
Toward Semantic Machine Translation

Jacob Andreas

Submitted in partial fulfillment of the

requirements for the degree

of Bachelor of Science

in the School of Engineering and Applied Science

COLUMBIA UNIVERSITY

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161440934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Released into the public domain May 15 2012.

No Rights Reserved



ABSTRACT

Toward Semantic Machine Translation

Jacob Andreas

This thesis presents a novel approach to interlingual machine translation using λ-calculus

expressions as an intermediate representation. It investigates and extends existing algo-

rithms which learn a combinatorial category grammar for semantic parsing, and introduces

two new algorithms for generation out of logical forms inspired by that semantic parser.

The results of a set of new experiments for generation and parsing are described, as well

as an evaluation of the performance of a semantic translation system created by joining

the semantic parser and generator together. Experimental results demonstrate that under

certain conditions, this semantic model achieves better performance than a standard phrase-

based statistical machine translation system in both an automated evaluation of translation

output and a manual evaluation of adequacy and fluency.
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荃者所以在魚得魚而忘荃
蹄者所以在兔得兔而忘蹄
言者所以在意得意而忘言
吾安得夫忘言之人而與之言哉

庄子

The trap is for fish; having the fish you can forget the trap.
The snare is for rabbits; having the rabbit you can forget the snare.
Language is for meaning; having meaning you can forget language.
Where can I find a man who has forgotten language, so I can talk to him?

Zhuangzi
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Chapter 1

Introduction

I have a big tree of the kind men
call shu. Its trunk is too gnarled
and bumpy [. . . ] its branches
too bent and twisty [. . . ] You
could stand it by the road and
no carpenter would look at it
twice. Your words, too, are big
and useless, and so everyone
alike spurns them!

Zhuangzi

A semantically-informed model of machine translation can improve both the adequacy and

fluency of translation outputs. In this thesis, I present a novel approach to interlingual

machine translation using λ-calculus expressions as an intermediate meaning representation.

In doing so, I hope to point toward a means of unifying now-defunct interlingual models of

machine translation and the data-driven methods that replaced them.

Certainly, the time has come to fundamentally reconsider our approach to automated

translation: The current phrase-based, statistical method, though it has proven superior

to the hand-tuning that preceded it as the dominant paradigm [CBKMZ11], is satisfying

neither as a model of the process underlying human translation, nor—more importantly—

for practical purposes, as a mechanism for transforming sentences in one language into

meaningful, well-formed sentences in another.1 Though scores against standard evaluations

1As recently as 2010, the best-performing system at the Workshop on Machine Translation was judged
to produce “acceptable” output for French–English translation only 54% of the time. [CBKM+10]
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improve slowly from year to year, it’s unclear if these scores, whether assigned by humans

or automated metrics, correspond to genuine improvements in translation quality [TSM03,

CBOK06].

Recent years have seen promising success in syntax-sensitive machine translation, either

by building it into the phrase-based model [XM04] or by learning transfer rules as an

alternative to phrase tables [Chi05]. Thus it’s reasonable to ask whether an even higher

level of abstraction might provide even further gains in both the clarity and correctness of

automatic translation. Constant recourse to memorized rules of syntax is the mark of a

skilled language learner, but not a fluent speaker; the native instead interprets and translates

in terms of the meaning of the sentence observed. If we ever wish to have translation systems

which are truly fluent, it may be that they, too, must learn to model meaning.

This is by no means a new idea; indeed, some of the very earliest systems for machine

translation were driven by semantic models. But those systems, like much of the other rule-

based artificial intelligence of that generation, were brittle and limited, and were quickly

outpaced when statistical techniques were developed.

I think we are ready to try semantics again, and to unify the old-fashioned interlingual

approach with modern statistical techniques. The system I present in this thesis is not a

general-purpose translation system: It is itself brittle and narrow, and it does not address

a number of crucial issues (such as the representation of meaning and the interpretation of

context) which must be solved in order for such a system to be produced. My goal is simply

to demonstrate that statistically driven, semantics-based parsing is already possible.

The study of algorithms for automatically translating text from one human language

to another has been recognized as an an important application of computers from the very

earliest days of computer science. Machine translation was envisioned by none less than Alan

Turing and Warren Weaver and identified as a crucial part of American intelligence strategy

during the Cold War [Hut97] and the modern “War on Terror”, and is used (occasionally

to great hilarity) by individuals and businesses throughout the world today. In recent years

translation has become central to numerous humanitarian efforts surrounding education and

emergency response [HBG+11]. Even science fiction, rather than assuming some universal



CHAPTER 1. INTRODUCTION 3

language, tends to rely on a ubiquitous translation service.2

It seems like translation ought to be a straightforward task: Natural language, after all,

is generated according to rules so simple small children learn them effortlessly, and “all” a

machine translation system needs in order to function is to be told (or discover) those rules

for itself. Why, then, should we believe that a model of semantics is necessary for successful

translation?

In 1949, Warren Weaver wrote:

Thus it may be true that the way to translate from Chinese to Arabic, or

from Russian to Portuguese, is not to attempt the direct route, shouting from

tower to tower. Perhaps the way is to descend, from each language, down to

the common base of human communication—the real but as yet undiscovered

universal language—and then re-emerge by whatever particular route is conve-

nient. [Wea49]

Common experience suggests that when a human attempts to translate a sentence from a

language f to a language e, she does the following: 1) looks at the f sentence, 2) acquires

its meaning, and 3) renders that meaning according to the rules of language e. There is no

reason, in general, that computational approaches to natural language processing should

blindly ape our intuitions about human language processing (indeed, we make no claims

about the psycholinguistic plausibility of this work!), but this intuition does suggest that

there may be subtleties of the translation process which are modeled poorly or not at all in

the absence of semantic markings. From a perspective purely concerned with efficiency, if a

multilingual translation system is to be constructed (and assuming an appropriate universal

interlingua can be devised), the number of pairwise translation systems necessary will grow

quadratically but the number of semantic parsers and generators only linearly in the number

of languages.

One might reasonably object that a purely semantic model does not describe everything

a human translator will do when asked to translate. Such a model should regard the

translation of “gatos y perros” into “cats and dogs” or “dogs and cats” equally likely; a

2e.g. Star Trek’s Universal Translator or the Hitchhikers Guide’s Babel Fish)
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human, when asked to perform the same task, will almost invariably prefer “cats and dogs”

as it preserves the word order of the original example. Other examples, preserving more

complicated syntactic phenomena, are also possible.

