spatial pattern. The angular
separation (d) is changed at a rate of 3°/s, which is the critical parameter to initiate the
formation change.

Cooperative Formation Planning and Control of Multiple Mobile Robots 229

(a)

(b)

Fig. 18. Performance of Formation Controller combined with Navigation and Formation
behaviors (a) Trajectory of robots in parallel line formation (b) Orientation profile between
the robots

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 228

3/s. The results of all the above experiments are reported and discussed in detail in the
following sub section.

6.2 Experimental results
Fig. 18 to Fig. 21 shows the results of the experiments illustrating the good performance of
the control algorithm (Kuppan Chetty et al., 2010). For the first experiment, Fig. 18 (a) shows
the trajectory of the robots in the parallel line formation, where the leader robot navigates
the environment by switching between safe wandering, avoid obstacle behaviours marked
as ‘S’, ‘O’ respectively whenever it perceives the obstacle information from the environment.
Moreover the performance of the formation controller is also observed from figure 18, where
follower tracks the behaviour of the leader form its initial linear and angular separation and
remains in the desired formation relative to the leader throughout the workspace. It also
shows that, the formation controller minimizes the separation error to zero, keeping the
robots in the tight coupled formation in the environment filled with obstacles.
Fig. 18 (b) shows the orientation plot of the above experiments, where it can be observed
that the tracking controller makes the follower to remain in the same orientation with the
leader throughout the fly, making the system suitable for transporting objects from one
location to the goal in the dynamic industrial environments.
Fig. 19 and 20 shows the experimental results on dynamic switching of roles, carried out to
test the obstacle avoidance in the follower path. Fig. 19(a) shows the trajectory of leader and
follower robots performing the combined task of navigation, formation and obstacle
avoidance where 'O' represents the obstacles in the path of the robots and the dotted
rectangles represents the switching of roles and leadership between the robots to reach the
desired goal. Fig. 19 (b) shows the behavioural / state output of the robots R1 and R2

involved in the experiments. Initially, robot R1 is designated as the leader and leads R2

which follows the motion of the leader in the parallel line formation with the desired
separation of 800 mm and 270. At t = 8.4 and 26s, follower finds the obstacle on its path,
request for exchange of leadership with the leader, acquires the leadership and performs
obstacle avoidance on its path. After avoiding the obstacle, robot R2 relinquishes the
leadership back to the leader at t=14 and 30s. This can be clearly observed from Fig. 19 (b),
where the role switching behaviour takes precedence which intern activates obstacle
avoidance behaviour present in the control architecture of robot R2. This clearly indicates
that at any moment during the coordinated motion, the follower robot, which experiences
obstacle on its path, can take over the leadership from the leader and the robot performing
the lead role can become a follower by switching their leadership between themselves. Fig.
20 shows the variation in the linear and angular separation errors, where the robot R2

performs obstacle avoidance on its path by switching its roles with R1 and preserves the
formation by adjusting its angular separation as given by Eqn. 25. It is also observed; that
the formation controller takes 9s to settle in the desired formation with the leader and the
formation errors is estimated to be less than 1.4% and 0.5% in both linear and angular
separation between the robots.
Figs. 21 (a) and (b) show a comparison between the simulation and experimental results
indicating the behaviour of the tracking controller to position the follower robots even after
switching of formation topology from parallel line to inline spatial pattern. The angular
separation (d) is changed at a rate of 3°/s, which is the critical parameter to initiate the
formation change.

Cooperative Formation Planning and Control of Multiple Mobile Robots 229

(a)

(b)

Fig. 18. Performance of Formation Controller combined with Navigation and Formation
behaviors (a) Trajectory of robots in parallel line formation (b) Orientation profile between
the robots

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 230

(a)

(b)

Fig. 19. (a) Trajectory of robots performing obstacle avoidance on both leader and follower
robots in a parallel line formation (b) Behavioral/State outputs of the Robots

Cooperative Formation Planning and Control of Multiple Mobile Robots 231

Fig. 20. Formation plot of in Parallel line formation along with switching of roles

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 230

(a)

(b)

Fig. 19. (a) Trajectory of robots performing obstacle avoidance on both leader and follower
robots in a parallel line formation (b) Behavioral/State outputs of the Robots

Cooperative Formation Planning and Control of Multiple Mobile Robots 231

Fig. 20. Formation plot of in Parallel line formation along with switching of roles

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 232

Input Parameters for Leader Robot R1:
K1=0.55, K2 =-0.55; ICC/ICR of 2.3m

% Error

Formation
Topology

ld
(mm)

d
(deg)

e

(deg)
| ld- l|
(mm)

|d-|
(deg)

l  

Parallel 900 270 1.5 22 1.6 2.4 0.6 0.45

Parallel 900 270 2 18 1 2 0.40 0.55

Parallel 1000 90 2 12 0.6 1.2 0.7 0.70

Parallel 1000 90 1 16 1 1.6 1.11 0.30

Collateral 1000 202 2 48 1 4.8 0.50 0.55

Collateral 1000 135 2 30 2 3.0 1.50 0.55

Collateral 1000 157 1 46 2 4.6 1.26 0.30

Mean value of Error 2.81 0.82 0.71

Table 3. Formation errors (experimental analysis)

Cooperative Formation Planning and Control of Multiple Mobile Robots 233

(a)

(b)

Fig. 21. (a) Trajectory of robots switching from parallel to straight line formation (b)
Formation plot of robots switching from parallel to straight line.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 232

Input Parameters for Leader Robot R1:
K1=0.55, K2 =-0.55; ICC/ICR of 2.3m

% Error

Formation
Topology

ld
(mm)

d
(deg)

e

(deg)
| ld- l|
(mm)

|d-|
(deg)

l  

Parallel 900 270 1.5 22 1.6 2.4 0.6 0.45

Parallel 900 270 2 18 1 2 0.40 0.55

Parallel 1000 90 2 12 0.6 1.2 0.7 0.70

Parallel 1000 90 1 16 1 1.6 1.11 0.30

Collateral 1000 202 2 48 1 4.8 0.50 0.55

Collateral 1000 135 2 30 2 3.0 1.50 0.55

Collateral 1000 157 1 46 2 4.6 1.26 0.30

Mean value of Error 2.81 0.82 0.71

Table 3. Formation errors (experimental analysis)

Cooperative Formation Planning and Control of Multiple Mobile Robots 233

(a)

(b)

Fig. 21. (a) Trajectory of robots switching from parallel to straight line formation (b)
Formation plot of robots switching from parallel to straight line.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 234

It is observed from the results, that the tracking controller takes less than 12 s to settle in the
desired linear separation of 800mm between the robots from their initial position and it
takes another 40s to switch the formation topology between the robots which includes the
30s time taken for the rate of change of desired angular separation. This method of changing
the formation topology is one of the remedy to avoid the deadlock caused when one or more
robots in the group request for leadership simultaneously, to avoid the obstacle on their
path and the group leader is free to move in the environment.

7. Conclusion
A combined layered formation control approach to conquer the deficiencies of the leader
follower approach and the behavior based approach, by wrapping up the former with the
later is developed. The developed approach has the advantages of both the approaches,
which have the capability to address the combined problem of formation planning and
navigation through obstacle avoidance. In order to have the distributed control nature
collective task of formation planning and navigation is divided into three major (primitive)
tasks such as Formation, Navigation and Obstacle avoidance based on the motion states of
the robot. These primitive motion states are considered as the basic fundamental behaviors
of the robot according to the reactive behavior based approach and are placed in three
separate layers, which yields the collective task upon integration. Further, to have the
theoretical formalization and the convergence of the robots into the desired formation, and
the closed loop tracking controller based on the leader follower model and the kinematics of
the unicycle mobile robots is formulated to keep the robots in the team in a closed defined
spatial pattern, where the separation errors are ,minimized asymptotically to zero.
A unique feature of the developed formation control approach is the incorporation of
dynamic role switching methodology through the exchange of leadership between the
robots and their behaviours, to actively avoid the obstacle in the path of the robots
designated other than the leader in the group. The results show the capability to avoid the
obstacle in the follower’s path. This clearly indicates the capability of the approach to make
the robots to remain in a closed defined stable formation between them even though the
roles are switched dynamically during the fly. Under these circumstances, the tracking
controller takes less than 12s to make the follower to remain in the formation with the leader
and the formation errors are less than 2.81% and 0.82% in both linear and angular separation
between the robots respectively. As a whole the formation error for the projected formation
control approach combined with formation planning, navigation and obstacle avoidance
capability between the robots, the formation errors are estimated at less than ±3% and
±0.81% in linear and angular separation between the robots; when compared to ±5.5% and
±3.6% reported in the literature (Fierro et. al., 2002 and LIU Shi-Cai et. al., 2007).
In future, we plan to test the capability of the developed control methodology by conducting
the experiments carrying a real object in the real dynamic industrial environment filled with
obstacles. The switching control strategy between the behaviours and robots arises many
interesting questions such as deadlocks between the robots when they exchange the
leadership. There are many cases to be solved to answer this deadlock phenomenon. We
also plan to extend into the issues to overcome the deadlock situation in the multi robot
systems through simulation and experimentation studies.

Cooperative Formation Planning and Control of Multiple Mobile Robots 235

8. Acknowledgement
We would like to acknowledge Dr. Eng. Tetsunari Inamura, of Interactive Intelligent
Systems Laboratory, National Institute of Informatics, Tokyo, Japan, for offering visiting
researcher position and providing the necessary laboratory research facilities to perform
preliminary experimental investigations at Chiba Annexe. We would also like to
acknowledge National Institute of Informatics for the financial assistance provided during
the course of stay in Japan.
This work has been supported by and conducted at Precision Engineering and
Instrumentation Laboratory, Department of Mechanical Engineering, Indian Institute of
Technology Madras (IIT Madras), Chennai, INDIA.

9. References
Arkin, R. (1998). Behaviour-Based Robotics. Chap 3 & 4, The MIT Press, Cambridge,

Massachusetts, USA.
Belta, C. & Kumar, V. (2002). Trajectory design of formations of robots by kinetic energy

shaping, Proc. of. The IEEE International Conference on Robotics and Automation,
Washington, pp. 2593 – 2598.

Chaimowicz,L., Vijay kumar, R. & Mario F.M. Campos (2004). A mechanism for Dynamic
coordination of Multiple Robots. Int. J. Autonomous Robots, 17, pp. 7-21.

Chen, Y.Q. & Wang, Z. (2005). Formation control: A Review and Consideration. In
Proceedings of the IEEE/RSJ international Conference on Intelligent Robots and Systems,
Alberta, Canada, August, pp. 3181- 3186.

Crowley, J. & Reignier, P. (1993). Asynchronous Control of Rotation and Translation for a
Robot Vehicle. International Journal of Robotics and Autonomous Systems, 10, pp. 243—
251.

Desai, J.P. (2002). A graph theoretic approach for modeling mobile robot team formations.
Journal of Robotic Systems, 19(11), pp. 511-525.

Dougherty, R., Ochoa, V., Randies, Z. & Kitts, C. (2004). A Behavioral Control approach to
formation keeping through an obstacle field. In Proceedings of the IEEE Aerospace
conference, Big Sky MT, March, 1, pp. 168-175.

Fierro, R., Das, A., Spletzer, J., Exposito, J., Kumar, V., Ostrowski, J.P., Taylor, C.J., Hur, Y.,
Alur, R., Lee, I., Grudic, G. & Southall, B. (2002). A framework and architecture for
multiple-robot coordination. International Journal of Robotics Research, 21(10 -11), pp.
977-995.

Goldberg, D. & Matarić, M.J., (2002). Design and Evaluation of Robust Behavior-Based
controller for distributed multi robot collection tasks, 315 - 344, In T. Balch and L. E.
Parker, Robot Teams: From Diversity to Polymorphism, A.K. Peters, Natick, M.A, USA.

Harry Chia, Hung Hsu, & Alan Liu (2005). Multiagent-Based Multi team Formation Control
for Mobile Robots. Int. Journal of Intelligent and Robotic Systems, 42 (1), pp. 337-360.

Hu, H., Kelly, I., Keating, D. & Vinagre, D. (1998). Coordination of Multiple Mobile robots
via Communication. Proceedings of SPIE'98 Mobile Robots XIII Conference, Boston,
USA, pp. 94-103.

Khalil, H. (1996). Nonlinear Systems, Prentice - Hall International, UK.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 234

It is observed from the results, that the tracking controller takes less than 12 s to settle in the
desired linear separation of 800mm between the robots from their initial position and it
takes another 40s to switch the formation topology between the robots which includes the
30s time taken for the rate of change of desired angular separation. This method of changing
the formation topology is one of the remedy to avoid the deadlock caused when one or more
robots in the group request for leadership simultaneously, to avoid the obstacle on their
path and the group leader is free to move in the environment.

7. Conclusion
A combined layered formation control approach to conquer the deficiencies of the leader
follower approach and the behavior based approach, by wrapping up the former with the
later is developed. The developed approach has the advantages of both the approaches,
which have the capability to address the combined problem of formation planning and
navigation through obstacle avoidance. In order to have the distributed control nature
collective task of formation planning and navigation is divided into three major (primitive)
tasks such as Formation, Navigation and Obstacle avoidance based on the motion states of
the robot. These primitive motion states are considered as the basic fundamental behaviors
of the robot according to the reactive behavior based approach and are placed in three
separate layers, which yields the collective task upon integration. Further, to have the
theoretical formalization and the convergence of the robots into the desired formation, and
the closed loop tracking controller based on the leader follower model and the kinematics of
the unicycle mobile robots is formulated to keep the robots in the team in a closed defined
spatial pattern, where the separation errors are ,minimized asymptotically to zero.
A unique feature of the developed formation control approach is the incorporation of
dynamic role switching methodology through the exchange of leadership between the
robots and their behaviours, to actively avoid the obstacle in the path of the robots
designated other than the leader in the group. The results show the capability to avoid the
obstacle in the follower’s path. This clearly indicates the capability of the approach to make
the robots to remain in a closed defined stable formation between them even though the
roles are switched dynamically during the fly. Under these circumstances, the tracking
controller takes less than 12s to make the follower to remain in the formation with the leader
and the formation errors are less than 2.81% and 0.82% in both linear and angular separation
between the robots respectively. As a whole the formation error for the projected formation
control approach combined with formation planning, navigation and obstacle avoidance
capability between the robots, the formation errors are estimated at less than ±3% and
±0.81% in linear and angular separation between the robots; when compared to ±5.5% and
±3.6% reported in the literature (Fierro et. al., 2002 and LIU Shi-Cai et. al., 2007).
In future, we plan to test the capability of the developed control methodology by conducting
the experiments carrying a real object in the real dynamic industrial environment filled with
obstacles. The switching control strategy between the behaviours and robots arises many
interesting questions such as deadlocks between the robots when they exchange the
leadership. There are many cases to be solved to answer this deadlock phenomenon. We
also plan to extend into the issues to overcome the deadlock situation in the multi robot
systems through simulation and experimentation studies.

Cooperative Formation Planning and Control of Multiple Mobile Robots 235

8. Acknowledgement
We would like to acknowledge Dr. Eng. Tetsunari Inamura, of Interactive Intelligent
Systems Laboratory, National Institute of Informatics, Tokyo, Japan, for offering visiting
researcher position and providing the necessary laboratory research facilities to perform
preliminary experimental investigations at Chiba Annexe. We would also like to
acknowledge National Institute of Informatics for the financial assistance provided during
the course of stay in Japan.
This work has been supported by and conducted at Precision Engineering and
Instrumentation Laboratory, Department of Mechanical Engineering, Indian Institute of
Technology Madras (IIT Madras), Chennai, INDIA.

9. References
Arkin, R. (1998). Behaviour-Based Robotics. Chap 3 & 4, The MIT Press, Cambridge,

Massachusetts, USA.
Belta, C. & Kumar, V. (2002). Trajectory design of formations of robots by kinetic energy

shaping, Proc. of. The IEEE International Conference on Robotics and Automation,
Washington, pp. 2593 – 2598.

Chaimowicz,L., Vijay kumar, R. & Mario F.M. Campos (2004). A mechanism for Dynamic
coordination of Multiple Robots. Int. J. Autonomous Robots, 17, pp. 7-21.

Chen, Y.Q. & Wang, Z. (2005). Formation control: A Review and Consideration. In
Proceedings of the IEEE/RSJ international Conference on Intelligent Robots and Systems,
Alberta, Canada, August, pp. 3181- 3186.

Crowley, J. & Reignier, P. (1993). Asynchronous Control of Rotation and Translation for a
Robot Vehicle. International Journal of Robotics and Autonomous Systems, 10, pp. 243—
251.

Desai, J.P. (2002). A graph theoretic approach for modeling mobile robot team formations.
Journal of Robotic Systems, 19(11), pp. 511-525.

Dougherty, R., Ochoa, V., Randies, Z. & Kitts, C. (2004). A Behavioral Control approach to
formation keeping through an obstacle field. In Proceedings of the IEEE Aerospace
conference, Big Sky MT, March, 1, pp. 168-175.

Fierro, R., Das, A., Spletzer, J., Exposito, J., Kumar, V., Ostrowski, J.P., Taylor, C.J., Hur, Y.,
Alur, R., Lee, I., Grudic, G. & Southall, B. (2002). A framework and architecture for
multiple-robot coordination. International Journal of Robotics Research, 21(10 -11), pp.
977-995.

Goldberg, D. & Matarić, M.J., (2002). Design and Evaluation of Robust Behavior-Based
controller for distributed multi robot collection tasks, 315 - 344, In T. Balch and L. E.
Parker, Robot Teams: From Diversity to Polymorphism, A.K. Peters, Natick, M.A, USA.

Harry Chia, Hung Hsu, & Alan Liu (2005). Multiagent-Based Multi team Formation Control
for Mobile Robots. Int. Journal of Intelligent and Robotic Systems, 42 (1), pp. 337-360.

Hu, H., Kelly, I., Keating, D. & Vinagre, D. (1998). Coordination of Multiple Mobile robots
via Communication. Proceedings of SPIE'98 Mobile Robots XIII Conference, Boston,
USA, pp. 94-103.

Khalil, H. (1996). Nonlinear Systems, Prentice - Hall International, UK.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 236

Kuppan Chetty, RM., Singaperumal, M. and Nagarajan, T. (2010). Behavior Based Planning
and Control of Leader Follower Formations in Wheeled Mobile Robots.
International Journal of Advanced Mechatronics Systems, 2(4), pp. 281-296.

Kuppan Chetty, RM., Singaperumal, M. & Nagarajan, T. (2011). Distributed Formation
planning and Navigation Framework for Wheeled Mobile Robots. Journal of Applied
Sciences, 11 (9), pp. 1501 -1509.

LIU Shi-Cai, TAN Da-Long & LIU Guang-Jun (2007). Formation Control of Mobile Robots
with Active Obstacle Avoidance. International Journal of Acta Automatica Sinica,
33(5), pp. 529 – 535.

Shankar Shastry., (1999). Nonlinear systems: analysis, stability, and control, Springer Verilag.
Stormont, D.P. & Chen, Y.Q. (2005). Using mobile robots for controls and Mechatronic

education. International Journal of Engineering Education, 21(3), pp. 1039-1042.
Sugar, T., Desai, J.P., Kumar, V. & Ostrowski, J.P. (2001). Coordination of multiple mobile

manipulators. Proceedings of the IEEE International conference on Robotics and
Automation, 3(1), pp. 3022-3027.

Xiaohai Li, Jizhong Xiao & Jindong Tan (2004). Modeling and Controller design for multiple
mobile robots formation control. Proceedings of the IEEE International conference on
Robotics and Biometrics, Shenyang, China, Aug, pp. 839-843.

Xiaoming Hu, Alarcon, D. F. & Gustavi, T. (2003). Sensor Based Navigation Coordination
for Mobile Robots. Proceedings of the IEEE International Conference on Decision &
Control, 6375-6380.

Yamaguchi, H., Arai, T. & Beni, G. (2001). A distributed control scheme for multiple mobile
robotic vehicles to make group formations, Int. Journal of Robotics and Autonomous
systems, 36 (4), pp. 125 – 147.

0

Cooperative Path Planning for Multi-Robot
Systems in Dynamic Domains

Stephan Opfer, Hendrik Skubch and Kurt Geihs
University of Kassel

Germany

1. Introduction

A stationary robot in an assembly line expects to execute all its hard-coded movements
without any collision. Its recognition is limited to its tasks and the corresponding area of
operation. In case of a failure an alarm is given and it stops working until a human being
corrects the fault. The assembly robot does not react independently, which is the exact
opposite to autonomous mobile robots. An autonomous mobile robot has to solve many
problems an assembly robot is never confronted with. While the latter moves according
to its hard-coded patterns, a mobile robot on the contrary moves in a potentially unknown
and dynamic environment. Operating in such environments requires the mobile robot to
localise its position relative to the environment, sense its surroundings continuously, and
move accordingly. In order to achieve its goals in a changing environment, a mobile robot
also has to adapt its actions according to the changes. Hard-coded action sequences are too
limited and error-prone to reliably achieve a specific goal. Finally, a secure execution demands
the robot to plan its movements and their consequences. Collision-avoidance is an important
topic in this context.
The requirements for an autonomous mobile robot which is part of a team of robots are
even more challenging. A robot has to recognise its team members separately, include
their positions and abilities in its own planning and consider their paths for its own path
planning. Nevertheless, many reasons for accepting this overhead exist. One robot handling
complicated tasks is possibly more expensive and complex than several single robots.
Furthermore, several robots are able to solve a given task faster than a single robot, by dividing
the task into subtasks and assigning them to different robots. Moreover, a team of robots
exhibits reliability, as malfunctioning robots can be replaced by team members at runtime.
Finally, a large spectrum of tasks can be covered by a group of robots at once, while a single
robot has to be adapted for each specific task.
A central requirement to benefit from these advantages is the ability to coordinate multiple
autonomous mobile robots. For this chapter we will confine ourselves to the problem of path
planning in a team of autonomous mobile robots. Refining the requirements, we assume the
following conditions:

Highly Dynamic Environment Assigned tasks are very critical with regard to time, because
of a highly dynamic environment. Therefore robots must hove at speeds in the order of
2-6 meters per second and smooth paths are crucial to complete tasks in time and without
accidents such as rollovers.

11

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 236

Kuppan Chetty, RM., Singaperumal, M. and Nagarajan, T. (2010). Behavior Based Planning
and Control of Leader Follower Formations in Wheeled Mobile Robots.
International Journal of Advanced Mechatronics Systems, 2(4), pp. 281-296.

Kuppan Chetty, RM., Singaperumal, M. & Nagarajan, T. (2011). Distributed Formation
planning and Navigation Framework for Wheeled Mobile Robots. Journal of Applied
Sciences, 11 (9), pp. 1501 -1509.

LIU Shi-Cai, TAN Da-Long & LIU Guang-Jun (2007). Formation Control of Mobile Robots
with Active Obstacle Avoidance. International Journal of Acta Automatica Sinica,
33(5), pp. 529 – 535.

Shankar Shastry., (1999). Nonlinear systems: analysis, stability, and control, Springer Verilag.
Stormont, D.P. & Chen, Y.Q. (2005). Using mobile robots for controls and Mechatronic

education. International Journal of Engineering Education, 21(3), pp. 1039-1042.
Sugar, T., Desai, J.P., Kumar, V. & Ostrowski, J.P. (2001). Coordination of multiple mobile

manipulators. Proceedings of the IEEE International conference on Robotics and
Automation, 3(1), pp. 3022-3027.

Xiaohai Li, Jizhong Xiao & Jindong Tan (2004). Modeling and Controller design for multiple
mobile robots formation control. Proceedings of the IEEE International conference on
Robotics and Biometrics, Shenyang, China, Aug, pp. 839-843.

Xiaoming Hu, Alarcon, D. F. & Gustavi, T. (2003). Sensor Based Navigation Coordination
for Mobile Robots. Proceedings of the IEEE International Conference on Decision &
Control, 6375-6380.

Yamaguchi, H., Arai, T. & Beni, G. (2001). A distributed control scheme for multiple mobile
robotic vehicles to make group formations, Int. Journal of Robotics and Autonomous
systems, 36 (4), pp. 125 – 147.

0

Cooperative Path Planning for Multi-Robot
Systems in Dynamic Domains

Stephan Opfer, Hendrik Skubch and Kurt Geihs
University of Kassel

Germany

1. Introduction

A stationary robot in an assembly line expects to execute all its hard-coded movements
without any collision. Its recognition is limited to its tasks and the corresponding area of
operation. In case of a failure an alarm is given and it stops working until a human being
corrects the fault. The assembly robot does not react independently, which is the exact
opposite to autonomous mobile robots. An autonomous mobile robot has to solve many
problems an assembly robot is never confronted with. While the latter moves according
to its hard-coded patterns, a mobile robot on the contrary moves in a potentially unknown
and dynamic environment. Operating in such environments requires the mobile robot to
localise its position relative to the environment, sense its surroundings continuously, and
move accordingly. In order to achieve its goals in a changing environment, a mobile robot
also has to adapt its actions according to the changes. Hard-coded action sequences are too
limited and error-prone to reliably achieve a specific goal. Finally, a secure execution demands
the robot to plan its movements and their consequences. Collision-avoidance is an important
topic in this context.
The requirements for an autonomous mobile robot which is part of a team of robots are
even more challenging. A robot has to recognise its team members separately, include
their positions and abilities in its own planning and consider their paths for its own path
planning. Nevertheless, many reasons for accepting this overhead exist. One robot handling
complicated tasks is possibly more expensive and complex than several single robots.
Furthermore, several robots are able to solve a given task faster than a single robot, by dividing
the task into subtasks and assigning them to different robots. Moreover, a team of robots
exhibits reliability, as malfunctioning robots can be replaced by team members at runtime.
Finally, a large spectrum of tasks can be covered by a group of robots at once, while a single
robot has to be adapted for each specific task.
A central requirement to benefit from these advantages is the ability to coordinate multiple
autonomous mobile robots. For this chapter we will confine ourselves to the problem of path
planning in a team of autonomous mobile robots. Refining the requirements, we assume the
following conditions:

Highly Dynamic Environment Assigned tasks are very critical with regard to time, because
of a highly dynamic environment. Therefore robots must hove at speeds in the order of
2-6 meters per second and smooth paths are crucial to complete tasks in time and without
accidents such as rollovers.

11

2 Mobile Robots book 2

Neutral or even antagonistic entities It is possible that robots and other moving obstacles
are crossing or blocking the intended path. Handling these situations demands reactive
behaviour.

Limited Sensor Range The sensor range of the robots is limited, so that the environment is
only partially observable. Hence, destinations are often beyond the local sensor range.

Unreliable Communication Team members are able to communicate their sensor
information between each other by means of unreliable network communication,
such as W-LAN. Therefore, sensor information of team members are only available with
a certain delay or not at all. Moreover, due to the dynamic and time critical nature of the
domain, robots cannot wait for communication to take place before acting.

Noisy Sensors All sensor information is subject to a certain amount of noise.
The RoboCup Middle Size League1 is a domain that features these conditions. Figure 1 shows
robots competing in that league. Among other scenarios, we use this domain as a test bed.

Fig. 1. RoboCup Middle Size League 2009

These conditions require careful crafting of the whole process, ranging from sensor fusion,
validation of sensed information, and tracking of objects over time, to information abstraction,
planning and conflict resolution. In this chapter we will address all of these issues.
In Section 2, we will discuss the foundational techniques as well as the prior work on which
our approach relies. Section 3 explains our approach in detail. It is, same as the approach
itself, divided into two parts, namely a data-driven part, in which sensor fusion, tracking
and information abstraction occurs, and a command driven part, in which planning and
reactive conflict resolution occurs. The data-driven part is explained in Section 3.1, while
the command-driven computations are described in Section 3.2. Afterwards, in Section 4, we
discuss the presented framework and conclude in Section 5.

2. Foundations

This chapter explains the foundations of cooperative path planning. Examples and scenarios
are drawn from the robotic soccer domain. Section 2.1 gives an overview of existing path
planning algorithms and techniques in the multi-robot context. In the following, in Section 2.2
to 2.3, the algorithms used in our approach are explained in more detail.

1 www.robocup.org

238
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 3

2.1 Path planning in multi-robot systems
There are various approaches to path planning in multi-robot system, however, finding the
optimal solution is NP-hard. Hopcraft et al. (1984) simplify the planning problem to the
problem of moving rectangles in a rectangular container. They proved the NP-hardness of
finding a plan from a given configuration to a goal configuration with the least amount of
steps. Hence, all feasible approaches to path planning are a compromise between efficiency
and accuracy of the result.
Parker (2009) classifies path planners in three groups: central, or coupled, approaches,
decoupled approaches and coordinated approaches. In the following, each of them is
described.

2.1.1 Central approaches
This form of planning considers the individual robots as part of a single, coupled system, and
uses a single, central planning unit for calculating the plans. The employed algorithms are
then directly drawn from single-robot versions:

Potential Fields Using derivable functions, such as gaussians, each point in space is mapped
onto a real value. These values can be interpreted as a force pushing a robot away or
drawing it in. In the most simple case, a robot just needs to follow the gradient to arrive at
its goal. Figure 2(a) shows an example, depicting a robot with a blue dot and its goal with
a cross. (Bruijnen et al., 2007; Topor, 1999)

Space Decomposition Here, the space between obstacles is divided into small areas. A path
is represented as a set of neighbouring areas. Should multiple robots try to enter the
same area, the area is sub-divided. The subdivisions are then assigned to the different
robots. (Parsons & Canny, 1990)

Combinatorial Approaches In order to simplify the search space, it is abstracted to road
maps. A road map consists of a set of globally available paths and intersections. Each
robot has to follow one of the paths and exit the road map close to its goals (Peasgood
et al., 2008). Voronoi graphs, such as the example in Figure 2(b) are a road map variant. We
will discuss advantages of Voronoi graphs in Section 2.5.

2.1.2 Decoupled approaches
In contrast to coupled approaches, decoupled approaches consider each robot on its own.
Thus, no central planning unit is necessary and every robot can calculate its own path. There
are two possibilities to resolve conflicts:

• Each robot is assigned a priority. Robots with lower priority have to wait for the planning
result of robots with higher priority and consider the received paths when planning.

• All paths are planned without regard for each other. Only afterwards potential conflicts
are solved to avoid collision.

In contrast to central approaches, the complexity of decoupled approaches is only linear in the
number of participating robots. (Parker, 2009)

2.1.3 Coordinated approaches
Coordinated approaches differ strongly from the two previously discussed groups. Favouring
time efficiency over completeness, a complete path planning is omitted. Parker (2009)
mentions three different kinds of coordinated approaches:

239Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

2 Mobile Robots book 2

Neutral or even antagonistic entities It is possible that robots and other moving obstacles
are crossing or blocking the intended path. Handling these situations demands reactive
behaviour.

Limited Sensor Range The sensor range of the robots is limited, so that the environment is
only partially observable. Hence, destinations are often beyond the local sensor range.

Unreliable Communication Team members are able to communicate their sensor
information between each other by means of unreliable network communication,
such as W-LAN. Therefore, sensor information of team members are only available with
a certain delay or not at all. Moreover, due to the dynamic and time critical nature of the
domain, robots cannot wait for communication to take place before acting.

Noisy Sensors All sensor information is subject to a certain amount of noise.
The RoboCup Middle Size League1 is a domain that features these conditions. Figure 1 shows
robots competing in that league. Among other scenarios, we use this domain as a test bed.

Fig. 1. RoboCup Middle Size League 2009

These conditions require careful crafting of the whole process, ranging from sensor fusion,
validation of sensed information, and tracking of objects over time, to information abstraction,
planning and conflict resolution. In this chapter we will address all of these issues.
In Section 2, we will discuss the foundational techniques as well as the prior work on which
our approach relies. Section 3 explains our approach in detail. It is, same as the approach
itself, divided into two parts, namely a data-driven part, in which sensor fusion, tracking
and information abstraction occurs, and a command driven part, in which planning and
reactive conflict resolution occurs. The data-driven part is explained in Section 3.1, while
the command-driven computations are described in Section 3.2. Afterwards, in Section 4, we
discuss the presented framework and conclude in Section 5.

2. Foundations

This chapter explains the foundations of cooperative path planning. Examples and scenarios
are drawn from the robotic soccer domain. Section 2.1 gives an overview of existing path
planning algorithms and techniques in the multi-robot context. In the following, in Section 2.2
to 2.3, the algorithms used in our approach are explained in more detail.

1 www.robocup.org

238
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 3

2.1 Path planning in multi-robot systems
There are various approaches to path planning in multi-robot system, however, finding the
optimal solution is NP-hard. Hopcraft et al. (1984) simplify the planning problem to the
problem of moving rectangles in a rectangular container. They proved the NP-hardness of
finding a plan from a given configuration to a goal configuration with the least amount of
steps. Hence, all feasible approaches to path planning are a compromise between efficiency
and accuracy of the result.
Parker (2009) classifies path planners in three groups: central, or coupled, approaches,
decoupled approaches and coordinated approaches. In the following, each of them is
described.

2.1.1 Central approaches
This form of planning considers the individual robots as part of a single, coupled system, and
uses a single, central planning unit for calculating the plans. The employed algorithms are
then directly drawn from single-robot versions:

Potential Fields Using derivable functions, such as gaussians, each point in space is mapped
onto a real value. These values can be interpreted as a force pushing a robot away or
drawing it in. In the most simple case, a robot just needs to follow the gradient to arrive at
its goal. Figure 2(a) shows an example, depicting a robot with a blue dot and its goal with
a cross. (Bruijnen et al., 2007; Topor, 1999)

Space Decomposition Here, the space between obstacles is divided into small areas. A path
is represented as a set of neighbouring areas. Should multiple robots try to enter the
same area, the area is sub-divided. The subdivisions are then assigned to the different
robots. (Parsons & Canny, 1990)

Combinatorial Approaches In order to simplify the search space, it is abstracted to road
maps. A road map consists of a set of globally available paths and intersections. Each
robot has to follow one of the paths and exit the road map close to its goals (Peasgood
et al., 2008). Voronoi graphs, such as the example in Figure 2(b) are a road map variant. We
will discuss advantages of Voronoi graphs in Section 2.5.

2.1.2 Decoupled approaches
In contrast to coupled approaches, decoupled approaches consider each robot on its own.
Thus, no central planning unit is necessary and every robot can calculate its own path. There
are two possibilities to resolve conflicts:

• Each robot is assigned a priority. Robots with lower priority have to wait for the planning
result of robots with higher priority and consider the received paths when planning.

• All paths are planned without regard for each other. Only afterwards potential conflicts
are solved to avoid collision.

In contrast to central approaches, the complexity of decoupled approaches is only linear in the
number of participating robots. (Parker, 2009)

2.1.3 Coordinated approaches
Coordinated approaches differ strongly from the two previously discussed groups. Favouring
time efficiency over completeness, a complete path planning is omitted. Parker (2009)
mentions three different kinds of coordinated approaches:

239Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

4 Mobile Robots book 2

(a) A Potential Field for path planning (b) Two robots path planning using a Voronoi graph

Fig. 2. Different Path Planning Methods

Traffic Control Collisions and coordination problems are resolved by globally known traffic
rules (i.e., right-before-left or vice versa). Possible applications include storage facilities,
where autonomous vehicles transport goods on tracks. Cooperation is only necessary
when multiple vehicles meet at an intersection. Usually simple rules such as the
aforementioned right-before-left suffice. (Asama et al., 1991)

Reactive Behaviour Here, the focus is on collision avoidance. Using highly reactive
behaviours, long-term planning is simplified and collisions are avoided shortly before they
would occur. (Mataric, 1992)

Swarm Behaviour This group of approaches does not value that each robot reaches its goal.
Instead, the swarm should exhibit a certain behaviour. For instance, one robot leads while
the others follow in a certain formation. Hence, the following robots only need to consider
their relative positions (Mourikis & Roumeliotis, 2006). There are various adaptations of
animal swarm behaviours, such as ant swarming, buffalo migration or the following of
geese.

2.2 A-star
The A-Star search algorithm is probably the most well-known informed search. It was firstly
described by Peter Hart, Nils Nilsson, and Bertram Raphael (Hart et al., 1968) in 1968. It is
employed to find the optimal path between a start and a goal node in a road map, given a
consistent heuristic function. Since it is essential for the following chapter, we will briefly
describe it.
Assuming positive costs for travelling along each edge in a graph, A-Star finds the cheapest
path from start node a to goal node b. An arbitrary node x is evaluated using both the costs of
arriving at x from a and a heuristic estimate of the costs from x to b. If the heuristic function
is consistent, then A-Star is complete and optimal (Dechter & Pearl, 1985). A heuristic h is
consistent if and only if

h(x, x�) ≤ c(x, x�)

240
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 5

and
h(x, b) ≤ c(x, x�) + h(x�, b)

where c is the cost functions, and x and x� arbitrary nodes.

2.3 Clustering
Cooperative path planning requires consistency at some level of abstraction. That is, at some
step of the calculations, resulting data has to be fused throughout the participating robots.
This can be at the level of paths or sooner, at the map level. Here we employ a clustering
algorithm to fuse obstacle information of all robots. On the basis of the resulting clusters, a
Voronoi graph is constructed. Each robot detects some obstacles and cannot perceive others.
Moreover, sensor noise is present, so obstacles are not perceived at their true locations. Thus,
data representing the same obstacle should be merged, ideally yielding a more precise location
then any single robot’s data alone. However, data representing different obstacles should not
be merged, in order to prevent the disappearance of perceived obstacles. Network latencies
is one of the issues that make this process difficult, as data received from remote robots is
generally older than local data and represents past situations. The problem of merging these
obstacles is also called data-association problem.
Clustering algorithms merge data in groups or clusters, such that objects in each cluster are as
similar as possible and objects of different clusters are as different as possible. (Ester & Sander,
2000). We limit our discussion to the two-dimensional case, where obstacles can be abstracted
to points. Every clustering algorithm needs a similarity, or distance measurement dist(p, q).
For obstacles on a plane, the euclidean distance suffices.
A cluster is a set of points and is represented by a single point, the centroid. A measurement,
which describes the divergence of a set of points from its centroid is given by:

TD2(C) = ∑
p∈C

dist(p, μC)
2

TD2(C) is also a measurement for the compactness of a cluster. The smaller TD2(C), the closer
the individual points are to each other, and the smaller the variance within the cluster (Ester
& Sander, 2000). K-MEANS (MacQueen, 1967) is a common algorithm for minimising the
variance of a set of clusters. K-MEANS divides the given points into K clusters, such that
TD2 = ∑K

i=1 TD2(Ci) is minimised. However, it requires prior knowledge of the number of
clusters, K.
This disadvantage is lifted by hierarchical clustering algorithms, which represent data in a
hierarchical manner to derive clusters (Ester & Sander, 2000). This requires the distance
measurement to be extended to set of points. The following three variants of distance
measurements are derived from the smallest, largest and average individual distance between
points in P and Q, respectively:

Single-Link: distsl(P, Q) = min
p∈P,q∈Q

d(p, q)

Complete-Link: distcl(P, Q) = max
p∈P,q∈Q

{d(p, q)}

Average-Link: distal(P, Q) =
1

|P||Q| ∑
p∈P,q∈Q

d(p, q)

241Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

4 Mobile Robots book 2

(a) A Potential Field for path planning (b) Two robots path planning using a Voronoi graph

Fig. 2. Different Path Planning Methods

Traffic Control Collisions and coordination problems are resolved by globally known traffic
rules (i.e., right-before-left or vice versa). Possible applications include storage facilities,
where autonomous vehicles transport goods on tracks. Cooperation is only necessary
when multiple vehicles meet at an intersection. Usually simple rules such as the
aforementioned right-before-left suffice. (Asama et al., 1991)

Reactive Behaviour Here, the focus is on collision avoidance. Using highly reactive
behaviours, long-term planning is simplified and collisions are avoided shortly before they
would occur. (Mataric, 1992)

Swarm Behaviour This group of approaches does not value that each robot reaches its goal.
Instead, the swarm should exhibit a certain behaviour. For instance, one robot leads while
the others follow in a certain formation. Hence, the following robots only need to consider
their relative positions (Mourikis & Roumeliotis, 2006). There are various adaptations of
animal swarm behaviours, such as ant swarming, buffalo migration or the following of
geese.

2.2 A-star
The A-Star search algorithm is probably the most well-known informed search. It was firstly
described by Peter Hart, Nils Nilsson, and Bertram Raphael (Hart et al., 1968) in 1968. It is
employed to find the optimal path between a start and a goal node in a road map, given a
consistent heuristic function. Since it is essential for the following chapter, we will briefly
describe it.
Assuming positive costs for travelling along each edge in a graph, A-Star finds the cheapest
path from start node a to goal node b. An arbitrary node x is evaluated using both the costs of
arriving at x from a and a heuristic estimate of the costs from x to b. If the heuristic function
is consistent, then A-Star is complete and optimal (Dechter & Pearl, 1985). A heuristic h is
consistent if and only if

h(x, x�) ≤ c(x, x�)

240
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 5

and
h(x, b) ≤ c(x, x�) + h(x�, b)

where c is the cost functions, and x and x� arbitrary nodes.

2.3 Clustering
Cooperative path planning requires consistency at some level of abstraction. That is, at some
step of the calculations, resulting data has to be fused throughout the participating robots.
This can be at the level of paths or sooner, at the map level. Here we employ a clustering
algorithm to fuse obstacle information of all robots. On the basis of the resulting clusters, a
Voronoi graph is constructed. Each robot detects some obstacles and cannot perceive others.
Moreover, sensor noise is present, so obstacles are not perceived at their true locations. Thus,
data representing the same obstacle should be merged, ideally yielding a more precise location
then any single robot’s data alone. However, data representing different obstacles should not
be merged, in order to prevent the disappearance of perceived obstacles. Network latencies
is one of the issues that make this process difficult, as data received from remote robots is
generally older than local data and represents past situations. The problem of merging these
obstacles is also called data-association problem.
Clustering algorithms merge data in groups or clusters, such that objects in each cluster are as
similar as possible and objects of different clusters are as different as possible. (Ester & Sander,
2000). We limit our discussion to the two-dimensional case, where obstacles can be abstracted
to points. Every clustering algorithm needs a similarity, or distance measurement dist(p, q).
For obstacles on a plane, the euclidean distance suffices.
A cluster is a set of points and is represented by a single point, the centroid. A measurement,
which describes the divergence of a set of points from its centroid is given by:

TD2(C) = ∑
p∈C

dist(p, μC)
2

TD2(C) is also a measurement for the compactness of a cluster. The smaller TD2(C), the closer
the individual points are to each other, and the smaller the variance within the cluster (Ester
& Sander, 2000). K-MEANS (MacQueen, 1967) is a common algorithm for minimising the
variance of a set of clusters. K-MEANS divides the given points into K clusters, such that
TD2 = ∑K

i=1 TD2(Ci) is minimised. However, it requires prior knowledge of the number of
clusters, K.
This disadvantage is lifted by hierarchical clustering algorithms, which represent data in a
hierarchical manner to derive clusters (Ester & Sander, 2000). This requires the distance
measurement to be extended to set of points. The following three variants of distance
measurements are derived from the smallest, largest and average individual distance between
points in P and Q, respectively:

Single-Link: distsl(P, Q) = min
p∈P,q∈Q

d(p, q)

Complete-Link: distcl(P, Q) = max
p∈P,q∈Q

{d(p, q)}

Average-Link: distal(P, Q) =
1

|P||Q| ∑
p∈P,q∈Q

d(p, q)

241Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

6 Mobile Robots book 2

Fig. 3. Single-Link Dendrogram

Another method, based on the work of Ward (1963), uses the difference between the variance
before and after fusing two clusters P and Q.

Increase in variance: Δσ2(P, Q) = TD2(P
⋃

Q)− (TD2(P) + TD2(Q))

Independent of the distance function, hierarchical clusterings can be described as either
dividing (top-down) or collecting (bottom-up) algorithms. Top-down algorithms start with
a single cluster containing all points and divide it into subsets until the resulting clusters
fulfil a termination criterion. Bottom-up techniques start with single points and fuse them to
clusters, again, until a termination criterion is met. The resulting graph is called a dendrogram
(see Figure 3).
Figure 3 shows the distances within each cluster versus the number of clusters. Starting at
zero, the threshold (dotted line) is increased step-by-step. As soon as the threshold becomes
larger than the distance between two clusters, the clusters have to be merged. All clusters
which have a larger distance remain separate. In Figure 3, the threshold is set such that three
clusters remain.
Other approaches, such as the work by Schubert & Sidenbladh (2005), based on the work
of Schubert (1993) and Bengtsson & Schubert (2003), use a Bayesian filter for clustering. Here,
points are processed sequentially and no hierarchy is built, instead a set of hypotheses is
maintained, out of which the maximum a posteriori estimate is seen as the clustering result.
The advantage here is that, due to the sequential nature of the algorithm, observations can be
added over time. Thus, it lends itself to algorithms tracking moving obstacles over time (see
Section 3.1.2).

2.4 Delaunay triangulation
A triangulation is a triangle mesh without overlaps. Figure 5(a) shows an example for a
specific triangulation, the Delaunay triangulation. Since this triangulation can be used to
derive a Voronoi graph (see Section 2.6), we present some details here.
The Delaunay triangulation of a set of points S yields the Delaunay graph DG(S). DG(S)
fulfills the circumcircle property: The circumcircle of every triangle does not contain any point
of S which is not also one of the three points belonging to the triangle. Figure 4 shows on
the left an enlarged part of the Delaunay graph. The circumcircle does not contain any other
point of P. On the right side of Figure 4, the circumcircle property is violated, thus it does not
show a Delaunay graph. A triangulation fulfilling this property also maximises the minimal
internal angle of all triangles.

242
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 7

Fig. 4. Circumcircle Property

2.5 Voronoi graph
The Voronoi graph by Woronoi (1908) is a subdivision of space into so-called Voronoi regions.
Figure 5(b) shows an example. We will use Voronoi graphs as road maps (see Section 2.1.1).
In the following, we are limiting ourselves to the two-dimensional case, as we assume robots
to be moving on a plane or sufficiently planar surface. Hence, every point is a member of R2.
Every point p in the set S defines a Voronoi-region VorR(p, S):

VorR(p, S) =
⋂

q∈S\{p}
D(p, q)

where D(p, q) is a open half-plane:

D(p, q)
de f
= {x ∈ R2 : |p − x| < |q − x|}

The Voronoi graph Vor(S): is then defined by the set of all regions VorR(S):

VorR(S)
de f
=

⋂

p∈S
VorR(p, S)

Vor(S)
de f
= R2 \ VorR(S)

One of the main properties of the Voronoi graph is that its edges have the maximal distance
to the neighbouring points in S. Thus following the edges yields itself to obstacle avoidance,
given that the obstacles are represented by the points in S.

2.6 Duality between Voronoi and Delaunay graph
The Voronoi graph of S is a connected graph VG(S). We will call the set of edges of VG(S)
EVG, the set of nodes or vertices VVG, and the set of regions RVG. Analogously, the Delaunay
graph DG(S) has the edges EDG, vertices VDG, and the set of regions RDG. Figure 5(b) shows
that some edges lead outside of the picture. Assuming the existence of another point in
infinite distance, one can connect all these edges to said point, without losing any Voronoi
property (de Berg et al., 2000). Figure 6 illustrates this.
Voronoi graph and Delaunay graph are dual to each other, assuming the existence of the point
in infinite distance. Thus, there is an isomorphism between the vertices of one graph and the
regions of the other. In other words, every point in S yields a vertex in VDG and a region in
RVG.

VDG ↔ FVG

243Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

6 Mobile Robots book 2

Fig. 3. Single-Link Dendrogram

Another method, based on the work of Ward (1963), uses the difference between the variance
before and after fusing two clusters P and Q.

Increase in variance: Δσ2(P, Q) = TD2(P
⋃

Q)− (TD2(P) + TD2(Q))

Independent of the distance function, hierarchical clusterings can be described as either
dividing (top-down) or collecting (bottom-up) algorithms. Top-down algorithms start with
a single cluster containing all points and divide it into subsets until the resulting clusters
fulfil a termination criterion. Bottom-up techniques start with single points and fuse them to
clusters, again, until a termination criterion is met. The resulting graph is called a dendrogram
(see Figure 3).
Figure 3 shows the distances within each cluster versus the number of clusters. Starting at
zero, the threshold (dotted line) is increased step-by-step. As soon as the threshold becomes
larger than the distance between two clusters, the clusters have to be merged. All clusters
which have a larger distance remain separate. In Figure 3, the threshold is set such that three
clusters remain.
Other approaches, such as the work by Schubert & Sidenbladh (2005), based on the work
of Schubert (1993) and Bengtsson & Schubert (2003), use a Bayesian filter for clustering. Here,
points are processed sequentially and no hierarchy is built, instead a set of hypotheses is
maintained, out of which the maximum a posteriori estimate is seen as the clustering result.
The advantage here is that, due to the sequential nature of the algorithm, observations can be
added over time. Thus, it lends itself to algorithms tracking moving obstacles over time (see
Section 3.1.2).

2.4 Delaunay triangulation
A triangulation is a triangle mesh without overlaps. Figure 5(a) shows an example for a
specific triangulation, the Delaunay triangulation. Since this triangulation can be used to
derive a Voronoi graph (see Section 2.6), we present some details here.
The Delaunay triangulation of a set of points S yields the Delaunay graph DG(S). DG(S)
fulfills the circumcircle property: The circumcircle of every triangle does not contain any point
of S which is not also one of the three points belonging to the triangle. Figure 4 shows on
the left an enlarged part of the Delaunay graph. The circumcircle does not contain any other
point of P. On the right side of Figure 4, the circumcircle property is violated, thus it does not
show a Delaunay graph. A triangulation fulfilling this property also maximises the minimal
internal angle of all triangles.

242
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 7

Fig. 4. Circumcircle Property

2.5 Voronoi graph
The Voronoi graph by Woronoi (1908) is a subdivision of space into so-called Voronoi regions.
Figure 5(b) shows an example. We will use Voronoi graphs as road maps (see Section 2.1.1).
In the following, we are limiting ourselves to the two-dimensional case, as we assume robots
to be moving on a plane or sufficiently planar surface. Hence, every point is a member of R2.
Every point p in the set S defines a Voronoi-region VorR(p, S):

VorR(p, S) =
⋂

q∈S\{p}
D(p, q)

where D(p, q) is a open half-plane:

D(p, q)
de f
= {x ∈ R2 : |p − x| < |q − x|}

The Voronoi graph Vor(S): is then defined by the set of all regions VorR(S):

VorR(S)
de f
=

⋂

p∈S
VorR(p, S)

Vor(S)
de f
= R2 \ VorR(S)

One of the main properties of the Voronoi graph is that its edges have the maximal distance
to the neighbouring points in S. Thus following the edges yields itself to obstacle avoidance,
given that the obstacles are represented by the points in S.

2.6 Duality between Voronoi and Delaunay graph
The Voronoi graph of S is a connected graph VG(S). We will call the set of edges of VG(S)
EVG, the set of nodes or vertices VVG, and the set of regions RVG. Analogously, the Delaunay
graph DG(S) has the edges EDG, vertices VDG, and the set of regions RDG. Figure 5(b) shows
that some edges lead outside of the picture. Assuming the existence of another point in
infinite distance, one can connect all these edges to said point, without losing any Voronoi
property (de Berg et al., 2000). Figure 6 illustrates this.
Voronoi graph and Delaunay graph are dual to each other, assuming the existence of the point
in infinite distance. Thus, there is an isomorphism between the vertices of one graph and the
regions of the other. In other words, every point in S yields a vertex in VDG and a region in
RVG.

VDG ↔ FVG

243Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

8 Mobile Robots book 2

(a) Delaunay triangulation
of 14 points on a plane

(b) Voronoi graph of 14
points on a plane

(c) Voronoi graph and
Delaunay graph

Fig. 5. Duality between Voronoi graph and Delaunay triangulation

Fig. 6. Additional point in infinite distance

Moreover, every circumcentre of a region in RDG is also a vertex in VVG. The infinitely large
area encompassing the triangulation represents the node in infinite distance.

FDG ↔ VVG

Finally, there is an isomorphism between the edges of both graphs. For every edge in one
graph, there is one in the other at a right angle. However, they do not necessarily overlap.

EDG ↔ EVG

Figure 5(c) illustrates the dual relationship between the graphs. This duality can be exploited
to construct a Voronoi graph by Delaunay triangulation, as there exist efficient algorithms to
construct Delaunay graphs (Bhattacharya & Gavrilova, 2007; Guibas et al., 1990; Leach, 1992).

3. Approach

Our approach is divided into two main parts, data fusion and planning. Figure 7 depicts an
overview of the architecture. It is meant to be used in conjunction with other frameworks or
engines, which manage other parts of the robotic architecture. For instance, we assume that
a behaviour issues a command to move to a certain point. What a behaviour constitutes and

244
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 9

Data Fusion

Planning

Clustering
& Validation

Sensory
Subsystem

Networked
Robots

Object Positions

Object Positions, Team
Positions & Velocities

Object
Tracker

Voronoi
Construction

Opponent Positions Team Positions

Tracked Opponents

Path
Planning

Path
Correction

Behaviour

Annotated Voronoi Graph

Path

Destination

Driving Command

Fig. 7. Algorithm Architecture

how it comes to a decision is intentionally left open. A treatment of multi-robot behaviour
control and cooperation is given in Skubch et al. (2011). Furthermore, we assume that the
cooperative robots are able to communicate, for instance following an approach as described
in Baer (2008).
During the data fusion step, observations from the sensory subsystem, such as image
processing, is integrated with observations received from other cooperative robots. This
includes the truthfully emitted positions and velocities of these cooperative robots. The data
is validated and clustered, yielding a set of adversarial and a set of cooperative robots.
Positions and velocities of adversarial robots are tracked using a Bayesian filter, while
positions and velocities of cooperative robots are assumed to be correct. This is due to the
fact that each robot’s own localisation and velocity estimate is in most cases more accurate
than observations of the same information from other sources. Finally, both sets are used to
generate a Voronoi Graph of the current scene.
Based on the Voronoi Graph and the current intended destination given by a behaviour, a
path is planned by the robot in question. Hence, each robot calculates its preferred path
individually. Thus, path planning is done decoupled. This planning step is both efficient
and optimal with respect to the roadmap. Since the path planning does not account for
moving obstacles, these are reacted to in a final step. Tackling this problem, we use the
cooperative and reactive method for collision avoidance introduced by Fujimori et al. (2000).
If collisions between cooperative robots become imminent, the current driving directions are
adapted in speed and angle according to globally defined rules. In order to avoid other
moving obstacles similar rules are applied, taking their potential adverseness into account.
The resulting driving command is given to the actuator subsystem. The whole process is
repeated every 30ms.
The next section explains the data fusion step in detail, while Section 3.2 describes both path
planning and reactive behaviour.

245Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

8 Mobile Robots book 2

(a) Delaunay triangulation
of 14 points on a plane

(b) Voronoi graph of 14
points on a plane

(c) Voronoi graph and
Delaunay graph

Fig. 5. Duality between Voronoi graph and Delaunay triangulation

Fig. 6. Additional point in infinite distance

Moreover, every circumcentre of a region in RDG is also a vertex in VVG. The infinitely large
area encompassing the triangulation represents the node in infinite distance.

FDG ↔ VVG

Finally, there is an isomorphism between the edges of both graphs. For every edge in one
graph, there is one in the other at a right angle. However, they do not necessarily overlap.

EDG ↔ EVG

Figure 5(c) illustrates the dual relationship between the graphs. This duality can be exploited
to construct a Voronoi graph by Delaunay triangulation, as there exist efficient algorithms to
construct Delaunay graphs (Bhattacharya & Gavrilova, 2007; Guibas et al., 1990; Leach, 1992).

3. Approach

Our approach is divided into two main parts, data fusion and planning. Figure 7 depicts an
overview of the architecture. It is meant to be used in conjunction with other frameworks or
engines, which manage other parts of the robotic architecture. For instance, we assume that
a behaviour issues a command to move to a certain point. What a behaviour constitutes and

244
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 9

Data Fusion

Planning

Clustering
& Validation

Sensory
Subsystem

Networked
Robots

Object Positions

Object Positions, Team
Positions & Velocities

Object
Tracker

Voronoi
Construction

Opponent Positions Team Positions

Tracked Opponents

Path
Planning

Path
Correction

Behaviour

Annotated Voronoi Graph

Path

Destination

Driving Command

Fig. 7. Algorithm Architecture

how it comes to a decision is intentionally left open. A treatment of multi-robot behaviour
control and cooperation is given in Skubch et al. (2011). Furthermore, we assume that the
cooperative robots are able to communicate, for instance following an approach as described
in Baer (2008).
During the data fusion step, observations from the sensory subsystem, such as image
processing, is integrated with observations received from other cooperative robots. This
includes the truthfully emitted positions and velocities of these cooperative robots. The data
is validated and clustered, yielding a set of adversarial and a set of cooperative robots.
Positions and velocities of adversarial robots are tracked using a Bayesian filter, while
positions and velocities of cooperative robots are assumed to be correct. This is due to the
fact that each robot’s own localisation and velocity estimate is in most cases more accurate
than observations of the same information from other sources. Finally, both sets are used to
generate a Voronoi Graph of the current scene.
Based on the Voronoi Graph and the current intended destination given by a behaviour, a
path is planned by the robot in question. Hence, each robot calculates its preferred path
individually. Thus, path planning is done decoupled. This planning step is both efficient
and optimal with respect to the roadmap. Since the path planning does not account for
moving obstacles, these are reacted to in a final step. Tackling this problem, we use the
cooperative and reactive method for collision avoidance introduced by Fujimori et al. (2000).
If collisions between cooperative robots become imminent, the current driving directions are
adapted in speed and angle according to globally defined rules. In order to avoid other
moving obstacles similar rules are applied, taking their potential adverseness into account.
The resulting driving command is given to the actuator subsystem. The whole process is
repeated every 30ms.
The next section explains the data fusion step in detail, while Section 3.2 describes both path
planning and reactive behaviour.

245Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

10 Mobile Robots book 2

3.1 Data fusion
Sensor fusion is a wide topic, of which we only discuss parts that are relevant for our
path-planning approach. A more in-depth treatment can be found in Reichle (2010). In our
setting we assume that a set of known robots C cooperate. Each robot r ∈ C emits its known
position p, velocity v and a set of perceived obstacles o every 100ms. The obstacle set is
noisy, contains false positives and does not necessarily contain all obstacles in line-of-sight.
Furthermore, there exists an unknown, but bounded, number of moving adversarial robots,
A, which do not communicate at all.

3.1.1 Clustering
During the clustering step each robot fuses its own position and its perceived obstacles with
the positions and obstacles of all cooperative robots. The deployed clustering is based on
the method according to Ward (1963), described in Section 2.3. Furthermore the following
adaptations take the age, type and source of the information into account.
The precision of perceived obstacle positions reduces with increasing age and distance. Due
to potential network latencies and the lower frequency of 10Hz, the information given by
cooperative robots is older than the local information. Therefore, near obstacle positions
perceived by the local robot should be treated preferential to the obstacle positions of the
cooperative robots. In our approach the clustering is omitted in a 1.5m radius around the local
robot. Inside this radius only locally perceived obstacles are taken into account.
Another important adaptation is to distinguish between positions of cooperative robots and
adversarial robots. If a cooperative robot is merged into a cluster, the cluster itself represents
the cooperative robot. Therefore, it is important to avoid inconsistent clusters, which can
be created by merging two different cooperative robots into one cluster. Another source
of inconsistency is the possibility of merging an obstacle’s position into the cluster of the
cooperative robot which sent the obstacle position itself, because cooperative robots cannot
see themselves as obstacles.
At the end of the clustering step, we are able to distinguish the clusters into the two groups of
cooperative robots and adversarial robots. As mentioned before the received velocities of the
cooperative robots are considered quite precise, therefore only the adversarial robot clusters
are given to the object tracker, described in Section 3.1.2.

3.1.2 Tracking
Tracking is the process of relating observations over time. This process not only smooths
the data, removes infrequent false positives and compensates for missing observations, but
it also estimates velocities. In Section 2, we briefly mentioned the applicability of Bayesian
filters to the tracking and clustering problem. Recently, van de Molengraft (2009) introduced a
dynamic tracking algorithm for an unknown number of objects based on the work of Schubert
& Sidenbladh (2005). Schubert’s approach maintains a set of hypotheses of cluster centres. For
each new observation, every hypothesis h is expanded to n + 2 to new ones, where n is the
number of cluster centres maintained in h. That is, given h, the new observation is considered
to be faulty data, belonging to a new cluster, or belonging to one of the clusters maintained
in h. Schubert then estimates the a posteriori probability of all newly generated hypotheses,
resamples them using Monte Carlo sampling and merges highly similar hypotheses. Due to
the resampling with a constant number of particles, the amount of hypotheses does not grow
beyond a constant threshold.
Schubert’s method was originally only applicable to non-moving targets. Van de Molengraft
(2009) extended this approach by maintaining a Kalman Filter for each cluster, using the

246
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 11

constant velocity assumption. Furthermore, they introduced a lower threshold, independent
of the Monte Carlo resampling to the number of maintained hypotheses.
Our approach differs from the aforementioned in that we exchanged the Kalman Filters
for a linear ridge regression, which proved in practice to require less precise parameter
optimisation. Kalman Filters with a constant velocity assumption tend to produce estimations
which are either to susceptible to noise or too inert to changing conditions if the probability
parameters do not match the scenario (Lauer, 2007). Furthermore, we limited the maximum
amount of tracked objects, such that the runtime complexity is now in O(n), where n is the
number of observations, instead of O(nk), where k is the number of objects tracked. Thus, we
assume a constraint number of objects instead of an unknown one. Finally, we omit the Monte
Carlo sampling and directly use the likelihood as an estimation for the a posteriori probability,
further reducing the computation time.
The downside of using a regression as opposed to a Kalman Filter is the lack of a probability
estimate, which the Kalman Filter produces directly. As Schubert, we assume Gaussian
observation noise and estimate the probability of an observation z at time t caused by object o

as P(zt|o) ∝ e
(z−mo (t))2

2σ2 , where mo(t) is the estimated position of object o at time t.
The Monte Carlo sampling served the purpose of avoiding too fast convergence. However,
since in dynamic environments the input data changes rapidly over time and the fact that
similar hypotheses are collapsed into a single one, early convergence is not a problem in our
approach, thus the Monte Carlo sampling can be omitted, saving computation time. This
yields an algorithm that integrates 10 observations into 10 tracked objects using 30 hypotheses
in under 5ms on current PCs (Intel i7 2.8GHz, single core).

3.1.3 Voronoi construction
For generating a Voronoi graph, we use the same method as Bhattacharya & Gavrilova (2007).
At first, the Delaunay triangulation is created by the randomised incremental algorithm
introduced by Guibas et al. (1990) and afterwards the Voronoi graph is derived from the
Delaunay triangulation. Obviously, the fused data serves as input for this process, but we
also insert some artificial obstacles along the side lines of the football field. The football
field, being the containing rectangle of the whole scenario, is sampled similar to the sampling
method of Bhattacharya & Gavrilova (2007). This yields Voronoi edges between obstacles
inside the containing rectangle and the borders of that rectangle. Otherwise, the roadmap
would miss edges for driving around obstacles at the sideline of the football field. In the
resulting Voronoi graph each robot, including the local one, represents one Voronoi cell. In
other scenarios, similar bounding boxes can be sampled this way. Alternatively, in case the
bounds are unknown or unlimited, a sufficiently large bounding circle can be used, containing
the current focus of interest for the robot.

3.2 Path planning
As mentioned before the path planning is divided into two clearly separated steps. The first
step is described in Section 3.2.1, it searches for the best path according to the given destination
and Voronoi graph. The second step comprises the adjustment of the initial driving direction.
The initial driving direction is derived from the path found in the first step. To adjust the
driving direction globally defined rules are used. These details are described in Section 3.2.2.

3.2.1 Path generation
The Voronoi graph and the destination, given by a behaviour, form the input of the path search
algorithm. We utilize the A-Star search algorithm, described in Section 2.2. Considering the

247Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

10 Mobile Robots book 2

3.1 Data fusion
Sensor fusion is a wide topic, of which we only discuss parts that are relevant for our
path-planning approach. A more in-depth treatment can be found in Reichle (2010). In our
setting we assume that a set of known robots C cooperate. Each robot r ∈ C emits its known
position p, velocity v and a set of perceived obstacles o every 100ms. The obstacle set is
noisy, contains false positives and does not necessarily contain all obstacles in line-of-sight.
Furthermore, there exists an unknown, but bounded, number of moving adversarial robots,
A, which do not communicate at all.

3.1.1 Clustering
During the clustering step each robot fuses its own position and its perceived obstacles with
the positions and obstacles of all cooperative robots. The deployed clustering is based on
the method according to Ward (1963), described in Section 2.3. Furthermore the following
adaptations take the age, type and source of the information into account.
The precision of perceived obstacle positions reduces with increasing age and distance. Due
to potential network latencies and the lower frequency of 10Hz, the information given by
cooperative robots is older than the local information. Therefore, near obstacle positions
perceived by the local robot should be treated preferential to the obstacle positions of the
cooperative robots. In our approach the clustering is omitted in a 1.5m radius around the local
robot. Inside this radius only locally perceived obstacles are taken into account.
Another important adaptation is to distinguish between positions of cooperative robots and
adversarial robots. If a cooperative robot is merged into a cluster, the cluster itself represents
the cooperative robot. Therefore, it is important to avoid inconsistent clusters, which can
be created by merging two different cooperative robots into one cluster. Another source
of inconsistency is the possibility of merging an obstacle’s position into the cluster of the
cooperative robot which sent the obstacle position itself, because cooperative robots cannot
see themselves as obstacles.
At the end of the clustering step, we are able to distinguish the clusters into the two groups of
cooperative robots and adversarial robots. As mentioned before the received velocities of the
cooperative robots are considered quite precise, therefore only the adversarial robot clusters
are given to the object tracker, described in Section 3.1.2.

3.1.2 Tracking
Tracking is the process of relating observations over time. This process not only smooths
the data, removes infrequent false positives and compensates for missing observations, but
it also estimates velocities. In Section 2, we briefly mentioned the applicability of Bayesian
filters to the tracking and clustering problem. Recently, van de Molengraft (2009) introduced a
dynamic tracking algorithm for an unknown number of objects based on the work of Schubert
& Sidenbladh (2005). Schubert’s approach maintains a set of hypotheses of cluster centres. For
each new observation, every hypothesis h is expanded to n + 2 to new ones, where n is the
number of cluster centres maintained in h. That is, given h, the new observation is considered
to be faulty data, belonging to a new cluster, or belonging to one of the clusters maintained
in h. Schubert then estimates the a posteriori probability of all newly generated hypotheses,
resamples them using Monte Carlo sampling and merges highly similar hypotheses. Due to
the resampling with a constant number of particles, the amount of hypotheses does not grow
beyond a constant threshold.
Schubert’s method was originally only applicable to non-moving targets. Van de Molengraft
(2009) extended this approach by maintaining a Kalman Filter for each cluster, using the

246
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 11

constant velocity assumption. Furthermore, they introduced a lower threshold, independent
of the Monte Carlo resampling to the number of maintained hypotheses.
Our approach differs from the aforementioned in that we exchanged the Kalman Filters
for a linear ridge regression, which proved in practice to require less precise parameter
optimisation. Kalman Filters with a constant velocity assumption tend to produce estimations
which are either to susceptible to noise or too inert to changing conditions if the probability
parameters do not match the scenario (Lauer, 2007). Furthermore, we limited the maximum
amount of tracked objects, such that the runtime complexity is now in O(n), where n is the
number of observations, instead of O(nk), where k is the number of objects tracked. Thus, we
assume a constraint number of objects instead of an unknown one. Finally, we omit the Monte
Carlo sampling and directly use the likelihood as an estimation for the a posteriori probability,
further reducing the computation time.
The downside of using a regression as opposed to a Kalman Filter is the lack of a probability
estimate, which the Kalman Filter produces directly. As Schubert, we assume Gaussian
observation noise and estimate the probability of an observation z at time t caused by object o

as P(zt|o) ∝ e
(z−mo (t))2

2σ2 , where mo(t) is the estimated position of object o at time t.
The Monte Carlo sampling served the purpose of avoiding too fast convergence. However,
since in dynamic environments the input data changes rapidly over time and the fact that
similar hypotheses are collapsed into a single one, early convergence is not a problem in our
approach, thus the Monte Carlo sampling can be omitted, saving computation time. This
yields an algorithm that integrates 10 observations into 10 tracked objects using 30 hypotheses
in under 5ms on current PCs (Intel i7 2.8GHz, single core).

3.1.3 Voronoi construction
For generating a Voronoi graph, we use the same method as Bhattacharya & Gavrilova (2007).
At first, the Delaunay triangulation is created by the randomised incremental algorithm
introduced by Guibas et al. (1990) and afterwards the Voronoi graph is derived from the
Delaunay triangulation. Obviously, the fused data serves as input for this process, but we
also insert some artificial obstacles along the side lines of the football field. The football
field, being the containing rectangle of the whole scenario, is sampled similar to the sampling
method of Bhattacharya & Gavrilova (2007). This yields Voronoi edges between obstacles
inside the containing rectangle and the borders of that rectangle. Otherwise, the roadmap
would miss edges for driving around obstacles at the sideline of the football field. In the
resulting Voronoi graph each robot, including the local one, represents one Voronoi cell. In
other scenarios, similar bounding boxes can be sampled this way. Alternatively, in case the
bounds are unknown or unlimited, a sufficiently large bounding circle can be used, containing
the current focus of interest for the robot.

3.2 Path planning
As mentioned before the path planning is divided into two clearly separated steps. The first
step is described in Section 3.2.1, it searches for the best path according to the given destination
and Voronoi graph. The second step comprises the adjustment of the initial driving direction.
The initial driving direction is derived from the path found in the first step. To adjust the
driving direction globally defined rules are used. These details are described in Section 3.2.2.

