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Abstract

Two important recent trends in nlg are (i) probabilistic techniques and (ii) comprehen-
sive approaches that move away from traditional strictly modular and sequential models.
This paper reports experiments in which pcru — a generation framework that combines
probabilistic generation methodology with a comprehensive model of the generation space
— was used to semi-automatically create five different versions of a weather forecast
generator. The generators were evaluated in terms of output quality, development time
and computational efficiency against (i) human forecasters, (ii) a traditional handcrafted
pipelined nlg system, and (iii) a halogen-style statistical generator. The most striking
result is that despite acquiring all decision-making abilities automatically, the best pcru
generators produce outputs of high enough quality to be scored more highly by human
judges than forecasts written by experts.

1 Background

Language is generated in many nlp applications, including mt, document summari-

sation and dialogue systems. Researchers in the area of natural language generation

(nlg) tend to define their task in such a way that it involves an abstract represen-

tation of meaning, something that large parts of mt, summarisation and dialogue

do not currently involve. An influential definition of the core tasks in applied nlg

was provided by Reiter and Dale (2000): content determination, discourse planning,

sentence aggregation, lexicalisation, referring expression generation and linguistic

realisation. While there is considerable agreement about core tasks, there is little

consensus about how these tasks translate into system modules.

Building nlg systems involves considerable time and expense. Traditionally, nlg

systems are carefully handcrafted as deterministic decision-makers that make de-

cisions locally, at each step in the generation process. Decisions are encoded as

generation rules with conditions for rule application (often in the form of if-then

rules or rules with parameters to be matched), usually on the basis of corpus anal-



2 Anja Belz

ysis and expert consultation. Great emphasis has been placed on the importance of

carrying out corpus analysis manually. Reiter and Dale’s influential paper (1997)

recommended that nlg systems be built largely ”by careful analysis of the target

text corpus, and by talking to domain experts” (p. 74, but also pp. 58, 61, 72 and

73), acknowledging that this may involve time and effort:

You are going to have to spend a considerable amount of time learning about the
domain, poring over and analysing the corpus, and discussing your observations with the
domain experts [...]. The amount of effort required should not be underestimated; [...].
(Reiter and Dale, 1997, p. 73)

To make this task manageable, the nlg system builder often has to eliminate

much of the variation in the corpus, since writing generation rules with conditions

for application precise enough to enable deterministic language generation becomes

harder the more variation has to be accounted for. McKeown et al. (1994) comment

on “the tremendous variety in the possible sentences for each message type with

respect to sentence structure and lexical choice” (p. 9) that the plandoc project

team found in their domain corpus, and describe how one of “the two overriding

practical considerations” was found to be “the need for a bounded sublanguage”

(p. 8) which eliminated most of the variation found in the corpus.

Re-use of systems or even system components is almost non-existent in nlg. This

is in large parts due to a lack of agreement about modules and interfaces, but a

major contributing factor is also the prevalence of rule-based symbolic approaches.

The very nature of such generators makes their re-use difficult, even where module

and interface specifications are agreed: required content, discourse structure, de-

grees of formality, technicality, etc., will vary from one domain and application to

the next, and if they are encoded in handcrafted generation rules with fine-grained

conditions for rule application, they will have to be rewritten by hand for every

new application.

Re-usability is limited even in the case of surface realisers that are applied after all

content choices, and most lexical and deep syntactic choices have been made. Wide-

coverage surface realisers such as penman/nigel (Mann and Mathiesen, 1983;

Mann and Mathiesen, 1985), fuf/surge (Elhadad and Robin, 1996) and realpro

(Lavoie and Rambow, 1997) that were intended to be more or less off-the-shelf plug-

and-play modules tend to require a significant amount of work to fine-tune and

integrate. They also tend to make substantial demands on the module supplying

the inputs. For example, a case study looking at system builders’ experience in using

penman in applications found that constructing input specifications for penman

was one of two tasks requiring “substantial effort” (Kasper, 1989, p. 155):

Penman’s grammar can control several hundred different (semantic) features. If the
application program were required to specify values for all of these features for every
sentence to be generated, the system would be too complex for most practical purposes.
(Kasper, 1989, p. 153.)

To overcome these problems, a flexible interface to the surface realiser was devel-

oped which enabled application programs to supply inputs of varying granularity

to the surface realiser.
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Two important recent trends in nlg have developed at least in part to address

the issues of development time and reusability in building nlg systems: one is an

increasing use of statistical techniques, the other a range of methodologies that take

a comprehensive view of the generation task.

nlg as a field was largely unaffected by the statistical revolution in nlp that

began in the 1980s, but over the last decade, nlg researchers have become increas-

ingly interested in statistical techniques. Since Langkilde and Knight’s influential

work on statistical surface realisation (Knight and Langkilde, 1998) which resulted

in the nitrogen and halogen systems, a number of statistical and corpus-based

methods have been reported. However, this interest does not appear to have trans-

lated into practice: of the 30 implemented systems and modules with development

starting in or after 2000 that are listed on a key nlg website1, only five have any

statistical component at all (another six involving techniques that are in some way

corpus-based). The likely reasons for this lack of take-up are that (i) many existing

statistical nlg techniques are inherently expensive, requiring the set of alternatives

to be generated in full before the statistical model is applied to select the most

likely; and (ii) statistical nlg techniques simply have not been shown to produce

outputs of high enough quality.

A parallel development has been a rethinking of the traditional modular, pipelined

nlg architecture (Reiter, 1994). Some research has moved towards a more com-

prehensive view, e.g. construing the generation task as a constraint satisfaction

problem. Precursors to current approaches were Hovy’s pauline which kept track

of the satisfaction status of a set of global ‘rhetorical goals’ (Hovy, 1988), and

Power et al.’s iconoclast which allowed users to fine-tune different combinations

of constraints (Power, 2000). In more recent comprehensive approaches, the focus is

on automatic adaptability, e.g. automatically determining degrees of violability of

constraints on the basis of corpus frequencies. Examples include Langkilde’s (2005)

general approach to both generation and parsing based on constraint optimisation,

and Marciniak and Strube’s (2005) integrated and globally optimisable network of

classifiers and constraints.

Both the probabilistic and the recent comprehensive trends have the potential

to improve on development time and reusability, but have drawbacks. Existing sta-

tistical nlg methods either use statistics derived from a corpus to inform heuris-

tic decisions during what is otherwise symbolic generation (Varges and Mellish,

2001; White, 2004; Paiva and Evans, 2005), or they use n-gram models to select

the overall most likely realisation after generation (halogen family). The auto-

matic adaptability of the former is somewhat limited, while the latter overgenerates

vastly (including ungrammatical realisations), has a high computational cost (see

Section 4), and the statistical model is not linguistically informed.

Existing comprehensive approaches can also be hard to use in practice, requir-

ing manual experimentation to set constraints (iconoclast), or annotated cor-

pora to determine the cost associated with constraints (Langkilde, Marciniak and

1 Bateman and Zock’s list of nlg systems, http://www.fb10.uni-bremen.de/anglistik/
langpro/NLG-table/, viewed on 20/01/2006.
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Strube). Handling violability of soft constraints is problematic, and converting

corpus-derived probabilities into costs associated with constraints turns straight-

forward statistics into an ad hoc search heuristic. The older approaches are not

globally optimisable (pauline) or involve exhaustive search (iconoclast).