It is undeniable that a good literary translation requires a level of fidelity to the source

text which a semantic model will never capture—but one that, it must be admitted, even

human translators are never able to model in full. More generally, demanding that our

translation systems respect both syntax and semantics, when it’s unclear that we know how

to handle semantics alone, is too much. In this respect, the proposal of a semantic model of

machine translation is a relaxation of the model putatively underlying modern translation

systems. Let us worry about the difference between “cats and dogs” and “dogs and cats”

once we have ensured that animal names are not rendered as something else entirely.

Moreover, the availability of a universal meaning representation as an intermediate form

would allow a more seamless integration of various other tools (e.g. coreference resolvers)

into the translation process. The final motivation of this work is the possibility of laying

the groundwork for a machine translation system capable of employing reasoning.

The theoretical framework for semantics-based machine translation continued to attract

attention long after Weaver’s time. The Vauquois Triangle (Fig. 1.1) [Vau68] characterizes

numerous families of techniques for machine translation, at increasing levels of abstraction.

Vauquois predicts “direct”, word-to-word translation, which may roughly be said to capture

modern phrase-based methods; a “syntactic transfer” from parse trees in one language to

parse trees in another, and finally “semantic transfer” and “interlingua” at the highest levels

of the pyramid. Notably, Vauquois allows that semantic representations are not necessarily

sufficient to serve as a universal interlingua, and considers the possibility of translation

between multiple semantic representations as an alternative to the use of a true interlingua.

One reason for skepticism toward a universal semantic representation is provided by the

aboriginal languages of Australia, many of which make exclusive use of absolute directional

markers (“I am standing north of the house” rather than “in front of the house”) [JT06];

in principle, any interlingua which through which we wish to adequately translate between

one of these languages and a language with relative directional markers must encode both
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Interlingua

Direct

Syntactic
Transfer

Semantic
Transfer           Semantic

Representation

           Syntactic
Representation

      Source Text Target Text

Figure 1.1: The Vauquois Triangle

absolute and relative position. If we attempt to design an interlingua for all of Earth’s

languages it will certainly be so weighed down by baggage of this kind that all parsing will

be impossible.

Nevertheless we might reasonably expect to begin with a semantic representation which

is sufficient to describe all relevant grammatical phenomena in two languages; we might

further dispense with the syntactic segments of the triangle altogether, and parse into our

universal semantic representation directly from raw text. This gives rise to a degenerate

Vauquois triangle (Fig. 1.2), the model that we will consider for purposes of this thesis.

As discussed, the system presented here is not a high-quality, broad-coverage machine

translation system, and is not intended to be. But I wish to demonstrate (and think I

have succeeded in demonstrating) that, following very recent successes in analyzing into

and realizing out of λ-calculus expressions, it is possible to do statistical, semantic machine

translation in a principled and reasonably efficient way, and that this approach to translation

is capable of outperforming näıve phrase-based systems. I hope (though here I am realistic

about how much motivation a bachelor’s thesis can provide) to motivate with this work

further research on semantic translation systems, with the goal of eventually bringing them

up to parity with (and beyond) phrase-based and syntax-based systems in coverage and

generality.
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Direct

Semantic
Representation

      Source Text Target Text

Figure 1.2: A degenerate “semantic Vauquois Triangle”
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Chapter 2

Related Work

Long, long ago there was a great
rose of Sharon that counted
eight thousand years as one
spring and eight thousand years
as one autumn. [. . . ] Yet
Pengzu alone is famous today
for having lived a long time, and
everybody tries to ape him.

Zhuangzi

2.1 Machine Translation

2.1.1 Interlingua

The very earliest successful attempts machine translation were built on large tables of

hand-specified rules. These systems required large amounts of highly specialized human

knowledge (and consequently great cost) to produce, but with the investment of enough

effort could be coaxed into producing reasonable output. These systems were, with few

exceptions, either transfer-based or interlingual. In transfer-based systems, sentences were

analyzed in the source language, and rules specified transformations of that analysis to

produce analyses of the target sentence, which could then be used to generate the target

text. Interlingual systems, meanwhile, had as their underlying theoretical model precisely

the one described in the introduction: The process of machine translation was all analysis
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and no transfer, and it was sufficient to parse the source sentence into interlingua and then

generate from interlingua into the target.

Why did such systems fail? Principally because systems dependent on the manual

specification of rules were simply unable to keep up with the coverage of models that were

learned from the enormous parallel corpora suddenly available. Systems requiring hand-

specified rules are brittle, and do not adapt easily to changing patterns of language use or

lend themselves to easy adaptation in highly technical or otherwise rarefied domains.

There is, nonetheless, a great deal to be learned from those early attempts at semantics-

based machine translation, particularly with regard to the hard problem of interlingua

design. One notable success in rule-based machine translation is SYSTRAN, which began

developing a transfer system in 1968 as has continued to remain competitive to the present

day; see [SDVB01] for a (comparatively) recent system. Much of the research challenge

in better hand-constructing machine translation systems lies in simplifying the rule coding

process and eliminating redundancy, and thus provides little insight into the process of

translation itself; one reason to be skeptical of this general family of approaches is that

SYSTRAN has invested many person-centuries of work in a system whose performance is

matched by an out-of-the-box phrase-based system trainable in hours.

Work on interlingual machine translation has more or less ceased in recent years. One

of the last successful such systems was kant [MNC91], developed at Carnegie Mellon,

which also relied principally on expert-constructed rules (although with partially automated

lexicon building) and required a special kind of “controlled language” in the source text

[MN94]. For a general survey of interlingual approaches to machine translation, see also

[DHL04].

2.1.2 Statistical Transfer

Weaver again:

I have a text in front of me which is written in Russian but I am going to pretend

that it is really written in English and that it has been coded in some strange

symbols. All I need to do is strip off the code in order to retrieve the information

contained in the text.
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Weaver prefigured the “statistical revolution” which occurred in machine translation in 1990

with the introduction of the so-called IBM Models 1-5 [BCP+90]. The IBM models, rather

than attempting to provide any kind of linguistic account of translation, simply assume,

in keeping with Weaver’s intuition, that “French” is some statistical process which distorts

English sentences, and attempts to recover the output. Formally, translation is treated as

a “noisy channel” process; we wish to model the probability p(e|f) of observing an English

text e given a French text f , and to choose the e maximizing this probability. Bayes’ rule

tells us that this may be estimated as

p(e|f) ∝ p(f |e)p(e)

(disregarding the usual denominator p(f) on the right-hand side, as it will remain constant

over all choices of translation). The first term, p(f |e), is a translation model which describes

the relationship between the two languages; the second, p(e) is a language model which may

be constructed from monolingual data.

But how to model p(f |e)? IBM’s general observation was that it is possible to decompose

this probability in terms of word alignments a between the two languages, and that the joint

probability p(f, a|e) is easier to model than p(f |e) alone. Models 1 through 5 presented

various ways of generating these alignments with increasing sophistication. Models 1 and

3, the most influential, will be discussed in more detail.

