142 research outputs found

    Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem

    Get PDF
    In the classical model for portfolio selection the risk is measured by the variance of returns. It is well known that, if returns are not elliptically distributed, this may cause inaccurate investment decisions. To address this issue, several alternative measures of risk have been proposed. In this contribution we focus on a class of measures that uses information contained both in lower and in upper tail of the distribution of the returns. We consider a nonlinear mixed-integer portfolio selection model which takes into account several constraints used in fund management practice. The latter problem is NP-hard in general, and exact algorithms for its minimization, which are both effective and efficient, are still sought at present. Thus, to approximately solve this model we experience the heuristics Particle Swarm Optimization (PSO). Since PSO was originally conceived for unconstrained global optimization problems, we apply it to a novel reformulation of our mixed-integer model, where a standard exact penalty function is introduced.Portfolio selection, coherent risk measure, fund management constraints, NP-hard mathematical programming problem, PSO, exact penalty method, SP100 index's assets.

    Particle Swarm Optimization with non-smooth penalty reformulation, for a complex portfolio selection problem

    Get PDF
    In the classical model for portfolio selection the risk is measured by the variance of returns. It is well known that, if returns are not elliptically distributed, this may cause inaccurate investment decisions. To address this issue, several alternative measures of risk have been proposed. In this contribution we focus on a class of measures that uses information contained both in lower and in upper tail of the distribution of the returns. We consider a nonlinear mixed-integer portfolio selection model which takes into account several constraints used in fund management practice. The latter problem is NP-hard in general, and exact algorithms for its minimization, which are both effective and efficient, are still thought at present. Thus, to approximately solve this model we experience the heuristics Particle Swarm Optimization (PSO). Since PSO was originally conceived for unconstrained global optimization problems, we apply it to a novel reformulation of our mixed-integer model, where a standard exact penalty function is introduced

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    Cumulative Prospect Theory portfolio selection

    Get PDF
    We introduce elements of Cumulative Prospect Theory into the portfolio selection problem and then compare stock portfolios selected under the behavioral approach with those selected according to classical approaches, such as Mean Variance and Mean Absolute Deviation ones. The mathematical programming problem associated to the behavioral portfolio selection is highly non-linear and non-differentiable; for these reasons it is solved using a Particle Swarm Optimization approach. An application to the STOXX Europe 600 equity market is performed.We introduce elements of Cumulative Prospect Theory into the portfolio selection problem and then compare stock portfolios selected under the behavioral approach with those selected according to classical approaches, such as Mean-Variance and Mean Absolute Deviation ones. The mathematical programming problem associated to the behavioral portfolio selection is highly non-linear and non-differentiable; for these reasons, it is solved using a Particle Swarm Optimization approach. An application to the STOXX Europe 600 equity market is performed

    Dense conjugate initialization for deterministic PSO in applications: ORTHOinit+

    Get PDF
    This paper describes a class of novel initializations in Deterministic Particle Swarm Optimization (DPSO) for approximately solving costly unconstrained global optimization problems. The initializations are based on choosing specific dense initial positions and velocities for particles. These choices tend to induce in some sense orthogonality of particles’ trajectories, in the early iterations, in order to better explore the search space. Our proposal is inspired by both a theoretical analysis on a reformulation of PSO iteration, and by possible limits of the proposals reported in Campana et al. (2010); Campana et al. (2013). We explicitly show that, in comparison with other initializations from the literature, our initializations tend to scatter PSO particles, at least in the first iterations. The latter goal is obtained by imposing that the initial choice of particles’ position/velocity satisfies specific conjugacy conditions, with respect to a matrix depending on the parameters of PSO. In particular, by an appropriate condition on particles’ velocities, our initializations also resemble and partially extend a general paradigm in the literature of exact methods for derivative-free optimization. Moreover, we propose dense initializations for DPSO, so that the final approximate global solution obtained is possibly not too sparse, which might cause troubles in some applications. Numerical results, on both Portfolio Selection and Computational Fluid Dynamics problems, validate our theory and prove the effectiveness of our proposal, which applies also in case different neighborhood topologies are adopted in DPSO

