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Abstract

In this thesis we focus on Comparative Quality Estimation, as the automatic process of
analysing two or more translations produced by a Machine Translation (MT) system and
expressing ajudgment about their comparison. We approach the problem from a supervised
machine learning perspective, with the aim to learn from human preferences. As a result,
we create the ranking mechanism, a pipeline that includes the necessary tasks for ordering
several MT outputs of a given source sentence in terms of relative quality.

Quality Estimation models are trained to statistically associate the judgments with some
qualitative features. For this purpose, we design a broad set of features with a particular
focus on the ones with a grammatical background. Through an iterative feature engineering
process, we investigate several feature sets, we conclude to the ones that achieve the best
performance and we proceed to linguistically intuitive observations about the contribution
of individual features.

Additionally, we employ several feature selection and machine learning methods to take
advantage of these features. We suggest the usage of binary classifiers after decomposing
the ranking into pairwise decisions. In order to reduce the amount of uncertain decisions
(ties) we weight the pairwise decisions with their classification probability.

Through a set of experiments, we show that the ranking mechanism can learn and repro-
duce rankings that correlate to the ones given by humans. Most importantly, it can be suc-
cessfully compared with state-of-the-art reference-aware metrics and other known rank-
ing methods for several language pairs. We also apply this method for a hybrid MT system
combination and we show that it is able to improve the overall translation performance.

Finally, we examine the correlation between common MT errors and decoding events of
the phrase-based statistical MT systems. Through evidence from the decoding process,
we identify some cases where long-distance grammatical phenomena cannot be captured

properly.

An additional outcome of this thesis is the open source software Qualitative, which imple-
ments the full pipeline of ranking mechanism and the system combination task. It integrates
a multitude of state-of-the-art natural language processing tools and can support the de-
velopment of new models. Apart from the usage in experiment pipelines, it can serve as an
application back-end for web applications in real-use scenaria.
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Ausfiihrliche Zusammenfassung

In dieser Promotionsarbeit konzentrieren wir uns auf die Vergleichende Qualititss-
chitzung der Maschinellen Ubersetzung. Die Vergleichende Qualititsschitzung ist eine
eigenstindige Art der Qualitdtsschiatzung, die durch die Moglichkeit motiviert ist, die Ob-
jektivitit von Ubersetzungsvergleichen zu verbessern, wobei die Anforderungen an die
Grundwahrheit reduziert werden, indem die Ordinalitit der Kardinalitit vorgezogen wird.
Dieses Konzept wird gegensitzlich zu anderen Formen der Qualititsschitzung definiert,
welche wir Absolute Qualititsschitzung nennen, da sie sich auf die Schitzung der Qualitat
einzelner Ergebnisse in Form von numerischen Bewertungen konzentrieren.

Wir sehen Vergleichende Qualititsschitzung als ein automatisches Verfahren zur Analyse
von zwei oder mehr Ubersetzungen, die von Maschineniibersetzungssysteme erzeugt wur-
den, und zur Beurteilung von deren Vergleich. Wir gehen an das Problem aus der Per-
spektive des iiberwachten Maschinellen Lernens heran, mit dem Ziel, von menschlichen
Priferenzen zu lernen. Als Ergebnis erstellen wir einen Ranking-Mechanismus. Dabei han-
delt es sich um eine Pipeline, welche die notwendigen Arbeitsschritte fiir die Anordnung
mehrerer Maschinentibersetzungen eines bestimmten Quellsatzes in Bezug auf die relative
Qualitdt umfasst.

Methoden

Die Dissertation besteht aus einer Reihe von empirischen Experimenten. Bevor wir die
Durchfiihrung und die Ergebnisse dieser Experimente erldutern, stellen wir den methodis-
chen Hintergrund dar, auf dem die Experimente basieren. Wir formulieren daher zunéchst
die Konzepte der Vergleichenden Qualitdtsschiatzung, einschlief}lich der zugrunde liegen-
den Konzepte des Rankings, der relativen Darstellung von Qualititsurteilen, der Un-
entschieden und des Ranking-Mechanismus. Nach dem Einfithren des Konzepts des
Ranking-Mechanismus, erldutern wir die Details seiner Funktionalitit als eine typische An-
wendung des iiberwachten Maschinellen Lernens, bestehend aus der Merkmalskonstruk-
tion und den Algorithmen des Maschinellen Lernens.

Qualitdtsschatzungsmodelle werden mit Maschinellem Lernen trainiert, um Vergleich-
surteile mit einigen bestimmten Merkmalen statistisch zu verkniipfen. Zu diesem Zweck
konzipieren wir eine breite Palette von Merkmalen mit besonderem Fokus auf diejenigen
mit einem grammatikalischen Hintergrund. Zusitzlich setzen wir verschiedene Methoden



der Merkmalsauswahl und des Maschinellen Lernens ein, um die Vorteile dieser Merkmale
Zu nutzen.

Wir schlagen die Verwendung von binéren Klassifikatoren nach Zerlegen des Rankings in
paarweise Entscheidungen vor. Die Rekomposition eines Rankings aus paarweisen bindren
Klassifikatorentscheidungen steht vor dem Problem, dass Unentschieden aus unklaren
und widerspriichlichen paarweisen Entscheidungen resultieren. Um die Anzahl der Un-
entschieden zu verringern, gewichten wir die paarweisen Entscheidungen mit deren Klas-
sifikationswahrscheinlichkeit, bevor sie aggregiert werden, um vollstindige Rankings zu
erstellen (Soft-Rank-Rekomposition).

Die Leistung des automatischen Rankings wird gegen menschliche Rankings gemessen.
Das Interesse liegt dabei darin, ob es einen Zusammenhang zwischen dem automatischen
Ranking und den Beurteilungen eines Menschen gibt. Wenn eine solche Beziehung besteht,
sollte es moglich sein, den Grad der Ubereinstimmung zwischen diesen beiden Rankings zu
messen. Dazu wird dem Ranking-Mechanismus ein Testsatz gegeben und die Korrelation
der von ihm erzeugten Rankings (eins pro Satz) zu den urspriinglichen menschlichen Rank-
ings gemessen. Zur Bewertung der Leistungsfihigkeit verwenden wir die Korrelations-
metriken Kendalls Tau und Non-Discounted Cumulative Gain (NDCG). Bei der Bewertung
gehen wir davon aus, dass die Testsétze keine Unentschieden enthalten, da Unentschieden
als unsichere Proben angesehen werden, die nicht fiir die Bewertung verwendet werden
konnen.

Vergleichende Qualititsschitzung fiir das Ranking

Mithilfe einer Reihe von Experimenten zeigen wir, dass der Ranking-Mechanismus Rank-
ings lernen und reproduzieren kann, die mit denen von Menschen iibereinstimmen. Weit-
ere Vergleiche zeigen, dass die Leistungsfahigkeit des Mechanismus besser als alle Baselines
ist. Die wichtigste Erkenntnis ist, dass der Mechanismus erfolgreich mit referenzbasierten
Metriken und anderen bekannten Ranking-Methoden auf dem neusten Stand der Tech-
nik fiir verschiedene Sprachpaare verglichen werden kann. Der Ranking-Mechanismus
ist auch besser als andere Metriken in Sprachpaaren, bei denen die Merkmalskonstruk-
tion von anderen Sprachpaaren tibernommen wurde, abgesehen von einer Referenzmetrik,
METEOR, die mit dem Ranking-Mechanismus vergleichbar ist. Diese Ergebnisse deuten
darauf hin, dass aufwendige Merkmale und Maschinelles Lernen mehr Informationen tiber
die relative Ubersetzungsqualitit liefern konnen als der direkte Vergleich mit Referenzen.

Die Qualititsschitzmodelle werden auf der Grundlage von menschlichen Rankings
trainiert, die sich aus der Shared Task zur maschinellen Ubersetzung ergeben, die im Rah-
men der Workshops zur Statistischen Maschinellen Ubersetzung (WMT2008-2014) organ-
isiert wurde. Diese Daten enthalten Tausende von Sitzen, die von allen an der Aufgabe
beteiligten Systemen der maschinellen Ubersetzung iibersetzt wurden. Diese Ubersetzun-
gen werden manuell von menschlichen Annotatoren bewertet, die die maschinellen Uber-
setzer nach der Qualitit ihren Ubersetzungen einstufen.
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Der komplette Fokus des Ranking-Mechanismus liegt auf der Ubersetzungsrichtung von
Deutsch nach Englisch und sekundir von Englisch nach Deutsch. Die erfolgreichen Ein-
stellungen aus diesen Sprachrichtungen wurden mit minimalem zusétzlichen Aufwand auf
weitere vier Sprachrichtungen angewendet: von Franzosisch nach Englisch, von Englisch
nach Franzosisch, von Spanisch nach Englisch und von Englisch nach Spanisch. Die Mod-
elle fiir jede Sprachrichtung werden separat trainiert, basierend auf den entsprechenden
sprachspezifischen Daten, Labels und Merkmalen.

Maschinelles Lernen

Die Tatsache, dass das Ranking in paarweise Entscheidungen zerlegt wurde, ermoglicht
die Integration mehrerer maschineller Lernalgorithmen mit positiven Ergebnissen. Die
leistungsfahigsten Algorithmen sind Gradient Boosting, Logistic Regression mit Stepwise
Feature Set Selection, AdaBoost, Linear Discriminant Analysis und Gaussian Naive Bayes.
Nur ein einziger maschineller Lernalgorithmus, die einfachen Entscheidungsbaume, er-
reichen keine signifikante Korrelation mit den menschlichen Einstufungen. Ensemble-
Klassifikatoren, die auf Entscheidungsbdumen aufgebaut sind, schneiden deutlich besser
ab als die einzelnen Entscheidungsbaume.

Logistic Regression mit Stepwise Feature Set Selection wird fiir den in dieser Arbeit
vorgestellten grundlegenden Ranking-Mechanismus ausgew#hlt, weil hierbei die gute Leis-
tungsfahigkeit mit der Fihigkeit zur Interpretation des statistischen Modells kombiniert
wird. Der am hochsten bewertete Algorithmus, Gradient Boosting, wird fiir den fort-
geschrittenen Ranking-Mechanismus gewihlt.

Durch die Experimente kommen wir auch zu dem Schluss, dass die Methode zur Re-
duzierung von Unentschieden, die als Soft-Rank-Rekomposition bezeichnet wird, un-
terschiedliche Auswirkungen auf die Rankingvorhersage haben kann, wenn sie auf ver-
schiedene Algorithmen angewendet wird. Sie hat einen positiven Einfluss auf die meisten
der untersuchten Algorithmen, einschlief}lich der drei leistungsfahigsten Algorithmen. Bei
nur zwei Algorithmen (Linar Discriminant Analysis und Gaussian Naive Bayes) ergab sich
ein kleiner, aber nicht statistisch signifikanter Verlust beziiglich der Korrelation mit men-
schlichen Beurteilungen.

Es wird ebenfalls empirisch bestitigt, dass ein Zusammenhang zwischen dem Auftreten
von Unentschieden und dem Unterschied in der Gesamtleistung der zu vergleichenden
maschinellen Ubersetzungssysteme besteht. Wenn der BLEU-Unterschied zwischen zwei
Systemen im Durchschnitt hoch ist, fithren paarweise Vergleiche zu einer kleinen Anzahl
von Unentschieden, wobei die Anzahl der Unentschieden fiir Vergleiche zwischen Syste-
men erhoht wird, wenn sie einen geringeren Unterschied in BLEU haben.
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Merkmalskonstruktion

Mit Hilfe eines iterativen Verfahrens der Merkmalskonstruktion untersuchen wir ver-
schiedene Merkmalsreihen, erschlieffen diejenigen, die die beste Leistung erzielen, und
leiten linguistisch motivierte Beobachtungen iiber die Beitrige der einzelnen Merkmale
ab. Um die Relevanz grammatikalischer Merkmale zu testen, verwenden wir Funktio-
nen aus dem PCFG-Parsing, die darauf hinweisen, dass das Parsen des Textes von au-
tomatisch generierten Ausgaben ein gutes Maf an Fluency liefern kann. Dazu gehoren
die Wahrscheinlichkeit der automatischen grammatischen Analyse des Satzes, die Anzahl
der alternativen grammatische Analysen sowie die Bezeichnungen der Baumknoten. An-
gelehtn an die Annahme des [somorphismus verwenden wir auch die Ausrichtungen der
Baumknoten und CFG-Regeln zwischen der Quelle und der Ubersetzung.

Das Verfahren der Merkmalskonstruktion wurde in drei Phasen durchgefiihrt. In der er-
sten Phase (Vorphase) wird ein grundlegender Satz von Merkmalen identifiziert, welche
mit einem einfachen Klassifikator trainiert werden, um Rankings vorherzusagen, die eine
signifikante Korrelation mit menschlichen Rankings aufweisen. Zudem wird gezeigt, dass
grammatikalische Merkmale niitzlicher als die von einem Sprachmodell generierte Merk-
male sein konnen.

In der zweiten Phase (Grundphase) wurde es eine signifikante Verbesserung der Korrela-
tion im Vergleich zur Vorphase erreicht. Die Verbesserung erfolgt durch das Hinzufiigen
von kontrastierenden Scores und anderen Merkmalen der absoluten Qualititsschiatzung
in einem Modell, das mit Logistic Regression trainiert wurde. Wir bestitigen, dass die
grundlegenden Merkmale vom Quellsatz nicht zum Ubersetzungsvergleich beitragen und
dass Logistic Regression diese Merkmale besser mit SFSS als mit L2-Regularisierung hand-
habt. Schlief}lich untersuchen wir die Modellkoeffizienten, um ein Eindruck der Beitrige
jedes Merkmals zu erhalten.

In der letzten Phase (Vertiefungsphase) wird eine Vielzahl von Merkmalen zu Gram-
matik, Alignment und Position in zwei Sprachrichtungen eingefiihrt, wobei wird eine
Verbesserung erreicht, wenn sie mit einem Gradient-Boosting-Klassifikator trainiert wer-
den. Das Verfahren der Merkmalsauswahl der Recursive Feature Elimination hat efolgreich
die Anzahl der Merkmalen auf ein Drittel verringert, ohne nennenswerten Leistungsmin-
derung.

Die dominantesten Merkmale fiir das Modell der Logistic Regression sind die Anzahl der
unbekannten Worter, die Anzahl aller Worter sowie die kontrastierenden Scores, zusam-
men mit einigen grammatikalischen Merkmalen, wie z.B. die Anzahl der Verbsitze und
der alternativen automatischen Grammatikanalysen. Oberfldchliche Merkmale des Quell-
satzes sind fiir die Zwecke des Vergleichs nicht sinnvoll. Gleichwohl scheinen Merk-
male der Ausrichtung bestimmter Baumknoten zwischen dem Quell- und Zielsatz sowie
Alignment-Scores (IBM-Modell 1) wichtig zu sein. Zusitzlich hingt die Wahl der ziel-
seitigen grammatikalischen Merkmale von der Sprachrichtung ab. Fiir die Ubersetzung
von Englisch nach Deutsch sind Merkmale wichtig, die die Position der Verbsitze im Satz
markieren, wihrend fiir die Ubersetzung von Deutsch nach English Merkmale wie die An-
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zahl der untergeordneten Infinitiven und Pripositionsphrasen wichtiger zu sein scheinen.

Vergleichende Qualitatsschitzung fiir Systemkombina-
tionen

Neben der Funktionalitit der Methode als vollwertiger Ranking-Mechanismus unter-
suchen wir eine mogliche Anwendung: die Moglichkeit, das Ranking fiir eine hybride Sys-
temkombination auf die Ausgabe verschiedener maschineller Ubersetzer anzuwenden. Hi-
erbei wenden wir den Ranking-Mechanismus auf den Output von drei verschiedenen Sys-
temen an und zeigen, dass er erfolgreich eine Systemkombination erzeugen kann, die besser
ist als jede der drei Komponenten.

Da die Systemkombination mit dem gesamten Satz als Kombinationseinheit arbeitet, hat
sie im Vergleich zu fortgeschrittenen Kombinationsmethoden eine relativ geringe Granu-
laritat. Dennoch werden die Entscheidungen auf dem vollstandigen Satz getroffen, weshalb
die Moglichkeit besteht, informative Merkmale zu nutzen, die von einer vollstandigen syn-
taktischen Struktur abhéngen, z.B. grammatikalische Merkmale, die nicht aus Satzteilen ex-
trahiert werden konnten. Des Weiteren ist die hier vorgestellte Kombination eher hybrid in
dem Sinne, dass sie drei Systeme aus zwei verschiedenen maschinellen Ubersetzungstech-
nologien kombiniert: Regelbasierte Maschinelle Ubersetzung und Statistische Maschinelle
Ubersetzung. Wir gehen davon aus, dass eine Selektionsmethode, die den vollen Satz
berticksichtigt, daher vorteilhaft sein kann, um von den Fernabhéngigkeitsregeln des regel-
basierten Systems zu profitieren. Dariiber hinaus konnen sich die beiden Arten von Syste-
men in vielerlei Hinsicht ergénzen.

Die verfiigbaren maschinellen Ubersetzungen fiir jeden Satz des Testsets werden mit dem
Ranking-Mechanismus geordnet und die Ubersetzung mit dem hochsten Rang wurde fiir
die Ausgabe der Systemkombination ausgew#hlt. Mit der Systemkombination ist es gelun-
gen, eine kombinierte Ausgabe zu erzeugen, die deutlich hohere automatische metrische
Werte auf Dokumentebene als jede ihrer Komponenten aufweist. Die Auswabhl fithrt auch
dann noch zu ihnlichen Leistungsverbesserungen, wenn maschinelle Ubersetzungen aus
einer minderwertigen Komponente enthalten sind.

Verschiedene Konfigurationen von Merkmalsets und maschinellen Lernmethoden werden
getestet, wobei die besten Ergebnisse mit einem erweiterten, syntaxbewussten Merkmalset
erzielt werden, der mit Gradient Boosting trainiert wird, wobei die Ranking-Labels mit
dem rgbF-Score, gemessen an den Referenziibersetzungen, erstellt werden. Insgesamt ist
trotz der Unterschiede im Experimentaufbau derjenige Konfiguration des maschinellen
Lernalgorithmus, der die beste Leistung liefert, der des generischen Ranking-Experiments
ahnlich.

Eine interessante Beobachtung ist, dass das Merkmal der kontrastiven Referenzmetrik ME-
TEOR einen negativen Beitrag zur Leistung der Systemkombination leistet, obwohl es in
den generischen Ranking-Experimenten niitzlich war. Dies kann mit dem Unterschied im
Experimentaufbau zusammenhingen, da dieser eine geringere Anzahl von maschinellen
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Ubersetzungen pro Satz und unterschiedliche Arten von Systemen beinhaltet. Im Gegen-
satz zum generischen Ranking-Modell, bei dem das Sprachmodell einen negativen oder
gar keinen positiven Effekt hat, hat hier das Sprachmodell zudem einen hohen Anteil an
der Systemkombination.

Ubersetzungsfehler und Dekodierungsereignisse

Abschlieflend untersuchen wir den Zusammenhang zwischen hiufig vorkommenden
Fehlern der maschinellen Ubersetzung und Vorgingen, die wihrend des internen
Dekodierungsverfahrens der phrasenbasierten Statistischen Maschinellen Ubersetzer
ablaufen. Von professionellen Ubersetzern post-editierte Ubersetzungen wurden verwen-
det, um Fehler anhand der Bearbeitungsdistanz automatisch zu identifizieren. Binire Klas-
sifikatoren, die die Existenz eines Fehlers im Satz voraussagen, werden mit einer Logistic
Regression trainiert, die Merkmale aus dem Dekodierungs-Suchdiagramm verwendet. Die
Modelle sind fiir zwei gangige Fehlertypen und drei Sprachpaare in beide Richtungen mit
zufriedenstellender Genauigkeit und Trefferquote trainiert.

Wir konzentrieren uns auf die Bereitstellung von statistischen Nachweisen dariiber, wie
die Interna des phrasenbasierten Dekodierungsverfahrens der Statistischen Maschinellen
Ubersetzung mit der Existenz von zwei hiufigen Fehlerarten korrelieren, namlich den
Umordnungsfehlern und den fehlenden Wortern. Durch die Gruppierung der Beobach-
tungen nach Fehlertyp zeigen wir wichtige Merkmale (welche Stufen des Dekodierungsver-
fahrens darstellen), die fiir mehrere Sprachpaare und Richtungen gleichzeitig gelten. An-
hand der statistisch signifikanten Koeffizienten werden Indikationen und Tendenzen
aufgezeigt.

Zwischen Umordnungsfehlern und unbekannten Wortern besteht eine positive Korrela-
tion, insbesondere, wenn sie iiber den Quellsatz verteilt sind. Des Weiteren existiert eine
positive Korrelation zur Linge des Quellsatzes sowieso wenn die Zielphrasen ldnger sind
als ihre jeweiligen Quellphrasen. Die letzten Korrelation wird den Fillen zugeschrieben, in
denen deutsche Strukturen typischerweise linger als ihre Ubersetzungen sind (z.B. Perfekt).

Fehlende Worter haben eine negative Korrelation zur Linge des Quellsatzes und eine pos-
itive Korrelation zur Lange der Spanen aus dem Quellsatz, die der Decoder verwendet.
Bemerkenswert ist unter anderem, dass die unbekannten Worter einen negativen Zusam-
menhang mit der Wahrscheinlichkeit fiir fehlende Worter aufweisen. Eine manuelle Un-
tersuchung zeigt, dass ein unbekanntes Wort am Ende des Satzes verhindern kann, dass
der Decoder eine falsch ausgerichtete Phrase wihlt, die das deutsche untergeordnete Verb
auslasst.



Quelloffene Software fiir die Qualititsschitzung

Ein weiteres Ergebnis dieser Arbeit ist die quelloffene Software fiir die Qualitdtsschitzung,
die hauptsichlich fiir die Vergleichende Qualititsschitzung und das automatische Rank-
ing von Ubersetzungen auf Satzebene entwickelt wurde. Die Software implementiert eine
Pipeline, um die Ubersetzungen mit sogenannten Black-Box-Merkmalen zu annotieren
und den Algorithmus des Maschinellen Lernens anzuwenden. Ziel ist es, vorgegebene Test-
sets auf Grundlage vortrainierter Modelle zu bewerten oder neue Modelle zu trainieren und
zu bewerten. Optional kann die Pipeline auch Ubersetzungen von externen maschinellen
Ubersetzern abrufen und direkte Systemkombinationen auf Satzebene durchfiihren.

Die Merkmalskonstruktion beinhaltet Unterstiitzung fiir Sprachmodelle, PCFG-Parsing
mit 2 Parsern, Sprachpriifungstools und verschiedene andere Priprozessoren und Merk-
malsgeneratoren. Der Code folgt den Prinzipien der objektorientierten Programmierung,
um Modularitit und Erweiterbarkeit zu ermoglichen. Er integriert 25 hochmoderne ex-
terne Anwendungen in einem einzigen Python-Programm durch ein interoperables Frame-
work mit 9 verschiedenen Integrationsansitzen. Das Tool kann sowohl Batch-Dateien als
auch einzelne Sitze verarbeiten. Fiir die Anbindung von Webservices steht eine XML-RPC-
Schnittstelle zur Verfiigung.

Experimente, die das Training neuer Modelle beinhalten, sind so aufgebaut, dass eine um-
fangreiche Untersuchung mehrerer Experimente parallel moglich ist. Die Experimente
konnen im Falle einer unerwarteten Unterbrechung wiederaufgenommen werden. Die Ex-
perimentpipeline fiithrt ein strukturiertes Protokoll iber jeden Schritt des Experiments, das
die Ergebnisse der Auswertung, aber auch Details tiber das Verfahren des Maschinellen Ler-
nens (z.B. die Beta-Koeffizienten eines loglinearen Modells oder die Gewichte eines lin-
earen Modells) enthalten kann. Die trainierten Modelle werden zudem in externe Dateien
ausgelagert, so dass sie spiter wiederverwendet werden konnen. Nachdem alle Iterationen
und Cross-Validierungsfalten des Experiments abgeschlossen sind, ermdglicht ein Skript
die Erstellung einer kommagetrennten Tabelle, die alle experimentellen Einstellungen mit
einem gewiinschten Metrikset vergleicht.

Weitere Arbeit

Ziel dieses Forschungsansatzes bleibt es, die Forschung zur Qualitdtsschatzung und die L6-
sung gemeinsamer Probleme in der Praxis einander niher zu bringen. Es gibt Berichte, dass
die Qualititsschitzung in mehrere professionelle und industrielle Ubersetzungspipelines
als zusitzliche Bewertungs- oder Auswahlkomponente zusitzlich zu den bestehenden
Ubersetzungssystemen integriert wurde. Dennoch erginzt der Einsatz von Qualititss-
chitzung eindeutig die fehlenden Fihigkeiten der zugrundeliegenden Ubersetzungssys-
teme. Ein weiteres offensichtliches Ziel wire also die Integration der Qualitatsschitzung in
den gesamten Design- und Entwicklungszyklus der Systeme oder sogar als inhdrenter Be-
standteil der Systemarchitektur selbst. Es wurden Anstrengungen hierzu unternommen,
aber es wurde keine optimale Losung erzielt. Dariiber hinaus wurden trotz der positiven
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Ergebnisse der letzten 7 Jahre (von denen einige auch in dieser Arbeit enthalten sind) nur
geringe Fortschritte bei der Verwendung der Qualititsschitzung als Bewertungsinstrument
erzielt. Dies geht natiirlich Hand in Hand mit der noch andauernden Nutzung von BLEU
durch die Forschungsgemeinschaft, obwohl seine Fehler betont wurden und verbesserte
Metriken zur Verfiigung standen. Wir konnen davon ausgehen, dass die beobachtete Situ-
ation darauf zurtickzufiihren ist, dass der technische Aufwand fiir die Konfiguration und
Durchfithrung der Qualitidtsschitzung oft nicht durch den potenziellen Gewinn gerechtfer-
tigt ist. Der Overhead selbst ist auf viele Aspekte der Qualitdtsschitzung zuriickzufiihren,
die sprachspezifisch oder systemorientiert sind und oft detailgenaue Arbeit fiir die Merk-
malskonstruktion sowie andere notwendige Schritte erfordern.

Nachdem die Experimente dieser Arbeit abgeschlossen waren, entwickelte sich die Neurale
Maschinelle Ubersetzung, was zu einer signifikanten Verinderung des Forschungsfeldes
fithrte. Trotz der offensichtlichen Verbesserungen zeigt die qualitative Analyse, dass noch
immer Fehler sichtbar sind, was darauf hindeutet, dass die Rolle der Qualititsschitzung
in mehreren Anwendungen relevant sein kann. Das gesamte Spektrum der maschinellen
Ubersetzungsfehler verschiebt sich jedoch, da die Ausgabe der maschinellen Ubersetzung
immer weniger von menschlichen Ubersetzungen unterscheidbar wird. Die generierten
Satze sind deutlich flissiger und befolgen grammatikalische und syntaktische Regeln besser
als statistische Systeme. Bei ausreichenden Daten wiirde ein Qualitdtsschitzungsmodell
eine verbesserte maschinelle Lernfahigkeit und technische Leistungsfahigkeit benotigen,
um dieses neue Fehlerspektrum zu bewiltigen und die Qualitét besser zu differenzieren.

Die wichtigste Anderung ist jedoch auf der konzeptionellen Ebene absehbar. Die neue
Lernmethode hat erfolgreich verstreute Module und Ad-Hock-Losungen durch ein ein-
heitliches, in sich geschlossenes Konzept ersetzt, das als einer der Hauptvorteile gesehen
wird. So gesehen steht die genaue Form der Qualitédtsschitzung auf dem Spiel: Wird die
Qualitatsschitzung als eigenstindiges Modul weiterhin niitzlich sein, oder werden neu-
ronale maschinelle Ubersetzungsmodelle irgendwann in der Lage sein, die Qualititss-
chiatzung auf ihrem Output durchzufithren? Kénnen die Ergebnisse der Qualititsschitzung
oder sogar die Qualitdtsschiatzung selbst effektiv in die Lernmethode integriert werden?

Unter Berticksichtigung dieser Aspekte sind wir der Meinung, dass zukiinftige Arbeit die
Rolle der Qualitdtsschitzung angesichts der Einfithrung der Neuronalen Maschinellen
Ubersetzung bewerten und neu definieren sollte und die Verwendung von Ansitzen un-
tersuchen sollte, die neuronale Netze fiir die Zwecke der Qualitidtsschitzung verwenden
sowie umgekehrt.

xii
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Chapter 1

Introduction

This thesis presents a method for automatically ranking several machine translation out-
puts for one given source sentence according to their comparative quality. In order to ex-
plain what we mean by this, we will motivate core concepts and ingredients in the follow-
ing sections. Further below, we will provide an introduction to the concepts related to our
main topic (Section 1.1). Then, we will set our work in perspective to the state of the art
(Section 1.2), present our scientific goals (Section 1.3), list our main publications and con-
tributions (Section 1.4) and finally explain the structure of this thesis (Section 1.5).

1.1 Introduction to Comparative Quality Estimation

1.1.1 Machine Translation

Machine Translation (MT) has been defined as the now traditional and standard name for
computerised systems responsible for the production of translations from one natural language into
another, with or without human assistance (Hutchins and Somers, 1992). It has long been con-
sidered as one of the most active fields of computational linguistics and also recently of
machine learning.

The first experiments in the field started in the 1950s as the first non-numerical applica-
tion of computers (Hutchins, 2003). Fighting through the initial enthusiasm and the con-
sequent disappointment, the relevant research had a long way until the 1980’s, when the
development of the micro-computers allowed for a broader development, mostly based on
rule-based systems as a result of significant manual language engineering effort (Nitta, 1986;
Ryan, 1989).

The first statistical MT model, introduced by Brown et al. (1990), paved the way for replac-
ing manual rule-based effort with statistical methods. This word-based approach was later
extended by Koehn et al. (2003) to form the phrase-based MT, that in the following decade
became widely used and it allowed for the rapid development of relatively satisfactory MT
systems in hundreds of language pairs (e.g. Koehn et al.,, 2009). Several variations of the
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phrase-based approach or other statistical approaches were developed, such as the tree-
based models (Zhang et al., 2007), the hierarchical models (Chiang, 2005) and the factored
models (Koehn and Hoang, 2007). The development of Neural Machine Translation (Bah-
danau et al., 2014) has been the latest step in the scale of progress, claiming that the MT
quality can be brought very close to the quality of human translations (Wu et al., 2016).!

During the last two decades, MT became accessible to the everyday user. In 1997, the first
online translator started offering free MT services (Ament, 1998). The usage of such end-
user-oriented systems expanded during the 21st century, as they were added into browsers
and were made available through smart-phones. Yet not of perfect quality, these public
systems are capable of providing instant translations to a large audience for content gisting
and quick exchange of information.

The industry has also recently turned into adopting MT into their business scenarios.
Translation agencies nowadays often recommend the usage of MT for particular transla-
tion areas to the professional translators (Harris et al., 2016), whereas MT systems have
been successfully employed for large-scale e-commerce platforms (Russell and Gillespie,
2016).

1.1.2 Evaluation of Machine Translation

The evaluation of MT refers to the process of analysing the translations produced by a MT
system and expressing a judgment about their correctness in a meaningful and possibly
measurable way. MT systems are not perfect (still/yet) and the produced translations may
be incorrect or contain errors. Therefore, evaluation is a necessary step to any further de-
cisions concerning either the translations per se, or the MT system that produced them.
MT evaluation is a necessary tool for MT research and development, since it can allow for
measurable comparisons between various systems, methods, data, or other characteristics.

Among the methods for conducting the evaluation, manual MT evaluation refers to the pro-
cess when humans provide a qualitative judgment on the output, a relatively trustworthy
but rather time-consuming and costly operation. On the contrary, automatic MT evaluation
refers to programs which can quickly provide a numerical value that represents some qual-
itative characteristics of the output. The latter, although not always accurate, is commonly
used during the development process, due to the low cost and the possibility for infinite
repetitions.