3.2.1 Path generation
The Voronoi graph and the destination, given by a behaviour, form the input of the path search
algorithm. We utilize the A-Star search algorithm, described in Section 2.2. Considering the

247Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

12 Mobile Robots book 2

common prominence of the A-Star search algorithm, here we only describe the used heuristics
and the special cases at the start and end of the path. Besides the start and the end of a path,
each path is a sequence of Voronoi edges. Therefore, the applied heuristics have to estimate
the costs of a sequence of Voronoi edges.
Let p denote a path with edges E = e0, . . . , en, and for every edge e, let e.s denote its starting
node, e.e its ending node, such that ei.e = ei+1.s, e0.s the robot’s current position, and en.e the
destination D if p is complete. Further, let l(e) be the length of edge e, w(e) its width, Δα(a, b)
the angle between edges or vectors a and b, and �gi be the calculated driving direction in the
robot’s i-th cycle.
Given additionally the robot’s radius r, the cost function c(p) and the heuristic function h(p)
for a path p calculated in cycle i are then computed in the following way:

c(p) = cdist(p) + wwcw(p) + wαcα(p) + wscs(p)

with

cdist(p) =
n

∑
i=0

l(ei)

cw(p) =
n

∑
i=0

1mm
max(1mm, w(ei)− r)

cα(p) =
n

∑
i=1

Δα(ei, ei−1)
2

cs(p) = Δα(e0,�gi−1)

where all wx are constant weights. Thereby, the cost function is a weighted sum of four factors.
Firstly, the length of the path, the longer a path, the less valuable it is. Secondly, a function
depending on the width of the occurring edges, as small gaps should be penalised as opposed
to wide openings. The third factor sums up the square angle difference between adjacent
edges, as sharp turns are less preferably than wide turns, which can be driven faster. Finally,
the last summand depends on the previously calculated driving direction. It stabilises the
decision of the robot under sensor noise, as it penalises larger changes in the driving direction
over time.
The weights depend on the specific scenario and capabilities of the robot. For different
manoeuvres the weights might even be set differently. For instance in RoboCup, a robot is
less agile if it dribbles, as it has to maintain control of the ball, thus it would greatly prefer
paths without sharp turns.
Each summand gives rise to a summand in the heuristic function for path, h(p). The heuristic
function we use is defined by:

h(p) =

{
0 if en.e = D
dist(en, D) + wαΔα(en, en.e D)2 + ww maxe∈EVG

1mm
max(1mm,w(e)−r) otherwise

The path length to the destination is approximated by the linear distance between the last
node in the path and the destination. The costs due to angle differences are approximated by
the angle between the last edge and the line connecting the last node and the destination, as
this is the very least the robot will need to turn to arrive at the destination. The stabilisation
summand only factors in the first node and thus it’s heuristic is 0. The width costs are

248
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 13

Fig. 8. Simple Path Example

approximated by the maximal width of any edge in the graph. This is a weak heuristic and
could be improved by limiting the set of considered edges, however this introduces more
overhead than it would save expansion steps in the search, unless the width related costs are
dominating.
The width of a Voronoi edge is determined by its distance to an adjacent cell defining object.
The width of a starting edge, leading from the robot’s position to a Voronoi node equals the
minimum distance to any object spanning a neighbouring Voronoi cell. The width of a final
edge, leading to the destination, depends only on the position of the object defining the cell
which contains the destination. If the destination is on a Voronoi edge, the final edge is part
of this Voronoi edge, thus has equal width.
Figure 8 shows a robot planning to drive to the right goal. The resulting path is shown, with
start and end edges emphasised. As each robot is inside its own convex Voronoi cell the
path search can be initialized with one path for each Voronoi node of the Voronoi cell. If
no initial Voronoi node is reachable, the robot is surrounded by obstacles and cannot drive
anywhere. The drawback of this initializing method is that it creates unnecessary complicated
paths to destinations which could be reached directly, without approaching a Voronoi node.
Comparing the sequences of Voronoi edges with the direct line to the destination prevents
unnecessary complicated paths.
The destination is either inside a Voronoi cell, or on the edge of a cell. If a path is expanded
during the search to one of the Voronoi nodes of the cell, which includes the destination, we
also expand the path to the destination if possible. This is done in a similar way as the path
search was initialized. If the destination is blocked by an obstacle the path stops as near as the
robot can get to the destination. It is plausible, that an obstacle overlaps with the destination,

249Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

12 Mobile Robots book 2

common prominence of the A-Star search algorithm, here we only describe the used heuristics
and the special cases at the start and end of the path. Besides the start and the end of a path,
each path is a sequence of Voronoi edges. Therefore, the applied heuristics have to estimate
the costs of a sequence of Voronoi edges.
Let p denote a path with edges E = e0, . . . , en, and for every edge e, let e.s denote its starting
node, e.e its ending node, such that ei.e = ei+1.s, e0.s the robot’s current position, and en.e the
destination D if p is complete. Further, let l(e) be the length of edge e, w(e) its width, Δα(a, b)
the angle between edges or vectors a and b, and �gi be the calculated driving direction in the
robot’s i-th cycle.
Given additionally the robot’s radius r, the cost function c(p) and the heuristic function h(p)
for a path p calculated in cycle i are then computed in the following way:

c(p) = cdist(p) + wwcw(p) + wαcα(p) + wscs(p)

with

cdist(p) =
n

∑
i=0

l(ei)

cw(p) =
n

∑
i=0

1mm
max(1mm, w(ei)− r)

cα(p) =
n

∑
i=1

Δα(ei, ei−1)
2

cs(p) = Δα(e0,�gi−1)

where all wx are constant weights. Thereby, the cost function is a weighted sum of four factors.
Firstly, the length of the path, the longer a path, the less valuable it is. Secondly, a function
depending on the width of the occurring edges, as small gaps should be penalised as opposed
to wide openings. The third factor sums up the square angle difference between adjacent
edges, as sharp turns are less preferably than wide turns, which can be driven faster. Finally,
the last summand depends on the previously calculated driving direction. It stabilises the
decision of the robot under sensor noise, as it penalises larger changes in the driving direction
over time.
The weights depend on the specific scenario and capabilities of the robot. For different
manoeuvres the weights might even be set differently. For instance in RoboCup, a robot is
less agile if it dribbles, as it has to maintain control of the ball, thus it would greatly prefer
paths without sharp turns.
Each summand gives rise to a summand in the heuristic function for path, h(p). The heuristic
function we use is defined by:

h(p) =

{
0 if en.e = D
dist(en, D) + wαΔα(en, en.e D)2 + ww maxe∈EVG

1mm
max(1mm,w(e)−r) otherwise

The path length to the destination is approximated by the linear distance between the last
node in the path and the destination. The costs due to angle differences are approximated by
the angle between the last edge and the line connecting the last node and the destination, as
this is the very least the robot will need to turn to arrive at the destination. The stabilisation
summand only factors in the first node and thus it’s heuristic is 0. The width costs are

248
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 13

Fig. 8. Simple Path Example

approximated by the maximal width of any edge in the graph. This is a weak heuristic and
could be improved by limiting the set of considered edges, however this introduces more
overhead than it would save expansion steps in the search, unless the width related costs are
dominating.
The width of a Voronoi edge is determined by its distance to an adjacent cell defining object.
The width of a starting edge, leading from the robot’s position to a Voronoi node equals the
minimum distance to any object spanning a neighbouring Voronoi cell. The width of a final
edge, leading to the destination, depends only on the position of the object defining the cell
which contains the destination. If the destination is on a Voronoi edge, the final edge is part
of this Voronoi edge, thus has equal width.
Figure 8 shows a robot planning to drive to the right goal. The resulting path is shown, with
start and end edges emphasised. As each robot is inside its own convex Voronoi cell the
path search can be initialized with one path for each Voronoi node of the Voronoi cell. If
no initial Voronoi node is reachable, the robot is surrounded by obstacles and cannot drive
anywhere. The drawback of this initializing method is that it creates unnecessary complicated
paths to destinations which could be reached directly, without approaching a Voronoi node.
Comparing the sequences of Voronoi edges with the direct line to the destination prevents
unnecessary complicated paths.
The destination is either inside a Voronoi cell, or on the edge of a cell. If a path is expanded
during the search to one of the Voronoi nodes of the cell, which includes the destination, we
also expand the path to the destination if possible. This is done in a similar way as the path
search was initialized. If the destination is blocked by an obstacle the path stops as near as the
robot can get to the destination. It is plausible, that an obstacle overlaps with the destination,

249Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

14 Mobile Robots book 2

so that it is impossible to reach the destination. In this case, the path which ends closest to the
destination is returned by the search.
The driving direction according to the resulting path is not necessarily the direction of the first
edge. Just as we test to drive directly to the given destination, we also test if it is possible to
reach any of the Voronoi nodes on the path directly. Starting at the second to the last Voronoi
node on the path, each point is considered as short cut on the path. Only if no Voronoi node
serves as short cut, the driving direction corresponds to the first path edge.

3.2.2 Reactive collision avoidance behaviour
The collision avoidance behaviour is based on the work of Fujimori et al. (2000) and uses
globally announced rules to make additional communication between the robots unnecessary.
The needed data and its computation is described in Section 3.1.
A collision between two robots is imminent if they are near and further approaching each
other. In this case, the expected minimal distance between the two robots is computed.
Furthermore, if the driving directions intersect, the angle between them, δ is noted. As
described by Fujimori et al., this intersection angle δ is very important. In Figure 9(a) the
collision can be avoided only if both robots change their directions. The robots in Figure 9(c)
would have to change their directions much more than the in Figure 9(a). Therefore, changing
their velocities would be much more effective. Figure 9(e) shows a situation requiring both,
changing velocity and direction. For example, Robot 1 could pass Robot 2 on its right side by
changing the direction and accelerating appropriately. Meanwhile Robot 2 should reduce its
velocity to finish the procedure faster. So there are different kinds of collisions and each of
them needs an adjustment of directions, velocities, or both.
Given the current situation, each robot is assigned a priority to coordinate their collision
avoidance behaviour. For example, the decision which robot should accelerate and which
should decelerate is made according to the robot’s priorities. A high prioritized robot should
arrive quickly at its destination and has the right of way. Lower prioritized robots should
clear the way for higher prioritized robots. Therefore, in Figure 9(c) the robot with the higher
priority will accelerate and the other one will decelerate. The priority ω of robot i towards
robot j is defined as follows:

ωij =

⎧⎨
⎩

vi−−→
Ri Pij

if intersection point Pij exists,

vi if no intersection point exists and vi �= vj
(1)

In the first case the higher priority is assigned to the robot which first arrives at the intersection
point. The latter case is applied if the driving directions are parallel to each other and a
collision as shown in Figure 9(a) is imminent. Here the higher priority is assigned to the
faster robot. If the priorities ωij and ωji are the same, the robot’s ID decides.
According to the priorities and the angle of collision the velocities and directions can be
calculated. The velocity adjustment Δv of robot i to avoid a collision with robot j is defined as
follows:

Δvij =

�
sat(|δ| , π

2 , π, vacc, 0) ωij > ωji,
sat(|δ| , π

2 , π, vdec, 0) ωij < ωji
(2)

The corresponding direction adjustment Δγ is defined by:

Δγij =

�
kγ sgn(δ)

���1 − 2
π |δ|

��� ωij > ωji,

sgn(δ) sat(|δ| , π
2 , π, 0, kγ) ωij < ωji

(3)

250
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 15

(a) δ = π (b) δ = 5π
6 (c) δ = π

2

(d) δ = π
6 (e) δ = 0

Fig. 9. Different Angles of Collision

where sgn(x) and sat(x, a, b, c, d) are defined as:

sgn(x) =

�
1 x ≥ 0
−1 x < 0

(4)

sat(x, a, b, c, d) =

⎧⎪⎨
⎪⎩

c x > a,
d−c
b−a (x − a) + c a ≤ x < b,
d x ≥ b

(5)

Figure 10 shows the functions to calculate the adjustment of velocity and driving direction.
Index H means high and L means low priority. The amount of adjustment to the driving
direction can be defined through the parameter kγ. In the opposite of Fujimori et al., we do
not assign a fix value to kγ. Instead, kγ depends on the remaining time to collision (ttc):

kγ = min(η, η
0.3 [sec]
ttc [sec]

)

If ttc is less than 0.3 seconds, which corresponds to 10 iterations of the robots calculation loop,
the adjustment to the driving angle is set to η.
The amount of velocity change can be set by the parameters vacc and vdec. At most a higher
prioritized robot accelerates about vacc , while a lower prioritized robot decelerates about vdec.
Instead of the differential velocity, Fujimori et al. calculates the absolute velocity of the robots,
which is less reactive concerning the situation. If the angle of collision δ is exactly π, only

251Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

14 Mobile Robots book 2

so that it is impossible to reach the destination. In this case, the path which ends closest to the
destination is returned by the search.
The driving direction according to the resulting path is not necessarily the direction of the first
edge. Just as we test to drive directly to the given destination, we also test if it is possible to
reach any of the Voronoi nodes on the path directly. Starting at the second to the last Voronoi
node on the path, each point is considered as short cut on the path. Only if no Voronoi node
serves as short cut, the driving direction corresponds to the first path edge.

3.2.2 Reactive collision avoidance behaviour
The collision avoidance behaviour is based on the work of Fujimori et al. (2000) and uses
globally announced rules to make additional communication between the robots unnecessary.
The needed data and its computation is described in Section 3.1.
A collision between two robots is imminent if they are near and further approaching each
other. In this case, the expected minimal distance between the two robots is computed.
Furthermore, if the driving directions intersect, the angle between them, δ is noted. As
described by Fujimori et al., this intersection angle δ is very important. In Figure 9(a) the
collision can be avoided only if both robots change their directions. The robots in Figure 9(c)
would have to change their directions much more than the in Figure 9(a). Therefore, changing
their velocities would be much more effective. Figure 9(e) shows a situation requiring both,
changing velocity and direction. For example, Robot 1 could pass Robot 2 on its right side by
changing the direction and accelerating appropriately. Meanwhile Robot 2 should reduce its
velocity to finish the procedure faster. So there are different kinds of collisions and each of
them needs an adjustment of directions, velocities, or both.
Given the current situation, each robot is assigned a priority to coordinate their collision
avoidance behaviour. For example, the decision which robot should accelerate and which
should decelerate is made according to the robot’s priorities. A high prioritized robot should
arrive quickly at its destination and has the right of way. Lower prioritized robots should
clear the way for higher prioritized robots. Therefore, in Figure 9(c) the robot with the higher
priority will accelerate and the other one will decelerate. The priority ω of robot i towards
robot j is defined as follows:

ωij =

⎧⎨
⎩

vi−−→
Ri Pij

if intersection point Pij exists,

vi if no intersection point exists and vi �= vj
(1)

In the first case the higher priority is assigned to the robot which first arrives at the intersection
point. The latter case is applied if the driving directions are parallel to each other and a
collision as shown in Figure 9(a) is imminent. Here the higher priority is assigned to the
faster robot. If the priorities ωij and ωji are the same, the robot’s ID decides.
According to the priorities and the angle of collision the velocities and directions can be
calculated. The velocity adjustment Δv of robot i to avoid a collision with robot j is defined as
follows:

Δvij =

�
sat(|δ| , π

2 , π, vacc, 0) ωij > ωji,
sat(|δ| , π

2 , π, vdec, 0) ωij < ωji
(2)

The corresponding direction adjustment Δγ is defined by:

Δγij =

�
kγ sgn(δ)

���1 − 2
π |δ|

��� ωij > ωji,

sgn(δ) sat(|δ| , π
2 , π, 0, kγ) ωij < ωji

(3)

250
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 15

(a) δ = π (b) δ = 5π
6 (c) δ = π

2

(d) δ = π
6 (e) δ = 0

Fig. 9. Different Angles of Collision

where sgn(x) and sat(x, a, b, c, d) are defined as:

sgn(x) =

�
1 x ≥ 0
−1 x < 0

(4)

sat(x, a, b, c, d) =

⎧⎪⎨
⎪⎩

c x > a,
d−c
b−a (x − a) + c a ≤ x < b,
d x ≥ b

(5)

Figure 10 shows the functions to calculate the adjustment of velocity and driving direction.
Index H means high and L means low priority. The amount of adjustment to the driving
direction can be defined through the parameter kγ. In the opposite of Fujimori et al., we do
not assign a fix value to kγ. Instead, kγ depends on the remaining time to collision (ttc):

kγ = min(η, η
0.3 [sec]
ttc [sec]

)

If ttc is less than 0.3 seconds, which corresponds to 10 iterations of the robots calculation loop,
the adjustment to the driving angle is set to η.
The amount of velocity change can be set by the parameters vacc and vdec. At most a higher
prioritized robot accelerates about vacc , while a lower prioritized robot decelerates about vdec.
Instead of the differential velocity, Fujimori et al. calculates the absolute velocity of the robots,
which is less reactive concerning the situation. If the angle of collision δ is exactly π, only

251Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

16 Mobile Robots book 2

the driving directions are affected and the velocities stay unchanged. If the angle of collision
δ is exactly π

2 , only the velocities are affected and the driving directions stay unchanged.
At the range of π

2 ≤ δ ≤ π the change to the velocities and driving directions are linearly
interpolated. At the range of 0 ≤ δ ≤ π

2 the velocity changes of both robots stay at their
maximum, but the change of the driving direction of the higher prioritized robot increases to
its maximum again. This corresponds to the situation shown in Figure 9(e).

(a) change of direction (b) velocity change

Fig. 10. Change of direction and velocity

In case of collisions with more than two robots, the overall change of direction and velocity of
robot i are given by the weighted sum of changes of each collision:

Δγi =
∑n

j=1
1

ttcij
Δγij

∑n
j=1

1
ttcij

(6)

Δvi =
∑n

j=1
1

ttcij
Δvij

∑n
j=1

1
ttcij

(7)

Due to the fact that each change is weighted by the corresponding inverse of ttc, earlier
collisions have more influence than later collisions.
Adapting the introduced collision avoidance technique to a specific team of robots, the values
of the mentioned parameters have to be chosen appropriately. These parameters include
the maximum distance between two robots for collision avoidance to apply, as well as a
minimum velocity, below which no collision avoidance is considered. Altogether, there are
two activation parameters: the minimum velocity two robots approach each other and the
distance between them. How much the collision avoidance behaviour changes the calculated
driving direction and velocity of a robot depends on the parameters η, vacc and vdec. These
three parameters should be chosen as large as necessary and as small as possible to avoid
collisions with as little effort as possible. The evaluation of the approach of Fujimori et al.
includes simulator tests as well as tests on real robots. According to the results a collision is
avoided in most cases and problems arise if the robots have to move in confined spaces. Our
evaluation follows in the next section.

4. Discussion

Although our architecture may appear to be overly complex at first glance, each part, shown
in Figure 7 of Section 3, has clearly defined interfaces and makes an essential contribution to
the overall performance. Furthermore, the modular design enables exchangeability of each

252
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 17

module and increases the reusability of our architecture. Each module comes with its own
set of parameters, hence adapting our architecture to other types of scenarios might raise
suspicions that tuning these parameters is a lot of work. However, the modules described are
very robust against small parameter changes, such that rough adjustment of the parameters
already produces good results. Although a centralised approach can produce better results,
due to such an approach avoiding additional coordination problems, it also has a single
point of failure, which cannot be tolerated in many domains. Our combination of different
algorithms with efficiency in mind yields a real-time path planning architecture, which even
provides the possibility to plan paths of other cooperative robots. In the following sections,
we discuss the main advantages of each module.

4.1 Clustering
We evaluated the clustering algorithm using two cooperative robots. One is located at the
centre of the football field recording its own data together with the data received from the
other robot. The other robot is controlled and sends its own data to the robot in the middle.
The evaluation is based on the recorded data of the robot located at the centre. The data
includes 5 minutes with a recording frequency of 30Hz for the local data and 10Hz for the
data received from the remote controlled robot. The recorded data is subject to the conditions
mentioned in Section 1.
Clustering is subject to two kinds of errors. Either data describing the same obstacle is not
fused (first case), or data describing different obstacles is fused nevertheless (second case).
The frequency of occurrence of both cases depends directly on the variance threshold. The
variance threshold defines the maximum variance of a cluster. The bigger the variance
threshold is the bigger the distance between fused data can be. In other words, the occurrences
of the first case errors increase and the occurrences of the second case errors decrease.
Reducing the variance threshold inversely influences the two cases of errors. Determining the
occurrences of errors near the controlled robot the second case of errors is negligible, because
from the recording robot’s point of view there is only the controlled robot on the football
field. Furthermore, obstacle positions received from another robot will not be fused with the
position of this robot, because the robot cannot see itself. The frequency of occurrence against
the variance threshold is shown in Figure 11.

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

re
la

tiv
e

er
ro

r
fr

eq
ue

nc
y

(f
irs

t c
as

e)

0

0.05

0.1

0.15

0.2

30000 40000 50000

(40000,0.12)

variance threshold [mm²]

Fig. 11. Relation of error frequency against variance threshold

253Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

16 Mobile Robots book 2

the driving directions are affected and the velocities stay unchanged. If the angle of collision
δ is exactly π

2 , only the velocities are affected and the driving directions stay unchanged.
At the range of π

2 ≤ δ ≤ π the change to the velocities and driving directions are linearly
interpolated. At the range of 0 ≤ δ ≤ π

2 the velocity changes of both robots stay at their
maximum, but the change of the driving direction of the higher prioritized robot increases to
its maximum again. This corresponds to the situation shown in Figure 9(e).

(a) change of direction (b) velocity change

Fig. 10. Change of direction and velocity

In case of collisions with more than two robots, the overall change of direction and velocity of
robot i are given by the weighted sum of changes of each collision:

Δγi =
∑n

j=1
1

ttcij
Δγij

∑n
j=1

1
ttcij

(6)

Δvi =
∑n

j=1
1

ttcij
Δvij

∑n
j=1

1
ttcij

(7)

Due to the fact that each change is weighted by the corresponding inverse of ttc, earlier
collisions have more influence than later collisions.
Adapting the introduced collision avoidance technique to a specific team of robots, the values
of the mentioned parameters have to be chosen appropriately. These parameters include
the maximum distance between two robots for collision avoidance to apply, as well as a
minimum velocity, below which no collision avoidance is considered. Altogether, there are
two activation parameters: the minimum velocity two robots approach each other and the
distance between them. How much the collision avoidance behaviour changes the calculated
driving direction and velocity of a robot depends on the parameters η, vacc and vdec. These
three parameters should be chosen as large as necessary and as small as possible to avoid
collisions with as little effort as possible. The evaluation of the approach of Fujimori et al.
includes simulator tests as well as tests on real robots. According to the results a collision is
avoided in most cases and problems arise if the robots have to move in confined spaces. Our
evaluation follows in the next section.

4. Discussion

Although our architecture may appear to be overly complex at first glance, each part, shown
in Figure 7 of Section 3, has clearly defined interfaces and makes an essential contribution to
the overall performance. Furthermore, the modular design enables exchangeability of each

252
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 17

module and increases the reusability of our architecture. Each module comes with its own
set of parameters, hence adapting our architecture to other types of scenarios might raise
suspicions that tuning these parameters is a lot of work. However, the modules described are
very robust against small parameter changes, such that rough adjustment of the parameters
already produces good results. Although a centralised approach can produce better results,
due to such an approach avoiding additional coordination problems, it also has a single
point of failure, which cannot be tolerated in many domains. Our combination of different
algorithms with efficiency in mind yields a real-time path planning architecture, which even
provides the possibility to plan paths of other cooperative robots. In the following sections,
we discuss the main advantages of each module.

4.1 Clustering
We evaluated the clustering algorithm using two cooperative robots. One is located at the
centre of the football field recording its own data together with the data received from the
other robot. The other robot is controlled and sends its own data to the robot in the middle.
The evaluation is based on the recorded data of the robot located at the centre. The data
includes 5 minutes with a recording frequency of 30Hz for the local data and 10Hz for the
data received from the remote controlled robot. The recorded data is subject to the conditions
mentioned in Section 1.
Clustering is subject to two kinds of errors. Either data describing the same obstacle is not
fused (first case), or data describing different obstacles is fused nevertheless (second case).
The frequency of occurrence of both cases depends directly on the variance threshold. The
variance threshold defines the maximum variance of a cluster. The bigger the variance
threshold is the bigger the distance between fused data can be. In other words, the occurrences
of the first case errors increase and the occurrences of the second case errors decrease.
Reducing the variance threshold inversely influences the two cases of errors. Determining the
occurrences of errors near the controlled robot the second case of errors is negligible, because
from the recording robot’s point of view there is only the controlled robot on the football
field. Furthermore, obstacle positions received from another robot will not be fused with the
position of this robot, because the robot cannot see itself. The frequency of occurrence against
the variance threshold is shown in Figure 11.

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

re
la

tiv
e

er
ro

r
fr

eq
ue

nc
y

(f
irs

t c
as

e)

0

0.05

0.1

0.15

0.2

30000 40000 50000

(40000,0.12)

variance threshold [mm²]

Fig. 11. Relation of error frequency against variance threshold

253Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

18 Mobile Robots book 2

In Figure 11 a small part of the graph is shown magnified. The emphasised point (40000, 0.12)
indicates that an obstacle position must not exceed the standard deviation of

√
40000mm2 =

20cm to its cluster centre. In this case, 12 percent of the clustered situations contain a first
case error. Assuming a robot radius of 25cm a variance threshold of 40000mm2 means that
two robots have to be perceived overlapping by 10cm to be erroneously fused. Moreover, a
local observation of a robot, moving with a relative speed of over 9m/s with respect to the
local robot, might not be fused with its broadcast position, given the average age of 50ms of
any remotely received information. A relative speed of 9m/s is reached if two robots move in
opposite direction with 4.5m/s, which is common in RoboCup Middle Size League games.
Both statements hold only in case of noiseless sensor information and without network
latencies. Factoring in sensor noise, erroneous fusing occurs earlier. However, in most
domains robots hardly move faster than 4.5m/s, thus high velocities are usually not a cause
for badly clustered data.
Therefore, we can state that the clustering with a variance threshold of 40000mm2 is fairly
robust against high robot velocities. Figure 12(a) further underlines this, as the error is
independent of the relative velocity for small values of said velocity.

0

0.05

0.1

0.15

0.2

0 300 600 900 1200 1500 1800 2100 2400 2700

re
la

tiv
e

er
ro

r
fr

eq
ue

nc
y

(f
irs

t c
as

e)

velocity [mm/s]

(a) velocity relation

0

0.05

0.1

0.15

0.2

0 1000 2000 3000 4000 5000 6000

re
la

tiv
e

er
ro

r
fr

eq
ue

nc
y

(f
irs

t c
as

e)

distance [mm]

(b) distance relation

Fig. 12. Relation of error frequency against velocity and distance

Imprecision introduced by sensors noise is much more influential. Figure 12(b) shows a
correlation between distance and error frequency. This correlation can be explained by the
fact, that the feature extraction algorithm of the robot is much more imprecise in estimating
the position of robots, which are further away than of robots which are closer by. The small
number of error occurrences at a distance above 5m arose, because the feature extraction
algorithm often did not recognize the remote controlled robot at these distances.
Summarized, the clustering is robust against the dynamics of a RoboCup Middle Size League
game, hence it unifies the data of all cooperative robots to the same single point of view on
all cooperative robots. The simple clustering algorithm used here is much more time efficient
than the Bayesian filter used for tracking over time. Thus, using the clustered data as input for
the tracking algorithm instead of using the raw observations reduces the latency of the whole
computation.

4.2 Tracking
In this Section, we briefly demonstrate the performance of the tracking algorithm discussed
in Section 3.1.2. In the following simulated experiment, 10 objects moved with a randomly

254
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 19

Fig. 13. Tracking performance with increasing observation noise

chosen constant velocity between 1 and 4m/s on a field of 20m × 20m size. In case they
collided with the boundaries, they bounced back perfectly. The tracker was set up with a
maximum hypotheses number of 30, easily allowing it to process 10 observations in less than
5ms. Each test was performed for 500 iterations.
In each iteration, 10 observations were given to the tracker, each with a probability p = 0.1
uniformly distributed over the field, else normally distributed around an object. Figure 13
shows the resulting tracking errors, against an increasing amount of observation noise. Note
that the tracking algorithm assumes a constant deviation of 0.25m in all experiments.
One can see that position and velocity errors increase linearly with increasing deviation, while
the error in the number of objects increases rapidly for deviations higher than the assumed
0.25m. At the expected deviation of 0.25m, an average of 0.5 objects are wrongly tracked.
Note that this also includes the start up phase, in which the tracker gradually increases the
amount of objects tracked. The average position error is 0.3m and the average velocity error
is 1.2m/s. Large velocity errors mostly occur after an object has bounced off the boundary of
the field, as this clearly violates the constant velocity assumption.
Figure 14 shows the same setup, where the objects additionally have a rotational speed
between 10◦/s and 90◦/s, and thus move on circles. As expected, the velocity error is in
general higher than in the case of a constant velocity. Moreover, the number of tracking errors
increases earlier, as observations not fitting the model are more common. Interestingly, the
position error is only marginally affected.

4.3 Path generation
Like every path planning approach using some kind of abstraction, such as a roadmap, the
paths generated by our architecture are not optimal. Approaches trying to generate optimal
paths are faced with a PSPACE-hard problem (see Section 2.1) and as a result these approaches
are not feasible in domains similar to the one addressed by our architecture.
Avoiding stationary obstacles can easily be done using a Voronoi graph as roadmap. A robot
following the edges of the Voronoi graph is as far away from the surrounding obstacles
as possible. A path planning algorithm using this graph can easily adapt to the current

255Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

18 Mobile Robots book 2

In Figure 11 a small part of the graph is shown magnified. The emphasised point (40000, 0.12)
indicates that an obstacle position must not exceed the standard deviation of

√
40000mm2 =

20cm to its cluster centre. In this case, 12 percent of the clustered situations contain a first
case error. Assuming a robot radius of 25cm a variance threshold of 40000mm2 means that
two robots have to be perceived overlapping by 10cm to be erroneously fused. Moreover, a
local observation of a robot, moving with a relative speed of over 9m/s with respect to the
local robot, might not be fused with its broadcast position, given the average age of 50ms of
any remotely received information. A relative speed of 9m/s is reached if two robots move in
opposite direction with 4.5m/s, which is common in RoboCup Middle Size League games.
Both statements hold only in case of noiseless sensor information and without network
latencies. Factoring in sensor noise, erroneous fusing occurs earlier. However, in most
domains robots hardly move faster than 4.5m/s, thus high velocities are usually not a cause
for badly clustered data.
Therefore, we can state that the clustering with a variance threshold of 40000mm2 is fairly
robust against high robot velocities. Figure 12(a) further underlines this, as the error is
independent of the relative velocity for small values of said velocity.

0

0.05

0.1

0.15

0.2

0 300 600 900 1200 1500 1800 2100 2400 2700

re
la

tiv
e

er
ro

r
fr

eq
ue

nc
y

(f
irs

t c
as

e)

velocity [mm/s]

(a) velocity relation

0

0.05

0.1

0.15

0.2

0 1000 2000 3000 4000 5000 6000

re
la

tiv
e

er
ro

r
fr

eq
ue

nc
y

(f
irs

t c
as

e)

distance [mm]

(b) distance relation

Fig. 12. Relation of error frequency against velocity and distance

Imprecision introduced by sensors noise is much more influential. Figure 12(b) shows a
correlation between distance and error frequency. This correlation can be explained by the
fact, that the feature extraction algorithm of the robot is much more imprecise in estimating
the position of robots, which are further away than of robots which are closer by. The small
number of error occurrences at a distance above 5m arose, because the feature extraction
algorithm often did not recognize the remote controlled robot at these distances.
Summarized, the clustering is robust against the dynamics of a RoboCup Middle Size League
game, hence it unifies the data of all cooperative robots to the same single point of view on
all cooperative robots. The simple clustering algorithm used here is much more time efficient
than the Bayesian filter used for tracking over time. Thus, using the clustered data as input for
the tracking algorithm instead of using the raw observations reduces the latency of the whole
computation.

4.2 Tracking
In this Section, we briefly demonstrate the performance of the tracking algorithm discussed
in Section 3.1.2. In the following simulated experiment, 10 objects moved with a randomly

254
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 19

Fig. 13. Tracking performance with increasing observation noise

chosen constant velocity between 1 and 4m/s on a field of 20m × 20m size. In case they
collided with the boundaries, they bounced back perfectly. The tracker was set up with a
maximum hypotheses number of 30, easily allowing it to process 10 observations in less than
5ms. Each test was performed for 500 iterations.
In each iteration, 10 observations were given to the tracker, each with a probability p = 0.1
uniformly distributed over the field, else normally distributed around an object. Figure 13
shows the resulting tracking errors, against an increasing amount of observation noise. Note
that the tracking algorithm assumes a constant deviation of 0.25m in all experiments.
One can see that position and velocity errors increase linearly with increasing deviation, while
the error in the number of objects increases rapidly for deviations higher than the assumed
0.25m. At the expected deviation of 0.25m, an average of 0.5 objects are wrongly tracked.
Note that this also includes the start up phase, in which the tracker gradually increases the
amount of objects tracked. The average position error is 0.3m and the average velocity error
is 1.2m/s. Large velocity errors mostly occur after an object has bounced off the boundary of
the field, as this clearly violates the constant velocity assumption.
Figure 14 shows the same setup, where the objects additionally have a rotational speed
between 10◦/s and 90◦/s, and thus move on circles. As expected, the velocity error is in
general higher than in the case of a constant velocity. Moreover, the number of tracking errors
increases earlier, as observations not fitting the model are more common. Interestingly, the
position error is only marginally affected.

4.3 Path generation
Like every path planning approach using some kind of abstraction, such as a roadmap, the
paths generated by our architecture are not optimal. Approaches trying to generate optimal
paths are faced with a PSPACE-hard problem (see Section 2.1) and as a result these approaches
are not feasible in domains similar to the one addressed by our architecture.
Avoiding stationary obstacles can easily be done using a Voronoi graph as roadmap. A robot
following the edges of the Voronoi graph is as far away from the surrounding obstacles
as possible. A path planning algorithm using this graph can easily adapt to the current

255Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

20 Mobile Robots book 2

Fig. 14. Tracking performance with objects moving on circles

situation, using differently weighted cost functions, thus allowing robots to switch between
an aggressive behaviour, using short, narrow paths and a safe behaviour using longer and
wider paths, for instance.
Moreover, a Voronoi graph can be used to answer various spatial queries other than path
planning, such as finding free areas or the robot closest to a given point.
Bhattacharya & Gavrilova (2007) demonstrated that it is possible to calculate Voronoi graphs
to approximate arbitrary environments.

4.4 Path correction
The reactive nature of our collision avoidance behaviour forms a contrast to the forward
planning of the path planning algorithm and it might be more intuitive to avoid collisions
along the whole path. However, in order to avoid collisions along the whole path obstacle
positions, including adversarial robots, need to be predicted for time periods of up to 5 − 10s.
Predicting the dynamic system that is formed by multiple cooperative and adversarial robots
for more than 200ms is completely infeasible. Thus, collisions need to be handled reactively
without relying on comparatively long-term predictions.
Due to the globally known avoidance rules, there is no need for an additional communication
effort. Furthermore, the discussed rules scale linearly with the number of robots involved.
Similar to the adaptivity of the planning algorithm, the parameters of the collision avoidance
allows to switch between different behaviours during runtime, using different grades of
sensitivity. Summarized, the collision avoidance technique is applicable to any number and
any kind of autonomously driving robots.

5. Conclusion

The described architecture for cooperative real-time path planning and collision avoidance,
consisting of various adapted algorithms, was evaluated on robots of the Carpe Noctem
RoboCup team of the University of Kassel and used in tournaments since 2011. The
architecture demonstrates that it is possible to use a decentralised path-planning approach
combined with a conflict resolution inspired by the reactive behaviour approach. The only

256
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 21

requirement is to fuse and unify the information among the group of cooperative robots, so
that they come to similar decisions. Fused and unified information enable path planning
beyond the sensor range of single robots up to the sensor range of the team, without any
additional communication for conflict resolution. Furthermore, the complete calculation loop
is real-time capable. More precisely, the complete recognition, fusion and path planning cycle
can be done at a frequency of 30Hz. Furthermore, the architecture meets the requirements
of the highly dynamic RoboCup domain of the Middle Size League described in Section 1.
The stability and similarity of fused information and calculated paths among the group of
cooperative robots can be analysed over time and compared with other path planning and
sensor fusion approaches in future.

6. References

Asama, H., Ozaki, K., Itakura, H., Matsumoto, A., Ishida, Y. & Endo, I. (1991). Collision
avoidance among multiple mobile robots based on rules and communication,
Intelligent Robots and Systems ’91. Intelligence for Mechanical Systems, Vol. 3, pp. 1215
–1220.

Baer, P. A. (2008). Platform-Independent Development of Robot Communication Software, Phd thesis
in computer science, University of Kassel.
URL: http://www.upress.uni-kassel.de/publi/abstract.php?978-3-89958-644-2

Bengtsson, M. & Schubert, J. (2003). Dempster-shafer clustering using potts spin mean field
theory, Soft Computing - A Fusion of Foundations, Methodologies and Applications 5: 215
– 228. 10.1007/s005000100084.

Bhattacharya, P. & Gavrilova, M. (2007). Voronoi diagram in optimal path planning, 4th
International Symposium on Voronoi Diagrams in Science and Engineering, pp. 38 –47.

Bruijnen, D., van Helvoort, J. & van de Molengraft, R. (2007). Realtime motion path generation
using subtargets in a rapidly changing environment, Robotics and Autonomous Systems
55(6): 470–479.

de Berg, M., van Kreveld, M., Overmars, M. & Schwarzkopf, O. (2000). Computational
Geometry: Algorithms and Applications, second edn, Springer.
URL: http://www.cs.uu.nl/geobook/

Dechter, R. & Pearl, J. (1985). Generalized best-first search strategies and the optimality of a,
Journal of the ACM 32: 505–536.

Ester, M. & Sander, J. (2000). Knowledge Discovery in Databases - Techniken und Anwendungen,
Springer.

Fujimori, A., Teramoto, M., Nikiforuk, P. N. & Gupta, M. M. (2000). Cooperative collision
avoidance between multiple mobile robots, Journal of Robotic Systems 17(7): 347–363.

Guibas, L. J., Knuth, D. E. & Sharir, M. (1990). Randomized incremental construction of
delaunay and voronoi diagrams, Proceedings of the seventeenth international colloquium
on Automata, languages and programming, Springer-Verlag New York, Inc., New York,
NY, USA, pp. 414–431.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths, Systems Science and Cybernetics, IEEE Transactions on
4(2): 100–107.
URL: http://dx.doi.org/10.1109/TSSC.1968.300136

Hopcraft, J. E., Schwartz, J. T. & Sharir, M. (1984). On the complexity of motion planning for
multiple independent objects; pspace- hardness of the "warehouseman’s problem",
The International Journal of Robotics Research, Vol. 3, pp. 76–88.

257Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

20 Mobile Robots book 2

Fig. 14. Tracking performance with objects moving on circles

situation, using differently weighted cost functions, thus allowing robots to switch between
an aggressive behaviour, using short, narrow paths and a safe behaviour using longer and
wider paths, for instance.
Moreover, a Voronoi graph can be used to answer various spatial queries other than path
planning, such as finding free areas or the robot closest to a given point.
Bhattacharya & Gavrilova (2007) demonstrated that it is possible to calculate Voronoi graphs
to approximate arbitrary environments.

4.4 Path correction
The reactive nature of our collision avoidance behaviour forms a contrast to the forward
planning of the path planning algorithm and it might be more intuitive to avoid collisions
along the whole path. However, in order to avoid collisions along the whole path obstacle
positions, including adversarial robots, need to be predicted for time periods of up to 5 − 10s.
Predicting the dynamic system that is formed by multiple cooperative and adversarial robots
for more than 200ms is completely infeasible. Thus, collisions need to be handled reactively
without relying on comparatively long-term predictions.
Due to the globally known avoidance rules, there is no need for an additional communication
effort. Furthermore, the discussed rules scale linearly with the number of robots involved.
Similar to the adaptivity of the planning algorithm, the parameters of the collision avoidance
allows to switch between different behaviours during runtime, using different grades of
sensitivity. Summarized, the collision avoidance technique is applicable to any number and
any kind of autonomously driving robots.

5. Conclusion

The described architecture for cooperative real-time path planning and collision avoidance,
consisting of various adapted algorithms, was evaluated on robots of the Carpe Noctem
RoboCup team of the University of Kassel and used in tournaments since 2011. The
architecture demonstrates that it is possible to use a decentralised path-planning approach
combined with a conflict resolution inspired by the reactive behaviour approach. The only

256
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains 21

requirement is to fuse and unify the information among the group of cooperative robots, so
that they come to similar decisions. Fused and unified information enable path planning
beyond the sensor range of single robots up to the sensor range of the team, without any
additional communication for conflict resolution. Furthermore, the complete calculation loop
is real-time capable. More precisely, the complete recognition, fusion and path planning cycle
can be done at a frequency of 30Hz. Furthermore, the architecture meets the requirements
of the highly dynamic RoboCup domain of the Middle Size League described in Section 1.
The stability and similarity of fused information and calculated paths among the group of
cooperative robots can be analysed over time and compared with other path planning and
sensor fusion approaches in future.

6. References

Asama, H., Ozaki, K., Itakura, H., Matsumoto, A., Ishida, Y. & Endo, I. (1991). Collision
avoidance among multiple mobile robots based on rules and communication,
Intelligent Robots and Systems ’91. Intelligence for Mechanical Systems, Vol. 3, pp. 1215
–1220.

Baer, P. A. (2008). Platform-Independent Development of Robot Communication Software, Phd thesis
in computer science, University of Kassel.
URL: http://www.upress.uni-kassel.de/publi/abstract.php?978-3-89958-644-2

Bengtsson, M. & Schubert, J. (2003). Dempster-shafer clustering using potts spin mean field
theory, Soft Computing - A Fusion of Foundations, Methodologies and Applications 5: 215
– 228. 10.1007/s005000100084.

Bhattacharya, P. & Gavrilova, M. (2007). Voronoi diagram in optimal path planning, 4th
International Symposium on Voronoi Diagrams in Science and Engineering, pp. 38 –47.

Bruijnen, D., van Helvoort, J. & van de Molengraft, R. (2007). Realtime motion path generation
using subtargets in a rapidly changing environment, Robotics and Autonomous Systems
55(6): 470–479.

de Berg, M., van Kreveld, M., Overmars, M. & Schwarzkopf, O. (2000). Computational
Geometry: Algorithms and Applications, second edn, Springer.
URL: http://www.cs.uu.nl/geobook/

Dechter, R. & Pearl, J. (1985). Generalized best-first search strategies and the optimality of a,
Journal of the ACM 32: 505–536.

Ester, M. & Sander, J. (2000). Knowledge Discovery in Databases - Techniken und Anwendungen,
Springer.

Fujimori, A., Teramoto, M., Nikiforuk, P. N. & Gupta, M. M. (2000). Cooperative collision
avoidance between multiple mobile robots, Journal of Robotic Systems 17(7): 347–363.

Guibas, L. J., Knuth, D. E. & Sharir, M. (1990). Randomized incremental construction of
delaunay and voronoi diagrams, Proceedings of the seventeenth international colloquium
on Automata, languages and programming, Springer-Verlag New York, Inc., New York,
NY, USA, pp. 414–431.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths, Systems Science and Cybernetics, IEEE Transactions on
4(2): 100–107.
URL: http://dx.doi.org/10.1109/TSSC.1968.300136

Hopcraft, J. E., Schwartz, J. T. & Sharir, M. (1984). On the complexity of motion planning for
multiple independent objects; pspace- hardness of the "warehouseman’s problem",
The International Journal of Robotics Research, Vol. 3, pp. 76–88.

257Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains

22 Mobile Robots book 2

Lauer, M. (2007). Ego-motion estimation and collision detection for omnidirectional robots,
in G. Lakemeyer, E. Sklar, D. G. Sorrenti & T. Takahashi (eds), RoboCup 2006: Robot
Soccer World Cup X, Springer-Verlag, pp. 466–473.

Leach, G. (1992). Improving worst-case optimal delaunay triangulation algorithms, In 4th
Canadian Conference on Computational Geometry, p. 15.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate
observations, in L. M. L. Cam & J. Neyman (eds), Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1, University of California Press,
pp. 281–297.

Mataric, M. (1992). Designing emergent behaviors: From local interactions to collective
intelligence, In Proceedings of the International Conference on Simulation of Adaptive
Behavior: From Animals to Animats, Vol. 2, pp. 432–441.

Mourikis, A. I. & Roumeliotis, S. I. (2006). Optimal sensor scheduling for resource-constrained
localization of mobile robot formations, IEEE TRANSACTIONS ON ROBOTICS,
Vol. 22.

Parker, L. E. (2009). Path planning and motion coordination in multiple mobile robot teams, in
R. A. Meyers (ed.), Encyclopedia of Complexity and System Science, Springer, Knoxville,
Tennessee, USA, chapter 13, pp. 5783–5800.

Parsons, D. & Canny, J. (1990). A motion planner for multiple mobile robots, IEEE International
Conference of Robotics and Automation, pp. 8–13.

Peasgood, M., Clark, C. & McPhee, J. (2008). A complete and scalable strategy for coordinating
multiple robots within roadmaps, IEEE Transactions on Robotics 24(2): 283 –292.

Reichle, R. (2010). Information Exchange and Fusion in Heterogeneous Distributed Environments,
Phd thesis in computer science, University of Kassel, Kassel.

Schubert, J. (1993). On nonspecific evidence, International Journal of Intelligent Systems 8(6): 711
– 725.

Schubert, J. & Sidenbladh, H. (2005). Sequential clustering with particle filters – estimating
the number of clusters from data, 8th International Conference on Information Fusion,
Vol. 1, ISIF, pp. 1 – 8.

Skubch, H., Wagner, M., Reichle, R. & Geihs, K. (2011). A modelling language for cooperative
plans in highly dynamic domains, Mechatronics 21(2): 423 – 433. Special Issue on
Advances in intelligent robot design for the Robocup Middle Size League.
URL: http://www.sciencedirect.com/science/article/pii/S0957415810001868

Topor, A. (1999). Roboterfußball: Pfadplanung in dynamischer umgebung, Master’s thesis,
Universität Freiburg.

van de Molengraft, R. (2009). Techunited robocup – the object tracking problem, online.
[Online; accessed 22-July-2011].

Ward, J. (1963). Hierarchical grouping to optimize an objective function, Journal of the American
Statistical Association 58: 236–244.

Woronoi, G. F. (1908). Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. premier mémoire. sur quelques propriétés des formes quadratiques
positives parfaites., Journal für die reine und angewandte Mathematik 133: 97–102.

258
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

12

Motion Planning for Multiple Mobile
 Robots Using Time-Scaling

István Komlósi and Bálint Kiss
Department of Control Engineering and Information Technology

 Budapest University of Technology and Economics
Hungary

1. Introduction
Recent developments in robotics have raised the interest in mobile robots due to their wide
range of applications requiring high level of autonomy of individual mobile agents. This
increased level of autonomy needs more sophisticated path-planning and motion control
methods, which have been studied extensively in the recent years [10].
This paper focuses on a typical industrial application in which several mobile robots share
the same workspace. These units may carry materials or be capable of carrying out various
repair jobs at some locations, etc. Due to the tight schedules to achieve high productivity in
such applications, it is imperative to synchronize the motion of the units so that they arrive
at the required location on time without collision with obstacles or with other units.
Coordinated planning of such multi-robot systems is addressed in the literature based on
some search methodology [7] or using neural network based techniques [8].
Since a high number of units can be involved, it may not be possible to design collision free
trajectories for all robots, i.e. avoiding each other and all static obstacles cannot be
guaranteed only by the path geometry. Instead of constructing trajectories with complex
geometries so that they have only a few or no intersections at all, one can design simple
paths which disregard moving obstacles (i.e. other robots) and take only the static obstacles
into account, so the path geometries are supposed to be fixed for each robot. Such motion
planning algorithms are readily available in the literature [1,3,4] for simple polygonal
obstacle representations. This initial path geometry designed and assigned to each unit
ensures the avoidance of static obstacles.
The avoidance of the moving obstacles can be achieved by choosing a suitable velocity
profile along the fixed-geometry trajectories. In order to obtain the proper velocity input, we
assign first a default velocity profile which the unit would use without the dynamic
obstacles. Such a profile can be designed to be optimal in some sense (minimal time or cost)
and may satisfy additional constraints, if necessary [2]. The default velocity profile consists
of intervals with constant or zero acceleration. Acceleration parameters change at the
boundaries of these intervals. This default velocity profile is then modified such that a unit
decelerates or accelerates its motion to let other units pass through potential collision areas
(identified from the path geometries).
We suppose that a priority level is assigned to each robot so that a unit with a given priority
regards all units with higher priority level as dynamic obstacles. The ranking of the units is

22 Mobile Robots book 2

Lauer, M. (2007). Ego-motion estimation and collision detection for omnidirectional robots,
in G. Lakemeyer, E. Sklar, D. G. Sorrenti & T. Takahashi (eds), RoboCup 2006: Robot
Soccer World Cup X, Springer-Verlag, pp. 466–473.

Leach, G. (1992). Improving worst-case optimal delaunay triangulation algorithms, In 4th
Canadian Conference on Computational Geometry, p. 15.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate
observations, in L. M. L. Cam & J. Neyman (eds), Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1, University of California Press,
pp. 281–297.

Mataric, M. (1992). Designing emergent behaviors: From local interactions to collective
intelligence, In Proceedings of the International Conference on Simulation of Adaptive
Behavior: From Animals to Animats, Vol. 2, pp. 432–441.

Mourikis, A. I. & Roumeliotis, S. I. (2006). Optimal sensor scheduling for resource-constrained
localization of mobile robot formations, IEEE TRANSACTIONS ON ROBOTICS,
Vol. 22.

Parker, L. E. (2009). Path planning and motion coordination in multiple mobile robot teams, in
R. A. Meyers (ed.), Encyclopedia of Complexity and System Science, Springer, Knoxville,
Tennessee, USA, chapter 13, pp. 5783–5800.

Parsons, D. & Canny, J. (1990). A motion planner for multiple mobile robots, IEEE International
Conference of Robotics and Automation, pp. 8–13.

Peasgood, M., Clark, C. & McPhee, J. (2008). A complete and scalable strategy for coordinating
multiple robots within roadmaps, IEEE Transactions on Robotics 24(2): 283 –292.

Reichle, R. (2010). Information Exchange and Fusion in Heterogeneous Distributed Environments,
Phd thesis in computer science, University of Kassel, Kassel.

Schubert, J. (1993). On nonspecific evidence, International Journal of Intelligent Systems 8(6): 711
– 725.

Schubert, J. & Sidenbladh, H. (2005). Sequential clustering with particle filters – estimating
the number of clusters from data, 8th International Conference on Information Fusion,
Vol. 1, ISIF, pp. 1 – 8.

Skubch, H., Wagner, M., Reichle, R. & Geihs, K. (2011). A modelling language for cooperative
plans in highly dynamic domains, Mechatronics 21(2): 423 – 433. Special Issue on
Advances in intelligent robot design for the Robocup Middle Size League.
URL: http://www.sciencedirect.com/science/article/pii/S0957415810001868

Topor, A. (1999). Roboterfußball: Pfadplanung in dynamischer umgebung, Master’s thesis,
Universität Freiburg.

van de Molengraft, R. (2009). Techunited robocup – the object tracking problem, online.
[Online; accessed 22-July-2011].

Ward, J. (1963). Hierarchical grouping to optimize an objective function, Journal of the American
Statistical Association 58: 236–244.

Woronoi, G. F. (1908). Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. premier mémoire. sur quelques propriétés des formes quadratiques
positives parfaites., Journal für die reine und angewandte Mathematik 133: 97–102.

258
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

12

Motion Planning for Multiple Mobile
 Robots Using Time-Scaling

István Komlósi and Bálint Kiss
Department of Control Engineering and Information Technology

 Budapest University of Technology and Economics
Hungary

1. Introduction
Recent developments in robotics have raised the interest in mobile robots due to their wide
range of applications requiring high level of autonomy of individual mobile agents. This
increased level of autonomy needs more sophisticated path-planning and motion control
methods, which have been studied extensively in the recent years [10].
This paper focuses on a typical industrial application in which several mobile robots share
the same workspace. These units may carry materials or be capable of carrying out various
repair jobs at some locations, etc. Due to the tight schedules to achieve high productivity in
such applications, it is imperative to synchronize the motion of the units so that they arrive
at the required location on time without collision with obstacles or with other units.
Coordinated planning of such multi-robot systems is addressed in the literature based on
some search methodology [7] or using neural network based techniques [8].
Since a high number of units can be involved, it may not be possible to design collision free
trajectories for all robots, i.e. avoiding each other and all static obstacles cannot be
guaranteed only by the path geometry. Instead of constructing trajectories with complex
geometries so that they have only a few or no intersections at all, one can design simple
paths which disregard moving obstacles (i.e. other robots) and take only the static obstacles
into account, so the path geometries are supposed to be fixed for each robot. Such motion
planning algorithms are readily available in the literature [1,3,4] for simple polygonal
obstacle representations. This initial path geometry designed and assigned to each unit
ensures the avoidance of static obstacles.
The avoidance of the moving obstacles can be achieved by choosing a suitable velocity
profile along the fixed-geometry trajectories. In order to obtain the proper velocity input, we
assign first a default velocity profile which the unit would use without the dynamic
obstacles. Such a profile can be designed to be optimal in some sense (minimal time or cost)
and may satisfy additional constraints, if necessary [2]. The default velocity profile consists
of intervals with constant or zero acceleration. Acceleration parameters change at the
boundaries of these intervals. This default velocity profile is then modified such that a unit
decelerates or accelerates its motion to let other units pass through potential collision areas
(identified from the path geometries).
We suppose that a priority level is assigned to each robot so that a unit with a given priority
regards all units with higher priority level as dynamic obstacles. The ranking of the units is

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 260

arbitrary, e.g. faster units may receive higher priority in order not to slow them down. Other
considerations can be also incorporated in the choice of priority order. The velocity
distributions of the robots are thus determined in a serial way according to the priority
ordering of the robots. Recall that one may get a globally better solution in terms of the
overall time used to complete all trajectories if the priority order of the robots is relaxed but
such a relaxation would imply the need of a high level search algorithm. The study of such a
high level search algorithm is beyond the scope of this paper.
The velocity tuning method presented in this paper for an individual robot is based on time-
scaling. The default time-scale determined by the default velocity profile is parameterized
by a virtual time parameter which has to be then mapped to the real or global time such that
no collision occurs. The mapping between the virtual and global time parameters is referred
to as the time-scaling in the sequel. The time-plane is the space spanned by the virtual and
global time parameters.
If a collision is possible between two units according to the path geometries (so that they
intersect each other), the collision to be avoided can be converted into a so called static time-
obstacle in the time-plane [5,6]. A mapping avoiding the static time-obstacles shall be used
to define the time-scaling of the path of the current unit. Once the path is expressed by the
global time parameter, this procedure can be repeated for all units down to the one with the
lowest priority.
The remaining part of the paper is organized as follows. Section 2 presents an overview on
time-scaling, Section 3 presents our path-planning method in the time-plane,
Implementation results are presented in Section 4 and Conclusions are drawn in Section 5.

2. An overview on time-scaling
In this section some mathematical background is given for the time-scaling. The default
velocity that is assigned to a robot and so the time distribution of its path is expressed using
a virtual time parameter . We denote this reference path by () and define the default
velocity as

 () ()d v
d

 

  (1)

The time distribution of the reference trajectory is constructed regardless to any moving
obstacles. Motion of dynamic obstacles (i.e. other robots) is expressed with the global time
parameter t , thus if ()dynO t represents the trajectory of a dynamic obstacle and

 () ()dynO t   (2)

then the current unit collides with the dynamic obstacle. To avoid this collision we must
find a function ()t  that alters the time distribution of the reference path such that

 (()) ()dynt O t   (3)

The function ()t maps the virtual time values to global or real time. A mapping that
ensures avoidance of all dynamic obstacles will be the time-scaling function. Such a time-
scaling function may be constructed from several functions over different time intervals.

Motion Planning for Multiple Mobile Robots Using Time-Scaling 261

Methods for finding an adequate time-scaling function in our application will be presented
in the next section. Based on the real time and virtual time parameters, we can define the
t  time-plane. If a collision is possible between two units according to the path
geometries, the collision to be avoided can be converted into a time-obstacle timeO which
appears as a static obstacle in the time-plane. A time-obstacle is assigned to a collision area
in the workspace and it is the set of those virtual and real time pairs where any parts of the
unit and the moving obstacle are located at the same place within the collision area
corresponding to the time-scaled units default velocity. In most of the cases they will appear
as rectangular shaped time-obstacles; in special cases, however, they might be enclosed by
nonlinear curves.
Avoiding dynamic obstacles in the workspace is analogous to avoiding the corresponding
time-obstacles on the time-plane. Based on this analogy, the time-scaling function is the path
on the time-plane that avoids all time-obstacles. After constructing this path, the scaled
reference path can be generated. Since ()t  we have

 ()()d d d
dt d dt

 



  (4)

which, using (1), yields to

 () () ()d v t
dt

     (5)

The velocity according to the scaled reference path can be generated by multiplying the
original speed by the derivative of the time-scaling function w.r.t. the real time

 () (()) ()v t v t t   (6)

where ()v t is the scaled velocity.

2.1 Criteria for the time-scaling function
A proper time-scaling function must not only avoid the time-obstacles, but must also satisfy
criteria according to the kinematic constraints prescribed for the control (velocity) inputs. A
collision-free course requires a time-scaling function not mapping any time value into a
time-obstacle, which means that  , () timet t O  must be satisfied for all time values and all
time-obstacles.
Since time cannot rewind and we allow the robot to stop only at its final position, the scaling
function ()t must be strictly monotonically increasing. It might also be required that the
robot’s velocity does not decrease under a specified minimal value except at the start and
goal positions, where the velocity is assigned to be zero. We assume that the default velocity
is the maximal possible speed along the trajectory and its values cannot be exceeded at any
time. This implies that the scaled velocity must not be greater at any real time instance than
the velocity at the corresponding virtual time instance. It is also assumed that the
acceleration and the deceleration are also bounded both in negative and positive directions.
The acceleration (deceleration) limit is considered to be independent of time. These
aforementioned constraints define the inequalities

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 260

arbitrary, e.g. faster units may receive higher priority in order not to slow them down. Other
considerations can be also incorporated in the choice of priority order. The velocity
distributions of the robots are thus determined in a serial way according to the priority
ordering of the robots. Recall that one may get a globally better solution in terms of the
overall time used to complete all trajectories if the priority order of the robots is relaxed but
such a relaxation would imply the need of a high level search algorithm. The study of such a
high level search algorithm is beyond the scope of this paper.
The velocity tuning method presented in this paper for an individual robot is based on time-
scaling. The default time-scale determined by the default velocity profile is parameterized
by a virtual time parameter which has to be then mapped to the real or global time such that
no collision occurs. The mapping between the virtual and global time parameters is referred
to as the time-scaling in the sequel. The time-plane is the space spanned by the virtual and
global time parameters.
If a collision is possible between two units according to the path geometries (so that they
intersect each other), the collision to be avoided can be converted into a so called static time-
obstacle in the time-plane [5,6]. A mapping avoiding the static time-obstacles shall be used
to define the time-scaling of the path of the current unit. Once the path is expressed by the
global time parameter, this procedure can be repeated for all units down to the one with the
lowest priority.
The remaining part of the paper is organized as follows. Section 2 presents an overview on
time-scaling, Section 3 presents our path-planning method in the time-plane,
Implementation results are presented in Section 4 and Conclusions are drawn in Section 5.

2. An overview on time-scaling
In this section some mathematical background is given for the time-scaling. The default
velocity that is assigned to a robot and so the time distribution of its path is expressed using
a virtual time parameter . We denote this reference path by () and define the default
velocity as

 () ()d v
d

 

  (1)

The time distribution of the reference trajectory is constructed regardless to any moving
obstacles. Motion of dynamic obstacles (i.e. other robots) is expressed with the global time
parameter t , thus if ()dynO t represents the trajectory of a dynamic obstacle and

 () ()dynO t   (2)

then the current unit collides with the dynamic obstacle. To avoid this collision we must
find a function ()t  that alters the time distribution of the reference path such that

 (()) ()dynt O t   (3)

The function ()t maps the virtual time values to global or real time. A mapping that
ensures avoidance of all dynamic obstacles will be the time-scaling function. Such a time-
scaling function may be constructed from several functions over different time intervals.

Motion Planning for Multiple Mobile Robots Using Time-Scaling 261

Methods for finding an adequate time-scaling function in our application will be presented
in the next section. Based on the real time and virtual time parameters, we can define the
t  time-plane. If a collision is possible between two units according to the path
geometries, the collision to be avoided can be converted into a time-obstacle timeO which
appears as a static obstacle in the time-plane. A time-obstacle is assigned to a collision area
in the workspace and it is the set of those virtual and real time pairs where any parts of the
unit and the moving obstacle are located at the same place within the collision area
corresponding to the time-scaled units default velocity. In most of the cases they will appear
as rectangular shaped time-obstacles; in special cases, however, they might be enclosed by
nonlinear curves.
Avoiding dynamic obstacles in the workspace is analogous to avoiding the corresponding
time-obstacles on the time-plane. Based on this analogy, the time-scaling function is the path
on the time-plane that avoids all time-obstacles. After constructing this path, the scaled
reference path can be generated. Since ()t  we have

 ()()d d d
dt d dt

 



  (4)

which, using (1), yields to

 () () ()d v t
dt

     (5)

The velocity according to the scaled reference path can be generated by multiplying the
original speed by the derivative of the time-scaling function w.r.t. the real time

 () (()) ()v t v t t   (6)

where ()v t is the scaled velocity.

2.1 Criteria for the time-scaling function
A proper time-scaling function must not only avoid the time-obstacles, but must also satisfy
criteria according to the kinematic constraints prescribed for the control (velocity) inputs. A
collision-free course requires a time-scaling function not mapping any time value into a
time-obstacle, which means that  , () timet t O  must be satisfied for all time values and all
time-obstacles.
Since time cannot rewind and we allow the robot to stop only at its final position, the scaling
function ()t must be strictly monotonically increasing. It might also be required that the
robot’s velocity does not decrease under a specified minimal value except at the start and
goal positions, where the velocity is assigned to be zero. We assume that the default velocity
is the maximal possible speed along the trajectory and its values cannot be exceeded at any
time. This implies that the scaled velocity must not be greater at any real time instance than
the velocity at the corresponding virtual time instance. It is also assumed that the
acceleration and the deceleration are also bounded both in negative and positive directions.
The acceleration (deceleration) limit is considered to be independent of time. These
aforementioned constraints define the inequalities

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 262

 min () ()v v t v   (7)

which, together with (6), results in

 min () () ()v v t v    (8)

for the scaled velocity where minv is the specified minimum speed value. After dividing
with ()v  it follows that

 min () 1
()

v t
v




  (9)

which defines a global upper bound for the time-scaling function meaning that the t 
curve in the time-plane must not be intersected. The lower bound will be the solution of the
differential equation

 min()
()

vt
v




 (10)

The constraint on the acceleration reads

 min max()da v t a
dt

  (11)

where maxa and mina are the admissible maximal positive and negative acceleration values.
Since

22

2() () ()d d dv t v a
dt dtdt

       
 

 (12)

one gets

 2
min max() ()a v a a       (13)

The solutions for the maximal values will result in two curves which will be used by the
path planning algorithms in the time-plane.

2.2 Construction of the time-obstacles
A time-obstacle is always assigned to a collision area around the intersection of two
geometric paths. Each collision area along the path of one unit generates a time-obstacle.
The time-obstacle assigned to a collision area is the set of those virtual-time and real-time
pairs where any parts of two units are located at the same place. We have to take into
account the real physical dimensions of the units, which means that the entering time to a
collision area is when the front of the unit arrives at the boundary of the collision area, and
the exit time is when its rear point leaves it. If the time-scaled unit cannot enter the area until
the higher priority unit has passed through, the time-obstacle will be rectangle shaped with
vertexes (,)enter entert  , (,)enter exitt  , (,)exit exitt  , (,)exit entert  where enter and exit are the time
values of entering and exiting the collision area of the time-scaled unit, while entert and exitt

Motion Planning for Multiple Mobile Robots Using Time-Scaling 263

Fig. 1. Colliding units in the workspace (on the left) and the time-obstacle of the colliding
units (on the right)

Fig. 2. Colliding units in a corridor (in the workspace)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 262

 min () ()v v t v   (7)

which, together with (6), results in

 min () () ()v v t v    (8)

for the scaled velocity where minv is the specified minimum speed value. After dividing
with ()v  it follows that

 min () 1
()

v t
v




  (9)

which defines a global upper bound for the time-scaling function meaning that the t 
curve in the time-plane must not be intersected. The lower bound will be the solution of the
differential equation

 min()
()

vt
v




 (10)

The constraint on the acceleration reads

 min max()da v t a
dt

  (11)

where maxa and mina are the admissible maximal positive and negative acceleration values.
Since

22

2() () ()d d dv t v a
dt dtdt

       
 

 (12)

one gets

 2
min max() ()a v a a       (13)

The solutions for the maximal values will result in two curves which will be used by the
path planning algorithms in the time-plane.

2.2 Construction of the time-obstacles
A time-obstacle is always assigned to a collision area around the intersection of two
geometric paths. Each collision area along the path of one unit generates a time-obstacle.
The time-obstacle assigned to a collision area is the set of those virtual-time and real-time
pairs where any parts of two units are located at the same place. We have to take into
account the real physical dimensions of the units, which means that the entering time to a
collision area is when the front of the unit arrives at the boundary of the collision area, and
the exit time is when its rear point leaves it. If the time-scaled unit cannot enter the area until
the higher priority unit has passed through, the time-obstacle will be rectangle shaped with
vertexes (,)enter entert  , (,)enter exitt  , (,)exit exitt  , (,)exit entert  where enter and exit are the time
values of entering and exiting the collision area of the time-scaled unit, while entert and exitt

Motion Planning for Multiple Mobile Robots Using Time-Scaling 263

Fig. 1. Colliding units in the workspace (on the left) and the time-obstacle of the colliding
units (on the right)

Fig. 2. Colliding units in a corridor (in the workspace)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 264

are the similar values for the given dynamic obstacle. Fig. 1 shows a collision situation in the
workspace and on the time plane.
In some special cases the path geometries may have common sections (e.g. the units follow
each other in a narrow corridor). In such cases, when the motion directions of the colliding
units are identical, one has to examine the time-values when certain parts of the collision
area are free for the scaled unit. In this case the time-obstacle is enclosed by nonlinear
curves. Fig. 2 shows an example of two robots proceeding along the same way in a narrow
corridor and Fig. 3 shows the time-obstacle representation of the collision area.
Suppose that we have accelerating units in the corridor. Equation (14) defines the area
which is occupied by both units at the same time instance:

 2 21 1() () () () () ()
2 2unit enter unit enter enter obs enter obs enter dyn entera v a t t v t t O t              (14)

where () ()enter dyn enterO t  . From (14) one can derive the equations of the curves that
enclose the time-obstacles in case of accelerating motions (narrow corridor case).

 2 2
2 1 1

1() 2 () ()unit
unit obs unit obs unit

unit unit

vt v v a t t a a t t
a a

        (15a)

 2 2
1 2 2

1() 2 () ()unit
unit obs unit obs unit

unit unit

vt v v a t t a a t t
a a

        (15b)

In (15a) the fronts of the units arrive at the border of the corridor at 1 and 1t , respectively,
while their rear sides arrive to the same location at 2 and 2t .
In the simpler case, when the time-scaled unit moves with constant speed, Equation (16)
defines the points of the time-obstacle which is enclosed by the curves defined by Equations
(17a) and (17b).

 21() () () () ()
2unit enter enter obs enter obs enter dyn enterv a t t v t t O t          (16)

 2
1 2 2

1() () ()
2

obs obs

unit unit

v at t t t t
v v

      (17a)

 2
2 1 1

1() () ()
2

obs obs

unit unit

v at t t t t
v v

      (17b)

In (15a), (15b), (17a) and (17b) the fronts of the units arrive at the border of the corridor at 1
and 1t , respectively, while their rear sides arrive at the same location at 2 and 2t .
Similarly at 3 and 3t the front of the units arrive at the exit of the corridor, respectively,
while their rear sides arrive at the same location at 4 and 4t . A nonlinear time-obstacle has
thus six vertices (see Fig. 3).
In the sequel we focus mainly on rectangle shaped time-obstacles but the results can be
extended for obstacles presented in Fig. 3.

Motion Planning for Multiple Mobile Robots Using Time-Scaling 265

Fig. 3. Nonlinear time-obstacle

3. Path-planning in the time-plane
In this section the method of trajectory-planning in the time-plane will be presented,
involving the solution of differential equations derived from the kinematic constraints
prescribed for the robots motion, connecting dedicated points on the time-plane and
avoiding time-obstacles.
Let us emphasize again that the default velocity profile consists of intervals with constant or
zero accelerations. Acceleration parameters change at the boundaries of these intervals. We
denote these points by i where i refers to the index of the time instance where the
acceleration change occurs. At a certain time  where its value is assumed to be

 1i i     (18)

the expression of the default velocity is

 () ()i i iv a v     (19)

where

 ()i ia a  , ()i iv v  (20)

are the acceleration and velocity parameters at the border point i . Fig. 4 shows an example
for such a velocity function.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 264

are the similar values for the given dynamic obstacle. Fig. 1 shows a collision situation in the
workspace and on the time plane.
In some special cases the path geometries may have common sections (e.g. the units follow
each other in a narrow corridor). In such cases, when the motion directions of the colliding
units are identical, one has to examine the time-values when certain parts of the collision
area are free for the scaled unit. In this case the time-obstacle is enclosed by nonlinear
curves. Fig. 2 shows an example of two robots proceeding along the same way in a narrow
corridor and Fig. 3 shows the time-obstacle representation of the collision area.
Suppose that we have accelerating units in the corridor. Equation (14) defines the area
which is occupied by both units at the same time instance:

 2 21 1() () () () () ()
2 2unit enter unit enter enter obs enter obs enter dyn entera v a t t v t t O t              (14)

where () ()enter dyn enterO t  . From (14) one can derive the equations of the curves that
enclose the time-obstacles in case of accelerating motions (narrow corridor case).

 2 2
2 1 1

1() 2 () ()unit
unit obs unit obs unit

unit unit

vt v v a t t a a t t
a a

        (15a)

 2 2
1 2 2

1() 2 () ()unit
unit obs unit obs unit

unit unit

vt v v a t t a a t t
a a

        (15b)

In (15a) the fronts of the units arrive at the border of the corridor at 1 and 1t , respectively,
while their rear sides arrive to the same location at 2 and 2t .
In the simpler case, when the time-scaled unit moves with constant speed, Equation (16)
defines the points of the time-obstacle which is enclosed by the curves defined by Equations
(17a) and (17b).

 21() () () () ()
2unit enter enter obs enter obs enter dyn enterv a t t v t t O t          (16)

 2
1 2 2

1() () ()
2

obs obs

unit unit

v at t t t t
v v

      (17a)

 2
2 1 1

1() () ()
2

obs obs

unit unit

v at t t t t
v v

      (17b)

In (15a), (15b), (17a) and (17b) the fronts of the units arrive at the border of the corridor at 1
and 1t , respectively, while their rear sides arrive at the same location at 2 and 2t .
Similarly at 3 and 3t the front of the units arrive at the exit of the corridor, respectively,
while their rear sides arrive at the same location at 4 and 4t . A nonlinear time-obstacle has
thus six vertices (see Fig. 3).
In the sequel we focus mainly on rectangle shaped time-obstacles but the results can be
extended for obstacles presented in Fig. 3.

