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1 Introduction

Making effective portfolio selection in real stock markets is a not-so-easy task for at least
the following three reasons.

First, we need to gauge the risk by measures that, on one hand, satisfy appropriate
formal properties (namely, the coherence ones) and that, on the other hand, better couple
with the non normal returns distributions which characterize the stock markets. Moreover,
it should be desirable that these risk measures were suitably parameterized with respect to
the investors’ risk attitude. In other terms, we need personalizable coherent risk measures
that well fit a non Gaussian (financial) world.

Second, we have to take into account those practises and rules of the portfolio manage-
ment industry that can affect the portfolio selection process (for instance, the use of bounds
for the minimum and the maximum number of stocks to trade). Generally, such aspects
are formalized in terms of constraints that very often yield the corresponding mathematical
programming problem to be NP-hard.

Third, the portfolio selection problems arising from the joint use of the considered risk
measures and practises and rules are possibly highly nonlinear, nondifferentiable, nonconvex
and mixed-integer, which contributes to the NP-hardness. Therefore, the development of
ad hoc solution approaches is usually needed to find the optimal solutions of such prob-
lems. But generally the portfolio management industry does not possess the mathematical
knowledge and/or the research capabilities to develop such approaches; further, it could be
not convenient for it to build up a team of external experts. As a consequence, it could
happen that part of the investors’ demand remains unsatisfied or (worse) is satisfied by the
use of inappropriate solution technologies. So, we need also a “universal” global optimizer,
that is a solution methodology able to cope with a large variety of real portfolio selection
problems.

In this paper we deal with such issues, and we show solution proposals for managing
each of them. We perform various checks of the overall resulting solution procedure by
applying it to the selection of large portfolios. In particular, we tackle the above mentioned
issues as follows.

First, as measure of risk of the portfolio returns we consider a recently proposed coherent
risk measure based on the combination of upper and lower moments of different orders of
the returns distribution (see [6]). This measure shows to be able to effectively manage non
Gaussian distributions of asset returns and to appropriately reflect different investors’ risk
attitudes (see section 2 for details). Particularly, it permits to take into account, following
a personal investors’ weighting, both the risk contained in the “bad tail”, the left one, of
the portfolio returns, and the chances contained in the “good tail”, the right one, of the
same portfolio. Further, to the best of our knowledge, this is the first application of such a
risk measure to the selection of large portfolios.

Second, as the professional practices and rules are concerned, following the indications
of a north-eastern Italian company skilled in automatic financial trading systems, we ad-
dress our analysis to the use of bounds for the minimum and the maximum number of
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stock to trade1, and the minimum and the maximum capital percentage to invest in each
asset. These kinds of bounds are often considered by the fund manager industry as they
constitute a tool for control, although in an indirect way, the transaction costs. All these
practices/rules are formalized in terms of constraints that surely make NP-hard the corre-
sponding mathematical programming problem (see again section 2 for details). Notice that
the portfolio selection problem so arising is new in the specialized literature.

Third, the resulting selection problem, which takes into account also standard con-
straints (namely, the minimum return constraint and the budget one) is nonlinear, non-
differentiable and mixed-integer. At present, for such a general scheme of mathematical
programming problem (which is NP-hard, see [19]) both efficient and effective solution al-
gorithms do not exist. Thus, in order to both investigate the numerical complexity of our
portfolio selection problem and to provide a computationally cheap reliable solution to it,
we adopt an exact penalty method (see [29, 20, 8, 14]) combined in an original manner with
a recently proposed bio-inspired population-based metaheuristic, the Particle Swarm Opti-
mization (PSO) (see [16] as, likely, first contribution on it). In short, our solution approach
runs as follows (see section 3 for details):

� a standard exact penalty scheme transforms the considered mixed-integer portfolio se-
lection problem into an equivalent nondifferentiable unconstrained minimization prob-
lem;

� then, as also the latter model is nonlinear, nondifferentiable and non convex, for its
minimization a derivative-free algorithm is a possible solution method. Among the
various approaches proposed in the specialized literature, we consider the PSO in
order to approximately computing a global minimizer of the overall exact penalty-
based model.

More generally, the choice of bio-inspired metaheuristics as global optimizers is also mo-
tivated by the fact that ≪[t]hey are more universal and less exacting with respect to an
optimization problem≫ (see [10], page 9).

Of course, PSO is not the only bio-inspired metaheuristics able to deal with minimization
problems like ours. As possible alternatives we recall the Differential Evolution (DE) and
the Genetic Algorithms (GAs); see the final remarks for some considerations about them as
global minimizers for portfolio selection problems. From a methodological point of view it
is to notice that our combined use of an exact penalty scheme with the PSO is not frequent
in the literature. Indeed, for the solution of constrained problems the PSO is often modified
with hybrid variants, which are suitably adapted to cope even with nonlinear constraints.
In this respect we first provide a theoretical result ensuring the correspondence between
the solutions of the original mathematical programming problem and the solutions of the
exact penalty-based model (see again section 3 for details). Further, we also develop a
simple original approach for the initialization of the particles’ parameters. Its utilization
offers numerical evidence of improvements in the convergence to a global minimum (see
section 4 for details). Finally, notice that the solution approach we propose (exact penalty

1These boundings are known as cardinality constraints.
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scheme + PSO) is independent of the characteristics of the objective function and of the
constraints. In other terms, from a methodological point of view our proposal can play
the role of universal global (approximate) optimizer, for a very large variety of portfolio
selection problems.