The most common metrics for automatic evaluation compare the M T output with one or
more reference translations, produced by humans and therefore assumed to be ground truth.
The most common metrics include Word Error Rate (WER; Niefien et al., 2000), Bilingual
Evaluation Understudy (BLEU; Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005)
and Translation Error Rate (TER; Snover et al., 2006).

ISince the first results of Neural MT appeared after the experimental phase of this dissertation was con-
cluded, issues of Quality Estimation (QE) related particularly to Neural MT are not explicitly handled.
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1.1.3 Quality Estimation

The ongoing integration of MT in professional workflows has increased the need for eval-
uating the quality of the produced output. However, the required evaluation most often
differs from the classical one introduced above. Whereas automatic reference-based met-
rics can be useful in situations when a reference translation is available, e.g. for assessing
the quality of a produced system during the development phase, in many applications the
quality of the automatic translations needs to be assessed in cases when the correct trans-
lation is unknown. Similarly, even though manual evaluation could be in principle useful
in this case, its time and budget requirements make it inapplicable for most real application
scenarios. What is needed is in fact some quality prediction, or, as it is commonly called,
Quality Estimation (QE; Specia et al., 2010a).

In other words, Quality Estimation can be described as the automatic process of analysing
the translations produced by a MT system and predicting a judgment about their correct-
ness in a measurable way without access to the reference translation. The result of QE
is often one or more numerical values that express some notion of quality for the given
translation(s). Depending on the task, a predicted judgment may refer to a QE on the doc-
ument level, i.e. when an entire piece of text needs to be evaluated at once (Soricut and
Echihabi, 2010; Scarton and Specia, 2014a), the sentence level, when a single sentence is an-
alyzed and judged (Specia et al., 2009a), the phrase level (e.g. Logacheva et al., 2016a) or the
word-level (Ueffing and Ney, 2005; Logacheva et al., 2015).

1.1.4 Types of Quality Estimation

The way humans perceive quality is considered subjective per se (Garvin, 1984). One of the
possible definitions of the quality, concerning translation, states that a quality translation
demonstrates accuracy and fluency required for the audience and purpose and complies with all
other specifications negotiated between the requester and provider, taking into account end-user
needs (Koby et al., 2014). Therefore, in order to increase the objectivity of possible judg-
ments of the quality, one can define a QE task by specifying a particular use-case. This way,
several different types of tasks have been defined, referring to the estimation of perceived
adequacy or meaning preservation, post-editing time, post-editing rate and post-editing effort. A
complex automatic metric (such as BLEU or METEOR) may also be the goal of the predic-
tion. Numerically, the task may be aiming at a binary value (accept/reject), a discrete set of
labels, a real number or a relative ranking.

Confidence Estimation (CE) refers to the process of providing a translation judgment based
on information of how the the translation process was performed (Section 1.2.5). In its most
common case, it is the MT translation system itself that provides a value referring to the
confidence of its produced translation (Specia et al., 2010b). We see CE as a subset of of QE,
as the latter can make use of a broader range of quality indicators, which may or may not
include system-internal information.
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1.1.5 Comparative Quality Estimation

Whereas most QE tasks aim at predicting a judgment given one single translation, there
have been concerns on how confident one can be in quantifying quality. Humans them-
selves seem to have difficulties in scoring the quality of single translations, particularly in
defining the distinction between the level of quality that each score represents (Callison-
Burch et al,, 2007). A possible solution is to reduce the requirements for the ground truth
by favouring ordinality against cardinality. This can be done by eliciting judgments of rel-
ative quality, through the direct comparison between two or more translation items (Duh,
2008). For problems that require the identification of improvements or comparative per-
formance, it may be beneficial to remove qualitative observations that are irrelevant to the
comparison and interfere to the decision without a reason.

Following this idea, we will resort to Comparative Quality Estimation as the automatic process
of analysing two or more translations produced by a MT system and expressing a judgment about
their comparison. As opposed to Comparative QE, we will thereof refer to the other types of
QE as Absolute Quality Estimation.

1.1.6 Operation of Quality Estimation

QE can be often seen as a post-processing mechanism to MT decoding and it relies majorly
on Machine Learning (ML). In the most common case, QE requires the derivation of auto-
matic quality indicators from the text or the process of the translation (Section 2.3). These
quality indicators form a vector, which stands as the independent variable in our problem.
A value representing a quality judgment forms the dependent variable. Consequently, a
statistical model that associates the dependent with the independent variable is estimated
by applying ML over existing data including translations annotated with quality judgments
(Section 2.5).

This work focuses on a specific scenario: we need an automatic way to rank several machine
translation outputs for one given source sentence, according to their comparative quality.
This kind of ranking, performed by human annotators, has been established as a practice
for evaluating MT output. Therefore, we attempt to perform machine ranking, by employing
ML approaches in order to imitate the human behaviour. This is done through a statistical
classifier, which is trained given existing human ranks and several qualitative criteria on the
text. Based on the definitions above, we will be demonstrating methods and experiments
of Comparative Quality Estimation of human-perceived meaning preservation.

1.1.7 Applications of Quality Estimation

Quality Estimation can be an integral part of automated content-translation pipelines. In
fully automated cases, where the type of the multilingual information requires instant trans-
lations produced by MT, the user may be given a predicted quality score about the confi-

4
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dence of the translation. In semi-automated pipelines, translations below a predicted qual-
ity threshold are not served to the users, or are passed for further translations to humans.

In the professional translation industry, MT output is often being used for many prod-
ucts as a first step, given to professional translators for post-editing. To avoid cases where
low-quality MT outputs create a heavy correction overhead, QE is used to serve only the
translations that are worth post-editing against e.g. being translated from scratch directly
out of the source sentence.

Comparative Quality Estimation can serve several applications in MT also driven as input
to the above mentioned examples. The possibility of making choices on a sentence level can
be ideal for real-time MT System Combination, where output provided by various MT sys-
tems is chosen to serve particular purposes, such as meaning preservation or minimisation
of post-editing time. As a more specific case, the possibility of applying Comparative QE
on a black box MT system allows for Hybrid MT by blending output from different types
of systems, e.g rule based and statistical systems, on the sentence level. Finally, the ability
of distinguishing improvements between two systems can lead to applications of MT Eval-
uation and Development, i.e. by identifying strengths and weaknesses of two versions of the
same system even on test sets with unknown translations.

1.2 Related work

The notion of estimating the sentence-level quality of the MT output given internal system
information existed already since the first rule-based MT systems. Bernth (1999) argued
that it is useful for a machine translation system to be able to provide the user with an es-
timate of the translation quality for each sentence and described a specific implementation
and examples for a Prolog-based system of that time. Meanwhile, the possibility of the
word-based statistical models to estimate the confidence of their own predictions was also
known (Melamed, 1997) and it was utilized accordingly (Vogel et al., 2000a,b).

The use of external automatic qualitative analysis for judging the quality of the transla-
tion was introduced by Kaki et al. (1999) and followed up by Callison-Burch and Flournoy
(2001). Later work introduced a wide variety of grammatical and statistical features
(Corston-Oliver et al., 2001; Akiba et al., 2002; Gandrabur and Foster, 2003). The current
work re-uses and extends some of these findings. A detailed overview of related work in
this aspect is given below in Section 1.2.5.

ML was employed to learn from human annotations how to take advantage of the qual-
ity indicators (Tidhar and Kiissner, 2000; Cavar et al., 2000), an approach with was later
extended for various purposes with more sophisticated algorithms (Corston-Oliver et al.,,
2001; Yasuda et al., 2002) and feature selection (Quirk, 2004; Specia et al., 2009a). Later
works also included active learning (Beck et al., 2013) and domain adaptation (de Souza
et al,, 2014b).

A significant part of work in sentence-level QE has focused on prediction of absolute quality
judgments by considering single outputs, for predicting either binary decisions or continu-
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ous scores. Important samples of this direction are detailed in Section 1.2.1. Nevertheless,
the work that is most related to our methods refers to the prediction of comparison of trans-
lation outputs or ranking of translation outputs from various systems. An overview of this
work and comparison to our approaches will be given below, in Sections 1.2.2, 1.2.3 and
1.2.4.

1.2.1 Absolute Quality Estimation

Predicting a single value to represent the quality of a sentence first focused on a binary
value, e.g. to distinguish if a given translated sentence is a machine or a human transla-
tion (Corston-Oliver et al., 2001) or to assign bad/good (Blatz et al., 2003) or accept/reject
(Quirk, 2004) labels. In the case of Blatz et al. (2003), the binary labels were only produced by
thresholding the continuous score of reference-based metrics, but Quirk (2004) observed
that training on a small dataset of human annotations is preferable to training on larger
dataset produced with the automatic reference-based metric.

Prediction of continuous sentence-level quality scores was first done by training a regression
model on either human or automatic labels of adequacy (Specia et al., 2009a). A significant
part of related work in this direction focused on predicting post-editing effort. This aimed
at predicting scores of perceived post-editing effort assigned by human translators (Specia
etal,, 2009b), or at predicting continuous labels observed on actual post-editing, namely the
time required for post-editing the sentence (Bojar et al., 2013a) and the ratio of performed
post-editing operations as expressed by Human-targeted Translation Error Rate (HTER
Specia and Farzindar, 2010). Similarly, predictions were also done on the word level (Bojar
et al,, 2013a) and the document level (Bojar et al., 2015, 2016a).

In particular, human labels of perceived post-editing effort were originally assigned ina 1-4
scale (Specia et al., 2009b, 2010a), then in a 1-5 scale (Callison-Burch et al., 2012; Soricut
et al,, 2012) and lately in a more restrained 1-3 scale (Bojar et al., 2014). State-of-the-art
methods for predicting these labels include Referential Translation Machines (RTM) with
Feature Decay Algorithms (Bicici and Way, 2014), Multi-task Gaussian Processes (MTGP;
Beck et al., 2014) and alternative MT-system consensus (Scarton and Specia, 2014b). RTM
and MTGP showed also state-of-the-art performance in predicting post-editing time.

Concerning prediction of sentence-level HTER scores and word-based binary labels, state-
of-the-art methods use multi-level task learning, by combining QE at the sentence, word
and phrase level. Kim et al. (2017) use an end-to-end stack neural model that can jointly
learn the word prediction model and the QE model. Martins et al. (2017) combine a pure
QE system, a feature-rich sequential neural model and the predictions of an automatic post-
editing system.
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1.2.2 Comparative Quality Estimation with binary and continuous
approaches

Having defined Comparative QE (Section 1.1.5), we hereby refer to previous work that uses
various methods in order to compare and rank alternative MT outputs. Previous work
can be divided into three categories, depending on whether they compare the system out-
puts via: (a) continuous prediction, (b) binary classification and (c) binary classification via
thresholding a continuous score.

In the first category, ML is used to assign/predict a continuous score independently for each
system output and then they rank the outputs based on their individual score. Early works
in this category did not use any ML, as they did the selection based on a single score (Kaki
et al., 1999; Callison-Burch and Flournoy, 2001; Sumita et al., 2002). ML for this purpose
was first used in a combinatorial optimisation approach, in order to weight confidence
scores from different types of systems so that they are comparable to each other (Tidhar
and Kissner, 2000; Cavar et al., 2000). More advanced models for predicting a continuous
score were trained with Regression Trees (Akiba et al., 2002) and Support Vector Machine
(SVM) Regression with a linear kernel (Nomoto, 2003) albeit with only two features. A
large scale sentence-level system selection was done by Specia et al. (2010b) who predicted
a continuous score given a multitude of features, trained with SVM Regression with a Ra-
dial Basis Function (RBF) kernel.

In the second category, ML is given two alternative MT outputs for each source sentence
and learns to produce a binary decision on which of the two is preferred. The oldest exam-
ple (Yasuda et al., 2002) used ML over human preferences in order to train a binary classifier
that compares the output of an example-based and a transfer-based MT system given two
glass-box features. Similarly, He et al. (2010) trained a binary classifier for sentence se-
lection between two outputs, originating from a statistical MT system and a Translation
Memory. Another approach (Sdnchez-Martinez, 2011) built a classifier which decides by
using only source-language information, which MT system should translate a sentence but
the results show a small, non-significant improvement.

In the third category, a ML approach is used in order to accept or reject a basic system and
then back-off to a supplementary system without judging it. For example, Quirk (2004)
used ML with a big amount of features to select between an example-based and a rule-
based system. The selection is done by predicting a continuous value for the output of
the example-based system whereas a cut-off value was set, under which the output of the
rule-based was selected as a back-off. Similarly, Zwarts and Dras (2008) produced a binary
accept/reject decision having only seen the output of an improved system and back-off to
a baseline system in case of rejection.

In contrast to the above methods, our proposed one operates under a different learning
concept. It employs a machine ranking approach in order to compare an undefined num-
ber of black-box systems. This is close to the binary classification approach above, with
the difference that the underlying classifier is system-agnostic and that it operates based
on all possible pairwise comparisons (Section 2.5). This way, contrary to the regression ap-
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proach, the model only learns a relative notion of the translation quality, by having quality
indicators from all outputs under comparison.

From another aspect, whereas the the main focus of most of these works is on the system
combination, we maintain the broader experimental scope around the concept of rank-
ing (Chapter 3) and we consider system combination only as an application among others
(Chapter 5).

1.2.3 Comparative Quality Estimation with Machine Ranking

Related work presented previously treated the estimation of quality as a machine learning
problem of predicting a continuous score or a binary value. The prediction of a full ranking
by allowing multiple comparisons, seen as a problem of learning to rank, appears later in the
related work.

Pairwise ranking is used by Pighin and Marquez (2011) where features are simply summed
with no machine learning against preferences, whereas the evaluation is done by measuring
accuracy on the pairwise level, without reconstructing full rankings.

Little after we proposed the idea of sentence-level ranking in QE (Avramidis et al,
2011; Avramidis, 2012a) and its application on sentence selection for system combina-
tion (Avramidis, 2011), another experiment on the use of machine ranking for system com-
bination (Federmann, 2013) showed positive results for one language pair.

Later, Formiga et al. (2013b) indicated more positive results with system combination. Most
notably, they concluded that machine ranking makes better predictions as compared to
separate regression models. Additionally, the authors observed that models trained with
human rankings obtained better system-selected scores. Their models were learned on
a dataset with professional human annotations based on absolute scores of adequacy, in
contrast to our models learned on human rankings. Although their results on that dataset
obtained higher ranking correlations than ours, when tested on the same type of dataset
(Formiga et al., 2013a), they got significantly lower correlations. This comparison is yet not
fully accurate due to various different implementation choices.

Additionally, QE ranking was one of the shared tasks of the 8th Workshop on Statistical Ma-
chine Translation (Bojar et al., 2013b). Participants were invited to submit QE approaches
capable of ranking up to five alternative translations for the same source sentence, produced
by multiple MT systems. The works submitted follow four different ML approaches.

The first approach performs ranking by predicting individual continuous values with a sim-
ilarity threshold (Bicici, 2013) for each alternative translation. A second approach, sees
ranking as a multiple classification problem (Han et al., 2013). The third approach follows
the methods of n-best list reranking (Hildebrand and Vogel, 2013). The last approach is
similar to ours, since it performs ranking by using a binary classifier on all pairwise com-
parison of the ranking list. In this group of submissions, Almaghout and Specia (2013) uses
the same ML method as our work, but is based on Combinatory Categorial Grammar (CCG)
features. In contrast to our findings (Section 3.6), Formiga et al. (2013a) found that Random
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Forest classifiers with ties perform better in their setting, which also includes a wide vari-
ety of about 90 features. Empirical comparison of our work to these methods is detailed in
Section 3.4.

The two former aforementioned methods, prediction of continuous values and multiple
classification, are employed the purpose of Comparative QE by Shah and Specia (2014),
who also demonstrate their use for sentence selection and system combination. Here we
attempt a similar experiment, with the difference that we are using the pairwise classifica-
tion approach instead (Chapter 5).

1.2.4 Machine Ranking for MT Evaluation and tuning

Although our work focuses on QE, the methods of machine ranking and learning over hu-
man annotations is used in related fields, such as MT evaluation and internal components
of Statistical Machine Translation (SMT) systems.

Akiba et al. (2001) introduced the use of ML over human preferences to perform reference-
aware MT evaluation. Multiple edit distances to the references are combined with a deci-
sion tree classifier to produce a 4-scale quality score. Ye et al. (2007) and Duh (2008) intro-
duced the idea of using ranking in MT evaluation by developing a ML approach to train on
human rank data. They show better correlation with human assessments at sentence level
for the fluency score, as compared to the previously-followed non-ranking scenario.

Another similarity between Comparative QE and MT Evaluation has to do with the use of
human rankings. State-of-the-art evaluation metrics such as METEOR (Lavie and Agarwal,
2007) and BEER (Stanojevic and Sima’an, 2014) use human rankings in order to tune their
internal parameters.

Hopkins and May (2011) used the pairwise approach of ranking with a classifier in order
to improve Statistical MT tuning (Hopkins and May, 2011).

Machine Ranking also poses some similarity to another stage of a statistical system, the re-
ranking of n-best lists. These approaches generate n-best translation hypotheses with the
decoder and then combine multiple model scores to calculate the objective function value
which favors one translation hypothesis over the other (Och et al., 2004). The scores are
typically combined log-linearly and their weights are estimated via an optimisation algo-
rithm.

1.2.5 Feature Engineering

The identification of quality features has been a goal since several decades and related work
has tried to derive features by considering several aspects of quality. Based on how they
are derived, features are often distinguished into glass-box (Specia et al., 2009a) and black-
box (Blatz et al., 2004) features, depending on whether they have access to internal infor-
mation of the MT systems or not, respectively. An alternative meaningful categorisation
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of features divides them based on whether they indicate: (a) the intrinsic difficulty of the
particular source sentence, (b) the difficulty to translate the sentence in general, or (c) the
difficulty for the current translation model to translate the sentence (Gandrabur and Fos-
ter, 2003)

Glass-box features and particularly system-internal confidence estimators were used in
early work for estimating and comparing the translation quality of different MT sys-
tems (Tidhar and Kiissner, 2000; Yasuda et al., 2002). These features include the translation
probability for statistical systems, the database matching for example-based systems and
the amount of coverage of the input string by the selected parse for transfer-based systems
with probabilistic selection (Cavar et al., 2000). More advanced ML methods were later
used in order to combine a multitude of glass-box features among others. Namely, Blatz
et al. (2004) used twelve feature functions from the statistical maximum entropy model,
pruning statistics from the base model’s search algorithm and scores from the n-best list
of the translation candidates, confirming that that n-best features are more useful than the
ones from single hypotheses. While Blatz et al. (2004) concluded that features that depend
on the base model are more useful than those who do not, later work (Specia et al., 2009a)
observed that although glass-box features may be very informative, it is possible to repre-
sent the same information using simpler features.

The first black-box quality indicators were the probabilities by n-gram models, since a
character-based n-gram model was used on MT output for Asian languages (Kaki et al.,
1999) and a tri-gram token-based Language Model (LM) was used for MT into English
(Callison-Burch and Flournoy, 2001). Following works considered variations of n-gram
perplexity, density of function words (Corston-Oliver et al., 2001), the translation score by
an external word-based SMT system (Akiba et al., 2002), the score of semantic category
matching, the ratio of alignment between source and target (Sumita et al., 2002), various n-
gram frequency statistics and semantic similarity based on WordNet (Blatz et al., 2004). The
latter, having experimented with 91 features, reported that features including target text in-
formation are better than features without. The alignment probability from IBM Model 3
was found to be a good feature when both of the languages involved exhibit a stable word
order, but not when one of them has a free word order (Nomoto, 2003).

Since QE evolved as a main topic of research and settled as a main topic of yearly shared
tasks, a multitude of features kept appearing. These include the projection of semantic
structures (Pighin and Marquez, 2011), morpheme-based and POS-based IBM-1 scores
(Popovié, 2012a), semantic similarity (Bicici et al., 2013), style classification (Moreau and
Rubino, 2013) etc. The use of Recursive Feature Elimination for the purpose of choosing
features for absolute QE is also used by Bigici et al. (2013).

A special feature category that we are particularly interested, are the grammatical features.
Features from the rule-based parse of the translations, such as branching properties, func-
tion word density and constituent length were used in early QE experiments to distinguish
human translations from MT output (Corston-Oliver et al., 2001). Features from Context-
Free Grammar (CFG) productions are first used for QE by (Gamon et al., 2005), whereas
Probabilistic Context-Free Grammar (PCFG) parsing appeared first as a means of fluency
evaluation for generation systems, by using the parse log-probability and the number of
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tree fragments (Mutton et al., 2007). Similar features, acquired by parsing MT outputs,
were used as QE for accepting or rejecting a translation (Zwarts and Dras, 2008), while the
ones produced out of parsing source sentences were used as a hint for the translation dif-
ficulty (Hildebrand and Vogel, 2013). Additionally, Hardmeier et al. (2012) use tree kernels
over constituency and dependency parse trees of both source and MT outputs.

The grammatical features presented in this thesis (first introduced in Avramidis et al., 2011)
follow closely the idea of using PCFG parsing features for QE (Zwarts and Dras, 2008), but
to the best of our knowledge it is the first time that such features were used for the direct
comparison of two or more translations by including them in a binarised vector.

Other grammatical or fluency features were based on CCG supertags (Almaghout and Spe-
cia, 2013) and essay-correction rules (Parton et al., 2011), whereas Kaljahi et al. (2013) fo-
cused on the impact of parser accuracy on the QE.

1.2.6 Analysis of decoding events

As explained above, the first experiments on CE make use of a small number of SMT fea-
tures in order to train a supervised model for predicting the quality of the Translation (Blatz
et al., 2004). Later work, defines such features as glass-box features (Specia et al., 2009a).
Glass-box features are used in order to predict other numerical indications of translation
quality, such as post-editing effort or post-editing time. Contrary to these works, in Chap-
ter 6 on Translation errors and decoding events, we only predict specific error types, with the
focus on understanding the contribution of the features.

Prediction of specific error types was included in the shared tasks starting from the 8th
Workshop on Statistical Machine Translation (Bojar et al., 2013a, 2014). Several partici-
pants contributed systems that predict error types (Besacier and Lecouteux, 2013; Bicici
and Way, 2014; de Souza et al., 2014a). In that case, prediction was done on the word level
and contrary to our experiments, no glass-box features were used, therefore there was no
connection of the ML with the decoding process.

The work most related to the analysis of the decoding process is the one by Guzméan and
Vogel (2012). It aims to identify the contribution of these features. Similar to several previ-
ously mentioned works, a multivariate linear regression model is trained in order to predict
continuous quality values of complex metrics. Although the aim of this work is similar to
ours, we work in a more fine-grained way: instead of modelling continuous values, we
train a binary classifier to predict and explain the contribution of the decoding features to
the occurrence of specific error types.

1.2.7 Quality Estimation Software

The first collaborative work for development on this field was done in the frame of the
WS’03 Summer Workshop at the John Hopkins University on Confidence Estimation of MT (Blatz
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etal., 2003), but to our knowledge no application or code has been publicly available, as a re-
sult of this effort. Additionally, relevant contributions introduced several open-source tools
offering MT evaluation, such as METEOR (Banerjee and Lavie, 2005), Hjerson (Popovi,
2011c)and Addicter (Berka et al., 2012), whereas a good amount of such metrics and scripts
were gathered in Asiya (Giménez and Marquez, 2010). All this work is based on comparing
the produced translations with reference translations, which generally falls out of the scope

of QE.

Few pieces of software on QE have been released with an open source. QuEst (Specia et al.,,
2013), previously also known as Harvest, is the most established one, as it has been used
as a baseline for the yearly Workshop on Statistical Machine Translation (WMT) Shared
Tasks on QE (e.g. Callison-Burch et al,, 2012). The main difference with our approach is
that QuEst uses two different pieces of software for feature generation and machine learn-
ing respectively, where the former is written in Java and the latter in Python. Moreover,
many of its parts operate only in batch mode. For these two reasons, in contrast to our soft-
ware, operating in a real-usage scenario (e.g. server mode) with sentence-level requests is
non-trivial. Its latest version, QuEst+-+ (Specia et al,, 2015), additionally supports word-
level and document-level QE. In contrast to the regression-based orientation of QuEst, our
software is aimed to sentence-level ranking and selection of M T output, by implementing
comparative QE. Nevertheless, since not the same quality features have been implemented
in both toolkits our software includes a QuEst wrapper for conformity with WMT base-
lines.

Some most recent software focuses on an another level of granularity, namely word-level
QE. WceLig (Servan et al., 2015) is a tool which introduces support for various target lan-
guages, handles glass-box, lexical, syntactic and semantic features for estimating confidence
at word-level. Marmot (Logacheva et al., 2016b), focuses on word-level and phrase-level
QE and is written in Python. It offers a modular architecture, users can easily add or im-
plement new parsers, data representations and features that fit their particular use cases,
whereas it can be easily plugged into a standard experiment workflow.

In contrast to most of the above software, the approach of the software presented here fo-
cuses on a double-usage scenario for both scientific experimentation and real-usage. Fea-
ture generators and machine learning support both batch mode and sentence-level mode,
whereas the functionality can be easily plugged into web-services and other software that
requires QE functionality. Furthermore, it offers a dynamic pipeline architecture, includ-
ing wrappers for Natural Language Processing (NLP) tools written in several programming
languages.

1.3 Scientific goals

In this work, we shall focus on Comparative Quality Estimation as another aspect of Quality
Estimation. We aim at using this concept for creating a ranking mechanism, which could
perform automatic quality ranking of several alternative translation outputs of the same
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source sentence. We are interested in approaching this by formulating it as a supervised
machine learning problem.

We intend that the ranking mechanism is able to predict translation rankings similar to
the way humans would do. This mechanism should also perform equally or better than
other methods of automatic ranking and state-of-the-art reference-aware metrics. We shall
investigate whether elaborate features and machine learning may provide more informa-
tion about relative translation quality than a direct comparison with references. We aim at
identifying the machine learning architecture and methods that can achieve the best per-
formance and solve issues such as decision uncertainty.

Then, we are interested to select a well-performing set of features that provide quality in-
dications based on the text of the source sentence and is translations. We intend to suggest
new grammatical features, understand the linguistic and/or probabilistic intuition behind
them and confirm their contribution to the models. Additionally, we shall test how features
used in other aspects of Quality Estimation, such the ones referring to complexity, adequacy
and fluency, can be used in this case.

We aim at applying the ranking mechanism to combine output from different types of sys-
tems, resulting in better performance than its components. We shall see how the overall
machine learning design should be modified to serve this variation of the problem.

We aim at understanding how common MT errors are associated with the way M T systems
operate. We intend to run an empirical analysis of the occurrence of such errors and try to
identify possible reasons in the internal functionality of phrase-based SMT systems.

We aim at creating an open-source software that is able to automatically analyse transla-
tions, produce a multitude of features, learn Comparative QE models and evaluate them.
This software should serve for the reproduction of the thesis experiments and other com-
mon experiment pipelines. Additionally, it should follow basic principles for re-usability
and deployment in real-use scenarios and be extensible for other types of QE.

1.4 Publications

The contents of this thesis have been presented as publications, as listed below:

Avramidis et al. (2011) introduces the use of machine ranking of MT output via pairwise
comparisons. It describes the preliminary ranking mechanism (Section 4.1) which com-
petes with several reference-aware automatic metrics for German-English in the Metrics
Task of the Sixth Workshop on Statistical Machine Translation (Callison-Burch et al,, 2011).

Avramidis (2011) uses the idea of pairwise comparisons for system combination. It demon-
strates a pilot selection mechanism which is able to rank system outputs from 4 different
types of MT systems using glass-box features on the sentence level.

Avramidis (2012a) presents the positive results of a primary version of the basic machine
ranking mechanism (Section 4.2), including the method of tie elimination via weighting
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decisions with their classification probabilities (Sections 2.4.2.2 and 3.7). The best configu-
ration achieves acceptable correlation with human judgments for German-English, which
is higher than that of state-of-the-art reference-aware automatic MT evaluation metrics
such as METEOR and Levenshtein distance. The method is further detailed in Avramidis
(2013b).

Avramidis (2012b) indicates improvements on QE by using several feature scoring and fea-
ture selection methods (Section 4.1.1) and also includes some first ways of converting de-
coding statistics into glass-box features (Section 6).

Avramidis and Popovi¢ (2013) presents the full basic ranking mechanism (Section 4.2) as
the winning submission of the Quality Estimation Ranking Task at the Eighth Workshop on
Statistical Machine Translation (Bojar et al., 2013a).

Avramidis et al. (2014a) presents the development of the corpus used in the Chapter 6. The
corpus is a result of a detailed large scale human evaluation consisting of three tightly con-
nected tasks: ranking, error classification and post-editing.

Avramidis and Popovié¢ (2014) investigates situations in the decoding process of phrase-
based SMT and how they correlate with particular post-editing corrections on the output
of the translation that, as deemed necessary by humans post-editors (Chapter 6).

In Avramidis et al. (2015a,b, 2016a,b) we present several variations of applying the ranking
mechanism for a hybrid system combination (Chapter 5).

Avramidis (2017a) presents the positive results of the advanced machine ranking mecha-
nism (Section 4.3), including the use of Gradient Boosting, Recursive Feature Elimination
and further grammatical features.

In Avramidis (2013a) we present an open source implementation of the evaluation methods
suitable for machine ranking, whereas in Avramidis et al. (2014b), (Avramidis, 2016a,b) the
development of the open-source QE software Qualitative is detailed (Chapter 7).

Relevant contributions

On the side of the experiments presented in this thesis, a multitude of relevant tasks were
accomplished which are presented via the listed publications:

In Avramidis et al. (2012) we contribute to a multilingual parallel corpus automatically an-
notated with MT glass-box features, as part of the organisation of the ML4HMT Workshop
on Optimising the Division of Labour in Hybrid Machine Translation (Federmann et al., 2012).

In Burchardt et al. (2013) we contribute by reporting the empirical observation that post-
editing the MT output is significantly faster than translating the same sentences from
scratch (Bojar et al,, 2013a).

In Popovié et al. (2013) we contribute to the investigation of the selection process with the
purpose of post-editing.
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In Avramidis (2014) we show that while building a QE model for the metric Human-
targeted Translation Error Rate (HTER), it is easier to learn the whole complex metric, than
its components separately.

In Lommel et al. (2014) we contribute to the specification of a new analytic measure for the
annotation and analysis of MT errors.

In Popovié et al. (2014) we contribute to the investigation of relations between different
types of post-editing operations, cognitive effort and temporal effort.

In Shah et al. (2013) we contribute with adding an implementation of probabilistic gram-
matical features into the state-of-the-art open-source QE software QuEst.

In Klejch et al. (2015) we contribute to the development of MT-ComparEval, a graphical
evaluation interface that can assist MT development.

In Aranberri et al. (2016) we addresses the need to aid MT development cycles with a com-
plete workflow of MT evaluation methods.

In Srivastava et al. (2016) we contribute to the investigation of techniques to enrich SMT
with automatic deep linguistic tools and evaluate them with a deeper manual linguistic anal-
ysis, using English—-German I'T-domain translation as a case-study.

In Avramidis (2017b) we present a tool offering a graphical user interface for QE by con-
necting the back-end of the QE decision-making mechanism with a web-based application.

In Avramidis (2017c), we suggest that there can be significant improvements for absolute
QE, when predicting HTER as a multi-component metric using a multi-layer perceptron.

In Macketanz et al. (2017) we contribute to a linguistically driven evaluation method and
apply it to the main approaches of MT (Rule-based, Phrase- based, Neural).

In Avramidis et al. (2018) we present an alternative method of evaluating QE systems based
on a linguistically-motivated Test Suite.

1.5 Dissertation structure

After a short review of previous related work, the list of the scientific goals and the relevant
published work (Chapter 1), we define the problem and describe the methods (Chapter 2),
including the underlying pairwise mechanism, the machine learning algorithms, the fea-
tures used and the evaluation.