Model 1 is simple: It learns a one-to-one (but not necessarily onto) correspondence

between the words of the source language and the target language. It models the joint

probability of alignments and source sentences as

p(f, a|e) = p(a|e)p(f |a, e)

=
1

(l + 1)m

m∏
i=1

p(fi|eai)
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Once this probability is known, the alignments can be marginalized out to recover the

original translation probability

p(f |e) =
∑
a

p(f, a|e) .

Thus the only quantity that needs to be estimated in order for translation to work is the

pairwise probability p(fi|ej) of words. This can be estimated efficiently using expectation

maximization, and is guaranteed to converge to the global optimum.

But this is a rather poor model: It forbids multi-word alignments and relies entirely

on the language model to correctly determine the syntax of the target sentence. Model

3 attempts to rectify this problem by introducing a notion of “fertility” which allows one

English word to map to multiple French words (so that French phrases, rather than single

words, can determine translation), and adds a distortion model which captures word order.

This “statistical revolution” rapidly reached syntax-based machine translation [Wu97,

Blo00,Chi05]. The key insight enabling the extension of statistical methods to syntax was

the observation that the word alignments used by phrase-based systems could be used as

a starting point for learning a synchronous context-free grammar in the source and target

language; then, when a new sentence was observed in one language, its derivation on one

side of the SCFG could be used to efficiently generate the translation on the target side.

In general, hierarchical translation systems have proven very successful in translating

between language pairs with highly divergent syntax [ZVOP08], as they are more tolerant

than phrase-based systems of long-range reorderings. The success of statistical syntax-based

systems offers some evidence that as we ascend the Vauquois pyramid, richer descriptions

of the relationship between source and target language permit more fluent and accurate

translation.

But why not stop here? Just as there are phenomena (e.g. long-range reordering) easily

captured by syntactic but not phrase-based systems, there may be semantic phenomena

whose realization in source and target languages are so divergent they cannot be captured

by an SCFG. As mentioned in the introduction, we would also like a unified model of

meaning which allows us to easily incorporate automated reasoners and other tools already
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designed to operate on logical forms into our translation systems.

2.2 Semantic Parsing

2.2.1 Classical

The earliest approaches to semantic parsing relied on hand-constructed rules rules. One

successful example is Bobrow et al.’s gus system [BKK+77]. gus, a “frame-driven dialog

system” used a chart parser with hand-constructed rules to extract meaning from input text;

meaning itself was represented in a standard frame-semantic fashion. Notably, gus already

incorporated reasoning into its dialog with the user, transforming these frames into database

queries which could then be reformulated as responses to the user. But semantic parsing

with hand-constructed rules suffered from the same shortcomings as the hand-constructed

machine translations described above, and the approach was not long-lived in the research

community.

2.2.2 Statistical

More recent work has focused on statistical approaches to semantic parsing. Early work

on learning variable-free logical expressions includes that of Ge and Mooney [GM06] who

construct “semantically augmented parse trees,” extending a Collins parser to place se-

mantic labels on each node, Kate and Mooney [KM06] which learns a support vector ma-

chine with a string similarity kernel for each production in a specially-constructed meaning

representation language, Wong and Mooney’s wasp [WM06] which learns a synchronous

context free grammar over logical expressions and natural language representations, and

Lu et al. [LNLZ08] who learn a hybrid tree simultaneously encoding syntax, semantics and

sentence surface form.

The wasp projects, in particular, are dependent on the particular choice of variable-

free logical expressions as meaning representation; the work was eventually extended to λ-

calculus expressions in 2007 [WM07a] in the form of λ-wasp, which permits representation

of λ-calculus expressions in the formulation of their CCG.

Some recent work also studies the problem of unsupervised semantic parsing, in cases
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where semantically-annotated sentences are not available; this includes Poon & Domingos,

who learn a Markov logic network in order to induce semantic forms [PD09]; Artzi et al.’s

semantic parser bootstrapped from transcripts of interactions with a dialog system [AZ11];

and Liang’s work on learning semantic representations from question-answer pairs [LJK11].

This parser used in this work is the one introduced by Kwiatkowski et al. [KZGS10]

in 2010, which learns a combinatory categorial grammar annotated with λ-calculus expres-

sions, providing a mapping from natural language sentences into λ-calculus representations

(and, though they do not explore it in that paper, potentially vice-versa). Several varia-

tions on that work have been proposed, including templating [KZGS11] and inclusion of

context [ZC09] (though this last paper relied upon a set of hand-engineered templates which

Kwiatkowski et al., and the present work, do not).

CCGs more generally have been used for a variety of problems in semantics, including

child language acquisition [Ste96] and “wide-coverage” semantic parsers [BCS+04].

2.3 Semantic Generation

2.3.1 Classical

The opposite of the problem provided by semantic parsing—given some meaning represen-

tation, how is it realized as a natural language string?—has long been recognized as closely

related to the parsing problem. Early natural language generation systems, like their coun-

terparts in analysis, tended to be based primarily in hand-constructed rules (see [TSRD06]

for an example). Classical generation of this kind specifically targeted at performing natural-

language realization out of logical forms includes [Wan80], which describes hand-constructed

rules for transforming lambda expressions into constituency parses, and from there to fully-

realized sentences. The structure search problem discussed in that paper is very similar

to the one considered in generation here; as will be seen, it is possible overcome some

of the combinatorial obstacles encountered there with standard heuristics. This family of

approaches to generation, like the analogous parsing problem, tends to have low coverage.
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2.3.2 Statistical

An recent example of the approach undertaken in this thesis is given in [WM07b]. They

take a acquired semantic parser in their wasp system, and use the parser’s learned SCFG

with a standard chart-based generation algorithm to perform natural language realization.

Wong and Mooney note that this general strategy of modeling semantic parsing and tactical

generation as the same problem is in fact an old one, dating back to 1975 [Kay75] and that

in general parsing charts may also be used in generation algorithms. Chart generation for

CCG in particular includes the work of White and Baldridge [WB03].

The only recent work we are aware of focused specifically on the task of performing

semantic generation out of lambda calculus expressions is that of Lu and Ng [LN11], who

learn a “lambda-hybrid grammar” and, like Wong and Mooney, use a synchronous context-

free grammar as the general model for generation. That work, however, does not come

paired with a parsing algorithm; it is desirable, for the joint task of parsing and generation,

to have some symmetry between the structures learned by our parser and our generator (and,

following Wong and Mooney, to perhaps share data structures). Thus the new generation

algorithms presented in this thesis differ from the work of Lu in the use of a CCG, and

generally in their close relationship with the parser described by Kwiatkowski et al.
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Chapter 3

Preliminaries

[. . . ] and if you are going a
thousand li, you must start
getting the provisions together
three months in advance.