Motion Planning for Multiple Mobile Robots Using Time-Scaling 265

Fig. 3. Nonlinear time-obstacle

3. Path-planning in the time-plane
In this section the method of trajectory-planning in the time-plane will be presented,
involving the solution of differential equations derived from the kinematic constraints
prescribed for the robots motion, connecting dedicated points on the time-plane and
avoiding time-obstacles.
Let us emphasize again that the default velocity profile consists of intervals with constant or
zero accelerations. Acceleration parameters change at the boundaries of these intervals. We
denote these points by i where i refers to the index of the time instance where the
acceleration change occurs. At a certain time  where its value is assumed to be

 1i i     (18)

the expression of the default velocity is

 () ()i i iv a v     (19)

where

 ()i ia a  , ()i iv v  (20)

are the acceleration and velocity parameters at the border point i . Fig. 4 shows an example
for such a velocity function.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 266

Fig. 4. Default velocity profile

3.1 Solving the differential equations
Regarding the admissible values of the accelerations specified by (13) and (19) the following
equations can be obtained for the motion of the time-scaled unit:

 2
maxi i ia a v a       (21)

 2
mini i ia a v a       (22)

 2 0i i ia a v       (23)

which means that solutions of (21) and (22) result maximal and minimal accelerations in the
scaled velocity, while the solution of (23) results zero acceleration. The solutions of (21) and
(22) span an area on the time-plane. From a certain starting point on the time-plane only the
points within this area can be reached. Let us denote such a starting point with (,)s s sT t 
and assume that the value of the default velocity at the corresponding instant is ()s sv v  ,
while its scaled value at the corresponding st time instance is ()s s sv t v . The ()t 
function that satisfies (21) is denoted by max()a

a t in case of non-zero acceleration or
max()v

a t in case of zero acceleration. The subscript refers to the effect of the function on the
velocity, which is maxa in this case.
The exact formula for max()a

a t reads

 2 2
max max

1() 2 () ()a s
a s s i s s s i s

i i

vt v a v t t a a t t
a a

         (24)

Motion Planning for Multiple Mobile Robots Using Time-Scaling 267

and its derivative is

 max
max 2 2

max

()()
2 () ()

a s s s
a

s i s s s i s

v a t tt
v a v t t a a t t






 


   
 (25)

while its inverse is

 1 2 2 2 2 2
max max

max max

1() (())a s s
a s i s s i s

i

vt a v a a v v
a a a


         (26)

Applying the function max()a
a t to the default velocity ()v  , the resulting scaled velocity

will be max max() () (())a a
a av t t v t   that has a simple form

 max() () ()s s sv t a t t v    (27)

These expressions are valid for those time values where 1
max 1(, ())a

s a it t  
 , i.e. it is only

valid over the interval for which the equations were solved. In order to span the solution for
several intervals, the initial conditions s and s must be updated. When reaching any of
the border points, the following changes have to be made regarding the parameters:

1s i   , 1
max 1()a

s a it  
 and max 1()a

s a i     in the formula of max()a
a t . The formula of

max()v
a t reads

 2max
max

1() () ()
2

v
a s s s s

i

at t t t t
v

       (28)

its derivative is

 max
max() ()v

a s s
i

at t t
v

    (29)

while its inverse is

 1 2 max
max

max max
() 2 ()v s i i

a s s s
i

v v at
a a v
          (30)

The function max()v
a t results the same scaled velocity as max()a

a t does, so

 max max max() () (()) () ()v v
a a s s sv t t v t a t t v       (31)

Similarly these are valid for the time values where 1
max 1(, ())v

s a it t  
 . The solutions of (22)

which result maximal negative acceleration, are min()a
a t and min()v

a t . Expressions of these
functions, the derivatives and the inverses read

 2 2
min min

1() 2 () ()a s
a s s i s s s i s

i i

vt v a v t t a a t t
a a

         (32)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 266

Fig. 4. Default velocity profile

3.1 Solving the differential equations
Regarding the admissible values of the accelerations specified by (13) and (19) the following
equations can be obtained for the motion of the time-scaled unit:

 2
maxi i ia a v a       (21)

 2
mini i ia a v a       (22)

 2 0i i ia a v       (23)

which means that solutions of (21) and (22) result maximal and minimal accelerations in the
scaled velocity, while the solution of (23) results zero acceleration. The solutions of (21) and
(22) span an area on the time-plane. From a certain starting point on the time-plane only the
points within this area can be reached. Let us denote such a starting point with (,)s s sT t 
and assume that the value of the default velocity at the corresponding instant is ()s sv v  ,
while its scaled value at the corresponding st time instance is ()s s sv t v . The ()t 
function that satisfies (21) is denoted by max()a

a t in case of non-zero acceleration or
max()v

a t in case of zero acceleration. The subscript refers to the effect of the function on the
velocity, which is maxa in this case.
The exact formula for max()a

a t reads

 2 2
max max

1() 2 () ()a s
a s s i s s s i s

i i

vt v a v t t a a t t
a a

         (24)

Motion Planning for Multiple Mobile Robots Using Time-Scaling 267

and its derivative is

 max
max 2 2

max

()()
2 () ()

a s s s
a

s i s s s i s

v a t tt
v a v t t a a t t






 


   
 (25)

while its inverse is

 1 2 2 2 2 2
max max

max max

1() (())a s s
a s i s s i s

i

vt a v a a v v
a a a


         (26)

Applying the function max()a
a t to the default velocity ()v  , the resulting scaled velocity

will be max max() () (())a a
a av t t v t   that has a simple form

 max() () ()s s sv t a t t v    (27)

These expressions are valid for those time values where 1
max 1(, ())a

s a it t  
 , i.e. it is only

valid over the interval for which the equations were solved. In order to span the solution for
several intervals, the initial conditions s and s must be updated. When reaching any of
the border points, the following changes have to be made regarding the parameters:

1s i   , 1
max 1()a

s a it  
 and max 1()a

s a i     in the formula of max()a
a t . The formula of

max()v
a t reads

 2max
max

1() () ()
2

v
a s s s s

i

at t t t t
v

       (28)

its derivative is

 max
max() ()v

a s s
i

at t t
v

    (29)

while its inverse is

 1 2 max
max

max max
() 2 ()v s i i

a s s s
i

v v at
a a v
          (30)

The function max()v
a t results the same scaled velocity as max()a

a t does, so

 max max max() () (()) () ()v v
a a s s sv t t v t a t t v       (31)

Similarly these are valid for the time values where 1
max 1(, ())v

s a it t  
 . The solutions of (22)

which result maximal negative acceleration, are min()a
a t and min()v

a t . Expressions of these
functions, the derivatives and the inverses read

 2 2
min min

1() 2 () ()a s
a s s i s s s i s

i i

vt v a v t t a a t t
a a

         (32)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 268

 min
min 2 2

max

()()
2 () ()

a s s
a

s i s s s i s

v a t tt
v a v t t a a t t




 


   
 (33)

 1 2 2 2 2 2
min min

min min

1() (())a s s
a s i s s i s

i

vt a v a a v v
a a a
         (34)

where 1
min 1(, ())a

s a it t  
 and

 2min
min

1() () ()
2

v
a s s s s

i

at t t t t
v

       (35)

 min
min() ()v

a s s
i

at t t
v

    (36)

 1 2 min
min

min min
() 2 ()v s i i

a s s s
i

v v at
a a v


          (37)

where 1
min 1(, ())v

s a it t  
 . Both min()a

a t and min()v
a t result the scaled velocity function

 min() () ()s s sv t a t t v    (38)

The solutions of (23) are ()a
v t and ()v

v t , which can be used to keep the velocity constant
once a desired value is reached. It can be any velocity within the robots’ reach, but these
functions are used for not letting the velocity decrease under a certain minimal value. The
expressions of the functions, their derivatives and their inverses are as follows:

 21() 2 ()a s
v s s i s s s

i i

vt v a v t t
a a

       (39)

 2
()

2 ()
a s s

v
s i s s s

vt
v a v t t







 
 (40)

2 2

1 ()()
2

a s
v s

i s s

v vt
a v
 


 

  (41)

where 1
1(, ())a

s v it t  
 . Similarly,

 () ()v s
v s s

i

vt t t
v

    (42)

 ()v s
v

i

vt
v

  (43)

Motion Planning for Multiple Mobile Robots Using Time-Scaling 269

 1() ()v i
v s s

s

v t
v

       (44)

where 1
1(, ())v

s v it t  
 . These solutions enforce the scaled velocity to be

 () sv t v (45)

Since the constraint () 1t  must be respected (see (9)), it has to be checked whether the
value of the derivative of an applied ()t function reaches the unity at a certain point. We
denote this point by (,)ch ch chT t  where the control has to be changed to constant time-
scaling and remain on the curve

 () ()const ch cht m t t    (46)

where in this case 1m  . Fig. 5 shows an example of applying different time scaling
functions.

Fig. 5. Finding the changing point

To find the point chT the equation

 max() 1a
a cht  (47)

or

 max() 1v
a cht  (48)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 268

 min
min 2 2

max

()()
2 () ()

a s s
a

s i s s s i s

v a t tt
v a v t t a a t t




 


   
 (33)

 1 2 2 2 2 2
min min

min min

1() (())a s s
a s i s s i s

i

vt a v a a v v
a a a
         (34)

where 1
min 1(, ())a

s a it t  
 and

 2min
min

1() () ()
2

v
a s s s s

i

at t t t t
v

       (35)

 min
min() ()v

a s s
i

at t t
v

    (36)

 1 2 min
min

min min
() 2 ()v s i i

a s s s
i

v v at
a a v


          (37)

where 1
min 1(, ())v

s a it t  
 . Both min()a

a t and min()v
a t result the scaled velocity function

 min() () ()s s sv t a t t v    (38)

The solutions of (23) are ()a
v t and ()v

v t , which can be used to keep the velocity constant
once a desired value is reached. It can be any velocity within the robots’ reach, but these
functions are used for not letting the velocity decrease under a certain minimal value. The
expressions of the functions, their derivatives and their inverses are as follows:

 21() 2 ()a s
v s s i s s s

i i

vt v a v t t
a a

       (39)

 2
()

2 ()
a s s

v
s i s s s

vt
v a v t t







 
 (40)

2 2

1 ()()
2

a s
v s

i s s

v vt
a v
 


 

  (41)

where 1
1(, ())a

s v it t  
 . Similarly,

 () ()v s
v s s

i

vt t t
v

    (42)

 ()v s
v

i

vt
v

  (43)

Motion Planning for Multiple Mobile Robots Using Time-Scaling 269

 1() ()v i
v s s

s

v t
v

       (44)

where 1
1(, ())v

s v it t  
 . These solutions enforce the scaled velocity to be

 () sv t v (45)

Since the constraint () 1t  must be respected (see (9)), it has to be checked whether the
value of the derivative of an applied ()t function reaches the unity at a certain point. We
denote this point by (,)ch ch chT t  where the control has to be changed to constant time-
scaling and remain on the curve

 () ()const ch cht m t t    (46)

where in this case 1m  . Fig. 5 shows an example of applying different time scaling
functions.

Fig. 5. Finding the changing point

To find the point chT the equation

 max() 1a
a cht  (47)

or

 max() 1v
a cht  (48)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 270

should be solved, depending on the actual interval. Solving (47) results a quadratic equation

 2 2 2
max max max()() 2 ()() (1) 0i ch s s s i ch s s sa a a t t v a a t t v         (49)

The one satisfying 1
max 1(, ())a

ch s a it t  
 of the two roots of (49) should be selected, which

results max()a
ch a cht  .

In case of (48), the solution for cht is much simpler

max

(1) i
ch s s

vt t
a

   (50)

and max()v
ch a cht  . Note that the formulae (51) and (52) only give accurate value if

1
max max 1(()) 1a a

a a i  
  . The corresponding condition for (50) is 1

max max 1(()) 1v v
a a i  

  , i.e.
it has to be checked whether the value of the derivative at the next point determined by the
function corresponding to the next border point is greater than one.
For negative accelerations, we must guarantee that the scaled velocity does not drop below

minv . Therefore, the point (,)ch ch chT t  where the time scaling is changed to ()a
v t or

()v
v t (with minsv v in their formulae) can be determined easily:

 min

min

()s s
ch s

v vt t
a

  
  (51)

and min()a
ch a cht  or min()v

ch a cht  respectively. Fig. 6 shows an example of finding this
point.

Fig. 6. Finding the changing point

Motion Planning for Multiple Mobile Robots Using Time-Scaling 271

When moving from a given point (,)s s sT t  to another point (,)g g gT t  on the time-plane,
it has to be checked first whether gT is within the area of reachable points from sT . In order
to do so, the boundaries of the reachable area have to be determined. The upper boundary
will be the union of curves resulting maximal acceleration and then maximal speed, and the
lower boundary will be the union of ones resulting maximal deceleration and then minimal
velocity. Let us denote the upper boundary that origins in sT and ends at gt by

[],Ts Tg MAX and the lower boundary by [],Ts Tg MIN . gT is reachable from sT if and only if
the inequalities below are both satisfied

 [], ()g Ts Tg MAX gt   , [], ()g Ts Tg MIN gt   (52)

Fig. 7 shows the area enclosed by these boundaries.

Fig. 7. The area of reachable points

If (52) is satisfied, gT is within the reach of sT and a trajectory connecting these two points
can be planned. The main idea of trajectory planning is to travel along the upper or the
lower boundary depending on the initial conditions in sT and then switch to a straight line
i.e. constant time-scaling. The switching point (,)sw sw swT t  can be determined by solving
the equation

 [], ()g sw
Ts Tg MAX sw

g sw
t

t t
 




 


 (53)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 270

should be solved, depending on the actual interval. Solving (47) results a quadratic equation

 2 2 2
max max max()() 2 ()() (1) 0i ch s s s i ch s s sa a a t t v a a t t v         (49)

The one satisfying 1
max 1(, ())a

ch s a it t  
 of the two roots of (49) should be selected, which

results max()a
ch a cht  .

In case of (48), the solution for cht is much simpler

max

(1) i
ch s s

vt t
a

   (50)

and max()v
ch a cht  . Note that the formulae (51) and (52) only give accurate value if

1
max max 1(()) 1a a

a a i  
  . The corresponding condition for (50) is 1

max max 1(()) 1v v
a a i  

  , i.e.
it has to be checked whether the value of the derivative at the next point determined by the
function corresponding to the next border point is greater than one.
For negative accelerations, we must guarantee that the scaled velocity does not drop below

minv . Therefore, the point (,)ch ch chT t  where the time scaling is changed to ()a
v t or

()v
v t (with minsv v in their formulae) can be determined easily:

 min

min

()s s
ch s

v vt t
a

  
  (51)

and min()a
ch a cht  or min()v

ch a cht  respectively. Fig. 6 shows an example of finding this
point.

Fig. 6. Finding the changing point

Motion Planning for Multiple Mobile Robots Using Time-Scaling 271

When moving from a given point (,)s s sT t  to another point (,)g g gT t  on the time-plane,
it has to be checked first whether gT is within the area of reachable points from sT . In order
to do so, the boundaries of the reachable area have to be determined. The upper boundary
will be the union of curves resulting maximal acceleration and then maximal speed, and the
lower boundary will be the union of ones resulting maximal deceleration and then minimal
velocity. Let us denote the upper boundary that origins in sT and ends at gt by

[],Ts Tg MAX and the lower boundary by [],Ts Tg MIN . gT is reachable from sT if and only if
the inequalities below are both satisfied

 [], ()g Ts Tg MAX gt   , [], ()g Ts Tg MIN gt   (52)

Fig. 7 shows the area enclosed by these boundaries.

Fig. 7. The area of reachable points

If (52) is satisfied, gT is within the reach of sT and a trajectory connecting these two points
can be planned. The main idea of trajectory planning is to travel along the upper or the
lower boundary depending on the initial conditions in sT and then switch to a straight line
i.e. constant time-scaling. The switching point (,)sw sw swT t  can be determined by solving
the equation

 [], ()g sw
Ts Tg MAX sw

g sw
t

t t
 




 


 (53)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 272

or

 [], ()g sw
Ts Tg MIN sw

g sw
t

t t
 




 


 (54)

depending on the selected boundary. In case of (53), the switching point can be on a
max()a

a t curve or on a max()v
a t curve, so (53) transforms to

 max()g sw a
a sw

g sw
t

t t
 







 (55)

or

 max()g sw v
a sw

g sw
t

t t
 







 (56)

Solving (55) results in a quadratic equation, introducing the notation i s sa v  and
()g i g s sv a v   

 
 
 

2 2 2
max max

2 2 2
max

22 2 2

(()) ()

2(())(()) 2 ()

() 0

i g s g i sw s

i g s g s s g sw s

g s s g s

a a t t v a a t t

a a t t t t v v t t

t t v v v



  



    

       

    

 (57)

Of the roots of (57) one has to select the solution that satisfies 1 1
max max 1((), ())a a

sw a i a it     
 ,

after that max()a
sw a swt  . Solving (56) also leads to a quadratic equation

 2max max1 () () () () 0
2 sw s g s sw s g s s g s

i i

a at t t t t t t t
v v

  
 

         
 

 (58)

One has to select the solution that satisfies 1 1
max max 1((), ())a a

sw a i a it     
 , after that

max()v
sw a swt  .

Determining the switching point in case of travelling on the lower boundary the following
equations should be solved

 min()g sw a
a sw

g sw
t

t t
 







 (59)

 min()g sw v
a sw

g sw
t

t t
 







 (60)

 ()g sw a
v sw

g sw
t

t t
 







 with minsv v (61)

Motion Planning for Multiple Mobile Robots Using Time-Scaling 273

depending on the possible location of the switching point. The solution of (59) and (60) are
similar to (55) and (56) except that at the expressions maxa is replaced by mina . Solving (61)
leads to a quadratic equation

    22 2 2 2 2 2 2 2() 2 () 2 () () () 0sw s g s s g sw s g s s g st t t t v v t t t t v v v              (62)

One has to select the solution that satisfies 1 1
1((), ())a a

sw v i v it     
 , after that ()a

sw v swt  .
After determining the switching point swT the following equation can be used to travel
along a straight line until reaching gT :

 () ()g sw
const sw sw

g sw
t t t

t t
 

 


  


 (63)

Here (,)sw gt t t . Fig. 8 shows an example of finding such a switching point.
0gT can be reached directly from sT . It is possible to reach 1gT by travelling along the

upper boundary and then switching to a straight line at 1swT . Similarly, 2gT can be reached
by travelling along the lower boundary and then switching to a straight line at 2swT .

Fig. 8. Travelling on a border than switching to a straight line

Note that constant time-scaling with the general formula

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 272

or

 [], ()g sw
Ts Tg MIN sw

g sw
t

t t
 




 


 (54)

depending on the selected boundary. In case of (53), the switching point can be on a
max()a

a t curve or on a max()v
a t curve, so (53) transforms to

 max()g sw a
a sw

g sw
t

t t
 







 (55)

or

 max()g sw v
a sw

g sw
t

t t
 







 (56)

Solving (55) results in a quadratic equation, introducing the notation i s sa v  and
()g i g s sv a v   

 
 
 

2 2 2
max max

2 2 2
max

22 2 2

(()) ()

2(())(()) 2 ()

() 0

i g s g i sw s

i g s g s s g sw s

g s s g s

a a t t v a a t t

a a t t t t v v t t

t t v v v



  



    

       

    

 (57)

Of the roots of (57) one has to select the solution that satisfies 1 1
max max 1((), ())a a

sw a i a it     
 ,

after that max()a
sw a swt  . Solving (56) also leads to a quadratic equation

 2max max1 () () () () 0
2 sw s g s sw s g s s g s

i i

a at t t t t t t t
v v

  
 

         
 

 (58)

One has to select the solution that satisfies 1 1
max max 1((), ())a a

sw a i a it     
 , after that

max()v
sw a swt  .

Determining the switching point in case of travelling on the lower boundary the following
equations should be solved

 min()g sw a
a sw

g sw
t

t t
 







 (59)

 min()g sw v
a sw

g sw
t

t t
 







 (60)

 ()g sw a
v sw

g sw
t

t t
 







 with minsv v (61)

Motion Planning for Multiple Mobile Robots Using Time-Scaling 273

depending on the possible location of the switching point. The solution of (59) and (60) are
similar to (55) and (56) except that at the expressions maxa is replaced by mina . Solving (61)
leads to a quadratic equation

    22 2 2 2 2 2 2 2() 2 () 2 () () () 0sw s g s s g sw s g s s g st t t t v v t t t t v v v              (62)

One has to select the solution that satisfies 1 1
1((), ())a a

sw v i v it     
 , after that ()a

sw v swt  .
After determining the switching point swT the following equation can be used to travel
along a straight line until reaching gT :

 () ()g sw
const sw sw

g sw
t t t

t t
 

 


  


 (63)

Here (,)sw gt t t . Fig. 8 shows an example of finding such a switching point.
0gT can be reached directly from sT . It is possible to reach 1gT by travelling along the

upper boundary and then switching to a straight line at 1swT . Similarly, 2gT can be reached
by travelling along the lower boundary and then switching to a straight line at 2swT .

Fig. 8. Travelling on a border than switching to a straight line

Note that constant time-scaling with the general formula

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 274

 () ()const s st m t t    (64)

results the scaled velocity function

 2() ()i s sv t m a t t mv   (65)

Denoting the curve that origins in sT and ends in swT by []Ts Tsw and the one that origins in
swT and ends in gT by []Tsw Tg , the path from sT to gT is

 [] [] []Ts Tg Ts Tsw Tsw Tg      (66)

One should follow the following steps when constructing this path:
1. From a dedicated starting point construct the boundaries of the area of the

reachable points. Update initial conditions at the border points and apply the
appropriate type of curve for every interval between the starting point and the one
desired to reach. When reaching a point where the scaled velocity would overrun
the limits change to constant time-scaling or to the solution that results minimal
speed, respectively.

2. Examine whether the desired point to reach is within the area of the reachable points.
3. Depending on the initial conditions at the starting point travel along the upper or the

lower boundary until switching to a straight line is possible. Concatenate this line to the
curve sequence between the starting and the switching point.

3.2 Avoiding time-obstacles
Avoiding time-obstacles includes collision detection with time-obstacles and a specific
path planning method based on the algorithms mentioned above. Collision detection is
simple in case of a rectangular time-obstacle. Since the solutions of the differential
equations are given in analytic form, the exact time-values have to be substituted into
those formulae in order to check whether a certain point of the curve belongs to a time-
obstacle. Let us denote the vertices of a rectangular time-obstacle by its four corner points
on the time-plane:

 , ,

, ,

(,) (,)
(,) (,)

enter enter enter enter enter exit enter exit

exit enter exit enter exit exit exit exit

T t T t
T t T t

 
 

 

 
 (67)

The edges of this time-obstacle are the intervals between these points. In case of the
horizontal edges, if one of

 []()enter Ts Tg enter exitt    , []()enter Ts Tg exit exitt    (68)

is satisfied, then a collision occurs. A similar formula can be applied for the vertical edges,
thus a collision occurs when one of

 1
[]()enter Ts Tg enter exitt t

   , 1
[]()enter Ts Tg exit exitt t

   (69)

is satisfied.
Note that one has to substitute the exact time-values into the appropriate element (i.e. curve
sequence) of []Ts Tg and 1

[]Ts Tg


 corresponding to the given time-value.

Motion Planning for Multiple Mobile Robots Using Time-Scaling 275

In case of nonlinear time-obstacles, the simplest way to determine a collision is to regard
the scaled velocities. If

 () () (,)
texit

enter dyn enter exit
tenter

v t dt t O t t
 

    
 
    (70)

then the unit collides with a dynamic obstacle.
In the sequel, a path planning method based on the algorithm of connecting points on the
time-plane and determining collisions with time-obstacles will be presented. Because of the
presence of time-obstacles, an exact path between dedicated points might not exist, even if
the desired point of reach is within the reachable area of the starting point sT . Fig. 9 shows
an example of several time-obstacles lying between the starting and the goal positions, while
Fig. 10 shows that sT cannot be connected with gT directly because of a collision with a
time-obstacle.

Fig. 9. Time-obstacles between two points

A path from the starting point avoiding the time-obstacles might only guarantee an
endpoint with the same real-time coordinate gt as the desired gT , but the resulting virtual-
time coordinate may differ from the desired g . It is advised to examine which points with
the real-time coordinate gt can be reached from this starting point sT . At first the corner
points of the time-obstacles which can be reached without colliding with any other time-
obstacles have to be determined. To do so, a graph (i.e. tree) building approach is proposed.
At first the parent node is selected to be the actual point, desired to be reached. Child nodes
are the upper left and lower right vertices of the time obstacle that the specific route hits first

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 274

 () ()const s st m t t    (64)

results the scaled velocity function

 2() ()i s sv t m a t t mv   (65)

Denoting the curve that origins in sT and ends in swT by []Ts Tsw and the one that origins in
swT and ends in gT by []Tsw Tg , the path from sT to gT is

 [] [] []Ts Tg Ts Tsw Tsw Tg      (66)

One should follow the following steps when constructing this path:
1. From a dedicated starting point construct the boundaries of the area of the

reachable points. Update initial conditions at the border points and apply the
appropriate type of curve for every interval between the starting point and the one
desired to reach. When reaching a point where the scaled velocity would overrun
the limits change to constant time-scaling or to the solution that results minimal
speed, respectively.

2. Examine whether the desired point to reach is within the area of the reachable points.
3. Depending on the initial conditions at the starting point travel along the upper or the

lower boundary until switching to a straight line is possible. Concatenate this line to the
curve sequence between the starting and the switching point.

3.2 Avoiding time-obstacles
Avoiding time-obstacles includes collision detection with time-obstacles and a specific
path planning method based on the algorithms mentioned above. Collision detection is
simple in case of a rectangular time-obstacle. Since the solutions of the differential
equations are given in analytic form, the exact time-values have to be substituted into
those formulae in order to check whether a certain point of the curve belongs to a time-
obstacle. Let us denote the vertices of a rectangular time-obstacle by its four corner points
on the time-plane:

 , ,

, ,

(,) (,)
(,) (,)

enter enter enter enter enter exit enter exit

exit enter exit enter exit exit exit exit

T t T t
T t T t

 
 

 

 
 (67)

The edges of this time-obstacle are the intervals between these points. In case of the
horizontal edges, if one of

 []()enter Ts Tg enter exitt    , []()enter Ts Tg exit exitt    (68)

is satisfied, then a collision occurs. A similar formula can be applied for the vertical edges,
thus a collision occurs when one of

 1
[]()enter Ts Tg enter exitt t

   , 1
[]()enter Ts Tg exit exitt t

   (69)

is satisfied.
Note that one has to substitute the exact time-values into the appropriate element (i.e. curve
sequence) of []Ts Tg and 1

[]Ts Tg


 corresponding to the given time-value.

Motion Planning for Multiple Mobile Robots Using Time-Scaling 275

In case of nonlinear time-obstacles, the simplest way to determine a collision is to regard
the scaled velocities. If

 () () (,)
texit

enter dyn enter exit
tenter

v t dt t O t t
 

    
 
    (70)

then the unit collides with a dynamic obstacle.
In the sequel, a path planning method based on the algorithm of connecting points on the
time-plane and determining collisions with time-obstacles will be presented. Because of the
presence of time-obstacles, an exact path between dedicated points might not exist, even if
the desired point of reach is within the reachable area of the starting point sT . Fig. 9 shows
an example of several time-obstacles lying between the starting and the goal positions, while
Fig. 10 shows that sT cannot be connected with gT directly because of a collision with a
time-obstacle.

Fig. 9. Time-obstacles between two points

A path from the starting point avoiding the time-obstacles might only guarantee an
endpoint with the same real-time coordinate gt as the desired gT , but the resulting virtual-
time coordinate may differ from the desired g . It is advised to examine which points with
the real-time coordinate gt can be reached from this starting point sT . At first the corner
points of the time-obstacles which can be reached without colliding with any other time-
obstacles have to be determined. To do so, a graph (i.e. tree) building approach is proposed.
At first the parent node is selected to be the actual point, desired to be reached. Child nodes
are the upper left and lower right vertices of the time obstacle that the specific route hits first

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 276

Fig. 10. The goal point cannot be reached without collision

(i.e. the one that is the nearest to the starting point and has an intersection with the actual
path). The graph building can be done sequentially. Fig. 11 shows steps of a sequence of
determining the child nodes and connecting them to their parent nodes.

Fig. 11. Selecting child nodes by determining collisions on the time-plane (on the left) and
building the graph (on the right)

Motion Planning for Multiple Mobile Robots Using Time-Scaling 277

The path from sT to gT intersects with the time-obstacle with corner points 9T and 10T ,
thus in the graph these become the children of gT . Now the desired point of reach will be

9T or 10T , respectively. Fig. 12 shows that none of them can be reached without collision,
thus they will also have child nodes in the graph.

Fig. 12. Selecting child nodes by determining collisions (on the left) and building the graph
(on the right)

Final steps of graph building is presented by Fig. 13:

Fig. 13. The corner points that can be reached with no collision (on the left), building the
graph (on the right)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 276

Fig. 10. The goal point cannot be reached without collision

(i.e. the one that is the nearest to the starting point and has an intersection with the actual
path). The graph building can be done sequentially. Fig. 11 shows steps of a sequence of
determining the child nodes and connecting them to their parent nodes.

Fig. 11. Selecting child nodes by determining collisions on the time-plane (on the left) and
building the graph (on the right)

Motion Planning for Multiple Mobile Robots Using Time-Scaling 277

The path from sT to gT intersects with the time-obstacle with corner points 9T and 10T ,
thus in the graph these become the children of gT . Now the desired point of reach will be

9T or 10T , respectively. Fig. 12 shows that none of them can be reached without collision,
thus they will also have child nodes in the graph.

Fig. 12. Selecting child nodes by determining collisions (on the left) and building the graph
(on the right)

Final steps of graph building is presented by Fig. 13:

Fig. 13. The corner points that can be reached with no collision (on the left), building the
graph (on the right)

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 278

On Fig. 13 the dotted contour denotes that 1T and 4T are located outside of the area of
reachable points. Fig. 14 represents the final graph.

Fig. 14. The final graph

Nodes with no children provide the vertices that can be reached from the starting point
without collision. After determining these points, a new starting point must be assigned
from the ones determined afore, and the algorithm must be carried on until finding all
possible routes from the original starting point to the ones with real-time coordinate gt . Fig.
15 shows all possible routes from the original starting point to the points with real-time
coordinate gt while Fig. 16 shows its graph representation. Dot-contoured nodes denote
that no route exists from their parent node that reaches them without collision or exceeding
the kinematic constraints.

Fig. 15. Possible routes from Ts

Motion Planning for Multiple Mobile Robots Using Time-Scaling 279

Fig. 16. Graph representation of the possible routes

3.3 The global path-planning method
Path-planning on the time-plane starts from the point at which the original velocity reaches
a desired minimal value that was referred to as minv . The curve t  and the curve that
spans through all intervals and results the minimal velocity enclose the area that the robot
can reach during the time of its motion. Any other points outside this area are unreachable
due to the kinematic constraints. Fig. 17 shows an example for such an area.

Fig. 17. Global area of reachable points

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 278

On Fig. 13 the dotted contour denotes that 1T and 4T are located outside of the area of
reachable points. Fig. 14 represents the final graph.

Fig. 14. The final graph

Nodes with no children provide the vertices that can be reached from the starting point
without collision. After determining these points, a new starting point must be assigned
from the ones determined afore, and the algorithm must be carried on until finding all
possible routes from the original starting point to the ones with real-time coordinate gt . Fig.
15 shows all possible routes from the original starting point to the points with real-time
coordinate gt while Fig. 16 shows its graph representation. Dot-contoured nodes denote
that no route exists from their parent node that reaches them without collision or exceeding
the kinematic constraints.

Fig. 15. Possible routes from Ts

Motion Planning for Multiple Mobile Robots Using Time-Scaling 279

Fig. 16. Graph representation of the possible routes

3.3 The global path-planning method
Path-planning on the time-plane starts from the point at which the original velocity reaches
a desired minimal value that was referred to as minv . The curve t  and the curve that
spans through all intervals and results the minimal velocity enclose the area that the robot
can reach during the time of its motion. Any other points outside this area are unreachable
due to the kinematic constraints. Fig. 17 shows an example for such an area.

Fig. 17. Global area of reachable points

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 280

The goal of path-planning is to reach a point on the time-plane with virtual time coordinate
end (the end of travel in virtual time) and with a minimal value of real-time coordinate, i.e.

to minimize the duration of travel in real time. In order to reach such a point, the following
considerations should be followed:
1. When starting a path from a point, apply maximal control inputs and maintain this

course until reaching a point with virtual time coordinate end .
2. In case of collision, determine all time-obstacle corner points that can be reached from

the starting point with no collision.
3. Assign a new starting point from these corner points and continue from step 1. If no

further movement can be made, go back to a previous starting point and select another
corner point to reach.

Navigating through all time-obstacles may not give an optimal solution. The possibility of
delaying the departure of a certain robot should also be considered, which allows time-
obstacles to disappear from its time-plane. Depending on the certain area of application, it
can cause difficulties due to tight schedules. Fig. 18 shows an example of delaying a unit’s
departure so it can use its default velocity and arrive at its desired destination earlier then
by using time scaling-based obstacle avoidance.

Fig. 18. Arrival times differ when delaying departure and using no time-scaling

Motion Planning for Multiple Mobile Robots Using Time-Scaling 281

3.4 Generation of the scaled velocity
The scaled velocity can be generated by multiplying the original velocity function and the
derivative of the time-scaling function (see (6)). It is only necessary to calculate the values of
the new velocity in those real-time instants where parameters in the original velocity have
changed and where the time-scaling function changes its nature. The latter occurs typically
at switching points where constant time-scaling is applied after maximal inputs and
changing points where maximal or minimal value of velocity is reached. After these
calculations, these points have to be connected by linear segments.

3.5 Synchronizing the motion of the robots
As it has been already mentioned, it is imperative to synchronize the units’ motion in an
area crowded by robots. A straightforward solution is to define a hierarchy between the
robots so that higher priority units disregard ones with lower priority level. Such a priority
order can be defined regarding several factors, and priority levels may also be redistributed
regularly in order to meet the actual requirements. The general algorithm managing the
multi-unit fleet is the following:
1. Consider the highest priority level.
2. Take a robot with a given priority level and design an optimal path avoiding static

obstacles.
3. Assign an optimal velocity to this robot.
4. If the robot collides with any other robots with higher priority, determine the possible

time-obstacles.
5. Construct the time-scaling function and generate the scaled velocity.
6. Take the next robot with lower priority and continue from step 1.

4. Implementation results
We present a robot system with four robots, the workspace and the trajectories are shown in
Fig. 19.
The length of the robots are assumed to be 1 meter while their width are assumed to be 0.8
meters. (These values may be also different for each robot.) The paths consist of linear
segments and they are extended with the widths of the robots. The coordinates of the points
where the robots enter or leave the collision areas are calculated using these geometric
parameters. On Fig. 19 the points S1, S2, S3 and S4 denote to the initial locations of the
robots while G1, G2, G3 and G4 determines the goal locations respectively. The highest
priority robot is Robot#1, the next one is Robot#2 then Robot#3 and Robot#4 has the lowest
priority level. Table 1 contains information about the boundaries of the path elements (x and
y coordinates respectively). We designed simple default velocites which are shown in Table
2 together with the scaled velocity. The admissible values of the maximal positive and
negative accelerations for Robot#1 and Robot#3 are 0.2 2/m s and -0.2 2/m s while for
Robot#2 and Robot#4 the same values are 0.5 2/m s and -0.5 2/m s respectively. The
minimal velocity is 0.2 /m s for all robots. Since Robot#1 has the highest priority it does not
need to be scaled. The time-scaling process for Robot#2, Robot#3 and Robot#4 are shown on
Fig. 20, 22 and 24. Datatips on the time-scaling function indicate the relevant time instances
where the scaled velocity values have to be calculated. The original and the resulted scaled
velocity functions (with blue and green colors respectively) are drawn on Fig. 21, 23 and 25.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 280

The goal of path-planning is to reach a point on the time-plane with virtual time coordinate
end (the end of travel in virtual time) and with a minimal value of real-time coordinate, i.e.

to minimize the duration of travel in real time. In order to reach such a point, the following
considerations should be followed:
1. When starting a path from a point, apply maximal control inputs and maintain this

course until reaching a point with virtual time coordinate end .
2. In case of collision, determine all time-obstacle corner points that can be reached from

the starting point with no collision.
3. Assign a new starting point from these corner points and continue from step 1. If no

further movement can be made, go back to a previous starting point and select another
corner point to reach.

Navigating through all time-obstacles may not give an optimal solution. The possibility of
delaying the departure of a certain robot should also be considered, which allows time-
obstacles to disappear from its time-plane. Depending on the certain area of application, it
can cause difficulties due to tight schedules. Fig. 18 shows an example of delaying a unit’s
departure so it can use its default velocity and arrive at its desired destination earlier then
by using time scaling-based obstacle avoidance.

Fig. 18. Arrival times differ when delaying departure and using no time-scaling

Motion Planning for Multiple Mobile Robots Using Time-Scaling 281

3.4 Generation of the scaled velocity
The scaled velocity can be generated by multiplying the original velocity function and the
derivative of the time-scaling function (see (6)). It is only necessary to calculate the values of
the new velocity in those real-time instants where parameters in the original velocity have
changed and where the time-scaling function changes its nature. The latter occurs typically
at switching points where constant time-scaling is applied after maximal inputs and
changing points where maximal or minimal value of velocity is reached. After these
calculations, these points have to be connected by linear segments.

3.5 Synchronizing the motion of the robots
As it has been already mentioned, it is imperative to synchronize the units’ motion in an
area crowded by robots. A straightforward solution is to define a hierarchy between the
robots so that higher priority units disregard ones with lower priority level. Such a priority
order can be defined regarding several factors, and priority levels may also be redistributed
regularly in order to meet the actual requirements. The general algorithm managing the
multi-unit fleet is the following:
1. Consider the highest priority level.
2. Take a robot with a given priority level and design an optimal path avoiding static

obstacles.
3. Assign an optimal velocity to this robot.
4. If the robot collides with any other robots with higher priority, determine the possible

time-obstacles.
5. Construct the time-scaling function and generate the scaled velocity.
6. Take the next robot with lower priority and continue from step 1.

4. Implementation results
We present a robot system with four robots, the workspace and the trajectories are shown in
Fig. 19.
The length of the robots are assumed to be 1 meter while their width are assumed to be 0.8
meters. (These values may be also different for each robot.) The paths consist of linear
segments and they are extended with the widths of the robots. The coordinates of the points
where the robots enter or leave the collision areas are calculated using these geometric
parameters. On Fig. 19 the points S1, S2, S3 and S4 denote to the initial locations of the
robots while G1, G2, G3 and G4 determines the goal locations respectively. The highest
priority robot is Robot#1, the next one is Robot#2 then Robot#3 and Robot#4 has the lowest
priority level. Table 1 contains information about the boundaries of the path elements (x and
y coordinates respectively). We designed simple default velocites which are shown in Table
2 together with the scaled velocity. The admissible values of the maximal positive and
negative accelerations for Robot#1 and Robot#3 are 0.2 2/m s and -0.2 2/m s while for
Robot#2 and Robot#4 the same values are 0.5 2/m s and -0.5 2/m s respectively. The
minimal velocity is 0.2 /m s for all robots. Since Robot#1 has the highest priority it does not
need to be scaled. The time-scaling process for Robot#2, Robot#3 and Robot#4 are shown on
Fig. 20, 22 and 24. Datatips on the time-scaling function indicate the relevant time instances
where the scaled velocity values have to be calculated. The original and the resulted scaled
velocity functions (with blue and green colors respectively) are drawn on Fig. 21, 23 and 25.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 282

Fig. 19. Workspace

Fig. 20. Time-scaling for Robot#2

Motion Planning for Multiple Mobile Robots Using Time-Scaling 283

Fig. 21. Scaled velocity for Robot#2

Fig. 22. Time-scaling for Robot#3

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 282

Fig. 19. Workspace

Fig. 20. Time-scaling for Robot#2

Motion Planning for Multiple Mobile Robots Using Time-Scaling 283

Fig. 21. Scaled velocity for Robot#2

Fig. 22. Time-scaling for Robot#3

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 284

Fig. 23. Scaled velocity for Robot#3

Fig. 24. Time-scaling for Robot#4

Motion Planning for Multiple Mobile Robots Using Time-Scaling 285

Fig. 25. Scaled velocity for Robot#4

Information on the relevant time instances, the derivate of the time-scaling function at those
instances and the calculated scaled velocity values are shown in Table 2.

Robot# x coordinate(m) y coordinate(m)

Robot#1

2 18
7 12

14 12
18 8

Robot#2

14 1
14 7
10 12
1 12

Robot#3
1 8

10 8
15 18

Robot#4

5 19
5 10
7 5

16 5

Table 1. Path of the robots

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 284

Fig. 23. Scaled velocity for Robot#3

Fig. 24. Time-scaling for Robot#4

Motion Planning for Multiple Mobile Robots Using Time-Scaling 285

Fig. 25. Scaled velocity for Robot#4

Information on the relevant time instances, the derivate of the time-scaling function at those
instances and the calculated scaled velocity values are shown in Table 2.

Robot# x coordinate(m) y coordinate(m)

Robot#1

2 18
7 12

14 12
18 8

Robot#2

14 1
14 7
10 12
1 12

Robot#3
1 8

10 8
15 18

Robot#4

5 19
5 10
7 5

16 5

Table 1. Path of the robots

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 286

Robot#

Virtual time(s) Real time(s) ()t Default velocity (m/s) Scaled velocity(m/s)

Robot#2

0 0 1.0000 0 0

0.4000 0.4000 1.0000 0.2000 0.2000

0.8106 1.0213 0.4935 0.4053 0.2000

4.0000 7.4846 0.4935 2.0000 0.9869

7.2854 14.1425 0.4935 2.0000 0.9869

8.7984 16.1686 1.0000 2.0000 2.0000

17.4031 24.7733 1.0000 2.0000 2.0000

21.4031 28.7733 1.0000 0 0

Robot#3

0 0 1.0000 0 0

1.0000 1.0000 1.0000 0.2000 0.2000

1.1957 1.2149 0.8363 0.2391 0.2000

5.0000 5.7638 0.8363 1.0000 0.8363

13.5249 15.9575 0.8363 1.0000 0.8363

14.2764 16.7760 1.0000 1.0000 1.0000

20.1803 22.6799 1.0000 1.0000 1.0000

25.1803 27.6799 1.0000 0 0

Robot#4

0 0 1.0000 0 0

0.4000 0.4000 1.0000 0.2000 0.2000

0.4206 0.4211 0.9510 0.2103 0.2000

4.0000 4.1850 0.9510 2.0000 1.9020

4.8524 5.0813 0.9510 2.0000 1.9020

6.5996 8.1832 0.1755 2.0000 0.3510

6.7816 9.2205 0.1755 2.0000 0.3510

8.7200 12.5184 1.0000 2.0000 2.0000

19.3852 23.1836 1.0000 2.0000 2.0000

23.3852 27.1836 1.0000 0 0

Table 2. Results of time-scaling for the robots

Motion Planning for Multiple Mobile Robots Using Time-Scaling 287

5. Conclusions
In this chapter a time-scaling based obstacle avoidance method was presented that is able to
avoid dynamic obstacles as well as static obstacles. We designed and described an algorithm
being able to find a time-scaling function that avoids all time-obstacles in the time-plane and
thus ensures a collision free path in the robots’ workspace.
The determined time-scaling function also satisfies the criteria according to the kinematic
constraints prescribed for the control (velocity) inputs. The solutions of the differential
equations describing the motion of the time-scaled units were presented with a method that
makes finding a path between dedicated points in the time-plane possible.
Since the solutions of the differential equations are given in analytic form there is no need
for time-consuming computations and determining the scaled velocity function is simple.
Planning on the time-plane is based on a novel and fast tree-building method. The path-
planning algorithm is considered to be complete since it gives a definite answer in a finite
time. All components of the algorithm are well suited for real time implementation.
Should time-scaling fail to work we still have a method to avoid collision with delaying the
robots. Fig. 24 shows a scenario where a better solution is achieved by using time-scaling
than simply delaying the robot.

6. Acknowledgments
This work is connected to the scientific program of the ''Development of Quality-Oriented
and Harmonized R+D+I Strategy and Functional Model at BME'' project. This project is
supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-
09/1/KMR-2010-0002). The work is partially supported by the Hungarian Scientific
Research Fund under grant OTKA K71762.

7. References
[1] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,

1991.
[2] Yongguo Mei; Yung-Hsiang Lu; Hu, Y.C.; Lee, C.S.G. Energy-efficient motion planning

for mobile robots. In: Proceedings of the IEEE Int. Conf. on Robotics and
Automation, pages: 4344-4349. 2004.

[3] V. Kunchev, L. Jain, V. Ivancevic, and A Finn. Path planning and obstacle avoidance for
autonomous mobile robots: A review. Volume 4252 of Lecture Notes in Articial
Intelligence, pages 537–544. SpringerVerlag, 2006.

[4] F. Cuesta and A. Ollero, Intelligent Mobile Robot Navigation, ser. Springer Tracts in
Advanced Robotics. Heidelberg: Springer, 2005, vol. 16.

[5] J. Reif and M. Sharir, “Motion planning in the presence of moving obstacles”,
Journal of the Association for Computing Machinery, vol. 41, no. 4, pp. 764–
790, 1994.

[6] S. B. Moon and S. Ahmad, “Time scaling of cooperative multirobot trajectories”,
IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 4, pp. 900–
908, 1991.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 286

Robot#

Virtual time(s) Real time(s) ()t Default velocity (m/s) Scaled velocity(m/s)

Robot#2

0 0 1.0000 0 0

0.4000 0.4000 1.0000 0.2000 0.2000

0.8106 1.0213 0.4935 0.4053 0.2000

4.0000 7.4846 0.4935 2.0000 0.9869

7.2854 14.1425 0.4935 2.0000 0.9869

8.7984 16.1686 1.0000 2.0000 2.0000

17.4031 24.7733 1.0000 2.0000 2.0000

21.4031 28.7733 1.0000 0 0

Robot#3

0 0 1.0000 0 0

1.0000 1.0000 1.0000 0.2000 0.2000

1.1957 1.2149 0.8363 0.2391 0.2000

5.0000 5.7638 0.8363 1.0000 0.8363

13.5249 15.9575 0.8363 1.0000 0.8363

14.2764 16.7760 1.0000 1.0000 1.0000

20.1803 22.6799 1.0000 1.0000 1.0000

25.1803 27.6799 1.0000 0 0

Robot#4

0 0 1.0000 0 0

0.4000 0.4000 1.0000 0.2000 0.2000

0.4206 0.4211 0.9510 0.2103 0.2000

4.0000 4.1850 0.9510 2.0000 1.9020

4.8524 5.0813 0.9510 2.0000 1.9020

6.5996 8.1832 0.1755 2.0000 0.3510

6.7816 9.2205 0.1755 2.0000 0.3510

8.7200 12.5184 1.0000 2.0000 2.0000

19.3852 23.1836 1.0000 2.0000 2.0000

23.3852 27.1836 1.0000 0 0

Table 2. Results of time-scaling for the robots

Motion Planning for Multiple Mobile Robots Using Time-Scaling 287

5. Conclusions
In this chapter a time-scaling based obstacle avoidance method was presented that is able to
avoid dynamic obstacles as well as static obstacles. We designed and described an algorithm
being able to find a time-scaling function that avoids all time-obstacles in the time-plane and
thus ensures a collision free path in the robots’ workspace.
The determined time-scaling function also satisfies the criteria according to the kinematic
constraints prescribed for the control (velocity) inputs. The solutions of the differential
equations describing the motion of the time-scaled units were presented with a method that
makes finding a path between dedicated points in the time-plane possible.
Since the solutions of the differential equations are given in analytic form there is no need
for time-consuming computations and determining the scaled velocity function is simple.
Planning on the time-plane is based on a novel and fast tree-building method. The path-
planning algorithm is considered to be complete since it gives a definite answer in a finite
time. All components of the algorithm are well suited for real time implementation.
Should time-scaling fail to work we still have a method to avoid collision with delaying the
robots. Fig. 24 shows a scenario where a better solution is achieved by using time-scaling
than simply delaying the robot.

6. Acknowledgments
This work is connected to the scientific program of the ''Development of Quality-Oriented
and Harmonized R+D+I Strategy and Functional Model at BME'' project. This project is
supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-
09/1/KMR-2010-0002). The work is partially supported by the Hungarian Scientific
Research Fund under grant OTKA K71762.

7. References
[1] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,

1991.
[2] Yongguo Mei; Yung-Hsiang Lu; Hu, Y.C.; Lee, C.S.G. Energy-efficient motion planning

for mobile robots. In: Proceedings of the IEEE Int. Conf. on Robotics and
Automation, pages: 4344-4349. 2004.

[3] V. Kunchev, L. Jain, V. Ivancevic, and A Finn. Path planning and obstacle avoidance for
autonomous mobile robots: A review. Volume 4252 of Lecture Notes in Articial
Intelligence, pages 537–544. SpringerVerlag, 2006.

[4] F. Cuesta and A. Ollero, Intelligent Mobile Robot Navigation, ser. Springer Tracts in
Advanced Robotics. Heidelberg: Springer, 2005, vol. 16.

[5] J. Reif and M. Sharir, “Motion planning in the presence of moving obstacles”,
Journal of the Association for Computing Machinery, vol. 41, no. 4, pp. 764–
790, 1994.

[6] S. B. Moon and S. Ahmad, “Time scaling of cooperative multirobot trajectories”,
IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 4, pp. 900–
908, 1991.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 288

[7] M. Peasgood, C.M. Clark and J. McPhee, “A Complete and Scalable Strategy for
Coordinating Multiple Robots Within Roadmaps”, IEEE Transactions on Robotics,
vol. 24, no 2, pp. 283-292, 2008.

[8] H. Li, S. X. Yang and M. L. Seto, “Neural-Network-Based Path Planning for a
Multirobot System With Moving Obstacles”, IEEE Transactions on Systems,
Man and Cybernetics-Part C: Applications and Reviews, vol. 39, no. 4, pp. 410-
419, 2009.

[9] K. G. Jolly, R. Sreerama Kumar, and R. Vijayakumar, “A Bezier curve based path
planning in a multi-agent robot soccer system without violating the acceleration
limits”, Robotics and Autonomous Systems, vol. 57, pp. 23-33, 2009.

[10] Steven M. LaValle, “Planning algorithms” , Cambridge University Press, 2006

13

Cooperative Reinforcement Learning
Based on Zero-Sum Games

Kao-Shing Hwang1, Wei-Cheng Jiang1,
Hung-Hsiu Yu2 and Shin-Yi Lin2

National Chung-Cheng University / Industrial
Technology Research Institute

Taiwan

1. Introduction
Multi-Agent systems (MAS), developed from the artificial intelligent field, include many
independent agents, each of which has its own behavior and can achieve a certain goal. The
system can be used to solve a complex problem by cooperation and coordination between
agents, because most complex problems can be divided into many sub-problems. Therefore,
cooperation is central to the topics and operations of MAS (Vassiliades et al., 2011)(Marden
et al.,2009).
The use of MAS in teams to play a competitive game such as soccer is major challenge,
where agents have to accomplish the goal of scoring or prevent scoring by opponents in real
time in a highly varying environment. Being good players, they must be able to adapt the
strategy on which they are behaving responding to actions of the opponents. In other words,
agents of MAS need to operate appropriately in real time to varying states of the
environment. Therefore, it is difficult to establish a well-defined state-action mapping for
the agents unless the whole state space has been visited or searched exhaustedly. Instead, a
learning mechanism adapting to a highly dynamic environment is more appropriate for the
situation (Busoniu et al., 2008)(Xiao et al., 2007).
Reinforcement learning is probably the best-known method of learning due to the similarity
of empirical learning in mammals (Gosavi, 2009)(Kaelbling et al., 1996). The learning takes
place by trial and error, following by performance evaluation but always provided after a
sequence of actions. Besides, the correct solution or behavior for a given trial is not
provided. The goal of learning agents is to establish a strategy optimizing a scalar cost or
evaluation function in long term. The strategy, also known as action policy, can choose an
appropriate behavior or action based on the stated perceived by robots (Barto et al.,
1983)(Bingulac et al., 1994)(Tan, 1993). Furthermore, reinforcement learning on Markov
games have also been proposed for multi-agent reinforcement learning to solve cooperation
problems in social dilemmas under the assumption of Nash equilibrium (Yanco et al., 2002)
(Flache et al., 2002) (Littman, 1994). These general-sum stochastic games has been adopted
as a framework for multi-agent reinforcement learning and proved to converge to a Nash
equilibrium under specified conditions (Hu et al., 1998). That method is adoptable to find an
optimal strategy only when there exists a unique Nash equilibrium in a game. However, in

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 288

[7] M. Peasgood, C.M. Clark and J. McPhee, “A Complete and Scalable Strategy for
Coordinating Multiple Robots Within Roadmaps”, IEEE Transactions on Robotics,
vol. 24, no 2, pp. 283-292, 2008.

[8] H. Li, S. X. Yang and M. L. Seto, “Neural-Network-Based Path Planning for a
Multirobot System With Moving Obstacles”, IEEE Transactions on Systems,
Man and Cybernetics-Part C: Applications and Reviews, vol. 39, no. 4, pp. 410-
419, 2009.

[9] K. G. Jolly, R. Sreerama Kumar, and R. Vijayakumar, “A Bezier curve based path
planning in a multi-agent robot soccer system without violating the acceleration
limits”, Robotics and Autonomous Systems, vol. 57, pp. 23-33, 2009.

[10] Steven M. LaValle, “Planning algorithms” , Cambridge University Press, 2006

13

Cooperative Reinforcement Learning
Based on Zero-Sum Games

Kao-Shing Hwang1, Wei-Cheng Jiang1,
Hung-Hsiu Yu2 and Shin-Yi Lin2

National Chung-Cheng University / Industrial
Technology Research Institute

Taiwan

1. Introduction
Multi-Agent systems (MAS), developed from the artificial intelligent field, include many
independent agents, each of which has its own behavior and can achieve a certain goal. The
system can be used to solve a complex problem by cooperation and coordination between
agents, because most complex problems can be divided into many sub-problems. Therefore,
cooperation is central to the topics and operations of MAS (Vassiliades et al., 2011)(Marden
et al.,2009).
The use of MAS in teams to play a competitive game such as soccer is major challenge,
where agents have to accomplish the goal of scoring or prevent scoring by opponents in real
time in a highly varying environment. Being good players, they must be able to adapt the
strategy on which they are behaving responding to actions of the opponents. In other words,
agents of MAS need to operate appropriately in real time to varying states of the
environment. Therefore, it is difficult to establish a well-defined state-action mapping for
the agents unless the whole state space has been visited or searched exhaustedly. Instead, a
learning mechanism adapting to a highly dynamic environment is more appropriate for the
situation (Busoniu et al., 2008)(Xiao et al., 2007).
Reinforcement learning is probably the best-known method of learning due to the similarity
of empirical learning in mammals (Gosavi, 2009)(Kaelbling et al., 1996). The learning takes
place by trial and error, following by performance evaluation but always provided after a
sequence of actions. Besides, the correct solution or behavior for a given trial is not
provided. The goal of learning agents is to establish a strategy optimizing a scalar cost or
evaluation function in long term. The strategy, also known as action policy, can choose an
appropriate behavior or action based on the stated perceived by robots (Barto et al.,
1983)(Bingulac et al., 1994)(Tan, 1993). Furthermore, reinforcement learning on Markov
games have also been proposed for multi-agent reinforcement learning to solve cooperation
problems in social dilemmas under the assumption of Nash equilibrium (Yanco et al., 2002)
(Flache et al., 2002) (Littman, 1994). These general-sum stochastic games has been adopted
as a framework for multi-agent reinforcement learning and proved to converge to a Nash
equilibrium under specified conditions (Hu et al., 1998). That method is adoptable to find an
optimal strategy only when there exists a unique Nash equilibrium in a game. However, in

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

290

some problems, such as task assignment in robot soccer games, it is not enough to consider
only attributes of the agent itself because the whole state space is composed of the ones of
partners and components.
Eventually, task assignment is always a major research area in MAS where a number of
autonomous agents, either in heterogeneous or homogeneous fashion, work together with
individual assignment. Although centralized optimization provides opportunity for efficient
optimization, the coordination and the transfer of information among agents are costly and
often infeasible. Hence it is important to develop decentralized optimization schemes which
permit the individual agents take control of the actions that contribute towards the
optimization of a global performance criteria. The motivation for using game theory for
assigning tasks are driven by the fact that decentralized optimization in game theory is
achieved by the agents (players of the game) acting selfishly. We utilize techniques from
game theory to produce an algorithm for matching player and roles (tasks) based on
situations on the field. As a result, we have created a deterministic algorithm for task
assignment with built-in feedback mechanisms for reinforcement learning.
This chapter presents a cooperation strategy system with self-improving abilities for task
assignment for multi-robot systems. The strategy system is eventually a formation
mechanism based on reinforcement learning and the game theory through task assignment
to individual robot. The mechanism coordinates robots, in they which learn to behave
primitively, to work as a team by means of perceptual information with their respective
roles such as, attacker, defender, or goalie, to produce appropriate behaviours. The robots
with homogeneous behavioral architecture accomplish cooperatively global goals on their
local sensory information cooperatively. These robots carrying out tasks of a helper or
defender improve action policy at play based on Q-learning inspired by the game theory.
Results of experiments demonstrate the effective performance of the proposed method in
comparison with renown methods.

2. Task assignment mechanism
Eventually, the assignment of specific teaks to individual robot on a team is a major research
in MAS. No matter whether the teams are homogeneous or heterogeneous, different robots
will generally be required to perform different task. In our proposed system, individual
robots are able to solve certain problem, such as ball shooting, obstacle avoidance, and
positioning through reinforcement learning before playing a game. The system makes use of
a task assignment mechanism to robots with learned capabilities. The task assignment
mechanism further divided into two sub-mechanisms: a task assignment system to decide
each robot’s temporal task corresponding to perceived geometrical state and a
reinforcement learning system to command robots to the most appropriate position for the
task assigned. Each robot with the same architecture behaviors on local information
accomplishes global goals; that is, each robot chooses and executes it own actions according
to its task and the environmental states. Meanwhile, the choosing action strategy associated
to a task is modified by means of reinforcement learning.

2.1 Dynamic task assignment for players
The assignment system assigns dynamically four tasks, an attacker, goalie, helper, and
defender, respectively, to a robot one at a time.

Cooperative Reinforcement Learning Based on Zero-Sum Games

291

2.1.1 Tasks of an Attacker
The task of the Attacker is aimed to kick a ball into the opponent’s field to score. It is a very
important task in a soccer game because the goal of a soccer game is to gain more scores.
Thus, the first assigned task in the assignment mechanism is finding an attacker. The
position of a robot is a major factor in considering which robot should take this assignment
because a fast and precise attack is key to score a point. Therefore, a robot who can spend
the shortest time to kick the ball in the correct direction should be an attacker. The
procedure to identify which robots are at an advantageous position is defined as follows.
With respect to a coordinate frame where origin locates at the center of the ball, and x-axis is
the line from the opponent’s goal center to the ball as shown in Fig. 1. The good side is
defined on the side opposite to opponent’s goal of y-axis. In other words, robots on the
region are favorable to be an attacker. In turn, the robot on the good side and closest to the
ball is assigned as an attacker. Unfortunately, if there is no robot on the good side, any robot
is selected as an attacker as long as it is closest to the ball.

Fig. 1. The rule to select the attacker.

2.1.2 Tasks of a goalie
A goalie is required to move along the direction in parallel to the y-axis of the frame with
respect to the ball in the front of its goal. This task is assigned to a robot after the attacker is
selected because stopping the opponent’s attack in front of the goal is a passive action in a
soccer game. A robot is assigned to play this task when it is nearest to its team’s goal and
does not need to be assigned as an Attacker.

2.1.3 Tasks of a helper
A helper assists the attacker or the defender to accomplish the imminent efforts. This task is
assigned in turn thirdly, and two free robots are assigned as helpers. The helpers are capable
of learning in the game. Depending on the various situations occurring in the game field, the
helpers move to suggested positions according to the formation being taken to ensure the
attacker or the defender can get good support. There are three formations, attack formation,
normal formation, and defense formation to deal with the highly dynamic situations on the
field. Helpers learn empirically to ensure that a most appropriate formation is always taken.
The details of the learning mechanism are depicted in the next section.
a. In the attack formation, the helpers are dispatched to both side of the attacker on the

half way to the opponent’s bottom line, as shown in Fig 2(a).

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

290

some problems, such as task assignment in robot soccer games, it is not enough to consider
only attributes of the agent itself because the whole state space is composed of the ones of
partners and components.
Eventually, task assignment is always a major research area in MAS where a number of
autonomous agents, either in heterogeneous or homogeneous fashion, work together with
individual assignment. Although centralized optimization provides opportunity for efficient
optimization, the coordination and the transfer of information among agents are costly and
often infeasible. Hence it is important to develop decentralized optimization schemes which
permit the individual agents take control of the actions that contribute towards the
optimization of a global performance criteria. The motivation for using game theory for
assigning tasks are driven by the fact that decentralized optimization in game theory is
achieved by the agents (players of the game) acting selfishly. We utilize techniques from
game theory to produce an algorithm for matching player and roles (tasks) based on
situations on the field. As a result, we have created a deterministic algorithm for task
assignment with built-in feedback mechanisms for reinforcement learning.
This chapter presents a cooperation strategy system with self-improving abilities for task
assignment for multi-robot systems. The strategy system is eventually a formation
mechanism based on reinforcement learning and the game theory through task assignment
to individual robot. The mechanism coordinates robots, in they which learn to behave
primitively, to work as a team by means of perceptual information with their respective
roles such as, attacker, defender, or goalie, to produce appropriate behaviours. The robots
with homogeneous behavioral architecture accomplish cooperatively global goals on their
local sensory information cooperatively. These robots carrying out tasks of a helper or
defender improve action policy at play based on Q-learning inspired by the game theory.
Results of experiments demonstrate the effective performance of the proposed method in
comparison with renown methods.

2. Task assignment mechanism
Eventually, the assignment of specific teaks to individual robot on a team is a major research
in MAS. No matter whether the teams are homogeneous or heterogeneous, different robots
will generally be required to perform different task. In our proposed system, individual
robots are able to solve certain problem, such as ball shooting, obstacle avoidance, and
positioning through reinforcement learning before playing a game. The system makes use of
a task assignment mechanism to robots with learned capabilities. The task assignment
mechanism further divided into two sub-mechanisms: a task assignment system to decide
each robot’s temporal task corresponding to perceived geometrical state and a
reinforcement learning system to command robots to the most appropriate position for the
task assigned. Each robot with the same architecture behaviors on local information
accomplishes global goals; that is, each robot chooses and executes it own actions according
to its task and the environmental states. Meanwhile, the choosing action strategy associated
to a task is modified by means of reinforcement learning.

2.1 Dynamic task assignment for players
The assignment system assigns dynamically four tasks, an attacker, goalie, helper, and
defender, respectively, to a robot one at a time.

Cooperative Reinforcement Learning Based on Zero-Sum Games

291

2.1.1 Tasks of an Attacker
The task of the Attacker is aimed to kick a ball into the opponent’s field to score. It is a very
important task in a soccer game because the goal of a soccer game is to gain more scores.
Thus, the first assigned task in the assignment mechanism is finding an attacker. The
position of a robot is a major factor in considering which robot should take this assignment
because a fast and precise attack is key to score a point. Therefore, a robot who can spend
the shortest time to kick the ball in the correct direction should be an attacker. The
procedure to identify which robots are at an advantageous position is defined as follows.
With respect to a coordinate frame where origin locates at the center of the ball, and x-axis is
the line from the opponent’s goal center to the ball as shown in Fig. 1. The good side is
defined on the side opposite to opponent’s goal of y-axis. In other words, robots on the
region are favorable to be an attacker. In turn, the robot on the good side and closest to the
ball is assigned as an attacker. Unfortunately, if there is no robot on the good side, any robot
is selected as an attacker as long as it is closest to the ball.

Fig. 1. The rule to select the attacker.

2.1.2 Tasks of a goalie
A goalie is required to move along the direction in parallel to the y-axis of the frame with
respect to the ball in the front of its goal. This task is assigned to a robot after the attacker is
selected because stopping the opponent’s attack in front of the goal is a passive action in a
soccer game. A robot is assigned to play this task when it is nearest to its team’s goal and
does not need to be assigned as an Attacker.

2.1.3 Tasks of a helper
A helper assists the attacker or the defender to accomplish the imminent efforts. This task is
assigned in turn thirdly, and two free robots are assigned as helpers. The helpers are capable
of learning in the game. Depending on the various situations occurring in the game field, the
helpers move to suggested positions according to the formation being taken to ensure the
attacker or the defender can get good support. There are three formations, attack formation,
normal formation, and defense formation to deal with the highly dynamic situations on the
field. Helpers learn empirically to ensure that a most appropriate formation is always taken.
The details of the learning mechanism are depicted in the next section.
a. In the attack formation, the helpers are dispatched to both side of the attacker on the

half way to the opponent’s bottom line, as shown in Fig 2(a).

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

292

b. In the case of the normal formation, the helpers are aligned with the attacker as shown
in Fig 2(b).

c. If the defense formation is taken, helpers are assigned to two sides of the attacker but at
the midpoint between their own goal and the attacker as shown in Fig 2(c). Meanwhile,
a robot is assigned as a helper when it is not assigned as either an attacker or a goalie
and is nearest to one of suggested positions of the adopted formation.

(a)

(b)

(c)

Fig. 2. Rules to select helpers: (a) attack formation, (b) normal formation, (c) defense
formation.

Cooperative Reinforcement Learning Based on Zero-Sum Games

293

2.1.4 Tasks of a defender
The major function of a defender is to block and prevent opponents from scoring. Hence, it
needs to move to appropriate positions where it can be most helpful to the goalie. Similar to
the task for helpers, there are three optional positions for the defender as shown in Fig 3.
The defender has learning ability, and details of the learning system will be described later.

2.2 Learning to position
As aforementioned, each helper and defender has three prospective formations or positions
to choose. A reinforcement learning system is applied to determine which formation the
helper should take with respect to the position of the attacker, the defender, and the position
of the soccer ball.
The reinforcement learning system associated with an individual is implemented by the
Q(λ) algorithm. For computation efficiency, the state space ought to be partitioned to a
reasonable amount in the learning state-action mapping function. Therefore, a linear tile-
coding function approximation is used for state reception (Hu et al., 1998)(George A. Bekey,
2005) where each instance of decoded state vectors includes the information of position,
speed, and direction of the soccer. Furthermore, a ball position is presented by the
coordinate on the field which is divided into 6 × 9 = 54 grids; ball speed is mapped to a
bipolar value; the direction of ball is also presented by eight different symbols. The output
of the reinforcement system decides which formation should be taken.
In addition, in order to respond and adapt timely to various situations on the field, the
learning system should take the opponents’ current actions into consideration.
Unfortunately, it is impossible, in practice, to know which action is being and going to be
taken by the opponent. Thus, observing the sequence of opponents’ behaviors to predict the
situations is a good way to get related information. Eventually the action set of opponents
cannot be obtained but temporal actions executed by the opponents are observable. Instead
of obtaining the action chosen directly, positions where each opponent is standing at are
followed up, because the action being executed is regarded as the output of the function of
current robot formation. The quantization of the opponent’s action is done by a Cerebellar
Model Articulation Controller (CMAC) decoder (K. S. Hwang et al., 1998). Since the
combinational state space of opponents in the opposing team will be extremely large if all
the information for each opponent is taken into account. Thus, only the state of the attacker
in opposing the team is considered, and that attacker is an opponent closest to the ball than
the other players.
For discretizing the receptive space into a state space, a filter partitions the region around
the ball into 16 cells, as shown in Fig. 4. The center of the circle is at the position of a ball,
and the radii of the inner and outer circles are 3 and 6 units, respectively. Instead of
Euclidian distance presentation, the distance between the opponent and ball is a scale value
assigned by this filter.
The reward to each individual learning system is different. The sparse rewards of the
helpers’ learning system are as follows:
 Get Point: get reward +1;
 Lose Point: get reward -1;
 Become the Attacker: get reward +0.5.
The rewards for the defender are:
 Lose Point: get reward -1

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

292

b. In the case of the normal formation, the helpers are aligned with the attacker as shown
in Fig 2(b).

c. If the defense formation is taken, helpers are assigned to two sides of the attacker but at
the midpoint between their own goal and the attacker as shown in Fig 2(c). Meanwhile,
a robot is assigned as a helper when it is not assigned as either an attacker or a goalie
and is nearest to one of suggested positions of the adopted formation.

(a)

(b)

(c)

Fig. 2. Rules to select helpers: (a) attack formation, (b) normal formation, (c) defense
formation.

Cooperative Reinforcement Learning Based on Zero-Sum Games

293

2.1.4 Tasks of a defender
The major function of a defender is to block and prevent opponents from scoring. Hence, it
needs to move to appropriate positions where it can be most helpful to the goalie. Similar to
the task for helpers, there are three optional positions for the defender as shown in Fig 3.
The defender has learning ability, and details of the learning system will be described later.