Chapter 3 includes the description and the results of the experiments concerning the usage
of Comparative Quality Estimation for ranking purposes, including the measurement of the
correlation with human rankings and the comparisons with basic unintelligent rankings,
with other ranking methods and with reference-based evaluation metrics. Then, we give
the results of the experimentation with several machine learning methods in the context
of automatic ranking. We showcase the positive results achieved by the weighting of the
pairwise decisions on our best models but also for various learning algorithms.
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Chapter 4 includes details about the feature engineering process. Three feature engineer-
ing phases are detailed, including the results of choices over the participating features, the
feature selection methods and assumptions for the role of each feature.

Chapter 5 includes the experiments on system combination by using the automatic selec-
tion mechanism. The performance of the selection mechanism is measured against its com-
ponents and the best choice of learning method and feature sets is presented.

Chapter 6 includes a statistical analysis of MT errors corrected by human post-editors and
statistical results on the decoding steps that correlate with them.

Chapter 7 introduces an open-source software for Comparative QE, capable of parallel fea-
ture generation and including several machine learning features and the possibility of ex-
perimental parameter explorations. Conclusions and further work are outlined in Chap-
ter 8.
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Chapter 2

Methods

The thesis consists of a set of empirical experiments. Before providing details about the ex-
ecution and the results of these experiments, it is necessary to present the methodological
background that the experiments are based on. This Chapter therefore aims at providing
a detailed and concise overview of all methods used, including the necessary references to
the theory behind them. In particular, formal definitions for the ranking and the ranking
mechanism are provided in Section 2.1, whereas the structure of the latter is outlined in
Section 2.2. In Section 2.3, the generation of features is detailed along with the linguistic
or empirical intuition behind them. The learning techniques of Machine Ranking and the
underlying ML methods are described in Sections 2.4 and 2.5 respectively, followed by the
Feature Selection methods (Section 2.6). Finally, the measures used for the empirical eval-
uation are explained in Section 2.7. The Chapter is concluded with a note on tools used for
the implementation (Section 2.8) and a summary (Section 2.9).

2.1 Definitions

In this section, the concepts of Comparative QE are explained and defined formally. This
includes the concepts of the rank, the ranking process, the ties, the ranker, the training set, the
learning process, the ranking model and the ranking mechanism.

2.1.1 Ranking

This work aims at developing an empirical system which is able to order multiple trans-
lation outputs in the same way humans would do. In particular, the system is given one
source sentence and several translations which have been produced for this sentence. The
goal is to rank them, i.e. to order the translations based on their quality after considering
several qualitative criteria over the translations.

In this ranking process, each translation is assigned a real number (further called a rank),
which indicates a quality judgment relative to the competing translations for the same
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source sentence. E.g. given one source sentence and its m translations, each translation
would get a rank in the range [1,m]. The rank value can be explicitly or implicitly given
by humans or derived by an automatic evaluation score. Typically, a lower rank means a
better translation output.

Formally, we define a ranking

R ={s,t,r} (2.1)

where a source sentence s is associated with a set of translations t:
t= (1,12, ..., tn) (2.2)

and ¢; is the j-th translation of s and m the number of the translations. Furthermore, each
set of translations t is associated with a list of judgments (ranks) r:

r= (1,79, ..., ) (2.3)
where 7; is the judgment on translation ¢, as compared to the other translations in t.

This kind of qualitative ordering does not imply any absolute or generic measure of quality.
Ranking takes place on a sentence level, which means that the inherent mechanism focuses
on only one sentence at a time, considers the available translation options and makes a
decision. Any assigned rank has therefore a meaning only for the sentence-in-focus and
given the particular alternative translation candidates. For example, a translation output
that gets a rank 2 is worse than the translation output which has got a rank 1 and better than
the translation outputs 3, 4 etc. Accordingly, no quality indication can be assumed between
the aforementioned translation with rank 2 and the translation of another sentence with
the same rank.

2.1.2 Ties

In each ranking, the same rank 7; may be assigned to two or more translations of the same
source, if no preference can be expressed among them. Such a case defines a tie between the
relevant translation candidates.

tie(ti, t]‘) : lf(’l“Z = 7”]‘) (2'4)

Ties are common phenomenon when judges assign subjective judgments to translation out-
puts. A tie occurs when there is a genuine indistinguishability on the quality of the com-
pared translations, or when the judges fail to distinguish any quality difference. In our
setup we consider ties an unreliable piece of information, when they originate from hu-
mans. Therefore, pairwise ties are removed from the testing gold labels. !

!Later, we will try to reduce or even penalise the prediction of ties when predicted by the system. The
handling of ties is explained in Section 2.4.1 concerning the handling of ties during the training process, in
Section 3.1.3 concerning the existence of ties by humans within the test set and in Section 2.7.1.1 concern-
ing the evaluation of ties predicted by the system. Methods to reduce the prediction of ties are detailed in
Section 2.4.2.2.
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2.1.3 Ranking mechanism

Extending equation 2.1, we assume a set of n source sentences .S:
S = 5(1), 5(2), s (2.5)
Similar to equation 2.2, each source sentence s is associated with a set of translations:
t@ = (17 ) ) (2.6)

where tg»i) is the j-th translation of the 7-th source sentence and m the number of the trans-
lations. Following equation 2.3, each list of translations is associated with a list containing
relative judgments (ranks)

rl) = (TY), i @) (2.7)

©)

where rji is the judgment on the j-th translation of the i-th source sentence.

A feature vector is defined as x as:
x =T(s9, t®) (2.8)

and it is created from every pair of source and its translations (s, t()), where i =
1,2,...n. The function I' that produces the feature vector given a source and its trans-
lations is referred to as feature generation (further analyzed in Section 2.3).

Each feature vector x(¥) derived from the i-th source sentence (see eq. 2.8), and the corre-
sponding list of ranks define an instance I:

I=(x9 ) (2.9)

A training set of n instances is consequently defined as 7™

T = {(x", )}, (2.10)

A ranker is a function p which given a feature vector x¥) produces a list of predicted ranks
£(). The goal of the learning process (or training process) is therefore to define a function p
that minimizes the total error £ between the predicted list of ranks and the golden list of
ranks, as seen in the training data:

S E(x® 2y (2.11)

Every differentiated instance of p will be thereafter referred to as a model. The learning
process is further analyzed in Section 2.5.

Following the definitions above, the ranking mechanism is the function aggregating the func-
tionality of both the feature generation function I and the ranker p; i.e. given a source sen-
tence s and its translations t, the ranking mechanism can predict the corresponding ranks r.
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source + .
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Figure 2.1: The training process of the ranking mechanism

2.2 Overview of the ranking mechanism

As defined above, the creation of a Quality Estimation mechanism requires the training
process, which receives a training set and results into a trained Quality Estimation model.
The sequence of the stages of the training process are depicted in Figure 2.1:

+ The training process can take place given a training set. This is a data set containing
a big amount of source sentences, where for each source sentence there are several
alternative translations. Each set of alternative translations is associated with a list
of judgments, which depending on the problem, can be provided either by human
annotators or derived via automatic scores based on the reference translation(s).

+ Feature generation (Section 2.3) produces numerical features that can serve as indi-
cations for the quality of the translations. These features may be derived directly
from automatic analysis on the text (Section 2.3.1), and from various parts of the
translation process (Section 2.3.2). Additionally, feature selection (Section 2.6) may be
required in order to reduce the amount of features. The final result of the feature
generation process is a numerical feature vector.

« The machine learning stage employs statistical methods in order to produce a model
that associates the numerical features of each translated sentence with the respective
ranking labels. Several machine learning algorithms employed for this purpose are
explained in Section 2.5.

After the training process has finished, the produced model can be stored. In a later time,
the same trained model can be applied to predict the ranking of previously unseen instances
that have undergone the same feature generation process (Figure 2.2).

In order to evaluate the trained model, one can apply it on a set of instances, whose assum-
ingly correct ranks (referred to also as golden ranks) are known but hidden from the ranking
mechanism at the application stage. This test set has been also excluded from the training
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Figure 2.2: The application of the trained ranking mechanism on previously unseen in-
stances

process. Finally, the evaluation process is based on comparing the predicted ranks with the
golden ones and calculating the level of the prediction success or the respective error. The
evaluation methods are detailed in Section 2.7.

2.3 Features

The features are numerical values that represent characteristics related to the translation.
These numerical values are processed by a machine learning algorithm, so as to be statisti-
cally associated with labels about the quality of the translation, creating a QE model. The
contribution of the features into the QE model has been explained earlier, in equations 2.8,
2.9 and 2.10 (Section 2.1.3).

2.3.1 Black-box features

Similar to the previous work on QE, the source sentence and the corresponding translations
are analyzed by several linguistic tools in order to provide a set of features indicative of the
translation quality. The features used fall into the following categories:

2.3.1.1 Grammatical features

One of the common issues that affect MT quality and acceptability is the grammatical-
ity of the generated sentences. Such issues occur often in statistical systems (particularly
the ones following the phrase-based approach) since they treat the generation process in a
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rather shallow way by using LMs. As an additional measure of quality, which can capture
more complex phenomena (such as grammatical fluency, long distance structures, etc.), we
include features derived by parsing the generated translations with a Probabilistic Context-
Free Grammar (PCFG; Petrov et al., 2006). These features extend previous work, which has
indicated that parsing the text of automatically-generated outputs can provide good mea-
sures of fluency (Mutton et al., 2007; Zwarts and Dras, 2008; Wong and Dras, 2010).

We apply coarse-to-fine n-best PCFG parsing (Petrov and Klein, 2007) which operates by
creating many possible tree parses for a given sentence, forming an n-best list of parse hy-
potheses. These hypotheses are scored in a probabilistic way, leading to the selection of the
tree with the highest overall probability.

Numerical parse features We allow an n-best list with a size of n=1000 and count the
number of trees generated. Although for a majority of the sentences the n-best list reaches
the limit, some sentences are parsed to a smaller number of trees, which signifies fewer
possible tree derivations, i.e. less parsing ambiguity, a feature which would be useful for
our purpose. Additionally, we extract the basic parsing statistics. These include:

« the sentence log-likelihood, i.e. summing out all parse trees in the n-best list: P(w),
« the joint log-likelihood of the best tree in the n-best list and its words: P (¢, w),

« average log-likelihood of all parse trees in the n-best list

« the full height of the best parse tree

The values of these parsing statistics reflect the parsability of the sentence. Lack of parsabil-
ity would indicate possible grammatical or fluency issues (Wagner and Foster, 2009).

Tree label counts rely on the assumption of isomorphism, i.e. the fact that the same
or similar grammatical structures should occur on both source sentence and translation(s).
Furthermore, one would assume that the grammatical structure of the competing transla-
tions should be similar. Therefore, we count the basic node labels of the parse tree, namely
the noun phrase (NP), verb phrase (VP), prepositional phrase (PP), verb (VB), noun (NN), de-
terminer (DT), sentence (S), subordinate clause and punctuation occurrences. Indicatively,
such tree label counts should be able to capture e.g. the failure of a system to translate a VP.

Additionally, for every node label, we calculate its depth and height in the tree and the num-
ber of leaves this node is projected to. If a label appears more than once, we add the average
and the maximum of the respective feature values.

To the best of our knowledge, these features do not appear in previous research of QE,
except for some similar features for confidence estimation on the parsing constituents of
rule-based systems (Corston-Oliver et al., 2001).

Context-Free Grammar rules For every sentence, its parse tree is decomposed into a
list of Context-Free Grammar (CFG) rules. This expands the use of CFG rules as done by
Gamon et al. (2005), with the addition that for every rule, we calculate its depth and height
in the tree and the number of leaves this rule is projected to.

The vertical position of some CFG rules in a parse tree may be a hint of how successful
the translation of this grammatical substructure was, particularly useful when compared to

22



2.3. FEATURES

Figure 2.3: Indicating alignment between source/target tree nodes when translating from
German to English. The produced features can be seen in Table 2.1

alignment count depth
PSEUDO <« S 1 1
S < NPVP 1 2
NP < NP 1 3
ADJA « J] 1 4
NN < NN 1 4
VAFIN < MD 1 4
VVVP < VP 1 3
8. ~ 1 2

Table 2.1: Parse node alignment features from the example in Figure 2.3

competitive translations. Additionally, the fluency of the sentence may be indicated by the
occurrence of some important rules. For instance, the existence of the CFG rule S — NP VP
may indicate that the parser succeeded in constructing a proper sentence.

For the rules that contain a VP or a verb, two additional features indicate their distance from
the beginning and the end of the sentences. This is of particular interest for translations into
German, where the position of the VPs in the sentence is important.

Alignment of tree nodes and CFG rules The nodes and the CFG rules between the
source and the target PCFG tree are aligned based on the scores of the IBM-1 model. This
is similar to the alignment of dependencies performed by Pighin et al. (2012) but applied
on PCFG parses instead. For every source node, several target nodes may be aligned. For
every alignment between nodes, we get:

+ the count of occurrences of the particular aligned nodes and CFG rules in the sen-
tences

+ the depth of the source node in the source tree

« the distance of the aligned nodes from the beginning and the end of the source sen-
tence
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sentence correction

»

Right after hearing about it, he described it as a “challenge disambiguate -ing

An fully comprehensive insurance with tax exemption “an"+consonant
Tired and disappointed are the the fishermen repeated word

A strategy Republican hinder the re-election of Obama verb agreement
These measures undermine the democratic system. " unpaired quotes
These measures are clearly limit the Hispanic vote. “be” agreement
Therefore I recommend taking the test. conjunctive+comma
Most of the tariffs incl . basis and will not be changed . punctuation spacing
similar steps are also preparing for France. lowercased start

Table 2.2: Sample suggestions generated by rule-based language checking tools, observed
in the development data

Additionally, the number of unaligned source nodes is added as a feature. An example of
features tree node alignment can be seen in Table 2.1 as derived from the trees shown in
Figure 2.3.

2.3.1.2 Language checking

Automatic rule-based language quality checking, similar to the one integrated on word pro-
cessors, is applied on source and target sentences. This approach extends the idea of Parton
et al. (2011), who evaluated MT output fluency with an essay correction tool. Since the
essay correction method is not openly available, we use here a similar error correction ap-
proach (Naber, 2003), which provides a wide range of quality suggestions concerning style,
grammar and terminology and the corresponding quality scores.

We use the number of the occurrences of each error rule as a feature. Since the individual
occurrences of particular rules are rather sparse, we also use the length of the problematic
chunks and we sum the number of the suggestions per category and in total. Examples from
common suggestions acquired from language quality checking for English can be seen in
Table 2.2.

2.3.1.3 Language Model

Language Models (LMs, used in related work by Kaki et al., 1999; Callison-Burch and
Flournoy, 2001; Blatz et al., 2004) provide statistics on how likely the sequences of the words
are for a particular language, so they are also an indication of fluency. Although Statistical
MT systems are already optimised over one or more LMs, the highest possible LM score for
a particular translation may be significantly low. Furthermore, using LMs may be beneficial
for other types of systems, such as Rule-based Machine Translation (RBMT) systems. From
the category of LM features we use the smoothed n-gram probability and the perplexity of
the sentence.
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2.3.1.4 IBM-1 model scores

IBM-1 model scores have been shown to be good indicators of translation quality for QE
(Blatz et al., 2004; Popovié, 2011a). They function similar to probabilistic lexicons, indicat-
ing the probability that a single word in the source language is translated by a single word
in the target language. Given their prior positive performance, they have been adopted as
features. In order to produce the features, all translations are scored based on the same
external IBM-1 model and the overall score of the sentence is computed. The scores are
calculated on both directions. Additionally (following Specia, 2010; Callison-Burch et al,,
2012) we count the average number of translations per source word, as given by IBM-1 model,
thresholded so that prob(¢|s) > threshold. The usual thresholds are 0.2 and 0.01.

2.3.1.5 Contrastive evaluation scores

Each translation is scored with an automatic evaluation metric (e.g. Papineni et al., 2002),
using the competitive translations as (multiple) references. Whereas each competitive trans-
lation may convey several errors, there are good possibilities that they collectively are closer
to, or contain parts of a correct translation. As most automatic evaluation metrics are based
on n-gram comparisons, this feature may essentially indicate how much the sentence in fo-
cus “stands out” from a majority formed by its competitors, an indication which can be
useful for the comparison.

This approach has shown to perform well as a feature in QE tasks predicting an absolute
quality score (Soricut et al., 2012) and is expected to be even more useful for our task, since
comparison is its main goal. Contrastive evaluation scores include sentence-level smoothed
BLEU (Papineni et al., 2002) and METEOR (Lavie and Agarwal, 2007).

2.3.1.6 Count-based features

These are features based on simple superficial counts on the surface of the sentences. They
originate from previous work on absolute QE (Specia et al., 2009a; Callison-Burch et al,,
2012) and they include the count of tokens (sentence length or len), the average count of
characters per token, the average number of occurrences of a word in the sentence (e.g.
indicating repetitions), the ratio of tokens count in source and target, the count of commas,
dots, numbers, and the ratio of tokens in the target which contain one or more letters other
than the ones of the latin alphabet (a-z). Additionally, we identify the unknown words (unk),
based on a big monolingual corpus and add their number as a feature too.

We augment these features with features related to the position of unknown words in the
sentence. We add as features the absolute and the relative position of the first and the last
unknown word, as well as the average and the standard deviation of all positions of all
unknown words in the sentence.
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2.3.2 Glass-box features

The glass-box features are extracted from the decoding process of a phrase-based SMT
system (Koehn et al.,, 2003) with cube-pruning (Huang and Chiang, 2007). The decoding
process performs a search in various dimensions, calculating scores for many phrases and
hypothesis expansions. Most scores are difficult to be interpreted as glass-box features in
their initial form. The amount of scores calculated per sentence is not fixed since it depends
on the search process for forming the translation hypotheses. Meanwhile, a requirement for
each feature is to have only one value that is valid on a sentence level, so that it can be used
in the sentence error prediction model.

For this purpose, we process the verbose output of the decoder and derive scores, counts
and other statistics that can have this sentence-level interpretation. When decoding steps
contain a number of scores which is not fixed for every sentence, we extract features out of
their statistics, such as the mean and the standard deviation, the minimum/maximum value
and their position in the sentence. An example of how some of these features are extracted
is illustrated in Table 2.3. On the upper part of the table, one can see the log-probability and
the future cost estimate for each one of the phrases in the sentences. On the lower part we
demonstrate some statistics that are derived from the scores and the positions of the words
in the upper part.

Similar practice is applied to extract the entire set of 104 glass-box features. Many of these
features appear in previous work (Blatz et al., 2004; Specia et al., 2009a), but to the best of
our knowledge, the introduction of features for the position, the time, the standard devia-
tion, the minimum and maximum values is novel. The feature set includes:

Phrase counts and positions The produced translation consists of sets of phrases that
are chosen as the most probable hypothesis. On this hypothesis we count the number of
phrases, words, the length of the phrases, the length difference between source and aligned
target phrases and also the position of the shortest and the longest phrase in the sentence.

Unknown tokens are words or phrases whose translation was not found during the de-
coding process. These features are similar to the ones that appear as black-box features
above, with the difference that here they are detected based on the words that are not found
in the inherent phrase table. Their count, their ratio and their position in the translated
sentence (average position, standard deviation of their positions, position of first and last
unknown word) are included as features.

Translation probabilities Log probability (pC) and future cost estimate (c) are available for
each phrase of the chosen hypothesis. We extract their average, standard deviation and
also their minimum and maximum values and their position in the sentence. Additionally,
we count the number of the phrases whose pC or ¢ is too low or too high. This is done
by checking whether their values are out of the standard deviation of all phrases in the
sentence.

Time The decoder reports the time required for the entire translation process, the search,
the Language Model calculation, the generation of hypotheses other than the ones chosen
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source: [iiberraschenderweise] [zeigte sich] [, dass die neuen] [Rite] [in
Bezug auf] [diese neuen] [Begriffe] [etwas] [im Dunkeln tappen .]

translation: [surprisingly ,] [showed] [that the new] [councils] [in relation
to] [these new] [concepts] [slightly] [in the dark .]

position phrase pC C
[0..0] surprisingly , —0-770335 —2-69341
[1..2] showed —1.54184  —2.81277
(3..6] that the new —0-563381 —2-65923
[7..7] councils —0-386571 —1-98291
(8..11] in relation to —1-29663  —2-85591
(12.13]  these new —0-332607 —2-17422
[14..14]  concepts —0-540415 —2-01213
[15..15]  slightly —0-585549 —2-00382
[16..19]  in the dark. —1-48327  —3-90992
minimum —1-54184  —3-90992
maximum —0-332607 —1-98291
average (avg) —0-83334 —2-56715
standard deviation (std) 0-448 0-5862
no of phrases with score lower than avg-std 3 1

no of phrases with score higher than avg+std 1 0

averaged position of phrase with lowest score 0-11111 0-88889
averaged position of phrase with highest score 0-55556 0-33333

Table 2.3: Example glass-box feature extraction from the decoding result. Decoding scores
such as phrase log probability (pC) and future cost estimate (c), whose number is not the
same for every sentence (upper part of the table), are reduced to a fixed feature vector based
on basic statistics (shown on the lower part of the table)

and for collecting translation options. We use these as features, also averaged over the entire
translation time.

Decoding graph These features come from the entire set of alternative phrase hypothe-
ses generated during the search. From the entire set of alternative hypotheses we derive
statistics from their log probability, the future estimate (average, standard deviation, count
of alternative phrase hypotheses lower and higher than the standard deviation).

2.4 Machine Ranking

Ranking MT outputs is treated as a typical machine learning problem. A ranker is learned
from training material containing existing human rankings. The learning process results in
a statistical model. This model can later reproduce the same task on unknown sentences or
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test data. Whereas the setup and the evaluation of the system takes place on a ranking level,
for the core of the decision-making mechanism we follow the principle of decomposing
full ranks in pairwise comparisons (Herbrich et al., 1999; Hiillermeier et al., 2008). Then,
given one pair of translation candidates at a time, a classifier has to predict a binary decision
on whether one translation candidate is better than the other. This process, illustrated in
Figure 2.4, is detailed below.

2.4.1 Pairwise decomposition

In this context we train one classifier for the entire data set. Each ranking of n candidate
translations is decomposed into n X (n— 1) pairs of all possible combinations of two system
outputs with replacement. Each of the resulting pairs is a training instance for the classifier
and consists of a class value cand a set of features (f1, . . ., f,,). For the pairwise comparison
of two translation candidates ¢;, ¢; with human ranks 7; and r; respectively, the class value

is therefore set as:
1 r; < T
CZ?J = { z ]

-1 rp >

The approach of pairwise comparisons is chosen because it poses the ML question in a
much simpler manner. Instead of treating a whole list of ranks, the classifier has to learn
and provide a binary (positive or negative) answer to the simple question ‘which of these two
sentences is better?”. This also provides the flexibility of experimenting with many machine
learning algorithms for the classification, including those which only operate on binary
decisions.

As explained already (Section 2.1.2), we consider ties an unreliable piece of information,
when they originate from humans and we won't try to explicitly learn them or evaluate
their prediction. Therefore, pairwise ties are removed from the test-set. Regarding the
training material, ties that appear on a pairwise comparison are filtered out, since they do
not provide any useful information about the simple comparison explained above. This
means that the pairwise comparisons of the tied outputs with the other outputs are not
filtered out; only those between the two tied M T outputs are.

It would be possible to explicitly learn ties, by introducing a third class or a cascade of
two classifiers, but this would increase the complexity of the learning process, so we won't
consider it as part of the problem. As we will see later in this section, the ties are treated as
an uncertainty of the system for either of the classes.

2.4.2 Ranking recomposition

During the application of the statistical model on test data, data processing follows the same
idea: The test instances are broken down to pairs of sentences and given to the classifier for
a binary decision. Consequently there is a need to recreate a ranking list out of the binary
pairwise classification decisions.
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2.4.2.1 Hard rank recomposition
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Figure 2.4: The application of the statistical model, through the pairwise decomposition
(left) and recomposition (right)

The simplest way to go ahead with this is to sum up the decisions of the classifier. For a

number of n systems, following the previous notation, the rank r; of translation ¢; would
be:

n
r, = Z Cij (212)
JFi
The translation output which has “won” the most pairwise comparisons would get first on
the list and then the outputs with fewer pairwise wins would follow accordingly (Figure 2.4).
We call this a hard rank recomposition, as only the binary decision of the classifier is taken
into consideration upon summing up the predicted values.

2.4.2.2 Soft rank recomposition

One of the problems seen in previous work is that what we described here as a hard rank
recomposition allows for the creation of ties (formally defined in Section 2.1.2). Indeed, the
classifier may predict an equal number of wins for two or more translation outputs and
therefore generate a tie among them. This may be intensified by the fact that the pairs have
been generated in both directions, which would also result in a tie if the classifier is unable to
distinguish the best out of two outputs but is forced to choose one of them. Nevertheless,
while defining our problem, we considered ties as an issue of uncertainty and therefore
assumed that our gold data is free of ties.

However, the probabilistic setup contains information which implies that not all classifier
decisions are of “equal importance”: statistical classifiers build their binary responses on a
probabilistic basis. A translation output which has a number of wins with high certainty
should be ranked higher than an output with an equal number of wins but with lower cer-
tainty. One can therefore use the probability of each decision to weight the sum described
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in Section 2.4.2.1. This is thereof referred to as soft recomposition. This way, the rank r; of
translation ¢; would be:

n
Ty = Zpi,jci,j (2.13)
J#1
Since the probability p; ; is a decimal in the range of [0,1] as opposed to a binary value, it is
expected that it reduces the cases where two translation outputs end up with an equal sum.

2.5 Binary classification algorithms

In the previous section we explained that the core machine learning of the ranking mech-
anism operates with pairwise decisions. Consequently, in this section we revisit the most
important classification algorithms that can be used for this purpose.

2.5.1 Naive Bayes

Naive Bayes predicts the probability of a binary class c given a set of features
i=1
p(c, fr, o, fo) = () [T p(file) (2.14)
The probability p(c) is estimated on relative frequencies of the training pairwise examples.
Since we are using continuous features f, their probabilities p( fi |c) are estimated with the
locally weighted linear regression LOESS (Cleveland, 1979).

Naive Bayes works under the assumption that the features are statistically independent,
which we cannot guarantee however. It has the advantage that it offers good scalability for
the training process, given large data sets.

2.5.2 k-nearest neighbour

The k-Nearest Neighnoors (kNN) algorithm classifies the test instances along with the clos-
est training examples in the search space (Coomans and Massart, 1982). Unlike Naive Bayes,
there are no a priori assumptions about the distributions of the training data. However, a
choice for the number (k) of the nearest neighbours is required, which is problem-specific.
Here we follow the common practice of using the standard Euclidean distance as a distance
metrics and setting the k equal to the square root of the number of training instances (Khedr,
2008).

2.5.3 Logistic regression

Logistic Regression (LogReg) is a widely-used ML method that optimizes a logistic function
to predict values Y in the range between zero and one (Cameron, 1998), given a feature set
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X, the beta coefficients of the features /3 and the intercept « (the value of the criterion when
the predictor is equal to zero).

1

YZBOX = 1_|_€—1(a+,3X)

(2.15)

For fitting the model the Newton-Raphson algorithm is used (Miller, 2002) in order to iter-
atively minimize the least-squares error given the training data. The algorithm is combined
with L2 Regularisation (Lin et al., 2007), unless it includes Stepwise Feature Set Selection (SFSS)
as described in Section 2.6.

2.5.4 Linear Discriminant Analysis

The classifier of Linear Discriminat Analysis (LDA) searches for a linear combination of
continuous features that characterizes or separates two or more classes (McLachlan, 1992).
Contrary to Logistic Regression presented above, LDA requires the assumption that the
independent variables are normally distributed, that there is homoscedasticity (i.e. the class
covarianves are identical) and that the covariances have full rank.

2.5.5 Support Vector Machines

The Support Vector Machines (SVMs) are discriminative classifiers defined by one or more
separating hyperplanes in a high-dimensional space (Hearst et al., 1998). The samples are
represented as points in the space, through a mapping that divides the samples of the dif-
ferent classes. The samples are optimally separated when the hyperplane has the largest
distance to the nearest training-data point of any class. Linear classification is possible
through the use of a linear kernel, whereas non-linear classification is done by replacing dot
products with kernel functions such as Radial Basis Function (RBF). SVMs are in general
effective in high dimensional spaces and operate well in cases where number of dimensions
is greater than the number of samples

2.5.6 Decision trees

The induction of decision trees (Breiman et al., 1984) is a non-parametric methodology to
construct tree structured rules in a supervised manner. The trees are used as a data analysis
method. Given a training set of class labels and features, the training process follows the
basic algorithm below (Quinlan, 1986).

If all training instances are labeled with the same class, the tree contains a leaf labeled with
that class. Otherwise, a tree node is created and it is assigned a test, based on one feature,
with mutually exclusive outcomes. Then the training set is divided into subsets, each one
corresponding to one outcome and the same procedure is applied to each subset.
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The decision tree, after having been constructed on the training data, can be applied on
previously unseen instances. For every instance, the tree is traversed from the root to the
leaves. When a tree node is processed, the test is applied on the features of the instances and
the traversing continues to the corresponding branch of the tree. When the process reaches
a leaf, the class label of the leaf is assigned to the instance.

The decision trees are interpretable and demonstrate logarithmic computational complex-
ity. On the other side, decision trees are prone to overfitting, they are sensitive to small
variations of data or dominant classes and it is not guaranteed that the optimal decision
tree will be returned.

2.5.7 Ensemble classifiers

Ensemble classifiers are methods that attempt to combine the predictive power of several
base classifiers. Through the ensembling process, it is possible to have base classifiers that
generalize better and are more robust. The decision trees presented above are typically used
as a base classifier, since ensembles solve most of the issues of single decision trees. There
are two categories of ensemble classifiers:

- averaging classifiers are based on building several independent classifiers and then
averaging their predictions. The idea is based on the observation that the variance
of the averaged classifier reduced and therefore its performance is usually better
than any individual base classifier. This category includes the Bagging Classifier
(Breiman, 1996) the Forest of Randomized Trees (Breiman, 2001) and the Ex-
tremely Randomized Trees (Geurts et al., 2006).

+ boosting classifiers ensemble classifiers by training them sequentially, trying to re-
duce the overall bias. This category includes Adaptive Boosting (AdaBoost) and Gra-
dient Boosting.

Adaptive Boosting (AdaBoost; Freund and Schapire, 1995) combines the output of the
base classifiers is into a weighted sum as the final output of the boosted classifier. At each
iteration of the learning process, a base classifier is selected and assigned a coefficient so
that the sum training error of the resulting boost classifier is minimized for the particular
stage. At each iteration of the training process, a weight is assigned to each sample in the
training set equal to the error resulting from the current iteration. These weights are used
to inform the training of the base classifiers in favor of those instances misclassified by the
previously learned classifiers.

Gradient boosting (Friedman, 2001) consecutively fits models of weak classifiers to pro-
vide a more accurate estimate of the response variable. These models are fitted so that they
are maximally correlated with the negative gradient of the loss function which is associ-
ated with the whole ensemble. Whereas several loss functions may be used, a common loss
function is the mean squared error with improvement score. There, the variable influence
for the decision tree ensembles follows the influences estimated by the decision trees, cal-
culated based on the number of times a variable is selected for splitting.
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2.6 Feature selection

Feature acquisition can result in a huge number of features. Big feature sets may be unusable
for training, due to the high processing needs and the sparsity or noise they may lead to.
For this purpose we consider reducing the number of features with the following feature
selection methods:

2.6.1 Information gain

Information gain (Hunt et al., 1966) estimates the difference between the prior entropy of
the classes and the posterior entropy given the attribute values. It is useful for estimating the
quality of each attribute but it works under the assumption that features are independent,
so it is not suitable when strong feature inter-correlation exists. Information gain is only
used for the sentence ranking task after discretisation of the feature values.

2.6.2 ReliefF

ReliefF assesses the ability of each feature to distinguish between very similar instances
from different classes (Kononenko, 1994). In an iteration, it selects a random instance and
defines the 2 nearest (by Euclidean distance) instances, originated from one different class
each. The feature then gets a higher weight, if the nearest instance of the same class is
closer than the nearest instance of the other class. It is a robust method which can deal with
incomplete and noisy data (Robnik—gikonja and Kononenko, 2003).