The remainder of this paper is organized as follows. In the next section first we illustrate
the coherent risk measures we use, then we present our portfolio selection problem. In
section 3 first we recall the basics of PSO, second we apply the exact penalty method for
the reformulation of our portfolio selection problem, then we provide the theoretical result
above mentioned. In section 4 we apply our overall solution procedure to the selection of
large portfolios based on the set of assets constituting the Standard&Poor’s SP100 index.
We test various settings of the solution procedure, where we use a simple approach for the
initialization of the particles’ parameters. Then, we apply the so-set solution procedure
to different time periods from August 2004 to October 2009, in order to detect possible
differences in the optimal portfolio composition, and we critically present the obtained
results. Some final remarks are given in the last section.

2 Portfolio selection and risk measures

The basic idea in the portfolio selection problem is to select stocks in order to maximize
the portfolio performance and at the same time to minimize its risk. This implies that
for a formal approach to the latter problem, a correct definition of performance and risk
of the portfolio is required. While there is a general agreement about the measurement
of performance by the expected value of the future return of the portfolio, the discussion
regarding an adequate measure of risk is still open.

In its pioneering work [17] Markowitz proposed to use the variance of portfolio return to
measure its risk, and this idea has been used for a long time in financial practice. However,
it is well known that the mean-variance model leads to optimal investment decisions only
if investment returns are elliptically distributed or alternatively if the utility function of
investors is quadratic. The main shortcomings of quadratic utility functions have been
pointed out since their introduction (see [27]), and it is a stylized fact that the distributions
of returns of financial instruments present asymmetry and “fat tails”. These considerations
have opened the way for the research on alternative measures of risk, along with their
properties: a recent characterization of them is presented in [23].

One crucial fact should be taken into account for a correct specification of the risk
measure: while variance gives the same weight to positive and negative deviations from
the mean, several empirical studies have shown (see e.g. [3]) that investors treat them in
different ways. This has led to the definition of risk measures that are focused on the “bad
tail” of the distribution of the returns, as for example the semivariance (see [2]), the lower
partial moments (see [12]) and the minimax ones (see [28]). On the other hand, some other
risk measures were based on a quantile of the “bad tail”, as the well known Value-at-Risk
(VaR) (see [18]).

Since the introduction of the notion of coherent risk measure in [1], along with the spec-
ification of the properties for a measure in this class (monotonicity, positive homogeneity,
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translation invariance and sub-additivity), there has been a growing interest for the pre-
viously introduced measures. In particular, properties similar to those for coherent risk
measures have been studied also for the other risk measures. The Conditional Value-at-
Risk (CVaR) (see [24]) is possibly the most famous measure obtained by the research in
this direction; other examples based on lower partial moments are reported in [11].

More recently Chen and Wang in [6] have investigated the possibility of building a new
class of coherent risk measures, by combining upper and lower moments of different orders.
This approach seems to have several advantages with respect to others considered so far.
Indeed, on one hand these measures better couple with non normal distributions than ones
based only on first order moments. On the other hand, they better reflect investors’ risk
attitude, for at least a couple of reasons. First they are less affected by estimation risk than
measures that use only information from the lower part of the return distribution. Moreover,
according with the conclusions presented in [6], their use in the portfolio selection problem
allows for more realistic and robust results, compared with the ones obtained using CVaR. In
this contribution we use the class of risk measures in [6] for our portfolio selection problem.
Our problem also takes into account several constraints, often used in fund management
practice. In particular, we focus on handling the cardinality constraints, which yield a final
model in the class of nonlinear mixed-integer programming problems.

In the next sections we analyze the results obtained both in terms of our algorithm
efficiency and in terms of financial meanings.

2.1 Our portfolio selection model

Let X be a real valued random variable defined on a probability space (Ω,F ,P), and let us
denote ∥X∥p = (E[|X|p])1/p, with p ∈ [1,+∞[, where E[·] indicates the expected value of a
random variable. Then, the measures of risk introduced in [6] are defined as:

ρa,p(X) = a∥(X − E[X])+∥1 + (1− a)∥(X − E[X])−∥p − E[X], (1)

where a ∈ [0, 1], X− = max{−X, 0} and X+ = (−X)−. For a and p fixed, any risk measure
of this class is then a convex combination of the two coherent risk measures based on lower
partial moments ∥(X−E[X])−∥1−E[X] and ∥(X−E[X])−∥p−E[X]. Thus, it is a coherent
risk measure (see [11]). For a detailed description of its properties we refer the reader to
[6]. We only remark here that ρa,p is non-decreasing with respect to p and non-increasing
with respect to a. Thus, the value of these parameters can be adjusted to reflect different
attitudes of the investors towards risk.

