93 research outputs found

    Detecting grammatical errors with treebank-induced, probabilistic parsers

    Get PDF
    Today's grammar checkers often use hand-crafted rule systems that define acceptable language. The development of such rule systems is labour-intensive and has to be repeated for each language. At the same time, grammars automatically induced from syntactically annotated corpora (treebanks) are successfully employed in other applications, for example text understanding and machine translation. At first glance, treebank-induced grammars seem to be unsuitable for grammar checking as they massively over-generate and fail to reject ungrammatical input due to their high robustness. We present three new methods for judging the grammaticality of a sentence with probabilistic, treebank-induced grammars, demonstrating that such grammars can be successfully applied to automatically judge the grammaticality of an input string. Our best-performing method exploits the differences between parse results for grammars trained on grammatical and ungrammatical treebanks. The second approach builds an estimator of the probability of the most likely parse using grammatical training data that has previously been parsed and annotated with parse probabilities. If the estimated probability of an input sentence (whose grammaticality is to be judged by the system) is higher by a certain amount than the actual parse probability, the sentence is flagged as ungrammatical. The third approach extracts discriminative parse tree fragments in the form of CFG rules from parsed grammatical and ungrammatical corpora and trains a binary classifier to distinguish grammatical from ungrammatical sentences. The three approaches are evaluated on a large test set of grammatical and ungrammatical sentences. The ungrammatical test set is generated automatically by inserting common grammatical errors into the British National Corpus. The results are compared to two traditional approaches, one that uses a hand-crafted, discriminative grammar, the XLE ParGram English LFG, and one based on part-of-speech n-grams. In addition, the baseline methods and the new methods are combined in a machine learning-based framework, yielding further improvements