Zhuangzi

I begin with a presentation of the basic formal tools used to develop the parsing and gen-

eration algorithms used in this thesis.

3.1 CCG

Both the semantic parsing and generation algorithms presented in this thesis learn

a combinatory categorial grammar, or CCG. Combinatory categorial grammar

[Ste00] is a mildly context-sensitive grammar formalism [VSW94] (of equivalent power to

linear indexed grammars, tree adjoining grammars and head grammars), attractive for var-

ious reasons: It is expressive, naturally interpretable in a logical setting (CCG categories

can be made to map directly onto lambda calculus types), efficiently parsable, and perhaps

psycholinguistically plausible [RHK06].

A CCG consists of a language-specific lexicon Λ, and a set of universal rules which

describe how items in the lexicon may be combined in order to form sentences of the

language. Every entry in the a CCG lexicon is a pair α : t, where α is a string in the

language and t is a syntactic category. Categories are either primitive or complex; the
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number and naming of primitive categories depends on the construction of a given lexicon.

Strings combine to form new strings according to their categories. In this thesis a slightly

restricted set of combinators is considered in order to ensure computational efficiency (and

hopefully not at the expense of expressive power). The combinators used are described

below. First are the application combinators:

α : X/Y β : Y

αβ : X
>

β : Y α : X\Y
βα : X

<

Intuitively, these allow strings α with type X/Y or X\Y to “look” for arguments of type Y ,

giving back strings of type X. X/Y looks to the right, and X\Y looks to the right. brown :

N/N might combine with dog : N to give brown dog : N , or alternatively dog : N\Adj

combine with purple : Adj to give purple dog. Next are the composition combinators:

α : X/Y β : Y/Z

αβ : X/Z
B>

β : Y \Z α : X\Y
βα : X\Z

B<

These correspond to functional composition in the same way that the application combina-

tors correspond to functional application, changing the “return type” but not the type of

the argument. Continuing with the previous example, with big : Adj\Adv in the lexicon,

it is possible to produce big dog : N\Adv.

Most formulations of CCG also include a type-raising combinator

α : X

α : T/(T\X)

(and a corresponding backwards combinator). For purposes of computational efficiency the

raising combinator is omitted in this work; empirical results suggest that the omission does

not render the parsing task impossible, and most linguistic phenomena that would ordinarily

require a raising combinator are simply described in some other way in the lexicon.

3.2 λ-calculus

The λ-calculus, first introduced by Church in [Chu32], has long been a popular choice

for abstract meaning representation in computer systems. It is an expressive (indeed,
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Turing-complete) programming language syntax, but also unambiguous, easily parsable

and straightforward to manipulate computationally.

This thesis deals with typed λ-calculus expressions, in which every primitive object is

labeled with one of e (an entity), i (a number) or t (a truth value); and every function

which takes as input an object of type x and returns an object of type y has type 〈x, y〉.

The λ-calculus expressions in the training data make use of a set of named primitives, both

entities and functions, whose type signatures are assumed to be known in advance.

The algorithms in this thesis rely in particular on the ability to solve a series of higher-

order unification problems; that is, given a function h, to find pairs of functions f and

g such that (fg) = h or (λx.(f(gx))) = h. This process is known, in general, to be

undecidable [Hue75]; even with some limitations it is possible that the number of pairs f

and g is exponential in the length of h, so a moderately restricted form must be considered

in order to constrain the available splits. Following [KZGS10], the following restrictions

apply:

1. No vacuous variables: neither f nor g may contain arguments that appear in their

bodies (as will be seen, this corresponds to an elimination of the raising combinator

in Sec. 3.1).

2. Limited coordination: fix some N ; then the expression g may not contain more

than N conjuncts (or disjuncts) appearing in h. If coordination is unrestricted, any

subset of the conjuncts may be selected; these subsets grow exponentially in the size

of the expression. Like [KZGS10], choose N = 4.

3. Limited application: f may not contain any new variables applied to non-variable

subexpressions in h.

With all of these restrictions, the number of splits for any expression will be at most an

Nth-degree polynomial in the length of the expression.

Note that the two conditions for splitting ((fg) and (λx.(f(gx)))) correspond directly

to the two combinators introduced in the CCG framework, and that types of the lambda

calculus can be made to correspond directly to CCG categories with an appropriate choice



CHAPTER 3. PRELIMINARIES 17

of basic categories. This leads directly to the development of the joint λ-calculus and CCG

splitting process which drives the algorithms presented here.

3.3 The joint splitting process

Like much of the related work on semantic parsing and generation, the central structure

used in these experiments is a hybrid language-meaning parse tree, in which every node is

labeled with both a CCG category, a lambda-calculus expression, and a natural language

string, and in which the root node contains both the complete semantic representation

and the full natural language text, and leaf nodes correspond to entries in a hybrid CCG

lexicon, analogous to the an ordinary CCG lexicon but with the addition of lambda calculus

expressions for each entry.

We may then think of the process of parsing as attempting to reconstruct this tree

observing only the text at the leaves, and the process of generation as finding the tree

observing only the lambda calculus expression at the root. The discovery of this tree relies

upon the splitting process for lambda calculus expressions described in the preceding section.

Formally, each node of the tree is a triple α : t ` e, with α a string, t a CCG type and e

a λ-expression. This gives rise to the following inference rules for paired language-meaning

representations:

α : T (f(g))/T (g) ` f β : T (g) ` g
αβ : T (f(g)) ` f(g)

>

β : T (g) ` g α : T (f(g))\T (g) ` f
βα : T (f(g)) ` f(g)

<

α : T (λx.f(g(x)))/T (g) ` f β : T (g) ` g
αβ : T (λx.f(g(x))) ` λx.f(g(x))

B>

β : T (g) ` g α : T (λx.f(g(x))\T (g)) ` f
βα : T (λx.f(g(x)) ` λx.f(g(x))

B<
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Where the CCG type inference function T is defined as follows:

T (x) =


NP x = e

S x = t

T (y)|T (z) x = 〈y, z〉

Note that in the datasets considered for this experiment, the numeric type i will never

appear in the signature of the parse of a sentence. In general, this formalism results in a

rather unusual-looking set of CCG types; all proper nouns will have type N , but other nouns

will often be assigned types like S|NP , corresponding to their semantic representation as

single-argument predicates (e.g. the state function) rather than atomic entities.