Now we describe the portfolio selection model we consider. Suppose we have N assets to
choose from, and for i = 1, . . . , N let xi ∈ R be the weight of i-th asset in the portfolio, with
XT = (x1, . . . , xN ). Let ZT = (z1, . . . , zN ) ∈ {0, 1}N be a binary vector, such that zi = 1 if
the asset i is included in the portfolio, zi = 0 otherwise. Moreover, for i = 1, . . . , N , let ri
be a real valued random variable that represents the return of asset i, with r̂i its expected
value, i.e. r̂i = E[ri]. Then, the random variable R ∈ R that represents the return of the
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whole portfolio can be expressed as

R =
N∑
i=1

xiri,

with expected value

R̂ =
N∑
i=1

xir̂i.

Then, considering (1), our goal is to minimize ρa,p(R), subject to several constraints. Of
course the first ones to consider are the constraints regarding the minimum desirable ex-
pected return of the portfolio, i.e.

R̂ ≥ l, with l > 0,

and the usual budget constraint

N∑
i=1

xi = 1.

Moreover, as stated in the previous section, we also introduce the following cardinality
constraint: we select a (not too) small subset of the available assets. The latter choice
summarizes a quite common problem for a fund manager, who has to build a portfolio by
choosing from several hundreds of assets. When the number of selected assets is too large,
several practical accounting problems may arise, which can increase transaction costs. By
using the latter cardinality constraint we implicitly consider transaction costs in our model.
The resulting constraint is explicitly given by

Kd ≤
N∑
i=1

zi ≤ Ku, where 1 ≤ Kd ≤ Ku ≤ N.

Further, we require that any of the selected assets must not constitute a too large or too
small fraction of the portfolio, i.e.

zid ≤ xi ≤ ziu, where 0 ≤ d ≤ u ≤ 1,

and d, u represent respectively the minimum and maximum fraction allowed. Of course, to
ensure compatibility with the cardinality constraint, the constants d and u must satisfy

d ≤ 1

Kd
and u ≥ 1

Ku
. (2)
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Then, our overall portfolio selection problem can be written as follows:

min
X,Z

ρa,p(R)

s.t. R̂ ≥ l
N∑
i=1

xi = 1

Kd ≤
N∑
i=1

zi ≤ Ku

zid ≤ xi ≤ ziu, with i = 1, . . . , N,

zi(zi − 1) = 0, with i = 1, . . . , N,

(3)

where the last N constraints are introduced to model the relations zi ∈ {0, 1}, with i =
1, . . . , N . It is clear that if in the last N constraints we have zi = 0, then the variable xi
does not play any role in the solution of problem (3), i.e. xi = 0. Conversely, zi = 1 implies
that potentially the i-th asset will contribute to the final portfolio, with xi ∈ [d, u]. Finally,
the constraints zi(zi − 1) = 0, with i = 1, . . . , N , represent just one (and possibly not the
best) reformulation of the integrality constraints zi ∈ {0, 1}, with i = 1, . . . , N . We do not
investigate further the latter issue, since it is not a focus of this paper.

Of course, (3) is a nonlinear and nonconvex mixed-integer problem, which in general
admits several local solutions, but we want to possibly seek global solutions and not simply
local minimizers. However, detecting precise solutions of (3) may be heavily time consuming
in case exact methods are adopted. Thus, at present we experience the heuristic technique
PSO on a non-smooth reformulation of problem (3). The next section is devoted to detail
the PSO heuristics.

3 PSO for non-smooth reformulation of the portfolio selec-
tion problem

Particle Swarm Optimization is an iterative heuristics for the solution of nonlinear global
optimization problems (see [16]). It is based on a biological paradigm, which is inspired by
the flight of birds in a flock. In particular, the basic idea of PSO (see also [22] for a tutorial)
is to replicate the behaviour of shoals of fishes or flocks of birds, when they cooperate in
the search for food. On this purpose every member of the swarm explores the search area
keeping memory of its best position reached so far, and it exchanges this information with
the neighbors in the swarm. Thus, the whole swarm is supposed to converge eventually to
the best global position reached by the swarm members.

In its mathematical counterpart the paradigm of a flying flock may be formulated as
follows: given a minimization problem, find a global minimum (best global position) in a
nonlinear minimization problem. Every member of the swarm (namely a particle) represents
a possible solution of the minimization problem, and it is initially positioned randomly in
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the feasible set of the problem. Every particle is also initially assigned a random velocity,
which is used to determine its initial direction of movement.

For a more formal description of PSO let us consider the global optimization problem

min
x∈Rd

f(x),

where f : Rd 7→ R is the objective function in the minimization problem. Suppose we
apply PSO for its solution, where M particles are considered. At the k-th step of the PSO
algorithm three vectors are associated to each particle j ∈ {1, . . . ,M}:

� xk
j ∈ Rd, the position at step k of particle j;

� vk
j ∈ Rd, the velocity at step k of particle j;

� pj ∈ Rd, the best position visited so far by the j-th particle.