    Machine Learning and Security of Non-Executable Files

    Get PDF
    Computer malware is a well-known threat in security which, despite the enormous time and effort invested in fighting it, is today more prevalent than ever. Recent years have brought a surge in one particular type: malware embedded in non-executable file formats, e.g., PDF, SWF and various office file formats. The result has been a massive number of infections, owed primarily to the trust that ordinary computer users have in these file formats. In addition, their feature-richness and implementation complexity have created enormous attack surfaces in widely deployed client software, resulting in regular discoveries of new vulnerabilities. The traditional approach to malware detection – signature matching, heuristics and behavioral profiling – has from its inception been a labor-intensive manual task, always lagging one step behind the attacker. With the exponential growth of computers and networks, malware has become more diverse, wide-spread and adaptive than ever, scaling much faster than the available talent pool of human malware analysts. An automated and scalable approach is needed to fill the gap between automated malware adaptation and manual malware detection, and machine learning is emerging as a viable solution. Its branch called adversarial machine learning studies the security of machine learning algorithms and the special conditions that arise when machine learning is applied for security. This thesis is a study of adversarial machine learning in the context of static detection of malware in non-executable file formats. It evaluates the effectiveness, efficiency and security of machine learning applications in this context. To this end, it introduces 3 data-driven detection methods developed using very large, high quality datasets. PJScan detects malicious PDF files based on lexical properties of embedded JavaScript code and is the fastest method published to date. SL2013 extends its coverage to all PDF files, regardless of JavaScript presence, by analyzing the hierarchical structure of PDF logical building blocks and demonstrates excellent performance in a novel long-term realistic experiment. Finally, Hidost generalizes the hierarchical-structure-based feature set to become the first machine-learning-based malware detector operating on multiple file formats. In a comprehensive experimental evaluation on PDF and SWF, it outperforms other academic methods and commercial antivirus systems in detection effectiveness. Furthermore, the thesis presents a framework for security evaluation of machine learning classifiers in a case study performed on an independent PDF malware detector. The results show that the ability to manipulate a part of the classifier’s feature set allows a malicious adversary to disguise malware so that it appears benign to the classifier with a high success rate. The presented methods are released as open-source software.Schadsoftware ist eine gut bekannte Sicherheitsbedrohung. Trotz der enormen Zeit und des Aufwands die investiert werden, um sie zu beseitigen, ist sie heute weiter verbreitet als je zuvor. In den letzten Jahren kam es zu einem starken Anstieg von Schadsoftware, welche in nicht-ausführbaren Dateiformaten, wie PDF, SWF und diversen Office-Formaten, eingebettet ist. Die Folge war eine massive Anzahl von Infektionen, ermöglicht durch das Vertrauen, das normale Rechnerbenutzer in diese Dateiformate haben. Außerdem hat die Komplexität und Vielseitigkeit dieser Dateiformate große Angriffsflächen in weitverbreiteter Klient-Software verursacht, und neue Sicherheitslücken werden regelmäßig entdeckt. Der traditionelle Ansatz zur Erkennung von Schadsoftware – Mustererkennung, Heuristiken und Verhaltensanalyse – war vom Anfang an eine äußerst mühevolle Handarbeit, immer einen Schritt hinter