3.4 Corpus

The data used for the experiments presented in this thesis are drawn from the GeoQuery

corpus [ZM96]. The GeoQuery dataset consists of 880 logical expressions expressions

paired with English-language representations. The questions were generated by asking

undergraduates at UT Austin (and later, users from the web) to produce English queries

for a database of geographic facts; these queries were then manually translated into logical

representations. Two forms, both a lambda-calculus and variable-free representation of the

logical representations, are available in the GeoQuery dataset; this thesis presents results

only for the lambda calculus expressions.

The first 250 sentences in the corpus, which will be referred to as the Geo250 dataset,

were also translated from English into Spanish, Turkish and Japanese; these sentences are

used for translation experiments. The complete corpus, available only in English (and,

when understood as such, referred to as the Geo880 corpus) was used in addition to the

Geo250 dataset for parsing and generation experiments.

Note here Kate’s observation that the examples in the GeoQuery dataset are, in general

“harder” than many of the other standard datasets used in semantic parsing like atis and

RoboCup [Kat07]—the GeoQuery entries tend to involve deep nesting (e.g. “which states

have points higher than the highest point in Colorado”). The average sentence length in
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Sentence λ-expression

how many colorado rivers are there (count $0 (and

(named:t $0 colorado:n)

(river:t $0)))

what is the population of hawaii (population:i hawaii:s)

what is the length of the mississippi river (len:i mississippi river:r)

what length is the mississippi (len:i mississippi river:r)

colorado nun cak tane nehri vardir (count $0 (and

(river:t $0)

(loc:t $0 colorado:s)))

Figure 3.1: Sample entries from the GeoQuery dataset

Geo880 is 7.48 words, and the average lambda-calculus expression contains 6.47 tokens.

Throughout this thesis, the results of experiments on the complete Geo880 data set are

based on a single train-tune-test split. The testing data are identical to the conventional

280-sentence test set for the Geo880 corpus, while the training and tuning split is created

by setting the final 100 sentences of the standard training set aside for tuning (the same split

used by Lu and Ng). The results of experiments on the Geo250 dataset are the average of

ten-fold cross-validation, using the cross-validation split in run-0 of [KZGS10].
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Chapter 4

Parsing

Don’t listen with your ears,
listen with your mind. No, don’t
listen with your mind, listen
with your spirit. Listening stops
with the ears, the mind stops
with recognition.

Zhuangzi

Our discussion of the system presented in this thesis begins with the first stage: the parser.

Semantic parsing, as has been discussed, has various applications in its own right; more

importantly, a robust semantic parser is crucial as the first stage of analysis in semantics-

based machine translation. While contributions to the parsing problem are less substantial

than the other work presented in this thesis, this section describes some new results with

an extended parser feature set, and discuss the results of the baseline parser in order to

provide context for the interpretation of parser output in the complete translation pipeline.

4.1 The Parsing Model

The first parser discussed is identical to the parser, already mentioned several times, intro-

duced by Kwiatkowski et al. in 2010 [KZGS10].1 The reader is referred to that paper for a

more detailed exposition of the parser’s inner workings. The training algorithm is given as

1The authors of that paper generously provided their code for use in these experiments.
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Algorithm 1, and a subroutine for expanding the lexicon in Algorithm 2.

A log-linear model on productions assigns probabilities to parse trees; the joint prob-

ability of a parse y and a logical representation z conditioned on a sentence x is given

by

p(y, z|x; θ,Λ) =
exp(θ · φ(x, y, z))∑

(y′,z′) exp(θ · φ(x, y′, z′))
,

given a feature vector φ to be defined shortly. Finding the most likely parse for a given

sentence x is then simply the problem of calculating

arg max
z
p(z|xi; θ,Λ) ,

with

p(z|xi; θ,Λ) =
∑
y

p(y, z|xi; θ,Λ) ,

which, if all features are local, can be approximated with a pruned chart parser. φ is

optimized using stochastic gradient descent; the update to the objective O is given by

∂Oi
∂θj

= ∆ = Ep(y|xi,zi;θ,Λ)[φj(xi, y, zi)]− Ep(y,z|xi;θ,Λ)[φj(xi, y, z)] .

The algorithm takes as input a pair of n training examples, consisting of a paired

natural-language sentence and λ-calculus expression. The lexicon Λ is initialized to contain

both these training examples (with syntactic type S), and a list of proper nouns and their

corresponding semantic tokens (with syntactic type NP ). When new lexical features are

added to the parameter vector θ, they are initialized according to co-occurrence statistics

calculated with a standard aligner (see the original paper for details).

At a high level, this is simply a structured perceptron. At each step, it determines what

lexicon update will best best improve the current parse, and then refines the parameters

of the model correspondingly. Note that in general, splitting would tend to decrease the

likelihood of the data; however, because positive weights are assigned to newly introduced

lexical features the algorithm will (initially) favor splitting over merging. To calculate the

stochastic gradient update parameters Ep(y|xi,zi;θ,Λ)[φ(xi, y, zi)] and Ep(y,z|xi;θ,Λ)[φ(xi, y, z)],

the inside-outside algorithm is used.
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Algorithm 1 TRAIN-PARSER

for t = 1..T do
for i = 1..n do

y∗ = arg maxy p(y|xi, zi; θ,Λ)
Λ← Λ ∪NEW-LEX(y∗)
γ = α

1+c(i+tn)

∆ = Ep(y|xi,zi;θ,Λ)[φ(xi, y, zi)]− Ep(y,z|xi;θ,Λ)[φ(xi, y, z)]
θ ← θ + γ∆

end for
end for

Algorithm 2 NEW-LEX

L1 = all lexicon entries obtained by merging a node in y
L2 = all pairs of lexicon entries obtained by splitting a node in y
L = L1 ∪ L2

l∗ = arg max
l∈L

p(y∗|xi, zi; θ′,Λ ∪ l)−max
y
p(y|xi, zi; θ′,Λ ∪ l)

return l

4.1.1 Baseline Features

The parser makes use of two kinds of indicator features: lexical and semantic. Each entry in

the lexicon has a corresponding feature that triggers when it is used in a sentence; each pair

of a named function and primitive in the logical representation have a feature that triggers

when the primitive appears as the ith argument to the function. This baseline parser is

referred to as kzgs in the table of results below.

4.1.2 Categorial Features

Note that all of the features used in Kwiatkowski et al.’s parser occur at extremal nodes of

the tree—either the root (semantic features) or the leaves (lexical features). I extend the

kzgs parser by adding a third set of features which trigger on internal nodes of the tree

according to their CCG categories. In particular, every split [αβ : X] → [α : X|Y ][β : Y ]

will trigger an indicator feature [X → X|Y, Y ]. For the sake of generality, all directional

information contained in the syntactic category is discarded, so e.g. the feature component

associated with the type S/NP\(NP/NP ) is S|NP |(NP |NP ). This feature set is referred

to as kzgs+ccg.