Moreover, pbestj = f(pj) denotes the value of the objective function in the position pj of
the j-th particle. The overall PSO algorithm, as in the version with inertia weight proposed
in [25], works as follows:

1. Set k = 1 and evaluate f(xk
j ) for j = 1, . . . ,M . Set pbestj = +∞ for j = 1, . . . ,M .

2. If f(xk
j ) < pbestj then set pj = xk

j and pbestj = f(xk
j ).

3. Update position and velocity of the j-th particle, with j = 1, . . . ,M , as

vk+1
j = wk+1vk

j +Uϕ1 ⊗ (pj − xk
j ) +Uϕ2 ⊗ (pg(j) − xk

j ) (4)

xk+1
j = xk

j + vk+1
j (5)

where Uϕ1 ,Uϕ2 ∈ Rd and their components are uniformly randomly distributed in
[0, ϕ1] and [0, ϕ2] respectively, the symbol ⊗ denotes component-wise product and
pg(j) is the best position in a neighborhood of the j-th particle.

4. If a convergence test is not satisfied then set k = k + 1 and go to 2.

The values of ϕ1 and ϕ2 strongly affect the strength of the attractive forces towards the
personal and the neighborhood best positions explored so far. Thus, in order to (possibly)
yield the convergence of the swarm, they have to be set carefully in accordance with the
value of the inertia weight wk. The parameter wk is generally linearly decreasing with the
number of steps, i.e.

wk = wmax +
wmin − wmax

K
k,

where common values for wmax and wmin are respectively 0.9 and 0.4, while K is usually
the maximum number of steps allowed.
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Another widely adopted version of the PSO algorithm is the one with constriction coef-
ficients (see [7]), where the updating velocity rule (4) is replaced by

vk+1
j = χ

[
vk
j +Uϕ1 ⊗ (pj − xk

j ) +Uϕ2 ⊗ (pg(j) − xk
j )
]
, (6)

with χ = 2

ϕ−2+
√

ϕ2−4ϕ
, ϕ = ϕ1 + ϕ2, and ϕ > 4.

As stated before, we can think that at step k the j-th particle moves as subject to
two attractive vectors: the direction towards its previous best position (namely (pj − xk

j ))
and the direction towards the best position in a suitable subset of the swarm (namely
(pg(j) − xk

j )). We recall that g(j) denotes the index of the particle with the best position
reached so far, in a neighborhood of the j-th particle. The specification of the neighborhood
topology is then a choice to set. In our implementation we have considered the so called
gbest topology, that is g(j) = g for every j = 1, . . . ,M , and g is the index of the best
particle in the whole swarm, that is g = argminj=1,...,M pj . This choice implies that the
whole swarm is used as the neighborhood of each particle.

We remark that the original formulation of PSO was conceived for unconstrained prob-
lems. Thus, in general using PSO formulae (4)-(5), when constraints are included in the
formulation, is improper. Indeed, in the latter case the algorithm above cannot prevent from
generating infeasible particles’ positions, unless specific adjustments are adopted. When
constraints are included, different strategies were proposed in the literature (see also [22])
to ensure that at any step of PSO, feasible positions are generated. Most of them involve
repositioning of the particles, as for example the bumping and the random positioning
strategies proposed in [30], or introducing some external criteria to rearrange the compo-
nents of the particles, as the ones specific for cardinality contraints proposed in [9] and
[26]. However in this paper we decided to use PSO as in its original formulation, that
is as a tool for the solution of unconstrained optimization problems. The latter choice is
mainly motivated by the necessity of avoiding both a possible misleading application of
specific metaheuristics to handle nonlinear constraints, and the careless setting of ad hoc
coefficients.

To this purpose, first we have reformulated our problem into an unconstrained one, using
the nondifferentiable ℓ1 penalty function method described in [29, 14]. The latter approach
is known in the literature of constrained optimization as exact penalty method, where the
term exact refers to the correspondence between the minimizers of the original constrained
problem and the minimizers of the unconstrained (penalized) one. An example in the
literature where PSO is applied to minimize a penalty function is given in [5]. However, in
the latter paper no exact penalty functions are used and no integer unknowns are introduced.
In addition, the updating rule for the penalty parameter seems to be far too “problem
dependent”.

On the contrary, in our approach we reformulate as follows the problem (3) (which has
N + 1 equality constraints and 2N + 3 inequality constraints), using the nondifferentiable
penalty function:

min
X,Z

P (X,Z; ε) (7)
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where

P (X,Z; ε) = ρa,p(R) +
1

ε

[
max{0, l − R̂}+

∣∣∣∣∣
N∑
i=1

xi − 1

∣∣∣∣∣
+max

{
0,Kd −

N∑
i=1

zi

}
+max

{
0,

N∑
i=1

zi −Ku

}

+

N∑
i=1

max{0, zid− xi}+
N∑
i=1

max{0, xi − ziu}

+
N∑
i=1

|zi(1− zi)|

]
(8)

and ε is the penalty parameter.
The correct choice of ε ensures the correspondence between the solutions of problems

(7) and (3) (see also [21]), which is summarized by the result which follows.

