417 research outputs found

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs

    Improving the Generalisability of Brain Computer Interface Applications via Machine Learning and Search-Based Heuristics

    Get PDF
    Brain Computer Interfaces (BCI) are a domain of hardware/software in which a user can interact with a machine without the need for motor activity, communicating instead via signals generated by the nervous system. These interfaces provide life-altering benefits to users, and refinement will both allow their application to a much wider variety of disabilities, and increase their practicality. The primary method of acquiring these signals is Electroencephalography (EEG). This technique is susceptible to a variety of different sources of noise, which compounds the inherent problems in BCI training data: large dimensionality, low numbers of samples, and non-stationarity between users and recording sessions. Feature Selection and Transfer Learning have been used to overcome these problems, but they fail to account for several characteristics of BCI. This thesis extends both of these approaches by the use of Search-based algorithms. Feature Selection techniques, known as Wrappers use ‘black box’ evaluation of feature subsets, leading to higher classification accuracies than ranking methods known as Filters. However, Wrappers are more computationally expensive, and are prone to over-fitting to training data. In this thesis, we applied Iterated Local Search (ILS) to the BCI field for the first time in literature, and demonstrated competitive results with state-of-the-art methods such as Least Absolute Shrinkage and Selection Operator and Genetic Algorithms. We then developed ILS variants with guided perturbation operators. Linkage was used to develop a multivariate metric, Intrasolution Linkage. This takes into account pair-wise dependencies of features with the label, in the context of the solution. Intrasolution Linkage was then integrated into two ILS variants. The Intrasolution Linkage Score was discovered to have a stronger correlation with the solutions predictive accuracy on unseen data than Cross Validation Error (CVE) on the training set, the typical approach to feature subset evaluation. Mutual Information was used to create Minimum Redundancy Maximum Relevance Iterated Local Search (MRMR-ILS). In this algorithm, the perturbation operator was guided using an existing Mutual Information measure, and compared with current Filter and Wrapper methods. It was found to achieve generally lower CVE rates and higher predictive accuracy on unseen data than existing algorithms. It was also noted that solutions found by the MRMR-ILS provided CVE rates that had a stronger correlation with the accuracy on unseen data than solutions found by other algorithms. We suggest that this may be due to the guided perturbation leading to solutions that are richer in Mutual Information. Feature Selection reduces computational demands and can increase the accuracy of our desired models, as evidenced in this thesis. However, limited quantities of training samples restricts these models, and greatly reduces their generalisability. For this reason, utilisation of data from a wide range of users is an ideal solution. Due to the differences in neural structures between users, creating adequate models is difficult. We adopted an existing state-of-the-art ensemble technique Ensemble Learning Generic Information (ELGI), and developed an initial optimisation phase. This involved using search to transplant instances between user subsets to increase the generalisability of each subset, before combination in the ELGI. We termed this Evolved Ensemble Learning Generic Information (eELGI). The eELGI achieved higher accuracy than user-specific BCI models, across all eight users. Optimisation of the training dataset allowed smaller training sets to be used, offered protection against neural drift, and created models that performed similarly across participants, regardless of neural impairment. Through the introduction and hybridisation of search based algorithms to several problems in BCI we have been able to show improvements in modelling accuracy and efficiency. Ultimately, this represents a step towards more practical BCI systems that will provide life altering benefits to users

    Electroencephalographic Signal Processing and Classification Techniques for Noninvasive Motor Imagery Based Brain Computer Interface

    Get PDF
    In motor imagery (MI) based brain-computer interface (BCI), success depends on reliable processing of the noisy, non-linear, and non-stationary brain activity signals for extraction of features and effective classification of MI activity as well as translation to the corresponding intended actions. In this study, signal processing and classification techniques are presented for electroencephalogram (EEG) signals for motor imagery based brain-computer interface. EEG signals have been acquired placing the electrodes following the international 10-20 system. The acquired signals have been pre-processed removing artifacts using empirical mode decomposition (EMD) and two extended versions of EMD, ensemble empirical mode decomposition (EEMD), and multivariate empirical mode decomposition (MEMD) leading to better signal to noise ratio (SNR) and reduced mean square error (MSE) compared to independent component analysis (ICA). EEG signals have been decomposed into independent mode function (IMFs) that are further processed to extract features like sample entropy (SampEn) and band power (BP). The extracted features have been used in support vector machines to characterize and identify MI activities. EMD and its variants, EEMD, MEMD have been compared with common spatial pattern (CSP) for different MI activities. SNR values from EMD, EEMD and MEMD (4.3, 7.64, 10.62) are much better than ICA (2.1) but accuracy of MI activity identification is slightly better for ICA than EMD using BP and SampEn. Further work is outlined to include more features with larger database for better classification accuracy

