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1 Introduction

The literature on portfolio selection models is wide and since the founding

work of Markowitz [5] has grown rapidly and has been extended along many

different directions. Among them, modeling risk measures and performance

evaluation are certainly crucial themes.

Our aim is to suggest a selection model able to provide optimal decisions

tailored to individual attitudes to risk and loss aversion, allowing for a larger

flexibility in the description of the portfolio problem. In particular, Prospect

Theory (PT) [3] provides a framework to effectively represent a wide range

of risk attitudes. Within this framework, [6] propose a behavioral portfolio

model.

In this contribution, we apply Cumulative Prospect Theory (CPT) [7] to

the portfolio selection problem. CPT relies on two key transformations: a

value function, which replaces the utility function and models risk and loss

aversion in the evaluation of outcomes, and a probability weighting function

which models distortion of probabilities of ranked outcomes. Risk attitudes

and actual investment decisions of a Prospect Investor (PI) depend on the

shapes of these functions as well as their interaction.

First, we collect preliminary evidence on the role of these specifications on

the investment choices. Then, we compare compositions and performances of

Behavioral Portfolios (BP) defined under CPT, with those of Mean-Variance

(MV) and Mean Absolute Deviation (MAD) portfolios.

In order to solve BP optimization problem, which is highly non-linear

and non-differentiable, we resort to an evolutionary metaheuristic, Particle

Swarm Optimization (PSO).

The remainder of this paper is organized as follows. Section 2 synthesizes

the main features of CPT. Section 3 introduces the BP selection model.

Section 4 describes the PSO solution approach. Section 5 synthesizes the

Mean Variance and Mean Absolute Deviation portfolio models. In Section 6

an application to the European equity market and the comparison with MV

and MAD portfolios are discussed. Section 7 concludes.
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2 Cumulative Prospect Theory

PT has been proposed in [3] to explain actual behaviors; decision makers

do not always take their decisions consistently with the maximization of ex-

pected utility: they are risk averse when they evaluate gains and risk seeking

with respect to losses, they are more sensitive to losses than gains of com-

parable magnitude (loss aversion). Investment opportunities are evaluated

not in terms of final wealth, but based on potential gains and losses rela-

tive to a reference point. Moreover, decision makers apply decision weights

that are biased with respect to objective probabilities and are more sensi-

tive to changes in the probability of extreme outcomes than mid outcomes;

medium and high probabilities tend to be underweighted and low probabil-

ities of extreme outcomes are overweighted. Risk attitude and loss aversion

are modeled through a value function v and probabilistic risk perception

through a probability weighting function w.

In PT individuals maximize the following value

V =
n∑

i=−m

πi · v(zi) , (1)

where zi denotes negative outcomes for −m ≤ i < 0, and positive outcomes

for 0 < i ≤ n, with zi ≤ zj for i < j, considering outcomes interpreted as

deviations from a reference point.

According to [3], the value function is concave for gains and convex and

steeper for losses. In the application, we adopt the following function

v(z) =

{
v+(z) = za z ≥ 0
v−(z) = −λ(−z)b z < 0,

(2)

with positive parameters that control risk attitude, 0 < a ≤ 1 and 0 < b ≤ 1,

and loss aversion, λ ≥ 1. Function (2) is widely used in the literature, it is

continuous, strictly increasing, has zero as reference point. In the numerical

experiments, we use the parameters estimated by Tversky and Kahneman

[7]: λ = 2.25 and a = b = 0.88 (later referred to as ‘TK sentiment’).

A weighting function w is a strictly increasing function which maps the

probability interval [0, 1] into [0, 1], with w(0) = 0 and w(1) = 1. Em-

pirical evidence suggests a typical inverse-S shape: the function is initially

3
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concave (probabilistic risk seeking or optimism) for probabilities in the in-

terval (0, p∗), and then convex (probabilistic risk aversion or pessimism) in

the interval (p∗, 1), for a certain value of p∗. A linear weighting function

describes probabilistic risk neutrality or objective sensitivity towards prob-

abilities, which characterizes Expected Utility. Empirical findings indicate

that the intersection (elevation) between the weighting function and the 45

degrees line, w(p) = p, is for p in the interval (0.3, 0.4).