Proposition 3.1 Consider the problem (3) with ρa,p(R) continuous on RN . Consider the
Exact Penalty function P (X,Z; ε) in (8). Let (X∗, Z∗) be a strict local minimizer of problem
(3) where the KKT conditions (see the appendix for details) are satisfied, with the generalized
Lagrange multipliers λ∗

i , with i = 1, . . . , N + 1 (for the equality constraints) and σ∗
j , with

j = 1, . . . , 2N+3 (for the inequality constraints). Then, for any ε > ε∗ the solution (X∗, Z∗)
is also a local minimizer of P (X,Z; ε), where

ε∗ =

∥∥∥∥ λ∗

σ∗

∥∥∥∥
∞
.

2

Observe that the penalty function P (X,Z; ε) is clearly nondifferentiable because of the
ℓ1-norm in (8). This also motivates the choice of using PSO for its minimization, since PSO
evidently does not require the derivatives of P (X,Z; ε). We avoid to go into details (see
[21, 29]), however the latter choice turns to be of great interest on those problems where
illconditioning may arise. We also remark that the threshold value ε∗ is unknown. Nev-
ertheless, acceptable values of this threshold can often be found by appropriate numerical
investigation, provided that a constraints qualification condition is satisfied in (X∗, Z∗).

Of course, since PSO is a heuristics, the minimization of the penalty function P (X,Z; ε)
theoretically does not ensure that a global minimum of the problem (3) is detected. Nev-
ertheless, PSO often provides a suitable compromise between the performance (i.e. a satis-
factory estimate of a global minimizer for the problem (3)) and the computational cost.

4 Numerical results

In order to test our approach, in this section we consider data of daily close prices {pi,t}
of asset i at time t, for i = 1, . . . , 100 and t = 1, . . . , T , where T is the time horizon
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considered. The assets considered are included in the Standard&Poor’s SP100 index2 from
August 2004 to October 2009. Several subsets of these data have then been selected, to
analyze differences in the optimal portfolio composition with respect to the time period.
The price series have been used to compute each stock return

ri,t =
pi,t+1 − pi,t

pi,t
.

Using the same idea of [6] we estimate the risk measure for any portfolioX = (x1, . . . , xN )T

as

ρa,p(R) =
a

T

 T∑
t=1

(
N∑
i=1

(ri,t − r̂i)xi

)+


+ (1− a)

 1

T

T∑
t=1

( N∑
i=1

(ri,t − r̂i)xi

)−p
1
p

,

(9)

where r̂i is estimated using the historical data, that is

r̂i =
1

T

T∑
t=1

ri,t.

According with problem (3), the minimum level of desired return l in (8) has been set
to the global average of stock returns, i.e. l =

∑N
i=1 r̂i. Moreover, to reflect a realistic

problem of portfolio selection, we set the values d = 0.02 and u = 0.20 in (8). In order
to analyze the impact of the cardinality constraints on the selection problem, from both
the computational and the economic point of view, we have chosen Kd = 5, while we have
considered two different values for Ku: Ku = 50 (the maximum value allowed according to
(2)), and Ku = 30. The PSO algorithm to solve (8) has been implemented in MATLAB
7, and the experiments have been performed on a workstation Acer Aspire M1610 with a
Intel Core 2 Duo E4500 processor.

We first performed a set of preliminary tests (reported below) with the aim of assessing
a proper version of PSO to use. We experienced different values for the penalty parameter
ε and for the coefficients of PSO, including the number M of particles in the swarm. Then,
we set the values of the parameters3 a, p of the risk measure in (9), as a = 0.5 and
p = 2, and we ran the two versions of the algorithm (i.e. with decreasing inertia weight and
constriction coefficients respectively), using one-year data of returns. Since the evaluation of
the objective function P (X,Z; ε) in (8) is relatively inexpensive, we stopped PSO iterations
when either of the following stopping criteria was satisfied:

2Due to the lack of available data for the whole period considered, Mastercard and Philip Morris have
been replaced by Verisign and Molson Coors Brewing Company.

3Experiments with different values for a and p showed no difference with regard to the results of this
preliminary phase.
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a) the maximum number of 10000 steps was outreached;

b) |fbestk+1 − fbestk| < 10−8 for 2000 consecutive steps, where fbestk is the best value
of the fitness function f = P (X,Z; ε) at k-th iteration.

We noticed that, in the majority of the tests, the version of PSO with constriction
coefficients (6) showed earlier convergence of the swarm to a global best position with
worse values of the fitness function, compared to versions of PSO using a decreasing inertia
weight. Thus, we decided to adopt the latter variant of PSO for the subsequent experiments.