    The application of water cycle algorithm to portfolio selection

    Get PDF
    Portfolio selection is one of the most vital financial problems in literature. The studied problem is a nonlinear multi-objective problem which has been solved by a variety of heuristic and metaheuristic techniques. In this article, a metaheuristic optimiser, the multiobjective water cycle algorithm (MOWCA), is represented to find efficient frontiers associated with the standard mean-variance (MV) portfolio optimisation model. The inspired concept of WCA is based on the simulation of water cycle process in the nature. Computational results are obtained for analyses of daily data for the period January 2012 to December 2014, including S&P100 in the US, Hang Seng in Hong Kong, FTSE100 in the UK, and DAX100 in Germany. The performance of the MOWCA for solving portfolio optimisation problems has been evaluated in comparison with other multi-objective optimisers including the NSGA-II and multiobjective particle swarm optimisation (MOPSO). Four well-known performance metrics are used to compare the reported optimisers. Statistical optimisation results indicate that the applied MOWCA is an efficient and practical optimiser compared with the other methods for handling portfolio optimisation problems

    Portfolio Selection Problem Using Generalized Differential Evolution 3

    Get PDF
    This Portfolio selection Problem (PSP) remains an intractable research problem in finance and economics and often regarded as NP-hard problem in optimization and computational intelligence. This paper solved the extended Markowitz mean- variance portfolio selection model with an efficient Metaheuristics method of Generalized Differential Evolution 3 (GDE3). The extended Markowitz mean- variance portfolio selection model consists of four constraints: bounds on holdings, cardinality, minimum transaction lots, and expert opinion. There is no research in literature that had ever engaged the set of four constraints with GDE3 to solve PSP. This paper is the first to conduct the study in this direction. The first three sets of constraints have been presented in other researches in literatures. This paper introduced expert opinion constraint to existing portfolio selection models and solved with GDE3. The computational results obtained in this research study show improved performance when compared with other Metaheuristics methods of Genetic algorithm (GA), Simulated Annealing (SA), Tabu Search (TS) and Particle Swarm Optimization (PSO)

    The non-smooth and bi-objective team orienteering problem with soft constraints

    Get PDF
    In the classical team orienteering problem (TOP), a fixed fleet of vehicles is employed, each of them with a limited driving range. The manager has to decide about the subset of customers to visit, as well as the visiting order (routes). Each customer offers a different reward, which is gathered the first time that it is visited. The goal is then to maximize the total reward collected without exceeding the driving range constraint. This paper analyzes a more realistic version of the TOP in which the driving range limitation is considered as a soft constraint: every time that this range is exceeded, a penalty cost is triggered. This cost is modeled as a piece-wise function, which depends on factors such as the distance of the vehicle to the destination depot. As a result, the traditional reward-maximization objective becomes a non-smooth function. In addition, a second objective, regarding the design of balanced routing plans, is considered as well. A mathematical model for this non-smooth and bi-objective TOP is provided, and a biased-randomized algorithm is proposed as a solving approach. © 2020 by the authors.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness & FEDER (SEV-2015-0563), the Spanish Ministry of Science (PID2019-111100RB-C21, RED2018-102642-T), and the Erasmus+ Program (2019-I-ES01-KA103-062602)

    A survey on financial applications of metaheuristics

    Get PDF
    Modern heuristics or metaheuristics are optimization algorithms that have been increasingly used during the last decades to support complex decision-making in a number of fields, such as logistics and transportation, telecommunication networks, bioinformatics, finance, and the like. The continuous increase in computing power, together with advancements in metaheuristics frameworks and parallelization strategies, are empowering these types of algorithms as one of the best alternatives to solve rich and real-life combinatorial optimization problems that arise in a number of financial and banking activities. This article reviews some of the works related to the use of metaheuristics in solving both classical and emergent problems in the finance arena. A non-exhaustive list of examples includes rich portfolio optimization, index tracking, enhanced indexation, credit risk, stock investments, financial project scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and credit risk assessment. This article also discusses some open opportunities for researchers in the field, and forecast the evolution of metaheuristics to include real-life uncertainty conditions into the optimization problems being considered.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER, and the Universitat Jaume I mobility program (E-2015-36)
    corecore