In the cumulative version of PT [7], the subjective value (1) depends also

on the rank of the outcomes and the decision weights πi are differences in

transformed counter-cumulative probabilities of gains and cumulative prob-

abilities of losses:

πi =


w−(p−m) i = −m
w−
(∑i

j=−m pj

)
− w−

(∑i−1
j=−m pj

)
i = −m+ 1, . . . ,−1

w+
(∑n

j=i pj

)
− w+

(∑n
j=i+1 pj

)
i = 0, . . . , n− 1

w+(pn) i = n,

(3)

where w− and w+ denote the weighting function for probabilities of losses

and gains, respectively.

Single parameter and two (or more) parameter weighting functions have

been suggested; a commonly applied weighting function is

w(p) =
pγ

(pγ + (1− p)γ)1/γ
, (4)

with w(0) = 0 and w(1) = 1, and γ > 0 (with some constraint in order

to have an increasing function). When γ < 1, one obtains the inverse-S

shape. In the applications, we use the parameters estimated by Tversky

and Kahneman [7]: γ+ = 0.61 and γ− = 0.69, for w+ and w−, respectively.

Figure 1 shows some examples of the weighting function used in [7].

3 Behavioral Portfolio selection: a CPT

approach

We assume that a Prospect Investor selects the portfolio weights in order

to maximize her prospect value (1) subject to the usual budget constraint

4
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Figure 1: Weighting function w(p) = pγ

(pγ+(1−p)γ)1/γ
for different values of the

parameter γ < 1. As γ approaches the value 1, w tends to the identity
function

and short selling restrictions. Let x = (x1, . . . , xn) be the vector of portfolio

weights, such that xj ≥ 0 (j = 1, 2, . . . , n) and
∑n

j=1 xj = 1. Let us consider

m possible scenarios, with rij the return of equity j in scenario i, and pi

be the probability of each i. In this work we considered equally probable

scenarios.

The portfolio returns, measured relative to a fixed reference point r0,

are the results subjectively evaluated and weighted through the distorted

probabilities computed as in (3). Formally, the BP selection model is defined

as:

max
x

m∑
i=1

πi · v

(
n∑
j=1

(xjrij − r0)

)

s.t.
n∑
j=1

xj = 1

xj ≥ 0, j = 1, 2, . . . , n.

(5)

The resulting optimization problem is highly non-linear and non-differen-

tiable, so it cannot be solved applying traditional optimization techniques. In

5
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Section 4 an efficient solution approach based on metaheuristics is described.

4 Particle Swarm Optimization and

its implementation

Particle Swarm Optimization (PSO) is an iterative bio-inspired population-

based metaheuristic for the solution of unconstrained global optimization

problems. Instead, our optimization problem is a constrained global one.

Because of it, in this section, first we introduce the basics of standard PSO,

then we present the implementation performed in order to take into account

the presence of constraints.

The basic idea of PSO is to replicate the social behaviour of shoals of fish

or flocks of birds cooperating in the pursuit of a given goal. To this purpose,

each member – namely, a particle – of the shoal/flock – namely, the swarm

– explores the search area keeping memory of its best position reached so

far, and it exchanges this information with the neighbours in the swarm.

Thus, generally, the whole swarm tends to converge towards the best global

position reached by the particles.

4.1 Basics of PSO

The aforementioned idea may be formalized in the following way. Let us

consider the unconstrained global optimization problem

min
x∈Rd

f(x),

where f : Rd 7→ R is the objective function. Suppose we apply PSO for its

solution, in which M particles are considered. Notice that every particle of

the swarm represents a possible solution of such a problem. Initially, each

of them is assigned to a random position, x0
j , and to a random velocity, v0

j ,

with j = 1, . . . ,M .