While this feature is principally motivated by the generation problem (and discussed for
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kzgs kzgs+ccg
Recall Precision f1 Recall Precision f1

en880 0.850 0.967 0.905 0.807 0.915 0.857
en250 0.768 0.924 0.837 0.776 0.949 0.851
es250 0.780 0.943 0.852 0.780 0.943 0.852
tr250 0.664 0.929 0.771 0.652 0.913 0.758
ja250 0.796 0.921 0.853 0.768 0.881 0.820

Table 4.1: Results for basic parser with baseline and augmented feature sets.

kzgs kzgs+ccg
Recall Precision f1 Recall Precision f1

en880 0.889 0.896 0.892 0.817 0.820 0.819
en250 0.812 0.825 0.818 0.832 0.839 0.835
es250 0.832 0.851 0.841 0.836 0.852 0.844
tr250 0.716 0.752 0.733 0.684 0.724 0.703
ja250 0.824 0.824 0.824 0.808 0.808 0.808

Table 4.2: Results for skipping parser with baseline and augmented feature sets.

that purpose in more detail in Chapter 5) we initially believed that it might also help in

semantic parsing for the same reason features triggered on internal nodes in discriminative

constituency parsing models are useful. The evaluation results do not support this intuition;

the few experiments in which kzgs+ccg scores higher are not statistically significant.

4.2 Evaluation

The parser fails to produce a semantic representation on a nontrivial fraction of sentences:

17% for English and Spanish, 28% for Turkish and 14% for Japanese. This fact presents a

serious obstacle for a potential translation system: For a substantial portion of the input, it

will be impossible to translate at all! Falling back on the skipping parser might help some;

as expected, allowing word-skipping greatly increases recall at the expense of precision.

Using the skipping parser as a fallback, however, also introduces a risk of undergenerating

on the target side and losing content from the sentence. Because I envision the translation

system from this thesis used (if it is used in practice) in conjunction with a phrase-based
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system as a last-resort fallback, the skipping parser is omitted from the translation pipeline

entirely: It is less trustworthy state-of-the-art PSMT. The generally high quality of these

results on successful parses, however, suggests that not too much noise will be introduced

into the translation process by the parser, and that the kzgs parser will be an adequate

first stage in the translation pipeline.
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Chapter 5

Generation

Saying is not blowing breath,
saying says something; the only
trouble is that what it says is
never fixed. Do we really say
something? Or have we never
said anything?

Zhuangzi

This section introduces experiments on the generation side only, designed to provide some

characterization of generator behavior when decoupled from noise (or empty parses) output

by the parser. Rather than simply plugging in a state-of-the-art lambda-calculus generator

like that of [LN11], I have essentially inverted the parser described in Chapter 4, with the

intuition that the comparatively rich feature model used there will also result in a good

generation algorithm, and in the hopes of eventually enabling joint training for parsing

and generation. This symmetry between the parser and generator allow us to introduce

a very simple, PCFG-driven generator which actually performs quite well and requires no

retraining beyond the training of the parser. That generation algorithm, as well as one

which more closely mirrors the discriminative training for the parser, are presented below.1

1The generation code used for the experiments presented here relies on the implementation of the splitting
algorithm provided by [KZGS10], described in the previous section.
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5.1 The Generation Model

Both generation models introduced rely upon the creation of a hypergraph describing all

possible derivations of the target sentence. An approach very similar to the one in [Chi05]

is used to heuristically find the single derivation in this hypergraph scored highest by both

the edge weights and a language model.

The generation of the hypergraph itself presents several challenges. Unlike the analogous

parsing problem, there is no constraint on the overall length of the generated sentence. Many

of the lexical entries produced by the learning algorithm are totally vacuous, and can be

chained indefinitely to produce sentences of infinite length. (For example, what : S/NP `

λx.x.) To restrict the size of the hypergraph generated before realization, we take an

iterative deepening approach to this problem, passing as an argument to the tree generation

algorithm a maximum depth which is increased until a tree containing an acceptable solution

is discovered. This algorithm is given as BUILD-HYPERGRAPH (Algorithm 3).

The two algorithms presented differ only in the technique used to acquire weights for

the hypergraph edges. For all of the experiments below, a graph of splits is generated,

and weights assigned to its hyperedges using various strategies. Finally, a standard cube-

pruning decoder is used to intersect the hypergraph with a language model to produce final

sentences.2 For all of the experiments below, the language model employed is trained on

the same dataset as the generator.

5.1.1 PCFG Generation

The simpler of the two generation approaches (referred to as “Model 1” below) uses only

output from the parser training process, and does not require retraining for generation. It

learns a generative model: Leaf nodes of the hypergraph are identified by matching them

against the lexicon output by the parser training process, and edge weights are assigned by

learning a PCFG over CCG categories using the final parses of the training data.

Concretely, the model learns a PCFG where the weight of each production is determined

by three factored probabilities: a categorial probability p1, a semantic probability p2 and a

2The cube pruning implementation in Alexander Rush’s Scarab package was used in this step.
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Algorithm 3 BUILD-HYPERGRAPH

Globals: M (visited nodes), N (reached nodes), E (edges), D (max depth), Λ (lexicon)
Arguments: n = t ` e (current node), d (current depth)
if n ∈M then

return n ∈ N
end if
M ←M ∪ {n}
L = {(α′ : t′ ` s′) ∈ Λ : t = t′ ∧ s = s′}
if |L| > 0 then

BUILD-TERMINAL(n)
return true

end if
if d = D then

return false

end if
return BUILD-NONTERMINAL(n, d)

Algorithm 4 BUILD-TERMINAL

Globals as above
Arguments: n = t ` e (current node)
for all (α′ : t′ ` s′) ∈ L do

e = ()
for all w ∈ TOKENIZE(α′) do

APPEND(e, w)
end for
E ← E ∪ {(n, e)}

end for
N = N ∪ {n}
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Algorithm 5 BUILD-NONTERMINAL

Globals as above
Arguments: n = t ` e (current node), d (current depth)
k = false

for all (p, q) ∈ SPLITS(n) do
if ¬BUILD-HYPERGRAPH(p, d+ 1) then

continue
end if
if ¬BUILD-HYPERGRAPH(q, d+ 1) then

continue
end if
k = true

end for
if k then

N = N ∪ {n}
end if
return k

lexical probability p3:

p((α : T ` a), (β : U ` b)→ (γ : V ` c)) = λ1 · p1(T,U |V ) ·

λ2 · p2(a, b|c) ·

λ3 · p3(α, β|T,U, a, b) .