2.2 Learning to position
As aforementioned, each helper and defender has three prospective formations or positions
to choose. A reinforcement learning system is applied to determine which formation the
helper should take with respect to the position of the attacker, the defender, and the position
of the soccer ball.
The reinforcement learning system associated with an individual is implemented by the
Q(λ) algorithm. For computation efficiency, the state space ought to be partitioned to a
reasonable amount in the learning state-action mapping function. Therefore, a linear tile-
coding function approximation is used for state reception (Hu et al., 1998)(George A. Bekey,
2005) where each instance of decoded state vectors includes the information of position,
speed, and direction of the soccer. Furthermore, a ball position is presented by the
coordinate on the field which is divided into 6 × 9 = 54 grids; ball speed is mapped to a
bipolar value; the direction of ball is also presented by eight different symbols. The output
of the reinforcement system decides which formation should be taken.
In addition, in order to respond and adapt timely to various situations on the field, the
learning system should take the opponents’ current actions into consideration.
Unfortunately, it is impossible, in practice, to know which action is being and going to be
taken by the opponent. Thus, observing the sequence of opponents’ behaviors to predict the
situations is a good way to get related information. Eventually the action set of opponents
cannot be obtained but temporal actions executed by the opponents are observable. Instead
of obtaining the action chosen directly, positions where each opponent is standing at are
followed up, because the action being executed is regarded as the output of the function of
current robot formation. The quantization of the opponent’s action is done by a Cerebellar
Model Articulation Controller (CMAC) decoder (K. S. Hwang et al., 1998). Since the
combinational state space of opponents in the opposing team will be extremely large if all
the information for each opponent is taken into account. Thus, only the state of the attacker
in opposing the team is considered, and that attacker is an opponent closest to the ball than
the other players.
For discretizing the receptive space into a state space, a filter partitions the region around
the ball into 16 cells, as shown in Fig. 4. The center of the circle is at the position of a ball,
and the radii of the inner and outer circles are 3 and 6 units, respectively. Instead of
Euclidian distance presentation, the distance between the opponent and ball is a scale value
assigned by this filter.
The reward to each individual learning system is different. The sparse rewards of the
helpers’ learning system are as follows:
 Get Point: get reward +1;
 Lose Point: get reward -1;
 Become the Attacker: get reward +0.5.
The rewards for the defender are:
 Lose Point: get reward -1

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

294

 Become the Attacker: get reward +1
When the period of finding a new action is too short, the previous action will have not
enough time to execute well because executing it needs enough time. This will provide
wrong results when the system is just beginning to learn. To ensure sufficient time to
execute each action command, a new action is triggered only after the task of an attacker is
shifted to the teammates by the assignment system. According to the rule of task selection,
the attacker is changed under certain situations. Therefore, the previous action can have
enough time to execute.

Fig. 3. Three positions of defender.

Fig. 4. Decompositions of an opponent’s position.

3. Q-learning for MAS
Spontaneous behaviors of the helpers or defenders for positioning are activated by a local
learning system. A Q-learning for MAS derived from the game theory is proposed to obtain
a better policy in a team. In the two-player zero-sum game, the action is taken according to
the opponent’s behavior. If the opponent makes an action to get their best benefit, the action
may result in the worst situation to our team. On the other hand, if we want to win the game
in this situation, best actions to deal with the action being taken by the opponent must be
always taken. Therefore, the Q-learning is modified to accommodate the principle of game
theory. The original Q-learning rule is as follows:

Cooperative Reinforcement Learning Based on Zero-Sum Games

295

'

(,) (,) [max (', ') (,)],
a A

Q s a Q s a r Q s a Q s a 


    (1)

where s is the state; a is the action; A is an action set; α is the learning rate; γ is the discount
factor; r is the reward. This equation tries to maximize the Q-value for the future and only
consider the action that we take. So, it uses max (', '), 'Q s a a A to update its (,)Q s a . In
game theory, because we need to consider the opponent’s action o, the notation, o, denotes
the opponent’s action set. We redefine (,)Q s a to (, ,)Q s a o and redefine the
max (', '), 'Q s a a A to maxmin (', ', '), ' , 'Q s a o a A o O  . Therefore, we get the following
equation:

''

(, ,) (, ,) [maxmin (', ', ') (, ,)].
o Oa A

Q s a o Q s a o r Q s a o Q s a o 


    (2)

Eligibility traces are also taken into account. The algorithm is further modified by the
replace-trace method:

''

(, ,) (, ,) [maxmin (', ', ') (, ,)].
o Oa A

Q s a o Q s a o r Q s a o Q s a o 


    (3)

where
''

maxmin (', ', ') (, ,)
o Oa A

r Q s a o Q s a o 


  

Actually, this algorithm is derived from the classic Q-learning algorithm but inspired the
game theory and eligibility traces. Fig.5 shows the complete algorithm in pseudo code.

Fig. 5. The proposed Q-Learning.

4. Soccer robot behaviors
A robot has been required to learn three basic types of behaviors, ball shooting, obstacle
avoidance, and target reaching. These primitive behaviors can be combined with more

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

294

 Become the Attacker: get reward +1
When the period of finding a new action is too short, the previous action will have not
enough time to execute well because executing it needs enough time. This will provide
wrong results when the system is just beginning to learn. To ensure sufficient time to
execute each action command, a new action is triggered only after the task of an attacker is
shifted to the teammates by the assignment system. According to the rule of task selection,
the attacker is changed under certain situations. Therefore, the previous action can have
enough time to execute.

Fig. 3. Three positions of defender.

Fig. 4. Decompositions of an opponent’s position.

3. Q-learning for MAS
Spontaneous behaviors of the helpers or defenders for positioning are activated by a local
learning system. A Q-learning for MAS derived from the game theory is proposed to obtain
a better policy in a team. In the two-player zero-sum game, the action is taken according to
the opponent’s behavior. If the opponent makes an action to get their best benefit, the action
may result in the worst situation to our team. On the other hand, if we want to win the game
in this situation, best actions to deal with the action being taken by the opponent must be
always taken. Therefore, the Q-learning is modified to accommodate the principle of game
theory. The original Q-learning rule is as follows:

Cooperative Reinforcement Learning Based on Zero-Sum Games

295

'

(,) (,) [max (', ') (,)],
a A

Q s a Q s a r Q s a Q s a 


    (1)

where s is the state; a is the action; A is an action set; α is the learning rate; γ is the discount
factor; r is the reward. This equation tries to maximize the Q-value for the future and only
consider the action that we take. So, it uses max (', '), 'Q s a a A to update its (,)Q s a . In
game theory, because we need to consider the opponent’s action o, the notation, o, denotes
the opponent’s action set. We redefine (,)Q s a to (, ,)Q s a o and redefine the
max (', '), 'Q s a a A to maxmin (', ', '), ' , 'Q s a o a A o O  . Therefore, we get the following
equation:

''

(, ,) (, ,) [maxmin (', ', ') (, ,)].
o Oa A

Q s a o Q s a o r Q s a o Q s a o 


    (2)

Eligibility traces are also taken into account. The algorithm is further modified by the
replace-trace method:

''

(, ,) (, ,) [maxmin (', ', ') (, ,)].
o Oa A

Q s a o Q s a o r Q s a o Q s a o 


    (3)

where
''

maxmin (', ', ') (, ,)
o Oa A

r Q s a o Q s a o 


  

Actually, this algorithm is derived from the classic Q-learning algorithm but inspired the
game theory and eligibility traces. Fig.5 shows the complete algorithm in pseudo code.

Fig. 5. The proposed Q-Learning.

4. Soccer robot behaviors
A robot has been required to learn three basic types of behaviors, ball shooting, obstacle
avoidance, and target reaching. These primitive behaviors can be combined with more

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

296

complex behaviors, such as defending, or attacking. Ball shooting is a simple but essential
behavior. Through this behavior, before a robot comes to the ball position, it follows an
imaginary shooting line, and switches the kicking motor on. The imaginary shooting line is
a line passing through the ball and the target door. Obstacle avoidance is necessary because
during the game, a robot is not allowed to collide with other robots. The temporal
information about the positions and moving direction of other robots is provided by a vision
system. The robot moves in a direction to avoid collision according to the distance between
other robots and the current position by means of a reinforcement learning mechanism (K. S.
Hwang et al., 1998). The outputs of all available actions of the learning mechanism are
regarded as reference signals for driving motorizing wheels. The behavior of target reaching
drives a robot to the desired position and orientation.

5. Simulations
There are two simulations, one is for the basic behaviors, and the other is for the strategy
algorithm.

5.1 Behavior demonstration
There are three different basic behaviors that to be learnt: collision avoidance, target
moving, and ball shooting. The simulation environment to emulate the soccer field is
defined by the Federation of International Robot-soccer Association (FIRA) (FIRA, 2009). A
robot is initially placed at the center but slightly to the right. The robot motion track is
shown by a series of white dots. Fig. 6 shows the behavior of obstacle avoidance learned by
a robot. The robot walks randomly on the field without going over the boundary, which is
regarded as an obstacle. Fig. 7 shows a robot’s capability of moving to a target. In this figure,
the robot moves as closely as possible to the assignment posture (position with a certain
orientation) with a slight tolerance represented by a hidden region centered by the assigned
position. Fig. 8 shows the learnt ball shooting behavior. The robot moves to an aiming
position where the robot aligns the line between the center of the opponent’s gate and ball,
but with a certain distance from the ball in preparation for kicking.

Fig. 6. Obstacle avoidance behavior.

Cooperative Reinforcement Learning Based on Zero-Sum Games

297

Fig. 7. Target moving behavior.

Fig. 8. Ball shooting behavior.

5.2 Strategy demonstration
The Proposed Q-learning algorithm is compared with the renowned Q(λ)-learning and
minimax-Q under a 5-vs-5 simulation environment provided by FIRA (FIRA, 2009). The
Q(λ)-learning is a modified Q-learning methods with the eligibility skill, and the minimax-Q
further combines Q-learning with a simple game theory. These three algorithms are
arranged, respectively, to play against a test-bed algorithm. In the first game, the team with
the Q(λ)-learning algorithm plays against the team using the default algorithm, Lingo. Lingo
is a well-established landmark algorithm along with the FIRA robot soccer simulator.
Meanwhile, the minimax-Q algorithm is used to play against the team using Lingo in the
other game. In another game, the proposed algorithm, Proposed Q, competes with Lingo.
The scores gained by the competitors are recorded in Fig. 9. The horizontal axis of the chart
expresses the number of rounds each of which lasts 10 minutes, and the vertical axis
expresses the total scores the comparing team gets. The solid line is a regression of the saw-
toothed line to represent the trend of scores gained along the number of rounds.
As shown in Fig. 10, where the regression lines in Fig. 9 are redrawn, the proposed
algorithm beats the opponent by about 16 to 18 points. This result is better than the results
of Q(λ)-learning algorithm and the minimax-Q algorithm.
In the second experiment, which is similar to the first experiment, Lingo is replaced by a
rule-based strategy introduced in (K. S. Hwang et al., 2007). This rule-based strategy
opponent has beaten Lingo before. The comparison between Q(λ)-learning algorithm,
minimax-Q algorithm, and the proposed algorithm is indicated on Fig. 11. Intriguing
enough, the opponent’s score decreases more obviously when the challenger uses the
proposed algorithm.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

296

complex behaviors, such as defending, or attacking. Ball shooting is a simple but essential
behavior. Through this behavior, before a robot comes to the ball position, it follows an
imaginary shooting line, and switches the kicking motor on. The imaginary shooting line is
a line passing through the ball and the target door. Obstacle avoidance is necessary because
during the game, a robot is not allowed to collide with other robots. The temporal
information about the positions and moving direction of other robots is provided by a vision
system. The robot moves in a direction to avoid collision according to the distance between
other robots and the current position by means of a reinforcement learning mechanism (K. S.
Hwang et al., 1998). The outputs of all available actions of the learning mechanism are
regarded as reference signals for driving motorizing wheels. The behavior of target reaching
drives a robot to the desired position and orientation.

5. Simulations
There are two simulations, one is for the basic behaviors, and the other is for the strategy
algorithm.

5.1 Behavior demonstration
There are three different basic behaviors that to be learnt: collision avoidance, target
moving, and ball shooting. The simulation environment to emulate the soccer field is
defined by the Federation of International Robot-soccer Association (FIRA) (FIRA, 2009). A
robot is initially placed at the center but slightly to the right. The robot motion track is
shown by a series of white dots. Fig. 6 shows the behavior of obstacle avoidance learned by
a robot. The robot walks randomly on the field without going over the boundary, which is
regarded as an obstacle. Fig. 7 shows a robot’s capability of moving to a target. In this figure,
the robot moves as closely as possible to the assignment posture (position with a certain
orientation) with a slight tolerance represented by a hidden region centered by the assigned
position. Fig. 8 shows the learnt ball shooting behavior. The robot moves to an aiming
position where the robot aligns the line between the center of the opponent’s gate and ball,
but with a certain distance from the ball in preparation for kicking.

Fig. 6. Obstacle avoidance behavior.

Cooperative Reinforcement Learning Based on Zero-Sum Games

297

Fig. 7. Target moving behavior.

Fig. 8. Ball shooting behavior.

5.2 Strategy demonstration
The Proposed Q-learning algorithm is compared with the renowned Q(λ)-learning and
minimax-Q under a 5-vs-5 simulation environment provided by FIRA (FIRA, 2009). The
Q(λ)-learning is a modified Q-learning methods with the eligibility skill, and the minimax-Q
further combines Q-learning with a simple game theory. These three algorithms are
arranged, respectively, to play against a test-bed algorithm. In the first game, the team with
the Q(λ)-learning algorithm plays against the team using the default algorithm, Lingo. Lingo
is a well-established landmark algorithm along with the FIRA robot soccer simulator.
Meanwhile, the minimax-Q algorithm is used to play against the team using Lingo in the
other game. In another game, the proposed algorithm, Proposed Q, competes with Lingo.
The scores gained by the competitors are recorded in Fig. 9. The horizontal axis of the chart
expresses the number of rounds each of which lasts 10 minutes, and the vertical axis
expresses the total scores the comparing team gets. The solid line is a regression of the saw-
toothed line to represent the trend of scores gained along the number of rounds.
As shown in Fig. 10, where the regression lines in Fig. 9 are redrawn, the proposed
algorithm beats the opponent by about 16 to 18 points. This result is better than the results
of Q(λ)-learning algorithm and the minimax-Q algorithm.
In the second experiment, which is similar to the first experiment, Lingo is replaced by a
rule-based strategy introduced in (K. S. Hwang et al., 2007). This rule-based strategy
opponent has beaten Lingo before. The comparison between Q(λ)-learning algorithm,
minimax-Q algorithm, and the proposed algorithm is indicated on Fig. 11. Intriguing
enough, the opponent’s score decreases more obviously when the challenger uses the
proposed algorithm.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

298

 (a) (b)

 (c)

Fig. 9. (a) Q(λ)-learning vs. Lingo: Q(λ)-learning win scores log and trend-line, (b) minimax-
Q vs. Lingo: Minimus-Q win scores log and trend-line, (C)Proposed Q vs. Lingo:Zero-Sum-
Q(λ) win scores log and trend-line.

Fig. 10. Proposed Q vs. Lingo: Three trend-lines in the last 100 games.

Cooperative Reinforcement Learning Based on Zero-Sum Games

299

 (a) (b)

 (c)

Fig. 11. (a) Q(λ)-learning vs. hand code C: My scores, (b) minimax-Q vs. hand code C: My
scores, (c) Proposed Q vs. hand code C: My scores.

5.3 Communication protocols
The proposed method has been further implemented into an actual soccer robot system to
demonstrate the performance in a real environment. The robot soccer system is composed of
a control center, vision system, and three soccer robots. The vision system recognized the
ball, the location of our team’s three robots and the opponent robots and their movement.
The control system consists of Bluetooth dongles and a software system. A personal
computer (PC) system is used here because of its low cost and high performance. The
software system includes a control subsystem, a strategy subsystem, and a communication
subsystem, called the subsystem of robot protocol (SRP). A soccer robot is based on an
embedded system, where the system controls the rotating speed of the wheels according to
the commands from the control center. Thus, the embedded system is connected to a motor
driving system that drives wheel motors and a communication system that communicates
with the control center. An SRP is a self-defined protocol for communication between the PC
and soccer robots through Bluetooth. The protocol regulates how the control system sends
commands to robots. The protocol is very simple because the communication is only one-
way from the center to robots. Each robot command is sent in turn and repeatedly as shown
in Fig. 12.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

298

 (a) (b)

 (c)

Fig. 9. (a) Q(λ)-learning vs. Lingo: Q(λ)-learning win scores log and trend-line, (b) minimax-
Q vs. Lingo: Minimus-Q win scores log and trend-line, (C)Proposed Q vs. Lingo:Zero-Sum-
Q(λ) win scores log and trend-line.

Fig. 10. Proposed Q vs. Lingo: Three trend-lines in the last 100 games.

Cooperative Reinforcement Learning Based on Zero-Sum Games

299

 (a) (b)

 (c)

Fig. 11. (a) Q(λ)-learning vs. hand code C: My scores, (b) minimax-Q vs. hand code C: My
scores, (c) Proposed Q vs. hand code C: My scores.

5.3 Communication protocols
The proposed method has been further implemented into an actual soccer robot system to
demonstrate the performance in a real environment. The robot soccer system is composed of
a control center, vision system, and three soccer robots. The vision system recognized the
ball, the location of our team’s three robots and the opponent robots and their movement.
The control system consists of Bluetooth dongles and a software system. A personal
computer (PC) system is used here because of its low cost and high performance. The
software system includes a control subsystem, a strategy subsystem, and a communication
subsystem, called the subsystem of robot protocol (SRP). A soccer robot is based on an
embedded system, where the system controls the rotating speed of the wheels according to
the commands from the control center. Thus, the embedded system is connected to a motor
driving system that drives wheel motors and a communication system that communicates
with the control center. An SRP is a self-defined protocol for communication between the PC
and soccer robots through Bluetooth. The protocol regulates how the control system sends
commands to robots. The protocol is very simple because the communication is only one-
way from the center to robots. Each robot command is sent in turn and repeatedly as shown
in Fig. 12.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

300

Fig. 12. The SRP protocol.

The strategy subsystem, learnt empirically in the simulator, decides how the robot moves by
receiving environmental situations from the vision system and makes decisions through the
proposed mechanism.
The control subsystem is initially in charge of the robots (before starting the soccer robot
game), and also in charge of beginning and maintaining the connection between control
system and robots through Bluetooth. In addition, it also has the responsibility of
controlling how robots act when the strategy subsystem does not control the robots in order
to handle exceptions. The connection beginning procedure is described in the flowchart
shown in Fig 13. In the figure, the service program, sr_listening, is a program running in
each robot’s embedded system to receive commands from the control center.

Fig. 13. The flowchart of making and maintaining the connection between the control center
and robots.

The embedded system is the core of soccer robots. The duty of this system is to both receive
the commands from the control center, and to control locomotion. The overall system
architecture of soccer robots is shown in Fig. 14. A program called sr_listening implements
the receiving command function. It is a non-stop procedure and begins to run when the
robot power is switched on. The flowchart of the procedure is shown in Fig. 15. A
sr_listening process invokes a threat, as the flowchart shows. The threat of each robot has its
own port number and service number. According to these numbers the procedure can
determine whether or not the message sent needs to be processed. The Motorola 68K core
series MC68VZ328 processor has been used. Since it has low power consumption and high
performance, it is appropriate for use in a soccer robot. The driving subsystem receives
reference signals from the embedded system. Thus, the control system of the wheel is in the
embedded system and is a software implementation. The advantage is that the control rule

Cooperative Reinforcement Learning Based on Zero-Sum Games

301

can be modified without changing the hardware, and so is more flexible. The control rule
here is a simple open loop control, which means that there are no sensors on the wheels to
feedback speed or other information.

Fig. 14. The architecture of a soccer robot system

Fig. 15. The flowchart of the procedure sr_listening

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

300

Fig. 12. The SRP protocol.

The strategy subsystem, learnt empirically in the simulator, decides how the robot moves by
receiving environmental situations from the vision system and makes decisions through the
proposed mechanism.
The control subsystem is initially in charge of the robots (before starting the soccer robot
game), and also in charge of beginning and maintaining the connection between control
system and robots through Bluetooth. In addition, it also has the responsibility of
controlling how robots act when the strategy subsystem does not control the robots in order
to handle exceptions. The connection beginning procedure is described in the flowchart
shown in Fig 13. In the figure, the service program, sr_listening, is a program running in
each robot’s embedded system to receive commands from the control center.

Fig. 13. The flowchart of making and maintaining the connection between the control center
and robots.

The embedded system is the core of soccer robots. The duty of this system is to both receive
the commands from the control center, and to control locomotion. The overall system
architecture of soccer robots is shown in Fig. 14. A program called sr_listening implements
the receiving command function. It is a non-stop procedure and begins to run when the
robot power is switched on. The flowchart of the procedure is shown in Fig. 15. A
sr_listening process invokes a threat, as the flowchart shows. The threat of each robot has its
own port number and service number. According to these numbers the procedure can
determine whether or not the message sent needs to be processed. The Motorola 68K core
series MC68VZ328 processor has been used. Since it has low power consumption and high
performance, it is appropriate for use in a soccer robot. The driving subsystem receives
reference signals from the embedded system. Thus, the control system of the wheel is in the
embedded system and is a software implementation. The advantage is that the control rule

Cooperative Reinforcement Learning Based on Zero-Sum Games

301

can be modified without changing the hardware, and so is more flexible. The control rule
here is a simple open loop control, which means that there are no sensors on the wheels to
feedback speed or other information.

Fig. 14. The architecture of a soccer robot system

Fig. 15. The flowchart of the procedure sr_listening

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

302

5.4 Experiments
The experiments are executed on a standard robot soccer game field. As Fig.16, there are
two teams in these experiments. One team in right side has been trained by a simulator, but
the other has had no training at all. The names, Green, Pink and Purple will be referred to
the robot which is with the green, pink and purple mask, respectively. The opponents just
stand still on the field to emulate a fair competition situation for comparison. The
experiments are designed to compare the results of two teams, each of which is playing
against the same opponent for ten rounds with around five minutes time elapsed such that
the performance of the proposed algorithm is evaluated by comparing the performance of
these two teams. Table 1 shows results of algorithms versus Lingo. The results of each
strategy do not improve very much. The Q(λ)-learning algorithm gets the highest scores and
a little improvement after learning, because it is designed to find the maximum value and it
uses eligibility traces. The minimax-Q algorithm is not work very well in this situation,
because the opponent is too simple. The zero-sum game theory does not work very well
when the opponent is not smart. The scores of Zero-Sum-Q(λ) algorithm can get a little
improvement after learning, because it uses eligibility traces.

Fig. 16. The experiment platform

Scores

Q(λ)-learning
Vs. Lingo

Minimax-Q Vs.
Lingo

Zero-Sum-Q(λ)
Vs. Lingo

My 13~14 11 11~13

Opponent 2 1.5~2 2~1.5
Win 11-12 9 9~11

Table 1. Results of algorithms vs. Lingo

The Fig. 17 and Fig. 18 illustrate the results of experiment that compete Zero-Sum-Q(λ)
team(ZSQ(λ)) with Lingo team. In Fig. 17, the Zero-Sum-Q(λ) team does not have any
experiences, the team trains policy in the game process. The difference of score is not

Cooperative Reinforcement Learning Based on Zero-Sum Games

303

obvious. In Fig. 18, the Zero-Sum-Q(λ) team that has trained can show the ability of
offenseand defence. The complete score is recorded in Table 2, which indicates that the non-
trained team scored fewer points (22) than the trained team (25). In addition, the non-trained
team lost more scores (21) than the trained team (5). This shows that the learning
mechanism has influenced the behaviours of soccer robots and the hardware has worked
effectively.

Fig. 17. (a) Game 1: ZSQ(λ) scored at the time
01:10 when Green dribbled the ball into the
goal straight.

Fig. 17. (b) Game 2: In this game, ZSQ(λ)
didn’t score any point.

Fig. 17. (c) Game 3: ZSQ(λ) scored at the time
00:15 and 03:07. The ball rebounded toward
the goal by Green.

Fig. 17. (d) Game 4: ZSQ(λ) scored at the time
02:48, 02:57 and 03:48. The Pink dribbled the
ball into the goal.

Fig. 17. (e) Game 5: ZSQ(λ) scored at the time
00:10, 01:52, 02:26 and 03:00. The ball
rebounded toward the goal by Pink.

Fig. 17. (f) Game 6: ZSQ(λ) scored at the time
01:05, 02:48 and 04:00. The Green kicked the
ball into the goal.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

302

5.4 Experiments
The experiments are executed on a standard robot soccer game field. As Fig.16, there are
two teams in these experiments. One team in right side has been trained by a simulator, but
the other has had no training at all. The names, Green, Pink and Purple will be referred to
the robot which is with the green, pink and purple mask, respectively. The opponents just
stand still on the field to emulate a fair competition situation for comparison. The
experiments are designed to compare the results of two teams, each of which is playing
against the same opponent for ten rounds with around five minutes time elapsed such that
the performance of the proposed algorithm is evaluated by comparing the performance of
these two teams. Table 1 shows results of algorithms versus Lingo. The results of each
strategy do not improve very much. The Q(λ)-learning algorithm gets the highest scores and
a little improvement after learning, because it is designed to find the maximum value and it
uses eligibility traces. The minimax-Q algorithm is not work very well in this situation,
because the opponent is too simple. The zero-sum game theory does not work very well
when the opponent is not smart. The scores of Zero-Sum-Q(λ) algorithm can get a little
improvement after learning, because it uses eligibility traces.

Fig. 16. The experiment platform

Scores

Q(λ)-learning
Vs. Lingo

Minimax-Q Vs.
Lingo

Zero-Sum-Q(λ)
Vs. Lingo

My 13~14 11 11~13

Opponent 2 1.5~2 2~1.5
Win 11-12 9 9~11

Table 1. Results of algorithms vs. Lingo

The Fig. 17 and Fig. 18 illustrate the results of experiment that compete Zero-Sum-Q(λ)
team(ZSQ(λ)) with Lingo team. In Fig. 17, the Zero-Sum-Q(λ) team does not have any
experiences, the team trains policy in the game process. The difference of score is not

Cooperative Reinforcement Learning Based on Zero-Sum Games

303

obvious. In Fig. 18, the Zero-Sum-Q(λ) team that has trained can show the ability of
offenseand defence. The complete score is recorded in Table 2, which indicates that the non-
trained team scored fewer points (22) than the trained team (25). In addition, the non-trained
team lost more scores (21) than the trained team (5). This shows that the learning
mechanism has influenced the behaviours of soccer robots and the hardware has worked
effectively.

Fig. 17. (a) Game 1: ZSQ(λ) scored at the time
01:10 when Green dribbled the ball into the
goal straight.

Fig. 17. (b) Game 2: In this game, ZSQ(λ)
didn’t score any point.

Fig. 17. (c) Game 3: ZSQ(λ) scored at the time
00:15 and 03:07. The ball rebounded toward
the goal by Green.

Fig. 17. (d) Game 4: ZSQ(λ) scored at the time
02:48, 02:57 and 03:48. The Pink dribbled the
ball into the goal.

Fig. 17. (e) Game 5: ZSQ(λ) scored at the time
00:10, 01:52, 02:26 and 03:00. The ball
rebounded toward the goal by Pink.

Fig. 17. (f) Game 6: ZSQ(λ) scored at the time
01:05, 02:48 and 04:00. The Green kicked the
ball into the goal.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

304

Fig. 17. (g) Game 7: ZSQ(λ) scored at the time
00:09 and 01:38. The Green kicked the ball
straight toward the goal.

Fig. 17. (h) Game 8: ZSQ(λ) scored at the time
00:31, 01:28, 02:38 and 04:18. The Green got
the fourth point.

Fig. 17. (i) Game 9: ZSQ(λ) scored at the time
00:26 and 00:28. The ball was intercepted into
the goal by Green.

Fig. 17. (j) Game 10: ZSQ(λ) scored at the time
02:02. The ball rebounded toward the goal by
Green.

Fig. 17. The snapshots of the competitions between the ZSQ(λ) team that had not trained
and the Lingo team.

Fig. 18. (a) Game 1: ZSQ(λ) scored at the time
01:42. The Green dribbled the ball toward the
goal.

Fig. 18. (b) Game 2: ZSQ(λ) scored at the time
00:08, 00:15, 00:42, 00:53 and 01:49. The Purple
kicked the ball toward the goal.

Cooperative Reinforcement Learning Based on Zero-Sum Games

305

Fig. 18. (c) Game 3: ZSQ(λ) scored at the time
00:36 and 02:42. The Pink dribbled the ball
toward the goal.

Fig. 18. (d) Game 4: ZSQ(λ) scored at the time
02:03, 02:15 and 03:42. The Purple dribbled
the ball toward the goal.

Fig. 18. (e) Game 5: ZSQ(λ) scored at the time
01:26, 03:20 and 04:38. The Green got the
third point.

Fig. 18. (f) Game 6: ZSQ(λ) scored at the time
02:00 and 02:54. The Pink kicked the ball
toward the goal.

Fig. 18. (g) Game 7: ZSQ(λ) scored at the time
00:16, 02:18 and 03:07. The Green dribbled
 the ball toward the goal.

Fig. 18. (h) Game 8: ZSQ(λ) scored at the time
03:14. The Pink kicked the ball toward the
goal.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

304

Fig. 17. (g) Game 7: ZSQ(λ) scored at the time
00:09 and 01:38. The Green kicked the ball
straight toward the goal.

Fig. 17. (h) Game 8: ZSQ(λ) scored at the time
00:31, 01:28, 02:38 and 04:18. The Green got
the fourth point.

Fig. 17. (i) Game 9: ZSQ(λ) scored at the time
00:26 and 00:28. The ball was intercepted into
the goal by Green.

Fig. 17. (j) Game 10: ZSQ(λ) scored at the time
02:02. The ball rebounded toward the goal by
Green.

Fig. 17. The snapshots of the competitions between the ZSQ(λ) team that had not trained
and the Lingo team.

Fig. 18. (a) Game 1: ZSQ(λ) scored at the time
01:42. The Green dribbled the ball toward the
goal.

Fig. 18. (b) Game 2: ZSQ(λ) scored at the time
00:08, 00:15, 00:42, 00:53 and 01:49. The Purple
kicked the ball toward the goal.

Cooperative Reinforcement Learning Based on Zero-Sum Games

305

Fig. 18. (c) Game 3: ZSQ(λ) scored at the time
00:36 and 02:42. The Pink dribbled the ball
toward the goal.

Fig. 18. (d) Game 4: ZSQ(λ) scored at the time
02:03, 02:15 and 03:42. The Purple dribbled
the ball toward the goal.

Fig. 18. (e) Game 5: ZSQ(λ) scored at the time
01:26, 03:20 and 04:38. The Green got the
third point.

Fig. 18. (f) Game 6: ZSQ(λ) scored at the time
02:00 and 02:54. The Pink kicked the ball
toward the goal.

Fig. 18. (g) Game 7: ZSQ(λ) scored at the time
00:16, 02:18 and 03:07. The Green dribbled
 the ball toward the goal.

Fig. 18. (h) Game 8: ZSQ(λ) scored at the time
03:14. The Pink kicked the ball toward the
goal.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

306

Fig. 18. (i) Game 9: ZSQ(λ) scored at the time
00:45, 01:37 and 03:39. The Green dribbled
 the ball toward the goal.

Fig. 18. (j) Game 10: ZSQ(λ) scored Expert
scored at the time 03:43 and 04:23. The ball
rebounded toward the goal by Green.

Fig. 18. The snapshots of the competitions between the ZSQ(λ) team that had trained and the
Lingo team.

 Non-Trained Team Trained Team

Times Scores Time Scores Time
1 1:4 6’09” 1:1 4’50”
2 0:3 5’21” 5:0 4’38”
3 2:0 4’50” 2:1 3’28”
4 3:3 4’40” 3:0 3’51”
5 4:1 5”04” 3:0 5’51”
6 3:2 4’27” 2:0 5’08”
7 2:1 4’46” 3:2 4’12”
8 4:2 5’07” 1:1 3’41”
9 2:4 4’07” 3:0 3’50”
10 1:1 4’17” 2:0 4’29”

Total 22:21 48’54” 25:5 44’02”

Table 2. Results of experiments

6. Conclusions
Multi-robot at a game is an important application of MAS, which can be used to
demonstrate the theories and mechanisms of MAS. In addition, because cooperation is
central to the operations of MAS, we develop a mechanism to achieve cooperation and
demonstrate it in a soccer game. According to the experimental results, using the task
assignment mechanism with self-improving ability is a feasible and successful method for
cooperation. Comparison with other methods also shows that the proposed method is better
because the reinforcement learning in the mechanism gives it a good learning ability to
adapt to varying environments. Moreover, the principle in game theories also successfully
improves the action-selection ability of the reinforcement learning by considering opponent
behaviors. Solving the cooperation problem of the MAS not only can be applied to soccer

Cooperative Reinforcement Learning Based on Zero-Sum Games

307

robot systems, but also can solve strategy determining problems of cooperation. Of course,
this study is not the first to use the game theory to improve the reinforcement learning, but
the idea of using the task-assignment mechanism with the reinforcement learning is novel.
The tasks in the mechanism should be determined in advance, which means that
determining appropriate tasks depends on questions, and is a problem for future research.
However, the proposed method is still a new approach to cooperation problems, despite the
fact that the task self-determining ability merely gives the mechanism more functions and
reduces the work of preparation.

7. References
A Flache & M.W. Macy. (2002). The Power Law of Learning, Journal of Conflict Resolution,

Vol. 46, no. 5, pp. 629-653.
A Gosavi. (2009). Reinforcement Learning: A Tutorial Survey and Recent Advances.

INFORMS Jounral on Computing. Vol 21(2), pp. 178-192.
A. G. Barto, R. S. Sutton, & C. W. Anderson. (1983). Neuronlike Adaptive Elements That Can

Solve Difficult Learning Control Problems, IEEE Transactions on System, Man, and
Cybernetics, vol. 13, no. 5, pp. 834-846.

D. Xiao & A. H. Tan. (2007). Self-Organizing Neural Architectures and Cooperative
Learning in a Multiagent Environment. IEEE Transactions on systems, Man, and
Cybernetics-Part B: Cybernetics, vol. 37, no. 6, pp. 1567-1580.

Federation of International Robot-soccer Association (FIRA) ,2009. http://www.fira.com.
George A. Bekey. (2005). Autonomous Robots, The MIT Press.
H. Yanco & L.A. Stein. (1993). An adaptive communication protocol for cooperating mobile

robots, in J. A. Meyer, H. L. Roitblat, and S.W. Wilson, editors, Animals to Animats:
Proceedings of the Second International Conference on the Simulation of Adaptive
Behavior, pages 478--485. MIT Press, Cambridge.

J. Hu & M. P. Wellman. (1998). Multiagent Reinforcement Learning: Theoretical Framework
and an Algorithm, Proceedings of 15th International Conference on Machine Learning,
Morgan Kaufmann, pp. 242-250.

J. R. Marden, G. Arslan, & J. S. Shamma. (2009). Cooperative Control and Potential Games.
IEEE transaction on Systems, man, and Cybernetics-Part B, vol. 39, no. 6, pp. 1393-1407.

K. S. Hwang & J. S. Lin. (1998). Smoothing Trajectory Tracking of Three-Link Robot: A Self-
Organizing CMAC Approach, IEEE Transactions on System, Man, and Cybernetics-
part B, Vol. 28, no. 5, pp. 680-692, Oct. 1998.

K. S. Hwang. & Y. Z., Chen. (2007). Reinforcement Learning on Strategy Selection for
Cooperative Robot System. IEEE transaction on Systems, man, and Cybernetics-Part A.
Vol. 37, No. 6, pp. 1151-1157.

L. Busoniu, R. Babuska, & B. D. Schutter. (2008). A Comprehensive Survey of Multiagent
Reinforcement Learning. IEEE Transactions on systems, Man, and Cybernetics-Part C:
Applications and Reviews, vol. 38, no. 2, pp. 156-172.

L. P. Kaelbling, M. L. Littman, & A. W. Moore. (1996). Reinforcement Learning: A Survey,
Journal of Artificial Intelligence Research 4, pp. 237-285.

Littman, M. L. (1994). Markov Games as a Framework for Multi-agent Reinforcement
Learning, in W. W. Cohen & H. Hirsh, eds., `Proceedings of the Eleventh International

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

306

Fig. 18. (i) Game 9: ZSQ(λ) scored at the time
00:45, 01:37 and 03:39. The Green dribbled
 the ball toward the goal.

Fig. 18. (j) Game 10: ZSQ(λ) scored Expert
scored at the time 03:43 and 04:23. The ball
rebounded toward the goal by Green.

Fig. 18. The snapshots of the competitions between the ZSQ(λ) team that had trained and the
Lingo team.

 Non-Trained Team Trained Team

Times Scores Time Scores Time
1 1:4 6’09” 1:1 4’50”
2 0:3 5’21” 5:0 4’38”
3 2:0 4’50” 2:1 3’28”
4 3:3 4’40” 3:0 3’51”
5 4:1 5”04” 3:0 5’51”
6 3:2 4’27” 2:0 5’08”
7 2:1 4’46” 3:2 4’12”
8 4:2 5’07” 1:1 3’41”
9 2:4 4’07” 3:0 3’50”
10 1:1 4’17” 2:0 4’29”

Total 22:21 48’54” 25:5 44’02”

Table 2. Results of experiments

6. Conclusions
Multi-robot at a game is an important application of MAS, which can be used to
demonstrate the theories and mechanisms of MAS. In addition, because cooperation is
central to the operations of MAS, we develop a mechanism to achieve cooperation and
demonstrate it in a soccer game. According to the experimental results, using the task
assignment mechanism with self-improving ability is a feasible and successful method for
cooperation. Comparison with other methods also shows that the proposed method is better
because the reinforcement learning in the mechanism gives it a good learning ability to
adapt to varying environments. Moreover, the principle in game theories also successfully
improves the action-selection ability of the reinforcement learning by considering opponent
behaviors. Solving the cooperation problem of the MAS not only can be applied to soccer

Cooperative Reinforcement Learning Based on Zero-Sum Games

307

robot systems, but also can solve strategy determining problems of cooperation. Of course,
this study is not the first to use the game theory to improve the reinforcement learning, but
the idea of using the task-assignment mechanism with the reinforcement learning is novel.
The tasks in the mechanism should be determined in advance, which means that
determining appropriate tasks depends on questions, and is a problem for future research.
However, the proposed method is still a new approach to cooperation problems, despite the
fact that the task self-determining ability merely gives the mechanism more functions and
reduces the work of preparation.

7. References
A Flache & M.W. Macy. (2002). The Power Law of Learning, Journal of Conflict Resolution,

Vol. 46, no. 5, pp. 629-653.
A Gosavi. (2009). Reinforcement Learning: A Tutorial Survey and Recent Advances.

INFORMS Jounral on Computing. Vol 21(2), pp. 178-192.
A. G. Barto, R. S. Sutton, & C. W. Anderson. (1983). Neuronlike Adaptive Elements That Can

Solve Difficult Learning Control Problems, IEEE Transactions on System, Man, and
Cybernetics, vol. 13, no. 5, pp. 834-846.

D. Xiao & A. H. Tan. (2007). Self-Organizing Neural Architectures and Cooperative
Learning in a Multiagent Environment. IEEE Transactions on systems, Man, and
Cybernetics-Part B: Cybernetics, vol. 37, no. 6, pp. 1567-1580.

Federation of International Robot-soccer Association (FIRA) ,2009. http://www.fira.com.
George A. Bekey. (2005). Autonomous Robots, The MIT Press.
H. Yanco & L.A. Stein. (1993). An adaptive communication protocol for cooperating mobile

robots, in J. A. Meyer, H. L. Roitblat, and S.W. Wilson, editors, Animals to Animats:
Proceedings of the Second International Conference on the Simulation of Adaptive
Behavior, pages 478--485. MIT Press, Cambridge.

J. Hu & M. P. Wellman. (1998). Multiagent Reinforcement Learning: Theoretical Framework
and an Algorithm, Proceedings of 15th International Conference on Machine Learning,
Morgan Kaufmann, pp. 242-250.

J. R. Marden, G. Arslan, & J. S. Shamma. (2009). Cooperative Control and Potential Games.
IEEE transaction on Systems, man, and Cybernetics-Part B, vol. 39, no. 6, pp. 1393-1407.

K. S. Hwang & J. S. Lin. (1998). Smoothing Trajectory Tracking of Three-Link Robot: A Self-
Organizing CMAC Approach, IEEE Transactions on System, Man, and Cybernetics-
part B, Vol. 28, no. 5, pp. 680-692, Oct. 1998.

K. S. Hwang. & Y. Z., Chen. (2007). Reinforcement Learning on Strategy Selection for
Cooperative Robot System. IEEE transaction on Systems, man, and Cybernetics-Part A.
Vol. 37, No. 6, pp. 1151-1157.

L. Busoniu, R. Babuska, & B. D. Schutter. (2008). A Comprehensive Survey of Multiagent
Reinforcement Learning. IEEE Transactions on systems, Man, and Cybernetics-Part C:
Applications and Reviews, vol. 38, no. 2, pp. 156-172.

L. P. Kaelbling, M. L. Littman, & A. W. Moore. (1996). Reinforcement Learning: A Survey,
Journal of Artificial Intelligence Research 4, pp. 237-285.

Littman, M. L. (1994). Markov Games as a Framework for Multi-agent Reinforcement
Learning, in W. W. Cohen & H. Hirsh, eds., `Proceedings of the Eleventh International

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

308

Conference on Machine Learning (ML-94)', Morgan Kauffman Publishers, Inc., New
Brunswick, NJ, pp. 157-163.

M. Tan. (1993). Multi-agent reinforcement learning: independent vs. cooperative agents,”
Proceedings of the Tenth International Conference on Machine Learning, Amherst,
Morgan Kaufmann, pp. 330-337.

S. P. Bingulac. (1994). On the compatibility of adaptive controllers, in Proc. 4th Annu. Allerton
Conf. Circuits and Systems Theory, New York, pp. 8–16.

V. Vassiliades, A. Cleanthous, & C. Christodoulou. (2011). Multiagent Reinforcement
Learning:Spiking and Nonspiking Agents in the Iterated Prisoner’s Dilemma. IEEE
Transactions on Neural Network, vol. 22, no. 4, pp. 639-653.

Part 4

Communication and Distance
Measurement for Swarm Robots

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

308

Conference on Machine Learning (ML-94)', Morgan Kauffman Publishers, Inc., New
Brunswick, NJ, pp. 157-163.

M. Tan. (1993). Multi-agent reinforcement learning: independent vs. cooperative agents,”
Proceedings of the Tenth International Conference on Machine Learning, Amherst,
Morgan Kaufmann, pp. 330-337.

S. P. Bingulac. (1994). On the compatibility of adaptive controllers, in Proc. 4th Annu. Allerton
Conf. Circuits and Systems Theory, New York, pp. 8–16.

V. Vassiliades, A. Cleanthous, & C. Christodoulou. (2011). Multiagent Reinforcement
Learning:Spiking and Nonspiking Agents in the Iterated Prisoner’s Dilemma. IEEE
Transactions on Neural Network, vol. 22, no. 4, pp. 639-653.

Part 4

Communication and Distance
Measurement for Swarm Robots

 0

Synchronous and Asynchronous Communication
Modes for Swarm Robotic Search*

Songdong Xue1, Jin Li1, Jianchao Zeng1, Xiaojuan He2 and Guoyou Zhang2

1Complex System and Computational Intelligence Laboratory,
Taiyuan University of Science and Technology, 66 Waliu Road, Taiyuan 030024, Shanxi

2College of Electrical and Information Engineering,
Lanzhou University of Technology, 85 Langongping, Lanzhou 730050, Gansu

China

1. Introduction

Swarm robots are special multi-robots and usually considered being controlled with swarm
intelligence-based method to complete some assigned complex tasks (Dorigo and Sahin, 2004).
Similar to the biological counterparts in nature, swarm intelligence among such artificial
system is emerged from local interactions between individual robots or individual robot
and its environment (Beni, 2005; Şahin, 2005). It is obvious that interactions play a crucial
role in emergence of swarm intelligence in swarm robotics (Schmickl and Crailsheim, 2008).
In other words, communication mode taken in control process of swarm robotic search
is important. How to control swarm robots with certain communication mode? We can
borrow ideas from swarm intelligence-based optimization algorithms in general, and the
particle swarm optimization (PSO) algorithm in particular, since the case of swarm robotic
search can be mapped to the case of functions optimization with PSO. Later, this method is
named as the extended particle swarm optimization (EPSO) method (Pugh and Martinoli,
2007). The particle swarm optimization algorithm is a global, stochastic search one, being
derivative-free and population-based style (Schutte et al., 2004). As one of tools of systemic
modeling and cooperative control, it can be used to model swam robotic systems and control
robots cooperatively. Bio-inspiringly, this algorithm works in parallel in nature. Learning
from this, we can control swarm robotic search with special communication modes in similar
way. As for the parallel algorithms, they can be classified by granularity (Xu and Zeng, 2005).
Wang et al. (2007) present a parallel version of PSO based on parallel model with controller.
Its communication cycle affects speedup of the algorithm. Huang and Fan (2006) propose
parallel version of PSO by island population modeling. It partitions the group into several
sub-groups and places them on different processors to evolve, communicating timely in the
evolution procedures. Zhao et al. (2005) introduce an idea of migration into PSO, present a
parallel version based on multi-groups evolving simultaneously. All sub-groups are collected
to get the optima by comparison after several iterations. Then the particle having best

*Supported by the National Natural Science Foundation of China under Grand 60975074, Shanxi
Natural Science Foundation under Grand 2009011017-1, Shanxi Research and Development Project
of Colleges and Universities under Grand 20091130, and Startup Foundation for Doctors of Taiyuan
University of Science and Technology under Grand 20102011.

14

 0

Synchronous and Asynchronous Communication
Modes for Swarm Robotic Search*

Songdong Xue1, Jin Li1, Jianchao Zeng1, Xiaojuan He2 and Guoyou Zhang2

1Complex System and Computational Intelligence Laboratory,
Taiyuan University of Science and Technology, 66 Waliu Road, Taiyuan 030024, Shanxi

2College of Electrical and Information Engineering,
Lanzhou University of Technology, 85 Langongping, Lanzhou 730050, Gansu

China

1. Introduction

Swarm robots are special multi-robots and usually considered being controlled with swarm
intelligence-based method to complete some assigned complex tasks (Dorigo and Sahin, 2004).
Similar to the biological counterparts in nature, swarm intelligence among such artificial
system is emerged from local interactions between individual robots or individual robot
and its environment (Beni, 2005; Şahin, 2005). It is obvious that interactions play a crucial
role in emergence of swarm intelligence in swarm robotics (Schmickl and Crailsheim, 2008).
In other words, communication mode taken in control process of swarm robotic search
is important. How to control swarm robots with certain communication mode? We can
borrow ideas from swarm intelligence-based optimization algorithms in general, and the
particle swarm optimization (PSO) algorithm in particular, since the case of swarm robotic
search can be mapped to the case of functions optimization with PSO. Later, this method is
named as the extended particle swarm optimization (EPSO) method (Pugh and Martinoli,
2007). The particle swarm optimization algorithm is a global, stochastic search one, being
derivative-free and population-based style (Schutte et al., 2004). As one of tools of systemic
modeling and cooperative control, it can be used to model swam robotic systems and control
robots cooperatively. Bio-inspiringly, this algorithm works in parallel in nature. Learning
from this, we can control swarm robotic search with special communication modes in similar
way. As for the parallel algorithms, they can be classified by granularity (Xu and Zeng, 2005).
Wang et al. (2007) present a parallel version of PSO based on parallel model with controller.
Its communication cycle affects speedup of the algorithm. Huang and Fan (2006) propose
parallel version of PSO by island population modeling. It partitions the group into several
sub-groups and places them on different processors to evolve, communicating timely in the
evolution procedures. Zhao et al. (2005) introduce an idea of migration into PSO, present a
parallel version based on multi-groups evolving simultaneously. All sub-groups are collected
to get the optima by comparison after several iterations. Then the particle having best

*Supported by the National Natural Science Foundation of China under Grand 60975074, Shanxi
Natural Science Foundation under Grand 2009011017-1, Shanxi Research and Development Project
of Colleges and Universities under Grand 20091130, and Startup Foundation for Doctors of Taiyuan
University of Science and Technology under Grand 20102011.

14

2 Will-be-set-by-IN-TECH

fitness is transferred into all sub-groups as a migration. These mentioned algorithms are all
attributed to coarse-grained parallelism. To the contrary, the fine-grained parallel algorithms
are characteristic with majority advantages, i.e., maintaining diversity of groups, restraining
pre-mature and holding the highest degree of parallelism. Therefore, Schutte et al. (2004)
develop an approach to implement parallel PSO on multi-processors environment. Especially,
to overcome the communication bottle-neck due to massively increasing in size of fine-grained
PSO (Li et al., 2006), Chang et al. (2005) design three types of communication strategies
according to the degree of correlation between parameters. The above parallel versions of
PSO are all synchronous paradigms. However, Koh et al. (2006) point out that asynchronous
algorithm can increase efficiency in heterogeneous environment. Typically, the asynchronous
PSO version proposed by Luo and Zhong (2005) makes each particle acted as an independent
individual and search performed asynchronously. Aiming at the differences of heterogeneous
computing environments and the cost of fitness evaluate, Venter and Sobieszczanki-Sobieksi
(2006) introduce asynchronous pattern into PSO for speedup enhancement.
As mentioned above, swarm robots controlling inevitably involves parallel operation too
(Henrich and Honiger, 1997). No doubt the extended PSO approach has to take parallelism
into account in control algorithms designing. The individual robots distributing in search
space makes cooperation control algorithms parallel in nature. Besides, differences in
sampling frequency of sensors carried by robots and communication delays make it more
realistic to control swarm robots in an asynchronous fashion. How to move nature-inspired
algorithms to parallel, asynchronous and decentralized environment (Ridge et al., 2005)?
There has so far been fairly little research in this area. For this end, within the field of swarm
robotic systems, one area that has received more attention is target search, where a group
of robots work together to localize one or more targets. As a first step, a single target is
considered here. Searching can be done massively in parallel, significantly decreasing the
time-consuming to locate the targets and improving robustness against failure of single agents
by redundancy as well as individual simplicity. Then, the problem of parallel asynchronous
control swarm robots, i.e., swarm robotic search with different specific communication modes
is proposed. As for this chapter, the remainder is organized as follows. Section 2 maps
swarm robotic search to the particle swarm optimization algorithm. Then it models the
swarm robots with EPSO method and describes the control following swarm intelligence
principles. For taking the control mechanism effect, several definitions and assumptions
are given for problem simplification without misunderstanding. In Section 3, the problem
of communication modes in swarm robotic search is introduced. In order to describe
the corresponding strategies developed and taken in swarm robotic search taken place in
obstacle-free environment steadily, we set about this section from analyzing the properties of
different versions of PSO because of the mapping relationship between swarm robotic search
and PSO. Then the synchronous and asynchronous communication modes are discussed.
Also, the corresponding control algorithm descriptions with specific communication modes
are given here. Based on this, the authors explain the simulation settings, propose evaluate
metrics such as searching efficiency and energy consuming, show the results from simulations,
and discuss the implications through statistical evidence presentation in Section 4. Finally, we
conclude this chapter in Section 5 by summarizing our current work and accompanying the
future work.

2. Modeling and controlling

By extending PSO to model swarm robotic systems, Pugh and Martinoli (2007) firstly and
Zeng and Xue (2010) subsequently investigate the problem of target search in an ideal

312
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search1 3

environment. In PSO-type swarm robotic search, modeling and control mechanism are
involved inevitably.

2.1 Mapping from swarm robotic search to PSO
Swarm intelligence is inspired from phenomena of individuals following simple rules only
but emerging intelligence through local interactions in biological communities. Generally
speaking, PSO is viewed as optimization tool, in which particles are guided by the best
positions having optimal fitness to get the solution of given functions. Here, each particle
has perfect knowledge about environment and its neighbor particles. While swarm robotic
search works depending on individual robots’ experience and social experience, for robots
move according to their own behavioral decision making. The former comes from signals
measurement by robot itself, and the latter from local communications within robot’s
communication neighborhood. Consider the similarities and differences between the two
cases, we can map swarm robotic search to PSO, see Figure 1.

Relative
Localization

Continuous
Control

Robot

Signals
Detection

Path Planning

Swarm Robotic
Search

Local
Communication

Absolute
Localization

Global
Communictaion

Discrete Iteration

Fitness Evaluate

Update

Particle

PSOMapping

Fig. 1. Mapping swarm robotic search to the particle swarm optimization algorithm. Note
that several one-to-one relationships of robot-to-particle, signals detection-to-fitness evaluate
and local communication-to-global communication are the most important.

The PSO algorithm makes information about environment or potential solution shared among
particles anywhere, as long as the particles are in the search space. Similarly, robots always
have strict limitations on their maximum communication range due to the limited power
consuming. In this case, we define robot’s neighborhood structure as all others within some
fixed geometrical distance from it. Since robots are constantly in motion, this means such
structure is dynamic and time varying (Xue and Zeng, 2008a).

2.2 EPSO-based modeling
Based on the above mapping relationship between swarm robotic search and PSO, EPSO
method can be taken to model the swarm robotic system (Pugh and Martinoli, 2007; Xue and
Zeng, 2008b). In order to understand such method well, let us examine the particle swarm
optimization algorithm at first. Particle swarm optimization is based on the sociological
behaviors associated with bird flocking and other animals’ moving (Zeng et al., 2004). Each
particle is capacitated to fly over the space with changeable velocity. And a series of positions

313Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

2 Will-be-set-by-IN-TECH

fitness is transferred into all sub-groups as a migration. These mentioned algorithms are all
attributed to coarse-grained parallelism. To the contrary, the fine-grained parallel algorithms
are characteristic with majority advantages, i.e., maintaining diversity of groups, restraining
pre-mature and holding the highest degree of parallelism. Therefore, Schutte et al. (2004)
develop an approach to implement parallel PSO on multi-processors environment. Especially,
to overcome the communication bottle-neck due to massively increasing in size of fine-grained
PSO (Li et al., 2006), Chang et al. (2005) design three types of communication strategies
according to the degree of correlation between parameters. The above parallel versions of
PSO are all synchronous paradigms. However, Koh et al. (2006) point out that asynchronous
algorithm can increase efficiency in heterogeneous environment. Typically, the asynchronous
PSO version proposed by Luo and Zhong (2005) makes each particle acted as an independent
individual and search performed asynchronously. Aiming at the differences of heterogeneous
computing environments and the cost of fitness evaluate, Venter and Sobieszczanki-Sobieksi
(2006) introduce asynchronous pattern into PSO for speedup enhancement.
As mentioned above, swarm robots controlling inevitably involves parallel operation too
(Henrich and Honiger, 1997). No doubt the extended PSO approach has to take parallelism
into account in control algorithms designing. The individual robots distributing in search
space makes cooperation control algorithms parallel in nature. Besides, differences in
sampling frequency of sensors carried by robots and communication delays make it more
realistic to control swarm robots in an asynchronous fashion. How to move nature-inspired
algorithms to parallel, asynchronous and decentralized environment (Ridge et al., 2005)?
There has so far been fairly little research in this area. For this end, within the field of swarm
robotic systems, one area that has received more attention is target search, where a group
of robots work together to localize one or more targets. As a first step, a single target is
considered here. Searching can be done massively in parallel, significantly decreasing the
time-consuming to locate the targets and improving robustness against failure of single agents
by redundancy as well as individual simplicity. Then, the problem of parallel asynchronous
control swarm robots, i.e., swarm robotic search with different specific communication modes
is proposed. As for this chapter, the remainder is organized as follows. Section 2 maps
swarm robotic search to the particle swarm optimization algorithm. Then it models the
swarm robots with EPSO method and describes the control following swarm intelligence
principles. For taking the control mechanism effect, several definitions and assumptions
are given for problem simplification without misunderstanding. In Section 3, the problem
of communication modes in swarm robotic search is introduced. In order to describe
the corresponding strategies developed and taken in swarm robotic search taken place in
obstacle-free environment steadily, we set about this section from analyzing the properties of
different versions of PSO because of the mapping relationship between swarm robotic search
and PSO. Then the synchronous and asynchronous communication modes are discussed.
Also, the corresponding control algorithm descriptions with specific communication modes
are given here. Based on this, the authors explain the simulation settings, propose evaluate
metrics such as searching efficiency and energy consuming, show the results from simulations,
and discuss the implications through statistical evidence presentation in Section 4. Finally, we
conclude this chapter in Section 5 by summarizing our current work and accompanying the
future work.

2. Modeling and controlling

By extending PSO to model swarm robotic systems, Pugh and Martinoli (2007) firstly and
Zeng and Xue (2010) subsequently investigate the problem of target search in an ideal

312
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search1 3

environment. In PSO-type swarm robotic search, modeling and control mechanism are
involved inevitably.

2.1 Mapping from swarm robotic search to PSO
Swarm intelligence is inspired from phenomena of individuals following simple rules only
but emerging intelligence through local interactions in biological communities. Generally
speaking, PSO is viewed as optimization tool, in which particles are guided by the best
positions having optimal fitness to get the solution of given functions. Here, each particle
has perfect knowledge about environment and its neighbor particles. While swarm robotic
search works depending on individual robots’ experience and social experience, for robots
move according to their own behavioral decision making. The former comes from signals
measurement by robot itself, and the latter from local communications within robot’s
communication neighborhood. Consider the similarities and differences between the two
cases, we can map swarm robotic search to PSO, see Figure 1.

Relative
Localization

Continuous
Control

Robot

Signals
Detection

Path Planning

Swarm Robotic
Search

Local
Communication

Absolute
Localization

Global
Communictaion

Discrete Iteration

Fitness Evaluate

Update

Particle

PSOMapping

Fig. 1. Mapping swarm robotic search to the particle swarm optimization algorithm. Note
that several one-to-one relationships of robot-to-particle, signals detection-to-fitness evaluate
and local communication-to-global communication are the most important.

The PSO algorithm makes information about environment or potential solution shared among
particles anywhere, as long as the particles are in the search space. Similarly, robots always
have strict limitations on their maximum communication range due to the limited power
consuming. In this case, we define robot’s neighborhood structure as all others within some
fixed geometrical distance from it. Since robots are constantly in motion, this means such
structure is dynamic and time varying (Xue and Zeng, 2008a).

2.2 EPSO-based modeling
Based on the above mapping relationship between swarm robotic search and PSO, EPSO
method can be taken to model the swarm robotic system (Pugh and Martinoli, 2007; Xue and
Zeng, 2008b). In order to understand such method well, let us examine the particle swarm
optimization algorithm at first. Particle swarm optimization is based on the sociological
behaviors associated with bird flocking and other animals’ moving (Zeng et al., 2004). Each
particle is capacitated to fly over the space with changeable velocity. And a series of positions

313Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

4 Will-be-set-by-IN-TECH

in which particles are situated are viewed as potential solutions of problem. Then, the best
position of particle itself and swarm respectively having the best fitness can be decided.
Farther, the behavior of particle can be adjusted according to its inertia, individual experience
(cognition) and social experience (learning). The velocity and position update equations of
standard PSO at time kt + 1 are executed as follows:

vi
k+1 = ωkvi

k + c1r1(pi
k − xi

k) + c2r2(p
g
k − xi

k) (1)

xi
k+1 = xi

k + vi
k+1 (2)

where xi
k is the position vector of particle i at time kt, and vi

k the corresponding vector of
velocity, subscript k the abbreviation of time increment kt. Note that the two vectors have
the same dimensional variables. While pi

k and pg
k are the best-found positions of particle i

itself and the swarm before time k respectively. The coefficient matrix ωk is diagonal matrix
whose diagonal elements are inertia coefficients with value range [0, 1] to slow down over
time to prevent explosions of the swarm and ensure ultimate convergence. Similarly, r1, r2 are
diagonal matrices whose diagonal elements are sampling of uniformly-distributed random
variable in [0, 1]. And c1, c2 are diagonal matrices whose diagonal elements are cognition and
social acceleration constants, respectively.
Then we can extend the standard version of PSO for swarm robots and farther model the
swarm robotic system with the EPSO method, as is shown below:

vi
k+1 = wkvi

k + c1r1(pi
k − xi

k) + c2r2(p
g
k − xi

k) (3)

vi
k+Δk = vi

k + (vi
k+1 − vi

k)Δk (4)

xi
k+Δk = xi

k + Δkvi
k+Δk (5)

where xi
k+1 is the expected velocity vector of robot i at time k + 1. Δk is a factor to decrease

the step taken when robots move about in the search space. By the way, we add the Δk factor
in order to make individual robots moved “smoothly” , and therefore a more refined search
may be carried out. In addition, the parameter Δk is somehow different from the others, as it
is not related to the physical nature of the problem. However, we can also understand it in
this fashion: robot in real world has inertia due to its mass (Xue and Zeng, 2008b).

2.3 PSO-type controlling
As is shown in the above subsection, swarm robots can be modeled mathematically taking the
form of PSO-type iteration equations. Therefore, the cooperative control over swarm robots
can be carried out following swarm intelligence principles. Farther comparison of the two
cases can be made. First, both work on the base of fitness evaluate, or signals detection. While
the relative independency of individual robots demands fitness evaluate being complemented
in their on-board processors rather than in processing center. And the limitations on hardware
and power supply make it impossible that robots interact successfully beyond the maximum
communication range of robots. Apparently, the swarm that each robot dwells in differs from
others, since every robot selects itself and all other robots within some distance in the search
space as its evolving swarm.

314
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search2 5

2.3.1 Time-varying character swarm
Each individual robot of the swarm system selects the close near neighbors as its temporary
swarm members only because those neighbors within its maximum communication range are
capable of interacting with it through communication. Accordingly, a concept of time-varying
character swarm (TVCS) for computational evolution is presented naturally, see Figure 2. Take
the position of robot i at time t as the center, the maximum communication range R of robot
i as radius for a circle neighborhood constructing. The set of those robots covered by this
neighborhood is named as TVCS of robot i at time instance. The size of TVCS depends on the
maximum communication range of robot i and the relative position relationship of robots at
time t. This implies the property of time-varying in character swarm of swarm robotic system,
since a robot may be close to few or many other robots at different time instance.

Time-Varying
Characteristic Swarm

CommRange R

SensorRange r
Robot

Fig. 2. Individual robot’s time-varying character swarm constructing for swarm robots
control following swarm intelligence principles according to the involved robot’s maximum
communication radius, which means this robot can interact with others within its TVCS only.

2.3.2 Signals detection
In PSO-type algorithms, motion control of individual robot depends on both its cognitive
position and the best-found social position. While the two best-found experiential positions
come from position evaluate. Each individual robot of the swarm is assumed to be equipped
with one sensor to detect the intensity of signal emitted from potential target. This is
of theoretical significance only. In fact, there are multiple types of signals in searching
environment. To accomplish the search task, there is need to appropriately fuse the
real-time heterogeneous signals with fusion algorithms to determine the decision sensor
under different sensory conditions (Xue and Zeng, 2008c), following the working principle of
swarm intelligence-based method. However, we still simplify the detection process as making

315Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

4 Will-be-set-by-IN-TECH

in which particles are situated are viewed as potential solutions of problem. Then, the best
position of particle itself and swarm respectively having the best fitness can be decided.
Farther, the behavior of particle can be adjusted according to its inertia, individual experience
(cognition) and social experience (learning). The velocity and position update equations of
standard PSO at time kt + 1 are executed as follows:

vi
k+1 = ωkvi

k + c1r1(pi
k − xi

k) + c2r2(p
g
k − xi

k) (1)

xi
k+1 = xi

k + vi
k+1 (2)

where xi
k is the position vector of particle i at time kt, and vi

k the corresponding vector of
velocity, subscript k the abbreviation of time increment kt. Note that the two vectors have
the same dimensional variables. While pi

k and pg
k are the best-found positions of particle i

itself and the swarm before time k respectively. The coefficient matrix ωk is diagonal matrix
whose diagonal elements are inertia coefficients with value range [0, 1] to slow down over
time to prevent explosions of the swarm and ensure ultimate convergence. Similarly, r1, r2 are
diagonal matrices whose diagonal elements are sampling of uniformly-distributed random
variable in [0, 1]. And c1, c2 are diagonal matrices whose diagonal elements are cognition and
social acceleration constants, respectively.
Then we can extend the standard version of PSO for swarm robots and farther model the
swarm robotic system with the EPSO method, as is shown below:

vi
k+1 = wkvi

k + c1r1(pi
k − xi

k) + c2r2(p
g
k − xi

k) (3)

vi
k+Δk = vi

k + (vi
k+1 − vi

k)Δk (4)

xi
k+Δk = xi

k + Δkvi
k+Δk (5)

where xi
k+1 is the expected velocity vector of robot i at time k + 1. Δk is a factor to decrease

the step taken when robots move about in the search space. By the way, we add the Δk factor
in order to make individual robots moved “smoothly” , and therefore a more refined search
may be carried out. In addition, the parameter Δk is somehow different from the others, as it
is not related to the physical nature of the problem. However, we can also understand it in
this fashion: robot in real world has inertia due to its mass (Xue and Zeng, 2008b).

2.3 PSO-type controlling
As is shown in the above subsection, swarm robots can be modeled mathematically taking the
form of PSO-type iteration equations. Therefore, the cooperative control over swarm robots
can be carried out following swarm intelligence principles. Farther comparison of the two
cases can be made. First, both work on the base of fitness evaluate, or signals detection. While
the relative independency of individual robots demands fitness evaluate being complemented
in their on-board processors rather than in processing center. And the limitations on hardware
and power supply make it impossible that robots interact successfully beyond the maximum
communication range of robots. Apparently, the swarm that each robot dwells in differs from
others, since every robot selects itself and all other robots within some distance in the search
space as its evolving swarm.

314
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search2 5

2.3.1 Time-varying character swarm
Each individual robot of the swarm system selects the close near neighbors as its temporary
swarm members only because those neighbors within its maximum communication range are
capable of interacting with it through communication. Accordingly, a concept of time-varying
character swarm (TVCS) for computational evolution is presented naturally, see Figure 2. Take
the position of robot i at time t as the center, the maximum communication range R of robot
i as radius for a circle neighborhood constructing. The set of those robots covered by this
neighborhood is named as TVCS of robot i at time instance. The size of TVCS depends on the
maximum communication range of robot i and the relative position relationship of robots at
time t. This implies the property of time-varying in character swarm of swarm robotic system,
since a robot may be close to few or many other robots at different time instance.

Time-Varying
Characteristic Swarm

CommRange R

SensorRange r
Robot

Fig. 2. Individual robot’s time-varying character swarm constructing for swarm robots
control following swarm intelligence principles according to the involved robot’s maximum
communication radius, which means this robot can interact with others within its TVCS only.

2.3.2 Signals detection
In PSO-type algorithms, motion control of individual robot depends on both its cognitive
position and the best-found social position. While the two best-found experiential positions
come from position evaluate. Each individual robot of the swarm is assumed to be equipped
with one sensor to detect the intensity of signal emitted from potential target. This is
of theoretical significance only. In fact, there are multiple types of signals in searching
environment. To accomplish the search task, there is need to appropriately fuse the
real-time heterogeneous signals with fusion algorithms to determine the decision sensor
under different sensory conditions (Xue and Zeng, 2008c), following the working principle of
swarm intelligence-based method. However, we still simplify the detection process as making

315Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

6 Will-be-set-by-IN-TECH

measurement with a single sensor, for exploring the key effects caused by communication
modes here. We simply this evaluate mechanism here by assuming each robot has a sensor to
detect the intensity of the target signal within its maximum detection radius. This intensity
I(di) is determined with model below:

I(di) =

⎧
⎨
⎩

0, di > r
P
d2

i
+ η(), otherwise (6)

where P is the target signal power, di the distance from robot Ri to target, r the radius of sensor
detection and η() a sampling of additive Gaussian noise.

2.3.3 Position evaluate and cognitive decision
As to individual robot Ri, its cognitive position at time t is determined following the rule:

p∗i (t) =
�

xi(t), if I(xi(t) ≥ I(p∗i (t − 1))
p∗i (t − 1), otherwise (7)

where p∗i (t) is the cognitive position of robot Ri at time t, xi(t) the current position, and I()
the simplified evaluate function of measurement readings of target signals.

2.3.4 Best-found position in TVCS
Based on the definitions of TVCS and signals evaluate, the best-found position in swarm
robots can be decided with the criterion:

p∗(i)(t) = p∗k (t), argk max{I(p∗k (t)), k ∈ Ri’s TVCS(t)} (8)

where p∗(i)(t) be the best-found position within the TVCS of robot Ri at time t.

3. Communication modes

Now swarm robots can be controlled with EPSO-based method. But a problem should be
considered. In PSO-type control, target signals have to be detected in parallel for position
evaluate and such swarm system should be controlled in an asynchronous manner. Therefore,
we present asynchronous communication mode in case of target search. Specifically, each
robot independently detects signals emitted from target in a fine-grained parallel way and
compares intensity of signals with the best in its TVCS. Then velocities and positions of
individual robots are updated immediately. But the shared information within TVCS is
updated asynchronously. As comparison, a synchronous mode is also given in this section.
We set about this problem at the beginning of analysis on the characteristics of PSO. The
standard PSO algorithm has a key idea about velocity and position of particle (Eberhart
and Shi, 2001; Kennedy and Eberhart, 1995; Zeng et al., 2004), which is used to optimize
nonlinear functions at the beginning of development and is extended to more applications
gradually. The algorithm tries to find potential solutions of problem by imitating behaviors
of social creature, e.g., birds flying over space. Taking fitness of given function as evaluate
metrics, this algorithm adjusts the velocities and positions of particles representing solutions
of problem to obtain optimum eventually. PSO is based on possessing many desirable
properties that we would like to transfer to our PSO-type swarm robotic systems. One of them
is that PSO operates in parallel and asynchronously (Ridge et al., 2005), which is consistent
with the biological significance of swarm algorithm. Thus we proceed with the analysis on
characteristics of different versions of PSO.

316
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search3 7

3.1 Synchronous v.s. asynchronous
To explore characteristic of different versions of PSO, we can start in accordance with
two issues, i.e., fitness evaluate in a serial or parallel way, synchronous or asynchronous
communication mode of sensing and reacting to environment as well as velocity- and
position-evolution. Therefore, we divide the different versions of PSO into four patterns.

3.1.1 Serial evaluate and synchronous update
Particle swarm optimization is traditionally considered to be implemented in serial and
synchronous on single-processor computing environment. The execution procedure can be
described with the following pseudo code (Koh et al., 2006), see Algorithm 1. It can be seen
that fitness evaluate of all particles is carried out one by one in optimization process through
cost function computation. And the best positions both of particle itself (cognitive) and in its
TVCS are determined by fitness comparison in the same way. Then the update of all velocities
as well as positions occurs simultaneously at each iteration.

Algorithm 1 PSO with characteristics of serial evaluate and synchronous update.

1: initialize algorithm constants
2: initialize all particle velocities, positions
3: For k = 1, number of iterations
4: For i = 1, number of particles
5: evaluate cost function
6: End
7: check convergence
8: update pi

k , pg
k , vi

k+1 ,xi
k+1

9: End
10: output results

3.1.2 Serial evaluate and asynchronous update
Immediately updates on velocity, position of certain particle as well as its history cognition
and the best of swarm are carried out as soon as completing evaluate on the cost function
of this particle. The procedure can be elaborated with the following pseudo code (Koh et al.,
2006), see Algorithm 2. It is clear that the evaluate and update process on different particles
are not completed at the same time.

Algorithm 2 PSO with characteristics of serial evaluate and asynchronous update.