At the k-th iteration of the algorithm, with k = 0, . . . , K, three vectors

are associated to the j-th particle, with j = 1, . . . ,M : xkj ∈ Rd, which is its

current position; vkj ∈ Rd, which is its current velocity; pj ∈ Rd, which is its

best position visited so far.

6
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Furthermore, pbestj = f(pj) is the value of the objective function in the

best position visited by the j-th particle, pj, and gbest = f(pg) is the value

of the objective function in the best position visited by the swarm, pg.

The algorithm, in the version with inertia weights, which is the one we

use in this work, is reported in the following:

1. Set pbestj = +∞ for j = 1, . . . ,M , gbest = +∞ and k = 0. Evaluate

f(xkj ) for j = 1, . . . ,M .

2. If f(xkj ) < pbestj then set pj = xkj and pbestj = f(xkj ). If f(xkj ) < gbest

then set pg = xkj and gbest = f(xkj ).

3. Update position and velocity of the j-th particle, with j = 1, . . . ,M ,

as {
vk+1
j = wk+1vkj + c1(pj − xkj ) + c2(pg − xkj )

xk+1
j = xkj + vk+1

j

where wk+1, c1 and c2 are appropriate quantities.

4. If a pre-established convergence criterion is not satisfied then set k =

k + 1 and go to step 2.

Notice that the values of c1 and of c2 affect the strength of the attractive

forces towards pj and pg, respectively. In order to get the convergence of

the swarm, they have to be set carefully in accordance with the value of the

inertia weight wk, which is generally linearly decreasing with respect to k.

4.2 The unconstrained BP optimization problem

As stated before, our optimization problem is a constrained global one. For

dealing with the presence of constraints, different strategies are proposed in

the literature to ensure that feasible positions are generated at any iterations

of PSO. However, in this paper we use PSO accordingly to the original in-

tent, that is as a tool for the solution of unconstrained global optimization

problems. To this purpose, we reformulate our constrained problem into an

unconstrained one using the nondifferentiable `1 penalty function method de-

scribed by [2] and already applied in the financial context (see, for instance,

7

Electronic copy available at: https://ssrn.com/abstract=3764530



[1]). Such an approach is known as exact penalty method, where the term

“exact” refers to the correspondence between the minimizers of the original

constrained problem and the minimizers of the unconstrained (penalized)

one.

The reformulated version of the BP optimization problem (5) is:

max
x

m∑
i=1

πi · v

 n∑
j=1

(xjrij − r0)

− 1

ε

∣∣∣∣∣∣
n∑
j=1

xj − 1

∣∣∣∣∣∣+
n∑
j=1

max (0,−xj)

 , (6)

where ε is the so-called penalty parameter.

Note that the correct setting of ε ensures the correspondence between

the solutions of the original constrained problem and of the reformulated

unconstrained one (6).

5 Mean Variance and Mean Absolute

Deviation portfolios

In order to test the resulting CPT portfolios obtained from (5), in its refor-

mulated versione (6), against alternative selection models, we consider two

very well known and widely used in practice. The first is Markowitz Mean

Variance (MV) portfolio selection model [5] and the second is Konno and

Yamazaki Mean Absolute Deviation (MAD) model [4].

The classical portfolio selection problem dates back to [5] and is based on

the solution of a quadratic programming problem with the goal of minimizing

variance and maximizing return. We denote with µ = (µ1, . . . , µn) the vector

of expected returns and with Σ the variance-covariance matrix, given the

vector of portfolio weights, x = (x1, . . . , xn), the portfolio return and variance

are, respectively, µ(x) = xTµ and σ2 = xTΣx. In a trade off formulation of

the objective function, the resulting quadratic portfolio optimization problem

can be casted as

min
x

1

2
xTΣx− γxTµ

s.t.
n∑
j=1

xj = 1

xj ≥ 0, j = 1, 2, . . . , n.

(7)

8
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where γ is a risk tolerance parameter. The portfolio optimization model by

Markowitz is a quadratic programming problem and requires calculation of

means and variance-covariance matrix for assets’ returns.

The MAD model by Konno and Yamazaki [4] proposes a different risk

measure, the Mean Absolute Deviation (MAD) measure, that allows to recast

the problem as a linear programming model.