The categorial probability p3 models the probability of observing a split

X|Y, Y → X given a parent category X. The semantic probability p3 models the prob-

ability of observing a split f, g → h (where h = f(g) or λx.f(g(x)). Finally, the lexical

probability, assigned only to edges incident on leaves (and set to 1 elsewhere), models the

probability that an expression a with syntactic type U will produce a terminal string α.

We may obtain maximum-likelihood estimates for these probabilities by simply counting

the number of times each production occurs in the parse trees for all the training sentences

given as output by the parser training process, and use Laplace smoothing to account for

previously-unseen productions. For the Geo880 dataset, weights are assigned to the three

λi, and an additional language model probability, using minimum error rate training [Och03]

on a held-out set of 100 examples; for the Geo250 dataset, weights for categorial, semantic,

lexical and LM probabilities are set at 0.05, 0.02, 0.05 and 1 respectively.
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5.1.2 Log-linear Generation

The next decoder (“Model 2”) is a more faithful inversion of the parsing algorithm. Recall

that in the parser we wished to find the most probable parse conditioned on the observed

text; here we do the opposite, i.e. find

arg max
x

p(x|z; θ,Λ)

with

p(x|zi; θ,Λ) =
∑
y

p(y, x|zi; θ,Λ)

for a sentence x and a logical form z. As a consequence the training algorithm is only subtly

different from the training algorithm (Algorithm 1) employed for parsing. For the sake of

brevity the complete parser training algorithm is omitted; instead simply note that the new

stochastic gradient update is given by

∂Oi
∂θj

= ∆ = Ep(x|yi,zi;θ,Λ)[φj(x, yi, zi)]− Ep(x,z|yi;θ,Λ)[φj(x, yi, z)] ,

again changing the place of x and z.

The weight vector over features given by θ is used to assign weights to each hyperedge

of the split graph during the training process, and eventually during decoding. As before,

the heuristic cube-pruning algorithm is used to calculate the arg max over all derivations in

order to incorporate a language model. The problem of finding expected feature values is

simply a special case of the standard outside algorithm for applying expectation semirings

to hypergraphs [LE09], and solutions may be efficiently computed.

5.2 Evaluation

This section presents both standard bleu scores, and a “trimmed” bleu score which does

not penalize the generator for sentences on which it fails to generate. For reference, the

scores achieved by Lu and Ng’s generator are also provided in the ln column.
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Model 1 Model 2 ln
base trim base trim base

en880 44.58 46.68 43.61 46.25 54.58
en250 58.67 54.66 58.30 55.89 –
es250 59.08 64.16 59.08 65.17 –
tr250 32.97 36.55 30.32 33.79 –
ja250 52.96 60.15 52.93 59.86 –

Table 5.1: Results for generation into English.

5.3 Discussion

All of the translation models presented fall substantially short of Lu and Ng’s generator.

An inspection of the translation results suggests that this is primarily a problem of brevity:

our system tends to prefer, for example “population of denver” to “what is the population

of denver”, or “what states does the mississippi” to “through what states does the missis-

sippi run”. This is a natural consequence of using an inverted CCG parser for generation:

the grammar learned is very good at identifying (and discarding) semantically redundant

content in a sentence, but less equipped to identify syntactically necessary features. Never-

theless these models are interesting both as a new application of CCGs for generation out

of logical forms, and as a potential starting point for a joint parsing/generation model for

machine translation.
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Chapter 6

Translation

Master Lai grew ill. Gasping and
wheezing, he lay at the point of
death [. . . ] Master Li, who had
come to ask how he was, said,
“Shoo! Get back! Don’t disturb
the process of change.”

Zhuangzi

Having determined both how to parse into λ-calculus expressions and to generate out of

them, we are ready to join the two systems together to create a complete translation pipeline.

As pointed out before, there are circumstances under which both the parser and generator

can fail to produce output, which means that this will not be a full-coverage translation

system on its own; Chapter 4 already discussed a mechanism to remedy this problem by

falling back on a phrase-based system when parsing or generation fails. This section fo-

cuses on the output of the pure semantic translation system without coupling, in order to

characterize both the severity of empty output problem and the quality of the successful

translations.

6.1 The translation models

The basic approach underlying both sets of translation experiments presented here is the

same: Join together the semantic parser and semantic generator described in the preceding

sections, passing the logical representation output by one as input to the other. I use
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the kzgs parser from Chapter 4, and the Model 1 generator from Chapter 5. In order to

avoid writing “kzgs–Model 1” throughout the rest of this thesis, I christen the resulting

system bast (perhaps “Born Again Semantic Translator”?), in keeping with a longstanding

Egyptological naming convention in machine translation.

Evaluation, however, is complicated for a few reasons. Firstly, there is an asymmetry

in the data required: As often happens in machine translation, large monolingual resources

for the target language can prove useful for training a language model, and in this case, the

entire generation model. Secondly, as discussed in previous sections, the parser simply fails

to produce any output at all on a nontrivial fraction of input sentences, and in these cases

translation is impossible. As a consequence, this section presents three evaluation methods

which provide different insights into the quality and coverage of the translations produced.

The evaluations presented here describe a “balanced” resource scenario, in which the

training data consist of a three-way parallel corpus of source sentences, target sentences

and semantic representations. For this evaluation, all training data are drawn from the

translated Geo250 dataset. Evaluation results for all languages are presented.

6.2 Evaluation

To characterize the circumstances under which the parser fails to generate, both “base”

and “trim” results (analogous to the previous section) are given, providing a comparison

of bleu scores over both the unfiltered document (usually incurring a substantial brevity

penalty) and bleu scores over a filtered set of references which evaluate the precision of the

successful outputs only. Table 6.2 shows automated evaluation of the balanced experiment.

Manual evaluation of a limited subset of results from the balanced experiment is shown

in in Table 6.6. Evaluators were asked to perform a binary assessment for both adequacy

and fluency; for each output they were asked “Does this sentence adequately capture the

meaning of the reference sentence?” or “Is this a fluent English sentence?” respectively.

All evaluators were Columbia undergraduates and native English speakers.

For table entries marked with a single asterisk∗, bast outperforms the baseline with

p ≤ 0.05; with a double asterisk∗∗, p ≤ 0.01. Paired bootstrap resampling [Koe04] was
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en es tr ja
en – 46.77 / 83.15 24.71 / 44.07 39.11 / 63.82
es 44.28 / 80.84 – 24.82 / 45.19 42.18 / 64.66
tr 39.00 / 63.51 40.74 / 68.95 – 35.37 / 73.43
ja 42.48 / 45.07 44.54 / 51.10 27.81 / 53.12 –

Table 6.1: bleu scores for translation. (bast / Moses, untrimmed)

en es tr ja
en – 64.51 / 89.15 35.97 / 53.10 61.43 / 70.73
es 57.74 / 84.88 – 35.25 / 52.82 60.63 / 71.17
tr 61.61 / 78.92 66.83 / 85.89 – 67.51 / 87.87
ja 59.12∗ / 52.27 62.42∗ / 57.07 38.81 / 62.54 –

Table 6.2: bleu scores for translation. (bast / Moses, trim)

used to estimate the significance of bleu scores, and the sign test was used for manual

evaluations.