2.6.3 Stepwise Feature Set Selection

The Stepwise Feature Set Selection (SFSS; Hosmer, 1989) is an iterative process for choos-
ing a feature set that optimizes the performance of a classifier, typically applied along with
Logistic Regression. It consists of two repetitive phases, forward selection and backward
elimination. In forward selection, the score y-square statistic is computed for each feature
not in the model and examines the largest of these statistics. Every feature that passes the
X-square significance test is added to the model.

Forward selection may be followed of one or more steps of backward elimination. For each
one of the features in the model, the Wald test is computed. The least significant feature that
does not meet the required significance level gets removed. The stepwise selection process
ends if no further features can be added to the model.

2.6.4 Recursive Feature Elimination

Recursive Feature Elimination (Guyon et al., 2002) is a variation of backward elimination.
In the beginning, the algorithm trains a classifier using all the features. Consequently, all
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features are ranked based on the weights or the coefficients assigned by the classifier and the
lowest ranking feature is removed. In order to determine the optimal amount of retained
features, all possible feature sets combinations are tested with cross-validation (RFECV).
The combination that achieves the best classification performance is selected.

In our experiments we use a SVM classifier with a linear kernel as a basic estimator, where
the coefficients assigned to the features are used as the ranking criterion.

2.7 Evaluation

During the evaluation phase, the trained model is applied on a set of test data and its pre-
dictions are contrasted to some gold truth. The gold truth varies and the metrics employed
vary, according to the type of the problem. When the ranking mechanism is applied as
a ranking method per se, or as an evaluation metric, then the correlation of the ranking
against the gold labels is measured. When the ranking mechanism is applied for system
combination, the produced MT output is evaluated with document-level reference-aware
metrics.

2.7.1 Ranking performance

The performance of the automatic ranking is measured against human rankings. The inter-
est lies on whether there is any relationship between the automatic ranking and the judg-
ments of a human. If such a relationship exists, then one should be able to measure the
degree of correspondence between these two rankings. For this purpose a test set is given
to the ranking mechanism and the correlation of the rankings it produces (one per sen-
tence) with the original human rankings is measured.

The simplest measure of ranking tau was introduced by Kendall (1938) with the purpose
to analyze experiments on psychology, where the order given by different observers is
compared. This measure has been analyzed and modified over the years for several pur-
poses (Knight, 1966; Agresti, 1996; Christensen, 2005) and has been also applied to text
technologies (Lapata et al., 2003; Cao et al., 2007). Since 2008 it appears modified as an
official segment-level measure for the evaluation metrics in the yearly shared task for Ma-
chine Translation (Callison-Burch et al., 2008).

More related metrics emerged for use with Information Retrieval. Mean Reciprocal Rank
was introduced as an official evaluation metric of TREC-8 Shared Task on Question An-
swering (Radev et al., 2002) and has also been applied successfully for the purpose of eval-
uating MT n-best lists and transliteration in the frame of the yearly Named Entities Work-
shop (Li et al., 2009). Additionally, Expected Reciprocal Rank (Chapelle et al., 2009) was
optimised for Search Engine results and used as a measure for a state-of-the-art Learning to
Rank challenge (Chapelle and Chang, 2011). Here, we will focus on one of the most popular
family of metrics of this kind, Directed Cumulative Gain (Jarvelin and Kekéldinen, 2002),
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which was extended to the measures of Discounted Cumulative Gain, Ideal Discounted Cu-
mulative Gain and Normalised Discounted Cumulative Gain (NDCG; Wang et al., 2013),
whereas the latter is used for our experiments.

2.7.1.1 Kendall’s tau

As a basic correlation metric we use Kendall’s tau (Kendall, 1938; Knight, 1966), which
measures the correlation between two ranking lists on a segment level, by counting concor-
dant or discordant pairwise comparisons: For every sentence, the two rankings (machine-
predicted and human) are decomposed into pairwise comparisons. When the predicted
comparison matches the respective one by the human annotator, we count a concordant
pair, otherwise we count a discordant pair. Then, 7 (tau) is computed by:

concordant — discordant
T = - (2.16)
concordant + discordant

with values that range between minus one and one. This means that the ranking is better
when the value gets closer to one.

Concordant and discordant counts from all segments (i.e. sentences) are gathered and the
fraction is calculated with their sums. This is the 7 calculation that appears in WMT results
and has therefore been widely used in prior work.

Handling of ties The calculation follows the formula of the Workshop on Machine
Translation (WMT; Callison-Burch et al., 2012), in order to be comparable with other meth-
ods:

concordant — discordant — ties
T = - - (2.17)
concordant + discordant + ties

Prior to this calculation, pairwise ties in the human-annotated test set are excluded from
the calculations, as ties are considered to form uncertain samples that cannot be used for
evaluation. For the remaining pairwise comparisons, where human annotation has not re-
sulted in ties, every tie on the machine-predicted rankings is penalised by being counted as
a discordant pair.

Significance test for the null case The significance test of Kendall tau correlation is
based on investigating the null hypothesis that there is no correlation between the two sets of
ranks, i.e. the rank produced by the system and the corresponding rank produced by the
human annotator.

7; is the 7 coefficient for each item ¢. Under the null hypothesis of no correlation, 7; would
be zero and therefore the individual Kendall correlations of the m rank elements would
have a zero mean 17, and a variance U% as following:
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2(2m +5)
s = 2 === 2.1
/’1'7'7, O O—Ti 9m(m _ 1) ( 8)

Because there may be ranking sets with different length &, we need to consider a different
variance for each ranking length, defining a different distribution. For this, inverse-variance
weighing (Hartung et al., 2008) shall be applied on the mean, in order to calculate the signif-
icance over all the distributions.

If there are ny, cases where the items per ranking m = k, then the sum of n; independent
such correlations, its mean and its variance would be:

ok 2(2m + 5)
J— A(k) =0 2 = S EE— 2.19
sums, ;TZ Lk o nka(m Y (2.19)
and respectively for their average, one would get:
1 & 1 2(2 5
Nk ;3 ny 9m(m — 1)

The estimate of 7 with the smallest variance would weigh inversely proportional to the
variance. That is:

S wpT®
>k Wi

9m(m — 1)

T = where Wy, = Ny,

According to Kendall’s theory, T will be approximately following the normal distribution
under the null hypothesis. The error on the weighed mean can now be shown to be:
9 1

= 2.22
o7 2k Wk 222

And Z would follow the standard normal distribution:

Z, = (2:23)

This can be used to test the significance with a one- or two-tailed test. According to
Kendall’s theory, continuity correction would be required, but given a high number of rank-
ings n, as is the case in our experiments, this is not needed.
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Empirical confidence intervals for the non-null case The above analysis serves for
proving that an achieved correlation is statistically significant by rejecting the null hypoth-
esis that two rankings are not significantly different, i.e. the observed correlation does not
differ from the zero correlation. Nevertheless, in addition to testing against the zero cor-
relation, we are interested in comparing different correlations with each other. This might
be the case when ranking correlations have been observed e.g. on the rankins produced
by two different models and we want to see if the coefficient difference between these two
correlations is significant.

The significant comparison between two such correlations can be tested empirically by cal-
culating the empirical confidence intervals of Kendall’s 7 using bootstrap resampling, as is
the practice in the Metrics task since the Ninth Workshop on Statistical Machine Transla-
tion (WMT14; Machacek and Bojar, 2014). The authors vary the “golden truth” by sampling
from human judgments. They generate 1000 new sets and report the average of the upper
and lower 2.5% empirical bound, which corresponds to the 95% confidence interval.

2.7.1.2 Cumulative Gain

This family of measures is based on the Discounted Cumulative Gain (DCG), which is a
weighted sum of the degree of relevance of the ranked items. This introduces a discount,
which refers to the fact that the rank scores are weighted by a decreasing function of the
rank ¢ of the item.

zp: 2reli -1 ( )
DCG, = —_ 2.24
P Hloge(i+1)

In our case, we consider that relevance of each rank (rel;) is inversely proportional to its
rank index.

The most acknowledged measure of this family is the Normalised Discounted Cumulative
Gain (NDCG), which divides the DCG by the Ideal Discounted Cumulative Gain (IDCG),
the maximum possible DCG until position p. Then, NDCG is defined as:

(2.25)

2.7.1.3 Normalisation of ranking lists

Normalisation emerges as a need from the fact that in practice there are many different ways
to order items within the range of the rank values. This becomes obvious if one considers
ties. Since there is no standard convention for ordering ties, the same list may be repre-
sentedas [1, 2, 2, 3, 41,11, 2, 2, 4, 51,[1, 3, 3, 4, 5] oreven
[1, 2.5, 2.5, 4, 5]. The alternative representations are even more, when more
ties are involved.
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All representations above are equivalent, since there is no absolute meaning of quality in
the values involved. Nevertheless, the rank value plays a role for the calculation of some of
the metrics explained above. For this purpose, prior to evaluating one can consider several
different normalisation options of such ranking lists:

+ minimize: reserves only one rank position for all tied items of the same rank (e.g:
(1, 2, 2, 3, 41])

+ floor: reserves all rank positions for all tied items of the same rank, but sets their
value to the minimum tied rank position (e.g: [1, 2, 2, 4, 51])

« ceiling: reserves all rank positions for all tied items of the same rank, but sets their
value to the maximum tied rank position (e.g: [1, 3, 3, 4, 5]). Thisis the
default setting, inline to many previous experiments.

« middle: reserves all rank positions for all tied items of the same rank, but sets their
value to the middle of the tied rank positions (e.g: [1, 2.5, 2.5, 3, 41])

In this work, for the purpose of evaluating the experiments, the minimize method is
adopted.

2.7.2 Translation performance

The performance of machine translation output is typically measured by comparing it with
the reference translations. Various methods for performing these comparisons have re-
sulted into various metrics. In this work we use the metrics Bilingual Evaluation Under-
study (BLEU; Papineni et al., 2002), METEOR (Lavie and Agarwal, 2007), Word Error Rate
(WER; Och et al., 1999), Translation Error Rate (TER; Snover et al., 2006) and rgbF (Popovi,
2012b).

Additionally, Hjerson (Popovié, 2011c¢) is used to induce particular error types based on the
edit distance between the machine translation and the reference.

2.8 Implementation

The Language Models (Section 2.3.1.3) are trained with the SRILM (Stolcke, 2002) and
KenLM (Heafield, 2011) toolkits. The open source Language Tool (Milkowski, 2012)* is
used to annotate source and target sentences with language suggestions. The annotation
process is parallelised with the Ruffus library (Goodstadt, 2010) and the various learning
parameters are explored with ExpSuite (Riickstief} and Schmidhuber, 2011). The machine
learning implementations of the Orange toolkit (Demsar et al., 2004) and the Scikit-learn
(Pedregosa et al., 2011) were used. PCFG parsing features (Section 2.3.1.1) are generated on
the output of the Berkeley Parser and BitPar, which are explained below.

Berkeley Parser is a state-of-the-art PCFG parser that supports unlexicalised parsing with
hierarchically state-split PCFGs, supporting optimal pruning via a coarse-to-fine method

2Open source at http://languagetool.org
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(Petrov and Klein, 2007). It has the advantage that it is accurate and fast, by using multi-
threading technology. Apart from the best tree for each parse, it also provides the parsing
log-likelihood and a number of k-best trees along with their parse probabilities. The English
grammar has been trained on the Wall Street Journal. The German grammar, represented
as a Latent Variable Grammar (Petrov and Klein, 2008), has been trained on the TIGER
(Brants et al., 2004) and TueBaD/Z (Telljohann et al., 2004) tree-banks, as released by the
ACL 2008 workshop on Parsing German (Kiibler, 2008). The Spanish Grammar has been
trained on AnCoRA (Taulé et al., 2008). The parses of Berkeley Parser have been processed
with phrase alignment methods in order to map node labels between source and produced
translations.

BitPar (Schmid, 2004) is a parser for highly ambiguous probabilistic context-free gram-
mars. It makes use of bit-vector operations that allow parallelising and speeding up the
the basic parsing operations (Schmid, 2006). The English grammar is based on the PENN
tree-bank (Marcus et al., 1993), whereas the German grammar is also based on the TIGER
tree-bank. BitPar was also included on our annotation pipeline in order to provide ad-
ditional evidence and allow comparisons to the observations on the Berkeley parses. It
also provides sentence-level tree likelihood and k-best lists. Unfortunately, contrary to the
Berkeley Parser, the k-best lists of BitPar are of limited usability due to small differences in
their relative likelihood.

2.9 Summary

In this Chapter we formulated the concepts of Comparative Quality Estimation formally,
including the underlying concepts of ranking, of the relative representation of quality judg-
ments, the ties and the ranking mechanism (Section 2.1). After introducing the idea of the
ranking mechanism, we explained the details of its functioning as a typical application of
supervised machine learning, consisting of the feature generation and the learning meth-
ods (Section 2.2). Then we provided a detailed description of the features that are gener-
ated and employed (Section 2.3) and the intuition behind them. Consequently, the method
of ranking via pairwise decisions was suggested, including the idea of weighting pairwise
decisions with the classification accuracy (Section 2.4), whereas the binary classification
methods used for the core of the ranking mechanism were detailed in Section 2.5. The
most important Feature Selection functions were listed in Section 2.6. The chapter ended
with the introduction of a set of evaluation measures related to the problem (Section 2.7).
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Chapter 3

Comparative Quality Estimation for
Ranking

The goal of this Chapter is to present the ranking mechanism, verify that it correlates with
human judgments, prove that its performance is significant against the baselines and com-
pare it with other state-of-the-art methods, including methods for Quality Estimation and
reference-based evaluation metrics.

The Chapter is structured as follows: Section 3.1 briefly presents the experiment settings
that are followed for all of the experiments of the chapter, including a presentation of the
data and the strategy for defining the evaluation set. In Section 3.2 we measure the corre-
lation of the predicted rankings with the human judgments and in Section 3.3 we compare
our ranking method with some basic baselines, such as the random or the alphabetical rank-
ing. A comparison with several known ranking methods is given in Section 3.4 followed by
a comparison with other reference-aware automatic MT metrics (Section 3.5).

3.1 Experiment design

The ranking mechanism can be functional under a wide range of settings and parameters,
mostly referring to the choices of ML methods and feature sets. Since this is an introduc-
tory section with a focus on highlighting the performance and usability of the selection
mechanism, only two versions of the ranking mechanism are shown, so that they fit to the
purpose of the comparisons. A wider range of experimentation on various parameters is
presented later (Section 3.6 and Chapter 4).

The full focus of the ranking mechanism is primarily on German-English (de-en) and secon-
darily on English-German (en-de). The successful settings from these language directions
are applied with minimal additional engineering on another 4 language directions; French
to English (fr-en), English to French (en-fr), Spanish to English (es-en) and English to Span-
ish (en-es). The models for each language direction are trained separately, one model per
direction, based on the corresponding language-specific data, labels and features.
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3.1.1 Learning method and feature set

The experiments in this first par of the chapter are shown on these two versions of the
ranking mechanism:

The basic ranking mechanism (Avramidis and Popovié, 2013) is trained with 8 shallow
and grammatical black-box features using Logistic Regression. The feature set was devised
for de-en, by using feature scoring methods on the broader set of all available features.
The selected feature set was augmented with the baseline features of WMT12, known to
perform well in other types of QE. The resulting feature set was optimised for each language
direction with SFSS as part of the training process of Logistic Regression (Section 2.5.3).

Indicatively, for de-en, the basic feature set (Section 4.2.5) consists of the number of tokens,
the number of commas, the number of dots, the number of the unknown tokens, the con-
trastive METEOR score, the number of verb phrases, the parsing log-likelihood the number
of valid parse trees from the parser’s k-best list.

In the advanced ranking mechanism the models for all language directions have been
trained with Gradient Boosting over an ensemble of Decision Trees. For each of de-en
and en-de, the respective feature sets have been selected via Recurcive Feature Elimination
with Cross-Validation (RFECV) from an extended feature set (as explained in Section 4.3
and listed in Table 4.12). For the rest of the language pairs, the basic feature set is used.

The extended feature set for de-en contains additional grammatical features, such as fea-
tures from the probability distribution of the parse trees, the alignment of the main sentence
node (S— NP VP) between the source and the target and their position in the sentence,
the count of particular tree spans in the target, such as NPs containing a determiner and a
noun (NP—DT-NN), prepositional phrase derivations (PP—IN-NP) and derivations of a
VP containing an infinitive. Finally, the position and the count of NPs and nouns is used.
The extended feature set for en-de contains the count of target NPs aligned with source
NPs, the distance of VP-related tree spans from the end of the German sentence and fea-
tures related to the number and the position of VPs and PPs, also in the German sentence.
Additionally, feature sets for both language directions include the IBM-1 model scores, Lan-
guage Model probabilities, several features based on the count and the characteristics of the
words, statistics for the position of the unknown words, the number of errors from the lan-
guage correction (including a count of spacing errors) and the number or the position of
the dots in the sentence.

3.1.2 Data

The experiment is trained on human rankings resulting from the Shared Task on MT, or-
ganized as part of the Workshops on Statistical Machine Translation (WMT2008-2014, see
Callison-Burch et al.,, 2008, 2009, 2010, 2011, 2012; Bojar et al., 2013a, 2014). Every year, a
test set of several thousands of sentences is translated by all M T systems participating in the
translation task. These translations are passed to the evaluation campaign, with the goal to
rank the systems based on the quality of the translations. The translations of each sentence
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de-en en-de es-en en-es fr-en en-fr
systems 137 119 89 85 127 113
sentences 6644 7125 4499 4653 6047 6467
HITs 25385 22200 13694 12371 18099 20892
ranks 126901 110964 68454 61838 90459 103830
pairs 103048 91340 46305 91340 64474 88872

Table 3.1: WMT corpus statistics: number of systems, sentences, HI'Ts, ranks and pairs.

systems de-en en-de es-en en-es fr-en en-fr
2008 14 11 14 12 19 11
2009 21 13 13 11 21 16
2010 26 19 15 17 25 20
2011.combo 9 5 7 5 7 3
2011.newstest 21 23 16 16 19 18
2012 16 15 12 11 15 15
2013 17 15 12 13 13 17
2014 13 18 0 0 8 13
total 137 119 89 85 127 113

Table 3.2: WMT corpus statistics: number of systems for every yearly dataset

are grouped randomly into batches of 5 translations, which are distributed also randomly
to various annotators.

The annotators are asked to compare the machine-generated translations on a sentence
level. In every step of the evaluation (also called a HIT), the annotator is presented 5 dif-
ferent translations for the same source, along with the reference translation. Then the an-
notator is asked to rank the sentences from 1 to 5, based on their quality. Ties are allowed
and similarly to our assumption in Section 2.4, the ranks are no absolute scores of quality
and can only be interpreted relatively among the presented system outputs. An overview
of the properties of the corpus are shown in Table 3.1. Detailed statistics per yearly dataset
are given in Tables 3.2, 3.3, 3.4 and 3.5.

During the annotation, the systems that produced the translations are kept anonymous
from the users. The vast majority of the human annotators are participants of the shared
tasks (MT researchers themselves), whereas only for the data of one year, part of the anno-
tations are done by paid workers of Mechanical Turk'. Since crowd sourced annotations
require additional handling (Snow et al., 2008; Callison-Burch and Chris, 2009) they are
excluded from the experiments presented here. The test set, apart from MT outputs, may
include reference translations in the comparisons. Given our focus on learning compar-
isons of MT outputs, judgements related to reference translations are also filtered out.

! Amazon Mechanical Turk is a marketplace for hiring temporary workforce to perform work and collect
Artificial Intelligence data that require human intelligence. http://www.mturk.com
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systems de-en en-de es-en en-es fr-en en-fr
2008 235 276 256 183 267 211
2009 382 335 249 217 403 213
2010 441 522 468 246 375 348
2011.combo 147 171 171 177 90 90
2011.newstest 303 399 207 330 249 297
2012 975 1163 923 1166 949 1111
2013 2610 2303 2225 2334 2313 2555
2014 1551 1956 0 0 1401 1642
total 6644 7125 4499 4653 6047 6467

Table 3.3: WMT corpus statistics: number of sentences for every yearly dataset

de-en en-de es-en en-es fr-en  en-fr
2008 365 426 385 264 434 307
2009 748 745 484 378 784 390
2010 1050 1407 1140 519 837 801
2011.combo 390 441 423 600 300 300
2011.newstest 924 1308 570 1119 708 918
2012 1427 1752 1141 1475 1395 1547
2013 17911 9746 9551 8016 10943 13219
2014 2570 6375 0 0 2698 3410
total 25385 22200 13694 12371 18099 20892

Table 3.4 WMT corpus statistics: number of HITs for every yearly dataset

de-en en-de es-en en-es fr-en en-fr
2008 1810 2119 1917 1315 2154 1517
2009 3731 3700 2412 1878 3900 1938
2010 5250 7035 5700 2595 4185 4005
2011.combo 1950 2205 2115 3000 1500 900
2011.newstest 4620 6540 2850 5595 3540 4590
2012 7135 8760 5705 7375 6975 7735
2013 89555 48730 47755 40080 54715 66095
2014 12850 31875 0 0 13490 17050
total 126901 110964 68454 61838 90459 103830

Table 3.5: WMT corpus statistics: number of ranks for every yearly dataset



3.2. CORRELATION WITH HUMAN JUDGMENTS

3.1.3 Evaluation set

As explained above, the sets of alternative translations are split randomly and distributed
to several human annotators. Because of that, the comparison of two particular translation
alternatives may have been evaluated many times by different people, resulting occasionally
into contradictory judgments. We choose to not remove any contradictory overlaps upon
training, since the learning algorithms, due to their probabilistic nature, may not be affected
or even benefit by them.

However, concerning testing, a more robust point of reference is required: a learning
method should not be penalised for making decisions on data points that humans anyway
disagree. For these purpose, we merge the multiple HITs for the same source sentence into
one, so that each system output appears once in the new ranking. The system outputs for
this sentence are now ordered based on how many pairwise comparisons for this particu-
lar sentence they won. Contradictory pairwise judgments are eliminated through majority
voting, i.e. if the same pair of translations has been evaluated by more than two users, this
will be replaced by one judgment according to the majority of the users. Cases of equal
disagreement are removed from the test set.

3.2 Correlation with human judgments

In this section, the aim is to show that it is possible to construct a ranking mechanism which
produces ranks that correlate with those by humans.

Experiment setup The two versions of the ranking mechanism are trained with ML,
for all language pairs, learned on ranks produced by human annotators. The mechanism is
tested on unseen data and the correlation with the original human ranks is measured. As
null hypothesis, it is tested that the machine ranking on the unseen data has zero correlation
with the human ranks. The experiment is performed with a cross-validation with 10 folds
(Breiman et al., 1984) over the entire data set. The correlation is measured with Kendall’s
7. The null hypothesis is tested with a two-tailed test under a confidence level & = 0.05.

lang. dir.  adv. ranking mech. basic ranking mech.
de-en  0.276 (4-10727) 0.261 (1-1072%)
en-de  0.165 (1-1072%) 0.151 (1-1073%)
es-en 0217 (3-107%9) 0.105 (4-1079)
en-es  0.119 (410729 0.109 (8-1079)
frren  0.194 (1-107°%) 0.177 (2-10719)
en-fr 0209 (7-10711) 0.200 (5-107112)

Table 3.6: Correlation of two versions of the ranking mechanism with human rankings.
The correlation is measured with Kendall’s T. In brackets the p-value for the two-tailed test
for the null hypothesis of zero correlation, with a statistical significance level o = 0.05.
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Results The correlation results are shown in Table 3.6. It holds that every p-value is less
than the confidence level &« = 0.05. This rejects the null hypothesis that the predicted
rankings have zero correlation with human rankings, for both versions of the mechanism
in all language directions.

3.3 Significance of the ranking mechanism

Apart from showing that the ranking mechanism has some correlation with the human
rankings, it is important to show that this correlation is significant against some baselines.

Experimentsetup The ranking mechanism performance is compared with two unintel-
ligent rankings: a random ranking and a ranking in the alphabetical order of the systems.
It is enough to compare only the the version of the ranking mechanism with the lowest
performance. In order to make the comparison in terms of statistical significance, the em-
pirical confidence intervals of Kendall’s tau are observed, by applying bootstrap resampling
(av = 0.05) on the test sets (paragraph 2.7.1.1).

Results The results can be seen in Table 3.7. The unintelligent rankings produce very
low correlation scores, including a big amount of ties which result into negative 7 values.
The basic ranking mechanism is significantly better than all of them.

lang. pair  basic ranking mech. alphabetical random
de-en 0.261 (£0.013) -0.041 (£0.014) -0.144 (£0.014)
en-de 0.151 (£0.014) -0.030 (£0.014) -0.165 (£0.015)
es-en 0.105 (#40.020) -0.063 (£0.021) -0.182 (£0.020)
en-es 0.109 (£0.020) -0.037 (40.020) -0.170  (£0.020)
fr-en 0.177 (£0.017) -0.024 (£0.017) -0.175 (£0.017)
en-fr 0.200 (£0.014) -0.059 (£0.014) -0.145 (£0.014)

Table 3.7: Correlation of the basic version of the ranking mechanism with human rankings,
compared with a random and an alphabetical ranking. The correlation is measured with
Kendall’s 7. In brackets the empirical confidence intervals with a statistical significance
level o« = 0.05, based on bootstrap resampling.

It must be noted that negative values in 7 indicate a bad correlation (Section 2.7.1.1), in
contrast to other correlation metrics where the absolute value of the correlation score mat-
ters. With the confidence intervals considered, the basic version of the ranking mechanism
performs significantly better than a random or a fixed alphabetical order of ranks.
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3.4 Comparison with other ranking methods

The ranking mechanism is compared with several other state-of-the art methods for rank-
ing. This comparison has been part of the Shared Task on Quality Estimation of the Eighth
Workshop on Statistical Machine Translation (WMT13; Bojar et al., 2013b).

Experimentsetup Third-party QE ranking systems were not publicly available, so it was
not possible to re-train and test these systems in the exact experiment setting as above. In
order to still have a fair comparison among the systems, the official results of WMT13 are
presented, which introduces a slight variation on the data setting, as compared to the rest
of the experiments of this chapter.

The training set uses the WMT evaluation data from the years 2009-2012, whereas the
methods were tested with the data from the year 2008. The correlation scores are re-
computed to present Kendall’s tau similarly to previous experiments (as described in Sec-
tion 2.7.1.1). The experiment is applied on two language directions, German-English and
English-Spanish.

Two variations of our ranking mechanism were submitted as part of the shared task, both
using Logistic Regression with SFSS: The basic ranking mechanism as presented above and
a preliminary version of it, which excludes the tokenisation features.

Compared ranking methods The CNGL submissions (Bicici, 2013) rank the MT out-
puts after predicting individual continuous values, using a similarity threshold for each al-
ternative translation. Their model is trained with SVM Regression with a RBF kernel, to
predict the F; score, computed against reference translations. They use an extensive fea-
ture set with Referential Translation Machines (Bicici et al., 2013), whereas feature selection
with Partial Least Squares (PLS) is applied in one of the submissions.

The DCU submissions (Almaghout and Specia, 2013), available only for German-English,
follow a ranking approach similar to ours, by using a binary Logistic Regression classifier
on all pairwise comparisons of the ranking list (Section 3.6), but with a different feature set.
The feature set contains six CCG features. A second submission combines the aforemen-
tioned CCG features with 80 generic QE features (Specia, 2011).

UPC (Formiga et al., 2013a) also follow a similar ranking approach, based on a binary clas-
sifier on all pairwise comparisons. This method uses a Random Forest classifier including
ties. Two versions are submitted, based on two different feature sets of about 90 features,
including features of semantic analysis.

UMAC (Han et al., 2013) predicts ranking values as a multiple classification problem, using
Naive Bayes and SVM. CMU (Hildebrand and Vogel, 2013), submitted only for English-
Spanish, follows a method similar to the one used for n-best list reranking.

Results The results for the comparison on German-English can be seen in Table 3.8. The
basic ranking mechanism presented above scores significantly better than all other systems.
The basic ranking mechanism for English-Spanish ranks (Table 3.9) is in the second position

with 7 = 0.09.

47



CHAPTER 3. COMPARATIVE QUALITY ESTIMATION FOR RANKING

system ID T

basic ranking mechanism *0.31
preliminary ranking mechanism  *0.28
CNGL SVRPLSF1 0.17
CNGL SVRF1 0.17
DCU CCG 0.15
UPC AQE+LeM+ALGPR+LM 0.11
UPC AQE+SEM+LM 0.11
DCU baseline+CCG 0.00
Baseline Random-ranks-with-ties  -0.12
UMAC EBLEU-I -0.39
UMAC NB-LPR -0.49

*In the same position based on confidence intervals of confidence level o = 0.05

Table 3.8: Comparison of the basic system with other systems of the Task 1.2 of the WMT13
Quality Estimation shared task for German-English (Bojar et al., 2013a) in terms of corre-
lation with human rankings, using metric Kendall’s T

system ID T

CNGL SVRPLSF1 0.16
CNGL SVRF1 *0.13
basic ranking mechanism *0.09
preliminary ranking mechanism 0.04
UPC QQE+LeM+ALGPR+LM -0.03
UPC AQE+LeM+ALGPR+LM -0.05
CMU BLEUopt -0.11
Baseline Random-ranks-with-ties  -0.18
UMAC EBLEU-A -0.27
UMAC EBLEU-I -0.34
CMU cls -0.63

* In the same position based on confidence intervals with confidence level o« = 0.05

Table 3.9: Comparison of the basic system with other systems of the Task 1.2 of the WMT 13
Quality Estimation shared task for English-Spanish (Bojar et al., 2013a) in terms of corre-
lation with human rankings, using Kendall's T
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3.5 Comparison with reference-based evaluation met-
rics

In this experiment, it is tested whether the ranking mechanism using reference-agnostic
machine-learning on sentence-level human rankings can perform better or comparable to
state-of-the-art reference-aware automatic metrics.

Experiment setup A set of a sentences translated by many systems is ranked on the
sentence-level by both the ranking mechanism and every state-of-the-art automatic met-
ric. Automatic metrics produce scores by measuring differences between the translation
and the references, whereas the ranking mechanism applies a statistical model based on
quality features acquired on the translation itself. For every metric, the null hypothesis is
that the correlation of the metric with human rankings is better than the correlation of the
machine-learned ranking.

Here, the comparison is done using the advanced ranking mechanism. The metrics com-
pared are: Bilingual Evaluation Understudy (BLEU) with sentence-level smoothing, ME-
TEOR, rgbF, Translation Error Rate (TER) and Word Error Rate (WER) (Section 2.7).

Results The results (Table 3.10) reject the null hypothesis for every comparison. This
indicates that even without access to reference translations, the correlation of the advanced
ranking mechanism with human judgments is comparable to or higher than the automatic
metrics.

lang. pair ranking BLEU METEOR rgbF  TER  WER

de-en 028 -022%f 023% 016} -002% 0.15]
en-de 016 -042% 0.13% 010} -009% -0.15]
es-en 022 -0.19% 0220 016} -002% 0.137%
en-es 012 -021%f 0120 009¢ -0.10% 0.08 ]
fr-en 019 -0.18% 0200 015} -002% 0.16]
en-fr 021 -0.12% 0.18¢ 015} -003% 0.15%

I: ranking mechanism is significantly better than metric
©: ranking mechanism is significantly as good as metric

Table 3.10: Comparison of the best version of the ranking mechanism with state-of-the-art
reference-aware automatic metrics concerning correlation with human judgments (Kendall’s
7). Statistically significant comparisons based on Confidence Intervals of a« = 0.05 are
indicated.

The most powerful metric is METEOR, which already includes some tuning of its compo-
nents on human rankings. The ranking mechanism for de-en and en-de which has had
feature engineering particularly for these language pairs, is significantly better than ev-
ery other system including METEOR. For the rest four language directions (Spanish and
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French), where feature engineering from de-en was re-used, the ranking mechanism is sig-
nificantly as good as METEOR.

Apart from the success of our method, these results suggest that elaborate feature functions
and/or machine learning methods may provide more information for the relative quality
of translations than scoring methods based on comparisons with a single reference.