1: initialize algorithm constants
2: initialize all particle velocities, positions
3: For k = 1, number of iterations;
4: For i = 1, number of particles
5: evaluate cost function
6: check convergence
7: update pi

k, pg
k , vi

k+1,xi
k+1

8: End
9: End

10: output results

317Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

6 Will-be-set-by-IN-TECH

measurement with a single sensor, for exploring the key effects caused by communication
modes here. We simply this evaluate mechanism here by assuming each robot has a sensor to
detect the intensity of the target signal within its maximum detection radius. This intensity
I(di) is determined with model below:

I(di) =

⎧
⎨
⎩

0, di > r
P
d2

i
+ η(), otherwise (6)

where P is the target signal power, di the distance from robot Ri to target, r the radius of sensor
detection and η() a sampling of additive Gaussian noise.

2.3.3 Position evaluate and cognitive decision
As to individual robot Ri, its cognitive position at time t is determined following the rule:

p∗i (t) =
�

xi(t), if I(xi(t) ≥ I(p∗i (t − 1))
p∗i (t − 1), otherwise (7)

where p∗i (t) is the cognitive position of robot Ri at time t, xi(t) the current position, and I()
the simplified evaluate function of measurement readings of target signals.

2.3.4 Best-found position in TVCS
Based on the definitions of TVCS and signals evaluate, the best-found position in swarm
robots can be decided with the criterion:

p∗(i)(t) = p∗k (t), argk max{I(p∗k (t)), k ∈ Ri’s TVCS(t)} (8)

where p∗(i)(t) be the best-found position within the TVCS of robot Ri at time t.

3. Communication modes

Now swarm robots can be controlled with EPSO-based method. But a problem should be
considered. In PSO-type control, target signals have to be detected in parallel for position
evaluate and such swarm system should be controlled in an asynchronous manner. Therefore,
we present asynchronous communication mode in case of target search. Specifically, each
robot independently detects signals emitted from target in a fine-grained parallel way and
compares intensity of signals with the best in its TVCS. Then velocities and positions of
individual robots are updated immediately. But the shared information within TVCS is
updated asynchronously. As comparison, a synchronous mode is also given in this section.
We set about this problem at the beginning of analysis on the characteristics of PSO. The
standard PSO algorithm has a key idea about velocity and position of particle (Eberhart
and Shi, 2001; Kennedy and Eberhart, 1995; Zeng et al., 2004), which is used to optimize
nonlinear functions at the beginning of development and is extended to more applications
gradually. The algorithm tries to find potential solutions of problem by imitating behaviors
of social creature, e.g., birds flying over space. Taking fitness of given function as evaluate
metrics, this algorithm adjusts the velocities and positions of particles representing solutions
of problem to obtain optimum eventually. PSO is based on possessing many desirable
properties that we would like to transfer to our PSO-type swarm robotic systems. One of them
is that PSO operates in parallel and asynchronously (Ridge et al., 2005), which is consistent
with the biological significance of swarm algorithm. Thus we proceed with the analysis on
characteristics of different versions of PSO.

316
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search3 7

3.1 Synchronous v.s. asynchronous
To explore characteristic of different versions of PSO, we can start in accordance with
two issues, i.e., fitness evaluate in a serial or parallel way, synchronous or asynchronous
communication mode of sensing and reacting to environment as well as velocity- and
position-evolution. Therefore, we divide the different versions of PSO into four patterns.

3.1.1 Serial evaluate and synchronous update
Particle swarm optimization is traditionally considered to be implemented in serial and
synchronous on single-processor computing environment. The execution procedure can be
described with the following pseudo code (Koh et al., 2006), see Algorithm 1. It can be seen
that fitness evaluate of all particles is carried out one by one in optimization process through
cost function computation. And the best positions both of particle itself (cognitive) and in its
TVCS are determined by fitness comparison in the same way. Then the update of all velocities
as well as positions occurs simultaneously at each iteration.

Algorithm 1 PSO with characteristics of serial evaluate and synchronous update.

1: initialize algorithm constants
2: initialize all particle velocities, positions
3: For k = 1, number of iterations
4: For i = 1, number of particles
5: evaluate cost function
6: End
7: check convergence
8: update pi

k , pg
k , vi

k+1 ,xi
k+1

9: End
10: output results

3.1.2 Serial evaluate and asynchronous update
Immediately updates on velocity, position of certain particle as well as its history cognition
and the best of swarm are carried out as soon as completing evaluate on the cost function
of this particle. The procedure can be elaborated with the following pseudo code (Koh et al.,
2006), see Algorithm 2. It is clear that the evaluate and update process on different particles
are not completed at the same time.

Algorithm 2 PSO with characteristics of serial evaluate and asynchronous update.

1: initialize algorithm constants
2: initialize all particle velocities, positions
3: For k = 1, number of iterations;
4: For i = 1, number of particles
5: evaluate cost function
6: check convergence
7: update pi

k, pg
k , vi

k+1,xi
k+1

8: End
9: End

10: output results

317Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

8 Will-be-set-by-IN-TECH

3.1.3 Parallel evaluate and synchronous update
The most obvious PSO parallel implementation is to simplify fitness evaluate for particles
at iteration in parallel, without changing the overall logic of the algorithm itself (Venter and
Sobieszczanki-Sobieksi, 2006). And the property of synchronous refers to all particles being
sent to parallel computing environment and moving from the current iteration to the next
only if the fitness of all particles has been gotten (Schutte et al., 2004). To demonstrate the
internal relationship of logic better, we illustrate with flow chart rather than pseudo code, as
showed in Figure 3 (Koh et al., 2006). In this case, the existence of load imbalance in computing
environment may significantly affect parallel performance. These factors are shown below:

initialization

No.1 particle
fitness

evaluate

No.2 particle
fitness

evaluate

No.n particle
fitness

evaluate

convergence
check

velocity, position
update

ite
ra

tio
n

Fig. 3. Visual sketch for a version of PSO having characteristics of parallel evaluate on fitness
and synchronous update for velocity and position.

• a heterogeneous distributed computing environment where processors with varying
computational speed are combined into a parallel computing environment;

• time spent in fitness evaluate, i.e., using a numerical simulation to evaluate each particle,
where the required simulation time depends on the particle being analyzed;

• the number of particles cannot be equally distributed among the processors in the
computing environment, i.e., having a swarm size that is not an integer multiple of the
number of processors (Koh et al., 2006).

3.1.4 Parallel evaluate and asynchronous update
Parallel implementations being asynchronous in PSO can make the algorithmic computation
efficiency enhanced (Venter and Sobieszczanki-Sobieksi, 2006). The asynchronous approach
does not need a synchronous point to determine new velocities and positions, as showed in
Figure 4 (Koh et al., 2006). The optimization can proceed to the next iteration without waiting
for the completion of all functions evaluate from the current iteration.

318
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search4 9

initialization

fitness
evaluate

fitness
evaluate

fitness
evaluate

particle

convergence
check

and

Velocity, position
update

fitness
evaluate

fitness
evaluate

fitness
evaluate

Fig. 4. Visual sketch for a version of PSO having characteristics of parallel evaluate on fitness
and asynchronous update for velocity and position.

As stated above, different versions of PSO have different algorithmic properties when
implementation. But the most desirable properties that we would like to transfer to our swarm
robotic system may be controlled in parallel and asynchronously (Ridge et al., 2005). Indeed, as
one of nature-inspired algorithms, parallel and asynchronous version of PSO makes algorithm
more efficient in execution.

3.2 Communication modes taken in swarm robotic search
Now, let us examine the case of swarm robotic search in a closed obstacle-free environment.
According to the analysis above, controlling over robots should be done in a fine-grained
way, as individual robots detect target signals independently at the same time to determine
the best-found position by signals intensity comparison with their respective TVCS neighbors
(Xue and Zeng, 2008b). Due to heterogeneous hardware caused by parameter distribution of
sensors, difference of detection and evaluate time required among different positions because
of signals diffusing, part of swarm robots completing signals detection early have to wait for
synchronous update. The reason is that the update depends on the slowest robot (Schutte
et al., 2004). By this means, velocities and positions of all robots are updated at the same time
after evaluate fully completing.
Here, asynchronous communication mode refers to that each robot compares at once with the
optimal value of the swarm after iterating in the iteration process, if their detective signals
are discovered stronger, updates immediately the optimal value of the swarm, thereby, other

319Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

8 Will-be-set-by-IN-TECH

3.1.3 Parallel evaluate and synchronous update
The most obvious PSO parallel implementation is to simplify fitness evaluate for particles
at iteration in parallel, without changing the overall logic of the algorithm itself (Venter and
Sobieszczanki-Sobieksi, 2006). And the property of synchronous refers to all particles being
sent to parallel computing environment and moving from the current iteration to the next
only if the fitness of all particles has been gotten (Schutte et al., 2004). To demonstrate the
internal relationship of logic better, we illustrate with flow chart rather than pseudo code, as
showed in Figure 3 (Koh et al., 2006). In this case, the existence of load imbalance in computing
environment may significantly affect parallel performance. These factors are shown below:

initialization

No.1 particle
fitness

evaluate

No.2 particle
fitness

evaluate

No.n particle
fitness

evaluate

convergence
check

velocity, position
update

ite
ra

tio
n

Fig. 3. Visual sketch for a version of PSO having characteristics of parallel evaluate on fitness
and synchronous update for velocity and position.

• a heterogeneous distributed computing environment where processors with varying
computational speed are combined into a parallel computing environment;

• time spent in fitness evaluate, i.e., using a numerical simulation to evaluate each particle,
where the required simulation time depends on the particle being analyzed;

• the number of particles cannot be equally distributed among the processors in the
computing environment, i.e., having a swarm size that is not an integer multiple of the
number of processors (Koh et al., 2006).

3.1.4 Parallel evaluate and asynchronous update
Parallel implementations being asynchronous in PSO can make the algorithmic computation
efficiency enhanced (Venter and Sobieszczanki-Sobieksi, 2006). The asynchronous approach
does not need a synchronous point to determine new velocities and positions, as showed in
Figure 4 (Koh et al., 2006). The optimization can proceed to the next iteration without waiting
for the completion of all functions evaluate from the current iteration.

318
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search4 9

initialization

fitness
evaluate

fitness
evaluate

fitness
evaluate

particle

convergence
check

and

Velocity, position
update

fitness
evaluate

fitness
evaluate

fitness
evaluate

Fig. 4. Visual sketch for a version of PSO having characteristics of parallel evaluate on fitness
and asynchronous update for velocity and position.

As stated above, different versions of PSO have different algorithmic properties when
implementation. But the most desirable properties that we would like to transfer to our swarm
robotic system may be controlled in parallel and asynchronously (Ridge et al., 2005). Indeed, as
one of nature-inspired algorithms, parallel and asynchronous version of PSO makes algorithm
more efficient in execution.

3.2 Communication modes taken in swarm robotic search
Now, let us examine the case of swarm robotic search in a closed obstacle-free environment.
According to the analysis above, controlling over robots should be done in a fine-grained
way, as individual robots detect target signals independently at the same time to determine
the best-found position by signals intensity comparison with their respective TVCS neighbors
(Xue and Zeng, 2008b). Due to heterogeneous hardware caused by parameter distribution of
sensors, difference of detection and evaluate time required among different positions because
of signals diffusing, part of swarm robots completing signals detection early have to wait for
synchronous update. The reason is that the update depends on the slowest robot (Schutte
et al., 2004). By this means, velocities and positions of all robots are updated at the same time
after evaluate fully completing.
Here, asynchronous communication mode refers to that each robot compares at once with the
optimal value of the swarm after iterating in the iteration process, if their detective signals
are discovered stronger, updates immediately the optimal value of the swarm, thereby, other

319Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

10 Will-be-set-by-IN-TECH

robots can share the experience timely, without having to wait until given some synchronous
moment, then realizes the non-synchronization of the robots in the search process.

3.2.1 Communication trigger
Clearly, the key to asynchronous implementation of control algorithm is to partition the
individual from the group update behavior to take the different property into account. These
update behaviors include updating the individual robot and the shared information within the
swarm histories. Similarly, as for the asynchronous particle swarm optimization, the update
action starts after fitness evaluate, while the update on swarm starts in the last at each iteration
(Venter and Sobieszczanki-Sobieksi, 2006). For the target search with swarm robots, detection
of target signals depends only on their respective on-board processors rather than processing
center. In other words, such center does not exist in swarm robotic system. The processors
work independently and in parallel between one another. The individual robot updates its
velocity, position and history as soon as it completes target signals measurement and makes
decision on the best-found by comparison with the best of its TVCS (Zhao et al., 2005). But the
update on the shared information should start in accordance with some special asynchronous
control strategy. In fact, this is the decision on communication triggers. Differing from the
ideal particles in PSO, robot possesses mass in real world that causes it to have inertia when
moves about in the search environment. Therefore, as for same an evolution position of certain
particle, it is unlimited to reach at any speed in PSO case, while robot may arrive at the same
position in several sampling times due to constraint of kinematics and dynamics because the
evolution position is only expected (Pugh and Martinoli, 2007). These factors should be taken
consideration when we design the asynchronous interaction strategies. Based on this, some
update strategies have been developed. One is communication cycle-based control principle.
Here, communication cycle is named as evolution iterations. Similar to the coarse-grained
parallel particle swarm optimization, we can make robot Ri communicate every n iterations to
decide the best-found position within robot Ri’s TVCS (Huang and Fan, 2006; Wang et al., 2007;
Zhao et al., 2005). To improve systematic efficiency, a communication cycle can be assigned
to several fixed times of sampling periods (Xue et al., 2009). Besides, different robots can be
allowed to have different sampling frequencies. On the other hand, the best-found fitness
value and position of TVCS should be remembered in memory before the next iteration starts.
Another update strategy is evolution position-based control principle (Xue and Zeng, 2009).
According to this control principle, update of the shared information does not been carried
out in the current iteration before the previous evolution position has not been reached. That
is to say, robots communicate when they arrive at the decisive expected or desired evolution
positions regardless of the iteration history and the next iteration required. No communication
between two consecutive ideal evolution positions makes robot moving continuously, saving
power and decreasing communication time-consuming.

3.2.2 Synchronous case in swarm robotic search
The difference between synchronous and asynchronous control lines in their update types and
opportunities (Zhao et al., 2005). As for the synchronous mode, update time points depend
on the last particle completing fitness evaluate at each step. Thus the communication triggers
do not need to consider in synchronous mode. As comparison, refers to the updates of all the
robots being synchronous at same iterative procedure, they are aiming at the optimal value in
the current iteration step, after all the updates are completed, all the robots proceed towards
the goal synchronously, and accomplish the search task with common integral cognitive level.

320
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search5 11

3.3 Algorithm description
The corresponding algorithms with different communication modes can be listed in the
following. Of them, the synchronous communication version is taken according to the
characteristics of processing moments on signals detection, search completion judging as
well as velocity and position updating, see Algorithm 3. Different from the synchronous
communication mode, the moment that robot updates shared information of TVCS is more
flexible in asynchronous communication mode. The details of corresponding algorithm can
be found in Algorithm 4.

Algorithm 3 Controlling robot Ri involved in swarm robotic search with synchronous
communication mode. For convenience, the default variables are for Ri unless those are
marked explicitly for TVCS.

1: initialize
2: j ← 1
3: velocity V(t = 0), position X(t = 0)
4: target signals measurement I(t = 0)
5: Ibest ← I(t = 0), Xbest ← X(t = 0)
6: Ibest ← I(t = 0), Xbest ← X(t = 0) for TVCS
7: while target is not found out
8: for i = 1; i <= popsize; i ++
9: calculate expected and real velocities

10: calculate position
11: end
12: target signals measurement
13: update Ibest and Xbest
14: update Ibest and Xbest of TVCS
15: calculate velocity
16: move ahead one step
17: j ← j + 1
18: end

4. Simulations

The two control algorithms are performed and repeated for 10 runs respectively, for both
are characteristic of random search in nature and the comparison can be made with statistics
gotten from enough simulations.

4.1 Parameter settings
The parameters about working environment, individual robot and swarm robots affect the
results directly. Thus the important parameters and their common configurations used in
simulations are given in Table 1. The farther information of the symbols can be found in the
third column of this table.

4.2 Performance metrics
In order to comparatively evaluate the running performance of control algorithms with
different communication modes, some quantitative metrics need to be designed in advance.
Here, two performance figures are considered and presented. Both are based on the definition
of search success. We can define such term as the best position of swarm closes to target

321Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

10 Will-be-set-by-IN-TECH

robots can share the experience timely, without having to wait until given some synchronous
moment, then realizes the non-synchronization of the robots in the search process.

3.2.1 Communication trigger
Clearly, the key to asynchronous implementation of control algorithm is to partition the
individual from the group update behavior to take the different property into account. These
update behaviors include updating the individual robot and the shared information within the
swarm histories. Similarly, as for the asynchronous particle swarm optimization, the update
action starts after fitness evaluate, while the update on swarm starts in the last at each iteration
(Venter and Sobieszczanki-Sobieksi, 2006). For the target search with swarm robots, detection
of target signals depends only on their respective on-board processors rather than processing
center. In other words, such center does not exist in swarm robotic system. The processors
work independently and in parallel between one another. The individual robot updates its
velocity, position and history as soon as it completes target signals measurement and makes
decision on the best-found by comparison with the best of its TVCS (Zhao et al., 2005). But the
update on the shared information should start in accordance with some special asynchronous
control strategy. In fact, this is the decision on communication triggers. Differing from the
ideal particles in PSO, robot possesses mass in real world that causes it to have inertia when
moves about in the search environment. Therefore, as for same an evolution position of certain
particle, it is unlimited to reach at any speed in PSO case, while robot may arrive at the same
position in several sampling times due to constraint of kinematics and dynamics because the
evolution position is only expected (Pugh and Martinoli, 2007). These factors should be taken
consideration when we design the asynchronous interaction strategies. Based on this, some
update strategies have been developed. One is communication cycle-based control principle.
Here, communication cycle is named as evolution iterations. Similar to the coarse-grained
parallel particle swarm optimization, we can make robot Ri communicate every n iterations to
decide the best-found position within robot Ri’s TVCS (Huang and Fan, 2006; Wang et al., 2007;
Zhao et al., 2005). To improve systematic efficiency, a communication cycle can be assigned
to several fixed times of sampling periods (Xue et al., 2009). Besides, different robots can be
allowed to have different sampling frequencies. On the other hand, the best-found fitness
value and position of TVCS should be remembered in memory before the next iteration starts.
Another update strategy is evolution position-based control principle (Xue and Zeng, 2009).
According to this control principle, update of the shared information does not been carried
out in the current iteration before the previous evolution position has not been reached. That
is to say, robots communicate when they arrive at the decisive expected or desired evolution
positions regardless of the iteration history and the next iteration required. No communication
between two consecutive ideal evolution positions makes robot moving continuously, saving
power and decreasing communication time-consuming.

3.2.2 Synchronous case in swarm robotic search
The difference between synchronous and asynchronous control lines in their update types and
opportunities (Zhao et al., 2005). As for the synchronous mode, update time points depend
on the last particle completing fitness evaluate at each step. Thus the communication triggers
do not need to consider in synchronous mode. As comparison, refers to the updates of all the
robots being synchronous at same iterative procedure, they are aiming at the optimal value in
the current iteration step, after all the updates are completed, all the robots proceed towards
the goal synchronously, and accomplish the search task with common integral cognitive level.

320
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search5 11

3.3 Algorithm description
The corresponding algorithms with different communication modes can be listed in the
following. Of them, the synchronous communication version is taken according to the
characteristics of processing moments on signals detection, search completion judging as
well as velocity and position updating, see Algorithm 3. Different from the synchronous
communication mode, the moment that robot updates shared information of TVCS is more
flexible in asynchronous communication mode. The details of corresponding algorithm can
be found in Algorithm 4.

Algorithm 3 Controlling robot Ri involved in swarm robotic search with synchronous
communication mode. For convenience, the default variables are for Ri unless those are
marked explicitly for TVCS.

1: initialize
2: j ← 1
3: velocity V(t = 0), position X(t = 0)
4: target signals measurement I(t = 0)
5: Ibest ← I(t = 0), Xbest ← X(t = 0)
6: Ibest ← I(t = 0), Xbest ← X(t = 0) for TVCS
7: while target is not found out
8: for i = 1; i <= popsize; i ++
9: calculate expected and real velocities

10: calculate position
11: end
12: target signals measurement
13: update Ibest and Xbest
14: update Ibest and Xbest of TVCS
15: calculate velocity
16: move ahead one step
17: j ← j + 1
18: end

4. Simulations

The two control algorithms are performed and repeated for 10 runs respectively, for both
are characteristic of random search in nature and the comparison can be made with statistics
gotten from enough simulations.

4.1 Parameter settings
The parameters about working environment, individual robot and swarm robots affect the
results directly. Thus the important parameters and their common configurations used in
simulations are given in Table 1. The farther information of the symbols can be found in the
third column of this table.

4.2 Performance metrics
In order to comparatively evaluate the running performance of control algorithms with
different communication modes, some quantitative metrics need to be designed in advance.
Here, two performance figures are considered and presented. Both are based on the definition
of search success. We can define such term as the best position of swarm closes to target

321Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

12 Will-be-set-by-IN-TECH

Algorithm 4 Controlling robot Ri involved in swarm robotic search with asynchronous
communication mode. Note that symbols share the same meanings as in Algorithm 3.

1: initialize
2: set counter j ← 1
3: velocity V(t = 0), position X(t = 0)
4: target signals measurement I(t = 0)
5: Ibest ← I(t = 0), Xbest ← X(t = 0)
6: Ibest ← I(t = 0), Xbest ← X(t = 0) for TVCS
7: calculate number of neighbors neighbor_number in TVCS
8: while target is not found out
9: for i = 1; i <= neighbor_number; i ++

10: target signals measurement
11: if best-found is gotten
12: update Ibest and Xbest
13: end
14: calculate expected Vexpec and real velocity Vreal
15: calculate X
16: end
17: target signals measurement
18: update Ibest and Xbest
19: update Ibest and Xbest for TVCS
20: calculate velocity
21: move ahead one step
22: j ← j + 1
23: end

Symbol Value Meaning
Space 500 × 500 size of searching environment
StartArea 160 × 160 start area for robots at the beginning of simulations
popsize 3, 5, 8, 10 number of individual robots in swarm robotic system
Rdetec 250, 125 maximum detection radius of sensors
Rcomm 250 maximum communication radius of robot
Vmax 5 maximum moving velocity of robot
P 1600 signals power emitted from target
T 70 constant of inertia element
Δt 0.8 contracted factor for a moving step of robots

Table 1. Parameter settings taken in simulations. Note that those parameters expressed in
certain dimensions are assigned a corresponding proper one respectively.

enough so as that at least one robot can identify the target with some sensory ability (Kowadlo
et al., 2006). It means that if one or more robots approach and reach the area where target
locates, the run is considered successful.

4.2.1 Search efficiency
Search efficiency is defined as reciprocal of mean steps required for one successful search. In
fact, it concerns search speed by counting time steps for completion of a successful search,
which indicates the elapsed time in a single simulation run indirectly. Because the sampling

322
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search6 13

cycle in simulations has been determined in advance, a simple relation between time step and
spent time can be established. The value equals to the reciprocal of average steps taken by all
individual robots in a successful search. Clearly, the more the average time steps, the lower
the search efficiency, and vice versa.

4.2.2 Energy consuming
The metric is distance principle-based one. It is expressed in form of the sum of passed
distance of all the individual robots when the swarm robotic search task is completed. Since
the energy consumption of robot is fixed per distance unit, the average energy consumption
of individual robots can measure aspect of algorithm performance in economical efficiency.
Compared with energy consuming, search efficiency seems more important in swarm robotic
search control evaluate because we concern about higher algorithmic speed.

4.3 Results
Simulations with different setting configurations are conducted and repeated for 10 runs
respectively, for reducing the effect caused by the inherent randomness from the swarm
intelligence-based control algorithms. Then the results are shown in some figures and tables.
Of them, the running screenshots of swarm robotic system with different sizes when simulated
programs terminate at first, see Figure 5 for details. We can find that the robots start searching
from the lower left corner of the working space at the beginning of each simulation, being
limited to a area of 160 × 160. While the target position is initialized at the same time, being
limited to the upper right corner of the searching environment. As for the statistics from
simulations, they are shown in Table 2 – 5, and Figure 6 – 9.

comm. mode 3-rob swarm 5-rob swarm 8-rob swarm 10-rob swarm
synchronous 98.2 94.3 93.9 93.2
mode ±6.11 ±13.23 ±3.81 ±7.16
asynchronous 95.4 91.6 93.2 92.3
mode ±5.48 ±5.83 ±7.35 ±6.10

Table 2. Average control time steps spent in completion of target search under conditions of
Rdetec = 250, Rcomm = 250.

comm. mode 3-rob swarm 5-rob swarm 8-rob swarm 10-rob swarm
synchronous 1165.3 1863.1 2965.3 3665.9
mode ±74.52 ±259.72 ±119.51 ±254.90
asynchronous 979.9 1681.2 2603.9 3315.4
mode ±86.76 ±144.11 ±220.70 ±186.62

Table 3. Average total distance spent by all robots for target search success under conditions
of Rdetec = 250, Rcomm = 250.

4.4 Discussions
We can comparatively analyze and discuss the indications surrounding simulation results,
trying to reveal effects of different communication modes on swarm robotic search.

• As for the same task and same parameter setting configurations, time steps decrease as
swarm size increases regardless of which communication mode taken in control algorithm.
It indicates that search efficiency enhances as swarm size expands.

323Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

12 Will-be-set-by-IN-TECH

Algorithm 4 Controlling robot Ri involved in swarm robotic search with asynchronous
communication mode. Note that symbols share the same meanings as in Algorithm 3.

1: initialize
2: set counter j ← 1
3: velocity V(t = 0), position X(t = 0)
4: target signals measurement I(t = 0)
5: Ibest ← I(t = 0), Xbest ← X(t = 0)
6: Ibest ← I(t = 0), Xbest ← X(t = 0) for TVCS
7: calculate number of neighbors neighbor_number in TVCS
8: while target is not found out
9: for i = 1; i <= neighbor_number; i ++

10: target signals measurement
11: if best-found is gotten
12: update Ibest and Xbest
13: end
14: calculate expected Vexpec and real velocity Vreal
15: calculate X
16: end
17: target signals measurement
18: update Ibest and Xbest
19: update Ibest and Xbest for TVCS
20: calculate velocity
21: move ahead one step
22: j ← j + 1
23: end

Symbol Value Meaning
Space 500 × 500 size of searching environment
StartArea 160 × 160 start area for robots at the beginning of simulations
popsize 3, 5, 8, 10 number of individual robots in swarm robotic system
Rdetec 250, 125 maximum detection radius of sensors
Rcomm 250 maximum communication radius of robot
Vmax 5 maximum moving velocity of robot
P 1600 signals power emitted from target
T 70 constant of inertia element
Δt 0.8 contracted factor for a moving step of robots

Table 1. Parameter settings taken in simulations. Note that those parameters expressed in
certain dimensions are assigned a corresponding proper one respectively.

enough so as that at least one robot can identify the target with some sensory ability (Kowadlo
et al., 2006). It means that if one or more robots approach and reach the area where target
locates, the run is considered successful.

4.2.1 Search efficiency
Search efficiency is defined as reciprocal of mean steps required for one successful search. In
fact, it concerns search speed by counting time steps for completion of a successful search,
which indicates the elapsed time in a single simulation run indirectly. Because the sampling

322
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search6 13

cycle in simulations has been determined in advance, a simple relation between time step and
spent time can be established. The value equals to the reciprocal of average steps taken by all
individual robots in a successful search. Clearly, the more the average time steps, the lower
the search efficiency, and vice versa.

4.2.2 Energy consuming
The metric is distance principle-based one. It is expressed in form of the sum of passed
distance of all the individual robots when the swarm robotic search task is completed. Since
the energy consumption of robot is fixed per distance unit, the average energy consumption
of individual robots can measure aspect of algorithm performance in economical efficiency.
Compared with energy consuming, search efficiency seems more important in swarm robotic
search control evaluate because we concern about higher algorithmic speed.

4.3 Results
Simulations with different setting configurations are conducted and repeated for 10 runs
respectively, for reducing the effect caused by the inherent randomness from the swarm
intelligence-based control algorithms. Then the results are shown in some figures and tables.
Of them, the running screenshots of swarm robotic system with different sizes when simulated
programs terminate at first, see Figure 5 for details. We can find that the robots start searching
from the lower left corner of the working space at the beginning of each simulation, being
limited to a area of 160 × 160. While the target position is initialized at the same time, being
limited to the upper right corner of the searching environment. As for the statistics from
simulations, they are shown in Table 2 – 5, and Figure 6 – 9.

comm. mode 3-rob swarm 5-rob swarm 8-rob swarm 10-rob swarm
synchronous 98.2 94.3 93.9 93.2
mode ±6.11 ±13.23 ±3.81 ±7.16
asynchronous 95.4 91.6 93.2 92.3
mode ±5.48 ±5.83 ±7.35 ±6.10

Table 2. Average control time steps spent in completion of target search under conditions of
Rdetec = 250, Rcomm = 250.

comm. mode 3-rob swarm 5-rob swarm 8-rob swarm 10-rob swarm
synchronous 1165.3 1863.1 2965.3 3665.9
mode ±74.52 ±259.72 ±119.51 ±254.90
asynchronous 979.9 1681.2 2603.9 3315.4
mode ±86.76 ±144.11 ±220.70 ±186.62

Table 3. Average total distance spent by all robots for target search success under conditions
of Rdetec = 250, Rcomm = 250.

4.4 Discussions
We can comparatively analyze and discuss the indications surrounding simulation results,
trying to reveal effects of different communication modes on swarm robotic search.

• As for the same task and same parameter setting configurations, time steps decrease as
swarm size increases regardless of which communication mode taken in control algorithm.
It indicates that search efficiency enhances as swarm size expands.

323Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

14 Will-be-set-by-IN-TECH

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Swarm Robotic Search

(a) 3-rob swarm

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Swarm Robotic Search

(b) 5-rob swarm

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Swarm Robotic Search

(c) 8-rob swarm

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Swarm Robotic Search

(d) 10-rob swarm

Fig. 5. Screenshots of swarm robotic search in cases of different size swarms. Note that at
least one robot closes to the target enough when search succeeds.

comm. mode 3-rob swarm 5-rob swarm 8-rob swarm 10-rob swarm
synchronous 91.3 97.1 97.9 89.8
mode ±3.36 ±10.15 ±4.91 ±6.55
asynchronous 97.8 93.1 90.5 89.1
mode ±7.40 ±7.43 ±3.96 ±4.88

Table 4. Average control time steps spent in completion of target search under conditions of
Rdetec = 125, Rcomm = 250.

comm. mode 3-rob swarm 5-rob swarm 8-rob swarm 10-rob swarm
synchronous 1081.0 1917.8 3117.9 3546.5
mode ±40.95 ±207.36 ±154.86 ±269.06
asynchronous 1017.6 1786.8 2628.1 3139.2
mode ±82.28 ±146.27 ±244.16 ±274.70

Table 5. Average total distance spent by all robots for target search success under conditions
of Rdetec = 125, Rcomm = 250.

324
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search7 15

3−rob swarm 5−rob swarm 8−rob swarm 10−rob swarm
0

50

100

150

st
ep

s

Synchronous mode
Asynchronous mode

Fig. 6. Average time steps required to complete target search for 10 runs under conditions of
Rdetec = 250, Rcomm = 250. Note that search efficiency is inversely proportional to time steps.

3−rob swarm 5−rob swarm 8−rob swarm 10−rob swarm
0

500

1000

1500

2000

2500

3000

3500

4000

di
st

an
ce

Synchronous mode
Asynchronous mode

Fig. 7. Average total distance passed by all robots for 10 runs search success under conditions
of Rdetec = 250, Rcomm = 250.

• As for the same parameter setting configurations, average total distance required for a
success search varies in the same direction as swarm size increases regardless of which
communication mode taken in control algorithm. It indicates that energy consuming
largens as swarm size scales expansion. We can think that swarm robots carry out task
of target search at compromise of time consuming and energy consuming.

• Swarm robotic search with asynchronous communication mode runs more efficiently than
with synchronous communication mode, which seems to indicate that information and
experience of certain dominant individual can be shared timely among its society for others

325Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

14 Will-be-set-by-IN-TECH

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Swarm Robotic Search

(a) 3-rob swarm

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Swarm Robotic Search

(b) 5-rob swarm

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Swarm Robotic Search

(c) 8-rob swarm

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
Swarm Robotic Search

(d) 10-rob swarm

Fig. 5. Screenshots of swarm robotic search in cases of different size swarms. Note that at
least one robot closes to the target enough when search succeeds.

comm. mode 3-rob swarm 5-rob swarm 8-rob swarm 10-rob swarm
synchronous 91.3 97.1 97.9 89.8
mode ±3.36 ±10.15 ±4.91 ±6.55
asynchronous 97.8 93.1 90.5 89.1
mode ±7.40 ±7.43 ±3.96 ±4.88

Table 4. Average control time steps spent in completion of target search under conditions of
Rdetec = 125, Rcomm = 250.

comm. mode 3-rob swarm 5-rob swarm 8-rob swarm 10-rob swarm
synchronous 1081.0 1917.8 3117.9 3546.5
mode ±40.95 ±207.36 ±154.86 ±269.06
asynchronous 1017.6 1786.8 2628.1 3139.2
mode ±82.28 ±146.27 ±244.16 ±274.70

Table 5. Average total distance spent by all robots for target search success under conditions
of Rdetec = 125, Rcomm = 250.

324
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search7 15

3−rob swarm 5−rob swarm 8−rob swarm 10−rob swarm
0

50

100

150

st
ep

s

Synchronous mode
Asynchronous mode

Fig. 6. Average time steps required to complete target search for 10 runs under conditions of
Rdetec = 250, Rcomm = 250. Note that search efficiency is inversely proportional to time steps.

3−rob swarm 5−rob swarm 8−rob swarm 10−rob swarm
0

500

1000

1500

2000

2500

3000

3500

4000

di
st

an
ce

Synchronous mode
Asynchronous mode

Fig. 7. Average total distance passed by all robots for 10 runs search success under conditions
of Rdetec = 250, Rcomm = 250.

• As for the same parameter setting configurations, average total distance required for a
success search varies in the same direction as swarm size increases regardless of which
communication mode taken in control algorithm. It indicates that energy consuming
largens as swarm size scales expansion. We can think that swarm robots carry out task
of target search at compromise of time consuming and energy consuming.

• Swarm robotic search with asynchronous communication mode runs more efficiently than
with synchronous communication mode, which seems to indicate that information and
experience of certain dominant individual can be shared timely among its society for others

325Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

16 Will-be-set-by-IN-TECH

3−rob swarm 5−rob swarm 8−rob swarm 10−rob swarm
0

50

100

150

st
ep

s

Synchronous mode
Asynchronous mode

Fig. 8. Average time steps required to complete target search for 10 runs under conditions of
Rdetec = 125, Rcomm = 250.

3−rob swarm 5−rob swarm 8−rob swarm 10−rob swarm
0

500

1000

1500

2000

2500

3000

3500

4000

di
st

an
ce

Synchronous mode
Asynchronous mode

Fig. 9. Average total distance passed by all robots for 10 runs search success under conditions
of Rdetec = 125, Rcomm = 250.

behavior decision making. The result seems that robots can adjust its own motion velocity
and position and finally fasten the search process by learning from the optimal neighbors
at different time steps.

• As to different parameter setting configurations, such as detection radius is set Rdetec = 250
and Rdetec = 125 respectively but the communication radius remains the same, search
efficiencies and energy consuming do not vary obviously. The reason maybe that at the
beginning of simulations, robots are far from the potential target so as not to be capable of

326
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search8 17

detecting target signals either for case of Rdetec = 250 or for Rdetec = 125. Therefore, robots
only move randomly without help of the social experience sharing.

5. Conclusions

By extending the particle swarm optimization algorithm, we model swarm robotic system
and control it in PSO-type way for carrying out target search task. Because of the relationship
between swarm robotic search and PSO, some ideal characteristics of PSO can be transferred
to case of swarm robotic search. Inspired from asynchronous versions of PSO, we develop
control strategy with asynchronous communication mode for search efficiency enhancement.
To reveal the effect, we compare the algorithm with synchronous communication mode. From
the statistics of simulation, a conclusion can be drawn that asynchronous communication
mode is more efficient than synchronous mode under conditions of the same parameter
settings in search efficiency. In our future work, we will explore the effect how to vary as
controlled object and task change.

6. References

Beni, G. (2005) From swarm intelligence to swarm robotics, Lecture Notes in Computer Science,
vol. 3342, pp. 1–9.

Şahin, E. (2005) Swarm robotics: From sources of inspiration to domains of application, Lecture
Notes in Computer Science, vol. 3342, pp. 10–20.

Dorigo, M. and Sahin, E. (2004) Swarm robotics–special issue editorial, Autonomous Robots,
vol. 17, nos. 2–3, pp. 111–113.

Schmickl, T. and Crailsheim, K. (2008) Trophallaxis within a robotic swarm: bio-inspired
communication among robots in a swarm, Autonomous Robots, vol. 25, no. 1, pp.
171–188.

Chang, J.F., Chu, S.C., Roddick, J. F. and et al. (2005) A Parallel Particle Swarm Optimization
Algorithm with Communication Strategies, Journal of Information Science and
Engineering, no. 21, 809–818.

Eberhart, R.C. and Shi, Y. (2001) Particle swarm optimization: developments, applications
and resources, in Proceedings of the 2001 IEEE Congress on Evolutionary Computation,
Piscataway, NJ, USA, vol. 1, pp. 81–86.

Henrich, D. and Honiger, T. (1997) Parallel Processing Approaches in Robotics, in Proceedings
of IEEE International Symposium on Industrial Electronics, Guimaraes, Portugal, July
7–11.

Huang, F. and Fan, X.P. (2006) Parallel Particle Swarm Optimization Algorithm with Island
Population Model, Journal of Control and Decision, vol. 21, no. 2, pp. 175–179, 188. (in
Chinese)

Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization, in Proceedings of IEEE
International Conference on Neural Networks, vol. 4.

Koh, B., George, A.D., Haftka, R.T. and et al. (2006) Parallel Asynchronous Particle Swarm
Optimization, International Journal of Numerical Methods in Engineering, vol. 67, pp.
578–595.

Kolda, T.G. and Torczon, V.J. (2003) Understanding Asynchronous Parallel Pattern Search,
High Performance Algorithm and Software for Nonlinear Optimization, pp. 316–335.

Kowadlo, G., Rawlinson, D., Russell, R.A. and et al. (2006) Bi-modal search using
complementary sensing (olfaction/vision) for odour source localization, in
Proceedings of the IEEE International Conference on Robotics and Automation, Orlando.

327Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

16 Will-be-set-by-IN-TECH

3−rob swarm 5−rob swarm 8−rob swarm 10−rob swarm
0

50

100

150

st
ep

s

Synchronous mode
Asynchronous mode

Fig. 8. Average time steps required to complete target search for 10 runs under conditions of
Rdetec = 125, Rcomm = 250.

3−rob swarm 5−rob swarm 8−rob swarm 10−rob swarm
0

500

1000

1500

2000

2500

3000

3500

4000

di
st

an
ce

Synchronous mode
Asynchronous mode

Fig. 9. Average total distance passed by all robots for 10 runs search success under conditions
of Rdetec = 125, Rcomm = 250.

behavior decision making. The result seems that robots can adjust its own motion velocity
and position and finally fasten the search process by learning from the optimal neighbors
at different time steps.

• As to different parameter setting configurations, such as detection radius is set Rdetec = 250
and Rdetec = 125 respectively but the communication radius remains the same, search
efficiencies and energy consuming do not vary obviously. The reason maybe that at the
beginning of simulations, robots are far from the potential target so as not to be capable of

326
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Synchronous and Asynchronous Communication Modes for Swarm Robotic Search8 17

detecting target signals either for case of Rdetec = 250 or for Rdetec = 125. Therefore, robots
only move randomly without help of the social experience sharing.

5. Conclusions

By extending the particle swarm optimization algorithm, we model swarm robotic system
and control it in PSO-type way for carrying out target search task. Because of the relationship
between swarm robotic search and PSO, some ideal characteristics of PSO can be transferred
to case of swarm robotic search. Inspired from asynchronous versions of PSO, we develop
control strategy with asynchronous communication mode for search efficiency enhancement.
To reveal the effect, we compare the algorithm with synchronous communication mode. From
the statistics of simulation, a conclusion can be drawn that asynchronous communication
mode is more efficient than synchronous mode under conditions of the same parameter
settings in search efficiency. In our future work, we will explore the effect how to vary as
controlled object and task change.

6. References

Beni, G. (2005) From swarm intelligence to swarm robotics, Lecture Notes in Computer Science,
vol. 3342, pp. 1–9.

Şahin, E. (2005) Swarm robotics: From sources of inspiration to domains of application, Lecture
Notes in Computer Science, vol. 3342, pp. 10–20.

Dorigo, M. and Sahin, E. (2004) Swarm robotics–special issue editorial, Autonomous Robots,
vol. 17, nos. 2–3, pp. 111–113.

Schmickl, T. and Crailsheim, K. (2008) Trophallaxis within a robotic swarm: bio-inspired
communication among robots in a swarm, Autonomous Robots, vol. 25, no. 1, pp.
171–188.

Chang, J.F., Chu, S.C., Roddick, J. F. and et al. (2005) A Parallel Particle Swarm Optimization
Algorithm with Communication Strategies, Journal of Information Science and
Engineering, no. 21, 809–818.

Eberhart, R.C. and Shi, Y. (2001) Particle swarm optimization: developments, applications
and resources, in Proceedings of the 2001 IEEE Congress on Evolutionary Computation,
Piscataway, NJ, USA, vol. 1, pp. 81–86.

Henrich, D. and Honiger, T. (1997) Parallel Processing Approaches in Robotics, in Proceedings
of IEEE International Symposium on Industrial Electronics, Guimaraes, Portugal, July
7–11.

Huang, F. and Fan, X.P. (2006) Parallel Particle Swarm Optimization Algorithm with Island
Population Model, Journal of Control and Decision, vol. 21, no. 2, pp. 175–179, 188. (in
Chinese)

Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization, in Proceedings of IEEE
International Conference on Neural Networks, vol. 4.

Koh, B., George, A.D., Haftka, R.T. and et al. (2006) Parallel Asynchronous Particle Swarm
Optimization, International Journal of Numerical Methods in Engineering, vol. 67, pp.
578–595.

Kolda, T.G. and Torczon, V.J. (2003) Understanding Asynchronous Parallel Pattern Search,
High Performance Algorithm and Software for Nonlinear Optimization, pp. 316–335.

Kowadlo, G., Rawlinson, D., Russell, R.A. and et al. (2006) Bi-modal search using
complementary sensing (olfaction/vision) for odour source localization, in
Proceedings of the IEEE International Conference on Robotics and Automation, Orlando.

327Synchronous and Asynchronous Communication Modes for Swarm Robotic Search

18 Will-be-set-by-IN-TECH

Li, J.M., Wan, D.L., Chi, Z.X. and et al. (2006) A Parallel Particle Swarm Optimization
Algorithm Based on Fine-Grained Model with GPU-Accelerating, Journal of Harbin
Institute of Technology, vol. 38, no. 12, pp. 2162–2166. (in Chinese)

Luo, J.H. and Zhong, Z.N. (2005) Research on the Parallel Simulation of Asynchronous Pattern
of Particle Swarm Optimization, Journal of Computer Simulation, vol. 22, no. 6, pp.
68–70, 78. (in Chinese)

Pugh, J. and Martinoli, A. (2007) Inspiring and Modeling Multi-Robot Search with Particle
Swarm Optimization, in Proceedings of the 4th IEEE Swarm Intelligence Symposium,
Honolulu, Hawaii, USA, April, 1–5.

Zeng, J.C. and Xue, S.D. (2010) Modeling and Simulation Approaches to Swarm Robotic
Systems, Journal of System Simulation, vol. 22, no. 6, pp. 1327–1330. (in Chinese)

Ridge, E., Kudenko, D., Kazakov, D. and et al. (2005) Moving Nature-Inspired Algorithms
to Parallel, Asynchronous and Decentralised Environment, Frontiers in Artificial
Intelligence and Applications, Vol. 135, pp. 35–49.

Schutte, J.F., Reinbol, J.A., Fregly, B.J. and et al. (2004) Parallel Global Optimization with
the Particle Swarm Optimization, International Journal of Numerical Methods in
Engineering, vol. 61, no. 13, pp. 2296–2315.

Venter, G. and Sobieszczanki-Sobieksi, J. (2006) A Parallel Particle Swarm Optimization
Algorithm Accelerated by Asynchronous Evaluations, Journal of Aerospace Computing,
Information, and Communication, no. 3, pp. 123–137.

Wang, Y.Y., Zeng, J.C. and Tan, Y. (2007) Parallel Particle Swarm Optimization Based on
Parallel Model with Controller, Journal of System Simulation, vol. 19, no.10, pp.
2171–2176. (in Chinese)

Xu, Y.Z. and Zeng, W.H. (2005) The Development of Parallel Evolutionary Algorithms, Pattern
Recognition and Artificial Intelligence, vol. 21, no. 2, pp. 183–192. (in Chinese)

Xue, S.D. and Zeng, J.C. (2008a) Using Relative Localization Observations for Swarm Robots
Search, in International Conference on Modelling, Identification and Control, Shanghai,
China, June 29–July 2.

Xue, S.D. and Zeng, J.C. (2008b) Control over Swarm Robots Search with Swarm Intelligence
Principles, Journal of System Simulation, vol. 20, no. 13, pp. 3449–3454.

Xue, S.D. and Zeng, J.C. (2008c) Swarm Robots Search under Conditions of Heterogeneous
Sensory Signals Fusion, in Proceedings of the 2008 International Conference on Genetic
and Evolutionary Methods, Las Vegas, Nevada, USA, July 14–17.

Zeng, J.C., Jie, J. and Cui, Z.H. (2004) Particle Swarm Optimization, Beijing: Science Press. (in
Chinese)

Zhao, Y., Yue, J.G., Li, G.Y. and et al. (2005) A Parallel Particle Swarm Optimization Algorithm
Based on Multigroup for Solving Complex Functions Optimization, Journal of
Computer Engineering and Applications, vol. 41, no. 16, pp. 58–60, 64. (in Chinese)

Xue, S.D., Zhang, J.H. and Zeng, J.C. (2009) Parallel asynchronous control strategy for target
search with swarm robots, International Journal of Bio-Inspired Computation, vol. 1, no.
3, pp. 151–163.

Xue, S.D. and Zeng, J.C. (2009) Controlling swarm robots for target search in parallel and
asynchronously, International Journal of Modelling, Identification and Control, vol. 8, no.
4, pp. 353–360.

328
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

0

Using a Meeting Channel and Relay Nodes to
Interconnect Mobile Robots

Nassima Hadid, Alexandre Guitton
and Michel Misson

LIMOS CNRS / Clermont Université, Campus des Cézeaux, 63 173 Aubiere Cedex
France

1. Introduction

Mobile robots are increasingly used in industrial applications (generally in order to convey
merchandises), in healthcare applications (for example, to transport patients or medicines)
or in domotic applications (for instance, to sweep a floor). These robots are often mounted
with several sensors and actuators, in order to carry out their tasks (e.g., grabbing an object
of interest, and bringing it a destination without colliding with obstacles). To reduce the
complexity and weight of the wiring of all these sensors and actuators, these devices can be
equipped with wireless capability. A central entity, called the central unit, is usually in charge
of collecting the data from the sensors, integrating part of the data in a models, computing
a behavioral response and operating the actuators accordingly. Another entity, called the
coordinator, is in charge of managing the wireless entities, retrieving data from sensors and
sending orders to actuators. The same device can be simultaneously the central unit and the
coordinator. In the following, the wireless communications between sensors, actuators and
coordinator are called intra-robot communications.
Real applications often require the collaboration of mobile robots in order to perform required
tasks. For instance, when they are used in airports to transport luggage, mobile robots
can cooperate to avoid colliding with each other. In search and rescue operations, mobile
robots can inform their neighbors that an area has already been explored (Ferranti & Trigoni,
2008). Robots can also follow tracks on the floor (Hogg et al., 2002) or monitor an area
collaboratively (Lambrou & Panayiotou, 2009). An allegorical example is shown on Fig. 1,
where the waiter robot Dro has to collaborate with the waitress robot Ide in order to serve
hot coffee to customers. These communications used for collaborations are called inter-robots
communications.
The design of a network architecture that allows mobile robots to cooperate efficiently, without
negatively impacting the performance of each intra-robot communication, is a challenging
issue, and is the aim of this chapter.
The remainder of the chapter is the following. In Section 2, we introduce a multi-channel
approach where intra-robot communications are performed on a robot-specific channel, and
inter-robot communications are performed on a common meeting channel. In this way,
mobile robots can communicate without impacting intra-robot communications. In Section 3,
we discuss the protocols that allow mobile robots to communicate directly, when they are

15

18 Will-be-set-by-IN-TECH

Li, J.M., Wan, D.L., Chi, Z.X. and et al. (2006) A Parallel Particle Swarm Optimization
Algorithm Based on Fine-Grained Model with GPU-Accelerating, Journal of Harbin
Institute of Technology, vol. 38, no. 12, pp. 2162–2166. (in Chinese)

Luo, J.H. and Zhong, Z.N. (2005) Research on the Parallel Simulation of Asynchronous Pattern
of Particle Swarm Optimization, Journal of Computer Simulation, vol. 22, no. 6, pp.
68–70, 78. (in Chinese)

Pugh, J. and Martinoli, A. (2007) Inspiring and Modeling Multi-Robot Search with Particle
Swarm Optimization, in Proceedings of the 4th IEEE Swarm Intelligence Symposium,
Honolulu, Hawaii, USA, April, 1–5.

Zeng, J.C. and Xue, S.D. (2010) Modeling and Simulation Approaches to Swarm Robotic
Systems, Journal of System Simulation, vol. 22, no. 6, pp. 1327–1330. (in Chinese)

Ridge, E., Kudenko, D., Kazakov, D. and et al. (2005) Moving Nature-Inspired Algorithms
to Parallel, Asynchronous and Decentralised Environment, Frontiers in Artificial
Intelligence and Applications, Vol. 135, pp. 35–49.

Schutte, J.F., Reinbol, J.A., Fregly, B.J. and et al. (2004) Parallel Global Optimization with
the Particle Swarm Optimization, International Journal of Numerical Methods in
Engineering, vol. 61, no. 13, pp. 2296–2315.

Venter, G. and Sobieszczanki-Sobieksi, J. (2006) A Parallel Particle Swarm Optimization
Algorithm Accelerated by Asynchronous Evaluations, Journal of Aerospace Computing,
Information, and Communication, no. 3, pp. 123–137.

Wang, Y.Y., Zeng, J.C. and Tan, Y. (2007) Parallel Particle Swarm Optimization Based on
Parallel Model with Controller, Journal of System Simulation, vol. 19, no.10, pp.
2171–2176. (in Chinese)

Xu, Y.Z. and Zeng, W.H. (2005) The Development of Parallel Evolutionary Algorithms, Pattern
Recognition and Artificial Intelligence, vol. 21, no. 2, pp. 183–192. (in Chinese)

Xue, S.D. and Zeng, J.C. (2008a) Using Relative Localization Observations for Swarm Robots
Search, in International Conference on Modelling, Identification and Control, Shanghai,
China, June 29–July 2.

Xue, S.D. and Zeng, J.C. (2008b) Control over Swarm Robots Search with Swarm Intelligence
Principles, Journal of System Simulation, vol. 20, no. 13, pp. 3449–3454.

Xue, S.D. and Zeng, J.C. (2008c) Swarm Robots Search under Conditions of Heterogeneous
Sensory Signals Fusion, in Proceedings of the 2008 International Conference on Genetic
and Evolutionary Methods, Las Vegas, Nevada, USA, July 14–17.

Zeng, J.C., Jie, J. and Cui, Z.H. (2004) Particle Swarm Optimization, Beijing: Science Press. (in
Chinese)

Zhao, Y., Yue, J.G., Li, G.Y. and et al. (2005) A Parallel Particle Swarm Optimization Algorithm
Based on Multigroup for Solving Complex Functions Optimization, Journal of
Computer Engineering and Applications, vol. 41, no. 16, pp. 58–60, 64. (in Chinese)

Xue, S.D., Zhang, J.H. and Zeng, J.C. (2009) Parallel asynchronous control strategy for target
search with swarm robots, International Journal of Bio-Inspired Computation, vol. 1, no.
3, pp. 151–163.

Xue, S.D. and Zeng, J.C. (2009) Controlling swarm robots for target search in parallel and
asynchronously, International Journal of Modelling, Identification and Control, vol. 8, no.
4, pp. 353–360.

328
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

0

Using a Meeting Channel and Relay Nodes to
Interconnect Mobile Robots

Nassima Hadid, Alexandre Guitton
and Michel Misson

LIMOS CNRS / Clermont Université, Campus des Cézeaux, 63 173 Aubiere Cedex
France

1. Introduction

Mobile robots are increasingly used in industrial applications (generally in order to convey
merchandises), in healthcare applications (for example, to transport patients or medicines)
or in domotic applications (for instance, to sweep a floor). These robots are often mounted
with several sensors and actuators, in order to carry out their tasks (e.g., grabbing an object
of interest, and bringing it a destination without colliding with obstacles). To reduce the
complexity and weight of the wiring of all these sensors and actuators, these devices can be
equipped with wireless capability. A central entity, called the central unit, is usually in charge
of collecting the data from the sensors, integrating part of the data in a models, computing
a behavioral response and operating the actuators accordingly. Another entity, called the
coordinator, is in charge of managing the wireless entities, retrieving data from sensors and
sending orders to actuators. The same device can be simultaneously the central unit and the
coordinator. In the following, the wireless communications between sensors, actuators and
coordinator are called intra-robot communications.
Real applications often require the collaboration of mobile robots in order to perform required
tasks. For instance, when they are used in airports to transport luggage, mobile robots
can cooperate to avoid colliding with each other. In search and rescue operations, mobile
robots can inform their neighbors that an area has already been explored (Ferranti & Trigoni,
2008). Robots can also follow tracks on the floor (Hogg et al., 2002) or monitor an area
collaboratively (Lambrou & Panayiotou, 2009). An allegorical example is shown on Fig. 1,
where the waiter robot Dro has to collaborate with the waitress robot Ide in order to serve
hot coffee to customers. These communications used for collaborations are called inter-robots
communications.
The design of a network architecture that allows mobile robots to cooperate efficiently, without
negatively impacting the performance of each intra-robot communication, is a challenging
issue, and is the aim of this chapter.
The remainder of the chapter is the following. In Section 2, we introduce a multi-channel
approach where intra-robot communications are performed on a robot-specific channel, and
inter-robot communications are performed on a common meeting channel. In this way,
mobile robots can communicate without impacting intra-robot communications. In Section 3,
we discuss the protocols that allow mobile robots to communicate directly, when they are

15

2 Will-be-set-by-IN-TECH

Fig. 1. Mobile robots Dro (on the left) and Ide (on the right) have to collaborate to serve hot
coffee to customers.

in range of each other. These protocols are based on several mechanisms: a data storage
mechanism (which allows data to be stored until the intended destination mobile comes in
range), a neighbor discovery mechanism (which detects mobiles in range), an association
mechanism (which allows neighbors to identify each other), and a data exchange mechanism
(which transfers the data). All these mechanisms are described in details. The concepts
behind these protocols come from delay tolerant networks (DTN), as the mobility of robots
is often difficult to integrate to applications, or even unpredictable in some applications. In
Section 4, we discuss how to achieve indirect communications between mobile robots. We
explain how road-side units can help mobile robots to communicate. These road-side units
can also be required in some applications, where a message has to be disseminated in a
specified geographical area. A generic addressing mechanism is useful in this case, when
the ID of the destination mobiles cannot be known beforehand. We show that the overhead of
implementing the generic addressing is limited. Finally, in Section 5, we conclude this chapter
by summarizing the benefits of the meeting channel.

2. Interconnection of mobile robots using a meeting channel

Most applications using mobile robots require the mobile robots to communicate together in
order to perform the required tasks. In the following, we consider a generic application where
mobile robots follow tracks and carry items (such as robots carrying luggage in airports). The
mobile robots communicate in order to avoid collisions, and to detect priority when crossing
intersections. Each mobile is equipped with sensors and actuators that communicate with the
central unit embedded on the mobile.
Although the communications between mobile robots can be performed on the same
communication channels as the intra-mobile communications, this tends to reduce the

330
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 3

performance of the whole system. Indeed, if the communications between mobiles and the
intra-mobile communications are on the same channel, the competition for the medium is
high. Reducing the bandwidth of intra-mobile communications can have a disastrous impact
on the robot behavior, for instance if the coordinator is not able to inform quickly the actuators
(such as brakes) to be operated.
Thus, it is important to interconnect mobile robots using a multi-channel approach.

2.1 Multi-channel approaches
Multi-channel approaches have the main advantage to reduce the contention on each
communication channel, and thus to improve the performance of the system. In the
literature, several multi-channel approaches have been proposed (Bahl et al., 2004; Jovanovic
& Djordjevic, 2007; Nasipuri et al., 1999; Pathmasuntharam et al., 2004). There are two types
of multi-channel approaches: multi-channel approaches with several radio interfaces and
multi-channel approaches with a single radio interface.

2.1.1 Multi-channel approaches with several radio interfaces
HMCP (Hybrid Multi-Channel Protocol) (Kyasanur & Vaidya, 2005) divides radio interfaces
into two groups: static interfaces operating on static channels, and dynamic interfaces able
to change the channel they use. Nodes periodically inform their neighbors of the channel
of their static interfaces. Notice that neighboring nodes do not necessarily have their static
interfaces on the same set of channels. When a sender has to transmit data to a neighbor, the
sender switches one of its dynamic interface to a channel corresponding to one of the static
interface of the neighbor. HMCP requires periodic exchange of control packets to maintain
the neighbor tables, and is not suited for mobile nodes.
The DCA (Dynamic Channel Assignment) protocol (Wu et al., 2000) requires each node to
have at least two radio interfaces. One of the interface is used for control frames, and the
others for data frames. The control interface always communicates on the same channel,
while the data interfaces can change channels dynamically. Neighboring nodes collaborate
to reserve available channels for transmissions. The amount of messages exchanged in DCA
makes it not suitable when contacts between mobile entities last for a short duration.
The DCSS (Dynamic Channel Selection with Snooping) protocol (Seo et al., 2008) also uses
two radio interfaces: the control interface is always listening on a common given channel,
while the data interface changes its channel depending on the reservation. Nodes perform
reservations depending on their view of the channel states. Nodes overhear control packets
in order to determine the set of channels locally used. They assess the state of all the channels
using a round-robin algorithm while they are neither transmitting nor receiving a frame. Thus,
they periodically update their view of the channel states. The main drawback of DCSS is that
nodes spend a lot of energy in assessing the channels.
In all these protocols, nodes are required to have two radio interfaces, which consumes
a lot of energy. Indeed, radio interfaces are the main source of energy consumption in
low rate wireless solutions. Moreover, the control radio interface is often active all the
time. Additionally, having several radio interfaces increases the cost of the hardware. Thus,
having a multi-channel approach operating with several radio interfaces is not suited in our
applications.

331Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

2 Will-be-set-by-IN-TECH

Fig. 1. Mobile robots Dro (on the left) and Ide (on the right) have to collaborate to serve hot
coffee to customers.

in range of each other. These protocols are based on several mechanisms: a data storage
mechanism (which allows data to be stored until the intended destination mobile comes in
range), a neighbor discovery mechanism (which detects mobiles in range), an association
mechanism (which allows neighbors to identify each other), and a data exchange mechanism
(which transfers the data). All these mechanisms are described in details. The concepts
behind these protocols come from delay tolerant networks (DTN), as the mobility of robots
is often difficult to integrate to applications, or even unpredictable in some applications. In
Section 4, we discuss how to achieve indirect communications between mobile robots. We
explain how road-side units can help mobile robots to communicate. These road-side units
can also be required in some applications, where a message has to be disseminated in a
specified geographical area. A generic addressing mechanism is useful in this case, when
the ID of the destination mobiles cannot be known beforehand. We show that the overhead of
implementing the generic addressing is limited. Finally, in Section 5, we conclude this chapter
by summarizing the benefits of the meeting channel.

2. Interconnection of mobile robots using a meeting channel

Most applications using mobile robots require the mobile robots to communicate together in
order to perform the required tasks. In the following, we consider a generic application where
mobile robots follow tracks and carry items (such as robots carrying luggage in airports). The
mobile robots communicate in order to avoid collisions, and to detect priority when crossing
intersections. Each mobile is equipped with sensors and actuators that communicate with the
central unit embedded on the mobile.
Although the communications between mobile robots can be performed on the same
communication channels as the intra-mobile communications, this tends to reduce the

330
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 3

performance of the whole system. Indeed, if the communications between mobiles and the
intra-mobile communications are on the same channel, the competition for the medium is
high. Reducing the bandwidth of intra-mobile communications can have a disastrous impact
on the robot behavior, for instance if the coordinator is not able to inform quickly the actuators
(such as brakes) to be operated.
Thus, it is important to interconnect mobile robots using a multi-channel approach.

2.1 Multi-channel approaches
Multi-channel approaches have the main advantage to reduce the contention on each
communication channel, and thus to improve the performance of the system. In the
literature, several multi-channel approaches have been proposed (Bahl et al., 2004; Jovanovic
& Djordjevic, 2007; Nasipuri et al., 1999; Pathmasuntharam et al., 2004). There are two types
of multi-channel approaches: multi-channel approaches with several radio interfaces and
multi-channel approaches with a single radio interface.

2.1.1 Multi-channel approaches with several radio interfaces
HMCP (Hybrid Multi-Channel Protocol) (Kyasanur & Vaidya, 2005) divides radio interfaces
into two groups: static interfaces operating on static channels, and dynamic interfaces able
to change the channel they use. Nodes periodically inform their neighbors of the channel
of their static interfaces. Notice that neighboring nodes do not necessarily have their static
interfaces on the same set of channels. When a sender has to transmit data to a neighbor, the
sender switches one of its dynamic interface to a channel corresponding to one of the static
interface of the neighbor. HMCP requires periodic exchange of control packets to maintain
the neighbor tables, and is not suited for mobile nodes.
The DCA (Dynamic Channel Assignment) protocol (Wu et al., 2000) requires each node to
have at least two radio interfaces. One of the interface is used for control frames, and the
others for data frames. The control interface always communicates on the same channel,
while the data interfaces can change channels dynamically. Neighboring nodes collaborate
to reserve available channels for transmissions. The amount of messages exchanged in DCA
makes it not suitable when contacts between mobile entities last for a short duration.
The DCSS (Dynamic Channel Selection with Snooping) protocol (Seo et al., 2008) also uses
two radio interfaces: the control interface is always listening on a common given channel,
while the data interface changes its channel depending on the reservation. Nodes perform
reservations depending on their view of the channel states. Nodes overhear control packets
in order to determine the set of channels locally used. They assess the state of all the channels
using a round-robin algorithm while they are neither transmitting nor receiving a frame. Thus,
they periodically update their view of the channel states. The main drawback of DCSS is that
nodes spend a lot of energy in assessing the channels.
In all these protocols, nodes are required to have two radio interfaces, which consumes
a lot of energy. Indeed, radio interfaces are the main source of energy consumption in
low rate wireless solutions. Moreover, the control radio interface is often active all the
time. Additionally, having several radio interfaces increases the cost of the hardware. Thus,
having a multi-channel approach operating with several radio interfaces is not suited in our
applications.

331Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

4 Will-be-set-by-IN-TECH

2.1.2 Multi-channel approaches with a single radio interface
The McMAC (Multi-channel Medium Access Control) (So & Walrand, 2007) protocol uses
a channel reservation mechanism based on the periodic diffusion of beacons. The beacons
allow nodes to be synchronized. The interval between successive beacons is divided into
two periods: a control period, and a data period. During the control period, all the
nodes communicate on the same channel in order to plan the data period. During the
data period, node switch to and communicate on the channels reserved during the control
period. The main drawback of McMAC in our applications is that it is difficult to maintain a
synchronization between mobile entities. Also, nodes need to be identified before the control
period in order to be able to reserve channels: if the delay to identify new mobile nodes is
large, these new nodes might be unable to communicate during a long duration.
The TMMAC (TDMA-based Multi-channel Medium Access Control) (Zhang et al., 2007)
protocol is similar to the McMAC protocol. It uses a channel allocation bitmap and a channel
usage bitmap in order to reserve channels. The channel allocation bitmap is filled during the
control period, and the channel usage bitmap is maintained by each node and transmitted to
its one-hop neighborhood. The TMMAC protocol has the same drawbacks as the McMAC
protocol.
The SMC MAC (Sensor Multi-Channel Medium Access Control) (Ramakrishnan &
Vanaja Ranjan, 2009) protocol based on RTS (Request To Send) and CTS (Clear To Send) control
frames. RTS and CTS frames are sent on the control channel. The RTS contains the list of
available channels from the sender point of view. The CTS contains the chosen channel from
the destination point of view, which is the first channel of the intersection of the available
channels of the sender and the receiver. When transmitting and receiving a CTS, both the
sender and the receiver switch to the chosen channel, and the other nodes mark this channel
as busy. The main drawback of SMC MAC is that all the nodes in range share the same
communication channels: the performance of intra-robot communications can be reduced by
other intra-robot communications or by inter-robot communications.

2.2 Interconnection using a meeting channel
Our goal is to allow several mobile robots to communicate without requiring an expensive
hardware. Thus, we plan to use a multi-channel approach with a single radio interface.
Moreover, the performance of the intra-robot communications of a robot should not be
reduced by the proximity of other robots in the neighborhood. Finally, the mechanism should
be compatible with existing low-power wireless personal area networks standards.
To achieve these goals, we propose to consider two types of channels: the robot-specific
channels and the meeting channel. Each robot is allocated its own robot-specific channel,
in order to be able to perform intra-robot communications without suffering from severe
and systematic interferences from other robots that are moving in the same area. In the case
where there are more robots than available channels, it is possible that several robots share the
same channel. However, it is important to allocate the same channel to robots having disjoint
trajectories, in order to maintain a low level of interferences. Additionally, all the robots share
the same meeting channel. This channel is used solely for communications between robots.

2.2.1 Energy-efficiency
Mobile robots are often equipped with a battery that powers the engine and the coordinator.
Sensors and actuators are also powered by a battery (either by the main battery or by their

332
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 5

own). In order to maximize the lifetime of the robot, it is crucial that all embedded devices
save energy, including network devices.
As the radio module of network entities consumes a significant amount of energy, most
standards for low-power wireless personal area networks, such as IEEE 802.15.4 (IEEE 802.15,
2006), deactivates the radio module of nodes periodically. During this time, the nodes are
sleeping and can neither receive nor transmit. They are activated at specific instants, usually
during small fractions (typically less than 1%) of time.

2.2.2 Compatibility with standards
Our proposition is to allow some of the nodes to use the meeting channel for inter-mobile
communications, while other nodes are sleeping. Note that most standards for low-power
wireless personal area network define an inactivity time of the standards (such as IEEE
802.15.4 standard for example). The nodes that remain awaken are called energy-rich (ER)
nodes, and the nodes that go to sleep are called energy-limited (EL) nodes. In this way:

• inter-mobile communications are transparent to EL nodes,

• inter-mobile communications do not degrade intra-mobile communications,

• the activities on the robot-specific channel are compliant with the standard,

• ER nodes use the inactivity time, which is otherwise wasted.

Our mechanism does not require mobile robots to be synchronized so that their inactivity
period occur at the same time. Such a synchronization among mobile entities would be very
difficult to achieve and induce a significant amount of control traffic, especially as the number
of robots in the fleet increases.
Our mechanism uses the fact that inactivity is typically larger than the activity time. Table 1
shows the expected time ratio during which all the n mobiles are simultaneously inactive, as
the activity ratio varies. It can be seen that when the activity ratio is low, the simultaneous
inactivity ratio becomes very high. For example, for an activity ratio of 1%, 10 mobile robots
are simultaneously inactive (and thus potentially on the meeting channel) during more than
90% of the time.

Number of mobile robots n Activity ratio Expected simultaneous inactivity ratio
2 0.5 0.25
2 0.25 0.5625
2 0.01 0.9801
3 0.5 0.125
3 0.25 0.4219
3 0.01 0.9703

10 0.5 0.0010
10 0.25 0.0563
10 0.01 0.9044

Table 1. The ratio of time during which n mobile robots are simultaneously inactive is very
high when the activity ratio of each mobile is low.

Allowing mobile robots to communicate during their inactivity period has several advantages.
As inactivity periods are usually long, the probability that two different robots are
simultaneously inactive is high. By activating a subset of network devices during the

333Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

4 Will-be-set-by-IN-TECH

2.1.2 Multi-channel approaches with a single radio interface
The McMAC (Multi-channel Medium Access Control) (So & Walrand, 2007) protocol uses
a channel reservation mechanism based on the periodic diffusion of beacons. The beacons
allow nodes to be synchronized. The interval between successive beacons is divided into
two periods: a control period, and a data period. During the control period, all the
nodes communicate on the same channel in order to plan the data period. During the
data period, node switch to and communicate on the channels reserved during the control
period. The main drawback of McMAC in our applications is that it is difficult to maintain a
synchronization between mobile entities. Also, nodes need to be identified before the control
period in order to be able to reserve channels: if the delay to identify new mobile nodes is
large, these new nodes might be unable to communicate during a long duration.
The TMMAC (TDMA-based Multi-channel Medium Access Control) (Zhang et al., 2007)
protocol is similar to the McMAC protocol. It uses a channel allocation bitmap and a channel
usage bitmap in order to reserve channels. The channel allocation bitmap is filled during the
control period, and the channel usage bitmap is maintained by each node and transmitted to
its one-hop neighborhood. The TMMAC protocol has the same drawbacks as the McMAC
protocol.
The SMC MAC (Sensor Multi-Channel Medium Access Control) (Ramakrishnan &
Vanaja Ranjan, 2009) protocol based on RTS (Request To Send) and CTS (Clear To Send) control
frames. RTS and CTS frames are sent on the control channel. The RTS contains the list of
available channels from the sender point of view. The CTS contains the chosen channel from
the destination point of view, which is the first channel of the intersection of the available
channels of the sender and the receiver. When transmitting and receiving a CTS, both the
sender and the receiver switch to the chosen channel, and the other nodes mark this channel
as busy. The main drawback of SMC MAC is that all the nodes in range share the same
communication channels: the performance of intra-robot communications can be reduced by
other intra-robot communications or by inter-robot communications.