2 Introduction and overview

The language generation process can be seen as the incremental specification of

the word strings that form the outputs. In the course of the generation process,

representations become increasingly specific in terms of determining the output

string: inputs are less specific than intermediate representations which in turn are

less specific than the outputs. All representations, input, intermediate and output,

can be said to be in specificity relations with each other. Together they form the

generation space underlying an nlg system.

The way that generation spaces are navigated can vary greatly from one nlg

system to the next. Different systems allow different degrees of nondeterminism,

and different mechanisms are applied to make decisions in the face of nondeter-

minism. In a traditional rule-based nlg system, decision-making and generation

space are interleaved: rule application conditions ensure that a generation process

is simply a path through the generation space from an input to an output, any

nondeterminism in the rules being resolved by defaults or arbitrary selection. In a

generate-and-select system such as halogen, decision-making and generation space

are entirely separate: a generation process is a tree leading to multiple outputs, and

nondeterminism is not resolved until after generation is complete, when a decision

is made in favour of one of the leaf nodes (realisations).

Building nlg systems involves encoding generation spaces and decision-making

abilities which translates, at a high level of abstraction, into the tasks of (i) de-

termining the range of variation in content, semantic, syntactic and surface forms

(perhaps as found in a target corpus); and (ii) determining the conditions under

which each variant is preferred over alternatives. The more time-consuming of the

two tasks is likely to be ii : determining the range of variation in a corpus is more

straightforward than determining the conditions under which a particular variant

should be preferred over alternatives (see also discussion in Section 5). In tradi-

tional rule-based generators, both i and ii are created manually, whereas in an n-

gram-model-based generate-and-select system like halogen, the decision-making

abilities are acquired automatically.

Probabilistic Context-free Representationally Underspecified (pcru) language

generation shares one fundamental aim with halogen-type generation: to formally

separate i and ii, and to completely automate ii, using relative frequency as the

basis for decision-making. However, pcru aims to provide an efficient, linguistically

informed, statistically principled alternative to existing statistical and comprehen-

sive approaches. It combines a probabilistic generation methodology with a com-

prehensive model of the generation space. Both generate-and-select systems and

pcru are faster to develop than traditional nlg systems, because their decision-

making abilities are acquired entirely automatically. The core differences between
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n-gram-based generate-and-select and pcru are that in the latter, probabilistic

choice informs generation as it goes along, instead of generating all alternatives

and then selecting probabilistically (as in halogen), and probabilities attach to

the decisions that the generation space is composed of, as opposed to arbitrary

word sequences (as in n-grams in general). The overall aim behind pcru was to

create an approach to generation that would have the advantages of halogen-type

generation as compared to traditional approaches (i.e. reduced development time

and enhanced reusability), but would improve over generate-and-select generation

by increasing computational efficiency and language quality.

This paper summarises the pcru framework, which is described in more detail in

two technical reports (Belz, 2004; Belz, 2006), and reports the results of experiments

designed to rigorously test pcru in practice and to determine whether it does

achieve improvements in development time and reusability while sacrificing neither

quality of outputs nor efficiency of generation.

The paper is structured as follows. The pcru language generation framework

is summarised in the following section, the implementation and evaluation of the

pcru weather forecast generator is described in detail in Section 4, while Section 5

discusses some of the evaluation results in more detail, also outlining directions for

further research. Concluding remarks can be found in Section 6.

3 pCRU language generation

Probabilistic Context-free Representationally Underspecified language generation,

or pcru, is a language generation framework that was developed (in the UK epsrc

project CoGenT) with the aim of providing the formal underpinnings for creating

nlg systems that are driven by comprehensive probabilistic models of the entire

generation space (including deep generation). nlg systems tend to be composed

of generation rules that apply transformations to representations (performing dif-

ferent tasks in different modules). The basic idea in pcru is that as long as the

generation rules are all of the form relation(arg1, ...argn) → relation1(arg1, ...argp)

... relationm(arg1, ...argq), m ≥ 1, n, p, q ≥ 0, then the set of all generation rules can

be seen as defining a context-free language and a single probabilistic model can be

estimated from raw or annotated text to guide generation processes.

pcru uses straightforward context-free technology in combination with under-

specification techniques (context-free representational underspecification, or cru;

see Belz, 2004), and the separation between generation space encoding and decision-

making described in the previous section is fundamental to it. The generation space

is encoded as a base generator in the form of (i) a set G of expansion rules (of the

form above) composed of n-ary relations relation(arg1, ...argn) where the argi are

constants or variables over constants; and (ii) argument and relation type hierar-

chies. During generation, inputs are expanded under unifying variable substitution

until no further expansion is possible. In non-probabilistic mode, the output is the

set of fully expanded (fully specified) forms that can be derived from the input. The

pcru (probabilistic cru) decision-maker is created by estimating a probability

distribution over the base generator from an unannotated corpus of example texts,
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in two steps. First, the corpus is converted to a multi-treebank. For each sen-

tence, all (left-most) derivation trees licensed by G for the sentence are determined

and added to the corpus. In the second step, frequency counts are determined for

each individual generation rule from the multi-treebank. The counts are converted

into a probability distribution over G, using smoothing and standard maximum

likelihood estimation. This distribution is used in one of several ways to drive gen-

eration processes, maximising the likelihood either of individual expansions or of

entire generation processes.

Creation of base generators is described in more detail in the following section,

and training of the decision-maker in Section 3.2. A software package implement-

ing pcru which includes two additional baseline generation techniques is briefly

described in Section 3.3.

3.1 Defining generation spaces: pCRU base generators

Generation spaces are encoded using cru (context-free representational underspec-

ification; Belz, 2004) as a set of expansion rules composed of n-ary relations. Such

a set of expansion rules explicitly places all input, intermediate and output repre-

sentations in specificity relations, or viewed the other way around, defines which

representation is underspecified with respect to which other representations. The

generation process is seen explicitly as being the task of incrementally specifying

one or more word strings.

Generation rules are required to be context-free. A pcru generation space is

therefore a 4-tuple G = (W, N, S, R), where W is a set of terminals, N is a set of

nonterminals, S ∈ N is the start symbol, and R is a set of production rules, where

each rule is of the form n → α, n ∈ N , α ∈ (W ∪ N)∗, and W and N are disjoint.

(Non)terminals are terms f(b1, ..., bn) where f ∈ F is an n-ary relation with

n ≥ 0, b1, ..., bn ∈ V ∪ C are variables and constants, V is an alphabet of variable

names, C a set of constants, and F is an alphabet of relation names.

The input to generation can be any sentential form licensed by G. An expansion

rule can be applied only if a unifying substitution exists for the nonterminal to be

expanded and the right-hand side of the rule. In non-probabilistic mode, the output

is the set of terminal strings that the input can be expanded to under G.