3.6 Machine learning methods

As explained earlier, the ranking mechanism is based on a statistical model produced
through machine learning. The process of ranking the alternative translations of each sen-
tence is decomposed into pairwise comparisons, allowing the use of a variety of robust
pairwise classifiers. In Section 2.5, several machine learning algorithms were outlined to
perform ranking as explained in Section 2.4. It is known that the performance among dif-
ferent machine learning algorithms may vary, given the type of the problem and the nature
of the data. This leads to the need to investigate how different machine learning algorithms
perform for the ranking mechanism. The goal of this comparison is to indicate the most
promising methods to be used in further experiments. A detailed investigation of the rank-
ing mechanism with several machine learning methods follows, including an assessment of
which methods give the best results.

Experiment setup The investigation of algorithms was run on German-English. Var-
ious classification algorithms were trained using the same feature set as the basic ranking
mechanism presented earlier (Section 3.1.1). The comparative run includes the following
basic classifiers: Decision Trees (Section 2.5.6), Gaussian Naive Bayes (Section 2.5.1), kNN
(Section 2.5.2), LDA (Section 2.5.4), Logistic Regression with L2 Regularisation and with
Stepwise Feature Set Selection (Section 2.5.3). Additionally, several ensemble classifiers
(Section 2.5.7) are build on top of Decision Trees. These include the Adaptive Boosting
(AdaBoost), Bagging, Extra Randomized Trees (ExtRa Trees), Gradient Boosting and Ran-
dom Forest.

Results The results of the comparison of various learning methods can be seen in Table
3.11. According to the basic metric, Kendall’s 7, five learning methods share the first statis-
tically significant position, based on the confidence intervals obtained through bootstrap
resampling at a confidence level of a=0.05.

The highest score is given by a classifier which ensembles Decision Trees, namely the Gradi-
ent Boosting, followed by Logistic Regression with SESS and the AdaBoost classifier. Logis-
tic Regression with SFSS and LDA outperform all non-boosted learning methods in terms
of 7, closely followed by Gaussian Naive Bayes.

Plain Decision Trees fail to achieve a significant correlation with human ranks. All the other
algorithms have some significant correlation with human ranks, as the p-value for the null
hypothesis of zero correlation satisfies the confidence level a = 0.05. As expected, the
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algorithm T p-value NDCG
Gradient Boosting 10.265 (£0.013) 3 x 10—%3 0.735
Logistic Regression SFSS 10.261 (£0.013) 1 x 10-24 0.730
AdaBoost 10.259 (£0.013) 7 x 10—220 0.733
LDA 10.257 (£0.013) 4 x 10-%2° 0.733
Gaussian Naive Bayes 10247 (£0.013) 3 x 10197 0.726
Bagging 0.205 (+0.014) 1 x 10198 0.716
kNN 0.196 (£0.013) 1 x 10137 0.715
Random Forest 0.191 (40.013) 2 x 10102 0.710
Extremely Randomized Trees 0.166 (4+0.013) 2 x 10-%4 0.701
Logistic Regression L2 0.129 (£0.013) 1 x 10938 0.699
Decision Trees 0.024 (£0.014) 1 x 10— 0.639

Table 3.11: Comparison of various machine learning algorithms on the MT output ranking
task for German-English (10-folded cross-validation) in terms of correlation with human
rankings as measured with Kendall’s tau and Normalised Discounted Cumulative Gain.
Kendall’s tau includes an empirical confidence interval on bootstrap resampling and the
p-value of the two-tailed test for the null hypothesis of zero correlation (a = 0.05)

classifiers which ensemble Decision Trees perform significantly better than the individual
Decision Trees.

Logistic Regression with Stepwise Feature Set Selection is chosen for the basic ranking mech-
anism presented in this work, because it combines the good performance with the ability to
interpret the statistical model. The highest scoring algorithm, Gradient Boosting, is thereof
chosen for the advanced ranking mechanism.

3.7 Elimination of ties by weighting pairwise decisions

As explained in Section 2.4.2, every rank is a result of aggregating many pairwise decisions.
Nevertheless, the recomposition of a rank from pairwise decisions often results in a tie.
This is a result of contradictory pairwise decisions. Yet, it may be that not all aggregated
pairwise decisions are of equal importance, and the confidence of the classifier may be a
good indicator. Based on this intuition, part of this work is to examine a new way of re-
composing ranks, which we call soft rank recomposition (Section 2.4.2.2).

In this experiment it is examined whether it is possible to reduce the number of predicted
ties by using the “soft rank recomposition”, without a negative effect on the results.

Experiment setup In the first part of the experiment, we train an instance of the basic
ranking mechanism for every language pair, based on a binary classifier of Logistic Regres-
sion with Stepwise Feature Selection. Subsequently we use the trained model to predict the
results of the pairwise comparisons for the test set. Then, the produced pairwise decisions
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are converted back to ranks with both “soft” and “hard” recomposition. We measure the im-
pact of the soft recomposition against hard recomposition on the amount of generated ties,
and on the correlation with human rankings based on Kendall’s 7 and NDCG. The training
and the evaluation is repeated within a cross-validation of 10 folds and the scores from all
folds are averaged.

Results The contribution of the soft recomposition of the ranks (Section 2.4.2.2) can be
read off Table 3.12. The ties are measured by the percentage of the pairwise comparisons
which are tied. The soft recomposition achieves equal or higher 7 correlation coefficients
and less ties for all the language pairs. At the same time, on all language pairs but one, the
number of the ties is reduced by a percentage of 40-51%. The soft recomposition also has a
positive effect on the secondary metric NDCG.

Given the success of this method, soft recomposition is considered as part of the default
settings on both the basic and the advanced ranking mechanism.

lang. predicted ties Kendall’s 7 NDCG
direction hard soft diff. hard  soft hard  soft

de-en 1.54% 0.79% -49% 0.253 0.261 0.719 0.730
en-de 0.99% 0.48% -51% 0.146 0.151 0.719 0.725
es-en 0.00% 0.00% 0% 0.105 0.105 0.737 0.737
en-es 2.34% 1.40% -40% 0.100 0.109 0.701 0.709
fr-en 2.46% 1.36% -45% 0.165 0.177 0.733 0.748
en-fr 1.98% 1.08% -46% 0.191 0.200 0.669 0.683

Table 3.12: The impact of soft rank recomposition on the basic ranking mechanism, as

measured with cross-validation over the entire dataset. The percentage of the predicted ties,
Kendall’s tau and NDCG are compared.

3.8 Effect of MT system performance on the amount of
ties

As indicated, the percentage of ties varies among language pairs. It is however noteworthy
that there can be no direct comparison between different language pairs, since the data for
each of them differ a lot. One aspect of these differences, is how the MT systems in each
language pair compare to each other in terms of their translation performance. Therefore,
we proceed with analysing the contribution of the performance differences between MT
systems.

Additionally, the results in Table 3.12 leave open the question why the ranking mechanism
for Spanish-English (es-en) does not predict any ties in the first place. As noted earlier,
there are different systems participating in every language pair and this is also the case for
Spanish-English. Having seen the effect of the performance comparison between different
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MT systems, we try to explain why the data for Spanish-English are particularly different.
For this purpose we perform a comparison concerning the average document-level BLEU
difference of the MT systems that participate in pairwise comparisons.

Experiment setup For this experiment, we gather data from all language directions. For
every pair of systems whose segments are compared, we measure the number of predictions
that result into ties and the difference of the document-level BLEU score between these two
particular systems. The comparative analysis is plotted in Figure 3.1. The system pairs that
exhibit the same amount of ties (X axis) are grouped together and their pairwise differences
in document-level BLEU scores are averaged among all system pairs with the same number
of ties (Y axis).

Results The results in in Table 3.13 indicate that when the BLEU difference between two
systems is high in average, pairwise comparisons result in a small amount of ties, whereas
the amount of ties gets increased for comparisons between systems which have smaller dif-
ference in BLEU. This leads to the conclusion that the closest two MT systems are in terms
of translation performance, the hardest it is for the automatic mechanism to distinguish the
difference between them.
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Figure 3.1: The higher the BLEU difference between systems, the less ties appear. Stacked
linear graph of the document-level BLEU difference between M'T systems participating in
pairwise comparisons (Y axis) against the number of ties for the pairwise segment-level com-
parisons of the respective MT system pairs (X axis) measured on aggregated data from all
language pairs

Indeed, the MT systems compared in the case of Spanish-English have the highest
document-level BLEU difference than all the other language pairs, reaching 9.38 points
BLEU, which is 0.7 points higher than the next BLEU difference which is observed for
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lang. pair de-en en-de es-en en-es fr-en en-fr
BLEU difference | 7.47 6.23 938 852 849 8.65

Table 3.13: Document-level BLEU score difference for the MT systems participating in the
pairwise comparisons in each language pair.

English-French. This leads to the assumption that one of the reasons for the lack of ties
for Spanish-English relies on the high difference of performance between the systems con-
tained in the data of this language pair.

3.9 Weighting pairwise decisions on various algorithms

The elimination of ties is based on weighting the pairwise decisions by the classification
probability prior to re-composing the ranking for each sentence. In a previous experiment
(Section 3.7), it has been shown that the elimination of ties has a positive or at least no neg-
ative effect, when used for recomposing the ranks predicted with Logistic Regression with
Stepwise Feature Set Selection. Since every binary classification algorithm has a different
way of computing probabilities, an additional experiment may indicate the applicability of
the methods on various algorithms.

Experiment setup The investigation across different algorithms takes place on a similar
setup as previously (Section 3.6), based on a 10-folded cross-validation on German-English
data. The same settings for each one of the learning methods are also used here.

Results The impact of soft rank recomposition on various learning methods can be seen
in Table 3.14. Soft recomposition results into a severe reduction on the number of the
predicted ties for most of the algorithms. This does not hold for Gaussian Naive Bayes
(Gaussian NB) and LDA, where a small amount of ties is induced. For LDA in particular,
the induced ties do not have a negative effect on the correlation, while for Gaussian Naive
Bayes, the predicted probabilities seem to not be good for weighting pairwise decisions, as
their use results in discordant pairs.

For the rest of the algorithms, the correlation with human ranks, as measured by Kendall’s
7 or NDCG increases or remains in the same level. In the cases of four algorithms, Gra-
dient Boosting, AdaBoost, kNN and Logistic Regression with L2 Regularisation, the few
predicted ties are totally eliminated. For algorithms with lower initial performance and
bigger amount of predicted ties, such as Bagging, kKINN, Random Forest and ExtRa Trees,
the gains with soft rank recomposition are more significant.

54



3.10. SUMMARY

algorithm predicted ties Kendall’s 7 NDCG
hard soft diff. hard  soft hard  soft

Gradient Boosting  0.42% 0.00% -100% 0.260 0.265 0.733 0.735

LogReg SFSS 1.54% 0.79%  -49% 0.253 0.261 0.719 0.730
AdaBoost 0.38% 0.00% -100% 0.255 0.259 0.732 0.733
LDA 0.15% 0.18% +19% 0.257 0.257 0.733 0.733
Gaussian NB 0.00% 0.61% (+62) 0.253 0.247 0.734 0.726
Bagging 6.52% 0.39% -94% 0.138 0.205 0.681 0.716
kNN 2.56% 0.00% -100% 0.167 0.196 0.705 0.715
Random Forest 6.37% 0.55% -91% 0.130 0.191 0.680 0.710
ExtRa Trees 6.75% 0.72%  -89% 0.101 0.166 0.668 0.701
LogReg L2 0.38% 0.00% -100% 0.132 0.137 0.699 0.700

Decision Trees 11.48% 9.66% -16% 0.005 0.024 0.631 0.639

Table 3.14: Impact of soft rank recomposition applied on various binary classifiers, as mea-
sured with evaluation over the entire dataset (10-folded cross-validation). The percentage
of the predicted ties, Kendall’s tau and NDCG are compared.

3.10 Summary

Machine learning was successfully used as part of a mechanism that is able to perform pref-
erence ranking on alternative machine translation outputs. Statistically significant cor-
relation with human judgments was observed and further comparisons indicate that the
performance of the mechanism is better than all the baselines and other ranking meth-
ods. Most importantly, the ranking mechanism performs significantly better than the state-
of-the-art reference-aware automatic metrics, for the language pairs where focused fea-
ture engineering took place. The ranking mechanism also beats other metrics in language
pairs where the feature engineering from other language pairs was adopted, apart from
one reference-aware metric, METEOR, which is on par with the ranking mechanism. This
suggests that elaborate features and machine learning may provide more information about
relative translation quality than direct comparison with references.

The fact that ranking was decomposed into pairwise decisions allowed the integration of
several machine learning algorithms with positive results. The best performing algorithms
are Gradient Boosting, Logistic Regression, with Stepwise Feature Set Selection, AdaBoost,
LDA and Gaussian Naive Bayes.

The recomposition of a ranking from pairwise binary classifier decisions faces the problem
of creating ties, as a result of unclear and contradictory pairwise decisions, provided also
that the test sets have been built with the assumption that there are no ties included. This
was solved by weighting the pairwise classification decisions with their prediction proba-
bilities before aggregating them in order to recompose full rankings. This method, referred
to as soft rank recomposition, may have different impact to ranking prediction when ap-
plied on various algorithms. It has a positive impact when applied to the most of the algo-
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rithms investigated, including the three top-performing algorithms. Concerning only two
algorithms (LDA and Gaussian Naive Bayes), soft rank recomposition yielded a small, yet
not statistically significant loss on the correlation with human judgments. Finally, it is also
shown empirically, that when the difference in the overall performance of the MT systems
that are being compared is small, more ties appear, and vice versa.
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Chapter 4

Feature Engineering

The supervised machine learning method for ranking (Section 2.5) requires the extraction
of features. The features are numerical values reflecting various linguistic or statistical phe-
nomena of the sentence in focus. These phenomena are expected to be related with the
quality of the translation and therefore they can be beneficial as factors of the QE model.

The entire spectrum of features considered for the ranking mechanism, including their the-
oretical background, is described in Section 2.3. Nevertheless, their development and util-
isation has been the result of an iterative feature engineering process, aiming to select and
use the features in an optimal way, in line with several ML methods. This process has gone
through several phases, whereas new features and more advanced statistical and ML meth-
ods are gradually employed in every phase.

The aim of this chapter is therefore to describe the feature engineering process by providing
detailed information on the steps taken in every phase. Through this process, the effective-
ness of several features is examined via statistical analysis and/or hypothesis testing and as
a result, several useful conclusions are drawn.

A short overview of the phases followed in each phase can be seen below:
Preliminary ranking mechanism:

1. Create a pool of preliminary features based on grammatical phenomena
2. Investigate contribution of features using feature scoring

3. Select minimal feature sets using human intuition

4. Train with a basic ML method with various feature combinations

Basic ranking mechanism:

1. Augment preliminary feature set with baseline features from absolute QF
2. Train with Feature Set Selection embedded in the ML method
3. Investigate contribution of features

Advanced ranking mechanism:

1. Add advanced grammatical and statistical features
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2. Select features with the RFECV based on a SVM
3. Train advanced ensemble classifiers

The separation of the development in phases allows us to introduce new feature sets and
ML methods between subsequent phases, but also means that the experiment settings vary
slightly, e.g. in terms of data or evaluation sets, which also increases gradually from phase
to phase. Therefore, not all experiment results are directly comparable between each other,
but they are detailed here, due to the useful conclusions that can be drawn through the
comparisons within each phase.

4.1 Preliminary ranking mechanism

The aim of the preliminary ranking mechanism is to indicate the usability of grammatical
features against shallow methods (such as n-gram scoring). The focus is on devising a min-
imal feature set, including some grammatical features. The usability of this feature set shall
be indicated within a model trained with a simple classifier.

Simple classifiers, such as Naive Bayes, are useful for a preliminary experiment, since they
can be implemented and trained quickly, whereas quick repetitive training allows experi-
menting with a wide variety of feature combinations in order to confirm several hypotheses.
Although there are learning methods able to deal with a broad set of features and the con-
tribution of some features is likely to change, if a more complex method or feature set is
used, this preliminary phase aims at highlighting the contributions of particular features by
using a basic learning method.

Therefore we restrict the minimal feature set to 5 features per experiment, chosen from a
broader pool of 10 features. The pool of 10 features considered in this development phase
is shown in Table 4.1.

Count-based: Number of words in the source and target sentences
Language Model: Smoothed n-gram probability of the entire target sentence for a
large Language Model of order 5.
Unknown words: words unseen in the training corpus of the LM.
Parsing: PCFG features for both source and target side:
+ the number of valid parses in the n-best list of the parser,
« the sentence likelihood, i.e. summing out all parse trees: P(w),
« the joint likelihood of the best tree and its words: P (¢, w),
+ the averaged likelihood of all trees in the n-best list,
+ the number of occurrences of VPs and NPs in the PCFG parses of both the source
and the target

Table 4.1: Features considered for the preliminary feature set.

In this phase we also derive features from both the source sentence and the translation out-
puts. As explained in Chapter 2, the learning methods operate based on machine learning
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instances that represent two M T outputs for the same source sentence. This instance is rep-
resented with one binarised feature vector which may contain the features from the source
and both feature outputs. Despite the source features being the same for both outputs, we
include them as there is still a case that their existence in the feature vector may be useful
for measuring adequacy, due to interactions with the target features. This will be examined
in more detail in Section 4.2.1.

Experiment setup The machine learning core of the system is built with Naive Bayes
(as explained in Section 2.4.1). The pairwise classifiers for the task are learned using the
German-English test-set of the WM'T 2008 and 2010 (about 700 source sentences including
3,500 translations or 14,000 pairwise comparisons). For testing, the classifiers are used to
perform ranking on a test set of 184 sentences (including about 920 translations or 3,600
pairwise comparisons) which have been kept apart from the 2010 data, after filtering out
those that do not contain contradictions among human judgments.

4.1.1 Feature scoring

Simple classification methods are expected to perform better, given a small group of statisti-
cally independent features, so we need quick methods to identify features that are expected
to perform well. As a quick way of acquiring knowledge about the usability of the features,
we performed feature scoring based on a set of scoring methods, including Relief, Informa-
tion Gain, Gini Index, Relevance and Distance (Section 2.6). For the scoring methods that
required discrete feature values (all apart from Relief), prior to scoring the feature values
were discretised to 100 values. The scoring was performed on the training part of the WMT
2010 data set.

The feature scoring results are shown in Table 4.2. The top features according to the scor-
ing methods are the LM probability, which scored first for Information Gain, Gini Index
and Relevance, the number of unknown words according to the distance scoring and the
number of parse trees according to Relief.

The results are very encouraging for the use of grammatical features. The parse likelihood
scores very high and gets the second position for most scoring methods, whereas Relief
scores the number of the parse trees on the highest position. A general observation is that
the source features individually have very low or zero scores for all scoring methods.

4.1.2 Feature observations via model estimation

As explained above, the purpose of the preliminary development phase is to identify a mini-
mal set of innovative features and confirm their applicability using a basic ML method. The
experiment is repeated with various feature combinations, based on the observations pro-
vided by the feature scoring methods. After repeating the model estimation with various
feature sets, conclusions are drawn in three basic directions:
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dist  infgain  gini rel  relief
target features

Number of unk 0.013 0.033 0.011 0.133 0.042
Avg n-best tree likelihood 0.011  0.057 0.018 0.181 0.027
LM probability 0.009 0.068 0.022 0.248 0.026
Best tree joined likelihood 0.008 0.058 0.019 0.217 0.012
Sentence likelihood 0.007 0.050 0.017 0.206 0.012
Number of parse trees 0.007 0.028 0.010 0.125 0.043
Number of tokens 0.002 0.011 0.004 0.089 0.017
Number of VPs 0.002 0.007 0.002 0.080 0.018
Number of NPs 0.001 0.007 0.002 0.084 0.023
Number of dots 0.000 0.001 0.000 0.008 0.007
Number of commas 0.000 0.000 0.000 0.017 0.000

source features
Number of finite verbs 0.000 0.000 0.000 0.000 0.006
Avg n-best tree likelihood 0.000 0.000 0.000 0.000 0.006

Number of NPs 0.000 0.000 0.000 0.000 0.005
Number of parse trees 0.000 0.000 0.000 0.000 0.004
Number of nouns 0.000 0.000 0.000 0.000 0.004
Number of VPs 0.000 0.000 0.000 0.000 0.002
Number of commas 0.000 0.000 0.000 0.000 0.002
Number of PPs 0.000 0.000 0.000 0.000 0.002
Number of tokens 0.000 0.000 0.000 0.000 0.001
Sentence likelihood 0.000 0.000 0.000 0.000 0.001
Best tree joined likelihood 0.000 0.000 0.000 0.000 0.001
Sentence likelihood 0.000 0.000 0.000 0.000 0.001

Table 4.2: Information gain and Gini Index, Relevance and Distance for preliminary fea-
ture set.

Grammatical features versus LM probability Scoring sentences with their Language
Model (LM) probability is a common practice for most SMT systems. The goal of this ex-
periment is to define features beyond the Language Model scoring. In this experiment we
test whether grammatical features can be more useful than the score from the Language
Model.

We train three QE ranking models using a minimal feature set as a baseline. We measure
the performance of the model with that minimal feature set (number of unknown words
and sentence length and additionally two augmented versions of this set: one adding the
Language Model scores and one adding the grammatical features instead.

The results can be seen in Table 4.3, where the correlation of each setting against human
rankings is measured. Adding the LM probability to the minimal feature set yields no im-
provement on the correlation. However, replacing the LM probability with three gram-
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features T

unk, len 0.20
unk, len, LM probability 0.19
unk, len, ny.es, VPs, summed n-best log-likelihood 0.26
unk, len, ne.es, NPs, best-tree log-likelihood 0.23
unk, len, ng..s, VPs, avg n-best log-likelihood 0.21
unk, len, ne..s, VPs, best-tree log-likelihood 0.25

unk: number of unknown words
len: number of sentence tokens
Nirees: NUmMber of generated trees in the parsing n-best list

Table 4.3: Augmenting a minimal feature set with grammatical features achieves better
ranking performance than when adding LM probability.

matical features achieves an improvement of 7 = 0.07, which is statistically significant.
Therefore, we can conclude that the grammatical features are useful for a minimal ranking
mechanism and that they perform better as features than the LM probability.

NPs versus VPs Having as a goal to restrict the size of the minimal feature set to the 5
most useful features, we compare the training of the model with two different settings. The
first setting is based on the minimal feature set including the number of unknown words,
the number of sentence tokens, the number of n-best parse trees, the joint log-likelihood of
the best tree and the number of VPs. The second setting replaces the VPs of the previous
one with the NPs.

The result can be seen in the second part of the Table 4.3. Counting VPs is more helpful than
counting NPs. Although the improvement between the feature sets with NPs and VPs is
relatively small and not conclusive, the feature set including VPs is the only one that yields
a significant improvement over the minimal feature set. Therefore we can conclude that
using VPs is preferable. In order to adhere to a minimal set of 5 features, we will proceed
in using the most successful feature in further experiments.

Variations of parse probability As seen above, three variations of the parse probability
can be extracted from the PCFG parsing process of the coarse-to-fine n-best PCFG pars-
ing process (Section 2.3.1). Using the sentence log-likelihood (summing the log-likelihoods
from all the parse trees) achieves significantly better performance than just averaging the
joint log-likelihood of all the trees in the n-best list. Though, there is a very small differ-
ence in the performance between the best-tree log-likelihood and the summed n-best log-
likelihood.
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4.2 Basic ranking mechanism

Since the preliminary ranking mechanism was created as a proof-of-concept and a means
for initial observations, this section is presenting its extensions towards a basic ranking
mechanism that can perform significantly better over a bigger amount of data. The pre-
liminary feature set with the grammatical features is augmented with several new state-
of-the-art features from related work in absolute (i.e. non-comparative) QE. Apart from
the fact that the experiments take place on the full amount of data, a more robust learning
method (Logistic Regression) is used, so that it can take better advantage of the multitude of
features. Additionally, such a model can be relatively interpretable, leading to useful con-
clusions about the features.

Experiment setup Whereas the machine learning core of the preliminary system was
built with Naive Bayes, in the basic mechanism we are introducing Logistic Regression. The
experiments were performed using the full amount of the available data of WM'T2008-2014
for German-English, as detailed in Section 3.1.2. It contains about 4,500-6,600 sentences
per language pair translated by various M T systems. The translations of each sentence were
grouped randomly into batches of 5 translations, which were manually ranked by annota-
tors.

In order to reduce the complexity of the iterations, the experiments are run on the 6th
fold of the 10-folded cross-validation, as that was the fold whose scores were closest to the
cross-folded scores during preliminary experiments.

4.2.1 Source/target features and ratios

Related work on absolute QE (e.g. Felice and Specia, 2012), apart from the use of source fea-
tures, has suggested the introduction of features that are result of the ratio of source against
target features. This suggestion is based on the intuition that particular characteristics from
the source should be conveyed in the target, in a way that can be seen through the ratios. For
this purpose, for every monolingual feature that is applicable to both the source sentence
and the target sentences, a new feature is created, as a result of the ratio of the source value
to the respective target value.

Since this assumption was originally made for absolute QE, in this experiment, we are ex-
amining whether in this preliminary feature set of comparative QE it is preferable to include
feature ratios, separate source and target feature values, or only target feature values.

feature set T

preliminary (source/target ratios) 0.168
preliminary (source+target) 0.192
preliminary (target) 0.192

Table 4.4: Comparison of various ways of incorporating source features into the feature set.
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Indeed, the results in Table 4.4 indicate that calculating the ratios of the features lead to
considerably lower results than giving the source and target features separately. These ob-
servations confirm that during feature engineering it is a good practice to not pre-calculate
relations between features prior to the learning process. We can assume that the reason that
pre-calculating hurts the performance of the model, is that it forces the learning method to
indirectly include a potentially harmful estimator in the model that might have otherwise
been assigned a negligible weight during the model estimation.

Additionally, there is no indication of a better prediction when source features complement
the target features. This confirms the observation of Section 4.1.1 (also suggested in pre-
vious work by Zwarts and Dras, 2008, albeit with more limited experimentation), that the
source features do not contain any useful knowledge for the comparison of the translations.

4.2.2 Introducing Logistic Regression and contrastive scoring

In this experiment, some improvements on the preliminary ranking mechanism are tested.
Machine learning is improved, as Logistic Regression is introduced as a learning method,
since it can handle more efficiently a multitude of features without the assumption of in-
dependence that Naive Bayes relies on.

Additionally, following suggestions from related work in absolute QE (Soricut et al., 2012),
a new feature of contrastive scores is introduced. Contrastive evaluation metrics score the
n-grams of each produced translation, using the translations by the other competitive sys-
tems as multiple pseudo-references. Here, we experiment with contrastive METEOR (as
explained in Section 2.3.1.5).

feature set / model T

preliminary 0.192
+ Logistic Regression 0.202
+ contrastive METEOR  0.249

confidence interval (a« = 0.05): 7 = 0.014

Table 4.5: Improvements to the correlation with the human rankings by re-training with
Logistic regression and adding contrastive METEOR

The results of the experiment can be seen in Table 4.5. The usage of Logistic regression
results into a considerable improvement on the scores. The addition of contrastive scor-
ing nevertheless introduces a statistically significant improvement of 7 = 0.047 over the
models trained with the preliminary feature set.

When more than one systems perform the same translation, it may often be the case that
they collectively convey more correct information than each of them. This property can be
useful for the comparison of the translations. A system output that agrees more with the
majority of the other systems, is more likely to be preferred as the best translation, as shown
by the positive contribution of the contrastive scoring feature.

63



CHAPTER 4. FEATURE ENGINEERING

4.2.3 Using features from absolute Quality Estimation

The contribution of more features from absolute Quality Estimation is considered in this
experiment. This includes the set of the “Vanilla" features that were publicly available as the
baseline for the QE Shared Task in WMT12 (Callison-Burch et al., 2012). These features
were proven useful for the prediction of absolute values, as compared to the prediction of
comparisons or rankings that this work is focusing on.

« number of tokens in the source sentence and the target sentence, average source
token length

« LM probability of the source and the target sentence (3-gram)

« ratio of appearances of every target word within the target sentence (type/token
ratio)

+ average number of translations per source word in the sentence (as given by IBM-
1 table thresholded so that p(t|s) > 0.2),

+ average number of translations per source word in the sentence (as given by IBM-
1 table thresholded so that p(t|s) > 0.01) weighted by the inverse frequency of
each word in the source corpus

« percentage of uni-grams/bi-grams/tri-grams in frequency quartiles 1 (lower fre-
quency words) and 4 (high frequency words) in a corpus of the source language
(SMT training corpus)

+ percentage of uni-grams in the source sentence seen in a corpus (SMT training
corpus)

« number of punctuation marks in the source and target sentence

Table 4.6: The 17 baseline features from absolute QE (Callison-Burch et al., 2012)

The baseline feature set includes 17 features, whose description can be seen in Table 4.6.
Some of them, such as the count of tokens and the LM probability, coincide with our ex-
periments illustrated above. Several other features are new, including word alignment fea-
tures based on the IBM model 1, corpus statistics for the source words and counts for the
punctuation.’

We run the experiment with three settings: one with just the absolute QE features, one
with the previously explained feature set and one with a combination of the above. For
comparison, we also include the performance of the preliminary feature set.

The ranking correlation scores achieved by the three models can be see in Table 4.7. Both
the preliminary feature set and the feature set with the contrastive scores already yield
to models significantly better than the absolute QE features. Adding the QE features fur-
ther improves the correlation by about 7%. It must be noted that due to the different data
setup between the development phases of preliminary and the basic ranking mechanism,
the numbers appearing in Tables 4.3 and 4.7 are not directly comparable. To allow for a

'Punctuation counts were also considered for our preliminary ranking mechanism but they did not qual-
ify for the minimal feature set as they achieved relatively low feature scores on Relief, Information Gain etc.
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feature set / model T

absolute QE features 0.172
preliminary 0.202
preliminary & contrastive (4.2.2) 0.249
+ absolute QE features 0.266

Table 4.7: Improvements to the correlation with the human rankings by adding features
from absolute QE

direct comparison in the latter table, the scores corresponding the preliminary feature set
have been re-computed to conform with the setup of the basic ranking mechanism.

Further investigation on the extent that absolute QE features are relevant for the purposes
of the comparative QE will be discussed upon the coefficient analysis in Section 4.2.5.

4.2.4 Stepwise feature set selection versus L2 Regularisation

Learning methods include several capabilities explicitly for handling features. Two known
methods for handling features as part of the learning process are the L2 Regularisation and
the Stepwise Feature Set Selection (Sections 2.5.3 and 2.6.3 respectively). Here, we examine
the suitability of each of these methods for this feature engineering process.

We train two models with the same settings, one with Logistic Regression with L2 regular-
isation and one with Stepwise Feature Set Selection. We measure the performance in terms
of correlation with human ranking, in order to see which of the two methods is better for
the given problem.

Logistic Regression methods T CI (a = 0.05)

L2 Regularisation 0.125 +0.014
Stepwise Feature Set Selection  0.266 +0.014

Table 4.8: Comparison between two methods of Logistic Regression in terms of correlation
of the produced ranking with the human rankings, both trained on the basic feature set.

The results of the comparison of the two variations of the learning algorithms can be seen in
Table 4.8. The approach of Stepwise Feature Set Selection outperforms the L2 Regularisa-
tion with statistical significance. Through further investigation, it can be seen that learning
process including L2 Regularisation has lower performance due to the requirement for the
normalisation of the features. The normalisation is unable to handle properly the features
which contain values equal to the infinite, as is often the case for the parse log-likelihood.
In that case, these features may not be represented properly in the model.
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4.2.5 Contribution of features

Useful conclusions concerning the contributions of various features can be drawn by look-
ing the estimated beta (/3) coefficients of the Logistic Regression model (Section 2.5.3) as a
result of the learning process. For every co-efficient, the null hypothesis of it being equal to
zero has been rejected with a x-test. The sign (positive/negative) of the coefficient indicates
whether the feature has a positive or a negative contribution the selection of the translation
by the humans. Additionally, if the features values have been normalized with their mean
and variance, the value of the coefficient may provide indications for the importance of the
features on the final decision.

feature name (target sentence) 16

number of unknown words -0.58
number of tokens 0.50
contrastive METEOR 0.29
number of VPs 0.17
number of n-best trees -0.17
type/token ratio -0.14
number of commas -0.11
sentence parse log-likelihood ~ 0.08
3-gram probability -0.05
number of dots 0.04

Table 4.9: The beta coefficients estimated with logistic regression for each feature, in a
descending order based on their absolute value. Feature values have been normalized with
the mean and the variance of the respective feature.