We recall that rij denotes the return of equity j in scenario i, and pi is

the corresponding probability.

The MAD model can be written as

min
x

m∑
i=1

pi

n∑
j=1

|xjrij − r̄0|

s.t.
n∑
j=1

xj = 1

xj ≥ 0, j = 1, 2, . . . , n,

(8)

where r̄0 is a target return set by the decision maker, deviations from which

are symmetrically penalized.

6 Application to the European equity market

Our main purpose is the comparison between the investment decisions of a

rational agent and those of a Prospect Investor (PI). To this aim, we consider

the equity market represented by the 10 sectorial indices in the STOXX 600

Europe index, and use weekly data. Then, we solve the reformulated BP

selection problem (6) and compare it with the MV [5] and the MAD [4] ones.

The overall testing period goes from July, 2018 to June, 2019.

The out-of-sample analysis performed over this period is carried out as fol-

lows: a 1-year in-sample period is used to select the various optimal portfolios

(BP, MV and MAD), then these portfolios are applied at the realized weekly

market returns for a 3-month out-of-sample period (e.g.: first in-sample pe-

riod, from July, 2017 to June, 2018; first out-of-sample period, from July,

2018 to September, 2018). This scheme is then further applied in a 3-month

rolling window approach until the entire 1-year out-of-sample testing period

9
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Figure 2: Out-of-sample equity lines for the optimal portfolios and for the
Index

Table 1: Statistics for the out-of-sample returns of the optimal portfolios and
of other strategies

MV MAD00 MAD025 Index TK025 TK00

Mean −0.0000 0.0005 0.0005 0.0002 −0.0002 0.0003
Standard
dev.

0.0216 0.0167 0.0167 0.0176 0.0164 0.0165

Skewness −0.6472 −0.2375 −0.2375 −0.5630 −0.7246 −0.4072
Kurtosis 2.9549 3.0358 3.0358 3.0943 3.0391 2.6183

is covered. For the BP two different reference points are considered, r0 = 0 %

and r0 = 2.5 %, and the same for the MAD portfolio deviations.

In Figure 2, we present the out-of-sample equity lines for the optimal

portfolios and for the STOXX 600 Europe index (Index), using as starting

capital C = 100. In Table 1, we report the main statistics for the out-of-

sample returns for the portfolios.

In general, the up- and down-trends of the market strongly affect the

out-of-sample performances of the optimal portfolios, which behave similarly.

The BPs respond differently to various market phases in correspondence of

10
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the two reference points. In the case of the lower one, r0 = 0%, the portfolio

performs better in the up-trend market and reduces the losses in the down-

trend market (see Figure 2 and column 7 of Table 1). The second reference

point, r0 = 2.5%, rather demanding given the overall market conditions in

the considered testing periods, leads to less diversified compositions of the

BP that is less performing in terms both of upside capture and downside

protection (see Figure 2 and column 6 of Table 1). Similar considerations

hold for the MV and MAD portfolios. In particular, the MAD portfolios that

produce the minimum deviations for the two reference points are perfectly

coincident (see Figure 2 and columns 3 and 4 of Table 1).

Finally, from preliminary findings, we note that BPs display a wider diver-

sification with respect to other selected portfolios in all the 3-months testing

periods. The determinants of such a result will be investigated in future

experiments.

7 Concluding remarks

In this contribution we investigate a formulation for the portfolio selection

problem in a Cumulative Prospect Theory framework. The resulting opti-

mization problem is non-linear and non-differentiable and it is solved through

a Particle Swarm Optimization metaheuristic. We considered an application

to the 10 sectorial indices in the STOXX 600 Europe Index and test the

behaviour of the resulting optimal portfolio compositions over 1-year out-of

sample period. We discuss the obtained preliminary results with respect to

the Mean-Variance and the MAD portfolios. Further investigations will be

carried out, in particular, to the aim of performing sensitivity analysis on the

parameters involved both in the reformulated optimization problem (6) and

in the used metaheuristic.
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