den Angreifern zurück. Mit dem exponentiellen Wachstum von Rechenleistung und Netzwerkgeschwindigkeit ist Schadsoftware diverser, zahlreicher und schneller-anpassend geworden als je zuvor, doch die Verfügbarkeit von menschlichen Schadsoftware-Analysten kann nicht so schnell skalieren. Ein automatischer und skalierbarer Ansatz ist gefragt, und maschinelles Lernen tritt als eine brauchbare Lösung hervor. Ein Bereich davon, Adversarial Machine Learning, untersucht die Sicherheit von maschinellen Lernverfahren und die besonderen Verhältnisse, die bei der Anwendung von machinellem Lernen für Sicherheit entstehen. Diese Arbeit ist eine Studie von Adversarial Machine Learning im Kontext statischer Schadsoftware-Erkennung in nicht-ausführbaren Dateiformaten. Sie evaluiert die Wirksamkeit, Leistungsfähigkeit und Sicherheit von maschinellem Lernen in diesem Kontext. Zu diesem Zweck stellt sie 3 datengesteuerte Erkennungsmethoden vor, die alle auf sehr großen und diversen Datensätzen entwickelt wurden. PJScan erkennt bösartige PDF-Dateien anhand lexikalischer Eigenschaften von eingebettetem JavaScript-Code und ist die schnellste bisher veröffentliche Methode. SL2013 erweitert die Erkennung auf alle PDF-Dateien, unabhängig davon, ob sie JavaScript enthalten, indem es die hierarchische Struktur von logischen PDF-Bausteinen analysiert. Es zeigt hervorragende Leistung in einem neuen, langfristigen und realistischen Experiment. Schließlich generalisiert Hidost den auf hierarchischen Strukturen basierten Merkmalsraum und wurde zum ersten auf maschinellem Lernen basierten Schadsoftware-Erkennungssystem, das auf mehreren Dateiformaten anwendbar ist. In einer umfassenden experimentellen Evaulierung auf PDF- und SWF-Formaten schlägt es andere akademische Methoden und kommerzielle Antiviren-Lösungen bezüglich Erkennungswirksamkeit. Überdies stellt diese Doktorarbeit ein Framework für Sicherheits-Evaluierung von auf machinellem Lernen basierten Klassifikatoren vor und wendet es in einer Fallstudie auf eine unabhängige akademische Schadsoftware-Erkennungsmethode an. Die Ergebnisse zeigen, dass die Fähigkeit, nur einen Teil von Features, die ein Klasifikator verwendet, zu manipulieren, einem Angreifer ermöglicht, Schadsoftware in Dateien so einzubetten, dass sie von der Erkennungsmethode mit hoher Erfolgsrate als gutartig fehlklassifiziert wird. Die vorgestellten Methoden wurden als Open-Source-Software veröffentlicht

    On the Diagnosis and Generalization of Compositional Visual Reasoning

    Get PDF
    Computer vision is not only about recognizing visual signals, but also rea- soning over perceived visual elements. This ability, termed visual reasoning, is typically studied by multimodal tasks like visual question answering and image captioning. Thanks to recent developments in multimodal vision-and- language, we are closer to achieving visual reasoning than ever. However, more efforts are still required, in order to build visual reasoning systems that are robust, interpretable and generalizable. In this dissertation, I present my efforts towards visual reasoning, through both model diagnosis and enhancements. In the first part, I diagnose existing visual question answering models, including the end-to-end models and com- positional models, and show the advantage of the latter. In the second part, I dive deeper into compositional models, proposing techniques for enhancing them with improved performance on real-world images. In the third part, I generalize visual reasoning onto a different task, image captioning, introduc- ing a new setting of the task that requires strong reasoning to summarize and compare groups of images. With this dissertation, I showcase the advantages and disadvantages of compositional visual reasoning methods, which should be pursued in conjunction with non-compositional end-to-end models