The beta coefficients in a model fitted with Logistic Regression can be seen in Table 4.9. An
effort to get some useful conclusions from the estimators is given below.

The number of unknown words (unk) is a strong indication for an incomplete trans-
lation. Although out-of-vocabulary words are not necessary indications for untranslated
words, when two translations of the same source have a different amount of unknown
words, it is more likely that the one with the most unknown words has failed to translate
some of them.

The overall number of tokens (len) in the sentence is a positive indication for the better
translation. For many translation systems, particularly the statistical ones, it is a common
case that some source words are not translated. This is because during the decoding process
it is decided that some words/phrases suggested by the translation model reduce dramati-
cally the overall score of the produced sentence, considering also the Language Model. Sim-
ilar may be the case for syntax-augmented systems (Khalilov and Fonollosa, 2009). There-
fore, when a translation has less words than its competitor, it may be the case that a useful
word was omitted.

Additional words also occur as a translation error, e.g. when phrases chosen during the de-
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coding of a phrase-based system overlap partially. A special case of this, when the same
word is repeated in the generated translation, is handled by the type/token ratio, which is
given a negative coefficient.

Contrastive METEOR also appears to have a high contribution to the prediction. This
confirms the improvement that was shown in a previous experiment, where a possible ex-
planation is given too (Section 4.2.2).

The number of verb phrases (VPs) is directly connected with the fluency of the produced
translation. The feature value is a result of the parser having tried to analyze the structure
of the sentence and identify the existence of one or more verb phrases. Among translation
errors, it is more likely that a VP is not formed properly, than having superfluous verb
phrases formed by mistake. That may be a reason for the observation that if a translation
has more verb phrases than its competitor, it is more likely to be chosen.

Similarly, when the parser analyses a translation, it creates n-best lists with trees with al-
ternative analyses of the grammatical structure. Whereas these lists are scored, so that the
best parse can be selected, the size of the list can indicate how ambiguous the parse is, as
already suggested upon the design on the features (Section 2.3). A translation with fewer
n-best trees is a translation with a less ambiguous grammatical structure and this may ob-
viously play a role when comparing translations. The sentence parse log-likelihood also
has a positive contribution, as another indication of grammaticality (Mutton et al., 2007).

The contribution of punctuation count indicates that translation systems often do mis-
takes with punctuation marks. In particular, it seems more likely to select a translation
when it has fewer commas, or when it has more dots. These might be connected with the
tension of some systems to erroneously create too many commas or to omit dots, something
that obviously is irritating for the readers.

Finally, there is little explanation of the low, albeit negative contribution of the tri-gram
Language Model probability. Whereas one would expect that a higher model probability
would be preferable, this is not the case. One could only assume that this is interacting with
some other features, e.g. to give some precedence to the grammatical features against the
Language Model.

There can also be conclusions about the features that were not included in the model. It
is now possible to identify which of the absolute QE features were useful when added
to the preliminary feature set. In fact, only the punctuation features, the type/token ratio
and the tri-gram probability were assigned a non-zero coefficient, added to the target sen-
tence sentence length, which already existed as a feature in the preliminary feature set. On
the contrary, none of the features containing information about the source words or the
alignment of target words to source words were deemed of significant importance for the
model.

Additionally, we confirm that the source features play no role in the comparison between
translations (see Sections 4.1.1 and 4.2.1) since these features have been assigned zero co-
efficients. Despite intuitions why source features can be useful, we may also assume that
for the current dataset, the given features do not introduce any useful knowledge about the
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relative ability of the systems to translate these source sentences. Although target-side fea-
tures are designed to measure fluency as opposed to adequacy, we may here assume that
adequacy information is indirectly conveyed through other comparative features, e.g. the
count of unknown words, the number of tokens or the contrastive scores.

4.3 Advanced ranking mechanism

The latest, most advanced phase of the ranking mechanism has the goal to improve the per-
formance by including a wide variety of more sophisticated features. The features undergo
a more advanced feature selection method, whereas ensemble classifiers are employed to
handle the bigger size of the feature set.

Experiment setup The advanced ranking mechanism follows the setup of the basic
ranking mechanism, with the difference that the evaluation is done on a full cross validation
with 10 folds. The folds have been particularly adjusted, so that multiple evaluations of the
same sentence, which exist on the border between the training part and the test part of the
fold, remain on the same part. Additionally, all steps of the feature engineering process are
now expanded to the language pair English-German, in order to indicate the applicability
of the investigated methods.

4.3.1 Feature clean-up

An extended feature set is considered for this part of the ranking mechanism. Additionally
to the features of the basic set, presented in the previous section, it includes all possible
generated black-box features from the categories tree label counts, CFG rules, alignment of
tree nodes, language checking and IBM- 1 model scores and some additional count-based and
position features. A detailed list of the features is given in Section 2.3.1.

Some of the above feature categories refer to an open class of features. This means that
the amount of features is not pre-defined, but it depends to the annotation of the given
text. Additionally, since many of these features refer to aligned tree nodes or CFG rules,
the final number of features may be very high. Indeed, for the feature extraction we used a
sample with the first 11,114 sentences, containing 55,544 translations. For these sentences,
the feature generation process resulted into approximately 154,657 features. This is far
beyond the capability of the machine learning methods, given the size of the corpus.

Nevertheless, many of these feature are sparse, since they depend on the appearance of a
grammatical phenomenon and a vast majority of them appears in relatively few sentences.
Indicatively, among the above features, there are 22,970 aligned tree nodes between English
and German. Out of these, only 26 tree node labels are aligned in more than 10,000 sen-
tences, 46 of them in more than 5,000 sentences, whereas 197 tree node labels are aligned
in more than 1,000 sentences.
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Based on the above, we proceed by choosing only a subset of the entire feature set, by se-
lecting the most dense features from the important categories. For each feature, we vary the
density threshold to get a representative sample. In particular, from the open class features
we gave priority to classes which are highly relevant to grammaticality, and in particular
VPs and NPs:

+ CFG features including VPs and derivatives with more than 20,000 occurrences (5
features)

+ CFG features including NPs and derivatives with more than 20,000 occurrences (5
features)

+ CFG alignment features including VPs and derivatives with more than 10,000 occur-
rences (5 features)

+ CFG alignment features including NPs and derivatives with more than 30,000 oc-
currences (5 features)

+ CFG position features including VPs and derivatives with more than 24,000 occur-
rences (5 features)

Additionally we included language correction features that have more than 1,000 occur-
rences (4 features). From the rest of the features, where there is no clear intuition about
their contribution on grammaticality etc., the density threshold was set to include the ones
that are more dense, albeit limiting the overall number of features to a few hundreds. After
some repetitive probing, the threshold was set to chose the ones that have at least 51,000
occurrences. This includes:

+ 50 features from absolute QE, as provided by QuEst

+ 8 features about the position of unknown words in the sentence

+ the Language Model probability

+ the IBM1-model score on both directions

+ the recall, precision and overall score of contrastive-METEOR, and the score of con-
trastive BLEU

+ count and position statistics for VPs, NPs, NNs, dots, commas

+ maximum and average height of an S, a NP or a VP node in a tree

+ parsing statistics (log-likelihood, number of trees) from both Berkeley parser and Bit-
Par

This selection process resulted to a set of 139 features. It must be noted that the above
intuition-based selection process is done mostly for acquiring an adequate and compact
set as a step for advancing the experiments. There is no evidence whatsoever, that the size
or the content of the reduced feature set is by any means optimal, as compared to other
possible subsets from the original 154,657 feature set.

4.3.2 Adding the advanced features to the basic ranking mechanism

The first experiment with the advanced feature set concerns its application on the exact
setup of the basic mechanism. We train two models for each language pair, using Logistic
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set T NDCG

basic 0.261 0.730
advanced 0.110 0.680

Confidence interval (« = 0.05): 7 = 0.014

Table 4.10: Comparison of the ranking performance of the basic and the advanced feature
set by using Logistic Regression, for German-English

Regression with Stepwise Feature Set Selection: one model is trained with the basic feature
set, whereas an advanced model is trained with the entire set of 139 features described in
the previous section. The goal is to examine what is the effect of the advanced feature set
on the performance of the ranking.

The results of the application of the advanced feature set can be seen in Table 4.10. The
ranking performance of the advanced feature set is significantly worse than the basic feature
set, using the particular learning method. This may indicate the inability of this learning
method to handle this amount of features. Therefore, the next step is to experiment with
feature selection methods and other learning algorithms.

4.3.3 Recursive Feature Elimination and Gradient Boosting

Related work and preliminary experiments have shown that reducing the number of fea-
tures by feature selection can result in better learning capabilities. Since Stepwise Feature
Set Selection did not perform adequately for the augmented set, we investigate the possi-
bility of using RFECV, using a SVM with a linear kernel. Additionally to the RFECV, we
introduce an advanced learning method: a Gradient Boosting classifier that operates as an
ensemble of Decision Trees.

Similar to previous experiments, the feature selection is applied on a sub-set of the training
part of the 6th fold of the full dataset. Since RFECV with SVM does not scale well for
a big amount of data, we performed stratified sub-sampling to select a smaller amount of
sentences for tuning the feature selection. After several tests on various percentages, 2.5% of
the original sentences were used for German-English, whereas 5% of the original sentences
were used for English-German. The selected feature set was used to train the ranking model
on the entire data-set and to evaluate its performance with 10-folded cross-validation.

The optimal feature set for German-English contains 41 features, whereas the English-
German one contains 56 features.

The results of using RFECV and Gradient Boosting can be seen in Table 4.11. When it
comes to using the advanced feature set, Gradient Boosting achieves significantly better
performance than Logistic Regression. RFECV improves significantly the performance of
the Logistic Regression on the advanced feature set, but it still does not reach the perfor-
mance of the same algorithm with the basic set.
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lang. method set T NDCG

de-en Logistic Regression basic 0.261 0.730
RFECV 0.181 0.716
full 0.110  0.680

Gradient Boosting  basic 0.265 0.736
RFECV 0.276 0.739
full 0.280 0.742

en-de Logistic Regression basic 0.151 0.725
RFECV 0.020 0.696
full 0.034  0.703

Gradient Boosting  basic 0.138 0.723
RFECV 0.174 0.731
full 0.170  0.733

Confidence interval (« = 0.05) 7 = 0.014

Table 4.11: Comparison of the performance of the full feature set and the result of the
RFECV with Logistic Regression and Gradient Boosting in terms of correlation with the
human judgments.

When it comes to Gradient Boosting, there is a negligible difference between using the
RFECV and the full feature set. Although the usage of RFECV did not manage to improve
the performance, it is interesting to conclude that the number of features (139) was reduced
to less than the half, but the performance of the ranking remained the same. Reducing the
amount of features can be of interest in an application environment, since it also reduces
the requirements for computation and time.

The above observation can also be seen in Figure 4.1, which depicts the progressive in-
crease in the classification quality, as more features are added into the model. It becomes
apparent, that the performance reaches already high levels with an amount of about 25 fea-
tures, whereas after few fluctuations it enters a plateau, where more features do not have
any significant implications to the model.

4.3.4 Observations from Recursive Feature Elimination

Although the model of Gradient Boosting cannot be easily interpreted, we can use the re-
sults of the RFECV to get some observations about the most important features. This is
based on the previous observation, that the models built on RFECV feature sets have little
performance difference than the full feature set.

The features that prevailed in the RFECV can be seen in Table 4.12. Although it is not clear
what is the exact contribution of each feature, based on the top features after the RFECV
we can note some observations:
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Figure 4.1: Plot of the Recurcive Feature Elimination with Cross-Validation that was per-
formed in order to find an optimal feature subset

Comparison between basic and advanced feature sets During the implementation of
the preliminary and the basic ranking mechanism, simple features containing source in-
formation were ruled out (Sections 4.1.1, 4.2.1 and 4.2.5). However, during the feature
selection for the advanced feature set, it became apparent that a few advanced features
that do include source information are among the top features. These features are derived
from alignment of grammatical structures between the source and the target. For German-
English, these are the statistics of the source-target alignment of the simplest CFG rule for
a sentence node (S—NP-VP), whereas for English-German it is the count of target noun
phrases aligned with source noun phrases. The existence of these particular node align-
ments among the top ranked ones is considered reasonable, given the grammatical oper-
ation of these nodes and their regular occurrence. Additionally, it indicates that although
very simple and generic features based on source information may be of little use, targeted
features that capture translation adequacy on particular structures can still be of high rel-
evance for comparing two translations. The IBM model 1 features on both directions also
appear to be satisfactory source-related features on both language directions.

Finally, it is worth noting that some single features from the basic ranking mechanism have
been replaced by a multitude of more specific features with the same or similar functional-
ity. For example, the number of verb phrases in overall has been replaced with the number
of verb phrases within specific rules. This can be also attributed to the abilities of the ad-
vanced learning method which can make better use of a larger amount of partially overlap-
ping features.
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Comparison between language pairs  Although the feature elimination process was run
separately for each language direction, there is some similarity between the language pairs,
with regard to the features that were automatically selected.

However, some noteworthy differences can be seen at the grammatical features. The ones
selected for English-German indicate the importance of the position of the verb phrases and
the prepositional phrases in the sentence, obviously justified by the positional requirements
of the German grammar. This is in contrast to the feature set for German-English, which
contains no features referring to the position of verb phrases or prepositional phrases.

Meanwhile, nouns and noun phrases are represented by a relatively big amount of features
on both language directions. For the direction into English, some CFG rules have separate
features, such as the noun phrases that contain a determiner and a noun, the verb phrases
containing an infinitive and the prepositional phrases introduced with the preposition “in”.

Comparison between parsers Parsing probabilities for the advanced feature set were
produced with both BitPar and Berkeley Parser. During the RFECV, only the ones from
BitPar deemed more significant for the model, whereas the ones from Berkeley Parser were
eliminated. Nevertheless, Berkeley Parser delivers a more simplified tree, which is more
suitable for count and alignment of nodes.

4.4 Summary

In this chapter we presented the feature engineering in three phases. The preliminary phase
identified a basic set of features trained with Naive Bayes, in order to predict rankings that
have a significant correlation with human rankings. It was also shown that grammatical
features can be more useful than the ones from a Language Model.

In the second phase (basic) a significant improvement over the preliminary mechanism was
achieved by adding contrastive scores and other features from absolute QE in a Logistic Re-
gression model. We confirmed that basic source features do not contribute to the transla-
tion comparisons and that Logistic Regression handles better this feature set with Stepwise
Feature Selection than with L2 Regularisation. Finally we examined the model coefficients
to get some intuition about the contribution of each feature, showing that the most domi-
nant features are the number of unknown words, the number of tokens and the contrastive
scores, including some grammatical features, such as the number of verb phrases and parse
trees.

In the last phase (advanced), a wide variety of grammatical, alignment and position fea-
tures are introduced in two language directions, whereas an improvement is achieved when
trained with a Gradient Boosting classifier. Feature selection with Recursive Feature Elim-
ination has managed to reduce the amount of features to a third of the original set, with-
out any significant drop to the performance. Few features derived from the alignment of
grammatical structures between the source and the target are among the most dominant ad-
vanced features, whereas only for translating into German, the position of the verb phrases
plays a role.
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74

ranking mechanism

prel.  basic advanced

language pair de-en de-en de-en en-de
Parse probabilities

n-best parses (Berkeley, count) + + + +
probability (BitPar, best tree) + +
probability (BitPar, worst tree) + +
probability (Berkeley, summed all trees) + +

probability (BitPar, mean, std of n-best) + +
Tree nodes

nouns (count) +
nouns (average position) + +
nouns (std of positions) +

NPs (count) + +
NPs (average position) 1

NPs (std of positions) + +
VPs (count) + +

VPs (std of positions) +
VPs (average and max tree height) + +
PPs (count, std of positions) +
CFG rules

NP—DT-NN (count) +
PP—IN-NP (count) +
VP—TO-VP (count) +

S—VP (position from the sentence end) +
VP—VP (position from the sentence end) +
Aligned CFG rules and nodes

S—NP-VP (counts, tree depth, position) +

NP (counts) +
Contrastive scores +
contrastive BLEU + +
contrastive METEOR recall +
contrastive METEOR frag. penalty + +
contrastive METEOR overall score + + +
IBM model 1

IBM model 1 scores (both directions) + +
avg translations per source word (threshold +

p>0.2; p>0.01 weighted by the inv. freq)




ranking mechanism prel.  basic advanced
language pair de-en de-en de-en en-de

Target language model

smoothed 5-gram probability +
smoothed 3-gram probability +

3-gram perplexity

unknown words (count) + +
unknown words (average, first and last position) +
unknown words (std of positions)

unknown words (average, first position norm.) +

+ 4+ + + + +

Language correction
total number of errors +

+ o+

space after comma or parenthesis +
uppercase sentence start

+

Count-based features

tokens (count) + +

tokens (source/target ratio) +
tokens (target/source ratio)

type/token ratio +
characters (average per word) 1
commas (count) + +
commas (average, std of positions)

commas (target-source difference)

dots (count) +

dots (average position) +
numbers (percentage in target) +
numbers (target-source difference normalized) +
tokens inc. chars other than “a-z” (count, ratio) + +

+ + + +

+ + + +

Table 4.12: The features of the advanced feature set as selected after RFECV for the lan-
guage pairs German-English and English-German. Additionally the features of the prelim-
inary and the basic feature set.
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Chapter 5

Comparative Quality Estimation for
System Combination

In the previous chapters, the focus has been on the performance and the functionality of
the method as a full ranking mechanism. Apart from ranking per se, we investigate a pos-
sible application: the possibility to use ranking for sentence selection in order to produce a
combination on the output of various systems.

The system combination presented here is a combination with relatively low granularity,
compared to advanced lattice-based combination methods, since the combination unit is
the entire sentence. Nevertheless, as the decisions are taken given a full sentence, there
is the possibility to take advantage of informative features that depend on a full syntactic
structure, e.g. grammatical features, which could not be extracted from sentence chunks.
Secondly, the combination provided here is rather hybrid, in the sense that it combines
two different machine translation technologies: Rule-based Machine Translation (RBMT)
and Statistical Machine Translation (SMT) and variations of them. A selection method that
takes into consideration the full sentence can be therefore beneficial, in order to profit from
the long distance transfer rules employed by the RBMT system. Additionally, the two types
of systems may be complementary to each other in many other ways.

We hereby apply the ranking mechanism on the output of three distinct systems and we
show that it can successfully produce a system combination that performs better than any
of its components. This chapter is structured as follows: First, we explain the setting of the
experiment and the preparation of the components of the system combination (Section 5.1).
In Section 5.2, we measure the performance of the selection mechanism. In Section 5.3 we
list 6 different feature sets and examine their performance, the contribution of each feature
and the impact they have on the proportion of the sentences chosen from every system.
Finally, a comparison of various learning methods is given in Section 5.4.
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5.1 Experiment setup

A ranking mechanism is trained on sentence-level ranking labels on the M T outputs of the
training set, as described in Section 2.1.1. The trained ranking mechanism is applied later
on the output of three diverse systems in order to perform selection. For every sentence, the
three alternative translation outputs are ranked by the ranking mechanism and the output
with the best rank is fed to the combined output. The three systems will be thereof referred
to as MT components and the ranking mechanism, as applied for the selection, as a selection
mechanism. The three exact systems are not seen in the training set of the selection mecha-
nism, although variations or previous versions of them may exist. The setup for each of the
three components is presented later (Sections 5.1.1, 5.1.2 and 5.1.3).

In this experiment we test the following hypotheses:

+ The selection yields better translations than any individual MT component. To eval-
uate the performance of the selection mechanism, the combined output, including all
the sentences of the document, is scored with an automatic metric against the refer-
ence (Section 2.7.2). In order to judge whether the use of the selection mechanism
led to an improvement, the scores on the combined output are compared with the
respective scores on the individual output of each of the three MT components and
with those achieved with a random selection. The hypothesis is confirmed with a
two-tailed significance test, based on a bootstrap resampling of 1000 samples (Sec-
tion 5.2).

+ The selection leads into similar performance improvements even if M T outputs from
an inferior component are included. For this purpose we use the selection mecha-
nism on two variations: one variation performed selection between all three compo-
nents (trained-3) and another variation between the two best components (trained-2).
Then, we measure whether there is a difference in the results of the selection between
the two variations.

+ The machine learning setup that yields the best performance is similar to the one of
the generic ranking experiment (Section 3). We therefore train and test the selec-
tion mechanism with many combinations of feature sets (Section 5.3) and machine
learning methods (Section 5.4) and compare their performance. Additionally, we test
whether the use of a different parser for the PCFG features may lead to considerable
differences to the quality and the setup.

This experiment is based on the ranking method, as presented at the experiments in Chap-
ter 3. As compared to those experiments, the current one has some differences at the setup,
particularly concerning the usage of the data:

+ The development and test sets originate from the IT domain and the SMT compo-
nents include I'T domain-specific corpora in their training and tuning datasets. This
was chosen in order to check whether the selection mechanism can generalize by cov-
ering a domain other than the generic ones. The development and test sets originate
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from the QTLeap corpus', a small domain-specific dataset containing user questions
to an IT help-desk, translated by professional translators for the purpose of being
used in MT evaluation. As this dataset is divided in several non-overlapping batches,
each containing 1000 questions, we used the first batch for tuning of the SMT sys-
tem and the second batch for testing the entire pipeline. For reducing the complexity,
we perform the analysis for German-English, assuming that the results for the other
language pairs will be similar.

« Instead of ranking and combining many systems, as explained above, we use 3 MT
systems that derive from two different machine translation technologies (RBMT and
SMT). This way we show that the selection mechanism is capable of a hybrid combi-
nation, i.e. able to properly select the positive aspects of both MT types.

+ The rank labels that are used for training the ranking mechanism are not produced
by humans, but they are instead generated after scoring the MT outputs against the
reference translations using automatic metrics. This is done due to the lack of test set
where a fixed amount of participating systems is consistently evaluated by humans
(the WMT ranking evaluation contains arbitrary rankings over different combina-
tions of systems for every sentence).

However, given the fact that the feature engineering, the machine learning methods and the
training material for training the ranking model is the same as the generic ranking exper-
iments, we consider that the modifications included here do not harm the overall consis-
tency, but instead complement the original

5.1.1 SMT component

The SMT component is a phrase-based statistical system with baseline settings as per the
Shared Task on Translation on the IT-domain, within the First Conference on Machine
Translation (WMT16; Bojar et al., 2016a).

Training was performed on a large amount of parallel corpora of a generic domain includ-
ing political speeches and news, and a technical domain including text from software inter-
faces and documentation. The generic domain corpora include Commoncrawl (Smith et al.,
2013), Europarl ver. 7 (Koehn, 2005), MultiUN (Eisele and Chen, 2010) and NewsCrawl, as
appeared in Bojar et al. (2013a), similar to the setting of the state-of-the-art system (Dur-
rani et al., 2013). The domain-specific corpora originate from the localisation files of the
Chromium Browser, the Drupal content management system, the LibreOffice User Inter-
face and the Linux distribution Ubuntu Saucy. Additionally, the terminology provided by
the Text Foundation and the parallel localisation text of their website was included as a par-
allel corpus. The size of the corpora that take part in the training data is shown in Table 5.1.

The translation table was trained on a concatenation of the generic and technical data, fil-
tering out the sentences longer than 80 words. Alignments were produced by Giza++ or

Thttp://www.qtleap.eu
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corpus entries  words

Commoncrawl (parallel) 2.4M  53.6M

Europarl (parallel) 19M 50.1M
MultiUN (parallel) 167.6K 5.8M
News Crawl (parallel) 201.3K 5.1M
Europarl (mono) 22M  54.0M
News (mono) 8OM 1.7B
Chromium browser 6.3K  55.1K
Drupal 47K  57.4K
LibreOffice help 46.8K 1.1IM
LibreOffice Ul 35.6K 143.7K
Ubuntu Saucy 182.9K 1.eM

Table 5.1: Size of training corpora used for the SMT component

mGiza with "grow-diag-final-and" symmetrisation and "msd-bidirectional-fe" reordering
(Koehn et al., 2003). The tuning was run with MERT (Och, 2003).

The Language Model (LM) was trained using the target side of the technical corpora, Eu-
roparl and the monolingual News Crawl from the years 2007 to 2013 (Callison-Burch et al.,
2007). In order to adapt the Language Model to the particular domain (Schwenk and Koehn,
2008), one separate LM was trained for each corpus and then all LMs were interpolated on
the domain-specific tuning set. The localisation and terminology corpora of Text Founda-
tion were not included as they mostly consisted of uni-grams and low ordered n-grams.

Preprocessing followed the state-of-the-art preprocessing techniques for phrase-based
SMT. The text was tokenised, truecased (Lita et al., 2003; Koehn et al., 2008) and Ger-
man compounds were split Koehn et al. (2008) prior to the training and the decoding. The
MT output was de-tokenised and de-truecased afterwards. A few regular expressions were
added to the tokeniser, so that URLs are not tokenised before being translated. Normal-
isation of punctuation was also included, mainly in order to fix several issues with vari-
able typography on quotes. The phrase-based SMT system was trained with Moses (Koehn
et al,, 2007) using EMS (Koehn, 2010), whereas the Language Models were trained with
SRILM (Stolcke, 2002) and queried with KenLM (Heafield, 2011).

5.1.2 Rule-based component

Lucy Translator was used as a RBMT system. It is known as a system that is based on rules
developed through many years by professional linguists (Alonso and Thurmair, 2003). The
system has shown state-of-the-art performance in the past, particularly for German.

The translations used in the current experiments were obtained by using the translation
engine of Lucy EX version 6.11 Label 20 Build 79 and the lingware lexicons version LC 7.10.
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5.1.3 Serial system combination of Rule-based and Statistical Ma-
chine Translation

As an approximation of automatic post-editing of the RBMT system, a serial RBMT—SMT
system combination is used, similar to the one described in Simard et al. (2007). The first
stage is the translation of the source language part of the original training corpus of the SMT
component above by the RBMT system. The second stage consists of training a phrase-
based SMT system with the RBMT output as the source-side of the parallel training data
and the target language of the original corpus as its target side. Later, the test set is first
translated by the transfer-based system and then the obtained translation is translated by
the SMT system.

source: In the Insert menu, select Table

SMT: In Menii “Einfiigen”, Tabelle auswihlen.
RBMT: Wihlen Sie im Einsatz-Menii Tabelle aus.
RBMT—SMT: Wihlen Sie im Einfiigen Menii Tabelle aus.
reference: Wihlen Sie im Einfiigen Menii die Tabelle aus.

Figure 5.1: Example of the operation of the serial combination of RBMT and SMT as
compared to its components.

In previous experiments involving German, this method could outperform Moses trained
on a large parallel corpus (Avramidis et al., 2015b). The example in Figure 5.1 illustrates
how the statistical post-editing operates. While the original SMT output used the right
terminology (“Menti Einfiigen” — “insert menu”), the instruction includes an imperative in
an informal way, which can be considered impolite. In contrast, the output of the transfer-
based system employs the rule of forming an imperative in the polite way, yet mistranslating
the menu type. The serial combination RBMT—SMT produces a correct translation.

5.1.4 Selection mechanism

The training of the selection mechanism is based on the MT outputs of all systems that
participated in the evaluation of the WMT shared tasks for German-English (years 2008-
2014), as described in Section 3.1.2. As mentioned earlier, the development and test sets
originate from the QTLeap corpus.

The ranking labels used for training this experiment are produced by scoring competitive
MT outputs against the reference. We experiment on several metrics for constructing the
ranking labels, in particular smoothed BLEU, METEOR and rgbF. We choose the label
type which maximizes if possible all automatic scores on our development set, including
document-level BLEU, METEOR, rgbF and TER.

We test all suggested feature sets with various ML methods. The binary classifiers are
wrapped into rankers using the “soft pairwise recomposition” (Section 2.4.2.2) to avoid ties
between the systems.
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5.2 Performance of the selection mechanism

The optimal model is based on a feature set that includes target-language features derived
from the Language Model, the IBM model 1, PCFG parsing and CFG rules (Section 5.3)
and trained with a Gradient Boosting classifier (Section 5.4). The optimal ranking labels
are produced with rgbF 2.7.2, measured against the reference translations.

The automatic document-level scoring of the combination produced by the sentence-level
selection mechanism and its three components, based on BLEU, METEOR, TER and rgbF
is given in Table 5.2. SMT is the component with the highest scores for all three measures,
RBMT comes second (with the exception of TER where it has a non-significant difference
with RBMT—SMT), whereas RBMT—SMT has the lowest scores.

system BLEU METEOR TER  rgbF
SMT 43.1 40.4 32.2 48.6
RBMT 40.8 38.7 36.4 46.5
RBMT—SMT 39.7 38.3 36.1 46.0
random selection 395 38.6 34.5 455
trained-3 T44.9 40.6 ]L 315 1496
trained-2 T44.6 140.8 131.6 1498

statistically significant comparison with SMT:
Ira <0.05
Tra < 0.10

Table 5.2: Performance of the selection mechanism compared to its three components, as
measured by four automatic reference-based evaluation metrics.

The selection mechanism when applied on all three systems (trained-3) achieves an im-
provement of 1.8 points BLEU, 0.2 points METEOR, 0.5 points TER and 1.0 point rgbF.
The improvement is statistically significant for the BLEU, TER and rgbF scores, when com-
pared to all three components and the random selection.

The performance of the selection mechanism when applied on the two best system outputs
(trained-2) is similar with the one applied on all three systems (trained-3) and there is no
significant difference between the two settings for most of the metrics (with the exception
of METEOR which is slightly higher for trained-2). This indicates that the selection mech-
anism leads into performance improvements even with different participating components
and is not negatively affected by a component whose overall output is inferior than the one
by the others.
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5.3 Feature sets

This section goes into details about how the best feature set is chosen, after testing the
performance of the selection mechanism with various feature sets. Since the setting for
system combination has some differences to the one of the ranking mechanism shown in the
previous chapters, we examine the performance of the selection mechanism after retraining
it with a small variety of feature sets, similar to the ones seen before (Chapter 4).

5.3.1 Definition of feature sets

We experimented with several feature sets that performed well in previous experiments,
including some modifications. In order to make the experiment feasible, not all feature
sets presented in Chapter 4 were used for the experimentation. The feature sets used are
detailed in Table 5.3 whereas a small description is following:

Feature set 1a is a the first version of the basic feature set from Chapter 4, as described in
Section 4.2.2. This set was presented in Avramidis (2012a), as an extension of a feature set
which has performed well as a metric in WMT11 metrics task (Avramidis et al., 2011). It
includes the number of tokens, count of unknown tokens (unk), count of alternative parse
trees, count of verb phrases, the PCFG parse probability given by Berkeley Parser and a
contrastive METEOR.

Feature set 1b augments Feature set 1a, by replacing Berkeley Parser with BitPar and in-
cluding two additional parsing features over the parser’s n-best list: the standard deviation
of the probabilities in the parsing n-best list and a binary feature on whether the probability
of the best tree is higher than the standard deviation over the mean of the probabilities in
the n-best list.

Feature set 2a is the augmented version of the basic feature set from Chapter 4 (Section
4.2.3) that combines the feature set 1a with the baseline feature set of WMT (Specia et al.,
2013; Bojar et al.,, 2013a), although most of the source-based features got assigned a zero
coefficient (Section 4.2.5). This feature set got the best result in the Quality Estimation
task of the Eight Workshop for Statistical Machine Translation (WMT13) for ranking in
German-English (Avramidis and Popovi¢, 2013, as shown in Section 3.4).