2.2 Interconnection using a meeting channel
Our goal is to allow several mobile robots to communicate without requiring an expensive
hardware. Thus, we plan to use a multi-channel approach with a single radio interface.
Moreover, the performance of the intra-robot communications of a robot should not be
reduced by the proximity of other robots in the neighborhood. Finally, the mechanism should
be compatible with existing low-power wireless personal area networks standards.
To achieve these goals, we propose to consider two types of channels: the robot-specific
channels and the meeting channel. Each robot is allocated its own robot-specific channel,
in order to be able to perform intra-robot communications without suffering from severe
and systematic interferences from other robots that are moving in the same area. In the case
where there are more robots than available channels, it is possible that several robots share the
same channel. However, it is important to allocate the same channel to robots having disjoint
trajectories, in order to maintain a low level of interferences. Additionally, all the robots share
the same meeting channel. This channel is used solely for communications between robots.

2.2.1 Energy-efficiency
Mobile robots are often equipped with a battery that powers the engine and the coordinator.
Sensors and actuators are also powered by a battery (either by the main battery or by their

332
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 5

own). In order to maximize the lifetime of the robot, it is crucial that all embedded devices
save energy, including network devices.
As the radio module of network entities consumes a significant amount of energy, most
standards for low-power wireless personal area networks, such as IEEE 802.15.4 (IEEE 802.15,
2006), deactivates the radio module of nodes periodically. During this time, the nodes are
sleeping and can neither receive nor transmit. They are activated at specific instants, usually
during small fractions (typically less than 1%) of time.

2.2.2 Compatibility with standards
Our proposition is to allow some of the nodes to use the meeting channel for inter-mobile
communications, while other nodes are sleeping. Note that most standards for low-power
wireless personal area network define an inactivity time of the standards (such as IEEE
802.15.4 standard for example). The nodes that remain awaken are called energy-rich (ER)
nodes, and the nodes that go to sleep are called energy-limited (EL) nodes. In this way:

• inter-mobile communications are transparent to EL nodes,

• inter-mobile communications do not degrade intra-mobile communications,

• the activities on the robot-specific channel are compliant with the standard,

• ER nodes use the inactivity time, which is otherwise wasted.

Our mechanism does not require mobile robots to be synchronized so that their inactivity
period occur at the same time. Such a synchronization among mobile entities would be very
difficult to achieve and induce a significant amount of control traffic, especially as the number
of robots in the fleet increases.
Our mechanism uses the fact that inactivity is typically larger than the activity time. Table 1
shows the expected time ratio during which all the n mobiles are simultaneously inactive, as
the activity ratio varies. It can be seen that when the activity ratio is low, the simultaneous
inactivity ratio becomes very high. For example, for an activity ratio of 1%, 10 mobile robots
are simultaneously inactive (and thus potentially on the meeting channel) during more than
90% of the time.

Number of mobile robots n Activity ratio Expected simultaneous inactivity ratio
2 0.5 0.25
2 0.25 0.5625
2 0.01 0.9801
3 0.5 0.125
3 0.25 0.4219
3 0.01 0.9703

10 0.5 0.0010
10 0.25 0.0563
10 0.01 0.9044

Table 1. The ratio of time during which n mobile robots are simultaneously inactive is very
high when the activity ratio of each mobile is low.

Allowing mobile robots to communicate during their inactivity period has several advantages.
As inactivity periods are usually long, the probability that two different robots are
simultaneously inactive is high. By activating a subset of network devices during the

333Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

6 Will-be-set-by-IN-TECH

inactivity period of each robot, it is possible to have these ER devices communicate with each
other while the EL nodes sleep.
The remaining of this chapter describes how mobile robots can communicate using the
meeting channel, either directly (when the destination robot becomes in range with the source
robot) or indirectly (when the destination robot does not become in range with the source
robot, or when the destination robot address is unknown by the source robot). Notice that
intra-mobile communications can be performed according to the ZigBee and IEEE 802.15.4
standards for instance, and is not the focus of this chapter.

3. Direct communications between mobile robots

To allow direct communications between mobile robots, a DTN paradigm has to be
used (Delay-Tolerant Networking Architecture, 2006). Indeed, communications between mobile
robots are opportunistic in nature: they depend on the mobility pattern of each mobile
robot and on the wireless propagation conditions, both of which are considered here as
unpredictable. Moreover, the number of mobile robots in the area is small compared to the
area size. Thus, mobile robots meet each other infrequently.
We propose to adapt the store, carry and forward principle from the DTN literature to our
generic application. In DTNs, a new layer called the bundle layer is introduced between
the application layer and the transport layer of the OSI model. The main role of this bundle
layer is to mask to applications the effects of node mobility, and mainly the sporadicity of the
network connectivity. To do so, data from the application layer is encapsulated in a composite
structure, called a bundle. A bundle contains the application data, and additional data to deal
with sporadic connectivity, such as timeouts and destinations. Using a bundle layer implies
the need of a transport layer, as the bundle structure is often larger than the maximum frame
size in a low-power wireless personal area network.
According to the DTN principle, messages are stored in bundle in specific nodes called
custodians. When two mobiles meet, their custodians can exchange bundles. The bundles can
circulate through the mobility of robots or through contacts between mobiles. The detection
of a contact between mobiles is performed by specific nodes called gateways.
To summarize, we can consider the following types of nodes.

• EL nodes are only active on the robot-specific channel. They sleep during the robot
inactivity period, and do not contribute to communications between mobile robots.

• There is one custodian node per robot. It is an ER node with larger storage capabilities
than the other nodes. During the robot activity period, it works as the other nodes. During
the robot inactivity period, it switches to the meeting channel, and manages bundles.

• There is at least one gateway node per robot. Gateways are ER nodes whose role is to
detect neighboring robots on the meeting channel, during the robot inactivity period.

• There can be intermediate ER nodes per robot. Intermediate nodes are ER nodes that help
interconnecting the custodian and the gateways on the meeting channel, during the robot
inactivity period.

Fig. 2 describes the network stack of our architecture.
In this section, we first describe how the presence of ER nodes can improve the network
performance of intra-robot communications. This feature is important as the mobile robots
often have no neighbors in range. Second, we study the neighbor discovery mechanism and

334
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 7

appli. layer

bundle layerbundle layerbundle layer

transport layer transport layertransport layer

network layernetwork layernetwork layernetwork layernetwork layer

data-link layerdata-link layerdata-link layerdata-link layerdata-link layer

physical layerphysical layerphysical layerphysical layerphysical layer

source custodian gateway

Fig. 2. Network stack and communication from a source to a gateway (on the same mobile),
including the bundle layer.

we present the trade-off between the energy-efficiency of the neighbor discovery mechanism
and the duration of the neighbor detection. Third, we show how communication links can be
established between robots, and how the custodians of two neighbor robots can know each
other. Fourth, we discuss direct communications between mobiles.

3.1 Optimized intra-robot communications
During the robot inactivity period, all ER nodes are active on the meeting channel. The
gateways are trying to detect potential neighboring robots. However, most of the time, no
robots are found in the vicinity. Instead of being idle while waiting for encounters, ER nodes
can help relaying the intra-robot traffic.

3.1.1 Description
During the robot inactivity period, the ER nodes form a network called the ER network. Thus,
ER nodes have two addresses: one during the robot activity period, and one during the robot
inactivity period. EL nodes have a single address, for the robot activity period. We assume
that there exists a routing function R, such that R takes as input the destination addresses
(in the robot network and/or in the ER network) and returns the next hop addresses (in the
robot network and/or in the ER network). In the ZigBee standard, the function R is based on
the hierarchical allocation of addresses. We also assume that there exists a neighbor address
function N that takes as input the address of a next hop (in the robot network and/or in the
ER network) and returns, if possible, the address of the next hop in both networks. It is not
mandatory that functions R and N are always able to translate the address of a node from
one network to another, but they can improve the global behavior of the mechanism.
To optimize intra-robot communications on the meeting channel, the MAC relaying scheme
has to be modified in the following way. Let us assume that an ER node n has a frame for
destination d. If the address of d in the ER network is known, this address can be used to
compute the next hop h on the ER network, as h = R(d). n can send the frame to h. If the
address of d in the ER network is not known, it is possible that the next hop h� of d computed
on the robot network is also a neighbor of n in the ER network. If this is the case, h = N (h�)
is known: n can send the frame to h (in fact, both addresses h and h� are present in the frame).
Otherwise, n is unable to send the frame during this period. Thus, n proceeds to the next
frame in queue (without dropping the previous frame, as it will be sent during the next robot
activity period).
To summarize, ER nodes can always relay frames to ER nodes.

335Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

6 Will-be-set-by-IN-TECH

inactivity period of each robot, it is possible to have these ER devices communicate with each
other while the EL nodes sleep.
The remaining of this chapter describes how mobile robots can communicate using the
meeting channel, either directly (when the destination robot becomes in range with the source
robot) or indirectly (when the destination robot does not become in range with the source
robot, or when the destination robot address is unknown by the source robot). Notice that
intra-mobile communications can be performed according to the ZigBee and IEEE 802.15.4
standards for instance, and is not the focus of this chapter.

3. Direct communications between mobile robots

To allow direct communications between mobile robots, a DTN paradigm has to be
used (Delay-Tolerant Networking Architecture, 2006). Indeed, communications between mobile
robots are opportunistic in nature: they depend on the mobility pattern of each mobile
robot and on the wireless propagation conditions, both of which are considered here as
unpredictable. Moreover, the number of mobile robots in the area is small compared to the
area size. Thus, mobile robots meet each other infrequently.
We propose to adapt the store, carry and forward principle from the DTN literature to our
generic application. In DTNs, a new layer called the bundle layer is introduced between
the application layer and the transport layer of the OSI model. The main role of this bundle
layer is to mask to applications the effects of node mobility, and mainly the sporadicity of the
network connectivity. To do so, data from the application layer is encapsulated in a composite
structure, called a bundle. A bundle contains the application data, and additional data to deal
with sporadic connectivity, such as timeouts and destinations. Using a bundle layer implies
the need of a transport layer, as the bundle structure is often larger than the maximum frame
size in a low-power wireless personal area network.
According to the DTN principle, messages are stored in bundle in specific nodes called
custodians. When two mobiles meet, their custodians can exchange bundles. The bundles can
circulate through the mobility of robots or through contacts between mobiles. The detection
of a contact between mobiles is performed by specific nodes called gateways.
To summarize, we can consider the following types of nodes.

• EL nodes are only active on the robot-specific channel. They sleep during the robot
inactivity period, and do not contribute to communications between mobile robots.

• There is one custodian node per robot. It is an ER node with larger storage capabilities
than the other nodes. During the robot activity period, it works as the other nodes. During
the robot inactivity period, it switches to the meeting channel, and manages bundles.

• There is at least one gateway node per robot. Gateways are ER nodes whose role is to
detect neighboring robots on the meeting channel, during the robot inactivity period.

• There can be intermediate ER nodes per robot. Intermediate nodes are ER nodes that help
interconnecting the custodian and the gateways on the meeting channel, during the robot
inactivity period.

Fig. 2 describes the network stack of our architecture.
In this section, we first describe how the presence of ER nodes can improve the network
performance of intra-robot communications. This feature is important as the mobile robots
often have no neighbors in range. Second, we study the neighbor discovery mechanism and

334
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 7

appli. layer

bundle layerbundle layerbundle layer

transport layer transport layertransport layer

network layernetwork layernetwork layernetwork layernetwork layer

data-link layerdata-link layerdata-link layerdata-link layerdata-link layer

physical layerphysical layerphysical layerphysical layerphysical layer

source custodian gateway

Fig. 2. Network stack and communication from a source to a gateway (on the same mobile),
including the bundle layer.

we present the trade-off between the energy-efficiency of the neighbor discovery mechanism
and the duration of the neighbor detection. Third, we show how communication links can be
established between robots, and how the custodians of two neighbor robots can know each
other. Fourth, we discuss direct communications between mobiles.

3.1 Optimized intra-robot communications
During the robot inactivity period, all ER nodes are active on the meeting channel. The
gateways are trying to detect potential neighboring robots. However, most of the time, no
robots are found in the vicinity. Instead of being idle while waiting for encounters, ER nodes
can help relaying the intra-robot traffic.

3.1.1 Description
During the robot inactivity period, the ER nodes form a network called the ER network. Thus,
ER nodes have two addresses: one during the robot activity period, and one during the robot
inactivity period. EL nodes have a single address, for the robot activity period. We assume
that there exists a routing function R, such that R takes as input the destination addresses
(in the robot network and/or in the ER network) and returns the next hop addresses (in the
robot network and/or in the ER network). In the ZigBee standard, the function R is based on
the hierarchical allocation of addresses. We also assume that there exists a neighbor address
function N that takes as input the address of a next hop (in the robot network and/or in the
ER network) and returns, if possible, the address of the next hop in both networks. It is not
mandatory that functions R and N are always able to translate the address of a node from
one network to another, but they can improve the global behavior of the mechanism.
To optimize intra-robot communications on the meeting channel, the MAC relaying scheme
has to be modified in the following way. Let us assume that an ER node n has a frame for
destination d. If the address of d in the ER network is known, this address can be used to
compute the next hop h on the ER network, as h = R(d). n can send the frame to h. If the
address of d in the ER network is not known, it is possible that the next hop h� of d computed
on the robot network is also a neighbor of n in the ER network. If this is the case, h = N (h�)
is known: n can send the frame to h (in fact, both addresses h and h� are present in the frame).
Otherwise, n is unable to send the frame during this period. Thus, n proceeds to the next
frame in queue (without dropping the previous frame, as it will be sent during the next robot
activity period).
To summarize, ER nodes can always relay frames to ER nodes.

335Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

8 Will-be-set-by-IN-TECH

3.1.2 Simulation results
To quantify the performance improvement when the meeting channel is used for intra-robot
communications, we performed simulations using the network simulator NS2. We used the
IEEE 802.15.4 physical layer and a custom IEEE 802.15.4 MAC layer that supports our meeting
channel architecture and our relaying scheme. We used the ZigBee hierarchical routing
protocol for both the robot network and the ER network. The propagation model used is
the ITU indoor propagation model (Propagation data and prediction method for the planning of
indoor radio communication systems and local area networks in the frequency range of 900 MHz to
100 GHz, 2005), with a path loss exponent of 3. The transmission power of nodes is set to
-25 dBm. Frames have a size of 119 bytes at the MAC layer, which corresponds to 1000 bits at
the physical layer. Queue lengths are set to 50 frames.
Simulations are performed on a network of 6 nodes with four pairs of source s and destination
d, as depicted on Fig. 3. Solid nodes represent EL nodes, half-striped nodes represent ER
nodes. The source is always three hops away from the destination.
In order to evaluate the advantages of communications on the meeting channel, we compare
the scenario where all the nodes are ER nodes with a scenario where the two central nodes
are ER nodes, and the source and destination both have a 50% probability of being ER nodes.
Simulation results are averaged over 100 runs.

case 1 case 2 case 3 case 4

ssss

d ddd

Fig. 3. Simulations are performed on a small topology, where sources and destinations both
have a 50% probability to be ER nodes.

We considered two metrics: (1) the goodput, which is the number of frames correctly received
by the destination node per second, and (2) the end-to-end delay.
Fig. 4 displays the goodput as a function of the frame generation rate, for several scenarios:
one where the nodes are always active on the robot-specific channel, in dotted lines, one with
only EL nodes and for various duty cycles on the robot-specific channel (from 12.5% to 50%),
in solid lines, and one with both EL and ER nodes (as shown on Fig. 3) for various duty cycles
on the robot specific channel (from 12.5% to 50%), in dashed lines. First, it can be noticed
that the goodput increases with the frame generation rate, until it reaches a maximum. This
behavior is typical of IEEE 802.15.4. As expected, the goodput with EL nodes only is strongly
related to the duty cycle: it is high when the duty cycle is 100% (EL nodes are always active),
and is reduced when the duty cycle goes from 50% down to 12.5%. When ER nodes are added,
the goodput is significantly increased with respect to the scenarios with only EL nodes.
Fig. 5 displays the average end-to-end delay as a function of the frame generation rate, for
the three same scenarios, and for various duty cycles. The average end-to-end delay increases
with the frame generation rate, until it reaches a maximum. This maximum can be explained
in the following way. The delay is computed based on the received frame only. Frames cannot

336
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 9

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

always active

only EL, 12.5%
only EL, 25%
only EL, 50%

EL and ER, 12.5%
EL and ER, 25%
EL and ER, 50%

go
od

p
u

t(
in

fr
am

es
p

er
se

co
nd

)

frame generation rate (in frames per second)

Fig. 4. The presence of ER nodes significantly improves the performance of the network, for
all duty cycles.

wait for a long time in the frame queue, because of the limited size of the frame queue and
because slotted CSMA/CA drops frames after a small number of attempts. When nodes are
always active, the delay is very low. The delay increases when the network is saturated, which
occurs at about 50 frames per second (which can be seen on Fig. 4). When there are only EL
nodes, the end-to-end delay is large: indeed, EL nodes spend a large amount of time sleeping,
which increases the delay. In the scenario with ER nodes, the end-to-end delay is improved
compared to the scenario without ER nodes: indeed, some frames can be relayed during the
inactivity period of EL nodes, which helps reducing the delay.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

always active
only EL, 12.5%
only EL, 25%
only EL, 50%
EL and ER, 12.5%
EL and ER, 25%
EL and ER, 50%

en
d

-t
o-

en
d

d
el

ay
(i

n
se

co
nd

s)

frame generation rate (in frames per second)

Fig. 5. The presence of ER nodes significantly reduce the end-to-end delay, for all duty cycles.

337Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

8 Will-be-set-by-IN-TECH

3.1.2 Simulation results
To quantify the performance improvement when the meeting channel is used for intra-robot
communications, we performed simulations using the network simulator NS2. We used the
IEEE 802.15.4 physical layer and a custom IEEE 802.15.4 MAC layer that supports our meeting
channel architecture and our relaying scheme. We used the ZigBee hierarchical routing
protocol for both the robot network and the ER network. The propagation model used is
the ITU indoor propagation model (Propagation data and prediction method for the planning of
indoor radio communication systems and local area networks in the frequency range of 900 MHz to
100 GHz, 2005), with a path loss exponent of 3. The transmission power of nodes is set to
-25 dBm. Frames have a size of 119 bytes at the MAC layer, which corresponds to 1000 bits at
the physical layer. Queue lengths are set to 50 frames.
Simulations are performed on a network of 6 nodes with four pairs of source s and destination
d, as depicted on Fig. 3. Solid nodes represent EL nodes, half-striped nodes represent ER
nodes. The source is always three hops away from the destination.
In order to evaluate the advantages of communications on the meeting channel, we compare
the scenario where all the nodes are ER nodes with a scenario where the two central nodes
are ER nodes, and the source and destination both have a 50% probability of being ER nodes.
Simulation results are averaged over 100 runs.

case 1 case 2 case 3 case 4

ssss

d ddd

Fig. 3. Simulations are performed on a small topology, where sources and destinations both
have a 50% probability to be ER nodes.

We considered two metrics: (1) the goodput, which is the number of frames correctly received
by the destination node per second, and (2) the end-to-end delay.
Fig. 4 displays the goodput as a function of the frame generation rate, for several scenarios:
one where the nodes are always active on the robot-specific channel, in dotted lines, one with
only EL nodes and for various duty cycles on the robot-specific channel (from 12.5% to 50%),
in solid lines, and one with both EL and ER nodes (as shown on Fig. 3) for various duty cycles
on the robot specific channel (from 12.5% to 50%), in dashed lines. First, it can be noticed
that the goodput increases with the frame generation rate, until it reaches a maximum. This
behavior is typical of IEEE 802.15.4. As expected, the goodput with EL nodes only is strongly
related to the duty cycle: it is high when the duty cycle is 100% (EL nodes are always active),
and is reduced when the duty cycle goes from 50% down to 12.5%. When ER nodes are added,
the goodput is significantly increased with respect to the scenarios with only EL nodes.
Fig. 5 displays the average end-to-end delay as a function of the frame generation rate, for
the three same scenarios, and for various duty cycles. The average end-to-end delay increases
with the frame generation rate, until it reaches a maximum. This maximum can be explained
in the following way. The delay is computed based on the received frame only. Frames cannot

336
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 9

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

always active

only EL, 12.5%
only EL, 25%
only EL, 50%

EL and ER, 12.5%
EL and ER, 25%
EL and ER, 50%

go
od

p
u

t(
in

fr
am

es
p

er
se

co
nd

)

frame generation rate (in frames per second)

Fig. 4. The presence of ER nodes significantly improves the performance of the network, for
all duty cycles.

wait for a long time in the frame queue, because of the limited size of the frame queue and
because slotted CSMA/CA drops frames after a small number of attempts. When nodes are
always active, the delay is very low. The delay increases when the network is saturated, which
occurs at about 50 frames per second (which can be seen on Fig. 4). When there are only EL
nodes, the end-to-end delay is large: indeed, EL nodes spend a large amount of time sleeping,
which increases the delay. In the scenario with ER nodes, the end-to-end delay is improved
compared to the scenario without ER nodes: indeed, some frames can be relayed during the
inactivity period of EL nodes, which helps reducing the delay.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

always active
only EL, 12.5%
only EL, 25%
only EL, 50%
EL and ER, 12.5%
EL and ER, 25%
EL and ER, 50%

en
d

-t
o-

en
d

d
el

ay
(i

n
se

co
nd

s)

frame generation rate (in frames per second)

Fig. 5. The presence of ER nodes significantly reduce the end-to-end delay, for all duty cycles.

337Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

10 Will-be-set-by-IN-TECH

ER nodes consume more energy than EL nodes, because they are more often active. Thus, ER
nodes allow to achieve a trade-off between energy consumption and performance.

3.2 Neighbor discovery
When a robot moves in range of another, the two robots need to discover each other before
being able to communicate. The neighbor discovery mechanism Hadid et al. (2010) occurs
during the inactivity period, and is performed by gateway nodes only.
Gateway nodes send periodic gateway advertisement (GW-ADV) frames. Each GW-ADV
frame contains the identification of the gateway, and the identification of the robot that carries
it. When receiving a GW-ADV frame, a gateway replies with a gateway reply (GW-REP)
frame. Each GW-REP frame contains the identification of the local gateway, the identification
of the distant gateway, and the identification of the robot that carries it. Upon receiving a
GW-ADV or GW-REP frame, both gateways update their neighbor table. An entry in this
table contains the identification of the neighbor mobile, the address of the distant gateway,
and a time to live. It is possible for the table to contain two different entries for the same
mobile, if the mobile is reachable through two gateways.
The neighbor discovery is not instantaneous, as gateways transmit GW-ADV periodically,
and only when they are operating on the meeting channel. The neighbor discovery delay
depends on the periodicity of the GW-ADV frames, and on the robot activity period. To
study the impact of these two parameters, we carried out two sets of simulations. The first
set of simulation concerns the neighbor discovery delay from the moment the two mobiles
become in range. The second set of simulation concerns the total contact duration, between
the moment the gateways identify each other, until the time the contact is broken due to robots
mobility.
We used a simple mobility model1: two robots move on parallel lines, in opposite directions,
with a constant speed of 2 meters per second. They start far away, at a position where they are
not in range of each other. They eventually meet and discover each other, while continuing
their movement. After some time, they are too far away to keep communicating, and the
contact is broken. The minimum distance between robots is 3 meters, which is loss than
the range of a node. The placement of gateways is shown on Fig. 6, where gateways are
represented with nodes connected to a black rectangle.
We used a duty cycle of about 1 second2. Each simulation lasts for 100 second, and the results
are averaged over 500 runs.

3.2.1 Neighbor discovery delay
The first simulation concerns the quantification of the neighbor discovery delay. It is
computed as the difference between the time when the two mobiles become in range and the
time when they are not in range anymore. To model the fact that mobiles are not synchronized,
the activity (on the robot-specific channel) of mobile M1 starts at t0, and the activity (on the
robot-specific channel) of mobile M2 starts at t0 + Δ, where Δ is chosen randomly in the cycle.
Moreover, we consider that the periodicity of GW-ADV might vary between mobiles, due to

1 Our focus here is not to focus on the mobility model, but on the quality of the neighbor discovery
procedure. That is why we prefer to use a simple mobility model rather than a more complex one. A
discussion on the impact of the mobility model can be found in Bai et al. (2003).

2 The duty cycle is in fact equal to 983.04 ms, which is the closest value for a duty cycle of 1 second for
IEEE 802.15.4 solutions.

338
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 11

3 m

G1
1 G2

1

G1
2 G2

2

M1

M2

Fig. 6. Two mobiles M1 and M2 cross each other. The minimum distance between the
gateways of M1, G1

1 and G2
1, and the gateways of M2, G1

2 and G2
2, is 3 meters.

clock drifts. The periodicity of GW-ADV for a mobile Mi is given by T(1 + δi), where T is the
basic periodicity, and δi is chosen randomly in [−0.3; 0.3] (according to a uniform distribution).
Fig. 7 shows the neighbor discovery delay as a function of the GW-ADV periodicity T, and
as a function of the duration of the activity period on the robot-specific channel. The largest
the periodicity, the longest the duration. However, the duration of the activity period has
the most significant impact on the neighbor discovery delay: when the nodes spend 50% of
their time on their robot-specific channel, the gateways of a mobile often miss the GW-ADV
messages sent on the meeting channel by the gateways of the other mobile.

3.2.2 Contact duration
The second simulation concerns the quantification of the contact duration. It is computed as
the difference between the time when the mobiles discover each other and the time when there
is no gateway of one mobile in contact of one gateway of the other mobile. Notice that having
several gateways per mobile might be a way to (slightly) improve the contact duration.
Fig. 8 shows the contact duration as a function of the GW-ADV periodicity T, and as a function
of the duration of the activity period on the robot-specific channel. The largest the periodicity,
the smallest the duration, as it takes some time for the nodes to discover each other. Again,
the duration of the activity period has the most significant impact on the contact duration.

339Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

10 Will-be-set-by-IN-TECH

ER nodes consume more energy than EL nodes, because they are more often active. Thus, ER
nodes allow to achieve a trade-off between energy consumption and performance.

3.2 Neighbor discovery
When a robot moves in range of another, the two robots need to discover each other before
being able to communicate. The neighbor discovery mechanism Hadid et al. (2010) occurs
during the inactivity period, and is performed by gateway nodes only.
Gateway nodes send periodic gateway advertisement (GW-ADV) frames. Each GW-ADV
frame contains the identification of the gateway, and the identification of the robot that carries
it. When receiving a GW-ADV frame, a gateway replies with a gateway reply (GW-REP)
frame. Each GW-REP frame contains the identification of the local gateway, the identification
of the distant gateway, and the identification of the robot that carries it. Upon receiving a
GW-ADV or GW-REP frame, both gateways update their neighbor table. An entry in this
table contains the identification of the neighbor mobile, the address of the distant gateway,
and a time to live. It is possible for the table to contain two different entries for the same
mobile, if the mobile is reachable through two gateways.
The neighbor discovery is not instantaneous, as gateways transmit GW-ADV periodically,
and only when they are operating on the meeting channel. The neighbor discovery delay
depends on the periodicity of the GW-ADV frames, and on the robot activity period. To
study the impact of these two parameters, we carried out two sets of simulations. The first
set of simulation concerns the neighbor discovery delay from the moment the two mobiles
become in range. The second set of simulation concerns the total contact duration, between
the moment the gateways identify each other, until the time the contact is broken due to robots
mobility.
We used a simple mobility model1: two robots move on parallel lines, in opposite directions,
with a constant speed of 2 meters per second. They start far away, at a position where they are
not in range of each other. They eventually meet and discover each other, while continuing
their movement. After some time, they are too far away to keep communicating, and the
contact is broken. The minimum distance between robots is 3 meters, which is loss than
the range of a node. The placement of gateways is shown on Fig. 6, where gateways are
represented with nodes connected to a black rectangle.
We used a duty cycle of about 1 second2. Each simulation lasts for 100 second, and the results
are averaged over 500 runs.

3.2.1 Neighbor discovery delay
The first simulation concerns the quantification of the neighbor discovery delay. It is
computed as the difference between the time when the two mobiles become in range and the
time when they are not in range anymore. To model the fact that mobiles are not synchronized,
the activity (on the robot-specific channel) of mobile M1 starts at t0, and the activity (on the
robot-specific channel) of mobile M2 starts at t0 + Δ, where Δ is chosen randomly in the cycle.
Moreover, we consider that the periodicity of GW-ADV might vary between mobiles, due to

1 Our focus here is not to focus on the mobility model, but on the quality of the neighbor discovery
procedure. That is why we prefer to use a simple mobility model rather than a more complex one. A
discussion on the impact of the mobility model can be found in Bai et al. (2003).

2 The duty cycle is in fact equal to 983.04 ms, which is the closest value for a duty cycle of 1 second for
IEEE 802.15.4 solutions.

338
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 11

3 m

G1
1 G2

1

G1
2 G2

2

M1

M2

Fig. 6. Two mobiles M1 and M2 cross each other. The minimum distance between the
gateways of M1, G1

1 and G2
1, and the gateways of M2, G1

2 and G2
2, is 3 meters.

clock drifts. The periodicity of GW-ADV for a mobile Mi is given by T(1 + δi), where T is the
basic periodicity, and δi is chosen randomly in [−0.3; 0.3] (according to a uniform distribution).
Fig. 7 shows the neighbor discovery delay as a function of the GW-ADV periodicity T, and
as a function of the duration of the activity period on the robot-specific channel. The largest
the periodicity, the longest the duration. However, the duration of the activity period has
the most significant impact on the neighbor discovery delay: when the nodes spend 50% of
their time on their robot-specific channel, the gateways of a mobile often miss the GW-ADV
messages sent on the meeting channel by the gateways of the other mobile.

3.2.2 Contact duration
The second simulation concerns the quantification of the contact duration. It is computed as
the difference between the time when the mobiles discover each other and the time when there
is no gateway of one mobile in contact of one gateway of the other mobile. Notice that having
several gateways per mobile might be a way to (slightly) improve the contact duration.
Fig. 8 shows the contact duration as a function of the GW-ADV periodicity T, and as a function
of the duration of the activity period on the robot-specific channel. The largest the periodicity,
the smallest the duration, as it takes some time for the nodes to discover each other. Again,
the duration of the activity period has the most significant impact on the contact duration.

339Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

12 Will-be-set-by-IN-TECH

 0

 0.5

 1

 1.5

 2

 2.5

 3.5

 3

value of T (in seconds)

ne
ig

hb
or

d
is

co
ve

ry
d

el
ay

(i
n

se
co

nd
s)

3.125%
6.25%
12.5%
25%
50%

0.0625 0.125 0.25 0.5

Fig. 7. The neighbor discovery delay is greatly impacted by the duration of the inactivity
period.

 0

 2

 4

 6

 8

 10

 12

value of T (in seconds)

co
nt

ac
t

d
u

ra
ti

on
(i

n
se

co
nd

s)

3.125%
6.25%
12.5%
25%
50%

0.0625 0.125 0.25 0.5

Fig. 8. The neighbor discovery delay is greatly impacted by the duration of the inactivity
period.

3.3 Link establishment
Once a local gateway discovers a distant gateway, the local gateway notifies its custodian of its
discovery using a notification (NOTIF) message. This is done either when the local gateway
received a GW-REP, or received the GW-ADV from another gateway. The NOTIF message
contains the identification of the distant mobile, the address of the distant gateway and the
address of the local gateway. Upon receiving the NOTIF message, the custodian updates its
contact table. An entry of the contact table contains the identification of the distant mobile, the
address of the distant gateway and the address of the local gateway. There might be several
local and distant gateways that lead to the same mobile.

340
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 13

If a gateway stops receiving GW-ADV messages during a period equal to the time to live of
the neighbor entry, the gateway sends a message to its custodian, in order to remove the entry
from the contact table. The mobile might still be reachable, through other local or distant
gateways.

3.4 Direct data exchange between mobiles
The data exchange between a source node on a source mobile and a destination node on a
destination mobile is performed according to the following steps:

• the source node sends the bundles to the custodian node of the source mobile,

• the custodian node of the source mobile sends the bundles to a gateway node of the source
mobile, once a link between these two mobiles has been established,

• the gateway node of the source mobile sends the bundles to the gateway node of the
destination mobile,

• the gateway node of the destination mobile sends the bundles to the destination node.

The transmission from the source node to the custodian node of the source mobile corresponds
to an intra-robot communication, as both nodes are on the same mobile. This part of the
communication can be achieved even if the two mobiles are not in range. The same goes for
the transmission between the gateway of the destination mobile to the destination node.
Fig. 9 depicts this data exchange on a small example. Custodians are shown with a small
database on the side, to indicate that they possess storage capabilities. As shown below
the figure, several communication layers are involved in this process. The source node S
generates data at the application layer, which is encapsulated within bundles at the bundle
layer. The communication from S to C1 is done at the bundle layer, and can require the
transmission through intermediate nodes, such as X1. Then, the bundles wait in C1 for a
notification concerning mobile M2. Once this happens, C1 communicates with its gateway G1
at the bundle layer. G1 and G2 are able to communicate directly. Finally, G2 sends the bundles
to D, at the bundle layer, potentially involving intermediate nodes, such as X2. Finally, D can
extract the data at the application layer.
One bundle can correspond to several packets. The transport layer is in charge of splitting
large bundles into several packets.

3.4.1 Description
The direct data exchange between mobiles raises four issues: (1) the choice of the source
gateway by the source custodian, (2) the choice of the distant gateway by the source gateway,
(3) the algorithm used by the custodian to send the bundles, and (4) the policy to retransmit
or drop bundles.
When there are several gateways that can reach the destination mobile, the source custodian
has to choose to which source gateway the bundles have to be sent. The custodian can
apply different policies of load balancing, depending on the application, by choosing several
different source gateways to allow parallel transmissions of the bundles. Thus, several
bundles at a time are sent, one per gateway that discovered the destination mobile.
A given source gateway can be in range of several destination gateways. The source
gateway has to choose to which destination gateway the bundles should be sent to. In this
paper, we propose that source gateways choose destination gateways at random, to reduce

341Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

12 Will-be-set-by-IN-TECH

 0

 0.5

 1

 1.5

 2

 2.5

 3.5

 3

value of T (in seconds)

ne
ig

hb
or

d
is

co
ve

ry
d

el
ay

(i
n

se
co

nd
s)

3.125%
6.25%
12.5%
25%
50%

0.0625 0.125 0.25 0.5

Fig. 7. The neighbor discovery delay is greatly impacted by the duration of the inactivity
period.

 0

 2

 4

 6

 8

 10

 12

value of T (in seconds)

co
nt

ac
t

d
u

ra
ti

on
(i

n
se

co
nd

s)

3.125%
6.25%
12.5%
25%
50%

0.0625 0.125 0.25 0.5

Fig. 8. The neighbor discovery delay is greatly impacted by the duration of the inactivity
period.

3.3 Link establishment
Once a local gateway discovers a distant gateway, the local gateway notifies its custodian of its
discovery using a notification (NOTIF) message. This is done either when the local gateway
received a GW-REP, or received the GW-ADV from another gateway. The NOTIF message
contains the identification of the distant mobile, the address of the distant gateway and the
address of the local gateway. Upon receiving the NOTIF message, the custodian updates its
contact table. An entry of the contact table contains the identification of the distant mobile, the
address of the distant gateway and the address of the local gateway. There might be several
local and distant gateways that lead to the same mobile.

340
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 13

If a gateway stops receiving GW-ADV messages during a period equal to the time to live of
the neighbor entry, the gateway sends a message to its custodian, in order to remove the entry
from the contact table. The mobile might still be reachable, through other local or distant
gateways.

3.4 Direct data exchange between mobiles
The data exchange between a source node on a source mobile and a destination node on a
destination mobile is performed according to the following steps:

• the source node sends the bundles to the custodian node of the source mobile,

• the custodian node of the source mobile sends the bundles to a gateway node of the source
mobile, once a link between these two mobiles has been established,

• the gateway node of the source mobile sends the bundles to the gateway node of the
destination mobile,

• the gateway node of the destination mobile sends the bundles to the destination node.

The transmission from the source node to the custodian node of the source mobile corresponds
to an intra-robot communication, as both nodes are on the same mobile. This part of the
communication can be achieved even if the two mobiles are not in range. The same goes for
the transmission between the gateway of the destination mobile to the destination node.
Fig. 9 depicts this data exchange on a small example. Custodians are shown with a small
database on the side, to indicate that they possess storage capabilities. As shown below
the figure, several communication layers are involved in this process. The source node S
generates data at the application layer, which is encapsulated within bundles at the bundle
layer. The communication from S to C1 is done at the bundle layer, and can require the
transmission through intermediate nodes, such as X1. Then, the bundles wait in C1 for a
notification concerning mobile M2. Once this happens, C1 communicates with its gateway G1
at the bundle layer. G1 and G2 are able to communicate directly. Finally, G2 sends the bundles
to D, at the bundle layer, potentially involving intermediate nodes, such as X2. Finally, D can
extract the data at the application layer.
One bundle can correspond to several packets. The transport layer is in charge of splitting
large bundles into several packets.

3.4.1 Description
The direct data exchange between mobiles raises four issues: (1) the choice of the source
gateway by the source custodian, (2) the choice of the distant gateway by the source gateway,
(3) the algorithm used by the custodian to send the bundles, and (4) the policy to retransmit
or drop bundles.
When there are several gateways that can reach the destination mobile, the source custodian
has to choose to which source gateway the bundles have to be sent. The custodian can
apply different policies of load balancing, depending on the application, by choosing several
different source gateways to allow parallel transmissions of the bundles. Thus, several
bundles at a time are sent, one per gateway that discovered the destination mobile.
A given source gateway can be in range of several destination gateways. The source
gateway has to choose to which destination gateway the bundles should be sent to. In this
paper, we propose that source gateways choose destination gateways at random, to reduce

341Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

14 Will-be-set-by-IN-TECH

intra-robot routing

inter-robot routing

S

S

C1

C1

X1 Y1 X2

G1

G1

G2

G2

C2

D

D

appli.appli.

bundle bundlebundlebundlebundle

transporttransport transporttransport transport

networknetwork networknetwork networknetworknetworknetwork

data-linkdata-link data-linkdata-link data-linkdata-link data-linkdata-link

physicalphysical physicalphysical physicalphysicalphysicalphysical

Fig. 9. The bundles sent by mobile M1 to mobile M2 first go from the source node S to the
custodian C1. Once M1 and M2 have established a link through their gateways, the bundles
go from C1 to G1, from G1 to G2, and finally from G2 to D.

the probability that two different source gateways choose the same destination gateway
repeatedly.
The algorithm applied by the custodian is the following. When it receives a bundle, it checks
whether there is an entry in its contact table corresponding to the destination mobile or not. If
there is no entry, the custodian stores the bundle. Otherwise, the custodian computes the set
of source gateways that can reach the destination mobile.
Bundles are not kept permanently in custodians. Indeed, they are associated to a time to live,
which is decided at the application layer. Bundles are also removed by the source custodian
when they are successfully transmitted. When a local gateway sends a bundle to a distant
gateway, it waits for the acknowledgment of the transmission. Once the local gateway receives
the acknowledgment, it sends a ROUTE-SUCCESS message to the custodian. Upon receiving
this message, the custodian removes the bundle from its memory. If the local gateway does
not receive acknowledgments from the distant gateway after a number of retries, the local
gateway sends a ROUTE-FAILURE message to the custodian. The custodian can decide to
transmit the bundle to another source gateway. The custodian does not delete bundles after
ROUTE-FAILURE messages: it simply waits for another opportunity to transmit it, or for the
time to live to expire. Notice that the ROUTE-SUCCESS and ROUTE-FAILURE messages only
contain a bundle ID: these messages can fit in short frames.

3.4.2 Simulation results
We evaluated the performance of this data-exchange mechanism according to three metrics:
(1) the bundle reception rate, (2) the average delay from the custodian of the source to the
destination, and (3) the average path length for bundles.

342
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 15

Simulations are performed on a scenario close to the one depicted on Fig. 9. We assume
that each mobile has two gateways, that the two gateways of the source mobile are one hop
away from the custodian, and the destination is one hop away from the two gateways of the
destination mobile. We assume that each bundle can fit in a single frame, and thus bundles
do not require fragmentation and reassembly. The frame size for a bundle is set to 119 bytes
at the MAC layer, so that a bundle is 1000 bits long at the physical layer. The duty cycle is set
to about one second, and gateways send their GW-ADV frame with a periodicity of T =0.25
seconds (when they operate on the meeting channel). This value of T is a trade-off between
the discovery delay and the overhead of the GW-ADV frames.
Fig. 10 shows the bundle reception rate as a function of the bundle generation rate. The
bundle reception rate increases with the bundle generation rate, until it reaches a maximum
(again, this behavior is typical of IEEE 802.15.4). When the duty cycle on the robot-specific
channel is low (for instance, when the duty cycle is equal to 12.5%), the ER nodes spend most
of their time on the meeting channel. Thus, the bundle reception rate is large. Contrarily,
when nodes spend a significant part of their activity time on the robot-specific channel (for
instance, when the duty cycle is 50%), the ER nodes cannot spend most time on the meeting
channel, and the gateways of the different robots have less time to communicate (on average,
the gateways of the two robots are on the same meeting channel during only 25% of the time),
which negatively impacts the bundle reception rate.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

bu
nd

le
re

ce
p

ti
on

ra
te

(i
n

bu
nd

le
s

p
er

se
co

nd
)

12.5%
25%
50%

Fig. 10. The bundle reception rate (in bundles per second) increases as the duty cycle on the
robot-specific channel decreases.

Fig. 11 shows the average delay to transmit a bundle from the custodian of the source mobile
to the destination. Note that this delay does not take into account the time required to transmit
a bundle from the source to the custodian. Indeed, most of the time, all the bundles are
accumulated in the custodian rather than in the source node. As expected, the average delay
increases with the bundle generation rate. When the bundle loss rate is too high, most bundles
are lost, and the delay becomes stable (as it involves only bundles that are correctly received).
The average path length for the bundles is computed as the average amount of transmission
of a bundle. The minimum value for this metric is three in our topology, as the destination is

343Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

14 Will-be-set-by-IN-TECH

intra-robot routing

inter-robot routing

S

S

C1

C1

X1 Y1 X2

G1

G1

G2

G2

C2

D

D

appli.appli.

bundle bundlebundlebundlebundle

transporttransport transporttransport transport

networknetwork networknetwork networknetworknetworknetwork

data-linkdata-link data-linkdata-link data-linkdata-link data-linkdata-link

physicalphysical physicalphysical physicalphysicalphysicalphysical

Fig. 9. The bundles sent by mobile M1 to mobile M2 first go from the source node S to the
custodian C1. Once M1 and M2 have established a link through their gateways, the bundles
go from C1 to G1, from G1 to G2, and finally from G2 to D.

the probability that two different source gateways choose the same destination gateway
repeatedly.
The algorithm applied by the custodian is the following. When it receives a bundle, it checks
whether there is an entry in its contact table corresponding to the destination mobile or not. If
there is no entry, the custodian stores the bundle. Otherwise, the custodian computes the set
of source gateways that can reach the destination mobile.
Bundles are not kept permanently in custodians. Indeed, they are associated to a time to live,
which is decided at the application layer. Bundles are also removed by the source custodian
when they are successfully transmitted. When a local gateway sends a bundle to a distant
gateway, it waits for the acknowledgment of the transmission. Once the local gateway receives
the acknowledgment, it sends a ROUTE-SUCCESS message to the custodian. Upon receiving
this message, the custodian removes the bundle from its memory. If the local gateway does
not receive acknowledgments from the distant gateway after a number of retries, the local
gateway sends a ROUTE-FAILURE message to the custodian. The custodian can decide to
transmit the bundle to another source gateway. The custodian does not delete bundles after
ROUTE-FAILURE messages: it simply waits for another opportunity to transmit it, or for the
time to live to expire. Notice that the ROUTE-SUCCESS and ROUTE-FAILURE messages only
contain a bundle ID: these messages can fit in short frames.

3.4.2 Simulation results
We evaluated the performance of this data-exchange mechanism according to three metrics:
(1) the bundle reception rate, (2) the average delay from the custodian of the source to the
destination, and (3) the average path length for bundles.

342
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 15

Simulations are performed on a scenario close to the one depicted on Fig. 9. We assume
that each mobile has two gateways, that the two gateways of the source mobile are one hop
away from the custodian, and the destination is one hop away from the two gateways of the
destination mobile. We assume that each bundle can fit in a single frame, and thus bundles
do not require fragmentation and reassembly. The frame size for a bundle is set to 119 bytes
at the MAC layer, so that a bundle is 1000 bits long at the physical layer. The duty cycle is set
to about one second, and gateways send their GW-ADV frame with a periodicity of T =0.25
seconds (when they operate on the meeting channel). This value of T is a trade-off between
the discovery delay and the overhead of the GW-ADV frames.
Fig. 10 shows the bundle reception rate as a function of the bundle generation rate. The
bundle reception rate increases with the bundle generation rate, until it reaches a maximum
(again, this behavior is typical of IEEE 802.15.4). When the duty cycle on the robot-specific
channel is low (for instance, when the duty cycle is equal to 12.5%), the ER nodes spend most
of their time on the meeting channel. Thus, the bundle reception rate is large. Contrarily,
when nodes spend a significant part of their activity time on the robot-specific channel (for
instance, when the duty cycle is 50%), the ER nodes cannot spend most time on the meeting
channel, and the gateways of the different robots have less time to communicate (on average,
the gateways of the two robots are on the same meeting channel during only 25% of the time),
which negatively impacts the bundle reception rate.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

bu
nd

le
re

ce
p

ti
on

ra
te

(i
n

bu
nd

le
s

p
er

se
co

nd
)

12.5%
25%
50%

Fig. 10. The bundle reception rate (in bundles per second) increases as the duty cycle on the
robot-specific channel decreases.

Fig. 11 shows the average delay to transmit a bundle from the custodian of the source mobile
to the destination. Note that this delay does not take into account the time required to transmit
a bundle from the source to the custodian. Indeed, most of the time, all the bundles are
accumulated in the custodian rather than in the source node. As expected, the average delay
increases with the bundle generation rate. When the bundle loss rate is too high, most bundles
are lost, and the delay becomes stable (as it involves only bundles that are correctly received).
The average path length for the bundles is computed as the average amount of transmission
of a bundle. The minimum value for this metric is three in our topology, as the destination is

343Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

16 Will-be-set-by-IN-TECH

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

av
er

ag
e

d
el

ay
(i

n
se

co
nd

s)

12.5%
25%
50%

Fig. 11. The average delay from the source custodian to the destination node decreases when
the duty cycle on the robot-specific channel decreases.

three hops away from the custodian of the source mobile. Path lengths larger than three occur
in the following two cases.

• When one of the nodes on the path from the custodian to the destination has to repeat the
transmission (usually due to the loss of a frame or of its acknowledgment), the path length
increases accordingly.

• When the custodian C1 sends the bundle to a local gateway G1
1, it is possible that this local

gateway is not connected anymore to the distant gateway. Indeed, this local gateway can
be waiting for the time to live of the neighbor to expire in order to remove the entry in its
neighbor table and to notify the custodian. After having tried several times to transmit the
bundle, G1

1 notifies the source custodian with a ROUTE-FAILURE message. The custodian
can try to send the bundle to another local gateway G2

1 which is still in contact with the
destination mobile. In this case, the path length is composed of four hops: (C, G1

1), (C, G2
1),

(G2
2) and D. Note that while bundles are long frames, the ROUTE-FAILURE message is a

simple notification. Thus, it is not counted in the path length.

Note that to simplify, we assume in our simulations that each bundle is sent in a single frame.
Thus, the path length increases only by one each time a data frame is transmitted.
Fig. 12 shows the average path length for the bundles. When the duty cycle on the
robot-specific channel is low (for instance, when it is only 12.5%), the average path length
varies slightly around 3.2 hops. As the minimum path length is 3, this means that, on average,
the probability for a bundle to be retransmitted (due to collision, loss of a frame or of its
acknowledgment, or due to the mobility of mobiles) is only 6%. However, this percentage
increases up to 26% when the duty cycle on the robot-specific channel is high.

4. Indirect communications between mobile robots

Direct communications occur when the following three conditions are met.

• A source robot has to communicate with a destination robot.

344
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 17

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

av
er

ag
e

p
at

h
le

ng
th

12.5%
25%
50%

Fig. 12. The average path length for the bundles decreases when the duty cycle on the
robot-specific channel decreases.

• The source robot knows the ID of the destination robot.

• The source robot and the destination robot meet directly.

In practice, the two last conditions are hard to fulfill. For example, when a robot has to perform
an emergency brake, it has to inform the following robots. The ID of those robots might not
be known by the source robot. Moreover, it is possible that a robot and the one following it
on the same trajectory never meet: in this case, they are unable to communicate using direct
communications.
Indirect communications help removing these constraints. In this section, we first consider
how fixed relays can improve the overall connectivity of the network, and can enable indirect
communications without requiring sophisticated routing protocols. Then, we consider how to
identify mobile robots and nodes based on their role rather than based on their ID or address.

4.1 Communications through fixed-relay networks
Fixed-relay networks can be used to improve the communication opportunities between
mobiles (Groenevelt et al., 2005; Zhao et al., 2006). When these relay networks are placed
along the road, or at crossings, they can be used to store bundles from robots passing by. In
turn, the bundles can be sent to other mobiles traveling in range of the relays.

4.1.1 Description
Fixed-relay can be used to improve the connectivity of the network. If they are deployed
strategically at the intersection of mobile trajectories, they can store bundles temporarily, and
retransmit them to mobiles passing by.
Each fixed-relay is composed of several nodes forming a network. There is a custodian node
in each fixed-relay, and several gateways. The role of the custodian node and of the gateways
is the same as for mobile robots.
The main difference between fixed-relays and mobile is that the nodes in fixed-relays are
always working on the meeting channel. Thus, they are always available on this channel,
and are thus easier to contact than mobiles.

345Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

16 Will-be-set-by-IN-TECH

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

av
er

ag
e

d
el

ay
(i

n
se

co
nd

s)

12.5%
25%
50%

Fig. 11. The average delay from the source custodian to the destination node decreases when
the duty cycle on the robot-specific channel decreases.

three hops away from the custodian of the source mobile. Path lengths larger than three occur
in the following two cases.

• When one of the nodes on the path from the custodian to the destination has to repeat the
transmission (usually due to the loss of a frame or of its acknowledgment), the path length
increases accordingly.

• When the custodian C1 sends the bundle to a local gateway G1
1, it is possible that this local

gateway is not connected anymore to the distant gateway. Indeed, this local gateway can
be waiting for the time to live of the neighbor to expire in order to remove the entry in its
neighbor table and to notify the custodian. After having tried several times to transmit the
bundle, G1

1 notifies the source custodian with a ROUTE-FAILURE message. The custodian
can try to send the bundle to another local gateway G2

1 which is still in contact with the
destination mobile. In this case, the path length is composed of four hops: (C, G1

1), (C, G2
1),

(G2
2) and D. Note that while bundles are long frames, the ROUTE-FAILURE message is a

simple notification. Thus, it is not counted in the path length.

Note that to simplify, we assume in our simulations that each bundle is sent in a single frame.
Thus, the path length increases only by one each time a data frame is transmitted.
Fig. 12 shows the average path length for the bundles. When the duty cycle on the
robot-specific channel is low (for instance, when it is only 12.5%), the average path length
varies slightly around 3.2 hops. As the minimum path length is 3, this means that, on average,
the probability for a bundle to be retransmitted (due to collision, loss of a frame or of its
acknowledgment, or due to the mobility of mobiles) is only 6%. However, this percentage
increases up to 26% when the duty cycle on the robot-specific channel is high.

4. Indirect communications between mobile robots

Direct communications occur when the following three conditions are met.

• A source robot has to communicate with a destination robot.

344
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 17

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

av
er

ag
e

p
at

h
le

ng
th

12.5%
25%
50%

Fig. 12. The average path length for the bundles decreases when the duty cycle on the
robot-specific channel decreases.

• The source robot knows the ID of the destination robot.

• The source robot and the destination robot meet directly.

In practice, the two last conditions are hard to fulfill. For example, when a robot has to perform
an emergency brake, it has to inform the following robots. The ID of those robots might not
be known by the source robot. Moreover, it is possible that a robot and the one following it
on the same trajectory never meet: in this case, they are unable to communicate using direct
communications.
Indirect communications help removing these constraints. In this section, we first consider
how fixed relays can improve the overall connectivity of the network, and can enable indirect
communications without requiring sophisticated routing protocols. Then, we consider how to
identify mobile robots and nodes based on their role rather than based on their ID or address.

4.1 Communications through fixed-relay networks
Fixed-relay networks can be used to improve the communication opportunities between
mobiles (Groenevelt et al., 2005; Zhao et al., 2006). When these relay networks are placed
along the road, or at crossings, they can be used to store bundles from robots passing by. In
turn, the bundles can be sent to other mobiles traveling in range of the relays.

4.1.1 Description
Fixed-relay can be used to improve the connectivity of the network. If they are deployed
strategically at the intersection of mobile trajectories, they can store bundles temporarily, and
retransmit them to mobiles passing by.
Each fixed-relay is composed of several nodes forming a network. There is a custodian node
in each fixed-relay, and several gateways. The role of the custodian node and of the gateways
is the same as for mobile robots.
The main difference between fixed-relays and mobile is that the nodes in fixed-relays are
always working on the meeting channel. Thus, they are always available on this channel,
and are thus easier to contact than mobiles.

345Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

18 Will-be-set-by-IN-TECH

4.1.2 Simulation results
To show the benefits of fixed-relays, and to evaluate the advantage of remaining on the
meeting channel on the performance of the network, we performed numerous simulations.
The simulation settings are mainly the same as in Section 4. Fixed-relays have a six-node
topology, which is identical to the topology of the mobiles. They are static.
Fig. 13 shows the average delay for a mobile to discover a relay node, as a function of the
periodicity T of the GW-ADV of both the mobile and the fixed-relay. The relay discovery delay
increases as the periodicity T decreases and as the duty cycle on the robot-specific channel
increases. The duty cycle on the robot-specific channel is the key parameter: its impact is the
most significant. When comparing with Fig. 7, the advantage of fixed-relays on the discovery
delay is obvious. In the case where the duty cycle on the robot-specific channel is 50%, and for
a GW-ADV periodicity T of 0.5 seconds, the discovery delay of a mobile is 13.2 times larger
than the discovery delay of a fixed-relay.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

BI/16 BI/8 BI/4 BI/2

value of T (in seconds)

re
la

y
d

is
co

ve
ry

d
el

ay
(i

n
se

co
nd

s) 3.125%
6.25%
12.5%
25%
50%

Fig. 13. The relay discovery delay for a mobile is very short, and depends mostly on the duty
cycle on the robot-specific channel.

Fig. 14 shows the contact duration between a mobile and a fixed-relay. The contact duration
decreases as the GW-ADV periodicity increases because it takes more time to discover the
fixed-relay with a large periodicity. The contact duration also decreases as the duty cycle on
the robot-specific channel increases, for the same reason. When comparing with Fig. 14, the
contacts are about twice larger, as expected since only one robot is moving in this scenario
with fixed-relays.
Fig. 15 displays the bundle reception rate as a function of the bundle generation rate, for
several duty cycles on the robot-specific channel. The bundle reception rate increases with
the bundle generation rate, until a maximum is reached. When comparing with Fig. 15, the
results are significantly improved and show that using fixed-relays is highly beneficial. For
instance, when the duty cycle is 50%, the maximum bundle reception rate is about 7 when
two mobiles meet, and is about 14 when a mobile meets a fixed-relay (as the bundle reception
rate is given in bundles per second, the increase of the contact duration in the scenario with

346
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 19

 0

 5

 10

 15

 20

BI/16 BI/8 BI/4 BI/2

value of T (in seconds)

co
nt

ac
t

d
u

ra
ti

on
(i

n
se

co
nd

s)

3.125%
6.25%
12.5%
25%
50%

Fig. 14. The contact duration between a mobile and a fixed-relay depends mostly on the
GW-ADV periodicity.

fixed-relays has little impact on this number). When the duty cycle is 12.5%, the maximum
bundle reception rate is 21 when two mobiles meet, and 24 when a mobile meets a fixed-relay.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

bu
nd

le
re

ce
p

ti
on

ra
te

(i
n

bu
nd

le
s

p
er

se
co

nd
)

12.5%
25%
50%

Fig. 15. The bundle reception rate increases when the duty cycle on the robot-specific channel
decreases.

Fig. 16 shows the average delay as a function of the bundle generation rate, for several
duty cycles on the robot-specific channel. The delay is the time difference between the first
transmission of the bundle by the custodian of the source mobile, and the first reception of
the bundle by the custodian of the fixed-relay. When comparing with Fig. 16, the results are
similar. The gain in delay is not significant, except for the duty cycle on the robot-specific
channel, where the delay is reduced by 25%.
Fig. 17 shows the average hop count as a function of the bundle generation rate, for several
duty cycles on the robot specific channel. The y-axis is the same as in Fig. 17. It can be seen

347Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

18 Will-be-set-by-IN-TECH

4.1.2 Simulation results
To show the benefits of fixed-relays, and to evaluate the advantage of remaining on the
meeting channel on the performance of the network, we performed numerous simulations.
The simulation settings are mainly the same as in Section 4. Fixed-relays have a six-node
topology, which is identical to the topology of the mobiles. They are static.
Fig. 13 shows the average delay for a mobile to discover a relay node, as a function of the
periodicity T of the GW-ADV of both the mobile and the fixed-relay. The relay discovery delay
increases as the periodicity T decreases and as the duty cycle on the robot-specific channel
increases. The duty cycle on the robot-specific channel is the key parameter: its impact is the
most significant. When comparing with Fig. 7, the advantage of fixed-relays on the discovery
delay is obvious. In the case where the duty cycle on the robot-specific channel is 50%, and for
a GW-ADV periodicity T of 0.5 seconds, the discovery delay of a mobile is 13.2 times larger
than the discovery delay of a fixed-relay.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

BI/16 BI/8 BI/4 BI/2

value of T (in seconds)

re
la

y
d

is
co

ve
ry

d
el

ay
(i

n
se

co
nd

s) 3.125%
6.25%
12.5%
25%
50%

Fig. 13. The relay discovery delay for a mobile is very short, and depends mostly on the duty
cycle on the robot-specific channel.

Fig. 14 shows the contact duration between a mobile and a fixed-relay. The contact duration
decreases as the GW-ADV periodicity increases because it takes more time to discover the
fixed-relay with a large periodicity. The contact duration also decreases as the duty cycle on
the robot-specific channel increases, for the same reason. When comparing with Fig. 14, the
contacts are about twice larger, as expected since only one robot is moving in this scenario
with fixed-relays.
Fig. 15 displays the bundle reception rate as a function of the bundle generation rate, for
several duty cycles on the robot-specific channel. The bundle reception rate increases with
the bundle generation rate, until a maximum is reached. When comparing with Fig. 15, the
results are significantly improved and show that using fixed-relays is highly beneficial. For
instance, when the duty cycle is 50%, the maximum bundle reception rate is about 7 when
two mobiles meet, and is about 14 when a mobile meets a fixed-relay (as the bundle reception
rate is given in bundles per second, the increase of the contact duration in the scenario with

346
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 19

 0

 5

 10

 15

 20

BI/16 BI/8 BI/4 BI/2

value of T (in seconds)

co
nt

ac
t

d
u

ra
ti

on
(i

n
se

co
nd

s)

3.125%
6.25%
12.5%
25%
50%

Fig. 14. The contact duration between a mobile and a fixed-relay depends mostly on the
GW-ADV periodicity.

fixed-relays has little impact on this number). When the duty cycle is 12.5%, the maximum
bundle reception rate is 21 when two mobiles meet, and 24 when a mobile meets a fixed-relay.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

bu
nd

le
re

ce
p

ti
on

ra
te

(i
n

bu
nd

le
s

p
er

se
co

nd
)

12.5%
25%
50%

Fig. 15. The bundle reception rate increases when the duty cycle on the robot-specific channel
decreases.

Fig. 16 shows the average delay as a function of the bundle generation rate, for several
duty cycles on the robot-specific channel. The delay is the time difference between the first
transmission of the bundle by the custodian of the source mobile, and the first reception of
the bundle by the custodian of the fixed-relay. When comparing with Fig. 16, the results are
similar. The gain in delay is not significant, except for the duty cycle on the robot-specific
channel, where the delay is reduced by 25%.
Fig. 17 shows the average hop count as a function of the bundle generation rate, for several
duty cycles on the robot specific channel. The y-axis is the same as in Fig. 17. It can be seen

347Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

20 Will-be-set-by-IN-TECH

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

av
er

ag
e

d
el

ay
(i

n
se

co
nd

s)

12.5%
25%
50%

Fig. 16. The average delay from the custodian of the source to the custodian of the fixed-relay
decreases when the duty cycle on the robot-specific channel decreases.

that the average hop count varies from 3 (which is the minimum value in our scenario) to 3.2,
which constitutes an important improvement.

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

av
er

ag
e

p
at

h
le

ng
th

12.5%
25%
50%

Fig. 17. The average length of the paths followed by bundles is close to the minimum value
of 3 when a mobile meets a fixed-relay.

4.2 Generic addressing
The generic addressing consists in addressing network entities by their role rather than by
their ID. There are two types of generic addressing: one for the mobile robots, and one for the
nodes. These two types can be used simultaneously: it is possible to address a generic node
on a generic mobile.
The address space has to be divided into two parts: the part for network addresses and the
part for generic addresses. In the ZigBee protocol for instance, when the distributed address

348
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 21

allocation mechanism is used, the whole address space is not used for nodes. Among the 216

available short addresses, only n can be allocated, where n is the maximum number of nodes
in the hierarchical tree. n depends on the ZigBee network parameters Rm, Cm and Lm. It is
possible to use the unused addresses to represent roles. The same is true for mobiles: it is
unrealistic to consider that there are 216 mobile robots in the network. Generally, the number
of roles is much lower than the number of entities (either mobiles or nodes) in the network: it
is not required to allocate a large number of generic addresses.
The definition of generic addresses is application-dependent, and it depends on the
communication requirements. For mobiles, we identified the following requirements.

• Concerning unicast communications (that is, from one mobile to another mobile), two
types of requirements can be considered.
– Role unicast-next: the mobile has to communicate with the next mobile. The next time

the source mobile meets another mobile, this new mobile becomes the destination of
the bundles.

– Role unicast-next-geographical: the mobile has to communicate with the next mobile
entering a given area. This role makes use of the fixed-relay to transmit bundles. With
this role, the source mobile sends the bundles to the first mobile or fixed-relay it meets.
Once the bundles have reached a fixed-relay, it sends the bundles to the first mobile it
meets.

• Concerning multicast communications (that is, from one mobile to several mobiles), three
types of requirements can be considered. They are a generalization of the roles for unicast
communications.
– Role multicast-next-all: the mobile has to communicate with n next mobiles. The next

time the source mobile meets another mobile, it decreases the value of n and sends
all the bundles to this new mobile. If n is equal to zero, the bundles can be removed
from the memory of the source mobile. Otherwise, the bundles are stored for the future
encounters. Note that the source mobile has to maintain a list of mobiles it has already
met: if a source mobile meets twice the same mobile, the source does not send the same
bundles twice.

– Role multicast-next-chain: the mobile has to communicate with a a chain of n next
mobiles. This requirement is important when several mobiles are following each other.
When the source mobile meets the first mobile of the chain, the source sends all the
bundles, and does not keep a copy of them (once they are acknowledged by the gateway
of the first mobile of the chain). Then, the first mobile becomes in charge of transmitting
the bundles to the n − 1 next mobiles. Additional care has to be taken in order to avoid
loops: a mobile should not receive bundles it has previously received.

– Role multicast-next-geographical: the mobile has to communicate with n next mobiles
entering a given area. When a mobile has to transmit k times the bundles and meets
a fixed-relay, the mobile transmits all its bundles to this fixed-relay. The fixed-relay
becomes in charge of transmitting k − 1 times the bundles. When a mobile has to
transmit k times the bundles and meets another mobile, the former mobile become
in charge of transmitting �(k − 1)/2�, and the latter mobile becomes in charge of
transmitting �k/2�. In this way, the bundles are disseminated rapidly in the area.

For nodes, several generic roles can be identified.

349Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

20 Will-be-set-by-IN-TECH

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

av
er

ag
e

d
el

ay
(i

n
se

co
nd

s)

12.5%
25%
50%

Fig. 16. The average delay from the custodian of the source to the custodian of the fixed-relay
decreases when the duty cycle on the robot-specific channel decreases.

that the average hop count varies from 3 (which is the minimum value in our scenario) to 3.2,
which constitutes an important improvement.

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 5 10 15 20 25 30 35 40 45

bundle generation rate (in bundles per second)

av
er

ag
e

p
at

h
le

ng
th

12.5%
25%
50%

Fig. 17. The average length of the paths followed by bundles is close to the minimum value
of 3 when a mobile meets a fixed-relay.

4.2 Generic addressing
The generic addressing consists in addressing network entities by their role rather than by
their ID. There are two types of generic addressing: one for the mobile robots, and one for the
nodes. These two types can be used simultaneously: it is possible to address a generic node
on a generic mobile.
The address space has to be divided into two parts: the part for network addresses and the
part for generic addresses. In the ZigBee protocol for instance, when the distributed address

348
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 21

allocation mechanism is used, the whole address space is not used for nodes. Among the 216

available short addresses, only n can be allocated, where n is the maximum number of nodes
in the hierarchical tree. n depends on the ZigBee network parameters Rm, Cm and Lm. It is
possible to use the unused addresses to represent roles. The same is true for mobiles: it is
unrealistic to consider that there are 216 mobile robots in the network. Generally, the number
of roles is much lower than the number of entities (either mobiles or nodes) in the network: it
is not required to allocate a large number of generic addresses.
The definition of generic addresses is application-dependent, and it depends on the
communication requirements. For mobiles, we identified the following requirements.

• Concerning unicast communications (that is, from one mobile to another mobile), two
types of requirements can be considered.
– Role unicast-next: the mobile has to communicate with the next mobile. The next time

the source mobile meets another mobile, this new mobile becomes the destination of
the bundles.

– Role unicast-next-geographical: the mobile has to communicate with the next mobile
entering a given area. This role makes use of the fixed-relay to transmit bundles. With
this role, the source mobile sends the bundles to the first mobile or fixed-relay it meets.
Once the bundles have reached a fixed-relay, it sends the bundles to the first mobile it
meets.

• Concerning multicast communications (that is, from one mobile to several mobiles), three
types of requirements can be considered. They are a generalization of the roles for unicast
communications.
– Role multicast-next-all: the mobile has to communicate with n next mobiles. The next

time the source mobile meets another mobile, it decreases the value of n and sends
all the bundles to this new mobile. If n is equal to zero, the bundles can be removed
from the memory of the source mobile. Otherwise, the bundles are stored for the future
encounters. Note that the source mobile has to maintain a list of mobiles it has already
met: if a source mobile meets twice the same mobile, the source does not send the same
bundles twice.

– Role multicast-next-chain: the mobile has to communicate with a a chain of n next
mobiles. This requirement is important when several mobiles are following each other.
When the source mobile meets the first mobile of the chain, the source sends all the
bundles, and does not keep a copy of them (once they are acknowledged by the gateway
of the first mobile of the chain). Then, the first mobile becomes in charge of transmitting
the bundles to the n − 1 next mobiles. Additional care has to be taken in order to avoid
loops: a mobile should not receive bundles it has previously received.

– Role multicast-next-geographical: the mobile has to communicate with n next mobiles
entering a given area. When a mobile has to transmit k times the bundles and meets
a fixed-relay, the mobile transmits all its bundles to this fixed-relay. The fixed-relay
becomes in charge of transmitting k − 1 times the bundles. When a mobile has to
transmit k times the bundles and meets another mobile, the former mobile become
in charge of transmitting �(k − 1)/2�, and the latter mobile becomes in charge of
transmitting �k/2�. In this way, the bundles are disseminated rapidly in the area.

For nodes, several generic roles can be identified.

349Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

22 Will-be-set-by-IN-TECH

• the custodian of the mobile,

• one of the gateways of the mobile,

• all the gateways of the mobile,

• one of the sensors (for each type of sensor),

• all of the sensors (for each type of sensor),

• one of the actuators (for each type of actuator),

• all of the actuators (for each type of actuator).

As it can be seen, it is possible to represent several nodes through the same generic role. The
duplication of messages from one generic message into several messages is performed in the
node that translates the generic addresses, that is in the custodian node.
The generic addressing mechanism requires address translations (one for the generic mobiles,
and one for the generic nodes). The translation for generic nodes is always performed at
the custodian of the destination mobile, as only this custodian know the exact sensors and
actuators deployed on its mobile. The translation for generic mobiles is performed by the
custodian of a mobile that depends on the type of generic address.

• Role unicast-next. The translation is performed by the custodian of the source mobile.

• Role unicast-next-geographical. The translation is performed by the custodian of the source
mobile, and potentially by the custodian of the fixed-relay.

• Role multicast-next-all. The translation is performed by the custodian of the source mobile.

• Role multicast-next-chain. The translation is performed by the custodian of each mobile of
the chain, in turn.

• Role multicast-next-geographical. The translation is performed by all the custodian of the
mobiles involved as intermediate mobiles, as well as by the custodian of all fixed-relays.

5. Conclusion

Several new applications require robots to move within an area, in order to monitor the
environment while performing a task. The applications are likely to require that these mobile
robots communicate, to avoid obstacles or to improve the monitoring for example. In this
context, we have proposed a multi-channel architecture: each robot uses a robot-specific
channel for intra-robot communications, and a common channel, called the meeting channel,
is used to interconnect mobile robots that are in range of each other.
The use of a meeting channel allows mobiles to perform intra-mobile communications without
interferences from neighbor robots, and it allows robots to communicate while some of their
nodes save energy by sleeping. When there is no neighbor mobile in the vicinity, the meeting
channel can be used to improve the intra-mobile communications. We conducted several
simulations in order to quantify the benefits of the meeting channel, and we studied the
performance of the network mainly in terms of throughput, delay and path length.
We proposed to use fixed-relays to improve the connectivity of the network, and to allow
information to be stored at specific location in the environment. Fixed-relays are always on
the meeting channel: this feature allows significant performance benefits.
Finally, we proposed the use of generic addresses in order to identify mobiles and nodes based
on their role, rather than based on their address. This concept is especially important when a
mobile robot has to communicate with the next mobiles.

350
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 23

6. References

Bahl, V., Chandra, R. & Dunagan, J. (2004). SSCH: Slotted seeded channel hopping for capacity
improvement in IEEE 802.11 ad-hoc wireless networks, ACM International Conference
on Mobile computing and Networking, pp. 216–230.

Bai, F., Sadagopan, N. & Helmy, A. (2003). IMPORTANT: a framework to systematically
analyze the impact of mobility on performance of routing protocols for adhoc
networks, IEEE INFOCOM, pp. 525–535.