Within the limits of context-freeness and atomicity of feature values, pcru is

neutral with respect to actual linguistic knowledge representation formalisms used

to encode generation spaces. The semantics and lexicon that have been used in

experiments with pcru so far are based on Multiple Recursion Semantics (mrs) as

used in the Lingo parser-realiser (Copestake et al., 2005). Figure 1 shows a small

fragment from the generation space definition for a patient information leaflets

generator (based on the corpus described in Bouayad et al., 2000). The idea was to

create a flexible way of linking up to the Lingo realiser (which requires highly specific

inputs), by abstracting over mrs representations. The pcru rules generate mrs

representations which are then passed on to the Lingo realiser. The rules in Figure 1

generate mrs representations of verb phrases such as take the medicine, should take

the medicine, etc. The conventions adopted for representing Lingo-mrs semantic
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take med(H1, E, E.TENSE, E.MOOD, E.ASPECT.PERF, E.ASPECT, X1, PNG.PN1, DIVISIBLE, X2, H0, H3) →

medicine(H1, X2, neut, PNG.PN2, H2)
take(H2, E, E.TENSE, E.MOOD, E.ASPECT.PERF, E.ASPECT, X1, PNG.PN1, DIVISIBLE, X2, neut, PNG.PN2, U, H0, H3)

medicine(H1, X, neut, PNG.PN, H3) →

nq the q rel(H1, X, PNG.PN, DIVISIBLE, H2, H3)
qq medicine n relqq(H2, X, neut, PNG.PN)

take(H1, E, present, E.MOOD, -, -, X1, PNG.PN1, DIVISIBLE, X2, PNG.GEN, PNG.PN2, U, H0, H2) →

imp m rel(H0, H2)
qq take v 1 relqq(H1, E, present, E.MOOD, -, -, X1, PNG.PN1, DIVISIBLE, X2, PNG.GEN, PNG.PN2, U)

take(H1, E, present, indicative, -, -, X1, PNG.PN1, DIVISIBLE, X2, PNG.GEN, PNG.PN2, U, H0, H2) →

prpstn m rel(H0, H2)
qq take v 1 relqq(H1, E, present, indicative, -, -, X1, PNG.PN1, DIVISIBLE, X2, PNG.GEN, PNG.PN2, U)

take(H1, E1, present, ind or mod subj , -, -, X1, PNG.PN1, DIVISIBLE, X2, PNG.GEN, PNG.PN2, U, H0, H2) →

prpstn m rel(H0, H2)
nq should v rel(H1, E1, present, ind or mod subj , -, -, H3)
qq take v 1 relqq(H3, E2, no tense, indicative, -, -, X1, PNG.PN1, DIVISIBLE, X2, PNG.GEN, PNG.PN2, U)

Fig. 1. Fragment of pcru generation space for patient information leaflets. The rules
generate a set of mrs expressions which when fed to the Lingo realiser generate 42 dif-
ferent variants of pill-taking instructions (controlled by the arguments), including take
the medicine, you take the medicine, the patient takes the medicine, patients take the
medicines, you should take the medicine, etc.

relations in cfg rules are described in detail in a previous report (Belz, 2004).

Briefly, H-variables represent labels and pointers, X-variables are entity variables,

E-variables are event variables. Lower case arguments are constant strings. Upper-

case relations are non-terminal relations, lower-case relations are terminals. Double-

quoted terminals (starting and ending with qq) are lexical items, those ending in

m rel are message type relations (e.g. imperative, proposition, etc.).

When building generation space definitions, the idea is that existing resources,

in particular for surface realisation, are reused, to the extent that they can be

converted into rules of the form above. For the patient information leaflet domain,

the surface rules were adapted from the Lingo grammar. For the rather simpler

weather forecasting domain (Section 4), rules were written from scratch.

3.2 Selection among alternatives: pCRU decision-making

The pcru (probabilistic cru) decision-making component is created by estimating

a probability distribution over the set of expansion rules that encodes the generation

space (the base generator), as follows:

1. Convert corpus into multi-treebank: determine for each sentence all (left-

most) derivation trees licensed by the base generator’s cru rules, using max-

imal partial derivations if there is no complete derivation tree; annotate the
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(sub)strings in the sentence with the derivation trees, resulting in a set of

generation trees for the sentence.

2. Train base generator: Obtain frequency counts c for each individual generation

rule N → α from the multi-treebank, by adding 1/n to c for every occurrence

of the rule in a set of derivation trees for a sentence, where n is the total

number of alternative derivation trees for the sentence; convert counts into

probability distributions over alternative rules, using add-1 smoothing2 and

standard maximum likelihood estimation:

p(N → α) =
c(N → α)

∑
i:N→αi∈R

c(N → αi)
(1)

During generation, inputs are expanded by applying expansion rules as described

in Section 3.1, and the pcru probability distribution is used in one of three ways

to inform the generation process:

1. Greedy generation: apply only the most likely rule to expand each nonter-

minal; this means making the single most likely decision at each choice point

in a generation process which is not guaranteed to result in the most likely

generation process, but the computational cost is very low.

2. Viterbi generation: apply all expansion rules to each nonterminal to create

the generation forest for the input, then do a Viterbi search of the generation

forest; this maximises the joint likelihood of all decisions taken in the gen-

eration process. This does select the most likely generation process3, but is

considerably more expensive.

3. Greedy roulette-wheel generation: select a rule to expand a nonterminal

according to a non-uniform random distribution proportional to the likeli-

hoods of expansion rules. E.g. if there are two alternative rules D1 and D2,

with the model giving p(D1) = 0.8 and p(D2) = 0.2, then the generator

decides D1 approximately 80% of the time, and D2 20%.

3.3 The pCRU-1.0 generation package

The technology described in the two preceding sections has been implemented in

a software package released as pcru-1.0. The user defines a generation space by

creating a base generator composed of the following:

1. the set N of underspecified n-ary relations

2. the set W of fully specified n-ary relations

3. a set R of context-free generation rules n → α, n ∈ N , α ∈ (W ∪ N)∗

4. a typed feature hierarchy defining argument types and values

2 This is equivalent to Bayesian estimation with a uniform prior probability on all deci-
sions, and is entirely sufficient for present purposes given the small vocabulary and the
good coverage of the data.

3 NB, not the most likely string.
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This base generator is then automatically trained (in the way described in the

previous section) on raw text corpora to provide a probability distribution over

generation rules. Optionally, an n-gram language model can also be created from

the same corpus. The generator is then run in one of the three modes described in

the previous section. Two additional modes are provided:

1. Random: ignoring pcru probabilities, randomly select generation rules.

2. N-gram: ignoring pcru probabilities, generate set of alternatives and select

the most likely according to the n-gram language model (as in halogen).

The random mode serves as an absolute baseline for generation quality: a trained

generator must be able to do better, otherwise the probabilities are not doing any

work, and all the work is done by the base generator. The n-gram mode is a point

of comparison with existing statistical nlg techniques and also serves as a baseline

in terms of computational expense: a generator using pcru probabilities should be

able to produce realisations faster (because it uses probabilities integrated into the

generation space model, rather than looking them up in a separate model).

4 Building and evaluating a pCRU wind forecast generator

The automatic generation of weather forecasts is one of the success stories of nlp.