Feature set 2b is similar to feature set 2a, but the Berkeley Parser probability is replaced
with the probability produced with BitPar.

Feature set 3a is a subset of the advanced feature set from Chapter 4 (Section 4.3). It does not
include the contrastive METEOR score but it introduces 18 more features. In particular,
it includes the n-gram probability of order 5, two features for the IBM model 1 sentence
scores in both directions and two features from language correction rules. The PCFG parse
feature subset was augmented with the number of unaligned nodes between source and
target, the overall tree depth, the depth of the tree and the depth of first (min) and last
(max) sentence nodes. Finally, it includes the position of several verb-related CFG rules
(e.g. S—VP, VP—VP etc.) measured from the beginning and the end of the sentence.
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feature featureset la 1b 2a 2b 3a 3b
category feature name
counts total tokens + + + + + o+
unk + + o+ o+ o+ o+
unique/total tokens + o+ o+ 4
commas, dots + + + +
LM LM 5gram prob + o+
LM 3gram prob + o+
high freq source uni-grams + &)
low/high freq source bi-grams +) &)
low/high freq source tri-grams +) &)
percentage of known source 1grams +) )
contrastive METEOR + + + + o+
IBM-1 score, inverted score + +
translations per src token (p>0.2) + &)
translations per src token (p>0.01 +) &)

weighted by the inv. freq of src token)

PCFG n-best trees + + + o+ o+ o+
Berkeley prob + + + o+
BitPar prob + +
standard deviation of n-best prob +
low prob as compared to n-best +
VPs + + + + o+ 4+
unaligned src/target nodes + o+
tree depth + o+
min depth of S + o+
max depth of S + &)
CFG position S—VPp + o+
(sentence start) VP—VP + o+
VP—VVINF +) &)
VP—VB + 4+
VP—VBZ + o+
VP—VBG + 4+
CFG position VP—=VZ + &
(sentence end) VP—VP + o+
VP—VVINF +) &)
S—VVPP +) &)
Lang. correction unpaired brackets + &
compound suggestions + &

(+): Feature was assigned a zero coefficient during the machine learning process

Table 5.3: List of the feature sets investigated for the system combination
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Feature set 3b is a variation of feature set 3a by removing the contrastive METEOR fea-
tures. It was developed in an effort to re-evaluate the contribution of the contrastive ME-
TEOR score as a feature for sentence-level system combination. It is noteworthy that this
feature bounds the Quality Estimation of every single output to the competitive outputs.
Since the feature was proven useful given a context of more than five competitive outputs,
in the current experiment which provides only two competitive outputs its contribution
needs to be re-evaluated.

5.3.2 System combination performance per feature set

In this experiment, we train several systems with the feature sets explained above, using
various learning methods. Then we compare their performance in combining the three
MT systems. The automatic scores on the results of the system combination are shown in
Table 5.4.

The best score is achieved by the model trained on the feature set 3b using Gradient Boost-
ing. The system combination by this model achieves better performance according to all
three automatic metrics measured here. The use of the same machine learning method
and a very similar feature set also shows the highest performance in the generic ranking
experiments (Section 3.6). Similar to the observations there, the simple feature sets were
optimally trained with linear methods, whereas the more complicated feature sets required
ensemble classifiers, indicating that when additional features are included, the problem has
non-linear characteristics. The observed similarity of machine learning setup (features, al-
gorithm) between this chapter’s experiment and the generic ranking experiment, indicates
that the method is not easily affected by changes in the domain or the ranking labels.

Based on BLEU and rgbF, most feature variations (with the exception feature set 3a) achieve
an improvement over the best MT component, but the difference with METEOR is tighter,
where only feature set 3b yields a small improvement.

feature set BLEU METEOR rgbF algorithm

la 44.5 40.4 49.6 Logistic Regression (SFSS)
1b 44.1 40.3 49.5 Logistic Regression (L2)
2a 43.7 40.2 48.9 Logistic Regression (L2)
2b 43.8 40.2 49.2 LDA
3a 42.4 39.9 48.2 AdaBoost
3b 44.9 40.6 49.6 Gradient Boosting

SMT 43.1 40.4 48.6

Table 5.4: Comparison of the 6 most successful feature sets, all trained over the ranking
labels produced with rgbF. The last column indicates the learning method that gave the best
performance for the given feature set.

The only difference as compared to previous experiments refers to the feature of Con-
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trastive METEOR which has a negative contribution to the feature set 3a, as it can be
observed after comparing the performance of features 3a and 3b. We should recall that
this feature appears to be useful for the ranking experiment (Section 4.3). There, a larger
amount of MT outputs (5 to 12) are ranked for every sentence and therefore contrastive
METEOR is computed based on a wider basis of competitive translations which act as
pseudo-references. On the contrary, the inclusion of the feature in this feature set leads
to a significant drop on the scores, potentially indicating that the calculation of contrastive
METEOR on two out of the these three particular systems is not indicative of the quality
of the third output.

Finally, there does not seem to be any significant difference in the contribution of the pars-
ing features, if another parser is used to produce these features. This can be seen through
the comparison of feature sets 1b and 2b (produced with BitPar) with feature sets 1a and 2a
respectively (produced with Berkeley Parser), where there is only a minor difference in the
scores.

5.3.3 Contribution of features

The contribution of features to the binary selection model can be seen by examining the
beta coefficients of the best Logistic Regression model (Table 5.5).

The Language Model is the feature contributing the most to the sentence selection. This can
be contrasted to the observations for the generic ranking model (Section 4.2.5), where the
Language Model has a negative or no contribution. As explained above, this can be justified
by that fact that these are two different problems applied on different data.

The rest of the feature coefficients are relatively similar to generic ranking experiments,
with the contribution of the PCFG parse probability also having a bigger contribution.
Moreover, the features of the positions of verb-related CFG rules are also remarkable. It
appears that the models favours positioning subordinate verb phrases closed to the end of
the sentence (as seen by VP—VP, VP—VB, VP—VP-end) with the exception of the verb
phrases that contain a verb gerund (VBG) that should be closer to the beginning. These ob-
servations are justified, as they generally follow the positional requirements of the German
language.

5.3.4 System proportions per feature set

Here we analyse the proportion of sentences that the selection mechanism chose from each
MT component. The proportions of the best combination and their graph are shown in
Table 5.6. SMT provides almost half of the sentences, namely 49.1%. The rule-based system
22.8% of them, whereas the RBMT—SMT contributes with a 23.5%.

Meanwhile, it is noteworthy that different feature sets favour different system proportions.
The proportions per feature set can be seen in Figure 5.2. Apart from the feature set 3b
and la which got the best scores, having the biggest percentage originating from SMT, the
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feature beta
LM 5gram prob 2.01
total tokens 1.19
Berkeley prob 0.54
IBM1-score inverted 0.50
unk -0.47
max depth of S -0.47
VPs 0.44
unique/total tokens -0.41
position VP—VP 0.34
commas -0.31
position VP—VB 0.24
unaligned src/target nodes -0.23
dots 0.22
tree depth 0.20
position VP—VP (end) -0.11
position S—VP 0.11
IBM1-score 0.10
position VP—VBG -0.07
n-best trees 0.01
position VP-VBZ -2 x107%
min depth of S 0.00
position VP—VZ (end) 0.00
position VP—VVINF (end) 0.00
position VP—VVINF 0.00
position S—VVPP (end) 0.00
unpaired brackets 0.00
compound suggestions 0.00

Table 5.5: Beta coefficients of the best feature set as learned with Logistic Regression

rule-based system is the one with the most selected sentences for 4 out of the 6 feature sets.
The RBMT—SMT had the highest proportion only for one feature set which had very low
scores.

We may attribute the difference of the proportions between feature set 3b and the rest of
the feature sets to some of the most outstanding individual features they consist of. In par-
ticular, grammatical features, used as the main fluency indicators for feature sets 1a, 1b, 2a
and 2b, are very related to the translation methodology of the rule-based system. On the
contrary, feature set 3b adds three more features, a Language Model score and two features
from word alignment, that are similar to the respective components of a SMT system and
which may explain why it favours SMT more.
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MT component proportion

SMT 49.1%
RBMT 22.8%
RBMT—SMT 28.1%

Table 5.6: Proportion of each M'T component as selected by the selection mechanism
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50.0% = RBMT
40.0% SMT
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set la set 1b set 2a set 2b set 3a set 3b

Figure 5.2: Sentence proportions from each component per feature set

5.4 Machine Learning

We train a ranking mechanism with all feature sets detailed above, by employing many
machine learning methods, including a Bagging Classifier, Decision Trees, ExtRa Trees,
Gaussian Naive Bayes, k-neighbors, SVMs with a linear kernel, Logistic Regression, LDA,
Quadratic Discriminant Analysis, Random Forests. Additionally, AdaBoost and Gradient
Boosting, two classifiers ensembled over Decision Trees (Section 2.5) are used.

The automatic scores on the sentence selection, using these classification methods are re-
ported in Table 5.7. For every classification method, it is indicated which feature set and
which training label performed best.

The best performance is given by Gradient Boosting, followed by Logistic Regression and
AdaBoost. In the fourth position comes LDA. It is known that LDA seems to be more appro-
priate method than Logistic Regression when the covariates follow the normal distribution,
but their performance gets very close when the sample size is large (Pohar et al., 2004). This
is very similar to our case, for the feature set 1a.
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algorithm BLEU METEOR rgbF feat.set label
Gradient Boosting 44.9 40.6 49.6 3b rgbF
Logistic Regression 44.5 40.4 49.6 la rgbF
AdaBoost 44.5 40.5 49.3 3b rgbF
LDA 44.0 40.2 49.3 la rgbF
Gaussian Naive Bayes 43.9 40.4 49.0 1b rgbF
Bagging 43.4 39.7 48.4 3b rgbF
Linear SVM 43.1 40.4 48.6 3a meteor
Quadratic Discr. Analysis ~ 43.0 39.8 48.4 2a rgbF
Random Forest 43.0 39.5 48.3 3b rgbF
Decision Tree 42.7 39.6 47.9 1b rgbF
ExtRa Trees 427 39.5 47.9 3b rgbF
kNN 42.2 39.3 47.4 3b rgbF

Table 5.7: Comparison of the performance by various machine learning methods on sen-
tence selection for system combination. For each learning method, we give the automatic
scores against the reference translations, the proportion of the 3 system components and the
best performing feature set and training label

Quite a few methods are not able to produce a system combination better than the best
component. SVM with a linear kernel, Quadratic Discriminant Analysis, Random Forest,
Decision Tree, ExtRa Trees and kNN achieve scores that are equal or lower than the SMT
component.

5.5 Summary

In this Chapter the ranking mechanism was applied for system combination. The available
MT outputs for every sentence of the test set were ranked with the ranking mechanism
and the M T output with the highest rank was selected for the output of the system combi-
nation. The system combination was successful in producing a combined output that has
higher automatic metric scores than any of its components. Several configurations of fea-
ture sets and machine learning methods were tested and the best results were given with an
augmented syntax-aware feature set, trained with Gradient Boosting, whereas the training
ranking labels were produced with rgbF score measured against the reference translations.
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Chapter 6

Translation errors and decoding events

This Chapter investigates situations in the decoding process of phrase-based SMT that can
be associated with particular errors on the output of the translation. A set of translations
post-edited by professional translators is used to automatically identify errors based on edit
distance. Binary classifiers predicting the existence of an error in the sentence are fitted
with Logistic Regression, using features from the decoding search graph. Models are fitted
for two common error types and three language pairs, in both directions. The statistically
significant coefficients of the logistic function are used to indicate parts of the decoding
process that are related to the particular errors. Observations related to the coefficients are
reported and assumptions for the underlying phenomena are given.

An overview of the related work is given in the Introduction of the dissertation (Sec-
tion 1.2.6), whereas the contents of the Chapter are structured as follows: In Section 6.1
we provide an overview of the methods employed, namely the statistical modelling of the
errors and the automatic annotation of the translation errors. Some more details about the
dataset and the training of the models are given in Section 6.2, whereas a technical descrip-
tion about the experiment are given in Section 6.3. The results are shown in Section 6.4,
namely the performance of the models and the coefficients estimated for reordering er-
rors (Section 6.4.2.1) and missing words (Section 6.4.2.2). The chapter ends with some dis-
cussion about the efficiency of the approach, directions for further work (Section 6.5) and
a summary (Section 6.6).

6.1 Methods

6.1.1 Statistical modelling of errors

This experiment uses ML in order to fit a statistical model, associating properties and events
of the decoding process with the existence of particular errors of a phrase-based statistical
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MT system. Such a model optimizes a function f:

Y =f(X)=B0X (6.1)

where:

+ X istheindependent variable, i.e. a feature vector representing properties and events
of the decoding process and has been extracted from the decoding search graph

+ Y is the dependent variable, i.e a value predicting the existence of errors

+ [3is a weight vector estimated by ML to minimize the error of the function o given
samples of X and Y. This vector contains coefficients for each one of the features.
Given a well-fitted model and a relevant statistical function, these coefficients can
indicate the importance of each feature.

Our aim is to use the /3 coefficients in order to explain the behavior of the decoding process,
with regard to the errors. The exact formulation of the logistic function o is given in Sec-
tion 2.5.3. The optimal amount of features is selected with Stepwise Feature Set Selection
(Section 2.6).

In order to assess the contribution of individual predictors in a given model, we examine
their significance by calculating a p-value for each of them. This represents the probabil-
ity for the null hypothesis, that the beta coefficient of the feature differs from zero. The
significance of each coefficient is computed based on the Wald test, following the x? distri-
bution. The Wald test uses the ratio of the square of the regression coefficient to the square
of the standard error of the coefficient (Harrell, 2001; Menard, 2002). When the p-value
of the Wald test is below the confidence level, the null hypothesis is rejected and the tested
coefficient is considered statistically significant.

6.1.2 Automatic annotation of translation errors

Our intention is to not train the model using a complex quality metric such as BLEU or
WER as a dependent variable, since this would increase complexity by capturing many is-
sues in just one number. Instead, we choose a more fine-grained approach, by focusing onto
specific type of errors that occur often in machine translation output.

The existence of an error on the MT output is used as a training label for the supervised
ML algorithm. The types of the errors are identified as a subset of commonly observed
error categories (Vilar et al., 2006). In order to detect the errors on the translation output,
we follow the automatic error detection method by Popovi¢ and Ney (2011), which has
shown to correlate well with human error annotation. This method automatically detects
errors based on the edit distance of the produced translation against a reference human
translation. An example of how errors are detected can be seen in Figure 6.1. Although
this previous work defines 5 error types, for our purpose we focus on missing words and
re-ordering errors, since our data give sufficient amounts for training a statistical model on
these error categories.
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source: Uberraschenderweise zeigte sich, dass die neuen Rite in Bezug
auf diese neuen Begriffe etwas im Dunkeln tappen.

translation:  Surprisingly, showed that the new councils in relation to these
new concepts slightly in the dark.

post-editing: Surprisingly, [miss:it] [lex:seems] that the new [lex:councillors]
[miss:are] [reorder: slightly in the dark] in relation to these new
concepts.

Figure 6.1: Example of the results found with the automatic error detection process. One
can see 2 missing words and a wrong reordering of a batch of 4 words (plus some lexical
errors, which are not discussed in this work)

6.2 Data and models

The model features are extracted from the decoding process (glass-box features) in order
to represent various stages of the decoding algorithm of the translation system. This ex-
traction (detailed in Section 2.3.2) results into one feature vector for every sentence. Then,
every sentence is labeled with a binary value per error category. This label indicates that
one or more errors from this particular error category occur in the sentence. For example,
if at least one reordering error occurs in the sentence, the label for the re-ordering error
category is set to 1, whereas if no re-ordering error occurs, the label is set to 0. For every
sentence, the feature vector and the binary label form a training instance for the prediction
model of the respective error category.

For the purpose of our analysis we train one Logistic Regression model per error category (2
categories) and language direction (6 language directions), practically resulting in 12 mod-
els. Additionally we train 2 more models (one model per category) with data from all the
language pairs in order to reach conclusions for error categories whose occurrence is com-
mon for all language directions. Some of these conclusions would not be easily drawn from
language-specific models due to data sparsity.

The experiment is based on data from WMT11 (Callison-Burch et al., 2011), augmented
with a small amount of data of WMT 10 (Callison-Burch et al., 2010) and technical docu-
mentation of mechanical engineering equipment, as provided by a translation agency. It fo-
cuses on the translation directions from German (de) to English (en), French (fr)) and Span-
ish (es), and backwards. The number of sentences originating from each data source per lan-
guage direction is shown in Table 6.1. The sentences are given to professional translators,
with the instructions to perform as few changes as possible in order to correct the trans-
lations. A major part of the dataset originating from non-confidential (i.e. non-customer)
sources is freely available in the TaraXU corpus (Avramidis et al,, 2014a). The size of the
corpus and the number of post-edited (p.e) sentences can be seen in Table 6.2.

Minimal post-editing is considered to be ideal for automatic error detection. In contrast,
reference translations may contain severe alterations to the structure of the sentence, mis-
leading the automatic error detection. Nevertheless, as it can be seen in Table 6.2, the num-
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de-en de-fr de-es en-de fr-de es-de

WMT10 118 30 33 14 74 0
WMT11 952 952 80 1087 977 101
customer 741 0 430 0 0 830
total 1811 982 543 1101 1051 931

Table 6.1: Number of sentences from various sources per language pair

lang sentences  reordering err. missing words
total p.e total p.e total p.e

de-en 1811 1139 1043 474 1079 570
en-de 1101 315 891 232 671 151
de-fr 982 198 819 157 597 80
fr-de 1051 122 851 88 691 76
de-es 543 543 288 288 322 322
es-de 931 931 345 345 333 333

all 6419 3248 4237 1584 3693 1532

Table 6.2: The size of the corpus per error category and language pair. p.e. indicates the
number of sentences that were minimally post-edited by professional translators

ber of solely post-edited sentences for certain error types and language directions is too
small for machine learning, leading to a severely sparse set of training data and therefore
weak models.

Consequently, as it was not technically possible to acquire post-editions on a larger amount
of data, we perform error-detection on a mixture of post-editions and reference transla-
tions, with the hope that this increases the quality of the statistical models. Preliminary ex-
periments confirmed the positive effect, as the precision and recall was increased on most
models (even up to 29%) when adding errors detected against reference translations to the
ones detected against post-edited output. Despite some obvious drawbacks, this move is
also motivated by the fact that the original experiments that showed the accuracy of the
automatic error detection (Popovi¢, 2011b) were also performed against reference transla-
tions. In order to keep the focus on the main scientific goals of the chapter we won'’t present
these preliminary experiments along with the main experiments.

6.3 Experiment setup

As a statistical phrase-based system we train one Moses (Koehn et al., 2006) system per
language direction, using Europarl (Koehn, 2005) and News Commentary corpora. The
News Commentary was used only for German-English, English-German due to lack of
parallel text for the other language pairs. The settings of the systems follow the baseline of
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the Shared Task of WMT11 (Callison-Burch et al,, 2011), including a truecaser (Wang et al.,
2006) for all language pairs and a compound splitter (Koehn and Knight, 2003) for the mod-
els translating from German. The system was tuned with MERT (Och, 2003) on the news
test set from WMTO7 (Callison-Burch et al., 2007). The decoding features are extracted
from Moses’ verbose output of level 2. and the target Language Model has an order of 5. The
translation errors on the MT output are automatically annotated with Hjerson (Popovié,
2011¢).

6.4 Results

6.4.1 Model performance

A necessary step is to check how well each model fits the data, since a well-fitted model is
required for drawing conclusions. For this purpose we perform cross-fold validation with
10 folds. The precision and recall scores are shown in Table 6.3. Precision indicates the
ratio of the predicted sentences that contain an error, whereas recall indicates the ratio of
the sentences that have an error and its existence is successfully predicted.

all de-en de-fr de-es en-de fr-de es-de

o o o o o o o
(&} (9] (9] (9] (9] @] (9]

— — — — — — —
a € A & & & & &8 & ¥ & ¥ & ¥

reord. .70 .79 83 .81 .88 96 .85 .82 .85 .93 .87 92 .77 .70
miss. .85 .88 .75 .76 .67 .79 .80 .82 .67 .78 .70 .86 .64 .52

Table 6.3: Precision (prec) and recall (rec) of the logistic regression model, measured with
cross-validation. There is one model per combination of language pair and error category;
plus one model trained on data from all language pairs per error category. High precision
and recall indicate that the model is well-fit.

The model predicting the existence of reordering errors has the highest precision and recall
on all individual language pairs and achieves a generally high precision of about 83-87%
(apart from Spanish-German). On the contrary, the model of predicting missing words
seems most successful on the dataset combining all language pairs, with a precision of 85%
and a recall of 88%. This may be an indication that reordering errors are affected more than
missing words by phenomena which are specific to the language direction.

6.4.2 Analysing coefficients
We proceed to the analysis by considering the beta coefficients of the fitted logistic function
(function 2.15) for each feature. The feature coefficients given by the fitted logistic func-

tion vary per error category and language pair/direction. This is understandable, given the
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fact that the translation systems and the test sentences are relatively heterogeneous among
language pairs and direction.

The interpretation of the feature coefficients may also vary. The most clear indication is
the positive or negative sign of each coefficient. Additionally, one has to bear in mind
that several features result as a mathematical function or as a byproduct of other features;
thus, when they all occur in a logistic function, explaining the contribution of one of them
should often consider the existence of other that are related to it, a task which is not always
straightforward. Finally, numerical values by themselves cannot clearly indicate whether
an observed tendency is the cause of the error or the symptom of another underlying issue.
Knowledge or investigation of the decoding process may therefore be useful.

In order to lead to useful conclusions, we show the feature coefficients that seem to have a
statistically significant relation to known functionality of the decoding process for several
language pairs in both directions. Conclusions are detailed per error category, based on
Tables 6.4 and 6.5, which include the most significant and indicative beta coefficients. Co-
efficients not appearing in specific cells of the table are equal to zero, have a non-significant
value, or have been eliminated by the Stepwise Feature Set Selection. For a few language
pairs we also include coefficients with p-values for a more loose confidence level (up to
a = 0.30), when the same coefficient is statistically significant for other language direc-
tions.

6.4.2.1 Reordering errors

The coefficients for the reordering errors are shown in Table 6.4. First, the sentence-level
ratio of unknown words (unk-per-tokens) and the standard deviation of the position of
an unknown token in the translated sentence (unk-pos-std) have a positive effect towards
the creation of a reordering error. Unknown words may interrupt the reordering blocks
that are used by the reordering process. A high standard deviation suggests that unknown
tokens are scattered in distant places along the sentence; being “unknown” they cannot be
captured by the lexical reordering model and it is therefore likely that they cause an erro-
neous phrase order in the parts of the sentence where they occur. These observations are
confirmed for the multilingual model with a zero p-value and additionally for three of the
individual language-specific models.

More reordering errors tend to occur when the source sentence is longer (total-source-
words), since longer sentences tend to contain more complicated grammatical phenomena
which require reordering (Birch et al., 2009) particularly when German is involved. Besides,
it is known that the complexity of the beam search increases with the sentence sentence
length (Koehn et al., 2003; Zens et al., 2004).

The length of phrase segments chosen during the decoding has some correlation with
reordering errors. In particular there are more chances for reordering errors to occur when:

« the target phrases are longer in average (tgt-avg-phrase-len),
+ the source phrases are shorter (in particular when the length range between the short-
est and the longest source phrase is lower; src-phrase-len-min/max) and
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all de-en de-fr de-es en-de fr-de es-de
unk-per-tokens 2.08 598 3.03
unk-pos-std 0.19 0.22 0.17 0.25
total-source-words 0.23 0.37
src-phrase-len-avg -3.51
src-phrase-len-max -0.50 -0.36 -1.45
src-phrase-len-min -0.78
src-phrase-len-std 3.08 144 343
src-phrase-pos-min -0.44
src-tgt-diff-avg -2.53 2.03
src-tgt-diff-max 0.27 0.14 0.24 0.83 047
src-tgt-diff-min -0.26 -0.60 -0.50 -0.84
src-tgt-diff-std -1.66 -2.39
tgt-avg-phrase-len 1.03 0.70 1.57
best-trans-total 0.01 0.01
distortion -0.05 -0.06 -0.21 -0.09 -0.06 -0.15
mono-backward -0.08 -0.16 -0.25 -0.13
swap-backward -0.19 -0.48 -0.21 -0.30
other-backward -0.13  -0.17 0.20 -0.54
other-forward -0.08 -0.14 -0.11 -0.38
mono-forward 0.22
LM 5gram -0.01 -0.02 -0.03
phrase prob. -0.04 -0.11
lexical weighting -0.04
inv. phrase prob. 0.03 0.03
inv. lex. weighting
phrase penalty -0.48 -0.59
time-calculate-lm 6.60
time-other-hyp-score-ratio -4.72
time-other-hyp-score 23.47
time-collect-opt-ratio -4.63

Table 6.4: Indicative beta coefficients for the features affecting the existence of reordering

errors.
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« the target phrases are longer than the source phrases (indicated by the minimum
and the maximum difference between target and source phrase length; src-tgt-diff-
min/max).

This observation refers to the cases when the decoder chooses to translate a source phrase
with a relatively longer target phrase. It is noteworthy that this is mostly confirmed for the
language directions into German (src-tgt-diff-*), whereas there is the opposite observation
for translating from German: the prediction model for German-English has none of these
features activated, apart from a relevant feature with a negative coefficient (src-tgt-diff-avg).
One possible assumption would attribute this observation to the known length difference
between German and English (Gries and Wulff, 2012), which is often relevant to construc-
tions that require long-distance reordering. For example, the German present perfect tense
which translates the English past simple typically requires one more token for every verb
on the German side.

Observations concerning the scoring of the best translation by the inherent probabilistic
models of the decoding process include:

+ The scores of the distortion and the lexical reordering model (back-
ward/forward) have a negative correlation to the probability of re-ordering errors,
as it is expected (for the combined model and 5 different language directions)

+ For German-French and German-Spanish, the LM score has a negative correla-
tion with the probability of re-ordering errors, confirming that for these target lan-
guages the Language Model can successfully indicate a proper word order.

Finally, concerning the distribution of the decoding time:

+ For German-English, reordering errors occur when the calculation of the Lan-
guage Model takes longer time (time-calculate-lm). This is particularly detectable in
this language direction, because the English Language Model is significantly larger
than the other Language Models of the other target languages.

+ For German-French and German-Spanish there are more reordering errors when
the decoder spends time to calculate the score of hypotheses other than the one se-
lected (time-other-hyp-score), whereas

+ for English-German there are more reordering errors when the decoder spends
proportionally more time to collect options (time-collect-opt-ratio). Both latter ob-
servations refer to cases where the search space expands a lot, possibly due to a long
and complex source sentence bearing a lot of similarly uncertain translation alterna-
tives.

6.4.2.2 Missing words

The beta coefficients of the model predicting the existence of missing words are shown in
Table 6.5.
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all de-en de-fr de-es en-de fr-de es-de

pC-avg -1.14 221 -5.10 -5.18
pC-low -0.31 -0.61 -0.12

pC-low-avg -0.67 -5.15 -4.93
pC-min-pos 0.40 0.57 1.06 1.15
pC-std 211 1.14 3.82 9.46 7.05
c-avg 0.52 0.66 1.44 2.66 2.14
c-low 0.11 0.19 0.28

c-low-avg 0.94

c-std 1.62 8.43
alt-c-low 0.01

total-source-words -0.10 -0.10 -0.29
src-phrase-len-avg  0.70  1.23 1.56 1.74
src-phrase-len-min -0.48 -0.88 -0.86 -1.10 -0.95
src-tgt-diff-std 041 0.87 091 1.06 0.57
unk -1.60 -0.18 -2.81

unk-pos-last 1.22 3.97

time-calculate-lm 098 2.58

time-search 0.18 0.77 1.30 0.66
time-translation 2.98 0.24
total-transopt 0.01 0.01 0.01
total-hypotheses 0.01 0.01

hyp-recombined 0.01 001 0.01 0.01 0.01 0.01
lexical weighting 0.03  0.02 0.15 0.01 0.03

inv. lex. weighting ~ 0.01 0.02 0.01

Table 6.5: Indicative beta coefficients for the features related to missing words.

The probability scores for the phrases of the best translation have some correlation with
missing words. In particular it is more likely for words to be missing when:

the phrase probabilities are lower in average (pC-avg) and the future-cost estimates
are higher in average (c-avg),

the translated sentence contains less phrases with significantly lower phrase prob-
ability (pC-low and pC-low-avg) and more phrases with significantly lower future
cost estimate (c-low and c-low-avg),

the phrase with the lowest probability appears later in the sentence (pC-min-pos),

there is a high standard deviation of probability (pC-std) and future cost estimate
(c-std) among the phrases.

there is a higher number of alternative hypotheses with a low future cost estimate,
i.e. significantly lower than the mean of all hypotheses (alt-c-low).
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Concerning the scores that form the overall probability, there are higher chances that words
are missing, when the inverse phrase translation probability ¢( f|e) of the best translation
is lower and its direct and inverse lexical weighting lex(e|f) and lex( f|e) are higher.

The sentence and phrase length also have some effect to the existence of reordering er-
rors. Contrary to the reordering errors, the longer the source sentence is, the less possible it
is for missing words to occur. There may be also words missing when the source sentences
phrases are longer, namely when the average source length (src-phrase-len-avg) is higher
and the length of the shortest source phrase (src-phrase-len-min) is lower. A positive impact
to having words missing is also given by the standard deviation of the length difference be-
tween respective source and target phrases (src-tgt-diff-std), i.e. when the length difference
between aligned source and target phrases varies a lot.

The number of unknown words in the sentence has a negative correlation to the proba-
bility of having missing words (unk). Moreover, the later an unknown word occurs in the
sentence, the more likely it is for words to be missing (unk-pos-last).

Finally, it is confirmed that the search time (time-search) or the total translation time
(time-translation) is longer when words are missing. The decoder collects more translation
options (total-transopt), creates more hypotheses (total-hypotheses) and recombines more
hypotheses (hyp-recombined). Similar to reordering errors, the calculation of the Language
Model also takes longer.

Some of the above observations can be explained as following: Missing words often occur
when the decoder prefers a target phrase that translates a relatively longer span of the source
sentence, although the target phrase does not contain the translation for one of the words
of the source (Guthmann, 2006). The fact that the word is not covered can be attributed to
the fact that the chosen phrase alignment had a much higher probability than the correct
one.

The issue is illustrated by an example given in Figure 6.2, where we compare the dominant
translation with the correct translation through constrained decoding. The German verb of
the subordinate clause in the source sentence needs to be reordered and positioned before
the object. Nevertheless, although the correct phrase gets good backwards reordering and
Language Model scores, in the dominant translation it gets superseded by another phrase
that covers a longer span and has much higher phrase table scores (Table 6.6), although it is
totally missing the verb.