6.3 Discussion

Observe that bast significantly outperforms the phrase-based system on automated evalu-

ation of Japanese-English translation and Japanese-Spanish translation, but underperforms

the phrase-based system on Spanish-English translation. Additionally, manual evaluation

demonstrates that the bast’s output is substantially more fluent, and perhaps more ade-

quate, than the output from Moses.

Note that both Turkish and Japanese are substantially more remote syntactically from

English (both Japanese and Turkish have Subject-Object-Verb order, while English and

en es tr ja
en – .9518 .9155 .9536
es .9493 – .8951 .9480
tr .9714 .9777 – .9650
ja .9471 .9455 .9188 –

Table 6.3: bleu brevity penalties (bast, trim)
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en es tr ja
en – 81.93 / 95.17 71.21 / 83.72 85.03 / 88.39
es 79.01 / 94.31 – 71.80 / 94.50 84.55 / 91.91
tr 78.50 / 92.56 96.60 / 98.30 – 87.27 / 94.44
ja 78.81 / 84.26 79.58 / 84.17 71.64 / 82.43 –

Table 6.4: bleu 1-gram scores for translation. (bast / Moses, trim)

en es tr ja
en – 59.28 / 85.63 25.89 / 36.86 53.23 / 60.06
es 47.86 / 78.27 – 26.07 / 35.78 53.23 / 59.81
tr 52.73 / 72.46 61.52 / 80.21 – 61.21 / 86.11
ja 51.21 / 31.29 58.61 / 38.75 29.41 / 51.89 –

Table 6.5: bleu 4-gram scores for translation. (bast / Moses, trim)

Adequate Fluent

E1 E2 E3 E4
tr-en 88.6 / 85.8 89.2∗ / 82.4 84.1∗∗ / 72.7 87.5∗∗ / 73.3

Table 6.6: Manual evaluation results (bast / Moses, trim). Numbers given are the per-
centage of sentences that were judged to be adequate and fluent respectively.
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Input (ja) mishigan ni rinsetsu suru shuu wa dochira desu ka
Reference what state borders michigan
Moses michigan state borders is the
bast which states border michigan

Input (ja) kororado kawa wa ikutsu no shuu wo nagarete imasu ka
Reference how many states does the colorado river run through
Moses the colorado river run through how many states does the
bast how many states does the colorado river run through

Input (tr) baskenti atlanta olan eyalete komsu eyaletlerden gecen
nehir nedir

Reference what rivers run through the states that border the state
with the capital atlanta

Moses capital atlanta OOV OOV states that OOV what is the
river

bast no output

Input (tr) spokane washington da ne kadar insan yasamaktadir
Reference how many people live in spokane washington
Moses spokane how many people live in washington
bast how many people live in spokane

Input (es) que es la poblacion de utah
Reference what is the population of utah
Moses what is the population of utah
bast how many people stay in utah

Input (es) que rios corren por los estados que bordean a el estado
con la capital atlanta

Reference what rivers run through the states that border the state
with the capital atlanta

Moses what rivers run through states that border the state with
the capital atlanta

bast which rivers run through states bordering the state
with the capital atlanta

Figure 6.1: Sample output from the translation system
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Spanish have Subject-Verb-Object order); I hypothesize that the translation model has

learned to capture long-range reordering phenomena which the phrase-based system has

not. A detailed analysis of the n-gram-level bleu scores (Tables 6.4 and 6.5) confirm the

observation, evident from an inspection of the system’s output (Table 6.1), that bast’s

advantage over Moses, where present, is grammatical rather than lexical—it is no better

at choosing unigrams, but is more often able to arrange them into correct 4-grams than is

Moses. The bleu brevity penalty is also revealing: A large part of bast’s poor performance

against bleu is attributable to undergeneration, a problem which may be fixed in future

versions with the addition of an insertion bonus.

The substantial divergence in the automated and manual evaluation results for Turkish

suggest that bleu may be a poor proxy for the adequacy and fluency questions with regard

to this system. bast will translate “cuantas personas viven en los angeles” and “que es

la poblacion de los angeles” identically, because their semantic representations are both

(population:i los angeles:c); if the reference translator rendered the first as “what is

the population of los angeles” and the second as “how many people live in los angeles”,

bleu will heavily penalize at least one of bast’s outputs, even if users of the translation

system are unconcerned with the difference between the two. In general these results provide

confirm that in cases where fidelity to the particular word choice of the source sentence is

important, phrase-based approaches are preferable. Conversely, when fluency and semantic

adequacy are more important, semantic translation is sometimes superior.
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Chapter 7

Conclusion

Though the grease burns out of
the torch, the fire passes on, and
no one knows where it ends.

Zhuangzi

I have presented, in turn, novel techniques for parsing into λ-calculus expressions, generating

out of λ-calculus expressions, and translating between natural language sentences using λ-

calculus expressions as a semantic interlingua. While these results by no means constitute a

practical new machine translation paradigm on their own, they are promising: They indicate

pivoting through a rich semantic interlingua can, not just in principle but in practice,

produce translations of a higher quality than the standard baseline for phrase-based systems.

The fact that the GeoQuery dataset is rarely used as a benchmark for serious machine

translation systems makes it somewhat difficult to determine whether the results presented

here, even for the best-performing semantic translation system, are actually an improvement

over state-of-the-art phrase-based or hierarchical machine translation; I suspect they are not.

But even approximate parity with the best-performing current systems would be a victory:

We do not expect a brand-new model to be competitive with translation techniques that

have been carefully tuned and corrected for nearly a decade. Instead these results suggest

that this model will eventually outperform the current state-of-the-art systems, or at least

find uses on problems (such as those requiring reasoning) where the state of the art will

never suffice.
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Certainly there are advantages to using this model even if it only ever performs com-

parably to the state of the art: Multilingual systems, for one, will benefit from having a

pivot of greater richness than the pivot languages typically used today. In the past, as-

cending the Vauquois triangle has led not only to gains in raw translation quality, but also

to a deeper understanding of the translation process and at some level, of the relationship

between language and meaning. I hope that the results presented in this thesis are a step

in that direction.
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