The restrictiveness of the sublanguage has made the domain of weather forecasting

particularly attractive to nlp researchers, and a number of weather forecast systems

have been created, of which the two best known are perhaps meteo (Isabelle,

1984) and fog (Goldberg et al., 1994). meteo translates weather forecasts from

English to French and vice versa. It produced the first machine-translated weather

forecast on May 24th, 1977, and has evolved over the years to cope with more

than 90% of the workload of the translation team that uses it4. fog is a bilingual

system that generates English and French marine forecasts from a common content

representation, and was one of the first commercially used nlg systems.

A recent example of weather forecast generation research is the SumTime project

(Reiter et al., 2005) which developed an nlg system that generates marine weather

forecasts for offshore oil rigs from numerical forecast data produced by weather sim-

ulation programs. The SumTime system has two modules: a content-determination

module and a microplanning and realisation module (the system can be run without

the content-determination module, taking content representations as inputs, and is

then called SumTime-Hybrid). The corpus developed for SumTime is used in the

experiments below, and results are compared to SumTime-Hybrid outputs.

While the restrictiveness of the domain language in meteorology is an advantage,

it is quantitative rather than qualitative as far as lexicon and syntax are concerned,

and scaling up to less restrictive sublanguages would involve the addition of more

lexical items and more syntactic structures, but no change to generation methodol-

ogy. However, weather forecasts tend to be short sequences of statements with few

4 According to MT News International, the Newsletter of the International Association
for Machine Translation, Issue no. 17, June/July 1997, ISSN 0965-5476.
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Oil1/Oil2/Oil3_FIELDS
05-10-00

05/06 SSW 18 22 27 3.0 4.8 SSW 2.5 9
05/09 S 16 20 25 2.7 4.3 SSW 2.3 9
05/12 S 14 17 21 2.5 4.0 SSW 2.2 9
05/15 S 14 17 21 2.3 3.7 SSW 2.2 8
05/18 SSE 12 15 18 2.4 3.8 SSW 2.3 8
05/21 SSE 10 12 15 2.4 3.8 SSW 2.4 8
06/00 VAR 6 7 8 2.4 3.8 SSW 2.4 8
...

Fig. 2. Meteorological data file for 05-10-2000, a.m. (the names of oil fields have been
anonymised).

FORECAST FOR:-
Oil1/Oil2/Oil3 FIELDS
...

2.FORECAST 06-24 GMT, THURSDAY, 05-Oct 2000

=====WARNINGS: RISK THUNDERSTORM. =======

WIND(KTS) CONFIDENCE: HIGH
10M: SSW 16-20 GRADUALLY BACKING SSE THEN FALLING

VARIABLE 04-08 BY LATE EVENING
50M: SSW 20-26 GRADUALLY BACKING SSE THEN FALLING

VARIABLE 08-12 BY LATE EVENING
...

Fig. 3. Wind forecast for 05-10-2000, a.m. (the names of oil fields have been anonymised).

discourse connectives or anaphoric references, which does make them much simpler

to generate at the discourse level than most text types.

4.1 Data

The SumTime-Meteo corpus was created by the SumTime project team in collab-

oration with wni Oceanroutes (Sripada et al., 2002). The corpus was collected by

wni Oceanroutes from the commercial output of five different (human) forecasters,

and each instance in the corpus consists of three numerical data files (produced

by three different weather simulators) and the weather forecast file written by the

forecaster on the evidence of the data files (and sometimes additional resources).

The experiments below focused on the part of the forecasts that predicts wind

characteristics for the next 15 hours.

Only the data file type that contains (virtually all) the information about wind

parameters (the .tab file type) was used. Figure 2 shows an example .tab file and

Figure 3 shows the corresponding wind forecast. In Figure 2, the first column is the

day/hour time stamp, the second the wind direction predicted for the corresponding

time period; the third the wind speed at 10m above the ground; the fourth the gust

speed at 10m; and the fifth the gust speed at 50m. The remaining columns contain

wave data.

The mapping from time series data to forecast is not straightforward (even when

all three data files are taken into account). For example, in Figures 2 and 3, how
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the wind speeds in the table map to speed ranges in the forecast seems to be largely

down to forecasters’ individual preferences.

For the experiments below, a version of the SumTime-Meteo corpus was cre-

ated that contains pairs of wind statements and the wind data that is actually

included in the statement, so that generators could be run with the same inputs as

SumTime-Hybrid. The wind data is a vector of time stamps and wind parameters,

and was ‘reverse-engineered’, by automatically aligning wind speeds and wind di-

rections in the forecasts with time-stamps in the data file. In order to do this, wind

speed and directions in the data file have to be matched with those in the forecast.

This was not straightforward, because often there is no exact match in the data

file for the wind speeds and directions in the forecast. The strategy adopted was

the same as in the SumTime work, in order to make the systems comparable5. The

following is an example input/output pair from the final corpus, consisting of the

meteorological data and corresponding wind forecast:

Data: 1 SSW 16 20 - - 0600 2 SSE - - - - NOTIME 3 VAR 04 08 - - 2400

Forecast: SSW 16-20 GRADUALLY BACKING SSE THEN FALLING VARIABLE 4-8 BY LATE EVENING

The corpus consisted of 2,123 instances, corresponding to a total of 22,985 words.

This may not sound like much, but considering the small number of vocabulary

items and syntactic structures, the corpus provides extremely good coverage (an

initial impression confirmed by the small differences between training and testing

data results below, see Table 1).

4.2 The base generator

The pcru base generator for the SumTime domain was written semi-automatically

as a set of generation rules with atomic arguments that convert an input vector of

numbers and symbols in steps to a set of nl forecasts. The automatic part was

analysing the entire corpus with a set of simple chunking rules that split wind

statements into wind direction, wind speed, gust speed, gust statements, time ex-

pressions, transition phrases (such as increasing to), pre-modifiers (such as less than

for numbers, and mainly for wind direction), and post-modifiers (e.g. in showers).

Chunking the corpus in this way resulted in several sets of phrases: the set of all

wind directions, the set of all wind speeds, the set of all time expressions etc. These

were converted into preterminal and lexical rules expanding e.g. a nonterminal rep-

resenting ‘wind direction change verb’ to backing, and a nonterminal representing

‘speed transition change verb’ to easing.

The manual work on the base generator consisted in writing the chunking rules

themselves, and higher-level rules that combine different sequences of preterminals

into larger components, taking care of text structuring, aggregation and elision. The

5 Reiter et al. selected the time stamp of the data in the table that most closely matched
the data in the forecast, and if there was not a close enough match, they derived a time
stamp from the time expression in the forecast, and finally, if that could not be done
with enough confidence, then time was left unspecified.
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higher-level rules were based on an interpretation of wind statements as sequences of

fairly independent units of information (‘segments’), each containing as a minimum

a wind direction or wind speed range, and as a maximum all the chunk types listed

above. The context encoded in the rules was the position of a unit of information

in a wind statement; whether a wind statement contained wind direction (only),

wind speed (only), or both; whether the change in wind direction was clockwise or

anti-clockwise; whether change in wind speed was an increase or a decrease. The

final base generator takes as inputs number vectors of length 7 to 60, and has a

large amount of non-determinism. For the simplest input, it generates 5 alternative

realisations. For the most complex input, it would generate 1.6× 1031 alternatives.