    Odhad emocí a duševní koncentrace pomocí technik Deep Learningu

    Get PDF
    The purpose of this work is to evaluate the brain waves of humans with deep learn- ing methods and evolutionary computation techniques, and to verify the performance of applied techniques. In this thesis, we apply well–known metaheuristics and Artificial Neural Networks for classifying human mental activities using electroencephalographic signals. We developed a Brain–Computer Interface system that is able to process elec- troencephalographic signals and classify mental concentration versus relaxation. The system is able to automatically extract and learn representation of the given data. Based on scientific protocols we designed the Brain–Computer Interface experiments and we created an original and relevant data for the industrial and academic community. Our experimental data is available to the scientific community. In the experiments we used an electroencephalographic based device for collecting brain information form the subjects during specific activities. The collected data represents brain waves of subjects who was stimulated by writing tasks. Furthermore, we selected the best combination of the input features (brain waves information) using the following two metaheuristic techniques: Simulated Annealing and Geometric Particle Swarm Optimization. We applied a specific type of Artificial Neural Network, named Echo State Network, for solving the mapping between brain information and subject activities. The results indicate that it is possible to estimate the human con- centration using few electroencephalographic signals. In addition, the proposed system is developed with a fast and robust learning technique that can be easily adapted accord- ing to each subject. Moreover, this approach does not require powerful computational resources. As a consequence, the proposed system can be used in environments which are computationally limited and/or where the computational time is an important issue.Cílem práce je ohodnocení lidských mozkových vln s využitím metod hlubokého učení (deep learning) a evolučních výpočetních technik a pro ověření výkonu aplikovaných technik. V diplomové práci jsou využity dobře známé metaheuristiky a umělé neuronové sítě pro klasifikaci lidských mentálních aktivit za použití elektroencefalografických signálů. Bylo vyvinuto rozhraní mozek-počítač, které je schopno zpracovat elektroencefalografické signály a klasifikovat mentální soustředění v porovnání s relaxací. Systém je schopen automaticky extrahovat a naučit se reprezentaci daných dat. Na základě vědeckých protokolů byl navržen experiment pro rozhraní mozek-počítač a byla vytvořena původní a relevantní data pro průmyslovou a akademickou komunitu. Vygenerovaná pokusná data jsou přístupné pro vědeckou komunitu. V rámci experimentů bylo využito zařízení založené na encefalografii pro sběr mozkových signálů subjektu během specifických aktivit. Nasbíraná data reprezentují mozkové vlny subjektu, který byl stimulován psaním úloh. Dále byla vybrána nejlepší kombinace vstupních vlastností (informace o mozkové vlně) s využitím následujících dvou metaheuristických metod: simulovaného žíhání a geometrické optimalizace hejnem částic. Umělá neuronová síť, která se nazývá Echo State síť, byla aplikována pro řešení mapování mezi informacemi z mozku a aktivitami subjektu. Výsledky ukazují, že je možné odhadnout lidskou aktivitu pomocí několika encefalografických signálů. Kromě toho, navrhovaný systém je vyvinut s využitím rychlých a robustních učících technik, které mohou být jednoduše přizpůsobeny podle jednotlivých subjektů. Tento přístup navíc nevyžaduje výkonné výpočetní prostředky. V důsledku toho může být systém využit v prostředí, které jsou výpočetně omezeny a/nebo v případech, kdy výpočetní čas je důležitým hlediskem.460 - Katedra informatikyvýborn