In Table 1 we report the results in terms of the averaged best value of the fitness function
and its standard deviation, normalized to take into account the effects of using different
values of ε. In Table 2 we show the results in terms of the averaged ratio between the final
(Ff ) and initial (Fi) value of the fitness function, and of the average computational time,
for different numbers of particles used. The results in Tables 1 and 2 are averaged over 10
runs, and the results in Table 2 refer to the case ε = 10−6, which is the best value from
Table 1.

ε Normalized fitness Standard deviation

1 0.388728255 0.134295545
0.1 0.332573168 0.136412572
0.01 0.337188413 0.061398093

0.001 0.372167277 0.253545145
0.0001 0.413884094 0.155254628
0.00001 0.381672803 0.200184247

0.000001 0.260743870 0.099544544
0.0000001 0.341627127 0.185689216

Table 1: Results for different choices of the parameter ε in (8).

M Fitness Ratio of decrease (Ff/Fi) Time (seconds)

50 444393.5727 0.015960233 54.2939
100 60160.8053 0.002162255 109.2537
200 6423.0849 0.000233782 158.0136

Table 2: Results for different choices of the number M of particles.

This suggested us to select ε = 10−6 and M = 200. The number of particles is then quite
high, but this concurs with the general evidence that larger populations perform better for
higher dimensional problems (see also [4] and [22]).

Then, we repeated the computation in order to select the best values for the acceleration
coefficients ϕ1, ϕ2, while for the initial and final values of the inertia weight wmax, wmin in 4
we used 0.9 and 0.4 as suggested by the current literature. The results are shown in Table
3, and the best performance was obtained with ϕ1 = ϕ2 = 1.85.
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ϕ1 = ϕ2 = ϕ/2 Average fitness Standard deviation

1.25 564611.56 261486.21
1.50 13439.35 11620.83
1.75 6047.39 5361.74
1.85 1822.09 1963.27
2.00 22763505.40 859690.31

Table 3: Results with different choices of the parameter ϕ.

After this preliminary phase, we solved the portfolio selection problems for different
values of the parameters a and p of the risk measure ρa,p, and Ku, considering one year data
of daily returns of different time periods. We wanted in fact to study both the capability of
PSO to find a global minimum for the optimization problem and the economic meaning of
the portolios obtained, while considering different scenarios and different attitudes towards
risk.

We set then the maximum number of the algorithm steps to 20000 and, for every combi-
nations of the parameters and the dataset, we did first 25 runs of the algorithm, each with
different random initial positions and velocities. Since the standard deviation of the values
of the fitness function was still high (an example of the values of the fitness function at
the end of the first 25 runs is shown in Table 4) and we found a different optimal portfolio
for every run, each corresponding to a possible local minimum, we decided to iterate the
procedure in the following way: we did other 25 runs of the algorithm, with again random
initial velocities for all particles, but we used the 25 global best positions found in the pre-
vious phase as initial positions for 25 particles, while the remaining 175 ones were set again
randomly. At the end of this second phase we obtained convergence to the same global
best position for each of the 25 runs (in general not corresponding to the best position of
the previous 25 ones, see Table 5) and we assumed the latter to be the global minimum
X∗ of the optimization problem. We remark that the difference between the global best
fitness P (X∗, Z∗; ε) and the risk measure for ρa,p(X

∗) is negligeable4, except for the case
ρ0.5,5 with Ku = 30 and data of period 2006-07 (see Table 5). This means that the use of
the nondifferentiable penalty function is effective, in order to impose the satisfaction of the
constraints, including the cardinality constraints.

As it could be guessed from Table 5, it is interesting to remark that the monotonicity
properties expected by theoretical results ([6, Theorem 2.3]) are fulfilled. Tables 6 and
7 also confirm the latter statement, and highlight that PSO is effective to detect a good
approximation of a global minimum for P (X,Z; ε). In this regard PSO provides an efficient
compromise between the correctness of the solution found and the resources used in the
computation.

Interestingly enough, we also notice that ρa,p(X
∗) is slightly decreasing with Ku (except

for the case ρ0.75,2(X
∗) with data of period 2004-05). This is consistent with the fact that

4At least in the cases where l is set equal to the global average of all stock returns, while there may be
some problems when l is increased. We guess that in the latter case the maximum number of stocks to trade,
Ku, is not enough large to permit the satisfaction of the minimum return constraint.
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PSO has performed a good exploration of the feasible set when Ku = 30, that is a subset
of the one with Ku = 50.

Run 1 2 3 4 5
Best fitness 90.35 249.29 16.25 96.25 311.97

Run 6 7 8 9 10
Best fitness 247.11 4.96 57.84 50.78 384.16

Run 11 12 13 14 15
Best fitness 46.22 4.06 0.62 1.25 0.47

Run 16 17 18 19 20
Best fitness 2.17 0.22 112.70 118.46 0.29

Run 21 22 23 24 25
Best fitness 3.67 3.75 2.09 186.67 0.54

Table 4: Best fitness after the first 25 runs, with a = 0.5, p = 1,Ku = 50, data of period 2006-07.