As an illustration of the role of the higher-level rules, consider the following ex-

ample (note that this is not a rule in the generation grammar, but a summary of

multiple derivation processes, involving multiple rule applications):

Segment(2,−1, up, counterclock, slow, ssw, 22, 28, n, n, n) ∗

=⇒

gradually backing SSW and gradually increasing 22-28
gradually backing and increasing SSW 22-28
backing/increasing gradually SSW 22-28
backing SSW increasing 22-28
backing gradually SSW 22-28

The arguments to the Segment relation are part of an input vector of weather

data, augmented by contextual information. The weather data arguments repre-

sent wind direction (ssw), minimum wind speed (22), maximum wind speed (28),

minimum/maximum gust speed and time stamp (which in this example are all

unspecified, represented by n). The other arguments encode the contextual infor-

mation that this is the second segment (2), but not the last (−1), that wind speed

has increased compared to the preceding segment (up), that the wind direction has

changed counter-clockwise (counterclock), and that the changes are gradual (slow).

This input segment generates, among many others, the five word strings shown

above. While the generation rules allow the first word string, it is not one that

meteorologists would actually use, preferring to aggregate into one of the shorter

forms above (all of which do occur in the corpus). Quite frequently, one of the verbs

describing type of change is dropped (increasing in the the last word string above),

or the manner adverb is dropped (gradually in the second last string above).

Figure 4 shows a fragment of the base generator which generates phrases de-

scribing gusts. The grammar rules have been somewhat simplified here, for better

readability. The topmost Gusts relation takes as arguments information about max-

imum gust speed, minimum gust speed (if any), and presence of showers/thunder-

storms (if any). Arguments with initial upper case letters are variables, arguments

with initial lower case are constants. The type definitions (not shown here) define

Nv to be any positive integer, N to be Nv or unspecified (n), ST ∈ {s, t, n} which

encodes presence of showers, thunderstorm, or the unspecified value. Note that the

rules on their own merely list the variants found in the corpus, they do not enable

decisions to be made among the variants. Full details of cru and representational

conventions can be found in (Belz, 2004).
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Gusts(Nv1, N2, n) → GustCore(Nv1, N2)
Gusts(Nv1, N2, ST ) → GustCore(Nv1, N2) GustPostMod(ST )

GustCore(Nv, n) → GustTrans Num(Nv)
GustCore(Nv1, Nv2) → GustTrans Num(Nv1) − Num(Nv2)

GustTrans → gusting
GustTrans → gusts
GustTrans → gusts to
GustTrans → in gusts
GustTrans → risk gusts to
GustTrans → with gusts
GustTrans → with gusts to

GustPostMod(s) → in any showers
GustPostMod(s) → in or near showers
GustPostMod(s) → in showers
GustPostMod(t) → in any thunderstorm
GustPostMod(t) → in any thunderstorms
GustPostMod(t) → in any thundery showers

Fig. 4. Fragment of generation space for SumTime weather forecast generators which
generates gust phrases (rules have been simplified for readability).

4.3 Training

The corpus was divided at random into training and testing data at a ratio of 9:1.

The training set was multi-treebanked (see Section 3.2 above) with the base gen-

erator, and the multi-treebank was then used to create the probability distribution

for the base generator (as described in Section 3.2). A back-off 2-gram model with

Good-Turing discounting and no lexical classes was also created (using the srilm

toolkit; Stolcke, 2002) from the training set. pcru-1.0 was run in all five modes to

generate forecasts for the inputs in both training and test sets.

This procedure was repeated five times for hold-out cross-validation. The small

amount of variation across the five repeats, and the small differences between results

for the training and the test sets (Table 1) indicated that five repeats were sufficient.

The following is a subset of the rules from Figure 4 together with their log

probabilities as obtained by training in one of the five runs. The shortest phrase

at the top is by far the most likely (as e.g. in NNE 22-26 GUSTS 36 BACKING NNW 14-18 BY

EVENING):
−0.1513 GustTrans → gusts
−2.3978 GustTrans → with gusts to
−4.1026 GustTrans → risk gusts to
−4.1026 GustTrans → with gusts
−4.7957 GustTrans → gusts to
−5.4889 GustTrans → gusting
−5.4889 GustTrans → in gusts



14 Anja Belz

Input [[1,SSW,16,20,-,-,0600],[2,SSE,-,-,-,-,NOTIME],[3,VAR,04,08,-,-,2400]]

Corpus SSW 16-20 GRADUALLY BACKING SSE THEN FALLING VARIABLE 4-8 BY LATE EVENING

Human1 SSW’LY 16-20 GRADUALLY BACKING SSE’LY THEN DECREASING VARIABLE 4-8 BY LATE EVENING

Human2 SSW 16-20 GRADUALLY BACKING SSE BY 1800 THEN FALLING VARIABLE 4-8 BY LATE EVENING

SumTime SSW 16-20 GRADUALLY BACKING SSE THEN BECOMING VARIABLE 10 OR LESS BY MIDNIGHT

pcru:
-greedy SSW 16-20 BACKING SSE FOR A TIME THEN FALLING VARIABLE 4-8 BY LATE EVENING

-roulette SSW 16-20 GRADUALLY BACKING SSE AND VARIABLE 4-8

-viterbi SSW 16-20 BACKING SSE VARIABLE 4-8 LATER

-2gram SSW 16-20 BACKING SSE VARIABLE 4-8 LATER

-random SSW 16-20 AT FIRST FROM MIDDAY BECOMING SSE DURING THE AFTERNOON THEN VARIABLE 4-8

Fig. 5. Example input with corresponding outputs by all systems and some
meteorologists (for 5 Oct 2000).

Rule probabilities are applied in different ways by the different pcru decision-

makers, whose outputs can be very different. Table 5 shows an example data input

and pcru generator outputs, along with the corresponding forecasts from the cor-

pus, from two additional expert human forecasters, from SumTime-Hybrid, and

the pcru baseline modes.

4.4 Evaluation

4.4.1 Evaluation methods

The two automatic metrics used in the evaluations, nist6 and bleu7, have been

shown to correlate well with expert judgments (Pearson correlation coefficients

0.82 and 0.79 respectively) in the SumTime domain (Belz and Reiter, 2006). bleu

(Papineni et al., 2002) was developed for mt, and is a precision metric (with brevity

penalty) that assesses the quality of a translation in terms of the proportion of its

word n-grams (n ≤ 4 has become standard) that it shares with several reference

translations. bleu scores range from 0 to 1. The nist metric (Doddington, 2002) is

an adaptation of bleu, but where bleu gives equal weight to all n-grams, nist gives

more importance to less frequent (hence more informative) n-grams. nist scores

are ≥ 0, but the upper limit is reference set dependent. Some research has shown

nist to correlate with human judgments more highly than bleu (Doddington, 2002;

Riezler and Maxwell III, 2005; Belz and Reiter, 2006).