    Energy extraction method for EEG channel selection

    Get PDF
    Channel selection is an improvement technique to optimize EEG-based BCI performance. In previous studies, many channel selection methods—mostly based on spatial information of signals—have been introduced. One of these channel selection techniques is the energy calculation method. In this paper, we introduce an energy optimization calculation method, called the energy extraction method. Energy extraction is an extension of the energy calculation method, and is divided into two steps. The first step is energy calculation and the second is energy selection. In the energy calculation step, l2-norm is used to calculate channel energy, while in the energy selection method we propose three techniques: “high value” (HV), “close to mean” (CM), and “automatic”. All proposed framework schemes for energy extraction are applied in two types of datasets. Two classes of datasets i.e. motor movement (hand and foot movement) and motor imagery (imagination of left and right hand movement) were used. The system used a Common Spatial Pattern (CSP) method to extract EEG signal features and k-NN as a classification method to classify the signal features with k = 3. Based on the test results, all schemes for the proposed energy extraction method yielded improved BCI performance of up to 58%. In summary, the energy extraction approach using the CM energy selection method was found to be the best channel selection technique

    A Hybrid Brain-Computer Interface for Closed- Loop Position Control of a Robot Arm

    Get PDF
    Brain-Computer Interfacing has currently added a new dimension in assistive robotics. Existing brain-computer interfaces designed for position control applications suffer from two fundamental limitations. First, most of the existing schemes employ open-loop control, and thus are unable to track the positional errors, resulting in failures in taking necessary online corrective actions. There are traces of one or fewer works dealing with closed-loop EEG-based position control. The existing closed-loop brain-induced position control schemes employ a fixed order link selection rule, which often creates a bottleneck for time-efficient control. Second, the existing brain-induced position controllers are designed to generate the position response like a traditional first-order system, resulting in a large steady-state error. This paper overcomes the above two limitations by keeping provisions for (Steady-State Visual Evoked Potential induced) link-selection in an arbitrary order as required for efficient control and also to generate a second-order response of the position-control system with gradually diminishing overshoots/undershoots to reduce steady-state errors. Besides the above, the third novelty is to utilize motor imagery and P300 signals to design the hybrid brain-computer interfacing system for the said application with gradually diminishing error-margin by speed reversal at the zero-crossings of positional errors. Experiments undertaken reveal that the steady-state error is reduced to 0.2%. The paper also provides a thorough analysis of stability of the closed-loop system performance using Root Locus technique

    A Comprehensive Analysis on EEG Signal Classification Using Advanced Computational Analysis

    Get PDF
    Electroencephalogram (EEG) has been used in a wide array of applications to study mental disorders. Due to its non-invasive and low-cost features, EEG has become a viable instrument in Brain-Computer Interfaces (BCI). These BCI systems integrate user\u27s neural features with robotic machines to perform tasks. However, due to EEG signals being highly dynamic in nature, BCI systems are still unstable and prone to unanticipated noise interference. An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, BCI systems are remarkably challenging to implement as recorded brain signals can be unreliable and vary in pattern throughout time. In the initial work, a novel classifier structure is proposed to classify different types of imaginary motions (left hand, right hand, and imagination of words starting with the same letter) across multiple sessions using an optimized set of electrodes for each user. The proposed technique uses raw brain signals obtained utilizing 32 electrodes and classifies the imaginary motions using Artificial Neural Networks (ANN). To enhance the classification rate and optimize the set of electrodes of each subject, a majority voting system combining a set of simple ANNs is used. This electrode optimization technique achieved classification accuracies of 69.83%, 94.04% and 84.56% respectively for the three subjects considered in this work. In the second work, the signal variations are studied in detail for a large EEG dataset. Using the Independent Component Analysis (ICA) with a dynamic threshold model, noise features were filtered. The data was classified to a high precision of more than 94% using artificial neural networks. A decreased variance in classification validated both, the effectiveness of the proposed dynamic threshold systems and the presence of higher concentrations of noise in data for specific subjects. Using this variance and classification accuracy, subjects were separated into two groups. The lower accuracy group was found to have an increased variance in classification. To confirm these results, a Kaiser windowing technique was used to compute the signal-to-noise ratio (SNR) for all subjects and a low SNR was obtained for all EEG signals pertaining to the group with the poor data classification. This work not only establishes a direct relationship between high signal variance, low SNR, and poor signal classification but also presents classification results that are significantly higher than the accuracies reported by prior studies for the same EEG user dataset
    corecore