255 research outputs found

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works

    A Novel Simulated Annealing-Based Hyper-Heuristic Algorithm for Stochastic Parallel Disassembly Line Balancing in Smart Remanufacturing

    Get PDF
    Remanufacturing prolongs the life cycle and increases the residual value of various end-of-life (EoL) products. As an inevitable process in remanufacturing, disassembly plays an essential role in retrieving the high-value and useable components of EoL products. To disassemble massive quantities and multi-types of EoL products, disassembly lines are introduced to improve the cost-effectiveness and efficiency of the disassembly processes. In this context, disassembly line balancing problem (DLBP) becomes a critical challenge that determines the overall performance of disassembly lines. Currently, the DLBP is mostly studied in straight disassembly lines using single-objective optimization methods, which cannot represent the actual disassembly environment. Therefore, in this paper, we extend the mathematical model of the basic DLBP to stochastic parallel complete disassembly line balancing problem (DLBP-SP). A novel simulated annealing-based hyper-heuristic algorithm (HH) is proposed for multi-objective optimization of the DLBP-SP, considering the number of workstations, working load index, and profits. The feasibility, superiority, stability, and robustness of the proposed HH algorithm are validated through computational experiments, including a set of comparison experiments and a case study of gearboxes disassembly. To the best of our knowledge, this research is the first to introduce gearboxes as a case study in DLBP which enriches the research on disassembly of industrial equipment

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Intelligent robotic disassembly optimisation for sustainability using the bees algorithm

    Get PDF
    Robotic disassembly plays a pivotal role in achieving efficient and sustainable product lifecycle management, with a focus on resource conservation and waste reduction. This thesis discusses robotic disassembly sequence planning (RDSP) and robotic disassembly line balancing (RDLB), with a specific emphasis on optimising sustainability models. The overarching goal was to enhance the efficiency and effectiveness of disassembly processes through intelligent robotic disassembly optimisation techniques. At the heart of this research lies the application of the Bees Algorithm (BA), a metaheuristic optimisation algorithm inspired by the foraging behaviour of honeybees. By harnessing the power of the BA, this research aims to address the challenges associated with RDSP and RDLB, ultimately facilitating sustainable disassembly practices. The thesis gives an extensive literature review of RDSP and RDLB to gain deeper insight into the current research landscape. The challenges of the RDSP problem were addressed in this work by introducing a sustainability model and various scenarios to enhance disassembly processes. The sustainability model considers three objectives: profit, energy savings, and environmental impact reduction. The four explored scenarios were recovery (REC), remanufacture (REM), reuse (REU), and an automatic recovery scenario (ARS). Two novel tools were developed for assessing algorithm performance: the statistical performance metric (SPM) and the performance evaluation index (PEI). To validate the proposed approach, a case study involving the disassembly of gear pumps was used. To optimise the RDSP, single-objective (SO), multiobjective (MO) aggregate, and multiobjective nondominated (MO-ND) approaches were adopted. Three optimisation algorithms were employed — Multiobjective Nondominated Bees Algorithm (MOBA), Nondominated Sorting Genetic Algorithm - II (NSGA-II), and Pareto Envelope-based Selection Algorithm - II (PESA-II), and their results were compared using SPM and PEI. The findings indicate that MO-ND is more suitable for this problem, highlighting the importance of considering conflicting objectives in RDSP. It was shown that recycling should be considered the last-resort recovery option, advocating for the exploration of alternative recovery strategies prior to recycling. Moreover, MOBA outperformed other algorithms, demonstrating its effectiveness in achieving a more efficient and sustainable RDSP. The problem of sequence-dependent robotic disassembly line balancing (RDLBSD) was next investigated by considering the interconnection between disassembly sequence planning and line balancing. Both aspects were optimised simultaneously, leading to a balanced and optimal disassembly process considering profitability, energy savings, environmental impact, and line balance using the MO-ND approach. The findings further support the notion that recycling should be considered the last option for recovery. Again, MOBA outperformed other algorithms, showcasing its capability to handle more complex problems. The final part of the thesis explains the mechanism of a new enhanced BA, named the Fibonacci Bees Algorithm (BAF). BAF draws inspiration from the Fibonacci sequence observed in the drone ancestry. This adoption of the Fibonacci-sequence-based pattern reduces the number of algorithm parameters to four, streamlining parameter setting and simplifying the algorithm’s steps. The study conducted on the RDSP problem demonstrates BAF’s performance over the basic BA, particularly in handling more complex problems. The thesis concludes by summarising the key contributions of the work, including the enhancements made to the BA and the introduction of novel evaluation tools, and the implications of the research, especially the importance of exploring alternative recovery strategies for end-of-life (EoL) products to align with Circular Economy principles

    Assembly line balancing with cobots: An extensive review and critiques

    Get PDF
    Industry 4.0 encourages industries to digitise the manufacturing system to facilitate human-robot collaboration (HRC) to foster efficiency, agility and resilience. This cutting-edge technology strikes a balance between fully automated and manual operations to maximise the benefits of both humans and assistant robots (known as cobots) working together on complicated and prone-to-hazardous tasks in a collaborative manner in an assembly system. However, the introduction of HRC poses a significant challenge for assembly line balancing since, besides typical assigning tasks to workstations, the other two important decisions must also be made regarding equipping workstations with appropriate cobots as well as scheduling collaborative tasks for workers and cobots. In this article, the cobot assembly line balancing problem (CoALBP), which just initially emerged a few years ago, is thoroughly reviewed. The 4M1E (i.e., man, machine, material, method and environment) framework is applied for categorising the problem to make the review process more effective. All of the articles reviewed are compared, and their key distinct features are summarised. Finally, guidelines for additional studies on the CoALBP are offered

    Improving the resolution of the simple assembly line balancing problem type E

    Get PDF
    The simple assembly line balancing problem type E (abbreviated as SALBP-E) occurs when the number of workstations and the cycle time are variables and the objective is to maximise the line efficiency. In contrast with other types of SALBPs, SALBP-E has received little attention in the literature. In order to solve optimally SALBP-E, we propose a mixed integer liner programming model and an iterative procedure. Since SALBP-E is NP-hard, we also propose heuristics derived from the aforementioned procedures for solving larger instances. An extensive experimentation is carried out and its results show the improvement of the SALBP-E resolution
    • …
    corecore