The results below include human scores from two separate experiments. The first

was an experiment with 9 subjects experienced in reading marine forecasts (Belz

and Reiter, 2006), the second is a new experiment with 14 similarly experienced

6 http://cio.nist.gov/esd/emaildir/lists/mt list/bin00000.bin
7 ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
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Table 1. nist-5 and bleu-4 scores for training and test sets (average variation
from the mean).

nist-5 bleu-4

pcru-greedy 8.208 (0.033) 0.647 (0.002)
pcru-roulette 7.035 (0.138) 0.496 (0.010)

Training set pcru-2gram 6.734 (0.086) 0.523 (0.008)
pcru-viterbi 6.643 (0.023) 0.524 (0.002)
pcru-random 4.799 (0.036) 0.296 (0.002)

pcru-greedy 6.927 (0.131) 0.636 (0.016)
pcru-roulette 6.193 (0.121) 0.496 (0.022)

Testing set pcru-2gram 5.663 (0.185) 0.514 (0.019)
pcru-viterbi 5.650 (0.161) 0.519 (0.021)
pcru-random 4.535 (0.078) 0.313 (0.005)

subjects8. The main differences were that in Experiment 1, subjects rated on a

scale from 0 to 5 and were asked for overall quality scores, whereas in Experiment

2, subjects rated on a 1–7 scale and were asked for language quality scores.

In comparing different pcru modes, nist and bleu scores were computed against

the test set part of the corpus which contains texts by all five corpus authors. In

the two human experiments, nist and bleu scores were computed against sets of

multiple reference texts (two for each date in Experiment 1, and three for each date

in Experiment 2) written by forecasters who had not contributed to the corpus.

One-way anovas with post-hoc Tukey hsd tests were used to analyse variance and

statistical significance of all results.

4.4.2 Comparing different generation modes

Table 1 shows results for the five different pcru generation modes, for training sets

(top) and test sets (bottom), in terms of nist-5 and bleu-4 scores averaged over

the five runs of the hold-out validation, with average mean deviation figures across

the runs shown in brackets.

The Tukey Test produced the following results for the differences between means

in Table 1. For the training set, significance test results are the same for nist and

bleu scores: all differences are significant at P < 0.01, except for the differences

in scores for pcru-2gram and pcru-viterbi. For the test set and nist, again all

differences are significant at P < 0.01, except for pcru-2gram vs. pcru-viterbi.

For the test set and bleu, three differences are non-significant: pcru-2gram vs.

pcru-viterbi, pcru-2gram vs. pcru-roulette, and pcru-viterbi vs. pcru-roulette.

8 Belz and Reiter, in preparation.
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Table 2. Average scores for handcrafted system and two best pcru-systems from

two human experiments.

Experiment 1 Experiment 2

SumTime-Hybrid 3.82 (1) 4.61 (2)
pcru-greedy 3.59 (2) 4.79 (1)
pcru-roulette 3.22 (3) 4.54 (3)

nist scores depend on test set size, and are necessarily lower for the (smaller)

test set, but the bleu-4 scores indicate that performance was slightly worse on test

sets (as would be expected). The deviation figures show that variation was also

higher on the test sets.

The clearest result is that pcru-greedy is ranked highest, and pcru-random

lowest, by considerable margins. pcru-roulette is ranked second by nist-5 and

fourth by bleu-4. pcru-2gram and pcru-viterbi are virtually indistinguishable.

Subjects in the human-based evaluations agreed with the nist-5 rankings exactly.

These comparative results for the different pcru-modes provide a different pic-

ture from those previously reported for an earlier version of the pcru wind fore-

cast generator (Belz, 2005), where pcru-2gram consistently outperformed all other

modes, and there was little difference between the Viterbi and greedy modes. The

difference between the earlier results and those reported here are due to the im-

provements in the definition of the generation space which made pcru probabilities

more fine-grained and discriminating. As predicted in the earlier report (Belz, 2005,

p. 21), the improvements made little difference to the results for pcru-2gram, but

improved the performance of the greedy modes substantially (see also discussion

in Section 5). An unexpected effect was that the Viterbi mode did not improve

more and still lags very slightly behind pcru-2gram. A possible explanation may

be that the length bias of the Viterbi mode (see Section 4.4.6 below) cancels out

any improvements in the generation rules.

4.4.3 Text quality against handcrafted system

The pcru modes were also evaluated against the SumTime-Hybrid system. Table 2

shows averaged evaluation scores by subjects in the two independent experiments

described above. Altogether 6 and 7 systems were evaluated in Experiments 1 and 2,

respectively. The differences between the pcru and SumTime-Hybrid scores shown

here were not significant when subjected to the Tukey Test with multiple-test cor-

rection, meaning that both experiments failed to show that experts can tell the

difference in the language quality of the texts generated by the handcrafted Sum-

Time-Hybrid system and the two best pcru systems. The expert forecast readers
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Table 3. Average scores for human-written forecasts and best pcru-system from

two human experiments.

Experiment 1 Experiment 2

pcru-greedy 3.59 4.79
Corpus 3.22 4.50
Meteorologist 3.03 –

scored SumTime-Hybrid more highly in the first experiment, and pcru-greedy

more highly in the second, by similar margins.

4.4.4 Text quality against human forecasters

Table 3 shows average scores given by the expert evaluators in the two experiments

to pcru-greedy, the corpus texts, and texts written by another (human) forecaster.

While the expert evaluators scored pcru-greedy higher than all human-written

texts in both experiments, the differences are not significant after applying the

multiple-test correction. However, while in each experiment separately, statistical

significance could not be shown, in combination the scores provide evidence that

the evaluators considered pcru-greedy texts better than the human-written texts.

4.4.5 Computing time

The pcru base grammar encodes a large generation space. For maximum length

inputs there are up to 1.6 × 1031 different realisations. For efficiency reasons, the

base grammar was actually implemented in such a way as to ensure only linear

increase in generation complexity with increasing length: the effect of this is that

each input segment is expanded separately. As a result, the total computing times

and the differences between the four non-random generation modes are not as large

as reported for previous experiments9. The following table shows seconds taken to

generate one forecast10, averaged over the five cross-validation runs (mean variation

figures across the runs in brackets):

Training sets Test sets

pcru-greedy: 1.65s (= 0.02) 1.58s (< 0.04)

pcru-roulette: 1.61s (< 0.02) 1.58s (< 0.05)

pcru-viterbi: 1.74s (< 0.02) 1.70s (= 0.04)

pcru-2gram: 2.83s (< 0.02) 2.78s (< 0.09)

9 Where the 2gram mode took about 7 times as long as the Viterbi mode, which took
9–13 times longer than the greedy mode (Belz, 2005).

10 On a Viglen XX225 Server with 2 3.06Ghz Intel Xeon CPUs, and 4Gb Ram.
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Forecasts for the test sets were generated somewhat faster than for the training

sets in all modes. Variation was greater for test sets. Given the amount of variation,

differences between pcru-greedy and pcru-roulette are not significant, but pcru-

viterbi took 1/10 of a second longer, and pcru-2gram took more than 1 second

longer to generate the average forecast11.