Delay-Tolerant Networking Architecture (2006). Request For Comments 4838, IETF.
Ferranti, E. & Trigoni, N. (2008). Robot-assisted discovery of evacuation routes in emergency

scenarios, ICRA, pp. 2824–2830.
Groenevelt, R., Nain, P. & Koole, G. (2005). The message delay in mobile ad hoc networks,

Performance Evaluation 62(1-4): 210–228.
Hadid, N., Guitton, A. & Misson, M. (2010). Exploiting a meeting channel to

interconnect 802.15.4-compliant mobile entities: discovery and association phases,
IEEE International Symposium on Computers and Communications.

Hogg, R. W., Rankin, A. L., Roumeliotis, S. I., McHenry, M. C., Helmick, D. M., Bergh, C. F.
& Matthies, L. (2002). Algorithms and sensors for small robot path following, IEEE
International Conference on Robotics and Automation, pp. 11–15.

IEEE 802.15 (2006). Part 15.4: Wireless medium access control (MAC) and physical layer
(PHY) specifications for low-rate wireless personal area networks (WPANs), Standard
802.15.4 R2006, ANSI/IEEE.

Jovanovic, M. D. & Djordjevic, G. L. (2007). TFMAC: Multi-channel MAC protocol for wireless
sensor networks, International Conference on Telecommunications in Modern Satellite,
Cable and Broadcasting Services, pp. 23–26.

Kyasanur, P. & Vaidya, N. H. (2005). Routing and interface assignment in multi-channel
multi-interface wireless networks, IEEE Wireless Communications and Networking
Conference, pp. 13–17.

Lambrou, T. P. & Panayiotou, C. G. (2009). Collaborative area monitoring using wireless sensor
networks with stationary and mobile nodes, EURASIP Journal on Advances in Signal
Processing .

Nasipuri, A., Zhuang, J. & Das, S.-R. (1999). A multi-channel CSMA MAC protocol
for multi-hop wireless networks, IEEE Wireless Communications and Networking
Conference, pp. 1402–1406.

Pathmasuntharam, J. S., Das, A. & Gupta, A. K. (2004). Primary channel assignment based
MAC (PCAM) - a multi-channel MAC protocol for multi-hop wireless networks,
IEEE Wireless Communications and Networking Conference, pp. 1110–1115.

Propagation data and prediction method for the planning of indoor radio communication systems and
local area networks in the frequency range of 900 MHz to 100 GHz (2005). Recommendation
ITU-R P 1238-4, ITU.

Ramakrishnan, M. & Vanaja Ranjan, P. (2009). Multi channel MAC for wireless sensor
networks, International Journal of Computer Networks and Communications (IJCNC)
1(2): 47–54.

Seo, M., Kim, Y. & Ma, J. (2008). Multi-channel MAC protocol for multi-hop wireless
networks: handling multi-channel hidden node problem using snooping, IEEE
Military Communications Conference, pp. 1–7.

351Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

22 Will-be-set-by-IN-TECH

• the custodian of the mobile,

• one of the gateways of the mobile,

• all the gateways of the mobile,

• one of the sensors (for each type of sensor),

• all of the sensors (for each type of sensor),

• one of the actuators (for each type of actuator),

• all of the actuators (for each type of actuator).

As it can be seen, it is possible to represent several nodes through the same generic role. The
duplication of messages from one generic message into several messages is performed in the
node that translates the generic addresses, that is in the custodian node.
The generic addressing mechanism requires address translations (one for the generic mobiles,
and one for the generic nodes). The translation for generic nodes is always performed at
the custodian of the destination mobile, as only this custodian know the exact sensors and
actuators deployed on its mobile. The translation for generic mobiles is performed by the
custodian of a mobile that depends on the type of generic address.

• Role unicast-next. The translation is performed by the custodian of the source mobile.

• Role unicast-next-geographical. The translation is performed by the custodian of the source
mobile, and potentially by the custodian of the fixed-relay.

• Role multicast-next-all. The translation is performed by the custodian of the source mobile.

• Role multicast-next-chain. The translation is performed by the custodian of each mobile of
the chain, in turn.

• Role multicast-next-geographical. The translation is performed by all the custodian of the
mobiles involved as intermediate mobiles, as well as by the custodian of all fixed-relays.

5. Conclusion

Several new applications require robots to move within an area, in order to monitor the
environment while performing a task. The applications are likely to require that these mobile
robots communicate, to avoid obstacles or to improve the monitoring for example. In this
context, we have proposed a multi-channel architecture: each robot uses a robot-specific
channel for intra-robot communications, and a common channel, called the meeting channel,
is used to interconnect mobile robots that are in range of each other.
The use of a meeting channel allows mobiles to perform intra-mobile communications without
interferences from neighbor robots, and it allows robots to communicate while some of their
nodes save energy by sleeping. When there is no neighbor mobile in the vicinity, the meeting
channel can be used to improve the intra-mobile communications. We conducted several
simulations in order to quantify the benefits of the meeting channel, and we studied the
performance of the network mainly in terms of throughput, delay and path length.
We proposed to use fixed-relays to improve the connectivity of the network, and to allow
information to be stored at specific location in the environment. Fixed-relays are always on
the meeting channel: this feature allows significant performance benefits.
Finally, we proposed the use of generic addresses in order to identify mobiles and nodes based
on their role, rather than based on their address. This concept is especially important when a
mobile robot has to communicate with the next mobiles.

350
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots 23

6. References

Bahl, V., Chandra, R. & Dunagan, J. (2004). SSCH: Slotted seeded channel hopping for capacity
improvement in IEEE 802.11 ad-hoc wireless networks, ACM International Conference
on Mobile computing and Networking, pp. 216–230.

Bai, F., Sadagopan, N. & Helmy, A. (2003). IMPORTANT: a framework to systematically
analyze the impact of mobility on performance of routing protocols for adhoc
networks, IEEE INFOCOM, pp. 525–535.

Delay-Tolerant Networking Architecture (2006). Request For Comments 4838, IETF.
Ferranti, E. & Trigoni, N. (2008). Robot-assisted discovery of evacuation routes in emergency

scenarios, ICRA, pp. 2824–2830.
Groenevelt, R., Nain, P. & Koole, G. (2005). The message delay in mobile ad hoc networks,

Performance Evaluation 62(1-4): 210–228.
Hadid, N., Guitton, A. & Misson, M. (2010). Exploiting a meeting channel to

interconnect 802.15.4-compliant mobile entities: discovery and association phases,
IEEE International Symposium on Computers and Communications.

Hogg, R. W., Rankin, A. L., Roumeliotis, S. I., McHenry, M. C., Helmick, D. M., Bergh, C. F.
& Matthies, L. (2002). Algorithms and sensors for small robot path following, IEEE
International Conference on Robotics and Automation, pp. 11–15.

IEEE 802.15 (2006). Part 15.4: Wireless medium access control (MAC) and physical layer
(PHY) specifications for low-rate wireless personal area networks (WPANs), Standard
802.15.4 R2006, ANSI/IEEE.

Jovanovic, M. D. & Djordjevic, G. L. (2007). TFMAC: Multi-channel MAC protocol for wireless
sensor networks, International Conference on Telecommunications in Modern Satellite,
Cable and Broadcasting Services, pp. 23–26.

Kyasanur, P. & Vaidya, N. H. (2005). Routing and interface assignment in multi-channel
multi-interface wireless networks, IEEE Wireless Communications and Networking
Conference, pp. 13–17.

Lambrou, T. P. & Panayiotou, C. G. (2009). Collaborative area monitoring using wireless sensor
networks with stationary and mobile nodes, EURASIP Journal on Advances in Signal
Processing .

Nasipuri, A., Zhuang, J. & Das, S.-R. (1999). A multi-channel CSMA MAC protocol
for multi-hop wireless networks, IEEE Wireless Communications and Networking
Conference, pp. 1402–1406.

Pathmasuntharam, J. S., Das, A. & Gupta, A. K. (2004). Primary channel assignment based
MAC (PCAM) - a multi-channel MAC protocol for multi-hop wireless networks,
IEEE Wireless Communications and Networking Conference, pp. 1110–1115.

Propagation data and prediction method for the planning of indoor radio communication systems and
local area networks in the frequency range of 900 MHz to 100 GHz (2005). Recommendation
ITU-R P 1238-4, ITU.

Ramakrishnan, M. & Vanaja Ranjan, P. (2009). Multi channel MAC for wireless sensor
networks, International Journal of Computer Networks and Communications (IJCNC)
1(2): 47–54.

Seo, M., Kim, Y. & Ma, J. (2008). Multi-channel MAC protocol for multi-hop wireless
networks: handling multi-channel hidden node problem using snooping, IEEE
Military Communications Conference, pp. 1–7.

351Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots

24 Will-be-set-by-IN-TECH

So, H. W. & Walrand, J. (2007). McMAC: A multi-channel MAC proposal for ad-hoc wireless
networks, IEEE Wireless Communications and Networking Conference.

Wu, S.-L., Lin, C.-Y., Tseng, Y.-C. & Sheu, J.-P. (2000). A new multi-channel MAC protocol with
on-demand channel assignment for multi-hop mobile ad hoc networks, International
Symposium on Parallel Architectures, Algorithms and Networks, pp. 232–237.

Zhang, J., Zhou, G., Huang, C., Son, S. H. & Stankovic, J. A. (2007). TMMAC: an energy
efficient multi-channel MAC protocol for ad hoc networks, IEE ICC, pp. 3554–3561.

Zhao, W., Chen, Y., Ammar, M., Corner, M., Levine, B. & Zegura, E. (2006). Capacity
enhancement using throwboxes in DTNs, pp. 31–40.

352
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

16

Distance Measurement for Indoor
 Robotic Collectives

Mihai V. Micea, Andrei Stancovici and Sînziana Indreica
Politehnica University of Timisoara

Romania

1. Introduction
Location monitoring is a common problem for many mobile robotic applications covering
various domains, such as industrial automation, manipulation in difficult areas, rescue
operations, environment exploration and monitoring, smart environments and buildings,
robotic home appliances, space exploration and probing.
A key aspect of localization is inter-robot distance measurement. In this chapter we consider
the problem of autonomous, collaborative distance measurement in mobile robotic systems,
under the following set of design and functional constraints:
a. indoor operation,
b. independence of fixed landmarks,
c. robustness and accuracy,
d. energy efficiency,
e. low cost and complexity.
This work significantly extends and updates the results previously published in (Micea et
al., 2010). We present and discuss some of the most relevant state of the art techniques for
robot distance estimation. Next, we introduce a framework for collaborative inter-robot
distance measurement along with a procedure for accurate robotic alignment. The proposed
alignment algorithm is based on evaluating and comparing the strength of ultrasonic signals
at different angles, processing (filtering) the measured data and ensuring a good
synchronization during the process. Further on, we present the CTOF (Combined Time-of-
Flight) method for distance measurement, which brings significant improvements to the
classical TOF technique, and we show how this new technique meets the above specified
design constraints. Some of the most interesting test and evaluation results are presented
and discussed. The experimental data show how the distance estimation accuracy can be
increased by applying the Kalman filter algorithm on repetitive measurements. The final
remarks and the reference list conclude this chapter.

2. Current techniques for robot distance estimation
The problem of inter-robot distance measurement and location monitoring is considered of
key importance in the field and, consequently, a large number and variety of methods have
been proposed and studied in the literature. For instance, the GPS system (Ohno et al., 2004;
Reina et al., 2007) and landmark-based solutions such as the Cricket Indoor Location System
(Cricket Project, 2005; Priyantha, 2005) are well established in the field. On the other hand,

24 Will-be-set-by-IN-TECH

So, H. W. & Walrand, J. (2007). McMAC: A multi-channel MAC proposal for ad-hoc wireless
networks, IEEE Wireless Communications and Networking Conference.

Wu, S.-L., Lin, C.-Y., Tseng, Y.-C. & Sheu, J.-P. (2000). A new multi-channel MAC protocol with
on-demand channel assignment for multi-hop mobile ad hoc networks, International
Symposium on Parallel Architectures, Algorithms and Networks, pp. 232–237.

Zhang, J., Zhou, G., Huang, C., Son, S. H. & Stankovic, J. A. (2007). TMMAC: an energy
efficient multi-channel MAC protocol for ad hoc networks, IEE ICC, pp. 3554–3561.

Zhao, W., Chen, Y., Ammar, M., Corner, M., Levine, B. & Zegura, E. (2006). Capacity
enhancement using throwboxes in DTNs, pp. 31–40.

352
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

16

Distance Measurement for Indoor
 Robotic Collectives

Mihai V. Micea, Andrei Stancovici and Sînziana Indreica
Politehnica University of Timisoara

Romania

1. Introduction
Location monitoring is a common problem for many mobile robotic applications covering
various domains, such as industrial automation, manipulation in difficult areas, rescue
operations, environment exploration and monitoring, smart environments and buildings,
robotic home appliances, space exploration and probing.
A key aspect of localization is inter-robot distance measurement. In this chapter we consider
the problem of autonomous, collaborative distance measurement in mobile robotic systems,
under the following set of design and functional constraints:
a. indoor operation,
b. independence of fixed landmarks,
c. robustness and accuracy,
d. energy efficiency,
e. low cost and complexity.
This work significantly extends and updates the results previously published in (Micea et
al., 2010). We present and discuss some of the most relevant state of the art techniques for
robot distance estimation. Next, we introduce a framework for collaborative inter-robot
distance measurement along with a procedure for accurate robotic alignment. The proposed
alignment algorithm is based on evaluating and comparing the strength of ultrasonic signals
at different angles, processing (filtering) the measured data and ensuring a good
synchronization during the process. Further on, we present the CTOF (Combined Time-of-
Flight) method for distance measurement, which brings significant improvements to the
classical TOF technique, and we show how this new technique meets the above specified
design constraints. Some of the most interesting test and evaluation results are presented
and discussed. The experimental data show how the distance estimation accuracy can be
increased by applying the Kalman filter algorithm on repetitive measurements. The final
remarks and the reference list conclude this chapter.

2. Current techniques for robot distance estimation
The problem of inter-robot distance measurement and location monitoring is considered of
key importance in the field and, consequently, a large number and variety of methods have
been proposed and studied in the literature. For instance, the GPS system (Ohno et al., 2004;
Reina et al., 2007) and landmark-based solutions such as the Cricket Indoor Location System
(Cricket Project, 2005; Priyantha, 2005) are well established in the field. On the other hand,

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 354

they do not comply with the constraints specified in the previous section (i.e. independence
of fixed landmarks). In this section we discuss some of the most prominent techniques
which can be used for indoor robotic collectives.
Time-Difference-of-Arrival (TDOA) measures the distance between two points by using two
different types of signals (usually radio and acoustic) which cover the route connecting the
two points with different speeds. To illustrate this technique, consider two points, A and B,
located at distance d from each other. At a time instance, the transmitter from A sends
simultaneously the signals S1 and S2, which cover the distance d at the speeds vS1 and vS2,
respectively. If, for example, vS2 < vS1, then signal S2 arrives at the receiver B after S1, with a
delay which depends on the distance d. This delay is measured at the destination point B
and the value of d is consequently derived. Cricket Indoor Location System uses TDOA to
measure the distance to the reference points. The system consists of several landmark
transmission devices, depending on the size of the desired coverage area (at least three
modules) and one or more mobile devices that play the role of receptors. In most cases, the
transmission devices are attached to the upper part of the room so as to cover a large
portion or the entire room. The reception devices are attached to robots, located on the floor.
As shown in (Priyantha, 2005), the system relies on two types of signals to calculate
distances: a RF (radio) signal and an ultrasonic signal. The radio signal is 106 times faster
than the ultrasonic signal, and the distance is calculated by applying the principle of TDOA
to the difference of the two propagation periods. The localization of mobile robots through
this system is made at an accuracy of 1 ÷ 3 cm. Similarly, the system presented in (Fayli &
Kleeman, 2004) solves the localization problem based on four transmitters as fixed reference
points and a wireless receiver.
Another well known technology used in robotics to calculate distance is based on infrared (IR)
sensors. There are several types of IR sensors, each varying according to their parameters (e.g.
maximum range and accuracy) and price. In comparison to ultrasonic devices, the IR sensors
are cheaper and use light, which is much faster than the acoustic signal. They have nonlinear
characteristics which depend on the surface reflectance of the objects. Based on measuring the
intensity of light reflected by a target, the IR sensors can calculate the distance to it. This
technique is presented and discussed in several works, including (Novotny & Ferrier, 1999; Ha
& Kim, 2004; Mohammad, 2009). Hagisonic StarGazer (Hagisonic, 2009) is a location system
for mobile robots, based on the analysis of infrared rays which are reflected by a passive
landmark with a unique ID. The system works as follows:
1. The IR transmitter is located on the robot. It transmits infrared beams to the fixed

landmark attached to the ceiling of the room.
2. The infrared rays are reflected from the landmark and reach the Stargazer, mounted on

the robot.
3. Stargazer contains a CMOS camera able to estimate the angle of incidence of the

reflected IR waves and the distance between the robot and the landmark.
4. Based on the angle of incidence and on the distance to the landmark, the position of the

robot in the room can then be obtained through geometric techniques.
The advantage of such a system is its accuracy, which, according to (Hagisonic, 2009), can
reach approximately 2 cm. The system can carry out 20 measurements per second. Its
disadvantage is the high price and the reduced coverage area, which ranges from 2.5 to 5 m.
A set of radio-based methods use the power of the received signal to estimate the distance to
the source. The mathematical model of the emitted signal power is given in (Fuicu et al.,
2009) as:

Distance Measurement for Indoor Robotic Collectives 355

  2

2 2
44t

r

fdP d
P c




  (1)

where Pt and Pr are the signal power at the emitter and at the receiver, respectively, d is the
propagation distance,  and f are the carrier wavelength and frequency, respectively, and c,
the speed of light. The accuracy of such systems though, is around 2-3 m. Another similar
technique, based on modeling the signal power for the ZigBee (IEEE 802.15.4) protocol
(ZigBee Standards Organization, 2007), is presented in (Grossmann, 2007).
An indoor GPS system, presented in (Kim et al., 2006), consists of two receivers as fixed
reference points and a transmitter which uses both ultrasonic and RF signals. The receivers
estimate the distance to the transmitter based on the delay between the received RF signal and
the ultrasound waves. The two resulting distances are then used to calculate the location of the
transmitter, through geometrical formulas. A Linear Kalman Filter is also used to minimize the
errors and noise occurring in the measurements of the ultrasound signal.
GPS systems usually calculate the distance between a receiver and multiple transmitters
based on the difference in the time-of-flight of the received signals (the TOF method).
Through the TOF method, more precise results can be obtained. However, TOF is influenced
by the synchronization accuracy of system, environment temperature or other factors which
could yield calculation errors. As a result, filtering of measurement values is frequently
used. A common solution is the Linear Kalman Filter, as presented in (Kim et al., 2006; Ko et
al., 2008; Welch & Bishop, 2006). Other approaches use Bayesian filters (Fox et al., 2003),
which estimate the state of a probabilistic dynamic system from observations drowned in
noise. Using statistic techniques, they operate in a deterministic manner and are suitable for
systems with multiple sensors with different characteristics.
The Building Positioning System (Reynolds, 1999), determines the position of a mobile device
by receiving radio signals from fixed devices. These are designed to transmit radio signals in a
manner which is similar to the operation of the Cricket or GPS modules. Compared with the
GPS, this system uses a much lower frequency, making the radio waves propagate with a
relatively low attenuation. The system requires only 4 fixed transmission antennas attached to
four different corners of the building. The accuracy of such a system is about 5 cm.
Image processing methods are also widely used, many of them using passive cameras. A
microcontroller drives a motor to focus a target image located at a certain distance from the
sensor. Based on several parameters, like motor position or lens properties, the distance to
the target object can be determined. Some systems are based, for instance, on visual
information from a 360 degree camera (Tamimi et al., 2006). Such systems must be trained
before being used, by capturing representative images from the environment and
associating them with the corresponding locations.

3. Example framework for collaborative inter-robot distance measurement
The proposed distance measurement method and inter-robot alignment algorithm have a
common set of requirements for the target robotic system. Such a framework, which has
been used to implement and test the proposed techniques, is the CORE-TX platform
(Cioarga et al., 2006).
CORE-TX (COllaborative Robotic Environment – the Timisoara eXperiment) is designed to
provide theoretical and applicative support for the study of intelligent sensor networks and
robotic collectives. Its architecture is structured on three main layers (see Fig. 1):
1. Perception and Operation Layer, consisting mainly of autonomous microsystems with

embedded intelligence, called WITs (Wireless Intelligent Terminals),

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 354

they do not comply with the constraints specified in the previous section (i.e. independence
of fixed landmarks). In this section we discuss some of the most prominent techniques
which can be used for indoor robotic collectives.
Time-Difference-of-Arrival (TDOA) measures the distance between two points by using two
different types of signals (usually radio and acoustic) which cover the route connecting the
two points with different speeds. To illustrate this technique, consider two points, A and B,
located at distance d from each other. At a time instance, the transmitter from A sends
simultaneously the signals S1 and S2, which cover the distance d at the speeds vS1 and vS2,
respectively. If, for example, vS2 < vS1, then signal S2 arrives at the receiver B after S1, with a
delay which depends on the distance d. This delay is measured at the destination point B
and the value of d is consequently derived. Cricket Indoor Location System uses TDOA to
measure the distance to the reference points. The system consists of several landmark
transmission devices, depending on the size of the desired coverage area (at least three
modules) and one or more mobile devices that play the role of receptors. In most cases, the
transmission devices are attached to the upper part of the room so as to cover a large
portion or the entire room. The reception devices are attached to robots, located on the floor.
As shown in (Priyantha, 2005), the system relies on two types of signals to calculate
distances: a RF (radio) signal and an ultrasonic signal. The radio signal is 106 times faster
than the ultrasonic signal, and the distance is calculated by applying the principle of TDOA
to the difference of the two propagation periods. The localization of mobile robots through
this system is made at an accuracy of 1 ÷ 3 cm. Similarly, the system presented in (Fayli &
Kleeman, 2004) solves the localization problem based on four transmitters as fixed reference
points and a wireless receiver.
Another well known technology used in robotics to calculate distance is based on infrared (IR)
sensors. There are several types of IR sensors, each varying according to their parameters (e.g.
maximum range and accuracy) and price. In comparison to ultrasonic devices, the IR sensors
are cheaper and use light, which is much faster than the acoustic signal. They have nonlinear
characteristics which depend on the surface reflectance of the objects. Based on measuring the
intensity of light reflected by a target, the IR sensors can calculate the distance to it. This
technique is presented and discussed in several works, including (Novotny & Ferrier, 1999; Ha
& Kim, 2004; Mohammad, 2009). Hagisonic StarGazer (Hagisonic, 2009) is a location system
for mobile robots, based on the analysis of infrared rays which are reflected by a passive
landmark with a unique ID. The system works as follows:
1. The IR transmitter is located on the robot. It transmits infrared beams to the fixed

landmark attached to the ceiling of the room.
2. The infrared rays are reflected from the landmark and reach the Stargazer, mounted on

the robot.
3. Stargazer contains a CMOS camera able to estimate the angle of incidence of the

reflected IR waves and the distance between the robot and the landmark.
4. Based on the angle of incidence and on the distance to the landmark, the position of the

robot in the room can then be obtained through geometric techniques.
The advantage of such a system is its accuracy, which, according to (Hagisonic, 2009), can
reach approximately 2 cm. The system can carry out 20 measurements per second. Its
disadvantage is the high price and the reduced coverage area, which ranges from 2.5 to 5 m.
A set of radio-based methods use the power of the received signal to estimate the distance to
the source. The mathematical model of the emitted signal power is given in (Fuicu et al.,
2009) as:

Distance Measurement for Indoor Robotic Collectives 355

  2

2 2
44t

r

fdP d
P c




  (1)

where Pt and Pr are the signal power at the emitter and at the receiver, respectively, d is the
propagation distance,  and f are the carrier wavelength and frequency, respectively, and c,
the speed of light. The accuracy of such systems though, is around 2-3 m. Another similar
technique, based on modeling the signal power for the ZigBee (IEEE 802.15.4) protocol
(ZigBee Standards Organization, 2007), is presented in (Grossmann, 2007).
An indoor GPS system, presented in (Kim et al., 2006), consists of two receivers as fixed
reference points and a transmitter which uses both ultrasonic and RF signals. The receivers
estimate the distance to the transmitter based on the delay between the received RF signal and
the ultrasound waves. The two resulting distances are then used to calculate the location of the
transmitter, through geometrical formulas. A Linear Kalman Filter is also used to minimize the
errors and noise occurring in the measurements of the ultrasound signal.
GPS systems usually calculate the distance between a receiver and multiple transmitters
based on the difference in the time-of-flight of the received signals (the TOF method).
Through the TOF method, more precise results can be obtained. However, TOF is influenced
by the synchronization accuracy of system, environment temperature or other factors which
could yield calculation errors. As a result, filtering of measurement values is frequently
used. A common solution is the Linear Kalman Filter, as presented in (Kim et al., 2006; Ko et
al., 2008; Welch & Bishop, 2006). Other approaches use Bayesian filters (Fox et al., 2003),
which estimate the state of a probabilistic dynamic system from observations drowned in
noise. Using statistic techniques, they operate in a deterministic manner and are suitable for
systems with multiple sensors with different characteristics.
The Building Positioning System (Reynolds, 1999), determines the position of a mobile device
by receiving radio signals from fixed devices. These are designed to transmit radio signals in a
manner which is similar to the operation of the Cricket or GPS modules. Compared with the
GPS, this system uses a much lower frequency, making the radio waves propagate with a
relatively low attenuation. The system requires only 4 fixed transmission antennas attached to
four different corners of the building. The accuracy of such a system is about 5 cm.
Image processing methods are also widely used, many of them using passive cameras. A
microcontroller drives a motor to focus a target image located at a certain distance from the
sensor. Based on several parameters, like motor position or lens properties, the distance to
the target object can be determined. Some systems are based, for instance, on visual
information from a 360 degree camera (Tamimi et al., 2006). Such systems must be trained
before being used, by capturing representative images from the environment and
associating them with the corresponding locations.

3. Example framework for collaborative inter-robot distance measurement
The proposed distance measurement method and inter-robot alignment algorithm have a
common set of requirements for the target robotic system. Such a framework, which has
been used to implement and test the proposed techniques, is the CORE-TX platform
(Cioarga et al., 2006).
CORE-TX (COllaborative Robotic Environment – the Timisoara eXperiment) is designed to
provide theoretical and applicative support for the study of intelligent sensor networks and
robotic collectives. Its architecture is structured on three main layers (see Fig. 1):
1. Perception and Operation Layer, consisting mainly of autonomous microsystems with

embedded intelligence, called WITs (Wireless Intelligent Terminals),

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 356

2. Collaborative Communication Layer, based on ad-hoc wireless data communication
techniques (currently, the basic support is provided by the ZigBee protocol), and

3. Background Control and Supervision Layer, with a central node called BRAIN
(Background Robotic Activity Induction Node).

Fig. 1. General architecture of the CORE-TX system

3.1 General architecture of the robotic elements
The WIT elements may have perception functions (intelligent sensors), operating functions
(autonomous mini-robots), or combined. They have been designed using a modular
approach (Fig. 2) which specifies a motherboard (the Base Processing Module),
interconnected through a system bus to a set of specialized daughter boards. Such daughter
boards are the Power Management Module, the Perception Module and the Communication
Module. The additional Support and Operation Module transforms the WIT, from a static
intelligent sensor, into an autonomous mini-robot.
Currently, the WIT communication board uses the XBee wireless module (Digi
International, 2009), which is based on the Zigbee protocol. This module provides a unique
64-bit ID. Other features are: size of 2 cm x 3 cm, operating range of up to 30 m indoor and
up to 90 m outdoor, with a maximum consumption of 50 mA at a voltage of 3.3 V.
Communication uses the 2.4 GHz radio frequency band with 16 channels.

3.2 Design of the perception module
The schematic design of the Perception Module is shown in Fig. 3. The main processor is the
ARM7-based LPC2294 (NXP Semiconductors, 2008) which runs the Hard Real-Time
Operating Kernel, HARETICK (Micea et al., 2006), for predictable operation. Another
important part of the module is the coprocessor ATxmega128A1 (Atmel Corporation, 2010),
used for fast, periodic data acquisition and processing operations. It was also chosen for its

Distance Measurement for Indoor Robotic Collectives 357

high ADC performance and multiple resources, such as 16 ADC channels, 4 DMA channels,
8 timers, 24 PWM channels, 4 SPI interfaces and a large set of I/O ports.

Fig. 2. Diagram of the Wireless Intelligent Terminal

Fig. 3. Schematic of the WIT Perception Module

WIT

ROM: Support and Operation
(Robotic) Module
(daughterboard)

POM: Power Management Module
(daughterboard)

BAM: Base Processing Module
(motherboard)

SEM: Perception (Sensor) Module
(daughterboard)

COM: Communication Module
(daughterboard)

WIT

ROM: Support and Operation
(Robotic) Module
(daughterboard)

POM: Power Management Module
(daughterboard)

BAM: Base Processing Module
(motherboard)

SEM: Perception (Sensor) Module
(daughterboard)

COM: Communication Module
(daughterboard)

ATxmega128A1

PWM

PWM

ADC

PWM

ADC

Servo
Motor

Rotating platform with
ultrasonic transducers

Amplification
and duplexingTimers /

Counters

DMA

SPI

LPC2294

SPISPI

W
IT

 S
ys

te
m

 B
u

s

ATxmega128A1

PWM

PWM

ADC

PWM

ADC

Servo
Motor

Rotating platform with
ultrasonic transducers

Amplification
and duplexingTimers /

Counters

DMA

SPI

LPC2294

SPISPI

W
IT

 S
ys

te
m

 B
u

s

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 356

2. Collaborative Communication Layer, based on ad-hoc wireless data communication
techniques (currently, the basic support is provided by the ZigBee protocol), and

3. Background Control and Supervision Layer, with a central node called BRAIN
(Background Robotic Activity Induction Node).

Fig. 1. General architecture of the CORE-TX system

3.1 General architecture of the robotic elements
The WIT elements may have perception functions (intelligent sensors), operating functions
(autonomous mini-robots), or combined. They have been designed using a modular
approach (Fig. 2) which specifies a motherboard (the Base Processing Module),
interconnected through a system bus to a set of specialized daughter boards. Such daughter
boards are the Power Management Module, the Perception Module and the Communication
Module. The additional Support and Operation Module transforms the WIT, from a static
intelligent sensor, into an autonomous mini-robot.
Currently, the WIT communication board uses the XBee wireless module (Digi
International, 2009), which is based on the Zigbee protocol. This module provides a unique
64-bit ID. Other features are: size of 2 cm x 3 cm, operating range of up to 30 m indoor and
up to 90 m outdoor, with a maximum consumption of 50 mA at a voltage of 3.3 V.
Communication uses the 2.4 GHz radio frequency band with 16 channels.

3.2 Design of the perception module
The schematic design of the Perception Module is shown in Fig. 3. The main processor is the
ARM7-based LPC2294 (NXP Semiconductors, 2008) which runs the Hard Real-Time
Operating Kernel, HARETICK (Micea et al., 2006), for predictable operation. Another
important part of the module is the coprocessor ATxmega128A1 (Atmel Corporation, 2010),
used for fast, periodic data acquisition and processing operations. It was also chosen for its

Distance Measurement for Indoor Robotic Collectives 357

high ADC performance and multiple resources, such as 16 ADC channels, 4 DMA channels,
8 timers, 24 PWM channels, 4 SPI interfaces and a large set of I/O ports.

Fig. 2. Diagram of the Wireless Intelligent Terminal

Fig. 3. Schematic of the WIT Perception Module

WIT

ROM: Support and Operation
(Robotic) Module
(daughterboard)

POM: Power Management Module
(daughterboard)

BAM: Base Processing Module
(motherboard)

SEM: Perception (Sensor) Module
(daughterboard)

COM: Communication Module
(daughterboard)

WIT

ROM: Support and Operation
(Robotic) Module
(daughterboard)

POM: Power Management Module
(daughterboard)

BAM: Base Processing Module
(motherboard)

SEM: Perception (Sensor) Module
(daughterboard)

COM: Communication Module
(daughterboard)

ATxmega128A1

PWM

PWM

ADC

PWM

ADC

Servo
Motor

Rotating platform with
ultrasonic transducers

Amplification
and duplexingTimers /

Counters

DMA

SPI

LPC2294

SPISPI

W
IT

 S
ys

te
m

 B
u

s

ATxmega128A1

PWM

PWM

ADC

PWM

ADC

Servo
Motor

Rotating platform with
ultrasonic transducers

Amplification
and duplexingTimers /

Counters

DMA

SPI

LPC2294

SPISPI

W
IT

 S
ys

te
m

 B
u

s

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 358

Two similar transducers are used both for transmitting and for receiving ultrasonic signals.
The BPU-1640IOAH12 device (Bestar Electronics, 2006) has been selected, due to its
convenient features, which include low cost, bidirectional operation, nominal frequency of
40 kHz, and maximum input voltage of 120 Vpp. Signal duplexing at the transducer level
(bidirectional operation) has been implemented using SI4808DY MOSFET circuits.
To perform a fast alignment process, the two ultrasonic transducers are mounted back to
back at 180 degrees on a rotating platform, which is driven by a servo motor. The motor is a
TowerPro SG-50 (Tower Pro, 2008) with the following specifications: weight 5 g, dimensions
21.5  11. 7  25.1 mm, speed 0.1 s/60 degrees (at 4.8 V), supply voltage 4  6 V. The servo
motor is driven by a PWM signal with a period of 20 ms and a variable duty cycle. Rotation
is between 0 (minimum pulse duration) and 180 degrees (maximum pulse duration).
Choosing the design based on a turret support for the ultrasonic transducers has several
advantages when compared to other designs. On one hand, avoiding the rotation of the
entire robots during the alignment process eliminates the inherent positioning errors, while
also lowers the power consumption of the system. Other advantages of this solution are the
increase of the alignment accuracy at a higher process speed.

4. Inter-robot alignment algorithm
To obtain correct results, the proposed techniques require that the pair of robots performing
the distance measurement procedure must successfully complete the alignment algorithm.
Correct alignment means the sensing devices (i.e. the ultrasonic transducers) of the robots
are facing each other, as close as possible to the straight line between them (see Fig. 4). This
procedure also provides key angle values of each robot position and orientation related to
the local reference system (Fig. 5):
 α12 is the angle between the orientation axis (Ox1) of the first robot (W1) and the direct

line between the two robots.
 φ1 is the angle defined by the Ox1 axis and the ultrasonic sensor axis of W1.
 α21 is the angle between the orientation axis (Ox2) of the second robot (W2) and the direct

line between W1 and W2.
 φ2 is the angle defined by the Ox2 axis and the ultrasonic sensor axis of W2.

Fig. 4. Inter-robot alignment process

Distance Measurement for Indoor Robotic Collectives 359

Thus, the ideal alignment situation is when α12 = φ1 and α21 = φ2. In this case, the alignment
error is 0.

Fig. 5. Key angles on the alignment process

4.1 Description of the algorithm
The alignment procedure uses the wireless communication interfaces of the robots to enable
the two corresponding peers exchange the required commands and messages, and is based
on the continuous measurement of the Sonar acoustic intensity. It is initiated and conducted
by one of the robots, which acts as the master (WM), while the other robot, the slave (WS),
executes the commands received from the master through the wireless link. The master will
operate in the Sonar receive mode and the slave in Sonar transmit mode.
The procedure is based on the high directivity of ultrasonic waves used by the Sonar. As the
two robot turrets rotate, the master calculates the average strength of the ultrasonic signal
received from the slave, at each rotation step of 1 degree. If WM senses this average signal
strength has increased from the previous rotation step, it continues the procedure until a
decrease is encountered. Then, the two robots will change the rotation directions of their
turrets to return to the previously detected maximum.
Fig. 6 shows all steps of the alignment algorithm. The process starts with the reading of the
ADC results. The two decision blocks labeled "done" refer to extracting a predetermined
number of samples, respectively, re-reading the values stored in memory. Next, the
measured values are optimized by finding the peak amplitude of each period, applying a
Kalman filter and comparing the results to each other to determine a global maximum. This
global maximum is further used as the amplitude of the signal in the next steps.
The block labeled "pre_align==0?" determines whether it is the last alignment phase of the
process. If not, the algorithm determines the trend of the signal: if two consecutive increases
are detected, "flag_inc" is set and if there has been a previous decrease, the current stage of
the algorithm is finished. On the other hand, if there are two consecutive decreases, the

W2

W1

x2

y2y1

x1

21
2

12


1

W2

W1

x2

y2y1

x1

21
2

12


1

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 358

Two similar transducers are used both for transmitting and for receiving ultrasonic signals.
The BPU-1640IOAH12 device (Bestar Electronics, 2006) has been selected, due to its
convenient features, which include low cost, bidirectional operation, nominal frequency of
40 kHz, and maximum input voltage of 120 Vpp. Signal duplexing at the transducer level
(bidirectional operation) has been implemented using SI4808DY MOSFET circuits.
To perform a fast alignment process, the two ultrasonic transducers are mounted back to
back at 180 degrees on a rotating platform, which is driven by a servo motor. The motor is a
TowerPro SG-50 (Tower Pro, 2008) with the following specifications: weight 5 g, dimensions
21.5  11. 7  25.1 mm, speed 0.1 s/60 degrees (at 4.8 V), supply voltage 4  6 V. The servo
motor is driven by a PWM signal with a period of 20 ms and a variable duty cycle. Rotation
is between 0 (minimum pulse duration) and 180 degrees (maximum pulse duration).
Choosing the design based on a turret support for the ultrasonic transducers has several
advantages when compared to other designs. On one hand, avoiding the rotation of the
entire robots during the alignment process eliminates the inherent positioning errors, while
also lowers the power consumption of the system. Other advantages of this solution are the
increase of the alignment accuracy at a higher process speed.

4. Inter-robot alignment algorithm
To obtain correct results, the proposed techniques require that the pair of robots performing
the distance measurement procedure must successfully complete the alignment algorithm.
Correct alignment means the sensing devices (i.e. the ultrasonic transducers) of the robots
are facing each other, as close as possible to the straight line between them (see Fig. 4). This
procedure also provides key angle values of each robot position and orientation related to
the local reference system (Fig. 5):
 α12 is the angle between the orientation axis (Ox1) of the first robot (W1) and the direct

line between the two robots.
 φ1 is the angle defined by the Ox1 axis and the ultrasonic sensor axis of W1.
 α21 is the angle between the orientation axis (Ox2) of the second robot (W2) and the direct

line between W1 and W2.
 φ2 is the angle defined by the Ox2 axis and the ultrasonic sensor axis of W2.

Fig. 4. Inter-robot alignment process

Distance Measurement for Indoor Robotic Collectives 359

Thus, the ideal alignment situation is when α12 = φ1 and α21 = φ2. In this case, the alignment
error is 0.

Fig. 5. Key angles on the alignment process

4.1 Description of the algorithm
The alignment procedure uses the wireless communication interfaces of the robots to enable
the two corresponding peers exchange the required commands and messages, and is based
on the continuous measurement of the Sonar acoustic intensity. It is initiated and conducted
by one of the robots, which acts as the master (WM), while the other robot, the slave (WS),
executes the commands received from the master through the wireless link. The master will
operate in the Sonar receive mode and the slave in Sonar transmit mode.
The procedure is based on the high directivity of ultrasonic waves used by the Sonar. As the
two robot turrets rotate, the master calculates the average strength of the ultrasonic signal
received from the slave, at each rotation step of 1 degree. If WM senses this average signal
strength has increased from the previous rotation step, it continues the procedure until a
decrease is encountered. Then, the two robots will change the rotation directions of their
turrets to return to the previously detected maximum.
Fig. 6 shows all steps of the alignment algorithm. The process starts with the reading of the
ADC results. The two decision blocks labeled "done" refer to extracting a predetermined
number of samples, respectively, re-reading the values stored in memory. Next, the
measured values are optimized by finding the peak amplitude of each period, applying a
Kalman filter and comparing the results to each other to determine a global maximum. This
global maximum is further used as the amplitude of the signal in the next steps.
The block labeled "pre_align==0?" determines whether it is the last alignment phase of the
process. If not, the algorithm determines the trend of the signal: if two consecutive increases
are detected, "flag_inc" is set and if there has been a previous decrease, the current stage of
the algorithm is finished. On the other hand, if there are two consecutive decreases, the

W2

W1

x2

y2y1

x1

21
2

12


1

W2

W1

x2

y2y1

x1

21
2

12


1

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 360

direction of rotation changes and, if "flag_inc" is set, "flag_dec" also will be set. This phase
also determines and updates the highest value of the signal reached so far.
In the last phase of the alignment, the algorithm tries to trace back the position with the
highest measured values. Thus, if it detects an increase of the measured signal and the
current value is larger than or equal to the stored peak, the process ends and the
transducers are considered aligned. If, instead, a decrease is detected, the rotation
direction is changed. In all cases, if the process doesn’t end, the flow of the algorithm goes
back to ADC readings.

Fig. 6. Robotic alignment algorithm

4.2 Performance evaluation of the alignment algorithm
To evaluate the robotic alignment procedure, a custom simulation application has been
developed using the WPF (Windows Presentation Foundation). Two cases have been
considered:
1. the ultrasonic transducers are fixed on the robot case and thus the robots rotate

themselves (using the wheels) during the alignment process, and

ADC read

Find maximum per period

Double amplitude
increase?

Done?

Apply (Kalman) filter

Find maximum per degree

flag_dec==TRUE ?

Store new MAX =
global maximum value

pre_align==0 ?

Amplitude<MAX ?

STOP

Change turret direction

Y

N

flag_inc=TRUE

N

N Y

Done?

Y

N

START

Double amplitude
decrease?

pre_align=3

Decrement pre_align
Yflag_inc==TRUE ?

Y

N

flag_dec=TRUE
Y

N

N

Amplitude
increase?

Y

Y

N Change turret
direction

Amplitude
decrease?

Y

N

N

Y

ADC read

Find maximum per period

Double amplitude
increase?

Done?

Apply (Kalman) filter

Find maximum per degree

flag_dec==TRUE ?

Store new MAX =
global maximum value

pre_align==0 ?

Amplitude<MAX ?

STOP

Change turret direction

Y

N

flag_inc=TRUE

N

N Y

Done?

Y

N

START

Double amplitude
decrease?

pre_align=3

Decrement pre_align
Yflag_inc==TRUE ?

Y

N

flag_dec=TRUE
Y

N

N

Amplitude
increase?

Y

Y

N Change turret
direction

Amplitude
decrease?

Y

N

N

Y

Distance Measurement for Indoor Robotic Collectives 361

2. the current design in which the robots are equipped with turrets, rotated at 180 degrees
by a servo motor.

The data collected was used to improve the alignment algorithm.
To simulate the ultrasonic signal transmission we considered an idealized representation –
an isosceles triangle which represents the longitudinal cross-section of the propagation cone.
This triangle will represent the "active space" of the robot, and it has an opening of 60
degrees. In this case, the power of the signal (its amplitude) varies with the distance from
the bisector of the considered angle. In other words, a perfect alignment takes place when
the bisectors of the receiver and transmitter concur (Fig. 7).

Fig. 7. Robotic alignment simulation tool

Because the distance between the robots is constant throughout the alignment process, its
importance in the real case lies in the fact that the receiver may not "read" anything from the
transmitter if it is too far away. Also, when further apart, the visibility angle broadens and
more precise alignments may occur. In the application, we consider the distance a constant
parameter and simulate the most usual scenarios, i.e. where the robots are not too far apart
for the angle to broaden.
To be able to determine the position of the robots (of the sensors) relative to each other, we
have to calculate the signal strength from both directions and then multiply the results. For
the correction of the final alignment, the maximum value of the signal is determined. With
the simulator, this maximum value is calculated from the initial conditions. In the real case,
the best value must be searched for the signal currently measured, because the distance
between robots is unknown.
Fig. 8 and Fig. 9 show the elapsed time for the alignment, versus the initial angles of the
robots, at various ratios of the rotation speed (calculated as [rad/(s103)]). The thick lines
mark the best two series, which minimize the alignment duration, at a corresponding
rotation speed ratio.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 360

direction of rotation changes and, if "flag_inc" is set, "flag_dec" also will be set. This phase
also determines and updates the highest value of the signal reached so far.
In the last phase of the alignment, the algorithm tries to trace back the position with the
highest measured values. Thus, if it detects an increase of the measured signal and the
current value is larger than or equal to the stored peak, the process ends and the
transducers are considered aligned. If, instead, a decrease is detected, the rotation
direction is changed. In all cases, if the process doesn’t end, the flow of the algorithm goes
back to ADC readings.

Fig. 6. Robotic alignment algorithm

4.2 Performance evaluation of the alignment algorithm
To evaluate the robotic alignment procedure, a custom simulation application has been
developed using the WPF (Windows Presentation Foundation). Two cases have been
considered:
1. the ultrasonic transducers are fixed on the robot case and thus the robots rotate

themselves (using the wheels) during the alignment process, and

ADC read

Find maximum per period

Double amplitude
increase?

Done?

Apply (Kalman) filter

Find maximum per degree

flag_dec==TRUE ?

Store new MAX =
global maximum value

pre_align==0 ?

Amplitude<MAX ?

STOP

Change turret direction

Y

N

flag_inc=TRUE

N

N Y

Done?

Y

N

START

Double amplitude
decrease?

pre_align=3

Decrement pre_align
Yflag_inc==TRUE ?

Y

N

flag_dec=TRUE
Y

N

N

Amplitude
increase?

Y

Y

N Change turret
direction

Amplitude
decrease?

Y

N

N

Y

ADC read

Find maximum per period

Double amplitude
increase?

Done?

Apply (Kalman) filter

Find maximum per degree

flag_dec==TRUE ?

Store new MAX =
global maximum value

pre_align==0 ?

Amplitude<MAX ?

STOP

Change turret direction

Y

N

flag_inc=TRUE

N

N Y

Done?

Y

N

START

Double amplitude
decrease?

pre_align=3

Decrement pre_align
Yflag_inc==TRUE ?

Y

N

flag_dec=TRUE
Y

N

N

Amplitude
increase?

Y

Y

N Change turret
direction

Amplitude
decrease?

Y

N

N

Y

Distance Measurement for Indoor Robotic Collectives 361

2. the current design in which the robots are equipped with turrets, rotated at 180 degrees
by a servo motor.

The data collected was used to improve the alignment algorithm.
To simulate the ultrasonic signal transmission we considered an idealized representation –
an isosceles triangle which represents the longitudinal cross-section of the propagation cone.
This triangle will represent the "active space" of the robot, and it has an opening of 60
degrees. In this case, the power of the signal (its amplitude) varies with the distance from
the bisector of the considered angle. In other words, a perfect alignment takes place when
the bisectors of the receiver and transmitter concur (Fig. 7).

Fig. 7. Robotic alignment simulation tool

Because the distance between the robots is constant throughout the alignment process, its
importance in the real case lies in the fact that the receiver may not "read" anything from the
transmitter if it is too far away. Also, when further apart, the visibility angle broadens and
more precise alignments may occur. In the application, we consider the distance a constant
parameter and simulate the most usual scenarios, i.e. where the robots are not too far apart
for the angle to broaden.
To be able to determine the position of the robots (of the sensors) relative to each other, we
have to calculate the signal strength from both directions and then multiply the results. For
the correction of the final alignment, the maximum value of the signal is determined. With
the simulator, this maximum value is calculated from the initial conditions. In the real case,
the best value must be searched for the signal currently measured, because the distance
between robots is unknown.
Fig. 8 and Fig. 9 show the elapsed time for the alignment, versus the initial angles of the
robots, at various ratios of the rotation speed (calculated as [rad/(s103)]). The thick lines
mark the best two series, which minimize the alignment duration, at a corresponding
rotation speed ratio.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 362

Fig. 8. Inter-robot alignment in the case of the fixed transducers (rotating robots)

Fig. 9. Inter-robot alignment in the case of the transducers mounted on the turret

For the design without turrets, most of the rotation speed ratios have cases in which the
alignment time exceeds the limit imposed (60 s). They are shown on the graph as being
equal to the limit. For the turret case, the sensors have to scan only half of the circle and,
consequently, they find each other more quickly.
In many cases of small rotation ratios, the sensors cannot find each other, because they are
"following" each other closely behind. On the other hand, for increased values of the
rotation ratios, the entire process is becoming slow. Considering these facts, the
simulations found an optimal rotation ratio of 1047/209 (i.e. 5/1) for the case in Fig. 8 and
1047/349 (i.e. 3/1) for the rotating turret (Fig. 9). Taking also into consideration the
alignment time, its maximum value is about 27 s in the first case and 14 s for the second.
These results prove that by using the turret design, the alignment time can be almost
reduced to half.

Distance Measurement for Indoor Robotic Collectives 363

5. Distance measurement with the CTOF method
CTOF, Combined Time-of-Flight, is based on the TOF technique and involves two robots.
Although a little more complicated, CTOF has several advantages over the MTDOA
method, proposed in (Micea et al., 2010). Thus, the CTOF procedure does not require an
additional robot (the third one) to coordinate the distance calculation. It also does not
depend on the delays implied by the wireless communication interfaces of the robots.

Fig. 10. Distance measurement with the CTOF method

Fig. 10 depicts the CTOF technique. Robot W1 initiates the procedure by sending a "START"
wireless message (abbreviated "WMes" in Fig. 10) to its peer, W2. The latter acknowledges
the start of its part of the procedure with the "SONAR REQ" message, while simultaneously
launching its own Sonar Receive Task. As a response to the second message, W1 starts the
Sonar Transmit Task and activates the timer which will count the elapsed time of the entire
procedure, t. Upon receiving the ultrasound signal, W2 activates a delay timer with a
predefined value, U, which is empirically determined to cover the total duration of the
ultrasonic transmission from W1. After the U delay, W2 sends a "SONAR START" message
to W1 and starts a second timer, with a value W empirically established to cover the
maximum communication delay over the wireless link and the corresponding interfaces.
When W1 receives the "SONAR START" message, it launches its Sonar Receive Task. After
the W timer expires, W2 starts its Sonar Transmit Task and sends the corresponding
ultrasonic signal towards W1. Finally, when W1 receives the signal, it stops the timer to
produce the t period. As a result, the t period contains the two predefined delays, U and
W, and twice the propagation delay of the ultrasound signal, from W1 to W2 and

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 362

Fig. 8. Inter-robot alignment in the case of the fixed transducers (rotating robots)

Fig. 9. Inter-robot alignment in the case of the transducers mounted on the turret

For the design without turrets, most of the rotation speed ratios have cases in which the
alignment time exceeds the limit imposed (60 s). They are shown on the graph as being
equal to the limit. For the turret case, the sensors have to scan only half of the circle and,
consequently, they find each other more quickly.
In many cases of small rotation ratios, the sensors cannot find each other, because they are
"following" each other closely behind. On the other hand, for increased values of the
rotation ratios, the entire process is becoming slow. Considering these facts, the
simulations found an optimal rotation ratio of 1047/209 (i.e. 5/1) for the case in Fig. 8 and
1047/349 (i.e. 3/1) for the rotating turret (Fig. 9). Taking also into consideration the
alignment time, its maximum value is about 27 s in the first case and 14 s for the second.
These results prove that by using the turret design, the alignment time can be almost
reduced to half.

Distance Measurement for Indoor Robotic Collectives 363

5. Distance measurement with the CTOF method
CTOF, Combined Time-of-Flight, is based on the TOF technique and involves two robots.
Although a little more complicated, CTOF has several advantages over the MTDOA
method, proposed in (Micea et al., 2010). Thus, the CTOF procedure does not require an
additional robot (the third one) to coordinate the distance calculation. It also does not
depend on the delays implied by the wireless communication interfaces of the robots.

Fig. 10. Distance measurement with the CTOF method

Fig. 10 depicts the CTOF technique. Robot W1 initiates the procedure by sending a "START"
wireless message (abbreviated "WMes" in Fig. 10) to its peer, W2. The latter acknowledges
the start of its part of the procedure with the "SONAR REQ" message, while simultaneously
launching its own Sonar Receive Task. As a response to the second message, W1 starts the
Sonar Transmit Task and activates the timer which will count the elapsed time of the entire
procedure, t. Upon receiving the ultrasound signal, W2 activates a delay timer with a
predefined value, U, which is empirically determined to cover the total duration of the
ultrasonic transmission from W1. After the U delay, W2 sends a "SONAR START" message
to W1 and starts a second timer, with a value W empirically established to cover the
maximum communication delay over the wireless link and the corresponding interfaces.
When W1 receives the "SONAR START" message, it launches its Sonar Receive Task. After
the W timer expires, W2 starts its Sonar Transmit Task and sends the corresponding
ultrasonic signal towards W1. Finally, when W1 receives the signal, it stops the timer to
produce the t period. As a result, the t period contains the two predefined delays, U and
W, and twice the propagation delay of the ultrasound signal, from W1 to W2 and

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 364

backwards. Based on this ultrasound propagation delay, the distance between the two
robots can be derived:

  air

2
U Wc t

d
   

 (2)

where cair = 343.4 m/s is the velocity of acoustic waves in air at room temperature and at
normal pressure. When considering the threshold-based detection method of the received
ultrasonic bursts and the fact that the ultrasonic measurements are not perfectly linear, an
additional calibration offset is needed for the distance formula in (2):

  air

2
U W UCc t

d
     

 (3)

where UC is the ultrasonic signal calibration offset and has an experimentally determined
value (in our case studies, UC = 290 s).

6. Experimental results
An extensive set of experiments have been conducted in the DSPLabs using the robotic
system of the CORE-TX platform. The experimental setup consisted in several mobile
robots, out of which two of them were randomly chosen to perform the alignment and the
distance calculation procedures for each experiment. The robots have been placed at a
distance ranging from 100 mm to 3000 mm and, for each 100 mm in this range, a set of over
50 pairs of measurements have been performed. Before each measurement, the robots have
been positioned in random directions with respect to each other.
Since the proposed techniques are based on Sonar and are specifically designed for indoor
measurements, the experiments, evaluations and results consider normal room values for
the air parameters (such as temperature, humidity, pressure, etc.). These parameters could
otherwise influence the speed of ultrasonic waves used in equations (2) and (3).
Fig. 11 shows several periods for the raw received ultrasonic signal, at the output of the
LM6134 amplification circuit. Further on, the values of the signal peaks (which occur every
25 s) are extracted and interpreted as the received Sonar signal.

Fig. 11. Amplitude of the received ultrasonic signal, after amplification

Distance Measurement for Indoor Robotic Collectives 365

Fig. 12. Received signal without filtering (up) and after the Kalman filtering (down)

As depicted in the upper diagram of Fig. 12, the received Sonar signal contains a relatively
significant amount of noise, which can be reduced by applying a Kalman filter. As shown in
the lower diagram of Fig. 12, the filter significantly reduces the random variations of the
signal, while retaining its trend. Even with the filtering process, accidental variations of the
signal can occur. Therefore, empirical thresholds have been specified to establish when the
signal amplitude changes. Setting the threshold values is a key calibration step of the
alignment procedure.
The results for a full scan of the ultrasonic transducer, i.e. a rotation of 180 degrees, are
presented in Fig. 13, both with and without applying the Kalman filter. The target robot is
detected at around 93 degrees, with a maximum of the Sonar signal occurring at
approximately 116 degrees.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 364

backwards. Based on this ultrasound propagation delay, the distance between the two
robots can be derived:

  air

2
U Wc t

d
   

 (2)

where cair = 343.4 m/s is the velocity of acoustic waves in air at room temperature and at
normal pressure. When considering the threshold-based detection method of the received
ultrasonic bursts and the fact that the ultrasonic measurements are not perfectly linear, an
additional calibration offset is needed for the distance formula in (2):

  air

2
U W UCc t

d
     

 (3)

where UC is the ultrasonic signal calibration offset and has an experimentally determined
value (in our case studies, UC = 290 s).

6. Experimental results
An extensive set of experiments have been conducted in the DSPLabs using the robotic
system of the CORE-TX platform. The experimental setup consisted in several mobile
robots, out of which two of them were randomly chosen to perform the alignment and the
distance calculation procedures for each experiment. The robots have been placed at a
distance ranging from 100 mm to 3000 mm and, for each 100 mm in this range, a set of over
50 pairs of measurements have been performed. Before each measurement, the robots have
been positioned in random directions with respect to each other.
Since the proposed techniques are based on Sonar and are specifically designed for indoor
measurements, the experiments, evaluations and results consider normal room values for
the air parameters (such as temperature, humidity, pressure, etc.). These parameters could
otherwise influence the speed of ultrasonic waves used in equations (2) and (3).
Fig. 11 shows several periods for the raw received ultrasonic signal, at the output of the
LM6134 amplification circuit. Further on, the values of the signal peaks (which occur every
25 s) are extracted and interpreted as the received Sonar signal.

Fig. 11. Amplitude of the received ultrasonic signal, after amplification

Distance Measurement for Indoor Robotic Collectives 365

Fig. 12. Received signal without filtering (up) and after the Kalman filtering (down)

As depicted in the upper diagram of Fig. 12, the received Sonar signal contains a relatively
significant amount of noise, which can be reduced by applying a Kalman filter. As shown in
the lower diagram of Fig. 12, the filter significantly reduces the random variations of the
signal, while retaining its trend. Even with the filtering process, accidental variations of the
signal can occur. Therefore, empirical thresholds have been specified to establish when the
signal amplitude changes. Setting the threshold values is a key calibration step of the
alignment procedure.
The results for a full scan of the ultrasonic transducer, i.e. a rotation of 180 degrees, are
presented in Fig. 13, both with and without applying the Kalman filter. The target robot is
detected at around 93 degrees, with a maximum of the Sonar signal occurring at
approximately 116 degrees.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 366

Fig. 13. Reading of the Sonar signal for a 180 degree rotation (scan) of the transducer

Some of the most interesting experimental results for the alignment process are depicted in
Fig. 14. The alignment accuracy varies even for the same distance between the robots, due to
the frequent changes of the turrets rotation and to the different time instances the
transmitted ultrasonic signal is acquired. With few exceptions, the alignment correction
angle remains lower than 10 degrees. The results presented in Fig. 14 also show the
improvement of the alignment accuracy with the increase of the distance between the two
robots.
Table 1 presents the distance measurement results for the proposed CTOF method. The
maximum absolute error is 4.8 cm, when the robots are 3000 mm apart. The result and error
analysis of the CTOF procedure show that, after the necessary calibrations, the measurement
characteristics are linear and follow very closely the real distance. It proves also to be
independent from the random delays introduced by the wireless modules.

Distance Measurement for Indoor Robotic Collectives 367

Fig. 14. Maximum variation of the correction angle for experimental alignment procedures

Table 2 presents distance measurements with the CTOF method, after applying the Kalman
filter to the results. As we can see, the results are very good in terms of accuracy. The
disadvantage is the time of measurement, which increases for repetitive measurements.
Some comparative distance evaluation results with and without filtering the data are
depicted in detail in Fig. 15. From the experiments we conclude that the system provide
optimal results for approximately 10 repetitive measurements.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 366

Fig. 13. Reading of the Sonar signal for a 180 degree rotation (scan) of the transducer

Some of the most interesting experimental results for the alignment process are depicted in
Fig. 14. The alignment accuracy varies even for the same distance between the robots, due to
the frequent changes of the turrets rotation and to the different time instances the
transmitted ultrasonic signal is acquired. With few exceptions, the alignment correction
angle remains lower than 10 degrees. The results presented in Fig. 14 also show the
improvement of the alignment accuracy with the increase of the distance between the two
robots.
Table 1 presents the distance measurement results for the proposed CTOF method. The
maximum absolute error is 4.8 cm, when the robots are 3000 mm apart. The result and error
analysis of the CTOF procedure show that, after the necessary calibrations, the measurement
characteristics are linear and follow very closely the real distance. It proves also to be
independent from the random delays introduced by the wireless modules.

Distance Measurement for Indoor Robotic Collectives 367

Fig. 14. Maximum variation of the correction angle for experimental alignment procedures

Table 2 presents distance measurements with the CTOF method, after applying the Kalman
filter to the results. As we can see, the results are very good in terms of accuracy. The
disadvantage is the time of measurement, which increases for repetitive measurements.
Some comparative distance evaluation results with and without filtering the data are
depicted in detail in Fig. 15. From the experiments we conclude that the system provide
optimal results for approximately 10 repetitive measurements.

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 368

Real

Distance
[mm]

CTOF Measured
Distance [mm]

Procedure
Duration

[s] Min Average Max

100 92 96 99 20849
200 199 201 207 21461
300 298 300 303 22037
400 401 404 410 22643
500 504 508 515 23249
600 604 607 612 23825
700 700 706 710 24402
800 803 807 813 24990
900 906 911 916 25596
1000 1013 1019 1026 26225
2000 2024 2033 2043 32130
3000 3018 3031 3047 37943

Table 1. Distance measurement results for the CTOF method

Real
Distance

[mm]

CTOF Measured
Distance with Filtering [mm]

Procedure
Duration

[ms]

Error
reduction

with
Filtering

[%]

Min Average Max

100 98 100 101 208÷688 66
200 198 200 205 215÷708 29
300 298 300 301 220÷727 62
400 397 399 401 226÷747 50
500 498 500 508 232÷767 63
600 598 599 601 238÷786 68
700 697 699 703 244÷805 19
800 796 800 802 250÷825 56
900 897 899 901 256÷845 56
1000 997 1001 1004 262÷865 49
2000 1997 2002 2006 321÷1060 40
3000 2993 3000 3006 379÷1252 57

Table 2. Distance measurement results for the CTOF method with Kalman filtering

Distance Measurement for Indoor Robotic Collectives 369

Fig. 15. Repetitive CTOF distance measurements with and without Kalman filtering, for
various distances between robots (100 mm – top, 1000 mm – middle, and 3000 mm – bottom)

96

98

100

102

104

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Number of measurements

D
is

ta
n

ce
 [

m
m

]

Without filter With Kalman filter

992

994

996

998

1000

1002

1004

1006

1008

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Number of measurements

D
is

ta
n

ce
 [

m
m

]

Without filter With Kalman filter

2986

2988

2990

2992

2994

2996

2998

3000

3002

3004

3006

3008

3010

3012

3014

3016

3018

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Number of measurements

D
is

ta
n

ce
 [

m
m

]

Without filter With Kalman filter

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 368

Real

Distance
[mm]

CTOF Measured
Distance [mm]

Procedure
Duration

[s] Min Average Max

100 92 96 99 20849
200 199 201 207 21461
300 298 300 303 22037
400 401 404 410 22643
500 504 508 515 23249
600 604 607 612 23825
700 700 706 710 24402
800 803 807 813 24990
900 906 911 916 25596
1000 1013 1019 1026 26225
2000 2024 2033 2043 32130
3000 3018 3031 3047 37943

Table 1. Distance measurement results for the CTOF method

Real
Distance

[mm]

CTOF Measured
Distance with Filtering [mm]

Procedure
Duration

[ms]

Error
reduction

with
Filtering

[%]

Min Average Max

100 98 100 101 208÷688 66
200 198 200 205 215÷708 29
300 298 300 301 220÷727 62
400 397 399 401 226÷747 50
500 498 500 508 232÷767 63
600 598 599 601 238÷786 68
700 697 699 703 244÷805 19
800 796 800 802 250÷825 56
900 897 899 901 256÷845 56
1000 997 1001 1004 262÷865 49
2000 1997 2002 2006 321÷1060 40
3000 2993 3000 3006 379÷1252 57

Table 2. Distance measurement results for the CTOF method with Kalman filtering

Distance Measurement for Indoor Robotic Collectives 369

Fig. 15. Repetitive CTOF distance measurements with and without Kalman filtering, for
various distances between robots (100 mm – top, 1000 mm – middle, and 3000 mm – bottom)

96

98

100

102

104

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Number of measurements

D
is

ta
n

ce
 [

m
m

]

Without filter With Kalman filter

992

994

996

998

1000

1002

1004

1006

1008

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Number of measurements

D
is

ta
n

ce
 [

m
m

]

Without filter With Kalman filter

2986

2988

2990

2992

2994

2996

2998

3000

3002

3004

3006

3008

3010

3012

3014

3016

3018

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Number of measurements

D
is

ta
n

ce
 [

m
m

]

Without filter With Kalman filter

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 370

7. Conclusion
This work extends the discussion on the CTOF method of inter-robot distance measurement,
introduced in (Micea et al., 2010). An extended discussion has also been made on the
prerequisite sensor (robot) alignment procedure. The custom designed software simulation
application provided the optimal ratio between the rotation speeds of the robots or their
turrets with the ultrasonic transducers.
After the alignment process, the distance between two robots can be measured with the
CTOF method. It has been shown that CTOF is independent of the communication
propagation errors. We have also shown how the CTOF method meets the requirements of
indoor, low-cost, energy-efficient robotic applications, reaching an accuracy of 4.8 cm for
distances of 3 m. Furthermore, by applying the Kalman filter to repetitive distance
measurements, an accuracy of 1 cm has been achieved for distances of 3 m, without the need
of fixed landmarks.
The proposed distance measurement method and inter-robot alignment algorithm rely on
inter-robot collaborative procedures and, therefore, these techniques are independent of
fixed landmarks. Nevertheless, if the system further requires accurate localization of the
mobile robots, at least the initial position of one of the robots must be known prior to the
start of the system operation.

8. References
Atmel Corporation. (2010). ATxmega64A1/128A1/192A1/256A1/384A1 Preliminary Data Sheet,

(Rev. M), Atmel Corporation, September 2010
Bestar Electronics. (2006). BPU-1640IOAH12 Ultrasonic Sensor Datasheet, Bestar Electronics

Industry Co., Ltd., China, October 2006, Available from http://www.be-star.com/
Cioarga, R.D.; Micea, M.V.; Ciubotaru, B.; Chiuciudean, D.; Stanescu, D. (2006). CORE-

TX: Collective Robotic Environment - the Timisoara Experiment, Proceedings of
the 3rd Romanian-Hungarian Joint Symposium on Applied Computational
Intelligence, SACI 2006, pp. 495−506, ISBN 963-7154-46-9, Timisoara, Romania,
May 25-26, 2006

Cricket Project (2005). Cricket v2 User Manual, MIT Computer Science and Artificial
Intelligence Lab, Cambridge, USA, Jan 2005

Digi International. (2009). XBee/XBee-PRO RF Modules: Product Manual, Digi International,
Inc., USA, 2009, Available from http://www.digi.com/

Fayli, S.; Kleeman, L. (2004). A Real Time Advanced Sonar Ring with Simultaneous Firing,
Proceedings of 2004 IEEE-RSJ International Conference on Intelligent Robots and
Systems, Sendai, Japan, September - October 2, 2004

Fox, V.; Hightower, J.; Lin, L.; Schulz, D.; Borriello, G. (2003). Bayesian Filtering for
Location Estimation. IEEE Pervasive Computing, Vol.2, No.3, (September 2003),
pp. 24 – 33.

Fuicu, S.; Marcu, M.; Stratulat, B.; Gîrban, A. (2009). Effectiveness and Accuracy of Wireless
Positioning Systems. WSEAS Transactions on Computers, Vol.8, No.9, (September
2009), pp. 1471-1483, ISSN 1109-2750

Distance Measurement for Indoor Robotic Collectives 371

Grossmann, R.; Blumenthal, J.; Golatowski, F.; Timmermann, D. (2007). Localization in
Zigbee-based Sensor Networks, Proceedings of the 1st European ZigBee Developer's
Conference, EuZDC 2007, Munchen-Dornach, Germany, 2007

Ha, Y.S.; Kim, H.H. (2004). Environmental Map Building for a Mobile Robot Using
Infrared Range-Finder Sensors. Advanced Robotics, Vol.18, No.4, (2004), pp. 437-
450

Hagisonic. (2009) Localization System StarGazer for Intelligent Robots: User's Guide, Hagisonic
Co., Ltd., Korea, 2009, Available from http://www.hagisonic.com/

Kim, D.-E.; Hwang, K.-H.; Lee, D.-H.; Kuc, T.-Y. (2006). A Simple Ultrasonic GPS System for
Indoor Mobile Robot System using Kalman Filtering, Proceedings of the SICE-ICASE
International Joint Conference, pp. 2915-2918, Busan, Korea, 2006

Ko, S.-I.; Choi, J.-S.; Kim, B.-H. (2008). Indoor Mobile Localization System and Stabilization
of Localization Performance Using Pre-Filtering. International Journal of Control,
Automation, and Systems, Vol.6, No.2, (April 2008), pp. 204-213

Micea, M.V.; Cretu, V.I.; Groza, V. (2006). Maximum Predictability in Signal Interactions
With HARETICK Kernel. IEEE Transactions on Instrumentation and Measurement,
Vol.55, No.4, (August 2006), ISSN 0018-9456

Micea, M.V.; Stancovici, A.; Chiciudean, D.; Filote, C. (2010). Indoor Inter-Robot Distance
Measurement in Collaborative Systems. Advances in Electrical and Computer
Engineering, Vol.10, No.3, (August 2010), pp. 21-26, ISSN 1582-7445

Mohammad, T. (2009). Using Ultrasonic and Infrared Sensors for Distance Measurement.
World Academy of Science, Engineering and Technology, Vol.51, (2009)

Novotny, P. M.; Ferrier, N. J. (1999). Using Infrared Sensor and the Phong Illumination
Model to Measure Distances, Proceedings of the 1999 IEEE International Conference on
Robotics and Automation, pp. 1644-1649, Detroit, USA, May 1999

NXP Semiconductors. (April 2008). UM10114: LPC21xx and LPC22xx User Manual (Rev. 03),
NXP Semiconductors N. V.

Ohno, K.; Tsubouchi, T.; Shigematsu, B.; Yuta, S. (2004). Differential GPS and Odometry-
Based Outdoor Navigation of a Mobile Robot. Advanced Robotics, Vol.18, No.6,
(2004), pp. 611-635

Priyantha, N.B. (2005). The Cricket Indoor Location System, Ph.D. Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, USA, Jun. 2005

Reina, G.; Vargas, A.; Nagatani, K.; Yoshida, K. (2007). Adaptive Kalman Filtering for GPS-
based Mobile Robot Localization, Proceedings of IEEE International Workshop on
Safety, Security and Rescue Robotics, SSRR 2007, pp. 1-6, 2007

Reynolds, M.S. (1999). A Phase Measurement Radio Positioning System for Indoor Use, Master's
Dissertation, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, USA, Feb 1999.