By deliberately adding an unknown token before the subordinate verb (add-unk), or re-
placing the object of the sentence by an unknown token (replace), the dominant alignment
cannot be used and therefore the correct reordering has the chance to occur. Unfortunately,
alignment models tend to learn phrase alignments with missing subordinate verbs as more
probable, due to the extremely long distance of the reordering. But very often in such cases,
unknown tokens (e.g. foreign names) occur as the object of these verbs, having a positive
contribution to a correct translation.
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dominant constrained +addunk replace
distortion 0 -10 -12 -6
word penalty -30 -30 -31 -28
unknown word penalty 0 0 -100 -100
mono-backward reord. -8.02 -6.86 -6.86 -6.86
swap-backward 0.00 -0.85 0.00 0.00
other-backward 0.00 -0.48 -1.97 -1.56
other-forward -6.59 -6.48 -7.80 -6.65
swap-forward 0.00 -1.61 0.00 0.00
mono-forward 0.00 -1.03 -0.88 -0.88
LM 5gram -126.49 -125.52  -133.18 -127.85
inverse phrase translation prob. -18.45 -20.75 -20.75  -21.60
inverse lexical weighting -40.19 -43.65 -43.65 -41.47
direct phrase translation prob. -25.26 -26.78 -26.78  -26.52
direct lexical weighting -39.31 -39.68 -39.68  -33.91
phrase penalty 15.00 16.00 16.00 16.00
final score -26.94 -27.98  -129.36 -128.34

Table 6.6: The individual model scores for the alternative decoding processes indicated in
Figure 6.2. The correct translation (constrained) is losing from the dominant one due to the

high phrase-table scores)

6.4. RESULTS
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source: der amerikanische Prisident Barack Obama kommt fiir 26 Stunden

nach Oslo, Norwegen , um hier als vierter US @-@ Président

in der Geschichte den Frieden Nobel Preise entgegenzunehmen
dominant:  in the history of the Nobel Peace prize .
pC -0.59 -0.42 -0.81
c -2.61 -2.64 -2.71
constrained: in history  to receive the Nobel Peace Prize .
pC -0.52 -1.33 -0.51 -0.14
C -2.25 -3.11 -2.72 -0.78
add unk.: in history to receive the Nobel Peace Prize SUNKS$ .
pC -0.52 -1.33 -0.51 0.00 -0.14
c -2.25 -3.11 -2.72 0.04 -0.78
replace: in history ~ to receive the $UNKS$ .
pC -0.52 -1.33 -0.57 0.00 -0.14
c -2.25 -3.11 -1.36 0.04 -0.78

Figure 6.2: The calculated log-probabilities (pC) and future cost estimates (c) of the last
phrases of a sentence where in the dominant translation a word ends up missing. The issue
does not occur when an unknown word is added. Scores with alternative decodings with the
correct output are also given for comparison.

6.5 Discussion and further work

The experiments of this chapter are only a first step towards understanding the qualitative
impact of common cases in the decoding process and further assessing the usability of glass-
box features in the field of QE. The numerical results lead us to several observations and
we attempt to provide intuitive explanations and assumptions. Since there can be several
improvements to the direction of drawing safer and more useful conclusions, we are giving
here some concerns and ideas for future work.

The chosen method is employed to examine feature contributions in a specific model. Nev-
ertheless, there is a concern that these are not necessarily generalized across different mod-
els. Moreover, although the decoding features are indeed related to the translation per-
formance, there are concerns that the logistic relationship between decoding features and
specific translation errors is so broad, that the statistical relationship is hard to be captured
by simple binary classification approaches. Future efforts should therefore examine other
machine learning methods, also considering the possibility to model the amount and/or the
exact location of errors.

Further work could extend this effort by including a wider range of error categories that
describe better the requirements for a translation correct output. Instead of automatically
detecting errors on post-edited output, a possible extension could consider modelling error
types assigned by humans. Additionally, the analysis of features can be extended in order
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to cover other types of machine translation, such as hierarchical phrase-based translation,
rule-based translation and neural translation.

An obvious application of this analysis would be incorporating the findings into the decod-
ing process, in order to improve it, e.g. by adding features into the decoding engine, so that
directly indicate factors that cause errors, or by improving issues on the alignment process.

6.6 Summary

We provided statistical evidence on how internals of the phrase-based SMT decoding pro-
cess correlate with the existence of two common error types. The existence of the errorsina
sentence was modelled over some decoding process features with logistic regression, which
resulted into several models with satisfactory precision and recall values. By grouping the
observations by error type, we showed important features (representing stages of the de-
coding process) that are common for several language pairs and directions at the same time.
Indications and tendencies were observed, based on the statistically significant coefficients.

Reordering errors have positive correlation to unknown tokens, particularly when they are
spread in the source sentence. There is also a positive correlation to the source sentence
sentence length and when the target phrases are longer than the source phrases they trans-
late. The latter is attributed to cases where German structures are typically longer than
their translations (e.g. past tense).

Missings word have a negative correlation with the source sentence length and a positive
correlation with the length of the spans that decoder uses from the source sentence. Among
others, it is remarkable that the unknown tokens have a negative correlation to the chance
for missing words. Manual investigation shows that an unknown token near the end of the
sentence may prevent the decoder choosing an erroneously aligned phrase that omits the
German subordinate verb.
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Chapter 7

Open source software for Quality
Estimation

In this Chapter we present Qualitative!, an open source software for Quality Estimation,
mainly developed for Comparative Quality Estimation and automatic sentence-level trans-
lation ranking. The software implements a pipeline annotating the translations with black-
box features and applying the machine learning algorithm in order to rank data based on
pre-trained models or train and evaluate new models. Optionally, the pipeline can also
fetch translations from external MT engines and pergform on-the-fly sentence-level sys-
tem combination.

The feature generation includes support for Language Models, PCFG parsing by two
parsers, language checking tools and various other pre-processors and feature generators.
The code follows the principles of object-oriented programming to allow modularity and
extensibility, whereas it integrates 25 state-of-the-art external tools into one single Python
program, through an interoperable framework with 9 different integration approaches.
The tool can operate by processing both batch-files and single sentences. An XML-RPC
interface is provided for hooking up with web-services. A comparison of the tool with sim-
ilar tools from was given earlier, as part of the section on related work (Chapter 1.2.7).

This Chapter is structured as follows. First, we give a short introduction with the available
execution modes and the framework for organising training and experiments (Sections 7.1
and 7.2). The basic architecture of the software and the main packages are outlined in Sec-
tion 7.3, whereas the integration of external components is described in Section 7.4. Finally,
some directions for further work and a summary are given in Sections 7.5 and 7.6.

'Publicly available at http: //www.github.com/lefterav/qualitative
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7.1 Execution modes

There are several ways the program can be executed. In particular, the basic functionality
is provided through the following modes:

- Command-line interaction: It allows the user to interact with the sentence se-
lection on the commandline, given a configuration file and a pre-trained selection
model. Then the user can sequentially type the source sentence and the respective
translations one by one.

+ Batch mode: This serves for cases where multiple sentences with their respective
translations need to be processed in a row (e.g. for training new models or translating
full documents).

« XML-RPC interface: This instantiates an XML-RPC server awaiting translation re-
quests for one sentence at a time. The server responds to the command rank, having
as parameters the source and any number of respective translations. It is useful for
binding to web-applications.

7.2 Experiment management

Experimenting over the training of new models is organised by using the Python Exp-
Suite (RiickstieR and Schmidhuber, 2011). This allows the exhaustive exploration of several
experimental settings in parallel. We have forked and extended its functionality to provide
out-of-the-box parallelised cross-validation for any given dataset. Additionally, the split
training and test-sets of the cross-validation are cached in a common directory, so that they
can be re-used for different experimental settings which require the same original dataset.
The experiments can be resumed from the step they were left, in case of any unexpected
interruption.

The experiment pipeline keeps a structured log of every step of the experiment, which may
include the results of the evaluation, but also details about the machine learning process
(e.g. the beta coefficients of a log-linear model, or weights of a linear model). The trained
models are also dumped in external files, so that they can be re-used later. After all itera-
tions and cross-validation folds of the experiment are concluded, a script allows for creat-
ing a comma-separated table that compares all experimental settings against a desired set
of metrics.

7.3 Core module

The core of the program is based on Comparative Quality Estimation. The given sentence
is first processed within a pipeline of modules. These modules perform text pre-processing
and various NLP analysis processes to generate features that indicate the quality of the
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translation. The generated features are consequently fed to a machine learning algorithm,
which employs a statistical model for putting the translations in an order of preference.
This statistical model has been previously trained on human-annotated data.

In principle, there can be various combinations of features and machine learning algo-
rithms, depending on what performs best given various properties of the QE task. Pre-
trained models are provided that follow the settings most successful experiments for several
language pairs, as outlined in the previous chapters.

7.3.1 Basic architecture

In our approach, the main core of the program is written in Python. Python has been cho-
sen because it offers the flexibility of dynamic programming, which allows for quick and
relatively easy experimentation in many NLP tasks. Functionality from several powerful
scientific and machine learning toolkits are available through imported libraries. Addition-
ally, a Python script can be connected to real user applications, either through a web server
(e.g. Django), or by offering its functionality via a socket service. This choice offers a flexible
framework for both experimentation and practice, although it has got its own limitations
(e.g. processing cannot be distributed in many computational machines without additional
engineering).

The program is internally structured around several packages:

« data processing unit is able to read and write XML and text-based files containing
annotated translations. It loads the given data in the memory via the respective data
structures or stores any results into new files,

+ preprocessing performs the necessary string normalisation tasks for the languages
at hand (e.g. tokenisation, compound splitting, truecasing etc.),

+ machine translation sends source sentences to MT engines and receives their
translation along with translation meta-information,

+ feature generation sends the source sentences and their translations to the feature
generators and receives vectors of numerical features,

+ machine learning serves for the communication with machine learning toolkits for
two functions: training and testing. During training, it sends a batch of vectors, each
one with a golden label and it receives a model. During testing, the model is loaded
and given a vector, the predicted label is returned and

+ evaluation implements several metrics for measuring ranking and translation per-
formance.

For each of the above packages, the commands are organized so that they form a specific
interface as a principle of internal modularity. This way, the same functionality can be im-
plemented by different classes. For example, every feature generator class has to implement
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<?xml version="1.0" encoding="utf-8"?>
<jcml>
<judgedsentence langsrc="en" id="11" langtgt="de">
<src>Go to System Preferences</sre>
<tgt system="system_ 1" berkeley-loglikelihood="-84.908"
berkeley—n="19" rank="2">
Gehen Sie zu Systemeinstellungen
</tgt>
<tgt system="system_ 2" berkeley-loglikelihood="-74.656"
berkeley—-n="5" rank="3">
Sprung zu Systemeinstellungen
</tgt>
<ref berkeley-loglikelihood="-83.355" berkeley-n="18" >
Gehen Sie zu Systemeinstellungen
</ref>
</judgedsentence>
</jeml>

Figure 7.1: Sample JCML file, containing a source sentence, the reference and two trans-
lations with Berkeley Parser scores and human ranks

at least one function that receives a source sentence and its translations and returns a vector
of numerical features.

7.3.2 Data Processing

The majority for the read/write processing of the software is done in a special XML format,
the JCML format, which stands for Judged Corpus Markup Language. It is a simple XML
format that has been devised so that it allows dynamic feature lists but at the same time it
can be inspected manually. Reading and writing occurs incrementally to avoid memory-
related issues, given the big volume of some data sets. There are also several scripts that
allow the conversion from and to other common formats. A sample of such a file can be
seen in Figure 7.1.

7.3.3 Machine translation

One of the basic applications of the automatic ranking is the possibility to combine differ-
ent systems on the sentence level. Such a method is often referred to as a case of hybrid MT
when it combines different types of systems (e.g. statistical and rule-based). This package
handles the communication with translation engines by connecting to remote APIs. It cur-
rently supports Moses (Koehn et al., 2006), Lucy (Alonso and Thurmair, 2003), as well as
MT-Monkey (Tamchyna et al., 2013) for accessing deployed server installations. The com-
munication with the engines allows fetching translations and glass-box features (translation
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probability, unknown words etc.), when these are made available by the engine.

Additionally, some techniques of hybridisation are included, such as (a) serial post-editing
of a RBMT system with SMT (Section 5.1.3), (b) forcing a RBMT system to fetch domain-
specific terms from a domain-specific SMT system and finally (c) a SMT system using an
alternative decoding path through a phrase table whose terms have been annotated through
Word-Sense Disambiguation (WSD), as in Avramidis et al. (2016a).

The machine translation interface, apart from being a step of the QE pipeline, it can also
act as a standalone application, or as a web-service pluggable via XML-RPC.

7.3.4 Feature generation

As explained above, the generation of features is a crucial step for acquiring quality hints
regarding the processed sentence. For this purpose, this package provides a set of modules,
thereof called feature generators. These are classes which process the text of the sentences
and return numerical values that describe some aspects of quality.

The functionality of the feature generators includes:

+ scoring with LMs, PCFG parsing with two parsers, contrasting scores of several
reference-aware metrics such as BLEU, WER, METEOR and Hjerson,

« language correction software such as LanguageTool and Acrolinx IQ, IBM-1 prob-
abilities, as well as token counts.

+ word alignment based on the IBM-1 model (Brown et al., 1993), allowing to derive
the count of aligned PCFG tree spans, nodes and leaves between the source and the
target sentence. Whereas this generates hundreds of sparse features, the most promi-
nent of them are expected to help isolate systems that fail to translate grammatically
important chunks of the source,

« relative and absolute position of every PCFG tag within the sentence, with the goal
to capture wrong positioning of grammatical chunks in languages where this is im-
portant (e.g. German),

+ a re-implementation of the WMT baseline features (Callison-Burch et al., 2012)
(a.k.a. QuEst features) in Python, including the average number of translations per
source word in the segment as given by IBM-1 model with probabilities thresholded
in different ways, and the average number of occurrences of the target word within
the target segment,

+ integration of SRILM and KenLLM (Heafield, 2011) which provides efficient of scores
from Language Models

+ awrapper for the TreeTagger (Schmid, 1994), which acquires the necessary POS tags
for Hjerson (Popovié, 2011¢)
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fetch data

I LM I Icross-rneteorl I cross-bleu I Iparse»matchesl Ilang. checkerl

Figure 7.2: Sample pipeline of feature generators for one of the most successful feature sets.

« aconnector to the XML-RPC of MoodWSD (Weissenborn et al., 2015), an external
software for WSD.

Features generators can run in parallel (i.e. when processed in batch mode for training).
For slower tasks (e.g. parsing), it is additionally possible to split a batch in smaller parts and
process them in parallel. A sample parallelised feature generator pipeline can be seen in
Figure 7.2.

7.3.5 Machine Learning

A transparent and modular internal interface allows for integration of several external
ML toolkits. The integration of every ML toolkit should extend an abstract class named
Ranker. This should implement some basic functions, such as training on a batch of sen-
tences, or producing the ranking given one source sentence and its translations. The im-
plementation of every ML toolkit is also responsible of converting the given sentence data
and its features to the data structures understood by the toolkit. Binary classifiers, where
available, are wrapped to provide a ranker’s functionality.

Currently the following toolkits and learning methods are supported:

+ Orange (Demsar et al., 2004) with kNN, Logistic Regression with Stepwise Feature
Set Selection or L2 Regularisation and C45 trees,

+ Scikit-learn (Pedregosa et al., 2011) with SVM with Grid parameter optimisation
over cross-validation, Decision Trees, Gaussian Naive Bayes, LDA and Quadratic
Discriminant Analysis, Bagging, AdaBoost and Gradient Boosting and feature selec-
tion methods such as RFECV

« MLpython? with listwise ranking methods, such as ListNet (Cao et al., 2007).

2MLpython is described at http: / /www.dmi.usherb.ca/~larocheh/mlpython/

108


http://www.dmi.usherb.ca/~larocheh/mlpython/

7.4. CONNECTING EXTERNAL COMPONENTS

7.3.6 Evaluation

The evaluation phase is the last part of the experiment process, as the trained models are
tested against gold-sets and need to be evaluated accordingly. The evaluation phase offers
a wide range of ranking metrics, including Kendall’s tau, inverse-weighed Kendall’s 7 and
its theoretical p-values and confidence intervals.

A set of ranking metrics originating from Information Retrieval include the NDCG, First
Answer Reciprocal Rank (FARR; Radev et al., 2002), Mean Reciprocal Rank (MRR; Radev
et al.,, 2002) and Expected Reciprocal Rank (ERR; Chapelle et al., 2009). Since the mathe-
matical formula for the computation of the Expected Reciprocal Rank is computed in expo-
nential time, we use the simplified computation suggested by Chapelle et al. (2009), which
is outlined in algorithm 1. The algorithm reduces the computational perplexity by calcu-
lating the relevance grades g; only once for each rank 7. This is used during the loop for
calculating the relevance probability I?; and gradually augmenting the £ R R value.

Algorithm 1: Linear computation of Expected Reciprocal Rank

foreach i in [0,n] do g; « RelevanceGrade (i);
p<« 1, ERR < 0.
forr < 1tondo
R < RelevanceProb(g,)
ERR «+ ERR+px R/r
p<+< px(1—R)
return FRR

Finally, the evaluation phase includes automatic metric scores (BLEU, METEOR, TER,
WER, Hjerson) for the performance of the system combination and its components against
the reference translation.

7.4 Connecting external components

In order to ensure state-of-the-art functionality for all the underlying NLP tasks, the soft-
ware integrates a multitude of external tools into one single Python program, through an
interoperable framework. Here we present 9 approaches taken to connect 25 external com-
ponents, originally developed in various programming languages. There are two main cat-
egories of communicating with external software components, based on whether the exe-
cution of the external software is controlled from within our Python code, which we will
call the “host”, or whether it is run as a remote service. The full design of the integration is
shown in Figure 7.3
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. JSON
> tokenizer MT Monkey [«€-=-==---- : —>» Scikit Learn
XML
> truecaser Moses (-RP-Q: e Orange
. REST | !
> comp. splitter Mood WSD Lucy <-: > MLPython
A HE
T XML N
Perl pipes 'RPC remote _E_ P Python libs
——m————— cedaaod
Y Y |
input data . machine feature machine
T reading > pre-processing = translation > generation > learning
L
remote
Python libs Py4J BASH pipes shell SOAP:
> BLEU »| Berkeley Parser |'»| TreeTagger Ba BitPar Acrolinx IQ
. . RPC,
> Hjerson / rgbF | P» Languge Tool > Giza LM-server |[&€ --=
> KenLM >» METEOR - QuEst Berkeley server [ ---
> NLTK
—» Numpy / Scipy

Figure 7.3: Full diagram of the components that have been integrated into the application
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7.4.1 Inherent integration

In these functions, the execution of the external software is encapsulated into the host. The
goal is to keep the external tool running in the background so that it can receive requests
from the host. It gets automatically unloaded when the host program is finished. The part of
the host program or the code which handles the specifities of the communication is referred
to as a “connector”.

7.4.1.1 Native Python libraries

Many pieces of Python open-source software already offer their functionality in openly
available libraries. This is the easiest and most efficient type of integration, as all of the
public functions of the included software can be directly called from within our host Python
code. The software served by this method includes:

« BLEU (Papineni et al, 2001), Levenshtein Distance (Levenshtein, 1966) and
RgbF (Popovié, 2012b) for MT evaluation scores

+ Hjerson (Popovié, 2011¢) for automatic detection of MT errors
+ KenLM (Heafield, 2011) for language modelling

« MLPython? Orange (Demsar et al., 2004) and Scikit-learn (Pedregosa et al., 2011)
for machine learning functions.

« NLTK (Loper and Bird, 2002) for several simple NLP tasks

« NumPy (Van Der Walt et al., 2011) for memory-efficient handling of numerical ar-
rays and SciPy (Oliphant, 2007) for scientific (e.g. complex mathematical or statisti-
cal) functions.

7.4.1.2 Java programs

Py4j* was chosen as a solution to integrate functionality from open-source Java programs
into Python. The Java Virtual Machine (JVM) starts in the background including the re-
quired Java Packages (jar) in the classpath. Then, a Py4j gateway connects with the JVM via a
socket and makes all public classes and functions loadable and callable from within Python.
Python types are automatically converted to Java types and vice versa. If the processes are
thread-safe on the Java side, they can be also parallelised in several Python threads.

This method is used to connect with:

+ Berkeley Parser (Petrov et al., 2006) for parsing with Probabilistic Context Free
Grammars (PCFG),

« Language Tool (Naber, 2003; Milkowski, 2012) for rule-based language checking
and

Shttp://www.dmi.usherb.ca/~larocheh/mlPython/
‘http://www.pydj.org
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« METEOR (Lavie and Agarwal, 2007; Denkowski and Lavie, 2014) for MT evaluation
scoring.

This method is efficient and allows wide access and parametrisation to the functionality
of the external Java program. Nevertheless, it also requires good knowledge to its internal
structure, e.g. via a Java APl documentation or by reading the Java source code. This is
needed because the imported objects, functions and variables have to be treated in Python
the same way they would do in Java. Additionally, the host needs to know or maintain
a knowledge of the system socket where the JVM operates, which makes it complicated to
run many hosts on the same JVM. In a few cases, parts of the source code had to be modified
and be re-build, since not all required functions were declared as public, which is a major
requirement.

7.4.1.3 SWIG

Simplified Wrapper and Interface Generator (SWIG) allows wrapping C++ code as a Python
library. Creating such a connector allows to parse C/C++ interfaces and generate the glue
code’ for Python to call into the C/C++ code. In our program we have not developed such
a connector, but we have experimented with SWIG-SRILM (Madnani, 2009), an existing
wrapper around SRILM (Stolcke, 2002).

7.4.1.4 Pipes

An external commandline-based software is launched by the host as a sub-process in the
background. The standard input, the standard output and the error output can be captured
within a Python object (a pipe). Therefore, a program-specific connector needs to be writ-
ten. It should be aware of the commandline behaviour of the software and simulate that
through the pipe. The sub-process is treated as a black-box, i.e. no access to particular
internal functions is possible.

For example, a standard tokeniser from the Moses scripts would read from the standard
input all characters, waiting for and “end of line”. Once the “end of line” is received, the
tokenisation takes place and the tokenised string is returned through the standard output.

This approach is mainly used for Perl scripts and C++ programs but can be adapted for any
commandline application. Such software includes:

« Moses scripts for pre-processing and post-processing, such as punctuation nor-
maliser, tokeniser, compound splitter (Koehn and Knight, 2003), truecaser (Och et al.,
2003), de-truecaser, de-tokeniser etc. Although re-implementations for most of these
exist in Python and therefore could be directly included in our code, one may still re-
quire to stick to the original Moses Perl scripts, if they want to re-use pre-trained
Moses translation models or acquire results comparable with other scientific works
that use these state-of-the-art Perl scripts.
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+ TreeTagger for POS tagging (Schmid, 1994) integrated via the TreeTaggerWrap-
per (Pointal, 2015).

The advantage of this method is that it can be adapted for many programs without requir-
ing knowledge of their internal coding or functioning, while it still allows loading a tool
into memory once and sending individual requests when the host program needs it. The
disadvantage is that the only way of interaction is through the standard input and output,
which offer no flexibility for parametrisation or passing more complex types. Additionally,
reading standard output often requires excessive use of regular expressions to understand
some complex output, which would otherwise be intended for the visual understanding of
the user. Unexpected errors and exceptions are hard to capture, too. We should also men-
tion that some tools only work with input and output files (batch mode) and do not support
per-request communication with standard input and output. Finally, serious deficiencies
have been noted concerning the buffering support of the pipes, which may prevent data
from being transferred through the standard input/output.

7.4.1.5 Shell with external files

The data to process is written by the host on a temporary file. The external program is
launched once, asked to process the given temporary file as an input and write its output
in another temporary file, which consequently gets read by the host. This is the last resort
for having the host communicate with external tools, since loading the entire program per
request and writing external files is not efficient for single sentences and is useful only for
processing batches of requests. We also noticed that some programs of this kind do not
allow many instances to be run in parallel (e.g. because they require an exclusive lock on
some internal files, whose location is often non-parametrisable).

We used this method for aligning sentences with Giza+-+ (Och and Ney, 2003), acquiring
baseline features from QuEst and doing PCFG parsing with BitPar (Schmid, 2004) with
the help of a wrapper (van Cranenburgh, 2010). This method was useful only for experi-
ments that did not require parallelisation and single requests.

7.4.2 Integrating functionality as a remote service

An additional possibility of integrating an external tool is by sending requests to it as a
remote service. In this case, the external tool must provide a server which initially loads
the program and implements a network protocol of requests and responses. It waits until a
request is received from the host, in order to run the required functions. The result of the
functions is then sent with a corresponding response.

Four such protocols and the respective tools we have used are:

+ JSON: with MT-Monkey (Tamchyna et al., 2013), which acts as a hub and a load
balancer for fetching translations from several MT engines

« SOAP: with Acrolinx IQ (Siegel, 2011) for language checking
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+ REST: with the Lucy rule-based MT system (Alonso and Thurmair, 2003).

« XML-RPC: with Moses (Koehn et al, 2006) for Statistical MT, with LM-
server (Madnani, 2009) for LM scoring, with our own XML-RPC wrapper of Berke-
ley Parser and with Mood (Weissenborn et al., 2015), a Word Sense Disambiguation
analyzer.

Such an integration is straightforward if the tool already provides a protocol interface, since
the protocols allow for easy mapping of function and variable types across many different
programming languages. This solution is based on a network connection, so it is also desir-
able when one needs to distribute different computationally or memory intensive modules
to many computational servers. Nevertheless, a network communication may be consid-
erably slower due to the network overhead. Additionally, starting and stopping remote
services cannot be easily controlled by the host, unlike the encapsulation described in the
previous section.

7.5 Further work

Some parts of the pipeline have been also used for other types of QE, such as quality
score prediction for single outputs and error prediction (Avramidis, 2012b; Avramidis and
Popovi¢, 2014). Small extensions to provide abstract interfaces for different QE problems,
including classification and regressions, would be desirable.

We are also aware that the glass-box feature integration requires extensions to support most
MT engines, although this faces the barrier that not all glass-box features are easily available.

Finally, despite the huge potential for machine learning, the processing of large amount
of data in linear files leads into bottlenecks, in case they must be analyzed or processed
selectively. We plan to support more effective data types (e.g. JSON). A possible solution
would include the implementation of smart databases and other data-effective techniques.

7.6 Summary

We developed an open source software for Comparative Quality Estimation. We presented
the main modes of operation (included local and server mode) and the framework for train-
ing and experimentation. Then, we outlined the basic architecture and described the func-
tionality of the main packages. An additional emphasis was given to the methods for in-
tegrating external state-of-the-art software, originally written in other languages. In that
context, 9 different methods were employed in order to integrate 25 external tools. ‘
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Chapter 8

Conclusions and further work

8.1 Conclusions

Comparative Quality Estimation is a distinct type of Quality Estimation, motivated by the
possibility to improve the objectivity of translation comparisons, while reducing the re-
quirements for the ground truth by favouring ordinality against cardinality (Chapter 1).
The ranking mechanism is defined as a pipeline of the feature generation function and the
ranker, following the principles of a typical supervised machine learning problem (Chap-
ter 2),

It is shown that such a ranking mechanism can predict rankings which correlate signifi-
cantly with human rankings and are significantly better than random or alphabetical rank-
ings (Chapter 3). Additionally, the rankings predicted by the ranking mechanism compete
with state-of-the-art reference-aware metrics on sentence-level ranking, as it performs sig-
nificantly better than the automatic metrics BLEU, METEOR, TER and rgbF, for the lan-
guage pairs where focused feature engineering took place. The ranking mechanism also
beats all other metrics in language pairs where the feature engineering from other language
pairs was adopted, apart from one automatic metric, METEOR, which is significantly as
good as the ranking mechanism. This suggests that elaborate features and machine learn-
ing may provide more information about relative translation quality than direct compari-
son with references.

When compared with other methods of automatic ranking (pairwise classification, individ-
ual continuous values with similarity threshold, a multiple classifier and a method similar
to n-best reranking) the ranking mechanism is significantly better than any of them for the
language pair where particular feature engineering took place, whereas it got the second
position for a second language pair.

The fact that ranking is decomposed into pairwise decisions allows the integration of
several machine learning algorithms with positive results. The best ranking models are
achieved with Gradient Boosting and AdaBoost, Logistic Regression and Linear Discrimi-
nat Analysis. A considerable amount of ties was eliminated thanks to the weighting of the
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pairwise decisions with the classification confidence.

Iterative feature engineering (Chapter 4) indicates that for German-English, information
from the parsing of the target sentences can be more valuable as features than the LM prob-
ability. The most valuable features for our Logistic Regression model are the number of the
unknown words, the number of tokens, the contrastive METEOR score, the number of VPs
and the number of the alternative n-best parse trees of the target translations (Section 4.2.5).
Superficial source features are not useful for the purpose of Comparative QE. Neverthe-
less features from the alignment of particular tree nodes between the source and the target
sentence and alignment scores (IBM-Model 1) appear to be important (Section 4.3.4). Ad-
ditionally, the choice of the target-side grammatical features depends on the language di-
rection. Indicatively, for English-German, features indicating the position of verb phrases
in the sentence play a bigger role, whereas for German-English, features such as the count
of subordinate infinitives and prepositional phrases seems more important (Section 4.3.4).

Feature Selection can improve the performance of the ranking mechanism. For a model
trained with Logistic Regression, Stepwise Feature Set Selection performs significantly bet-
ter than L2 Regularisation. For a model trained with Gradient Boosting, Recursive Feature
Elimination can reduce the amount of features to about a third, without any negative im-
plication to the ranking performance (Section 4.3.3).

The ranking mechanism can be used for hybrid system combination. Using pairwise com-
parisons to combine three different systems from 2 different MT technologies (SMT and
RBMT) leads to a combination that performs significantly better than its components, as
measured by automatic metrics (Chapter 5).

The appearance of common error types can be explained with empirical analysis on the M T
output (Chapter 6). The correlation of the existence of two common MT errors with fea-
tures from the phrase-based decoding process can lead to conclusions about events in the
decoding process that caused the respective errors. Reordering errors have a higher prob-
ability to appear when there are proportionally more unknown tokens and they are spread
more along the sentence. They also occur more when there are longer source sentences
and when the target phrases are longer than the source phrases they translate, possibly due
to grammatical phenomena with length imbalance (such as German past tenses) known to
have high reordering requirements. There is a higher probability of words to be missing
when the source sentences are shorter and when the decoder chooses longer spans from
the source sentence. Additionally, the number of unknown words in the source has a neg-
ative correlation with the number of missing words. Finally, it is shown that unknown
words, when they occur as the object of subordinate verbs, may prevent the verb omission
by interrupting long verb-less spans originating from erroneous alignments.

8.2 Further work

The goal of this line of research remains to bring the research on Quality Estimation closer
to solving common problems in practice. There are reports that QE has been integrated in
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several professional and industrial translation pipelines as an additional evaluation or selec-
tion component on top of the existing translation systems (Martins et al., 2016). Nevertheless,
the operation of QE is clearly supplementing missing capabilities of the underlying transla-
tion systems. So an obvious further goal would be the integration of QE into the overall design
and development cycle of the systems, or even as an inherent component of the system ar-
chitecture itself. Efforts have been done, but no optimal solution has been shown (Hopkins
and May, 2011; Burchardt et al., 2013; Aranberri et al., 2016). Additionally, little progress
has been made with regards to using QE as a tool for evaluation, despite the positive results
over the last 7 years (few of which also included in this thesis). This can be of course seen in
parallel with the yet persisting use of BLEU by the research community, although its flaws
have been underlined and improved metrics have been available (Bojar et al., 2016b).

We may assume that the observed situation derives from the fact that the engineering over-
head of configuring and running QE is often not justified by the potential profit. The over-
head itself resorts to many aspects of QE that are language-specific or system-oriented,
often requiring fine-grained work for feature engineering and other necessary steps.

After the experiments of this thesis were concluded, Neural MT (Bahdanau et al., 2014)
emerged, leading to a significant change for the landscape of the field. Despite the obvious
improvements (Junczys-Dowmunt et al., 2016), qualitative analysis (Bentivogli et al., 2016)
reveals that errors are still apparent, indicating that the role of QE may be relevant in several
sensitive applications. However, the overall spectrum of the MT errors is undergoing a
shift as the MT output starts becoming less distinguishable from human translations (Wu
et al, 2016). The generated sentences are clearly more fluent, obeying grammatical and
syntactic rules better than statistical systems. Given enough data, a QE model would require
an enhanced machine learning and feature engineering power in order to cope with this
new spectrum of errors and better differentiate quality.

The most crucial change is nevertheless foreseen on the conceptual level. The new learning
method has successfully replaced scattered modules and ad-hock solutions with one single
self-contained concept; a unified concept that is considered as one of its main advantages.
In that sense, the exact form of QE is being at stake: Will QE still be useful as an independent
module, or will neural MT models eventually be capable of inherently performing QE on
their output? Can the findings of QE, or even QE itself, be integrated in the learning method
in an effective way?

Keeping these aspects in consideration, we think that further work should evaluate and
redefine the role of QE given the entry of Neural MT and investigate the use of approaches
using deep learning for the purposes of QE and vice versa.
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