4.4.6 Brevity bias

There are substantial differences in the average length of the forecasts generated

under the control of the different decision-makers, and it is those forecasts with

an average length substantially longer (pcru-random) or shorter (pcru-2gram and

pcru-viterbi) than the corpus that have the worst evaluation results. The average

number of words in the forecasts generated by the different systems was as follows:

pcru-random: 19.43

SumTime: 12.39

pcru-greedy: 11.51

Corpus: 11.28

pcru-greedy-roulette: 10.48

pcru-2gram: 7.66

pcru-viterbi: 7.54

The random pcru-generator has no preference for shorter strings at all, and has

an average string length almost twice that of the other pcru-generators. The 2-

gram generator has an almost absolute preference of shorter over longer strings,

and so produces the second shortest strings. The Viterbi generator does not pre-

fer shorter strings, but does prefer shorter derivations, and there is a correlation

between string length and derivation length. The greedy generators do not have a

built-in preference for shorter strings or derivations, and they achieve the closest

matches to the average forecast length in the corpus.

The reason why n-gram models have a built-in bias towards shorter strings is

that they calculate the likelihood of a string of words as the joint probability of

the words, or, more precisely, as the product of the probabilities of each word given

the n − 1 preceding words. The likelihood of any string will therefore generally be

lower than that of any of its substrings.

The n-gram model’s bias towards shorter strings is an example of a general case:

whenever the likelihood of a unit that can vary in length (e.g. sentence) is mod-

eled in terms of the joint probability of length-invariant smaller units, those units

that are composed of fewer smaller units are more likely. Another example is pcfg

parsing where the likelihood of a parse is the joint probability of the expansion

rules it is composed of, and therefore parse trees with fewer nodes are more likely.

11 The Viterbi and the 2-gram generator are implemented identically, except for the way in
which they obtain the probabilities to be inserted into the generation forest: the former
uses the (internal) pcru rule probabilities, and the latter looks up an external n-gram
model.
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The possibility of counteracting this bias has been investigated. In parsing, Mager-

man and Marcus (1991) and Briscoe and Carroll (1993) used the geometric mean

of probabilities instead of the product of probabilities. In later work, Briscoe and

Carroll (1992) use a normalisation approach, the equivalent of which for n-gram

selection would be to ‘pad’ shorter alternatives with extra ‘dummy’ words up to the

length of the longest alternative, and to use the geometric mean of the probabili-

ties assigned by the n-gram model to the non-dummy words as the probability of

any dummy word. It has been observed that such methods turn a principled prob-

abilistic model into an ad hoc scoring function (Manning and Schuetze, 1999, p.

443). It certainly means getting rid of the n-gram model’s particular independence

assumptions, without replacing them with a statistically motivated alternative.

To some extent, a preference for shorter strings is hardwired into pcfgs which

assign a disproportionately large part of the probability mass to shorter strings. It

appears that the greedy selection strategies overcome this preference.

In some applications, the n-gram model’s preference for shorter strings is ir-

relevant: e.g. in speech recognition (where n-gram models are used widely) the

alternatives among which the model must choose are always of the same length.

In language generation, alternative ways of expressing the same meaning can vary

greatly in length, and a generation method needs to be able to produce outputs of

similar length to those in the target corpus. The results presented in this paper indi-

cate that generation methods that produce shorter outputs than the target outputs

that the method was trained on (clearly the case in pcru-2gram and pcru-viterbi)

are less successful than methods which achieve a good length match12.

4.4.7 Development time

As argued above (Section 2), what takes most time in developing nlg systems is not

encoding the range of alternatives, but the decision-making capabilities that enable

selection among them. In the SumTime project, these were manually encoded on the

basis of careful corpus analysis and consultation with writers and readers of marine

forecasts. In the pcru wind forecast generators, the decision-making capabilities

were acquired entirely automatically, no expert knowledge was used, and the corpus

was not annotated.

The SumTime team estimate13 that very approximately 12 person months went

directly into developing the SumTime microplanner and realiser, and 24 on generic

activities including expert consultation, some of which also benefited the microplan-

ner/realiser. The pcru wind forecaster was built in less than one person month,

including familiarisation with the corpus, building the chunker and creating the

generation rules themselves. However, the SumTime system also generates wave

forecasts and appropriate layout and canned text. A generous estimate would be

12 In some nlg domains, short texts may be desirable, but then the target corpus will also
consist of short texts.

13 Personal communication with E. Reiter and S. Sripada.
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that it would take another two person months to equip the pcru forecaster with

these capabilities.

This is not to say that these two figures are exactly comparable, or that the

two research efforts resulted in exactly the same thing. The main point is that the

SumTime system did come with a substantial price tag attached. Cost is moreover

not restricted to the initial development time. Every time the company using the

SumTime system changes its house style or coverage needs to be extended, the cost

in terms of expert time continues to rise.

The pcru approach allows control over the trade-off between cost and quality

in building the initial system, which can then be adapted to new styles in one of

two ways: by retraining the decision-maker, and by extending the base generator.

Retraining is done fully automatically, by simply training a new decision-maker

on a new corpus, whereas the base generator is extended manually by adding new

rules. Retraining is sufficient if adaptation is e.g. to a new house style in the same

domain, as was shown for the SumTime domain in a previous report (Belz, 2005b).

Extending the coverage of the base grammar is also somewhat simpler than in

traditional nlg generation grammars, because rules for extending coverage can

simply be added without changing the rest of the grammar. These two adaptation

methods are discussed in more detail in the following section.

5 Discussion and further research

In interpreting the results presented in this paper, it is important to bear in mind

that they were obtained in a domain that is in some ways ideal for automatically

generating language (and for mt, see beginning of Section 4): the sets of words

and of syntactic structures are small, the texts are one or two sentences short,

and there is hardly any discourse-level generation to deal with. As pointed out in

Section 4, while scaling up the lexicon and grammar should be straightforward, it

remains to be seen whether more complex discourse structuring and modeling of

discourse-level phenomena can be achieved with this approach. Having said that,

many applied nlg systems are for domains with similarly restricted sublanguages

and short texts, and it is for such systems, rather than wide-coverage tools, that

the pcru approach is intended.

One of the stronger claims in this paper is that using pcru cuts down on de-

velopment time, compared to building an equivalent system entirely by hand. As

discussed in the background and introduction sections above, the tasks involved

in building applied nlg systems can be grouped into (i) discovering and encoding

the variation found in the target corpus (such as the range of expressions for the

same message type), and (ii) discovering and encoding the reasons and conditions

for selecting one of the variants (such as why/when to select a particular expres-

sion for a given message type). Of the two, ii is by far the more time-consuming.

In traditional manual nlg system building, i and ii tend to be interleaved and

encoded together as generation rules with fine-grained conditions for rule applica-

tion, often in the form of parameterised or if-then rules. In pcru, i is encoded as

a non-deterministic generation space, and ii as the automatically trainable (hence
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adaptable) decision-maker. The saving in development time is therefore entirely in

not having to encode ii manually. While in the weather forecast text generation

domain, it was possible to build i semi-automatically, in more complex domains,

encoding i will be a more involved, time-intensive process.