In order to analyze the financial meaning of the portfolios obtained, we solved using PSO
another portfolio selection problem, replacing ρa,p(X) with variance as measure of risk, and
keeping the same set of constraints of problem 3. We first checked the diversification of
the portfolios, by comparing the number of assets among them, as shown in Table 8. It
appears that when the cardinality constraint is in more relaxed form, that is Ku = 50,
the diversification obtained using ρa,p is higher than using variance, and it is also slightly
increasing with p. Again, this is also consistent with the results obtained in [6], where the
cardinality constraint was not explicitly introduced, and the comparison was made with
respect to CVaR.

Ku = 50 p = 1 p = 2 p = 5

Best fitness among the first 25 runs 0.2208 0.6356 0.0662

Global best fitness 0.0020 0.0029 0.0044

Ku = 30 p = 1 p = 2 p = 5

Best fitness among the first 25 runs 1.4742 0.4846 0.2062

Global best fitness 0.0021 0.0031 0.0134

Table 5: Comparison between the best fitness in the first 25 runs, and the global best fitness after
other 25 runs, with a = 0.5, data of period 2006-07.

Finally, we compared the performance of the portfolios selected using ρa,p with those
portfolios selected using the variance. Following indications from financial practice, we
proceeded in the following way: we used one-year data of daily returns for portfolio selection,
by minimizing P (X,Z; ε) in (8); then, we invested the selected portfolios for the three next
months. After that we repeated the selection, and we re-invested the resulting portfolios
for other three months, and so on for other two quarters. In this way we analyzed the
performance of the portfolios along one entire year. We considered two initial starting
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periods of one year length (in order to compute the portfolios for the test in the subsequent
first quarter), that is August 2004-July 2005 and February 2007-January 2008, with the
aim of analyzing the impact of different macroeconomic conditions on the performance of
the portfolios. The results are shown in Tables 9-12.

2004-05 p = 1 p = 2 p = 5

ρ0.5,p; Ku = 50 0.001951 0.002816 0.004513

Number of assets 43 45 40

ρ0.5,p; Ku = 30 0.002333 0.003219 0.004808

Number of assets 23 28 28

2006-07 p = 1 p = 2 p = 5

ρ0.5,p; Ku = 50 0.002012 0.002924 0.004379

Number of assets 44 45 45

ρ0.5,p; Ku = 30 0.002094 0.003099 0.004339

Number of assets 30 30 29

Table 6: Monotonicity of ρa,p(X
∗) for a = 0.5 and different values of p and Ku, with one year data

from two time periods.

2004-05 a = 0 a = 0.25 a = 0.5 a = 0.75 a = 1

ρa,2; Ku = 50 0.003853 0.003448 0.002816 0.002509 0.002135

N. of assets 43 45 45 46 43

ρa,2; Ku = 30 0.004029 0.003473 0.003219 0.002434 0.002306

N. of assets 29 29 28 27 29

2006-07 a = 0 a = 0.25 a = 0.5 a = 0.75 a = 1

ρa,2; Ku = 50 0.004194 0.003587 0.002924 0.002319 0.001820

N. of assets 45 41 45 48 48

ρa,2; Ku = 30 0.004227 0.003652 0.003099 0.002345 0.001855

N. of assets 30 30 30 29 29

Table 7: Monotonicity of ρa,p(X
∗) for p = 2 and different values of a and Ku, with one year data

from two time periods.

2004-05 p = 1 p = 2 p = 5 σ2

Ku = 50 43 45 45 42

Ku = 30 29 28 28 28

2006-07 p = 1 p = 2 p = 5 σ2

Ku = 50 44 45 45 42

Ku = 30 30 30 29 28

Table 8: Comparison of number of assets in portfolios using ρ0.5,p and σ2, with one year data from
two time periods.
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Period length ρ0.5,1 ρ0.5,2 ρ0.5,5 σ2

3 months 1,67% 1,33% 0,67% -0,18%
6 months 3,22% 4,00% 4,55% 3,59%
9 months 0,47% -1,41% 1,14% 3,35%
12 months -3,35% -2,79% -1,24% -2,59%

Table 9: Portfolio returns with different measures of risk; case Ku = 50 for the time period 2005-06.

Period length ρ0.5,1 ρ0.5,2 ρ0.5,5 σ2

3 months -1,54% 1,68% 0,54% 3,17%
6 months 4,68% 5,36% 3,05% 5,36%
9 months 2,13% 0,96% 1,14% 0,96%
12 months -3,23% -1,89% -0,93% -1,89%

Table 10: Portfolio returns with different measures of risk; case Ku = 30 for the time period
2005-06.

Period length ρ0.5,1 ρ0.5,2 ρ0.5,5 σ2

3 months 7,23% 3,20% 3,19% 5,13%
6 months -8,32% -6,64% -6,79% -8,24%
9 months -23,82% -25,13% -22,81% -22,30%
12 months -10,44% -9,77% -9,38% -7,11%

Table 11: Portfolio returns with different measures of risk; case Ku = 50 for the time period
2008-09.