Tamimi, H.; Andreasson, H.; Treptow, A.; Duckett, T.; Zell, A. (2006). Localization of Mobile
Robots with Omnidirectional Vision Using Particle Filter and Iterative SIFT. Robotic
and Autonomous Systems, Vol.54, 2006, pp. 758-765

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 370

7. Conclusion
This work extends the discussion on the CTOF method of inter-robot distance measurement,
introduced in (Micea et al., 2010). An extended discussion has also been made on the
prerequisite sensor (robot) alignment procedure. The custom designed software simulation
application provided the optimal ratio between the rotation speeds of the robots or their
turrets with the ultrasonic transducers.
After the alignment process, the distance between two robots can be measured with the
CTOF method. It has been shown that CTOF is independent of the communication
propagation errors. We have also shown how the CTOF method meets the requirements of
indoor, low-cost, energy-efficient robotic applications, reaching an accuracy of 4.8 cm for
distances of 3 m. Furthermore, by applying the Kalman filter to repetitive distance
measurements, an accuracy of 1 cm has been achieved for distances of 3 m, without the need
of fixed landmarks.
The proposed distance measurement method and inter-robot alignment algorithm rely on
inter-robot collaborative procedures and, therefore, these techniques are independent of
fixed landmarks. Nevertheless, if the system further requires accurate localization of the
mobile robots, at least the initial position of one of the robots must be known prior to the
start of the system operation.

8. References
Atmel Corporation. (2010). ATxmega64A1/128A1/192A1/256A1/384A1 Preliminary Data Sheet,

(Rev. M), Atmel Corporation, September 2010
Bestar Electronics. (2006). BPU-1640IOAH12 Ultrasonic Sensor Datasheet, Bestar Electronics

Industry Co., Ltd., China, October 2006, Available from http://www.be-star.com/
Cioarga, R.D.; Micea, M.V.; Ciubotaru, B.; Chiuciudean, D.; Stanescu, D. (2006). CORE-

TX: Collective Robotic Environment - the Timisoara Experiment, Proceedings of
the 3rd Romanian-Hungarian Joint Symposium on Applied Computational
Intelligence, SACI 2006, pp. 495−506, ISBN 963-7154-46-9, Timisoara, Romania,
May 25-26, 2006

Cricket Project (2005). Cricket v2 User Manual, MIT Computer Science and Artificial
Intelligence Lab, Cambridge, USA, Jan 2005

Digi International. (2009). XBee/XBee-PRO RF Modules: Product Manual, Digi International,
Inc., USA, 2009, Available from http://www.digi.com/

Fayli, S.; Kleeman, L. (2004). A Real Time Advanced Sonar Ring with Simultaneous Firing,
Proceedings of 2004 IEEE-RSJ International Conference on Intelligent Robots and
Systems, Sendai, Japan, September - October 2, 2004

Fox, V.; Hightower, J.; Lin, L.; Schulz, D.; Borriello, G. (2003). Bayesian Filtering for
Location Estimation. IEEE Pervasive Computing, Vol.2, No.3, (September 2003),
pp. 24 – 33.

Fuicu, S.; Marcu, M.; Stratulat, B.; Gîrban, A. (2009). Effectiveness and Accuracy of Wireless
Positioning Systems. WSEAS Transactions on Computers, Vol.8, No.9, (September
2009), pp. 1471-1483, ISSN 1109-2750

Distance Measurement for Indoor Robotic Collectives 371

Grossmann, R.; Blumenthal, J.; Golatowski, F.; Timmermann, D. (2007). Localization in
Zigbee-based Sensor Networks, Proceedings of the 1st European ZigBee Developer's
Conference, EuZDC 2007, Munchen-Dornach, Germany, 2007

Ha, Y.S.; Kim, H.H. (2004). Environmental Map Building for a Mobile Robot Using
Infrared Range-Finder Sensors. Advanced Robotics, Vol.18, No.4, (2004), pp. 437-
450

Hagisonic. (2009) Localization System StarGazer for Intelligent Robots: User's Guide, Hagisonic
Co., Ltd., Korea, 2009, Available from http://www.hagisonic.com/

Kim, D.-E.; Hwang, K.-H.; Lee, D.-H.; Kuc, T.-Y. (2006). A Simple Ultrasonic GPS System for
Indoor Mobile Robot System using Kalman Filtering, Proceedings of the SICE-ICASE
International Joint Conference, pp. 2915-2918, Busan, Korea, 2006

Ko, S.-I.; Choi, J.-S.; Kim, B.-H. (2008). Indoor Mobile Localization System and Stabilization
of Localization Performance Using Pre-Filtering. International Journal of Control,
Automation, and Systems, Vol.6, No.2, (April 2008), pp. 204-213

Micea, M.V.; Cretu, V.I.; Groza, V. (2006). Maximum Predictability in Signal Interactions
With HARETICK Kernel. IEEE Transactions on Instrumentation and Measurement,
Vol.55, No.4, (August 2006), ISSN 0018-9456

Micea, M.V.; Stancovici, A.; Chiciudean, D.; Filote, C. (2010). Indoor Inter-Robot Distance
Measurement in Collaborative Systems. Advances in Electrical and Computer
Engineering, Vol.10, No.3, (August 2010), pp. 21-26, ISSN 1582-7445

Mohammad, T. (2009). Using Ultrasonic and Infrared Sensors for Distance Measurement.
World Academy of Science, Engineering and Technology, Vol.51, (2009)

Novotny, P. M.; Ferrier, N. J. (1999). Using Infrared Sensor and the Phong Illumination
Model to Measure Distances, Proceedings of the 1999 IEEE International Conference on
Robotics and Automation, pp. 1644-1649, Detroit, USA, May 1999

NXP Semiconductors. (April 2008). UM10114: LPC21xx and LPC22xx User Manual (Rev. 03),
NXP Semiconductors N. V.

Ohno, K.; Tsubouchi, T.; Shigematsu, B.; Yuta, S. (2004). Differential GPS and Odometry-
Based Outdoor Navigation of a Mobile Robot. Advanced Robotics, Vol.18, No.6,
(2004), pp. 611-635

Priyantha, N.B. (2005). The Cricket Indoor Location System, Ph.D. Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, USA, Jun. 2005

Reina, G.; Vargas, A.; Nagatani, K.; Yoshida, K. (2007). Adaptive Kalman Filtering for GPS-
based Mobile Robot Localization, Proceedings of IEEE International Workshop on
Safety, Security and Rescue Robotics, SSRR 2007, pp. 1-6, 2007

Reynolds, M.S. (1999). A Phase Measurement Radio Positioning System for Indoor Use, Master's
Dissertation, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, USA, Feb 1999.

Tamimi, H.; Andreasson, H.; Treptow, A.; Duckett, T.; Zell, A. (2006). Localization of Mobile
Robots with Omnidirectional Vision Using Particle Filter and Iterative SIFT. Robotic
and Autonomous Systems, Vol.54, 2006, pp. 758-765

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 372

Tower Pro. (2008). Servomotor Information, Specification Note, Tower Pro, January 2008,
Available from http://www.towerpro.com.tw/driver/drivers/Towerpro%20
servo%20spec.pdf

Welch, G.; Bishop, G. (2006). An Introduction to the Kalman Filter, Technical Report, TR 95-041,
University of North Carolina at Chapel Hill, USA, July 24, 2006

ZigBee Standards Organization. (2007). ZigBee Specification, ZigBee Alliance, Inc., California,
SUA, Available from http://www.zigbee.org/

Part 5

Mobile Robot Operator Training

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 372

Tower Pro. (2008). Servomotor Information, Specification Note, Tower Pro, January 2008,
Available from http://www.towerpro.com.tw/driver/drivers/Towerpro%20
servo%20spec.pdf

Welch, G.; Bishop, G. (2006). An Introduction to the Kalman Filter, Technical Report, TR 95-041,
University of North Carolina at Chapel Hill, USA, July 24, 2006

ZigBee Standards Organization. (2007). ZigBee Specification, ZigBee Alliance, Inc., California,
SUA, Available from http://www.zigbee.org/

Part 5

Mobile Robot Operator Training

 0

Improvement of RISE Mobile Robot
Operator Training Tool

Janusz Bȩdkowski and Andrzej Masłowski
Institute of Mathematical Machines

Poland

1. Introduction

In the chapter the framework for RISE (Risky Intervention and Environmental Surveillance)
mobile robot operator training design is presented. The basic idea of the framework is to
provide advanced software tools to improve the performance of the mobile robot simulation
design that are applicable for operator training. The simulator is the end product of the
framework. To achieve realistic rigid body simulation and realistic rendering the NVIDIA
PhysX engine and the OGRE (Open Graphic Rendering Engine) are used. The compatibility
between the framework software and CAD modeling tools such as SolidWorks was essential,
therefore virtual models are exchangeable using COLLADA format. The simulator can be
integrated with control panel of the mobile robot. It is possible to simulate the behavior of
several types of robots such as caterpillar or wheeled.
The improvement presented in this chapter is related to the problem of automatic environment
model generation based on autonomous mobile robot observations. The approach related to
semantic mapping is used and in consequence semantic simulation engine is implemented.
Semantic simulation engine is composed by data registration module, semantic entities
identification module and environment model generation module. Presented result is a new
approach related to mobile robots applications and potentially can improve the process of
advanced mobile robot application design and professional training of the operators.
Training of the mobile robot operators is very difficult task not only because of the complexity
of the mobile robot but also because of several factors related to different task execution.
The study of the human-robot interactions (HRI) during a real rescue is presented in Casper
& Murphy (2003) Bedkowski, Kowalski & Piszczek (2009). Several robotic systems are
developed for rescue tasks Wei et al. (2009) Zhang et al. (2009). The research on simulation
and training systems for mobile robots is shown in Xuewen et al. (2006). In the field of robotics
applied for medical purposes such as surgery the simulation and training environments are
developed and described in Schlaefer et al. (2008). The problem of learning via Web is
common application used in several cases and as remote experiment system for distance
training is discussed in Hong et al. (2007). Virtual labs have been meaningful and very
popular in distance education in engineering oriented fields of study, since they allow to
perform interesting experiments with the equipment in the labs remotely available through
Internet Masar et al. (2004). An advance computer techniques such augmented reality
approach applied in training robotics is shown in Kowalski et al. (2008)Bravo & Alberto
(2009). The simulation environment used as a testbed for simulation based approach for

17

 0

Improvement of RISE Mobile Robot
Operator Training Tool

Janusz Bȩdkowski and Andrzej Masłowski
Institute of Mathematical Machines

Poland

1. Introduction

In the chapter the framework for RISE (Risky Intervention and Environmental Surveillance)
mobile robot operator training design is presented. The basic idea of the framework is to
provide advanced software tools to improve the performance of the mobile robot simulation
design that are applicable for operator training. The simulator is the end product of the
framework. To achieve realistic rigid body simulation and realistic rendering the NVIDIA
PhysX engine and the OGRE (Open Graphic Rendering Engine) are used. The compatibility
between the framework software and CAD modeling tools such as SolidWorks was essential,
therefore virtual models are exchangeable using COLLADA format. The simulator can be
integrated with control panel of the mobile robot. It is possible to simulate the behavior of
several types of robots such as caterpillar or wheeled.
The improvement presented in this chapter is related to the problem of automatic environment
model generation based on autonomous mobile robot observations. The approach related to
semantic mapping is used and in consequence semantic simulation engine is implemented.
Semantic simulation engine is composed by data registration module, semantic entities
identification module and environment model generation module. Presented result is a new
approach related to mobile robots applications and potentially can improve the process of
advanced mobile robot application design and professional training of the operators.
Training of the mobile robot operators is very difficult task not only because of the complexity
of the mobile robot but also because of several factors related to different task execution.
The study of the human-robot interactions (HRI) during a real rescue is presented in Casper
& Murphy (2003) Bedkowski, Kowalski & Piszczek (2009). Several robotic systems are
developed for rescue tasks Wei et al. (2009) Zhang et al. (2009). The research on simulation
and training systems for mobile robots is shown in Xuewen et al. (2006). In the field of robotics
applied for medical purposes such as surgery the simulation and training environments are
developed and described in Schlaefer et al. (2008). The problem of learning via Web is
common application used in several cases and as remote experiment system for distance
training is discussed in Hong et al. (2007). Virtual labs have been meaningful and very
popular in distance education in engineering oriented fields of study, since they allow to
perform interesting experiments with the equipment in the labs remotely available through
Internet Masar et al. (2004). An advance computer techniques such augmented reality
approach applied in training robotics is shown in Kowalski et al. (2008)Bravo & Alberto
(2009). The simulation environment used as a testbed for simulation based approach for

17

2 Will-be-set-by-IN-TECH

unmanned system command and control is demonstrated in Drewes (2006). The research
related to the training and the hypotheses through interactions with unmanned systems
using computer mediated gesture recognition is shown in Varcholik et al. (2008), where
the presented methodology employs the Nintendo Wii Remote Controller (Wiimote) to
retrieve and classify one- and two-handed gestures that are mapped to an unmanned system
command set. The Modeling and simulation for the mobile robot operator training tool was
presented in Bedkowski, Piszczek, Kowalski & Maslowski (2009).
Semantic information Asada & Shirai (1989) extracted from 3D laser data Nüchter et al. (2005)
is recent research topic of modern mobile robotics. In Nüchter & Hertzberg (2008) a semantic
map for a mobile robot was described as a map that contains, in addition to spatial information
about the environment, assignments of mapped features to entities of known classes. In Grau
(1997) a model of an indoor scene is implemented as a semantic net. This approach is used in
Nüchter, Surmann, Lingemann & Hertzberg (2003) where robot extracts semantic information
from 3D models built from a laser scanner. In Cantzler et al. (2002) the location of features
is extracted by using a probabilistic technique (RANSAC RANdom SAmple Consensus)
Fischler & Bolles (1980). Also the region growing approach Eich et al. (2010) extended from
Vaskevicius et al. (2007) by efficiently integrating k-nearest neighbor (KNN) search is able
to process unorganized point clouds. The improvement of plane extraction from 3D Data
by fusing laser data and vision is shown in Andreasson et al. (2005). The automatic model
refinement of 3D scene is introduced in Nüchter, Surmann & Hertzberg (2003) where the idea
of feature extraction (planes) is done also with RANSAC. The semantic map building is related
to SLAM problem Oberlander et al. (2008) Se & Little (2002) Davison et al. (2004). Most of
recent SLAM techniques use camera Castle et al. (2010) Williams & Reid (2010) Andreasson
(2008), laser measurement system Pedraza et al. (2007) Thrun et al. (2000) or even registered 3D
laser data Magnusson, Andreasson, Nüchter & Lilienthal (2009). Concerning the registration
of 3D scans described in Magnusson et al. (2007) Andreasson & Lilienthal (2007) we can find
several techniques solving this important issue. The authors of Besl & Mckay (1992) briefly
describe ICP algorithm and in Hähnel & Burgard (2002) the probabilistic matching technique
is proposed. In Magnusson, Nüchter, Lörken, Lilienthal & Hertzberg (2009) the comparison of
ICP and NDT (Normal Distributions Transform) algorithm is shown. In Rusu et al. (2008) the
mapping system that acquires 3D object models of man-made indoor environments such as
kitchens is shown. The system segments and geometrically reconstructs cabinets with doors,
tables, drawers, and shelves, objects that are important for robots retrieving and manipulating
objects in these environments.
In this paper the application of framework for RISE mobile robot operator training design is
presented. The framework is developed to improve the training development using advanced
software tools. The semantic simulation engine is proposed to automatic environment
model (composed by walls, door, stairs) generation and task execution with mobile robot
supervision. As a result, it is demonstrated the task execution of training example of RISE
robot, also examples of automatically generated scenes are shown. It should be noticed
that the automatic generation of robot environment is still open problem and needs further
developments.

2. Framework overview

The platform is going to support specialized tools for designing physical models, spatial
models and others. The standard implemented and used in the platform accepts Collada
and PhysX files for designing physical models. For spatial models 3ds format is considered as

376
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 3

the best choice. Physical models can be developed using commercially available tools such as
Solid Works with Collada plug-in, or Maya with ColladaMaya plug-in. It is also possible to
use freeware tool under GNU/GPL license such a Blender with Collada plug-in. Similarly for
designing spatial models one can use Autodesk 3ds Max as a non-free product which native
file standard is 3ds or free competitor on the market Blender which can handle 3ds file as
well. Utilization of presented tools ensures long term support for the designed platform. The
framework consists of several software tools for training components development. Figure
1 shows the scheme of the expected end product of the framework - RISE robot operator
training.

Fig. 1. The scheme of the expected end product of the framework - RISE robot operator
training.

The training is composed from n nodes. Each node consist of robot model, console model,
environment model, and task model. Framework provides software tools for model design
and integration such as: Robot Builder, Environment Builder, Console Builder, Task Builder,
Training Builder. The main concept and the achievement is the limitation of the programmer
effort during training design (all activities can be done using the framework advanced GUI
applications), therefore the process of models design and integration is improved and the time
and potential costs are decreased. The training can be performed simultaneously for several
operators. It is possible to construct training classroom for multiple operator training. To
demonstrate this, the single training architecture has to be discussed. Figure 2 shows the
software architecture of single training.

Fig. 2. Software architecture of single training.

To perform the single training 2 PCs with framework software has to be taken into account.
PC (operator) consists of: task manager and task executor programs. These programs are
responsible for proper task execution and sending the result to the PC (instructor) where the
training process is supervised with training manager program. Instructor can observe the
operator behavior using training viewer software that visualizes the simulated scene. For

377Improvement of RISE Mobile Robot Operator Training Tool

2 Will-be-set-by-IN-TECH

unmanned system command and control is demonstrated in Drewes (2006). The research
related to the training and the hypotheses through interactions with unmanned systems
using computer mediated gesture recognition is shown in Varcholik et al. (2008), where
the presented methodology employs the Nintendo Wii Remote Controller (Wiimote) to
retrieve and classify one- and two-handed gestures that are mapped to an unmanned system
command set. The Modeling and simulation for the mobile robot operator training tool was
presented in Bedkowski, Piszczek, Kowalski & Maslowski (2009).
Semantic information Asada & Shirai (1989) extracted from 3D laser data Nüchter et al. (2005)
is recent research topic of modern mobile robotics. In Nüchter & Hertzberg (2008) a semantic
map for a mobile robot was described as a map that contains, in addition to spatial information
about the environment, assignments of mapped features to entities of known classes. In Grau
(1997) a model of an indoor scene is implemented as a semantic net. This approach is used in
Nüchter, Surmann, Lingemann & Hertzberg (2003) where robot extracts semantic information
from 3D models built from a laser scanner. In Cantzler et al. (2002) the location of features
is extracted by using a probabilistic technique (RANSAC RANdom SAmple Consensus)
Fischler & Bolles (1980). Also the region growing approach Eich et al. (2010) extended from
Vaskevicius et al. (2007) by efficiently integrating k-nearest neighbor (KNN) search is able
to process unorganized point clouds. The improvement of plane extraction from 3D Data
by fusing laser data and vision is shown in Andreasson et al. (2005). The automatic model
refinement of 3D scene is introduced in Nüchter, Surmann & Hertzberg (2003) where the idea
of feature extraction (planes) is done also with RANSAC. The semantic map building is related
to SLAM problem Oberlander et al. (2008) Se & Little (2002) Davison et al. (2004). Most of
recent SLAM techniques use camera Castle et al. (2010) Williams & Reid (2010) Andreasson
(2008), laser measurement system Pedraza et al. (2007) Thrun et al. (2000) or even registered 3D
laser data Magnusson, Andreasson, Nüchter & Lilienthal (2009). Concerning the registration
of 3D scans described in Magnusson et al. (2007) Andreasson & Lilienthal (2007) we can find
several techniques solving this important issue. The authors of Besl & Mckay (1992) briefly
describe ICP algorithm and in Hähnel & Burgard (2002) the probabilistic matching technique
is proposed. In Magnusson, Nüchter, Lörken, Lilienthal & Hertzberg (2009) the comparison of
ICP and NDT (Normal Distributions Transform) algorithm is shown. In Rusu et al. (2008) the
mapping system that acquires 3D object models of man-made indoor environments such as
kitchens is shown. The system segments and geometrically reconstructs cabinets with doors,
tables, drawers, and shelves, objects that are important for robots retrieving and manipulating
objects in these environments.
In this paper the application of framework for RISE mobile robot operator training design is
presented. The framework is developed to improve the training development using advanced
software tools. The semantic simulation engine is proposed to automatic environment
model (composed by walls, door, stairs) generation and task execution with mobile robot
supervision. As a result, it is demonstrated the task execution of training example of RISE
robot, also examples of automatically generated scenes are shown. It should be noticed
that the automatic generation of robot environment is still open problem and needs further
developments.

2. Framework overview

The platform is going to support specialized tools for designing physical models, spatial
models and others. The standard implemented and used in the platform accepts Collada
and PhysX files for designing physical models. For spatial models 3ds format is considered as

376
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 3

the best choice. Physical models can be developed using commercially available tools such as
Solid Works with Collada plug-in, or Maya with ColladaMaya plug-in. It is also possible to
use freeware tool under GNU/GPL license such a Blender with Collada plug-in. Similarly for
designing spatial models one can use Autodesk 3ds Max as a non-free product which native
file standard is 3ds or free competitor on the market Blender which can handle 3ds file as
well. Utilization of presented tools ensures long term support for the designed platform. The
framework consists of several software tools for training components development. Figure
1 shows the scheme of the expected end product of the framework - RISE robot operator
training.

Fig. 1. The scheme of the expected end product of the framework - RISE robot operator
training.

The training is composed from n nodes. Each node consist of robot model, console model,
environment model, and task model. Framework provides software tools for model design
and integration such as: Robot Builder, Environment Builder, Console Builder, Task Builder,
Training Builder. The main concept and the achievement is the limitation of the programmer
effort during training design (all activities can be done using the framework advanced GUI
applications), therefore the process of models design and integration is improved and the time
and potential costs are decreased. The training can be performed simultaneously for several
operators. It is possible to construct training classroom for multiple operator training. To
demonstrate this, the single training architecture has to be discussed. Figure 2 shows the
software architecture of single training.

Fig. 2. Software architecture of single training.

To perform the single training 2 PCs with framework software has to be taken into account.
PC (operator) consists of: task manager and task executor programs. These programs are
responsible for proper task execution and sending the result to the PC (instructor) where the
training process is supervised with training manager program. Instructor can observe the
operator behavior using training viewer software that visualizes the simulated scene. For

377Improvement of RISE Mobile Robot Operator Training Tool

4 Will-be-set-by-IN-TECH

the multiple training PC (instructor) can use separate training manager and training viewer
programs to perform single training on several operator PCs simultaneously.

2.1 Model of a robot
Virtual model of robot is the basic element of a simulation. The figure 3 presents main
elements of the robot model.

Fig. 3. Scheme of components of virtual model of robot.

Virtual model of robot is composed of the following models:
a) physical (represents mechanical properties of a designed robot),
b) spatial (represents what is visualized),
c) motors/actuators (represents all driven parts of a robot),
d) sound (represents a set of sounds connected to associated to the model of
motors/actuators),
e) sensors (represents a set of sensors mounted onto a robot).
Each listed model is described in a single file, therefore full virtual model of robot requires
five files and the information about their interaction. Framework offers a tool called Robot
Builder for designing a robot. The window of the application is presented in the Figure 4.

Fig. 4. Robot Builder: up left - physic model, up right - spatial model, bottom left - sensor
model (cameras), bottom right - sensor model (lights).

378
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 5

2.2 Model of an environment
Virtual model of an environment similarly as a models of control panel and robot consists the
following elements: physical model, spatial model and sound model. The scheme shown in
figure 5 presents main elements of an environment.

Fig. 5. Composition of a virtual model of an environment.

The environment in the simulator is represented by Virtual Model of Environment. It is
accepted that this model will be designed in similar manner as virtual model of robot
described previously. The platform supplies such a tool which can support a designer in
the process of creating the environment. It will be possible to utilize components from the
Components Base. This Base will consists a set of sample models such as buildings, furniture
(chairs, closets, tables, etc.) , vehicles, trees, different kinds of basis (i.e. soil, road, grass) (see
figure 6). All objects from the Base will have physical and spatial properties. Apart from the
physical properties, there will be a spatial model attached and visualized. Also special effect
such as particle system, fog, animation and water can be integrated into the scene.

Fig. 6. Environment of the robot.

2.3 Model of a control panel
Virtual model of a control panel is a second basic element of a simulation. The figure 7
presents the main elements of a control panel. It is assumed that control panel consists of
joysticks, buttons, switches and displays. The control panel communicates with a robot via
communicating module or directly dependently whether a real or a virtual panel is in use.
Control panel can be virtual or real thus the trainee can accustom to real device controlling
the virtual robot using real control panel. Described technology is presented in the figure 8.

2.4 Task
In order to design Task, the following models are required: robot model, control panel model
and environmental model. A training designer has the ability to set the beginning position of

379Improvement of RISE Mobile Robot Operator Training Tool

4 Will-be-set-by-IN-TECH

the multiple training PC (instructor) can use separate training manager and training viewer
programs to perform single training on several operator PCs simultaneously.

2.1 Model of a robot
Virtual model of robot is the basic element of a simulation. The figure 3 presents main
elements of the robot model.

Fig. 3. Scheme of components of virtual model of robot.

Virtual model of robot is composed of the following models:
a) physical (represents mechanical properties of a designed robot),
b) spatial (represents what is visualized),
c) motors/actuators (represents all driven parts of a robot),
d) sound (represents a set of sounds connected to associated to the model of
motors/actuators),
e) sensors (represents a set of sensors mounted onto a robot).
Each listed model is described in a single file, therefore full virtual model of robot requires
five files and the information about their interaction. Framework offers a tool called Robot
Builder for designing a robot. The window of the application is presented in the Figure 4.

Fig. 4. Robot Builder: up left - physic model, up right - spatial model, bottom left - sensor
model (cameras), bottom right - sensor model (lights).

378
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 5

2.2 Model of an environment
Virtual model of an environment similarly as a models of control panel and robot consists the
following elements: physical model, spatial model and sound model. The scheme shown in
figure 5 presents main elements of an environment.

Fig. 5. Composition of a virtual model of an environment.

The environment in the simulator is represented by Virtual Model of Environment. It is
accepted that this model will be designed in similar manner as virtual model of robot
described previously. The platform supplies such a tool which can support a designer in
the process of creating the environment. It will be possible to utilize components from the
Components Base. This Base will consists a set of sample models such as buildings, furniture
(chairs, closets, tables, etc.) , vehicles, trees, different kinds of basis (i.e. soil, road, grass) (see
figure 6). All objects from the Base will have physical and spatial properties. Apart from the
physical properties, there will be a spatial model attached and visualized. Also special effect
such as particle system, fog, animation and water can be integrated into the scene.

Fig. 6. Environment of the robot.

2.3 Model of a control panel
Virtual model of a control panel is a second basic element of a simulation. The figure 7
presents the main elements of a control panel. It is assumed that control panel consists of
joysticks, buttons, switches and displays. The control panel communicates with a robot via
communicating module or directly dependently whether a real or a virtual panel is in use.
Control panel can be virtual or real thus the trainee can accustom to real device controlling
the virtual robot using real control panel. Described technology is presented in the figure 8.

2.4 Task
In order to design Task, the following models are required: robot model, control panel model
and environmental model. A training designer has the ability to set the beginning position of

379Improvement of RISE Mobile Robot Operator Training Tool

6 Will-be-set-by-IN-TECH

Fig. 7. Composition of necessary elements of a control panel.

Fig. 8. Composition of necessary elements of a control panel and robot communication.

the robot and after that define all possible mission events he concerns as important. Next, he
can define time thresholds for the mission. Such e-Task is then exported and can be used to
prepare the full multilevel training. The task designing steps are shown in figure 9. For this
purpose, framework supplies e-Tasks Generator. The tool supplies the base of events. The
Task designer will be able to move about the scene with the robot and environment read in
then chose one actor or group of actors and attach an event with specific parameters. The
possible events defined for the single Task are: a) robot path to chosen localization, b) time
exceeded, c) move an object to chosen localization, d) touch an object, e) damage/disable
robot, f) neutralize/destroy an object (e.g. shoot with water gun, put an explosives).

Fig. 9. Task designing steps.

2.5 Training
When a designer get through the previous steps the last what is required is to prepare the
training. Using previously defined Tasks one can prepare a graph of the training. The sample
graph is presented in figure 10. The training starts with the Mission 1 and leads through two
or three subsequent missions. In the first case when the condition C3 is satisfied it means that
Mission 2 is non requisite otherwise if the condition C2 is satisfied the training path will lead
through the Mission 2. Under conditions C1 C4 C5 C8 appropriate missions will be repeated.
At the end of each training the summary is presented on the screen and saved to file. The file
is imported to the training manager. Figure 11 shows the Training manager GUI. Training
manager GUI informs the user about currently task report, also the training report is available
for further tasks execution. Training manager can visualize the simulated scene for analyses

380
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 7

purposes. Figure 12 shows executed task taskMETRO. The main objective was to transport
hazardous object into defined place of neutralization.

Fig. 10. Scheme of the training graph. Each node must be one of three: start, end or mission;
transition to the next mission is represented by arrow and is triggered under specific
condition denoted as C1 ... C9

Fig. 11. Training manager GUI.

3. Framework improvement

Framework for robot operator training design is improved by semantic simulation engine.
Semantic simulation engine J. Bedkowski (2011b) is a project that main idea is to improve State
of The Art in the area of semantic robotics Asada & Shirai (1989) Nüchter & Hertzberg (2008)
Grau (1997) with the focus on practical applications such as robot supervision and control,
semantic map building, robot reasoning and robot operator training using augmented reality
techniques Kowalski et al. (2011) J. Bedkowski (2011a). It combines semantic map with rigid
body simulation to perform supervision of its entities such as robots moving in INDOOR or
OUTDOOR environments composed by floor, ceiling, walls, door, tree, etc.

381Improvement of RISE Mobile Robot Operator Training Tool

6 Will-be-set-by-IN-TECH

Fig. 7. Composition of necessary elements of a control panel.

Fig. 8. Composition of necessary elements of a control panel and robot communication.

the robot and after that define all possible mission events he concerns as important. Next, he
can define time thresholds for the mission. Such e-Task is then exported and can be used to
prepare the full multilevel training. The task designing steps are shown in figure 9. For this
purpose, framework supplies e-Tasks Generator. The tool supplies the base of events. The
Task designer will be able to move about the scene with the robot and environment read in
then chose one actor or group of actors and attach an event with specific parameters. The
possible events defined for the single Task are: a) robot path to chosen localization, b) time
exceeded, c) move an object to chosen localization, d) touch an object, e) damage/disable
robot, f) neutralize/destroy an object (e.g. shoot with water gun, put an explosives).

Fig. 9. Task designing steps.

2.5 Training
When a designer get through the previous steps the last what is required is to prepare the
training. Using previously defined Tasks one can prepare a graph of the training. The sample
graph is presented in figure 10. The training starts with the Mission 1 and leads through two
or three subsequent missions. In the first case when the condition C3 is satisfied it means that
Mission 2 is non requisite otherwise if the condition C2 is satisfied the training path will lead
through the Mission 2. Under conditions C1 C4 C5 C8 appropriate missions will be repeated.
At the end of each training the summary is presented on the screen and saved to file. The file
is imported to the training manager. Figure 11 shows the Training manager GUI. Training
manager GUI informs the user about currently task report, also the training report is available
for further tasks execution. Training manager can visualize the simulated scene for analyses

380
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 7

purposes. Figure 12 shows executed task taskMETRO. The main objective was to transport
hazardous object into defined place of neutralization.

Fig. 10. Scheme of the training graph. Each node must be one of three: start, end or mission;
transition to the next mission is represented by arrow and is triggered under specific
condition denoted as C1 ... C9

Fig. 11. Training manager GUI.

3. Framework improvement

Framework for robot operator training design is improved by semantic simulation engine.
Semantic simulation engine J. Bedkowski (2011b) is a project that main idea is to improve State
of The Art in the area of semantic robotics Asada & Shirai (1989) Nüchter & Hertzberg (2008)
Grau (1997) with the focus on practical applications such as robot supervision and control,
semantic map building, robot reasoning and robot operator training using augmented reality
techniques Kowalski et al. (2011) J. Bedkowski (2011a). It combines semantic map with rigid
body simulation to perform supervision of its entities such as robots moving in INDOOR or
OUTDOOR environments composed by floor, ceiling, walls, door, tree, etc.

381Improvement of RISE Mobile Robot Operator Training Tool

8 Will-be-set-by-IN-TECH

Fig. 12. Task taskMETRO execution. The goal is to transport hazardous object to appropriate
location.

3.1 Semantic simulation engine
Semantic simulation engine is composed of data registration modules, semantic entities
identification (data segmentation) modules and semantic simulation module. It provides tools
to implement mobile robot simulation based on real data delivered by robot and processed
on-line using parallel computation. Semantic entities identification modules can classify
several objects in INDOOR and OUTDOOR environments. Data can be delivered by robot
observation based on modern sensors such as laser measurement system 3D and RGB-D
cameras. Real objects are associated with virtual entities of simulated environment. The
concept of semantic simulation is a new idea, and its strength lies on the semantic map
integration with mobile robot simulator.

3.2 Data registration
Data registration module provides accurate alignment of robot observations. Aligning
two-view range images with respect to the reference coordinate system is performed by the
ICP (Iterative Closest Points) algorithm. Range images are defined as a model set M and data
set D, Nm and Nd denotes the number of the elements in the respective set. The alignment of
these two data sets is solved by minimization with respect to R,t of the following cost function:

E (R, t) =
Nm

∑
i=1

Nd

∑
j=1

wij

∥∥∥mi −
(

Rdj + t
)∥∥∥2

(1)

wij is assigned 1 if the i-th point of M correspond to the j-th point in D. Otherwise wij=0. R is
a rotation matrix, t is a translation matrix. mi and di corresponds to the i-th point from model
set M and D respectively. The key concept of the standard ICP algorithm can be summarized
in two steps Segal et al. (2009):
1) compute correspondences between the two scans (Nearest Neighbor Search).
2) compute a transformation which minimizes distance between corresponding points.
Iteratively repeating these two steps should results in convergence to the desired
transformation. Because we are violating the assumption of full overlap, we are forced to add
a maximum matching threshold dmax. This threshold accounts for the fact that some points
will not have any correspondence in the second scan. In most implementations of ICP, the
choice of dmax represents a trade off between convergence and accuracy. A low value results
in bad convergence, a large value causes incorrect correspondences to pull the final alignment
away from the correct value. Classic ICP is listed as algorithm 1 and the ICP algorithm using
CUDA parallel programming is listed as algorithm 2. Parallel programming applied for ICP
computation results the average time 300ms for 30 iterations of ICP. The proposed solution is

382
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 9

efficient since it performs nearest neighbor search using a bucket data structure (sorted using
CUDA primitive) and computes the correlation matrix using parallel CUDA all-prefix-sum
instruction.
We can consider data registration module as a component executing 6D SLAM - Simultaneous
Localization and Mapping, where 6D is related to vector describing robot position in 3D
(x,y,z,yaw,pitch,roll). The 6D SLAM algorithm executes three steps: a) ICP alignment of 2
robot observations, b) loop closing, c) map relaxation. The example result of data registration
module is shown in figure 13

Algorithm 1 Classic ICP

INPUT: Two point clouds A = {ai}, B= {bi}, an initial transformation T0
OUTPUT: The correct transformation T, which aligns A and B
T ← T0
for iter ← 0 to maxIterations do

for i ← 0 to N do
mi ← FindClosestPointInA(T · bi)
if �mi − T · bi� ≤ dmax then

wi ← 1
else

wi ← 0
end if

end for
T ← argmin

T

{
∑i wi �T · bi − mi�2

}

end for

Algorithm 2 ICP - parallel computing approach

INPUT: Two point clouds M = {mi}, D= {di}, an initial transformation T0
OUTPUT: The correct transformation T, which aligns M and D
Mdevice ← M
Ddevice ← D
Tdevice ← T0
for iter ← 0 to maxIterations do

for i ← 0 to N {in parallel} do
mi ← FindClosestPointInM (Tdevice · di) {using regular grid decomposition}
if f oundClosestPointInNeighboringBuckets then

wi ← 1
else

wi ← 0
end if

end for
Tdevice ← argmin

Tdevice

{
∑i wi �T · di − mi�2

}
{calculation T←R,t with SVD}

end for
M ← Mdevice
D ← Ddevice
T ← Tdevice

383Improvement of RISE Mobile Robot Operator Training Tool

8 Will-be-set-by-IN-TECH

Fig. 12. Task taskMETRO execution. The goal is to transport hazardous object to appropriate
location.

3.1 Semantic simulation engine
Semantic simulation engine is composed of data registration modules, semantic entities
identification (data segmentation) modules and semantic simulation module. It provides tools
to implement mobile robot simulation based on real data delivered by robot and processed
on-line using parallel computation. Semantic entities identification modules can classify
several objects in INDOOR and OUTDOOR environments. Data can be delivered by robot
observation based on modern sensors such as laser measurement system 3D and RGB-D
cameras. Real objects are associated with virtual entities of simulated environment. The
concept of semantic simulation is a new idea, and its strength lies on the semantic map
integration with mobile robot simulator.

3.2 Data registration
Data registration module provides accurate alignment of robot observations. Aligning
two-view range images with respect to the reference coordinate system is performed by the
ICP (Iterative Closest Points) algorithm. Range images are defined as a model set M and data
set D, Nm and Nd denotes the number of the elements in the respective set. The alignment of
these two data sets is solved by minimization with respect to R,t of the following cost function:

E (R, t) =
Nm

∑
i=1

Nd

∑
j=1

wij

∥∥∥mi −
(

Rdj + t
)∥∥∥2

(1)

wij is assigned 1 if the i-th point of M correspond to the j-th point in D. Otherwise wij=0. R is
a rotation matrix, t is a translation matrix. mi and di corresponds to the i-th point from model
set M and D respectively. The key concept of the standard ICP algorithm can be summarized
in two steps Segal et al. (2009):
1) compute correspondences between the two scans (Nearest Neighbor Search).
2) compute a transformation which minimizes distance between corresponding points.
Iteratively repeating these two steps should results in convergence to the desired
transformation. Because we are violating the assumption of full overlap, we are forced to add
a maximum matching threshold dmax. This threshold accounts for the fact that some points
will not have any correspondence in the second scan. In most implementations of ICP, the
choice of dmax represents a trade off between convergence and accuracy. A low value results
in bad convergence, a large value causes incorrect correspondences to pull the final alignment
away from the correct value. Classic ICP is listed as algorithm 1 and the ICP algorithm using
CUDA parallel programming is listed as algorithm 2. Parallel programming applied for ICP
computation results the average time 300ms for 30 iterations of ICP. The proposed solution is

382
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 9

efficient since it performs nearest neighbor search using a bucket data structure (sorted using
CUDA primitive) and computes the correlation matrix using parallel CUDA all-prefix-sum
instruction.
We can consider data registration module as a component executing 6D SLAM - Simultaneous
Localization and Mapping, where 6D is related to vector describing robot position in 3D
(x,y,z,yaw,pitch,roll). The 6D SLAM algorithm executes three steps: a) ICP alignment of 2
robot observations, b) loop closing, c) map relaxation. The example result of data registration
module is shown in figure 13

Algorithm 1 Classic ICP

INPUT: Two point clouds A = {ai}, B= {bi}, an initial transformation T0
OUTPUT: The correct transformation T, which aligns A and B
T ← T0
for iter ← 0 to maxIterations do

for i ← 0 to N do
mi ← FindClosestPointInA(T · bi)
if �mi − T · bi� ≤ dmax then

wi ← 1
else

wi ← 0
end if

end for
T ← argmin

T

{
∑i wi �T · bi − mi�2

}

end for

Algorithm 2 ICP - parallel computing approach

INPUT: Two point clouds M = {mi}, D= {di}, an initial transformation T0
OUTPUT: The correct transformation T, which aligns M and D
Mdevice ← M
Ddevice ← D
Tdevice ← T0
for iter ← 0 to maxIterations do

for i ← 0 to N {in parallel} do
mi ← FindClosestPointInM (Tdevice · di) {using regular grid decomposition}
if f oundClosestPointInNeighboringBuckets then

wi ← 1
else

wi ← 0
end if

end for
Tdevice ← argmin

Tdevice

{
∑i wi �T · di − mi�2

}
{calculation T←R,t with SVD}

end for
M ← Mdevice
D ← Ddevice
T ← Tdevice

383Improvement of RISE Mobile Robot Operator Training Tool

10 Will-be-set-by-IN-TECH

Fig. 13. Example of a result of data registration module. A - odometry with gyroscope
correction, B - ICP, C - loop closed, D - final 3D map. Data was acquired in Royal Military
Academy building (Brussels, Belgium) using PIONEER 3AT robot equipped with 3DLSN
unit (rotated LMS200).

3.3 Semantic entities identification
The procedure of prerequisites generation using image processing methods is used. The set
of lines obtained by Hough transform from projected 3D points onto 2D OXY plane is used
to obtain segmentation of cloud of points, where different walls will have different labels.
For each line segment the orthogonal planeorth to planeOXY is computed. The intersection
between this two planes is the same line segment. All 3D points which satisfy the condition
of distance to planeorth have the same label. In the first step all prerequisites of walls were
checked separately - it is data segmentation. To perform the scene interpretation semantic net
is used (figure 14). The feature detection algorithm is composed of cubes generation method,
where each cube should contain measured 3D point after segmentation (see figure 15). In the
second step of the algorithm wall candidates are chosen. From this set of candidates, based
on relationships between them, proper labels are assigned and output model is generated (see
figure 16 left). The image processing methods are also used for stairs prerequisites generation.
The set of parallel lines (obtained by projected single 3D scan onto OXY plane) in the same
short distance between each other is prerequisite of stairs. Possible labels of the nodes are L =
{stair}. The relationships between the entities are R = {parallel, above, under}. Figure 16 right
shows resulting model of stairs generated from 3D cloud of points. In this spatial model each
stair (except first and last one obviously) is in relation r=above¶llel with the previous one
and in relation r=under¶llel with next one.

3.4 Environment model generation
Model of the environment is automatically generated using semantic net from set of identified
semantic entities. The engine basic elements for INDOOR environment are: semantic map
nodes(entities) Lsm={Wall, Wall above door, Floor, Ceiling, Door, Free space for door, Stairs...},
the Lsm set can be extended by another objects, what is dependent on robust and accurate
3D scene analysis, robot simulator nodes(entities) Lrs={robot, rigid body object, soft body

384
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 11

Fig. 14. Semantic net defined for semantic entities identification.

Fig. 15. Left - segmentation of 3D cloud of points, right - boxes that contain measured points.

Fig. 16. Scene interpretation left - door, walls, right - stairs.

object...}, semantic map relationships between the entities Rsm = {parallel, orthogonal, above,
under, equal height, available inside, connected via joint...}, robot simulator relationships

385Improvement of RISE Mobile Robot Operator Training Tool

10 Will-be-set-by-IN-TECH

Fig. 13. Example of a result of data registration module. A - odometry with gyroscope
correction, B - ICP, C - loop closed, D - final 3D map. Data was acquired in Royal Military
Academy building (Brussels, Belgium) using PIONEER 3AT robot equipped with 3DLSN
unit (rotated LMS200).

3.3 Semantic entities identification
The procedure of prerequisites generation using image processing methods is used. The set
of lines obtained by Hough transform from projected 3D points onto 2D OXY plane is used
to obtain segmentation of cloud of points, where different walls will have different labels.
For each line segment the orthogonal planeorth to planeOXY is computed. The intersection
between this two planes is the same line segment. All 3D points which satisfy the condition
of distance to planeorth have the same label. In the first step all prerequisites of walls were
checked separately - it is data segmentation. To perform the scene interpretation semantic net
is used (figure 14). The feature detection algorithm is composed of cubes generation method,
where each cube should contain measured 3D point after segmentation (see figure 15). In the
second step of the algorithm wall candidates are chosen. From this set of candidates, based
on relationships between them, proper labels are assigned and output model is generated (see
figure 16 left). The image processing methods are also used for stairs prerequisites generation.
The set of parallel lines (obtained by projected single 3D scan onto OXY plane) in the same
short distance between each other is prerequisite of stairs. Possible labels of the nodes are L =
{stair}. The relationships between the entities are R = {parallel, above, under}. Figure 16 right
shows resulting model of stairs generated from 3D cloud of points. In this spatial model each
stair (except first and last one obviously) is in relation r=above¶llel with the previous one
and in relation r=under¶llel with next one.

3.4 Environment model generation
Model of the environment is automatically generated using semantic net from set of identified
semantic entities. The engine basic elements for INDOOR environment are: semantic map
nodes(entities) Lsm={Wall, Wall above door, Floor, Ceiling, Door, Free space for door, Stairs...},
the Lsm set can be extended by another objects, what is dependent on robust and accurate
3D scene analysis, robot simulator nodes(entities) Lrs={robot, rigid body object, soft body

384
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 11

Fig. 14. Semantic net defined for semantic entities identification.

Fig. 15. Left - segmentation of 3D cloud of points, right - boxes that contain measured points.

Fig. 16. Scene interpretation left - door, walls, right - stairs.

object...}, semantic map relationships between the entities Rsm = {parallel, orthogonal, above,
under, equal height, available inside, connected via joint...}, robot simulator relationships

385Improvement of RISE Mobile Robot Operator Training Tool

12 Will-be-set-by-IN-TECH

between the entities Rrs = {connected via joint, position...}, semantic map events Esm =
robot simulator events Ers = {movement, collision between two entities started, collision
between two entities stopped, collision between two entities continued, broken joint...}. Robot
simulator is implemented using NVIDIA PhysX library. The entities from semantic map
correspond to actors in PhysX. Lsm is transformed into Lrs based on spatial model generated
based on registered 3D scans. Rsm is transformed into Rrs. All entities/relations Rsm has the
same initial location in Rrs, obviously the location of each actor/entity may change during
simulation, therefore accurate object tracking system is needed. The transformation from Esm
to Ers effects that events related to entities from semantic map correspond to the events related
to actors representing proper entities. Following events can be noticed during simulation:
robot can touch each entity (see figure 17), open/close the door and enter empty space of
the door (see figure 18), climb the stairs (see figure 19), damage itself -broken joint between
actors in robot arm (see figure 20), brake joint that connects door to the wall.

Fig. 17. Simulated robot touches entity.

Fig. 18. Simulated robot enters empty space of the door.

386
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 13

Fig. 19. Simulated robot climbs the stairs.

Fig. 20. Simulated robot damages itself.

4. Conclusion and future work

The chapter presents the framework for RISE mobile robot operator training design with an
improvement based on semantic simulation engine. The framework is composed by advanced
software tools to improve the performance of the mobile robot simulation design that are
applicable for operator training. The simulator is the end product of the framework. The
effort to build the simulation software is decreased by developed programs that allow to build
several model such as robot model, and environment model. The framework can help in RISE
robot training classroom building for several task execution in simultaneous mode, therefore
multiple training can be performed. We believe that developed software can help also in multi
robotic system design and development by providing advanced techniques for simulation
process, therefore the framework can be applicable in several mobile robotics applications.
New concept of semantic simulation engine, composed of data registration modules, semantic
entities identification modules and semantic simulation module is demonstrated. The
implementation of parallel computing applied for 6D SLAM, especially for data registration
based on regular grid decomposition is shown. Semantic simulation engine provides tools
to implement mobile robot simulation based on real data delivered by robot and processed
on-line using parallel computation. Semantic entities identification modules can classify door,
walls, floor, ceiling, stairs in indoor environment. Semantic simulation uses NVIDIA PhysX
for rigid body simulation. Future work will be related to AI techniques applied for semantic
entities identification (furnitures, victims, cars, etc...), localization and tracking methods.

387Improvement of RISE Mobile Robot Operator Training Tool

12 Will-be-set-by-IN-TECH

between the entities Rrs = {connected via joint, position...}, semantic map events Esm =
robot simulator events Ers = {movement, collision between two entities started, collision
between two entities stopped, collision between two entities continued, broken joint...}. Robot
simulator is implemented using NVIDIA PhysX library. The entities from semantic map
correspond to actors in PhysX. Lsm is transformed into Lrs based on spatial model generated
based on registered 3D scans. Rsm is transformed into Rrs. All entities/relations Rsm has the
same initial location in Rrs, obviously the location of each actor/entity may change during
simulation, therefore accurate object tracking system is needed. The transformation from Esm
to Ers effects that events related to entities from semantic map correspond to the events related
to actors representing proper entities. Following events can be noticed during simulation:
robot can touch each entity (see figure 17), open/close the door and enter empty space of
the door (see figure 18), climb the stairs (see figure 19), damage itself -broken joint between
actors in robot arm (see figure 20), brake joint that connects door to the wall.

Fig. 17. Simulated robot touches entity.

Fig. 18. Simulated robot enters empty space of the door.

386
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 13

Fig. 19. Simulated robot climbs the stairs.

Fig. 20. Simulated robot damages itself.

4. Conclusion and future work

The chapter presents the framework for RISE mobile robot operator training design with an
improvement based on semantic simulation engine. The framework is composed by advanced
software tools to improve the performance of the mobile robot simulation design that are
applicable for operator training. The simulator is the end product of the framework. The
effort to build the simulation software is decreased by developed programs that allow to build
several model such as robot model, and environment model. The framework can help in RISE
robot training classroom building for several task execution in simultaneous mode, therefore
multiple training can be performed. We believe that developed software can help also in multi
robotic system design and development by providing advanced techniques for simulation
process, therefore the framework can be applicable in several mobile robotics applications.
New concept of semantic simulation engine, composed of data registration modules, semantic
entities identification modules and semantic simulation module is demonstrated. The
implementation of parallel computing applied for 6D SLAM, especially for data registration
based on regular grid decomposition is shown. Semantic simulation engine provides tools
to implement mobile robot simulation based on real data delivered by robot and processed
on-line using parallel computation. Semantic entities identification modules can classify door,
walls, floor, ceiling, stairs in indoor environment. Semantic simulation uses NVIDIA PhysX
for rigid body simulation. Future work will be related to AI techniques applied for semantic
entities identification (furnitures, victims, cars, etc...), localization and tracking methods.

387Improvement of RISE Mobile Robot Operator Training Tool

14 Will-be-set-by-IN-TECH

Concerning 6D SLAM, semantic loop closing techniques will be taken into the consideration
as promising methods delivering conceptual reasoning.

5. References

Andreasson, H. (2008). Local Visual Feature based Localisation and Mapping by Mobile Robots,
Doctoral thesis, Orebro University, School of Science and Technology.

Andreasson, H. & Lilienthal, A. J. (2007). Vision aided 3d laser based registration, Proceedings
of the European Conference on Mobile Robots (ECMR), pp. 192–197.

Andreasson, H., Triebel, R. & Burgard, W. (2005). Improving plane extraction from 3d data
by fusing laser data and vision, Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2656–2661.

Asada, M. & Shirai, Y. (1989). Building a world model for a mobile robot using dynamic
semantic constraints, Proc. 11 th International Joint Conference on Artificial Intelligence,
pp. 1629–1634.

Bedkowski, J., Kowalski, P. & Piszczek, J. (2009). Hmi for multi robotic inspection system
for risky intervention and environmental surveillance, Mobile Robotics: Solutions and
Challenges, Proceedings of the Twelfth International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines.

Bedkowski, J., Piszczek, J., Kowalski, P. & Maslowski, A. (2009). Modeling and simulation for
the mobile robot operator training tool, The 5th International Conference on Information
and Communication Technology and Systems (ICTS), Surabaya, Indonesia, pp. 229–236.

Besl, P. J. & Mckay, H. D. (1992). A method for registration of 3-d shapes, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 14(2): 239–256.

Bravo, J. & Alberto, C. (2009). An augmented reality interface for training robotics through the
web, Proceedings of the 40th International Symposium on Robotics. Barcelona : AER-ATP,
ISBN 978-84-920933-8-0, pp. 189–194.

Cantzler, H., Fisher, R. B. & Devy, M. (2002). Quality enhancement of reconstructed 3d models
using coplanarity and constraints, Proceedings of the 24th DAGM Symposium on Pattern
Recognition, Springer-Verlag, London, UK, pp. 34–41.

Casper, J. & Murphy, R. R. (2003). Human-robot interactions during the robot-assisted urban
search and rescue response at the World Trade Center., IEEE transactions on systems,
man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and
Cybernetics Society 33(3): 367–385.
URL: http://dx.doi.org/10.1109/TSMCB.2003.811794

Castle, R. O., Klein, G. & Murray, D. W. (2010). Combining monoslam with object recognition
for scene augmentation using a wearable camera, 28(11): 1548 – 1556.

Davison, A., Cid, Y. G. & Kita, N. (2004). Real-time 3D SLAM with wide-angle vision, Proc.
IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon.

Drewes, P. (2006). Simulation based approach for unmanned system command and control,
Conference on Recent Advances in Robotics, FCRAR Miami, Florida, pp. 189–194.

Eich, M., Dabrowska, M. & Kirchner, F. (2010). Semantic labeling: Classification of 3d entities
based on spatial feature descriptors, IEEE International Conference on Robotics and
Automation (ICRA2010) in Anchorage, Alaska, May 3.

Fischler, M. A. & Bolles, R. (1980). Random sample consensus. a paradigm for model fitting
with apphcahons to image analysm and automated cartography, Proc. 1980 Image
Understandtng Workshop (College Park, Md., Apr i980) L. S. Baurnann, Ed, Scmnce
Apphcatlons, McLean, Va., pp. 71–88.

388
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 15

Grau, O. (1997). A scene analysis system for the generation of 3-d models, NRC ’97: Proceedings
of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling,
IEEE Computer Society, Washington, DC, USA, p. 221.

Hähnel, D. & Burgard, W. (2002). Probabilistic matching for 3D scan registration, In.: Proc. of
the VDI - Conference Robotik 2002 (Robotik).

Hong, S. H., Park, J. H., Kwon, K. H. & Jeon, J. W. (2007). A distance learning system
for robotics, Lecture Notes in Computer Science, Computational Science ICCS 2007
4489/2007: 523–530.

J. Bedkowski, A. M. (2011a). Methodology of control and supervision of web connected mobile
robots with cuda technology application, Journal of Automation, Mobile Robotics and
Intelligent Systems 5(2): 3–11.

J. Bedkowski, A. M. (2011b). Semantic simulation engine for mobile robotic applications,
Pomiary, Automatyka, Robotyka 2/2011, Automation 2011 6-8 April, Warsaw pp. 333–343.

Kowalski, G., Bedkowski, J., Kowalski, P. & Maslowski, A. (2011). Computer training with
ground teleoperated robots for de-mining, Using robots in hazardous environments,
Landmine detection, de-mining and other applications pp. 397–418.

Kowalski, G., Bedkowski, J. & Maslowski, A. (2008). Virtual and augmented reality as a
mobile robots inspections operators training aid, Bulletin of the Transilvania University
of Brasov. Proceedings of the international conference Robotics08, special issue vol. 15(50)
series A, no. 1, vol. 2, Brasov, Romania, pp. 571–576.

Magnusson, M., Andreasson, H., Nüchter, A. & Lilienthal, A. J. (2009). Automatic
appearance-based loop detection from 3D laser data using the normal distributions
transform, Journal of Field Robotics 26(11–12): 892–914.

Magnusson, M., Duckett, T. & Lilienthal, A. J. (2007). 3d scan registration for autonomous
mining vehicles, Journal of Field Robotics 24(10): 803–827.

Magnusson, M., Nüchter, A., Lörken, C., Lilienthal, A. J. & Hertzberg, J. (2009). Evaluation of
3d registration reliability and speed âĂŞ- a comparison of icp and ndt, Proc. IEEE Int.
Conf. on Robotics and Automation, pp. 3907–3912.

Masar, I., Bischoff, A. & Gerke, M. (2004). Remote experimentation in distance education for
control engineers, Proceedings of Virtual University, Slovakia.

Nüchter, A. & Hertzberg, J. (2008). Towards semantic maps for mobile robots, Robot. Auton.
Syst. 56(11): 915–926.

Nüchter, A., Surmann, H. & Hertzberg, J. (2003). Automatic model refinement for 3D
reconstruction with mobile robots, Fourth International Conference on 3-D Digital
Imaging and Modeling 3DIM 03, p. 394.

Nüchter, A., Surmann, H., Lingemann, K. & Hertzberg, J. (2003). Semantic scene analysis
of scanned 3d indoor environments, in: Proceedings of the Eighth International Fall
Workshop on Vision, Modeling, and Visualization (VMV 03).

Nüchter, A., Wulf, O., Lingemann, K., Hertzberg, J., Wagner, B. & Surmann, H. (2005). 3d
mapping with semantic knowledge, IN ROBOCUP INTERNATIONAL SYMPOSIUM,
pp. 335–346.

Oberlander, J., Uhl, K., Zollner, J. M. & Dillmann, R. (2008). A region-based slam algorithm
capturing metric, topological, and semantic properties, ICRA’08, pp. 1886–1891.

Pedraza, L., Dissanayake, G., Miro, J. V., Rodriguez-Losada, D. & Matia, F. (2007). Bs-slam:
Shaping the world, Proceedings of Robotics: Science and Systems, Atlanta, GA, USA.

Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M. & Beetz, M. (2008). Towards 3d point cloud
based object maps for household environments, Robot. Auton. Syst. 56(11): 927–941.

389Improvement of RISE Mobile Robot Operator Training Tool

14 Will-be-set-by-IN-TECH

Concerning 6D SLAM, semantic loop closing techniques will be taken into the consideration
as promising methods delivering conceptual reasoning.

5. References

Andreasson, H. (2008). Local Visual Feature based Localisation and Mapping by Mobile Robots,
Doctoral thesis, Orebro University, School of Science and Technology.

Andreasson, H. & Lilienthal, A. J. (2007). Vision aided 3d laser based registration, Proceedings
of the European Conference on Mobile Robots (ECMR), pp. 192–197.

Andreasson, H., Triebel, R. & Burgard, W. (2005). Improving plane extraction from 3d data
by fusing laser data and vision, Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2656–2661.

Asada, M. & Shirai, Y. (1989). Building a world model for a mobile robot using dynamic
semantic constraints, Proc. 11 th International Joint Conference on Artificial Intelligence,
pp. 1629–1634.

Bedkowski, J., Kowalski, P. & Piszczek, J. (2009). Hmi for multi robotic inspection system
for risky intervention and environmental surveillance, Mobile Robotics: Solutions and
Challenges, Proceedings of the Twelfth International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines.

Bedkowski, J., Piszczek, J., Kowalski, P. & Maslowski, A. (2009). Modeling and simulation for
the mobile robot operator training tool, The 5th International Conference on Information
and Communication Technology and Systems (ICTS), Surabaya, Indonesia, pp. 229–236.

Besl, P. J. & Mckay, H. D. (1992). A method for registration of 3-d shapes, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 14(2): 239–256.

Bravo, J. & Alberto, C. (2009). An augmented reality interface for training robotics through the
web, Proceedings of the 40th International Symposium on Robotics. Barcelona : AER-ATP,
ISBN 978-84-920933-8-0, pp. 189–194.

Cantzler, H., Fisher, R. B. & Devy, M. (2002). Quality enhancement of reconstructed 3d models
using coplanarity and constraints, Proceedings of the 24th DAGM Symposium on Pattern
Recognition, Springer-Verlag, London, UK, pp. 34–41.

Casper, J. & Murphy, R. R. (2003). Human-robot interactions during the robot-assisted urban
search and rescue response at the World Trade Center., IEEE transactions on systems,
man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and
Cybernetics Society 33(3): 367–385.
URL: http://dx.doi.org/10.1109/TSMCB.2003.811794

Castle, R. O., Klein, G. & Murray, D. W. (2010). Combining monoslam with object recognition
for scene augmentation using a wearable camera, 28(11): 1548 – 1556.

Davison, A., Cid, Y. G. & Kita, N. (2004). Real-time 3D SLAM with wide-angle vision, Proc.
IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon.

Drewes, P. (2006). Simulation based approach for unmanned system command and control,
Conference on Recent Advances in Robotics, FCRAR Miami, Florida, pp. 189–194.

Eich, M., Dabrowska, M. & Kirchner, F. (2010). Semantic labeling: Classification of 3d entities
based on spatial feature descriptors, IEEE International Conference on Robotics and
Automation (ICRA2010) in Anchorage, Alaska, May 3.

Fischler, M. A. & Bolles, R. (1980). Random sample consensus. a paradigm for model fitting
with apphcahons to image analysm and automated cartography, Proc. 1980 Image
Understandtng Workshop (College Park, Md., Apr i980) L. S. Baurnann, Ed, Scmnce
Apphcatlons, McLean, Va., pp. 71–88.

388
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training Improvement of RISE Mobile Robot Operator Training Tool 15

Grau, O. (1997). A scene analysis system for the generation of 3-d models, NRC ’97: Proceedings
of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling,
IEEE Computer Society, Washington, DC, USA, p. 221.

Hähnel, D. & Burgard, W. (2002). Probabilistic matching for 3D scan registration, In.: Proc. of
the VDI - Conference Robotik 2002 (Robotik).

Hong, S. H., Park, J. H., Kwon, K. H. & Jeon, J. W. (2007). A distance learning system
for robotics, Lecture Notes in Computer Science, Computational Science ICCS 2007
4489/2007: 523–530.

J. Bedkowski, A. M. (2011a). Methodology of control and supervision of web connected mobile
robots with cuda technology application, Journal of Automation, Mobile Robotics and
Intelligent Systems 5(2): 3–11.

J. Bedkowski, A. M. (2011b). Semantic simulation engine for mobile robotic applications,
Pomiary, Automatyka, Robotyka 2/2011, Automation 2011 6-8 April, Warsaw pp. 333–343.

Kowalski, G., Bedkowski, J., Kowalski, P. & Maslowski, A. (2011). Computer training with
ground teleoperated robots for de-mining, Using robots in hazardous environments,
Landmine detection, de-mining and other applications pp. 397–418.

Kowalski, G., Bedkowski, J. & Maslowski, A. (2008). Virtual and augmented reality as a
mobile robots inspections operators training aid, Bulletin of the Transilvania University
of Brasov. Proceedings of the international conference Robotics08, special issue vol. 15(50)
series A, no. 1, vol. 2, Brasov, Romania, pp. 571–576.

Magnusson, M., Andreasson, H., Nüchter, A. & Lilienthal, A. J. (2009). Automatic
appearance-based loop detection from 3D laser data using the normal distributions
transform, Journal of Field Robotics 26(11–12): 892–914.

Magnusson, M., Duckett, T. & Lilienthal, A. J. (2007). 3d scan registration for autonomous
mining vehicles, Journal of Field Robotics 24(10): 803–827.

Magnusson, M., Nüchter, A., Lörken, C., Lilienthal, A. J. & Hertzberg, J. (2009). Evaluation of
3d registration reliability and speed âĂŞ- a comparison of icp and ndt, Proc. IEEE Int.
Conf. on Robotics and Automation, pp. 3907–3912.

Masar, I., Bischoff, A. & Gerke, M. (2004). Remote experimentation in distance education for
control engineers, Proceedings of Virtual University, Slovakia.

Nüchter, A. & Hertzberg, J. (2008). Towards semantic maps for mobile robots, Robot. Auton.
Syst. 56(11): 915–926.

Nüchter, A., Surmann, H. & Hertzberg, J. (2003). Automatic model refinement for 3D
reconstruction with mobile robots, Fourth International Conference on 3-D Digital
Imaging and Modeling 3DIM 03, p. 394.

Nüchter, A., Surmann, H., Lingemann, K. & Hertzberg, J. (2003). Semantic scene analysis
of scanned 3d indoor environments, in: Proceedings of the Eighth International Fall
Workshop on Vision, Modeling, and Visualization (VMV 03).

Nüchter, A., Wulf, O., Lingemann, K., Hertzberg, J., Wagner, B. & Surmann, H. (2005). 3d
mapping with semantic knowledge, IN ROBOCUP INTERNATIONAL SYMPOSIUM,
pp. 335–346.

Oberlander, J., Uhl, K., Zollner, J. M. & Dillmann, R. (2008). A region-based slam algorithm
capturing metric, topological, and semantic properties, ICRA’08, pp. 1886–1891.

Pedraza, L., Dissanayake, G., Miro, J. V., Rodriguez-Losada, D. & Matia, F. (2007). Bs-slam:
Shaping the world, Proceedings of Robotics: Science and Systems, Atlanta, GA, USA.

Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M. & Beetz, M. (2008). Towards 3d point cloud
based object maps for household environments, Robot. Auton. Syst. 56(11): 927–941.

389Improvement of RISE Mobile Robot Operator Training Tool

16 Will-be-set-by-IN-TECH

Schlaefer, A., Gill, J. & Schweikard, A. (2008). A simulation and training environment for
robotic radiosurgery, International Journal of Computer Assisted Radiology and Surgery
3(3-4): 267–274.

Se, S. & Little, D. L. J. (2002). Mobile robot localization and mapping with uncertainty
using scale-invariant visual landmarks, The International Journal of Robotics Research
21(8): 735–758.

Segal, A., Haehnel, D. & Thrun, S. (2009). Generalized-icp, Proceedings of Robotics: Science and
Systems, Seattle, USA.

Thrun, S., Burgard, W. & Fo, D. (2000). A real-time algorithm for mobile robot mapping with
applications to multi-robot and 3d mapping, ICRA, pp. 321–328.

Varcholik, P., Barber, D. & Nicholson, D. (2008). Interactions and training with unmanned
systems and the nintendo wiimote, Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC), Paper No. 8255, pp. 189–194.

Vaskevicius, N., Birk, A., Pathak, K. & Poppinga, J. (2007). Fast detection of polygons in 3d
point clouds from noise-prone range sensors, IEEE International Workshop on Safety,
Security and Rescue Robotics, SSRR, IEEE, Rome, pp. 1–6.

Wei, B., Gao, J., Zhu, J. & Li, K. (2009). A single-hand and binocular visual system for
eod robot, Second International Conference on Intelligent Computation Technology and
Automation, ICICTA ’09, Vol. 3, pp. 403 – 406.

Williams, B. & Reid, I. (2010). On combining visual slam and visual odometry, Proc.
International Conference on Robotics and Automation.

Xuewen, L., Cai, M., Jianhong, L. & Tianmiao, W. (2006). Research on simulation and training
system for eod robots, IEEE International Conference on Industrial Informatics, pp. 810 –
814.

Zhang, W., Yuan, J., Li, J. & Tang, Z. (2009). The optimization scheme for eod robot based on
supervising control architecture, Proceedings of the 2008 IEEE International Conference
on Robotics and Biomimetics, pp. 1421 – 1426.

390
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

16 Will-be-set-by-IN-TECH

Schlaefer, A., Gill, J. & Schweikard, A. (2008). A simulation and training environment for
robotic radiosurgery, International Journal of Computer Assisted Radiology and Surgery
3(3-4): 267–274.

Se, S. & Little, D. L. J. (2002). Mobile robot localization and mapping with uncertainty
using scale-invariant visual landmarks, The International Journal of Robotics Research
21(8): 735–758.

Segal, A., Haehnel, D. & Thrun, S. (2009). Generalized-icp, Proceedings of Robotics: Science and
Systems, Seattle, USA.

Thrun, S., Burgard, W. & Fo, D. (2000). A real-time algorithm for mobile robot mapping with
applications to multi-robot and 3d mapping, ICRA, pp. 321–328.

Varcholik, P., Barber, D. & Nicholson, D. (2008). Interactions and training with unmanned
systems and the nintendo wiimote, Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC), Paper No. 8255, pp. 189–194.

Vaskevicius, N., Birk, A., Pathak, K. & Poppinga, J. (2007). Fast detection of polygons in 3d
point clouds from noise-prone range sensors, IEEE International Workshop on Safety,
Security and Rescue Robotics, SSRR, IEEE, Rome, pp. 1–6.

Wei, B., Gao, J., Zhu, J. & Li, K. (2009). A single-hand and binocular visual system for
eod robot, Second International Conference on Intelligent Computation Technology and
Automation, ICICTA ’09, Vol. 3, pp. 403 – 406.

Williams, B. & Reid, I. (2010). On combining visual slam and visual odometry, Proc.
International Conference on Robotics and Automation.

Xuewen, L., Cai, M., Jianhong, L. & Tianmiao, W. (2006). Research on simulation and training
system for eod robots, IEEE International Conference on Industrial Informatics, pp. 810 –
814.

Zhang, W., Yuan, J., Li, J. & Tang, Z. (2009). The optimization scheme for eod robot based on
supervising control architecture, Proceedings of the 2008 IEEE International Conference
on Robotics and Biomimetics, pp. 1421 – 1426.

390
Mobile Robots – Control Architectures,

Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training

Mobile Robots
Control Architectures, Bio-Interfacing,

Navigation, Multi Robot Motion Planning
and Operator Training

Edited by Janusz Będkowski

Edited by Janusz Będkowski

The objective of this book is to cover advances of mobile robotics and related
technologies applied for multi robot systems’ design and development. Design
of control system is a complex issue, requiring the application of information

technologies to link the robots into a single network. Human robot interface becomes a
demanding task, especially when we try to use sophisticated methods for brain signal
processing. Generated electrophysiological signals can be used to command different

devices, such as cars, wheelchair or even video games. A number of developments
in navigation and path planning, including parallel programming, can be observed.

Cooperative path planning, formation control of multi robotic agents, communication
and distance measurement between agents are shown. Training of the mobile robot

operators is very difficult task also because of several factors related to different task
execution. The presented improvement is related to environment model generation

based on autonomous mobile robot observations.

Photo by PhonlamaiPhoto / iStock

ISBN 978-953-307-842-7

M
obile Robots - C

ontrol A
rchitectures, Bio-Interfacing, N

avigation,
M

ulti Robot M
otion Planning and O

perator Training

ISBN 978-953-51-5622-2

	Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training
	Contents
	Preface
	Part 1
Mobile Robot Control Design and Development
	Chapter 1
Model-Driven Development of Intelligent Mobile Robot Using Systems Modeling Language (SysML)
	Chapter 2
Development of Safe and Secure Control Software for Autonomous Mobile Robots
	Chapter 3
Control Strategies of Human Interactive Robot Under Uncertain Environments
	Chapter 4
Research on Building Mechanism of System for Intelligent Service Mobile Robot
	Chapter 5
A Robotic Wheelchair Component-Based Software Development

	Part 2
Brain-Machine Interfacing
	Chapter 6
EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device
	Chapter 7
Bioartificial Brains and Mobile Robots

	Part 3
Navigation and Path Planning
	Chapter 8
Parallel Computing in Mobile Robotics for RISE
	Chapter 9
Multi-Flock Flocking for Multi-Agent Dynamic Systems
	Chapter 10
Cooperative Formation Planning and Control of Multiple Mobile Robots
	Chapter 11
Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains
	Chapter 12
Motion Planning for Multiple Mobile Robots Using Time-Scaling
	Chapter 13
Cooperative Reinforcement Learning Based on Zero-Sum Games

	Part 4
Communication and Distance Measurement for Swarm Robots
	Chapter 14
Synchronous and Asynchronous Communication Modes for Swarm Robotic Search
	Chapter 15
Using a Meeting Channel and Relay Nodes to Interconnect Mobile Robots
	Chapter 16
Distance Measurement for Indoor Robotic Collectives

	Part 5
Mobile Robot Operator Training
	Chapter 17
Improvement of RISE Mobile Robot Operator Training Tool