A related claim is that pcru systems are more easily adaptable. pcru systems

can be adapted in two ways: one is extending the coverage of the generation space,

and the other is retraining the decision-maker. If the new style or domain that the

generator is to be adapted to is already covered by the generation space grammar,

then adaptation can be done fully automatically. This is an issue that was explored

in some detail in a previous report (Belz, 2005b) which showed that the five me-

teorologists who contributed to the SumTime corpus had clearly distinguishable

styles (or idiolects), and that pcru enabled the system builder to switch freely be-

tween the styles, simply by retraining on the appropriate subsection of the corpus,

without incurring any manual overhead.

Extending the coverage of the generation space grammar is also somewhat simpler

than in traditional nlg generation grammars, because rules for extending coverage

can simply be added without changing the rest of the grammar, whereas adding

rules with application conditions requires checking (and possibly adapting) other

rules for possible rule interaction.

A third, somewhat more tentative, claim is that using generation models that are

both rule-based and probabilistic to inform language generation produces better

results than using either shallow statistical models or non-probabilistic rule-based

models. The pcru approach to generation makes it possible to combine the potential

accuracy and subtlety of symbolic generation rules with detailed linguistic features

on the one hand, and the adaptability, robustness and handle on nondeterminism

provided by probabilities associated with these rules, on the other. The evaluation

results for the pcru generators show that attaching probabilities to linguistically

meaningful units and structures can outperform the shallow probabilities of n-gram

generation techniques as well as symbolic nlg systems.

Some of the issues raised in this paper might benefit from further clarification.

One is that pcru is intended as a method for building entire generation systems

(albeit excluding non-linguistic content determination), not just surface realisers.

The pcru weather forecast text generators described in this paper do more than

surface realisation: while they do not perform data mining on the time-series data

output by the weather simulation programs, their input is still a vector of numbers,

and some typical strategic and early tactical generation tasks need to be performed,

including some content determination, text planning, aggregation and elision, as

well as lexical and syntactic choice. Using a single statistical model of the entire

generation space (rather than several separate models, or a single model just for

surface generation as in work by Marciniak and Paiva & Evans) is new in nlg.

An interesting question concerns the contribution of the manually built compo-

nent (the base generator) to the quality of the outputs. The random mode serves as

an absolute baseline in this respect: it estimates how well a particular base genera-

tor performs on its own. However, different base generators affect the performance

of the different modes in different ways. The base generator that was used in pre-
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vious experiments (Belz, 2005) encoded a less structured generation space and the

set of concepts was less fine-grained (e.g. it did not distinguish between an increase

and a decrease in wind speed), and therefore it lacked some information necessary

for deriving conditional probabilities for lexical choice (e.g. freshening vs. easing).

As predicted in the earlier report (Belz, 2005, p. 21), the improvements made little

difference to the results for pcru-2gram (up from bleu-4 0.45 to 0.5), but greatly

improved the performance of the greedy mode (up from 0.43 to 0.64).

Somewhat surprisingly, the greedy generation modes (making locally optimal

decisions) performed much better than the Viterbi mode (which makes globally

optimal decisions). Together with the poor performance of the n-gram mode, this

is an indication that a preference for shorter realisations relative to corpus text

length (a property shared by the n-gram and Viterbi modes) is harmful in nlg.

There is an interesting difference between the two greedy modes: the simple greedy

mode is liked by both human evaluators and automatic evaluation metrics, whereas

the greedy roulette-wheel mode is ranked nearly as low as the random mode by

automatic metrics (except for nist), but ranked highly by the human evaluators.

The simple greedy mode is necessarily scored higher than the greedy roulette-wheel

mode by automatic metrics that straightforwardly reward maximal string similarity

(such as bleu), because it always makes the most likely (most frequently observed)

decision, and therefore maximises similarity with the observed corpus, so that when

evaluated on similar material, the similarity of its outputs with the test material

is very likely to be higher than that of the outputs of the greedy roulette-wheel

mode which varies choice among several frequently observed decisions. This points

to a serious flaw in existing word-string-similarity based metrics, as discussed in an

earlier report (Belz and Reiter, 2006).

Another surprising aspect of the work presented here is that the probabilistic

models were all trained on unannotated, or ‘raw’ corpora, and that this was suf-

ficient to obtain high-quality results. An intuitive explanation of why this works

is that in contrast to parsing, it does not really matter how a text is generated

(derived), because the text itself is the output (whereas in parsing, how the text is

derived, its parse, is the output). While results show that high-quality generators

can be created by training on corpora with no annotation whatsoever, it remains

to be seen just how much can be learned from unannotated corpora, and to what

extent this positive result can be reproduced in other, less restricted, domains.

6 Conclusions

The starting point for the research presented in this paper was the aim to develop

an approach to nlg that would reduce development time and increase reusability of

systems and components, compared to traditional handcrafted nlg. The first and

most fundamental methodological decision was to strictly separate generation space

(unchanging) and decision-making (different from one domain to the next), and to

base decision-making on an automatically estimated probabilistic model. To this

extent, pcru is similar to existing n-gram-based generate-and-select nlg such as

halogen. However, the second aim for the approach was to reduce computational
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expense and improve the quality of generated language compared to n-gram-based

generate-and-select nlg. The second fundamental methodological choice was there-

fore in favour of a structured probabilistic model that would make it possible (i)

to make probabilistically informed decisions during generation, thus avoiding the

far greater expense from deferring decisions until after generation; and (ii) to have

probabilities attached to linguistically meaningful units and actual decisions, thus

improving language quality.

The results presented in this paper show that the pcru generation methodology

achieves the above aims: (i) it improves substantially on development time and

reusability compared to traditional hand-crafted systems; (ii) it produces outputs

(at least in the weather domain) that were judged better than those produced

by n-gram-based generate-and-select nlg techniques by all human and automatic

evaluation tests that were applied; and (iii) it is computationally more efficient than

generate-and-select nlg. These results do have to be interpreted in the simplifying

context of weather forecast texts, and future research will have to demonstrate the

feasibility of pcru for more complex domains and/or wider coverage.

There is evidence from neighbouring research fields that purely symbolic and

purely statistical approaches are ultimately superseded by approaches that combine

aspects of both. In the late 1980s, symbolic and statistical nlu were entirely sepa-

rate research paradigms, a situation memorably caricatured by Gazdar (1996). In

the early 1990s, nlu rapidly moved towards a paradigm merger, realising that sym-

bolic nlp lacked the efficiency and robustness that probabilistic nlp could provide,

which in turn would benefit from the accuracy and subtlety of symbolic nlp (Gaz-

dar, 1996, p. 98). A similar development is currently underway in mt where — after

several years of statistical mt dominating the field — researchers are now bringing

increasing amounts of linguistic knowledge into statistical techniques (Charniak et

al., 2003; Huang et al., 2006), and this trend looks set to continue14. The lesson

from nlu and mt appears to be that higher quality results when the symbolic and

statistical paradigms join forces.

If nlg is concerned with generating language from non-language representations

of content or meaning, then it is currently a small field: large parts of document

summarisation, machine translation and human-computer dialogue no longer use

intermediate non-language representations of content. If nlg is to make a come-

back in these areas it needs to move away from brittle and disposable systems

towards more robust and reusable methods, something that linguistically literate

probabilistic methods can help achieve.
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