We notice that the behaviour of the portfolio selected using ρ0.5,2 is quite similar to the
one of the portfolio selected using the variance, and this is more evident when Ku = 30 in
the period 2005-06, where in two cases we obtain the same return and the differences in the
composition of the two portfolios are negligible. Instead, the portfolios selected using ρ0.5,1
and ρ0.5,5 appear to correspond respectively to a more aggressive and conservative investor:
in particular during the financial markets crisis in the period 2008-09, the portfolio selected
using ρ0.5,5 shows less losses than the ones obtained using variance. Also these results are
in agreement with the theoretical meaning of the parameter p described in [6].

Period length ρ0.5,1 ρ0.5,2 ρ0.5,5 σ2

3 months 3,42% 3,63% 3,94% 3,53%
6 months -8,10% -9,18% -6,89% -10,24%
9 months -30,50% -24,42% -19,84% -19,52%
12 months -13,15% -11,85% -10,51% -12,10%

Table 12: Portfolio returns with different measures of risk; case Ku = 30 for the time period
2008-09.
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5 Final remarks

In this paper we have first proposed a partially novel formulation, given by a combina-
tion between a nondifferentiable exact penalty method and the PSO, for the selection of
large portfolios characterized by an upper-and-lower-moments-based coherent risk measure
and a mixed-integer formulation. Although the obtained results are satisfactory, this so-
lution approach seems to offer opportunities for possible improvements and extensions. In
particular:

� As the reformulation of problem (3) is concerned, we point out that other possible
reformulations of that mathematical programming problem may be considered, both
smooth and non-smooth. To this purpose, resorting to continuously differentiable
penalty functions appears particularly promising. This method is substantially char-
acterized by theoretical properties equivalent to the ones characterizing the penalty
scheme used in this paper (see [13] for details);

� As the initialization of the particles’ positions and velocities is concerned, we guess
that the performances of our simple approach can be significantly improved by resort-
ing to a theoretical-based procedure recently proposed in [4]. By so doing we expect
for improvements both in solution quality and in computational time;

� As stated in section 1, PSO in not the only bio-inspired metaheuristic able to deal
with minimization problems like (8). Currently, in order to compare different bio-
inspired metaheuristics as global minimizers of complex portfolio selection problems,
we have started to use GAs. The very first preliminary results (not included here)
suggest that the optimal portfolio compositions obtained by PSO and GAs are quite
similar, but that PSO needs a computational time which is significantly lower than
the one needed by GAs;

� Finally we recall that, from a methodological point of view, the solution approach
we propose can play the role of universal global (approximate) optimizer for a large
variety of complex portfolio selection problems. So, it can constitute a flexible tool
for the fund management industry in order not to leave unsatisfied demand.

It remains obvious that, in order to carefully detect values and drawback of such a solu-
tion approach, further investigations are necessary with respect to different risk measures,
constraints and data. It will be done in future researches.

6 Appendix

Consider the general constrained optimization problem

min f(x)
hi(x) = 0 i = 1, . . . , p,
gj(x) ≤ 0 j = 1, . . . , q.

(10)
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Suppose that at the feasible point x∗ some inequality constraints (thereof subscripts are in
the subset A(x∗)) are satisfied as equalities, i.e.

gj(x
∗) = 0, j ∈ A(x∗).

We say that for the problem (10) the condition LICQ (Linear Independent Constraint
Qualification) holds at x∗ if the vectors{

∇h1(x
∗), · · · ,∇hp(x

∗), ∇gj(x
∗)|j∈A(x∗)

}
are linearly independent. Then we can now define the following first order optimality
conditions for the minimizer x∗ of (10).

Proposition 6.1 (KKT Conditions). Consider the problem (10), where the functions f ,
h and g are continuously differentiable. Suppose that x∗ is a local minimizer of (10), where
the LICQ holds. Then, there exists a unique Lagrange multiplier vector (λ∗T , σ∗T ) ∈ Rp+q

such that

∇f(x∗) +

p∑
i=1

λ∗
i∇hi(x

∗) +

q∑
j=1

σ∗
j∇gj(x

∗) = 0

hi(x
∗) = 0, i = 1, . . . , p

σ∗
j gj(x

∗) = 0, j = 1, . . . , q

gj(x
∗) ≤ 0, j = 1, . . . , q

σ∗
j ≥ 0, j = 1, . . . , q.

2

Observe that the constraints qualification condition LICQ in Proposition 6.1 substan-
tially ensures that there exist the functions λ = λ(x) and σ = σ(x), with λ∗ = λ(x∗)
and σ∗ = σ(x∗), which can be explicited by the Implicit Function Theorem, at least in a
neighborhood of x∗. Equivalently, the condition LICQ can be replaced by several other
qualification conditions (see also [14, 21, 29]).
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