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Fundamental Approaches to Software Engineering, FASE 2021, which took place during March 27–April 1, 2021, and was held as part of the Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg but changed to an online format due to the COVID-19 pandemic. The 16 full papers presented in this volume were carefully reviewed and selected from 52 submissions. The book also contains 4 Test-Comp contributions

    Comparative Quality Estimation for Machine Translation. An Application of Artificial Intelligence on Language Technology using Machine Learning of Human Preferences

    Get PDF
    In this thesis we focus on Comparative Quality Estimation, as the automaticprocess of analysing two or more translations produced by a Machine Translation(MT) system and expressing a judgment about their comparison. We approach theproblem from a supervised machine learning perspective, with the aim to learnfrom human preferences. As a result, we create the ranking mechanism, a pipelinethat includes the necessary tasks for ordering several MT outputs of a givensource sentence in terms of relative quality. Quality Estimation models are trained to statistically associate the judgmentswith some qualitative features. For this purpose, we design a broad set offeatures with a particular focus on the ones with a grammatical background.Through an iterative feature engineering process, we investigate several featuresets, we conclude to the ones that achieve the best performance and we proceedto linguistically intuitive observations about the contribution of individualfeatures. Additionally, we employ several feature selection and machine learning methodsto take advantage of these features. We suggest the usage of binary classifiersafter decomposing the ranking into pairwise decisions. In order to reduce theamount of uncertain decisions (ties) we weight the pairwise decisions with theirclassification probability. Through a set of experiments, we show that the ranking mechanism can learn andreproduce rankings that correlate to the ones given by humans. Most importantly,it can be successfully compared with state-of-the-art reference-aware metricsand other known ranking methods for several language pairs. We also apply thismethod for a hybrid MT system combination and we show that it is able to improvethe overall translation performance. Finally, we examine the correlation between common MT errors and decoding eventsof the phrase-based statistical MT systems. Through evidence from the decodingprocess, we identify some cases where long-distance grammatical phenomena cannotbe captured properly. An additional outcome of this thesis is the open source software Qualitative,which implements the full pipeline of ranking mechanism and the systemcombination task. It integrates a multitude of state-of-the-art natural languageprocessing tools and can support the development of new models. Apart from theusage in experiment pipelines, it can serve as an application back-end for webapplications in real-use scenaria.In dieser Promotionsarbeit konzentrieren wir uns auf die vergleichende Qualitätsschätzung der Maschinellen Übersetzung als ein automatisches Verfahren zur Analyse von zwei oder mehr Übersetzungen, die von Maschinenübersetzungssysteme erzeugt wurden, und zur Beurteilung von deren Vergleich. Wir gehen an das Problem aus der Perspektive des überwachten maschinellen Lernens heran, mit dem Ziel, von menschlichen Präferenzen zu lernen. Als Ergebnis erstellen wir einen Ranking-Mechanismus. Dabei handelt es sich um eine Pipeline, welche die notwendigen Arbeitsschritte für die Anordnung mehrerer Maschinenübersetzungen eines bestimmten Quellsatzes in Bezug auf die relative Qualität umfasst. Qualitätsschätzungsmodelle werden so trainiert, dass Vergleichsurteile mit einigen bestimmten Merkmalen statistisch verknüpft werden. Zu diesem Zweck konzipieren wir eine breite Palette von Merkmalen mit besonderem Fokus auf diejenigen mit einem grammatikalischen Hintergrund. Mit Hilfe eines iterativen Verfahrens der Merkmalskonstruktion untersuchen wir verschiedene Merkmalsreihen, erschließen diejenigen, die die beste Leistung erzielen, und leiten linguistisch motivierte Beobachtungen über die Beiträge der einzelnen Merkmale ab. Zusätzlich setzen wir verschiedene Methoden des maschinellen Lernens und der Merkmalsauswahl ein, um die Vorteile dieser Merkmale zu nutzen. Wir schlagen die Verwendung von binären Klassifikatoren nach Zerlegen des Rankings in paarweise Entscheidungen vor. Um die Anzahl der unklaren Entscheidungen (Unentschieden) zu verringern, gewichten wir die paarweisen Entscheidungen mit deren Klassifikationswahrscheinlichkeit. Mithilfe einer Reihe von Experimenten zeigen wir, dass der Ranking-Mechanismus Rankings lernen und reproduzieren kann, die mit denen von Menschen übereinstimmen. Die wichtigste Erkenntnis ist, dass der Mechanismus erfolgreich mit referenzbasierten Metriken und anderen bekannten Ranking-Methoden auf dem neusten Stand der Technik für verschiedene Sprachpaare verglichen werden kann. Diese Methode verwenden wir ebenfalls für eine hybride Systemkombination maschineller Übersetzer und zeigen, dass sie in der Lage ist, die gesamte Übersetzungsleistung zu verbessern. Abschließend untersuchen wir den Zusammenhang zwischen häufig vorkommenden Fehlern der maschinellen Übersetzung und Vorgängen, die während des internen Dekodierungsverfahrens der phrasenbasierten statistischen Maschinenübersetzungssysteme ablaufen. Durch Beweise aus dem Dekodierungsverfahren können wir einige Fälle identifizieren, in denen grammatikalische Phänomene mit Fernabhängigkeit nicht richtig erfasst werden können. Ein weiteres Ergebnis dieser Arbeit ist die quelloffene Software ``Qualitative'', welche die volle Pipeline des Ranking-Mechanismus und das System für die Kombinationsaufgabe implementiert. Die Software integriert eine Vielzahl modernster Softwaretools für die Verarbeitung natürlicher Sprache und kann die Entwicklung neuer Modelle unterstützen. Sie kann sowohl in Experimentierpipelines als auch als Anwendungs-Backend in realen Nutzungsszenarien verwendet werden

    인공지능 보안

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 자연과학대학 협동과정 생물정보학전공, 2021. 2. 윤성로.With the development of machine learning (ML), expectations for artificial intelligence (AI) technologies have increased daily. In particular, deep neural networks have demonstrated outstanding performance in many fields. However, if a deep-learning (DL) model causes mispredictions or misclassifications, it can cause difficulty, owing to malicious external influences. This dissertation discusses DL security and privacy issues and proposes methodologies for security and privacy attacks. First, we reviewed security attacks and defenses from two aspects. Evasion attacks use adversarial examples to disrupt the classification process, and poisoning attacks compromise training by compromising the training data. Next, we reviewed attacks on privacy that can exploit exposed training data and defenses, including differential privacy and encryption. For adversarial DL, we study the problem of finding adversarial examples against ML-based portable document format (PDF) malware classifiers. We believe that our problem is more challenging than those against ML models for image processing, owing to the highly complex data structure of PDFs, compared with traditional image datasets, and the requirement that the infected PDF should exhibit malicious behavior without being detected. We propose an attack using generative adversarial networks that effectively generates evasive PDFs using a variational autoencoder robust against adversarial examples. For privacy in DL, we study the problem of avoiding sensitive data being misused and propose a privacy-preserving framework for deep neural networks. Our methods are based on generative models that preserve the privacy of sensitive data while maintaining a high prediction performance. Finally, we study the security aspect in biological domains to detect maliciousness in deoxyribonucleic acid sequences and watermarks to protect intellectual properties. In summary, the proposed DL models for security and privacy embrace a diversity of research by attempting actual attacks and defenses in various fields.인공지능 모델을 사용하기 위해서는 개인별 데이터 수집이 필수적이다. 반면 개인의 민감한 데이터가 유출되는 경우에는 프라이버시 침해의 소지가 있다. 인공지능 모델을 사용하는데 수집된 데이터가 외부에 유출되지 않도록 하거나, 익명화, 부호화 등의 보안 기법을 인공지능 모델에 적용하는 분야를 Private AI로 분류할 수 있다. 또한 인공지능 모델이 노출될 경우 지적 소유권이 무력화될 수 있는 문제점과, 악의적인 학습 데이터를 이용하여 인공지능 시스템을 오작동할 수 있고 이러한 인공지능 모델 자체에 대한 위협은 Secure AI로 분류할 수 있다. 본 논문에서는 학습 데이터에 대한 공격을 기반으로 신경망의 결손 사례를 보여준다. 기존의 AEs 연구들은 이미지를 기반으로 많은 연구가 진행되었다. 보다 복잡한 heterogenous한 PDF 데이터로 연구를 확장하여 generative 기반의 모델을 제안하여 공격 샘플을 생성하였다. 다음으로 이상 패턴을 보이는 샘플을 검출할 수 있는 DNA steganalysis 방어 모델을 제안한다. 마지막으로 개인 정보 보호를 위해 generative 모델 기반의 익명화 기법들을 제안한다. 요약하면 본 논문은 인공지능 모델을 활용한 공격 및 방어 알고리즘과 신경망을 활용하는데 발생되는 프라이버시 이슈를 해결할 수 있는 기계학습 알고리즘에 기반한 일련의 방법론을 제안한다.Abstract i List of Figures vi List of Tables xiii 1 Introduction 1 2 Background 6 2.1 Deep Learning: a brief overview . . . . . . . . . . . . . . . . . . . 6 2.2 Security Attacks on Deep Learning Models . . . . . . . . . . . . . 10 2.2.1 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Poisoning Attack . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Defense Techniques Against Deep Learning Models . . . . . . . . . 26 2.3.1 Defense Techniques against Evasion Attacks . . . . . . . . 27 2.3.2 Defense against Poisoning Attacks . . . . . . . . . . . . . . 36 2.4 Privacy issues on Deep Learning Models . . . . . . . . . . . . . . . 38 2.4.1 Attacks on Privacy . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 Defenses Against Attacks on Privacy . . . . . . . . . . . . 40 3 Attacks on Deep Learning Models 47 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.2 Portable Document Format (PDF) . . . . . . . . . . . . . . 55 3.1.3 PDF Malware Classifiers . . . . . . . . . . . . . . . . . . . 57 3.1.4 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Feature Selection Process . . . . . . . . . . . . . . . . . . 61 3.2.3 Seed Selection for Mutation . . . . . . . . . . . . . . . . . 62 3.2.4 Evading Model . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.5 Model architecture . . . . . . . . . . . . . . . . . . . . . . 67 3.2.6 PDF Repacking and Verification . . . . . . . . . . . . . . . 67 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Datasets and Model Training . . . . . . . . . . . . . . . . . 68 3.3.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.3 CVEs for Various Types of PDF Malware . . . . . . . . . . 72 3.3.4 Malicious Signature . . . . . . . . . . . . . . . . . . . . . 72 3.3.5 AntiVirus Engines (VirusTotal) . . . . . . . . . . . . . . . 76 3.3.6 Feature Mutation Result for Contagio . . . . . . . . . . . . 76 3.3.7 Feature Mutation Result for CVEs . . . . . . . . . . . . . . 78 3.3.8 Malicious Signature Verification . . . . . . . . . . . . . . . 78 3.3.9 Evasion Speed . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.10 AntiVirus Engines (VirusTotal) Result . . . . . . . . . . . . 82 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Defense on Deep Learning Models 88 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.1.1 Message-Hiding Regions . . . . . . . . . . . . . . . . . . . 91 4.1.2 DNA Steganography . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Example of Message Hiding . . . . . . . . . . . . . . . . . 94 4.1.4 DNA Steganalysis . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.2 Proposed Model Architecture . . . . . . . . . . . . . . . . 103 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.5 Message Hiding Procedure . . . . . . . . . . . . . . . . . . 108 4.3.6 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . 109 4.3.7 Performance Comparison . . . . . . . . . . . . . . . . . . . 109 4.3.8 Analyzing Malicious Code in DNA Sequences . . . . . . . 112 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Privacy: Generative Models for Anonymizing Private Data 115 5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.2 Anonymization using GANs . . . . . . . . . . . . . . . . . 119 5.1.3 Security Principle of Anonymized GANs . . . . . . . . . . 123 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.4 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . 126 5.2.5 Comparison to Differential Privacy . . . . . . . . . . . . . 128 5.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 128 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 Privacy: Privacy-preserving Inference for Deep Learning Models 132 6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.3 Deep Private Generation Framework . . . . . . . . . . . . . 137 6.1.4 Security Principle . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.5 Threat to the Classifier . . . . . . . . . . . . . . . . . . . . 143 6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Experimental Process . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 150 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 Conclusion 153 7.0.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.0.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography 157 Abstract in Korean 195Docto

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore