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Abstract

Robotic disassembly plays a pivotal role in achieving efficient and sustainable product lifecycle

management, with a focus on resource conservation and waste reduction. This thesis discusses

robotic disassembly sequence planning (RDSP) and robotic disassembly line balancing (RDLB),

with a specific emphasis on optimising sustainability models. The overarching goal was to enhance

the efficiency and effectiveness of disassembly processes through intelligent robotic disassembly

optimisation techniques. At the heart of this research lies the application of the Bees Algorithm

(BA), a metaheuristic optimisation algorithm inspired by the foraging behaviour of honeybees.

By harnessing the power of the BA, this research aims to address the challenges associated with

RDSP and RDLB, ultimately facilitating sustainable disassembly practices. The thesis gives an

extensive literature review of RDSP and RDLB to gain deeper insight into the current research

landscape. The challenges of the RDSP problem were addressed in this work by introducing a

sustainability model and various scenarios to enhance disassembly processes. The sustainability

model considers three objectives: profit, energy savings, and environmental impact reduction.

The four explored scenarios were recovery (REC), remanufacture (REM), reuse (REU), and an

automatic recovery scenario (ARS). Two novel tools were developed for assessing algorithm

performance: the statistical performance metric (SPM) and the performance evaluation index (PEI).

To validate the proposed approach, a case study involving the disassembly of gear pumps was used.

To optimise the RDSP, single-objective (SO), multiobjective (MO) aggregate, and multiobjective

nondominated (MO-ND) approaches were adopted. Three optimisation algorithms were employed
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— Multiobjective Nondominated Bees Algorithm (MOBA), Nondominated Sorting Genetic

Algorithm - II (NSGA-II), and Pareto Envelope-based Selection Algorithm - II (PESA-II), and their

results were compared using SPM and PEI. The findings indicate that MO-ND is more suitable

for this problem, highlighting the importance of considering conflicting objectives in RDSP. It

was shown that recycling should be considered the last-resort recovery option, advocating for the

exploration of alternative recovery strategies prior to recycling. Moreover, MOBA outperformed

other algorithms, demonstrating its effectiveness in achieving a more efficient and sustainable

RDSP. The problem of sequence-dependent robotic disassembly line balancing (RDLBSD) was

next investigated by considering the interconnection between disassembly sequence planning and

line balancing. Both aspects were optimised simultaneously, leading to a balanced and optimal

disassembly process considering profitability, energy savings, environmental impact, and line

balance using the MO-ND approach. The findings further support the notion that recycling

should be considered the last option for recovery. Again, MOBA outperformed other algorithms,

showcasing its capability to handle more complex problems. The final part of the thesis explains

the mechanism of a new enhanced BA, named the Fibonacci Bees Algorithm (BAF). BAF

draws inspiration from the Fibonacci sequence observed in the drone ancestry. This adoption

of the Fibonacci-sequence-based pattern reduces the number of algorithm parameters to four,

streamlining parameter setting and simplifying the algorithm’s steps. The study conducted on

the RDSP problem demonstrates BAF’s performance over the basic BA, particularly in handling

more complex problems. The thesis concludes by summarising the key contributions of the work,

including the enhancements made to the BA and the introduction of novel evaluation tools, and the

implications of the research, especially the importance of exploring alternative recovery strategies

for end-of-life (EoL) products to align with Circular Economy principles.
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Chapter 1

Introduction

1.1 Background

The scorching heatwave that engulfed the United Kingdom (UK) in July 2022, with temperatures

soaring to a record-breaking 41 degrees Celsius, serves as a vivid reminder of the far-reaching

consequences of global climate change. However, the challenges posed by extreme weather events

are not exclusive to the UK; regions across the globe are grappling with similar environmental

crises. In July 2023, parts of Europe, including Greece, Spain, and Italy, experienced an extreme

heatwave with temperatures exceeding 45 degrees Celsius. In light of this urgent situation, taking

decisive action becomes paramount. World leaders have established ambitious targets, including

a commitment to reduce greenhouse gas emissions by at least 45% by 2030 and achieve net

zero emissions by 2050 [12]. These targets underscore the imperative for collaborative efforts

in combating climate change and safeguarding the well-being of our planet. This concept aligns

with the United Nations (UN)’s comprehensive definition of sustainability, which dates back to

1987. This definition emphasises the significance of satisfying present needs while ensuring the

ability of future generations to meet their own needs [13]. Sustainability encompasses economic,

social, and environmental dimensions also known as the ’triple bottom line’ [14]. By achieving a
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harmonious balance between economic prosperity, social equity, and environmental protection, a

sustainable future for everyone can be secured.

Sustainable Development Goal 12 of the UN emphasises unsustainable production and

consumption patterns as the underlying causes of climate change, biodiversity loss, and pollution

[15]. One significant environmental burden arises from the disposal of products in landfills at

the end of their life cycle, which pollutes the air, soil, and water. Governments worldwide are

recognising this challenge and actively promoting initiatives and solutions to recover products

and their components. As part of these efforts, end-of-life (EoL) alternatives are being explored,

including reuse, remanufacturing, recycling, and disposal, with disposal being the least preferred

option. Instead, the preferred EoL recovery options involve reuse, remanufacturing, and recycling

[16, 17].

In response to the urgent need for sustainable practices, the concept of a circular economy

(CE) has emerged as a promising approach to address these challenges and extend the utilisation

of products and materials [18]. A CE is defined as a system aimed at minimising resource

input, waste generation, and energy leakage by slowing, closing, and narrowing material and

energy loops [18, 19]. Unlike a traditional linear economy, which follows a ”take-make-dispose”

model, a CE promotes recovery options: reuse, repair, recycling, and remanufacturing. To

visualise the concept of a CE, the Ellen MacArthur Foundation introduced the butterfly diagram,

which effectively portrays the seamless material flow within a CE framework, encompassing both

biological and technical cycles [18]. The technical cycle, in particular, focuses on ensuring the

continuous circulation of products and materials through various processes, including reuse, repair,

remanufacturing, and recycling. This approach aims to extend the effective lifespan of products,

enabling them to remain within the circular system for longer periods. Consequently, it fosters the

longevity and sustainability of these products even beyond their initial use. Figure 1.1 provides

a visual representation of the technical cycle within the butterfly diagram, illustrating the various

stages and processes involved in maintaining the circular flow of products and materials. It is
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important to note that while recycling is an essential component of a CE, it should be considered

the last resort at the end of a product’s life due to its higher energy consumption, waste generation,

and pollution compared to other options that aim to extend the product’s lifespan [20]. Recycling

should only be pursued when a product can no longer be used, as it involves transforming the EoL

product into its basic material, thus retaining only the value of the materials despite the loss of time

and energy invested in making the product [18]. By prioritising options such as reuse, repair, and

remanufacturing, a CE strives to minimise environmental impact and maximise resource efficiency.

Figure 1.1: Technical cycle (Circular Economy), adapted from [18]

Remanufacturing, considered the backbone of a CE [21], is projected to have a significant

impact on the future manufacturing industry, as highlighted by the European Remanufacturing

Network. It is anticipated that by 2030, the European Union could witness the emergence of a

market worth C90 billion [22]. Remanufacturing plays a pivotal role in transitioning towards a

more sustainable CE by restoring EoL products to their original performance, sometimes surpassing
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that of new products [23–25]. By reducing waste, raw material consumption, CO2 emissions,

and energy usage, remanufacturing contributes to resource preservation and delivers environmental

benefits [26, 27]. In a study conducted by [28], a life cycle model was employed to assess a

remanufactured engine, revealing significant reductions in greenhouse gas emissions (73-87%) and

energy usage (68-83%). Renault, a pioneer of the circular economy in the automotive industry,

reported that their remanufacturing activities generated nearly e120 million in revenues in 2019

while achieving significant savings of 80% in energy, 88% in water, 92% in chemical products, and

70% in waste through the production of remanufactured parts [29].

Remanufacturing hinges upon a pivotal operation: disassembly [17, 30–33], distinguishing it

from conventional manufacturing [34]. Disassembly involves the systematic separation of products

into parts and subassemblies [35], accompanied by essential inspection and sorting procedures,

making it a critical aspect of efficient product reprocessing [36]. Despite sharing similarities

with assembly, disassembly is not a mere reversal of the assembly process [37–39]; instead, it

possesses its own unique characteristics [40, 41]. For instance, the removal of fasteners and gluing

problems are specific challenges encountered in disassembly. Additionally, disassembly follows a

divergent flow, where a single product is broken down into its constituent parts, as opposed to the

convergent flow observed in assembly [41]. The disassembly process also introduces uncertainties

related to the product’s condition, such as missing, corroded, or worn-out parts, requiring careful

consideration to ensure successful disassembly [41–45].

The significance of disassembly in remanufacturing lies in its ability to enable the recovery and

reuse of valuable components, contributing to resource conservation and waste reduction [22, 29].

By systematically separating products into parts and subassemblies, reusable components can be

identified and extracted, thereby reducing the demand for new raw materials [22, 29]. These

components can also be repaired or rebuilt. In cases where components cannot be reused or

remanufactured, they can be recycled or properly disposed of. Additionally, through the process

of dismantling components, manufacturers can gain valuable insights into the behaviour of the
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product after a certain period of use, allowing for more robust design improvements [46].

Key areas in remanufacturing encompass disassembly operations, specifically disassembly

planning and disassembly scheduling [32, 47–49]. Disassembly sequence planning (DSP) involves

a meticulous analysis of the product’s structure and component geometry to determine highly

efficient or nearly optimal disassembly sequences [33, 50]. Conversely, disassembly line balancing

(DLB) aims to achieve a well-balanced allocation of tasks during the disassembly process, ensuring

smooth inventory flow while considering options for product recovery [41, 50]. Both elements are

crucial in achieving efficient disassembly operations. The primary objective of DSP is to develop

a comprehensive plan for systematically removing components or subassemblies from complete

products [32, 33]. This involves determining the most efficient order for conducting disassembly

procedures, considering various criteria such as component preferences and fastener constraints

[41, 50]. DLB, on the other hand, focuses on achieving an even distribution of workload among

workstations or operators, thereby enhancing the overall efficiency of the disassembly process. The

interconnection between DSP and DLB is widely recognised as pivotal in improving efficiency

and productivity within remanufacturing plants [47, 48, 51, 52]. This interconnected problem

is often referred to as ”sequence-dependent line balancing” in the literature. Understanding

and addressing the relationship between sequence planning and line balancing is essential for

optimising disassembly operations [47–49].

Traditionally, disassembly has been predominantly a manual activity due to the intricacies

associated with EoL products [47, 53]. However, with the advent of Industry 4.0, technological

advancements have fostered a shift from human labour to automated processes. The increasing

number of publications on disassembly automation since 2014 highlights the growing interest

in this field. While manual disassembly has been the norm [45, 50, 54, 55], the application of

automated disassembly using robots is starting to occur, owing to robots’ enhanced efficiency and

their ability to handle uncertainties in dynamic disassembly processes [45]. Additionally, robots

can effectively and safely manage hazardous disassembly tasks. The transition from manual to
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robotic disassembly can result in substantial improvements in the productivity and efficiency of

disassembly processes [45]. Robots offers distinctive characteristics, such as diverse kinematics,

flexibility, and dynamic capabilities, which set them apart from human operators [48, 54]. As

automation will play a pivotal role in the future, this study underscores the significance of robotic

disassembly as an indispensable process in remanufacturing. Moreover, the disassembly line is

highly suited to an automated system [56]. Chapter 2 will provide further insights into these

characteristics and considerations associated with robotic disassembly.

A concise review by the author of the literature in the field of robotic disassembly reveals several

key findings. In robotic disassembly sequence planning (RDSP), the majority of articles focus on

minimising disassembly time, with only two article addressing sustainability. On the other hand,

in robotic disassembly line balancing (RDLB), sustainability is emphasised as one of the primary

objectives in half of the reviewed articles. This indicates that RDLB places a greater emphasis

on sustainability compared to RDSP. This thesis fills this gap by providing a more comprehensive

sustainability model than previous studies on RDSP and RDLB. Additionally, previous research has

not provided a comprehensive output of disassembly with recovery options for each component,

nor has it utilised an algorithm to find the best recovery option. This thesis addresses these gaps by

incorporating the automated recovery strategy (ARS) scenario. In the ARS scenario, the algorithm

determines the best recovery option for each disassembled component. Three other scenarios,

explained in Chapter 3, are also considered to determine the optimal recovery options for each

disassembled component.

Both DSP [50, 57–61] and DLB [41, 62–64] present computational complexity challenges.

As the number of disassembled components increases, finding the optimal solution becomes

significantly more time-consuming, with computational requirements growing exponentially.

The DSP is known to be nondeterministic polynomial (NP)-complete, making mathematical

programming methods impractical for solving it [57, 65, 66]. While exact methods have been used

for simpler scenarios, they struggle to handle complex situations with numerous components and
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intricate product structures [67–69]. As a result, approximate algorithms based on metaheuristics

have gained popularity for solving DSP problems within a reasonable computational time.

Similarly, DLB is recognised as an NP-complete problem that requires considering multiple criteria

[41, 62, 63]. The computational complexity challenge in robotic disassembly is similar to its

manual counterpart, as both are NP-complete problems. To address the challenges in robotic

disassembly, metaheuristic algorithms are suitable optimisation tools for finding efficient solutions.

The literature presents three notable approaches: single-objective (SO), multiobjective (MO)

aggregate, and multiobjective nondominated (MO-ND) approaches. The MO aggregate approach

assumes linear relationships between objectives and treats the problem as an SO optimisation,

while the MO-ND approach considers conflicting objectives and provides a set of nondominated

solutions.

In RDSP, most research adopts SO optimisation approaches, with only a few utilising an

MO aggregate approach. The genetic algorithm (GA) and the bees algorithm (BA) have been

widely employed as metaheuristics in RDSP, offering effective search and exploration capabilities

for identifying optimal solutions within a reasonable computational time. Notably, this research

makes a significant contribution to the literature by employing an MO-ND approach in RDSP,

addressing the limitations of the MO aggregate approach. It is worth mentioning that there is only

one other publication by [43] that utilises the MO-ND approach in RDSP. However, this thesis

takes a different approach by not assuming linear or conflicting relationships between objectives.

Instead, it uses both the SO and MO aggregate approaches before employing the MO-ND approach

to determine the most appropriate approach. This allows for a comprehensive evaluation and

comparison of different methodologies, providing valuable insights into the suitability of each

approach for addressing the research problem. In contrast, in RDLB, researchers commonly

employ the MO-ND approach, which is well suited for handling problems with conflicting

objectives [52, 70–78]. While the GA is commonly used in research on RDLB, the BA has also

demonstrated its effectiveness in this domain. The BA is a robust metaheuristic that efficiently
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addresses the complex challenges encountered in both RDSP [44, 51, 55, 79] and RDLB [47–49].

The BA, inspired by the foraging behaviour of honeybees, explores and exploits the search space

iteratively, making it a robust metaheuristic for efficiently addressing the complex challenges

encountered in robotic disassembly. In this thesis, the BA is chosen as the primary optimisation

tool. However, previous research in RDSP and RDLB has been scarce in reducing the parameter

settings of the BA. Therefore, Chapter 5 introduced an enhancement to the BA, reducing the number

of user-selected parameters to four. This enhancement aims to simplify parameter setting, improve

the algorithm’s capabilities, expand its applicability in the field of robotic disassembly, and enhance

its potential use for solving other optimisation problems. By utilising the MOBA and its parameter

reduction enhancement, this research fills a critical gap in the literature and broadens the range of

optimisation techniques available for RDSP and RDLB.

In addition to the existing gap in the literature regarding the limited exploration of performance

evaluation using statistical methods, previous studies have predominantly relied on descriptive

statistics, such as average, median, and standard deviation values, without fully harnessing the

potential of statistical tests. Moreover, there is a lack of consistency in the performance metrics

employed for MO-ND approaches, with limited reporting on conflicting metric results. To

address these limitations, this thesis introduces two novel measures: the statistical performance

metric (SPM) and the performance evaluation index (PEI). These measures aim to enhance

the performance evaluation process by incorporating robust statistical methods and providing a

comprehensive assessment of the results. The SPM facilitates a more rigorous comparison of

algorithms by quantifying the statistical significance of performance differences and identifying the

optimal parameter settings. Additionally, the PEI is a versatile metric that offers a comprehensive

measure of algorithm performance based on multiple metrics. By introducing these new tools,

this research not only fills a crucial gap in the literature on performance evaluation in robotic

disassembly but also contributes to the broader field of evaluating metaheuristic algorithms.

These advancements enable researchers to make more informed decisions and draw meaningful
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conclusions from their experimental results.

In summary, the review of the literature in the field of robotic disassembly reveals several

significant gaps. The first gap pertains to the lack of consideration for sustainability in RDSP, with

only half of the research in RDLB addressing this crucial aspect. Additionally, there is a clear trend

of research on sequence-dependent RDLB. Furthermore, comprehensive reporting of disassembly

output, particularly regarding recovery options for each component, is lacking, along with the

absence of algorithms to determine the optimal recovery choices. Moreover, while MO-ND

optimisation approaches are commonly used in RDLB, the application of the MO-ND approach

is currently lacking in RDSP studies. Another notable gap in the literature is the lack of specific

research focused on reducing the number of parameters of the BA in both RDSP and RDLB.

Furthermore, previous studies have underutilised the potential of statistical tests for performance

evaluation, relying primarily on descriptive statistics. Finally, the absence of a unified performance

evaluation metric across previous studies further emphasises the need for improvement in this area.

1.2 Hypothesis and research questions

Based on the preceding information, the research hypothesis is formulated as follows:

”Sustainable solutions for robotic disassembly sequence planning and line balancing can be

developed and optimised using the Bees Algorithm”

The hypothesis will be tested and supported by addressing these research questions:

1. Development of a Sustainability Model: How can a sustainability model be developed for

automating the disassembly of end-of-life (EoL) products?

2. Optimisation of Robotic Disassembly Sequence and Line Balancing: What optimisation

methods can be applied to find the best solutions for robotic disassembly sequence planning

and line balancing?
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3. Optimal Parameter Settings and Performance Metrics: What techniques can be developed

to determine the optimal parameter settings and performance metrics for optimisation

algorithms?

4. Enhancement of the Bees Algorithm: How can the bees algorithm be enhanced to optimise

robotic disassembly processes?

1.3 Aims and Objectives of the Research

The aim of this work was to explore and develop efficient and sustainable solutions for RDSP and

RDLB, with a particular emphasis on the application of the BA and its novel enhancement. To

achieve this aim, the following objectives have guided the research:

1. Develop a sustainability model for the disassembly of EoL products, including the

formulation of three predefined recovery scenarios and utilisation of an algorithm to

determine the best recovery option for each part.

2. Determine the optimal order for disassembling parts within a robotic cell to optimise

efficiency and effectiveness.

3. Balance the disassembly line, considering sequence dependence within a robotic line, to

optimise the overall performance of the disassembly line.

4. Validate the proposed approach through a case study on gear pumps, demonstrating its

effectiveness in solving the robotic disassembly problem using a real EoL product as an

illustrative example.

5. Determine the optimal parameter settings and performance metrics for optimisation

algorithms in robotic disassembly, enabling the identification of the most effective parameter

configurations and facilitating straightforward comparisons among different algorithms.
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6. Enhance the BA to optimise solutions for the robotic disassembly problem.

These objectives collectively provide a clear focus for the research, guiding the investigation

and development of efficient and sustainable solutions for RDSP and RDLB. The emphasis is

on enhancing the capabilities and effectiveness of the BA, enabling its successful application

in addressing the challenges of robotic disassembly. The enhancement of the BA in robotic

disassembly enforces the notion of the capabilities of the BA and its variants.

1.4 Thesis Outline

The thesis is structured into six chapters, each contributing to the organisation and content of the

research.

• Chapter 2: Literature Review

This chapter provides a solid foundation of knowledge and understanding in the field of

robotic disassembly. It covers various aspects, including robotic disassembly sequence

planning, robotic disassembly line balancing, optimisation algorithms, performance

evaluation, and bibliometric connections. The identified gaps and trends are highlighted

in this chapter.

• Chapters 3 and 4: Robotic Disassembly Sequence Planning and Line Balancing

Chapter 3 delves into RDSP, presenting sustainability models, methodologies, four recovery

scenarios, optimisation approaches, and performance evaluation. This chapter aligns with

objectives 1, 2, 4, and 5. To validate the proposed model and algorithm, a case study using

two gear pumps is presented. Additionally, two novel tools for performance evaluation (SPM

and PEI) are introduced, enhancing the robustness of the algorithm assessment. Chapter 4

focuses on RDLB, with a particular emphasis on sequence-dependent scenarios. It addresses
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objectives 1, 3, 4, and 5.

• Chapter 5: Enhanced Bees Algorithm for Robotic Disassembly Planning

This chapter focuses on the BA and introduces its enhancement, the BAF. The chapter

explains the inspiration and mechanism behind the algorithm, showcasing its development.

The same case study as the previous chapters and a single objective of minimising

disassembly time were used to validate the proposed enhancement. The chapter addresses

objectives 2, 4, 5 and 6.

• Chapter 6: Conclusion

This chapter summarises the key findings, contributions, and implications of the research,

emphasising their significance in the broader context of robotic disassembly. It also provides

suggestions for future research directions and areas of exploration.



Chapter 2

Literature Review

Remanufacturing is recognised as a pivotal component of a circular economy (CE) due to its

numerous benefits [21]. It not only allows products to be restored to a condition equal to or

better than new [23–25], benefitting both remanufacturers and consumers, but also generates

higher profits compared to other recovery options [3, 29]. Moreover, remanufacturing plays

a vital role in promoting environmental sustainability by significantly reducing landfill waste,

energy consumption, raw material usage, and greenhouse gas emissions [26, 28, 29]. The

inclusion of prolonging the use of end-of-life (EoL) products and keeping them in circulation for

an extended period further enhances the environmental sustainability aspect of remanufacturing.

Additionally, remanufacturing creates job opportunities, making a positive impact on society as a

whole [22]. Disassembly serves as the first step in the remanufacturing process [17, 30–33, 54].

It involves the careful separation of components from EoL products to recover valuable materials

for reuse, remanufacturing, or recycling. Effective disassembly enables remanufacturers to obtain

high-quality components and materials that can be further processed and utilised in the production

of remanufactured products. This highlights the significance of disassembly in facilitating the

transition from EoL products to valuable resources for remanufacturing. With the advent of

Industry 4.0, automation, particularly robotic disassembly, has gained prominence in hazardous

13
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or challenging disassembly tasks, enhancing worker safety and reducing reliance on manual

labour. Robotic systems can improve the economic viability of disassembly operations by

increasing speed, accuracy, and productivity [1]. Moreover, adopting robotic disassembly aligns

with the growing demand for sustainable and circular manufacturing practises, leading to cost

savings and operational efficiency. By integrating robotic systems into the disassembly process,

remanufacturers can achieve higher levels of efficiency, accuracy, and productivity. Optimisation

of robotic disassembly encompasses various key areas, with a notable emphasis on sequence

planning and line balancing [47–49]. Sequence planning involves determining the optimal order

of disassembly [33, 41, 54], while line balancing ensures an even distribution of workload

among robots [47, 49, 51]. By addressing these factors, the efficiency of robotic disassembly in

remanufacturing can be optimised.

This chapter is structured as follows: It begins with a comprehensive analysis of the existing

literature on robotic disassembly sequence planning (RDSP) and robotic disassembly line balancing

(RDLB). The chapter then explores the utilisation of optimisation algorithms in previous research

on RDSP and RDLB, followed by an examination of performance evaluation methodologies. To

gain deeper insights into the research landscape, a bibliometric analysis is conducted to identify

trends and interconnections within the RDSP and RDLB domains. The chapter concludes with a

summary of the key findings.

2.1 Robotic Disassembly

The use of robots to perform disassembly has a number of benefits over the traditional method of

disassembly. It has the potential to increase the amount of strategically important materials that

can be recovered from EoL products [80] and can also significantly improve industrial processes

[81]. Researchers have investigated automated methods for disassembly; however, it is still
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understudied [82]. The use of robots has the potential to improve the effectiveness of resource

recovery. More research is needed, however, to optimise robotic disassembly and make them

economically viable for widespread adoption. The development of a sturdy robotic disassembly

sequence design can be achieved through the utilisation of task sequencing algorithms, thereby

enhancing efficacy, and distributing the workload evenly across several robotic arms [83]. This

highlights the potential benefits of implementing robotic disassembly in industries that deal with

large volumes of end-of-life products. The implementation of this approach not only results in a

reduction of costs, but also enhances overall productivity, safety and increase of the recovery of the

EoL parts.

The integration of Virtual Reality (VR) and vision systems, including cameras, is observed

in robotic disassembly operations [84, 85]. These technologies have the potential to enhance

disassembly accuracy and efficiency. However, they do not fully address critical issues, such

as determining the optimal disassembly sequence and workload distribution, which are crucial

factors in achieving maximum efficiency in remanufacturing. Recent advancements using digital

twins [86] and Artificial Intelligence (AI), such as deep learning [86–89], have shown promise in

addressing these challenges. However, it is important to note that most of these developments

emerged after the publication of this thesis, and they primarily utilise a simple objective to

demonstrate their potential. Therefore, while they were not incorporated into this research, they

serve as valuable areas for further investigation.

The disassembly sequence planning (DSP) and disassembly line balancing (DLB) as well as

RDSP and RDLB are recognised as nondeterministic polynomial (NP) complete and intractable

problem that is not suitable for treatment by mathematical programming methods when the size of

the problem is large [30, 57, 58, 65, 66, 83, 90–96]. The previous research shown that most methods

to solve these problems are uses the metaheuristic methods due to their ability to find near-optimal

solutions faster than exact method. Metaheuristics can be defined as optimisation algorithms that

are capable of solving complex problems in a reasonable amount of time [41, 54, 79, 84, 97].
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The process of robotic disassembly poses unique challenges in comparison to manual

disassembly, primarily due to the distinct kinematic and dynamic characteristics of robots and

humans [43, 44, 48, 54]. In particular, collision avoidance is a critical factor to consider when

devising a plan for robotic disassembly [48, 54]. The trajectory of the robot’s end effector in

order to prevent collision has an impact on the overall disassembly time [49, 54]. Prior studies on

robotic disassembly have typically ignored the product’s contour when planning the robot’s path

[54]; however, this should be taken into account. To overcome this obstacle, various methods have

been developed by researchers for collision-free robotic disassembly. One of the methods involves

considering the geometry of the object being disassembled and calculating the distance between

disassembly points to ensure contour-based collision avoidance is respected [48, 49, 54, 98]. This

method [49, 54] is used to determine the distance between disassembly points while maintaining a

minimum distance of 10 mm between the end effector’s moving path and the contours of the EoL

product. This robotic collision avoidance trajectory proposed by previous researchers is used in

this thesis.

2.2 Robotic Disassembly Sequence Planning

DSP refers to a methodical approach used to identify the optimal sequence of activities in separating

an EoL product [99] in detail [32], which involves three main steps, as described by [33]. These

steps include determining the disassembly mode (partial or complete), developing a disassembly

model (which encompasses disassembly precedence relationships), and selecting disassembly

planning methods (objective and optimisation method). Among the different types of disassembly

models, graph-based models are the most commonly used, followed by matrix-based models, Petri

Net, and others [33]. The RDSP uses robot(s) to dismantle EoL products. The use of robots

in disassembly activities has been studied in the literature, and various approaches to optimising
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the process have been proposed. Robots can automate the process, saving time, reducing human

error, and increasing productivity and efficiency. This thesis focuses solely on robotic disassembly,

without human involvement. Thus, research related to human-robot collaboration in disassembly

was excluded due to the inherent differences between human and robot capabilities and dynamics.

Furthermore, works that integrated DLB and DSP were also omitted, as they will be addressed in

the subsequent section. A search through May 2023 in the Scopus database using the keywords

”robot*” AND ”disassembly” AND ”sequenc*” yieled 49 articles on RDSP, and the availability of

full articles written in English was verified. Excluding publications from this thesis [1–4], only two

addressed sustainability [100, 101], with the majority of the articles focusing on minimising time.

In the publication [1, 2], it is pertinent to note that [52]’s research has been included within

the research framework, highlighting their focus on having sustainability objective. However,

their research delves into RDSP and RDLB, which are addressed in a separate section of this

thesis. Similarly, [102] are also positioned within the research framework, even though they do

not explicitly mention RDLB. Nevertheless, upon closer examination, it becomes evident that their

study aligns closely with the concept of sequence-dependent robotic disassembly line balancing

(RDLBSD). Thus, while both publications are relevant to RDSP within the wider context of

the publication, for the purposes of this thesis, they are more aptly categorised under RDLB,

considering the incorporation of sequence dependence.

Table 2.1 serves as a valuable starting point for future investigations into sustainable practises

in this field. It is evident from the table that this research area has gained significant attention over

the past two years. The highlighted articles, including the publication of this thesis, underscore

the position of this study in relation to previous work, thereby emphasising the importance of

further research on sustainability within the field. Notably, only one previous study [100] addresses

the recovery options of reuse, recycling, and disposal for each part, highlighting the necessity of

incorporating this aspect into the sustainability model. In [100], the Analytical Hierarchy Process

(AHP) was utilised as a decision-making tool to assign weights to the sustainability criteria based
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on the decision maker’s preferences. These weights were subsequently incorporated into the

Simulated Annealing (SA) algorithm to generate optimal solutions for minimising the disassembly

time. This thesis differs from [100] by employing a multiobjective nondominated (MO-ND)

approach, introducing a different sustainability model, and developing distinct recovery options

scenarios.

The majority of prior studies have employed metaheuristics, with a predominant emphasis

on single-objective (SO) optimisation. The complexity of multiobjective (MO) optimisation has

resulted in a limited number of studies addressing this topic. In many of the early studies, the

typical approach has been to begin with more straightforward goals and gradually build upon the

foundation laid by those initial objectives. While the MO aggregate approach may be suitable

in some cases, where objectives can be added linearly and treated as a SO, it is not appropriate

when dealing with conflicting objectives. When there are conflicting objectives, a nondominated

approach is more appropriate as it allows researchers to consider multiple objectives without

sacrificing the feasibility of any one objective [97].

Previous studies in this field have predominantly employed either an SO or an MO approach. In

the limited cases where the MO is utilised, researchers tend to focus on either the aggregate method

or the nondominated approach, without adequately considering the potential aggregation or conflict

of objectives. In this thesis, the linearity of objectives is explored using those two MO methods:

the aggregate method, which assumes that objectives with the same units (monetary value, in this

case) can be combined and treated as an SO, and the nondominated approach, which is used to

solve conflicting objectives. The maximum value for each objective is also determined using the

SO approach in this thesis.



2.2.
R

O
B

O
T

IC
D

ISA
SSE

M
B

LY
SE

Q
U

E
N

C
E

PL
A

N
N

IN
G

19

Table 2.1: RDSP Research Position

Author(s) Year Approach RDSP objective(s) Single/Multi Output Performance Measurement
Suzuki et al. [103] 1996 Petri Net learning control scheme n.a. simulation n.a.
Sundaram et al. [104] 2001 Motion planning min disassembly steps n.a. disassembly tree n.a
Baeza et al. [105] 2002 Contact surface and unnamed Heuristic disassembly movement n.a. disassembly movement and sequence n.a.
Puente et al. [106] 2003 Vision system flexible automatic disassembly n.a. simulation n.a.
Uhlmann et al. [107] 2005 Control system feasibility of disassembly concept n.a. pilot disassembly system n.a.
Kim et al. [108] 2007 Control system automatic sequence generation n.a. automated disassembly control concept n.a.
Gil et al. [109] 2007 Visual-force control system a collaborative robotic system with multiple sensor n.a. experiment validation n.a.
ElSayed et al. [110] 2011 GA** disassembly sequence generation n.a. intelligent automated disassembly cell n.a.
ElSayed et al. [57] 2012 GA** min time SO disassembly time, sequence, detection time n.a.
Vongbunyong et al.
[111]

2015 Cognitive robotics skill transfer from human to robot n.a. cognitive robotic disassembly experiment n.a.

Popescu et al. [112] 2016 Software automatic generation n.a. generate sequence from CAD n.a.
Alshibli et al. [113] 2016 Robot sensory system, Tabu search,

GA**
min makespan MO run time run time****

Friedrich et al. [114] 2016 CAD and Vision automated planning system n.a. experiment validation n.a.
Vongbunyong et al.
[115]

2017 Vision system skill tranfer from human to robot n.a. process demonstration platform n.a.

Friedrich et al. [116] 2017 Djikstra, A*-NN, A*-MST, nearest
neighbour

min time SO path planning path (time, length, smoothness), success rate,
deviation, detection time***

Parsa and Saadat [59] 2018 GA** min time SO disassembly sequence, tools, destructive/non n.a.
Wang et al. [117] 2018 Matrix manipulation detect subassemblies automatically n.a. automatic detection of subassembly using matrix n.a.
Laursen et al. [118] 2018 Programming language programming model to reverse assembly n.a. domain specific language n.a.
Liu et al. [54] 2018 BA, GA, SA** min time SO disassembly sequence, direction average fitness value and run time***
Costa et al. [119] 2018 Branch and Bound and CAD automatic

generation
min cost SO disassembly sequence n.a.

Alshibli et al. [100] 2018 SA** and AHP (for environmental,
economic, social criteria)

min time SO disassembly sequence, method, recovery option n.a.

DiFilippo and Jouaneh
[120]

2018 Vision and force system fastest time n.a. cognitive system framework n.a.

Laili et al. [44] 2019 Greedy search, GA, BA** min time (re-planning) SO rapid subassembly detection and sequence time***
Zhang et al. [98] 2019 Hybrid A* and GA** & obstacle

avoidance
min path SO experiment on reduction gearbox convergence speed, run time

Lan et al. [121] 2020 Search for separable pairs & divide and
conquer

avoid interlocking n.a. disassembly sequence n.a.

Ramı́rez et al. [122] 2020 Constructive greedy, hill climbing, GA** max profit SO disassembly sequence graphical results
Chen et al. [48] 2020 BA** min time SO disassembly sequence fitness value and run time***
Watanabe and Inada
[123]

2020 Reinforcement Learning min time SO experiment to validate concept n.a.

Wang et al. [53] 2021 Matrix manipulation representation matrix for complex disassembly n.a. mathematical representation n.a.
Malekkhouyan et al.
[101]

2021 VRP and DSP using MILP, GOA** min transportation cost, robot and truck carbon
footprint, min time

MO disassembly sequence range

Laili et al. [43] 2021 IBEA, MOEA/D, NSGA-II, NSGA-III,
DS-MOEA**

min time and max completion rate MO-ND time and completion rate result HI, IGD, (ϵ-indicator)****

Hartono et al. [1]* 2022 BA** max profit, energy savings, environmental impact
reduction

SO disassembly sequence, direction, tools, recovery
options

SPM****

Hartono et al. [2]* 2022 BA** max profit, energy savings, environmental impact
reduction

SO disassembly sequence, direction, tools, recovery
options

n.a.

Hartono et al. [3]* 2023 MOBA, NSGA-II, PESA-II** max profit, energy savings, environmental impact
reduction

MO, MO-ND disassembly sequence, direction, tools, recovery
options

HI,NFE,POSs

Hartono et al. [4]* 2023 BA, MOBA, NSGA-II, PESA-II** max profit, energy savings, environmental impact
reduction

SO, MO,
MO-ND

disassembly sequence, direction, tools, recovery
options

HI,NFE,POSs,SPM****

Laili et al. [79] 2022 Greedy search, GA, BA** min time SO disassembly time disassembly time****
Laili et al. [124] 2022 Mathematics model formulation compilation of objectives from previous research n.a. n.a. n.a.
Laili et al. [125] 2022 IBEA, MOEA/D, NSGA-II, NSGA-III,

DS-MOEA**
min time MO-ND time and completion rate result HI, IGD, (ϵ-indicator)****

Ye et al. [126] 2022 BA, FDSPA** min time SO disassembly sequence, direction solution quality and time
Prioli et al. [127] 2022 CAD files to matrix disassembly matrix n.a. disassembly sequence, direction n.a.
Yang et al. [88] 2022 Deep Learning, BA, GA** min time SO disassembly sequence, direction disassembly time***
Liu et al. [86] 2023 BA, GA**, Digital Twin and Deep

Q-learning
min time SO disassembly sequence, direction run time

Cui et al. [89] 2023 Deep Q-learning, GA, BA** min time SO disassembly sequence, time disassembly time***
Note: * thesis-derived publications, ** metaheuristic, *** statistic descriptive, **** statistic test, highlighted bold = sustainability-related article
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2.3 Robotic Disassembly Line Balancing

As previously noted in Chapter 1, efficient robotic disassembly relies on two fundamental concepts:

robotic disassembly line balancing and the disassembly sequence [47, 49, 128]. Previous research

has mainly focused on presenting a feasible disassembly sequence to achieve line balancing

[129]. While these areas are typically treated as separate entities by most researchers [47, 49],

recent studies in manual disassembly have underscored the importance of sequence-dependent

disassembly line balancing [130–136], which has also been extended to the field of robotic

disassembly [47, 51, 52, 128]. It is worth noting that sequence-dependent disassembly line

balancing simultaneously improves both the sequence and the line [47, 49], challenging the

conventional viewpoint. An optimised and feasible disassembly sequence significantly enhances

the efficiency of line balancing by enabling the allocation of tasks in an optimised manner.

A literature review conducted using the Scopus database identified 70 relevant articles on

robot disassembly line balancing and sequence planning using the keywords ”robot*” AND

”disassembly” AND ”line” AND ”balancing” OR ”sequenc*”. After screening for non-English

language and survey papers, 51 articles were selected. Further refinement for automated

disassembly narrowed down the selection to 37 articles. The formal description of DLB can be

traced back to 2002 [41, 137]. Research on RDLB began in 2011 and has gained momentum since

2019. Early assumptions regarding disassembly as the reverse of assembly were challenged [41],

particularly in the context of remanufacturing. Disassembly is widely recognised as a complex

problem, particularly due to the presence of uncertain conditions associated with EoL products and

challenges posed by various connecting mechanisms such as fasteners or glue. Table 2.2 shows

the position of this thesis in relation to previous research. In comparison to RDSP (see Table 2.1),

the RDLB research places a greater emphasis on sustainability as its objective, with 18 articles

focusing on this aspect, excluding the 2 articles from this thesis. The prevalence of the MO-ND
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and metaheuristic approach is evident in the literature as the most commonly employed method

for solving RDLB. In two articles, the authors self-identified their work as RDSP [102, 138].

However, upon closer examination of the methods and results, it became apparent that the content

of these articles aligns more closely with the field of RDLB. Therefore, in the table, these articles

are appropriately reclassified as RDLB.

In previous research, 15 articles primarily focused on reducing energy consumption, while

three studies specifically aimed to minimise carbon emissions. In contrast, the present work takes a

comprehensive approach, considering profit, energy savings, and environmental impact reduction.

Notably, this research goes beyond previous studies by incorporating recovery options route for

each component, using four sustainable scenarios, making it distinct in its scope and contribution.

In contrast to the RDSP, case studies within the RDLB field predominantly focus on prototypes,

simple problems such as ballpoint pens, and benchmark datasets. However, the selection of

gear pump as a case study in three articles [47, 49, 128] highlights its significance as a notable

medium-sized real-world problem in the research area. This case study of gear pumps will be

explained in Chapter 3 and used as validation of the proposed approach in Chapters 3, 4, and 5.
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Table 2.2: RDLB Research Position

Author(s) Year Approach RDLB objective(s) Single/Multi Output Performance Measurement
Radaschin et al. [137] 2011 Expert Petri net concept testing n.a. Concept and implementation on prototype n.a.
Minca et al. [139] 2014 Synchronised Hybrid Petri Nets model min cycle time n.a. A real-time control structure -
Minca et al. [140] 2015 Mathematical model min cycle time n.a. Mathematical representation -
Filipescu et al. [141] 2016 Simulation and real-time control disassembly after assembly n.a. Simulation and real-time control -
Liu et al. [51] 2018” BA, ABC, GA** min workstation, workload balance, disassembly

priority of high demand parts
MO-ND Disassembly sequence, direction, robotic assignments Iterations and population sizes***

Gao et al. [52] 2018” MOABC** min cost, work load, energy consumption MO-ND Disassembly line schedule n.a.
Alshibli et al. [83] 2019” SA** min robot, balanced load, hazard, demand MO Disassembly sequence, destructive/not , task

allocation
n.a.

Octavian et al. [142] 2019 Concept testing assembly/disassembly control strategy n.a. Concept and implementation on prototype n.a.
Fang et al. [70] 2019 IBEA, NSGA-II, MOEA/D, PBEA** min cycle-time, total energy consumption, peak

workstation energy consumption, number of robot
MO-ND Objective and performance metric results HI**** (wilcoxon rank sum)

Fang et al. [71] 2019 MOEA/D, NSGA-II, NSGA-III,
INSGA-III**

min line length and energy consumption MO-ND Performance measurement HI, IGD

Ming et al. [143] 2019 Illustrative example min cycle time, peak and total energy
consumption, cost of hazardous tasks

SO Using only min cycle time to shows the example task
and robot assignment

n.a.

Liu et al. [74] 2019” MBGA, NSGA-II, SPEA-2, MOEA/D** min robot, open multi-robotic workstation, load
density, cost of hazardous task

MO-ND Performance measurement HI, IGD

Çil et al. [144] 2020 RS, GA, IACO, ISIACO** min cycle time SO Task and robot assignment RPD
Fang and Xu [73] 2020 MOEA/D** min cycle time, robots MO-ND Performance measurement HI, IGD
Fang et al. [145] 2020 NSGA-II, MOEA/D, PBEA** min cycle time, robots MO-ND Task and robot assignment HI, IGD
Liu et al. [47] 2020 BA, GA, PSO** min cycle time, workstation, smoothness index, max

working time
MO Disassembly sequence, direction, robotic workstation

assignments
Fitness value and run time

Fang et al. [72] 2020 NSGA-II, RSA, PDSA-EA** min cycle time, peak and total energy consumption MO-ND Performance measurement Execution time, RPF, CP, HI
Fang et al. [146] 2020 NSGA-II, MOEA/D** min cycle time, energy consumption MO-ND Performance measurement HI, IGD
Chen et al. [128] 2020” NSGA-II, MOEA/D, IBEA** min workstation, idle time, demand index of

disassembly part
MO-ND Performance measurement HI, IGD

Dong et al. [75] 2021 MOEA/D, NSGA-II, MALA max profit, min energy MO-ND Performance measurement HI, GD(N), IGD, Epsilon(N)
Zhang et al. [76] 2021 MOMVO, NSGA-II, MOEA/D,

MOCGA**
max profit, min carbon emissions MO-ND Performance measurement HI, IGD, Epsilon

Lei et al. [147] 2021 CDG, MOEA/D, NSGA-II** max profit, min idle time MO-ND Disassembly sequence, robot, performance
measurement

HI, IGD, Epsilon

Wang et al. [102] 2021 MOABC, MOPSO, NSGA-II, SPEA-2** min makespan and min energy consumption MO-ND Disassembly scheme (example output of sequence,
allocation, time)

HI, IGD, Spread ++

Mei and Fang [87] 2021 DQN, D-DQN, PRDQN min idle time, high demand priority, min energy
consumption

MO-ND Performance measurement HI, IGD

Tseng et al. [148] 2022 PSO, GA, ACO** min total make span SO Objective results Objective results***
Zeng et al. [138] 2022 IGSA, NSGA-II, NSGA-III, SPEA-2,

EMOGA, MOABC**
min cycle time, energy consumption, smoothness
index, max profit

MO-ND Disassembly sequence, robot workstation,
performance measurement

HI, Spread, Pure Diversity, DV++

Zhou and Bian [78] 2022” MBOHHO, NSHHO, MOPSO, MOEO,
MOGWO**

min cycle time, min energy consumption MO-ND Performance measurement POSs, GD, SS, IGD**** (statistic descriptive and
statistical test one way ANOVA for mean value)

Yin et al. [77] 2022 MILP and HDA, NSGA-II, NSGA-III,
PDSA-EA**

min cycle time, peak energy consumption, total
energy consumption, improved hazardous index

MO-ND Task and robot assignment, performance
measurement

HI**** (t-test)

Laili et al. [149] 2022 GA, PSO, BA, MOEA, MOEA/D,
IBEA**

n.a. SO, MO-ND Description of Evolutionary optimisation to solve
RDSP and RDLB

n.a.

Laili et al. [124] 2022 Mathematical model n.a. n.a. Mathematical representation n.a.
Laili et al. [125] 2022 NSGA-II, IBEA, MOEA/D, PBEA** min time, min total energy consumption, min peak

workstation energy consumption, the number of
robots

MO-ND Performance measurement HI**** (and statistic test wilcoxon rank sum test on
HI value)

Zhang et al. [150] 2022 Tabu search** max profit SO Disassembly objective results n.a.
Zhang et al. [151] 2022 IMMO, NSGA-II, MOEA/D, MOCGA** max profit, min carbon emissions MO-ND Disassembly sequence, performance measurement HI, IGD****
Laili et al. [152] 2022 IBEA, MOEA/D, NSGA-II, NSGA-III,

BCE-MOEA/D, BCE-IBEA**
balance, direction change, cost, number of
hazardous task, energy cost, line efficiency, total
profit

MO-ND Performance measurement HI, IGD, D-metric**** (chi square and p value
friedman test)

Xu et al. [153] 2023 PIMBO, MODGWO, MOABC,
NSGA-II, MOEA/D**

max profit, min energy consumption, max
balancing rate

MO-ND Disassembly sequence, performance measurement C-metric, HI, IGD

Qin et al. [154] 2023 IMMO, MOCGA, MOEA/D,
NSGA-III**

max profit, min carbon emissions MO-ND Performance measurement HI, IGD, (ϵ-indicator)

Liu et al. [49] 2023” IDBA, EDBA, GA, PSO** min cycle time, min number of workstation, min
smoothness index

MO Disassembly sequence, direction, robotic workstation
assignments, simulation

Iterations and population sizes***

Hartono et al. [129] 2023”* MOBA, NSGA-II, PESA-II** max profit, energy savings, environmental impact
reduction, min unbalanced line

MO-ND Disassembly sequence, direction, tools, recovery
option, robot workstation, line balance, performance
evaluation index

HI, NFE, POSs, PEI

Note: * thesis-derived publications (in press), ** metaheuristic, *** statistic descriptive, **** statistic test, ” sequence-dependent, highlighted bold = sustainability-related article, ++ misclassified: RDSP to RDLB.
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2.4 Optimisation Algorithms in RDSP and RDLB

Numerous methodologies and algorithms have been developed to address the challenges posed

by the disassembly line balancing and sequencing problem [155]. While mathematical and

exact methods can provide optimal solutions for small-scale instances, their applicability to

larger problems is limited by the NP-hard nature of the problem [41, 62, 63, 155]. A limited

number of previous studies have utilised exact methods to address either simple or prototypical

problems [77, 143]. It is important to note that exact solutions are currently unable to solve

non-linear problems, and they are limited to addressing SO problems [77]. The number of possible

subassemblies (Nn), the number of complete disassembly sequences (cn) and the total number

of disassembly sequences (Pn) in a disassembly problem can be determined theoretically using

Eqs. (2.1) - (2.3) [156]. For instance, with 4 parts, there are 15 subassemblies, 15 complete

disassembly sequences, and a total of 41 disassembly sequences. In the case of 10 parts, the number

of subassemblies increases to 1023, the complete disassembly sequences amount to 34,459,425,

and the total number of disassembly sequences reaches 314,726,297. These theoretical calculations

demonstrate the exponential growth in the number of disassembly sequences as the number of the

products increases. Such insights shed light on the combinatorial nature of disassembly problems

and underscore the challenges associated with exploring all possible disassembly sequences.

Nn = (2.Nn−1) + 1 (2.1)

cn = (2n− 3).cn−1 (2.2)
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Another theoretical calculation suggests that in the context of planning the optimal sequence

for a product with n parts, the exploration of the search tree involves examining n! nodes,

and the collision checking operation requires k x n! computations, where k represents the

average number of directions tested for component removal [119]. These theoretical calculations,

coupled with the findings from previous research, provide compelling evidence to support the

assertion that the disassembly problem is inherently complex and exhibits exponential growth in

complexity. Metaheuristic algorithms have garnered significant attention from researchers due to

their effectiveness in navigating the expansive search space of disassembly problems and achieving

near-optimal solutions [41, 62, 64, 155].

The prevalence of metaheuristic approaches is evident in the research positions presented in

Tables 2.1 and 2.2, where many researchers have adopted them. Notably, metaheuristic algorithms

offer the advantage of relatively short computation times, meeting practical requirements [155]

and facilitating efficient decision-making in real-world scenarios [79]. In a real-world context,

the efficient discovery of near-optimal solutions holds greater significance than achieving exact

solutions. Moreover, real products exhibit complexity that further amplifies the challenge. During
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the initial stages of research, many studies employed toy problems to explore the mathematical and

conceptual aspects, which is understandable considering the inherent complexity of the disassembly

problem.

In the field of RDSP, the genetic algorithm (GA) and the bees algorithm (BA) are among the

commonly used metaheuristics. Similarly, in RDLB, the GA is the most widely adopted approach.

While BA is less frequently utilised in RDLB, it has demonstrated success in solving complex

real-world problems [157–159]. The BA, developed in 2005 [160, 161], draws inspiration from

the foraging behaviour of honeybees. In this analogy, each potential solution corresponds to a food

source. A colony of bees, consisting of scout and forager bees, is used to conduct the search.

Scout bees perform the initial exploration by randomly exploring the solution space and evaluating

solutions based on objective functions, which are subsequently ranked by cost. Forager bees are

then deployed to explore the vicinity of the higher-ranking solutions. In the context of the Bees

Algorithm, the solution neighbourhood is commonly referred to as a ’flower patch.’ The waggle

dance observed in honeybees used to allocate a higher number of forager bees to the best solutions

and fewer foragers to the other flower patches. Further details on the BA mechanism can be

obtained from references [159–161].

The BA has demonstrated its robustness and effectiveness in a wide range of remanufacturing

applications [162–165], establishing it as a reliable optimisation approach within this domain. In

particular, in the field of robotic disassembly, the BA is recognised as one of the most popular

metaheuristic algorithms [44, 47–49, 51, 54, 79, 86, 88, 89, 126, 149]. Consistently outperforming

other algorithms, the BA is highly regarded for its exceptional performance and capabilities. Thus,

it remains a compelling choice for addressing optimisation problems in robotic disassembly. It is

apparent that previous studies utilising the BA in robotic disassembly have not specifically focused

on reducing the parameter settings, with only one study reduce the parameter by Laili et al. [44].

This represents a significant gap in the literature, as optimising the parameter settings is crucial

for achieving efficient and effective robotic disassembly processes. The parameter settings have
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a direct impact on the performance of the algorithms and play a critical role in determining the

quality of the solutions obtained. Addressing this gap presents valuable opportunities for enhancing

the efficiency and effectiveness of the optimisation tools used in robotic disassembly. In this thesis,

the BA is enhanced in two ways. Firstly, it is adapted from Enhanced Discrete Bees Algorithm

(EDBA) introduced by [54] to specifically address the challenges of the RDSP and RDLBSD within

the context of a sustainability model, considering both SO and MO-ND. Secondly, an improved

version of BA is developed, which reduces the number of parameters by drawing inspiration from

the life of honeybees. Chapter 5 will also discuss the original Bees Algorithm. This is to enable

a comparison between the original version and the new version developed in this study, offering a

detailed understanding of the adaptations and enhancements made, to achieve the last objective of

this thesis.

2.5 Performance Evaluation

Metaheuristics have been criticised for their parameter settings despite their capability of producing

near-optimal solutions faster than exact methods. Furthermore, population-based metaheuristics

require establishing suitable population sizes, thereby increasing the problem’s complexity.

Although some researchers have utilised design experiment techniques, such as Taguchi [83] and

Design of Experiments [166–168], to discover optimal parameter settings, this approach may

be time-intensive and dependent on the problem. Furthermore, the fair comparison of different

metaheuristics is still a topic of debate. The use of the same NFE as a stopping criterion is

a commonly adopted method for fair comparison, as supported by existing literature (see e.g.

[169]). Additionally, comparing metaheuristics using the same iteration number and population

sizes is a frequently employed approach [47, 49, 51, 54]. Another crucial aspect in metaheuristics

is the evaluation of performance. Performance evaluation is an important aspect of algorithm
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development that aims to assess the performance of different algorithms by comparing them to

other algorithms or benchmarks [70, 152].

In the context of metaheuristic algorithms, performance metrics such as solution quality,

computational time, and convergence speed are commonly used to evaluate their effectiveness.

Typically, the quality of a solution is determined by calculating its percentage deviation from the

best-known solution [148]. While determining the best known solutions for simple problems

is relatively straightforward, as exact methods can be used to find the optimal solutions,

determining the best-known solutions for complex problems, particularly those involving nonlinear

functions, becomes increasingly challenging [77]. Computational time is another frequently used

performance metric to evaluate the metaheuristic performance [48, 54, 86, 98, 113]. However, it is

important to note that this metric is dependent on the specific computer used to run the algorithm.

As a result, it is common to see researchers report the specifications of the computer they used

for their experiments. This variability in hardware specifications can make it difficult for other

researchers to compare results across studies. Moreover, with the increasing use of cloud-based

or GPU-based computing, this metric may not be appropriate or sufficient in all cases. Typically,

the fitness value is plotted against the number of iterations to determine the convergence speed

of a metaheuristic algorithm [148]. This generates a curve that can indicate the rate at which the

algorithm converges on the optimal solution. The definition and interpretation of convergence speed

can vary based on the different priorities of researchers and the complexities of the problem being

solved. Complex problems with numerous variables and nonlinear functions have more challenging

convergence definitions than simple problems with few variables. The NFE is another common

metric for evaluating metaheuristic algorithms. This metric measures the minimum number of

times the algorithm evaluates the objective function to locate a near-optimal solution. A smaller

NFE required to identify the best near-optimal solution indicates that the algorithm is more effective

at locating the optimal solution. However, NFE alone may not be sufficient as a performance

measure since the effectiveness of a metaheuristic algorithm is heavily dependent on its parameter
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settings.

SO and MO performance evaluation methods differ due to the nature of the solutions involved.

In SO optimisation, the objective is to identify a single optimal solution that maximises or

minimises a specific objective function. This approach is suitable when a clear and well-defined

objective exists, and the problem can be adequately represented by a single criterion. It is worth

noting that in the field of RDSP, the majority of previous research has focused on SO optimisation,

as evidenced by the observations in Table 2.1. However, in recent years, there has been a growing

trend towards the adoption of MO approaches. In contrast, the research on RDLB places greater

emphasis on the utilisation of MO-ND approaches. This is attributed to the inherent complexity of

the problems involved, which require the balancing of multiple objectives within the disassembly

line. It is important to note that in some articles, the term ”multiobjective approach” refers to a

specific type of approach known as the MO aggregate approach. This approach involves combining

multiple objectives into an SO using methods such as simple addition or weighting techniques,

assuming a linear relationship between the objectives (see [47, 49, 54]). In this thesis, this type of

approach is referred to as MO.

On the other hand, the multiobjective nondominated approach, referred to as MO-ND in

this thesis, is distinct from both the SO and MO approaches. It explicitly addresses the

trade-offs between objectives and aims to generate a set of solutions that accurately represent the

characteristics of MO-ND. Instead of aiming for a single solution, a set of solutions is generated

that captures the trade-offs between the different objectives. These solutions, known as Pareto

optimal solutions (POSs), constitute the Pareto front or Pareto set. Each solution in the Pareto

front is considered nondominated, meaning it cannot be improved in any one objective without

compromising another. Therefore, evaluation of performance in MO is more complex compared to

that of SO optimisation because the output comprises of a set of solutions as opposed to a solitary

solution [97, 170].

Prior studies have employed various metrics, such as POSs, Hypervolume Indicator
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(HI), number of function evaluations (NFE). The number of POSs is one of the most frequently

indicators for assessing convergence speed of MO-ND [171]. The HI serves as an indicator that

measures both convergence and solution diversity [97, 172] and has become a standard performance

metric [173]. A higher HI is desirable as it indicates a broader range of POSs [170]. The NFE is

a speed indicator in optimisation algorithms [170, 174]. A lower value is considered better, as it

signifies that the algorithm can reach the optimal solution with fewer steps or function evaluations.

The NFE is a metric that can be applied to both SO and MO-ND optimisation problems. It

serves as a measure of algorithm efficiency, indicating the ability to obtain satisfactory results with

fewer computational steps. A lower NFE value suggests that the algorithm is capable of achieving

desired outcomes using a smaller number of function evaluations. It is apparent that in previous

studies, researchers have employed a range of different metrics. However, these metrics have been

predominantly examined and analysed individually, focusing on their individual characteristics

rather than considering their potential interactions or collective impact.

In the context of analysing the output of performance evaluation, previous research has relied

on the use of descriptive statistics and the utilisation of visual tools such as box plots and

histograms (see [49, 51, 114, 148]). These visual representations serve as effective means to present

key findings, including measures such as the mean, standard deviations, and the maximum and

minimum values of the objective function achieved by the algorithm. Nonetheless, this statistic

descriptive does not provide a complete evaluation of the performance of the algorithm. To address

this concern, a number of researchers have employed statistical analyses, primarily focusing on

the results derived from objective value measurements e.g. [43, 79, 113]. The statistical test for

comparing ultimate results, such as fitness value, run times, and individual performance metrics,

is straightforward; however, it only indicates statistical differences in the end results. One study,

by [43] introduced an indicator (ε-indicator) without a detailed explanation, but it appears to have

used non-parametric statistical techniques to rank the results. The indicator paired each pair of

algorithms and ranked them based on the average indicator results. Additionally, the [43] study
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reported that there were conflicting results between the HI and the Inverted Generational Distance

(IGD).

The identified gaps provide strong motivation to achieve objective 5 of this thesis, which

involves determining optimal parameter configurations and facilitating comparisons among

different algorithms. To address these gaps, Chapter 3 introduces two important methods: the

statistical performance metric (SPM) and the performance evaluation index (PEI). By incorporating

the SPM and PEI, this research contributes to the development of robust and efficient solutions

for robotic disassembly while enhancing the reliability and validity of the research findings.

Furthermore, these methods have broader applicability beyond robotic disassembly and can be

utilised in other metaheuristic algorithms. Chapter 3 provides a detailed discussion and application

of these methods. The application spans across Chapters 4 and 5, highlighting their significance in

achieving the objectives of the thesis.

2.6 Literature Connections: Bibliometric Approach

This section provides a synthesis of the literature reviews on RDSP and RDLB, employing

bibliometric analysis to show their interrelations. The relationship among the collected literature

is revealed through the utilisation of VOSviewer, a bibliometric analysis tool [175–177]. Various

types of analysis can be conducted using this tool. One notable analysis is the keyword analysis,

which examines the occurrence of keywords in the dataset. Out of a total of 378 keywords,

50 keywords meet the predefined threshold, as depicted in Figure 2.1. These keywords are

classified into four clusters based on the relationships identified by VOSviewer. The clusters

include disassembly sequence, disassembly line balancing, robot, and robot system. Additionally,

the trend shift in research focus towards energy-related aspects, multiobjective optimisation, and

the utilisation of AI techniques such as deep learning and reinforcement learning is evident when
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examining the timeline representation in Figure 2.2. Another insightful analysis is the co-citation

with unit analysis, which focuses on the cited authors. Among the 1389 authors identified in

the literature forty-five meet the minimum citation threshold of 20 for co-citations. Figure 2.3

highlights four prominent clusters of authors, with SM Gupta being the most frequently cited

author (with 159 citations), followed by DT Pham (114 citations), Q Liu (78 citations), and MC

Zhou (74 citations). In terms of geographical distribution, the research on RDSP and RDLB are

primarily led by the United Kingdom (UK) and China, indicating their significant contributions

in this field and their connections through joint research. Furthermore, it is noteworthy that MO

optimisation has predominantly been employed in the context of RDLB rather than RDSP. The

significance of optimisation techniques as useful tools for addressing the complexities involved in

robotic disassembly problems is highlighted by this observation, which confirms the findings of the

research positions analysis.

Figure 2.1: Keywords Analysis
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Figure 2.2: Keywords Analysis with timeline

Figure 2.3: Co-citations Analysis
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2.7 Summary

This chapter provides a comprehensive analysis of the distinctions and interrelationships between

RDSP and RDLB through the use of a research position table and bibliometric analysis.

The analysis conducted in this chapter encompasses multiple aspects, including the approach,

objectives, methodology, output, performance measurement, and research trend. By outlining

the research positions in RDSP and RDLB, this chapter highlights the specific contributions of

this thesis to addressing these gaps. Firstly, a notable gap identified in the RDSP is the lack

of consideration for sustainability, which aligns with objective 1. Similarly, only half of the

research in RDLB addresses this crucial aspect, revealing another gap that aligns with objective

1. Additionally, a clear trend of research on sequence-dependent RDLB is observed, which aligns

with objective 3. Furthermore, the literature lacks comprehensive reporting of disassembly output,

particularly regarding recovery options for each component and the absence of algorithms to

determine the optimal recovery choices, which correspond to objective 1. The case study of gear

pumps serves as a validation of the proposed approach and aligns with objective 4. Moreover,

the limited application of MO-ND optimisation approaches in RDSP studies reveals a significant

gap that aligns with objective 2. Furthermore, previous research has overlooked the potential

for improving the bees algorithm (BA) by reducing its parameter settings in robotic disassembly,

highlighting a clear gap that corresponds to objective 6. Lastly, the review assesses the current

approaches and gaps in the performance evaluation of optimisation algorithms within the context

of robotic disassembly. The underutilisation of statistical tests and the absence of a unified

performance evaluation metric across previous studies represent gaps that align with objective 5.

These comprehensive analyses lay the foundation for addressing these gaps and advancing the field

of robotic disassembly. The objectives of this thesis, as outlined in Chapter 1, directly align with

the identified gaps and serve as a road-map for the subsequent chapters. As previously mentioned,
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Chapters 3 and 4 study RDSP and RDLB, addressing objectives 1, 2, 3, 4, 5. Chapter 5 focuses on

the enhancement of the Bees Algorithm, addressing objectives 2, 4, 5, and 6.



Chapter 3

Robotic Disassembly Sequence Planning

The increasing adoption of robotics in disassembly processes aims to enhance their effectiveness

and efficiency compared to manual disassembly. Within this context, robotic disassembly sequence

planning (RDSP) has emerged as a critical area for improving efficiency and cost-effectiveness in

disassembly operations. This chapter specifically addresses the research problem of RDSP, which

involves determining the optimal order for disassembling parts and components within a robotic

cell, thus addressing objective 2 of this thesis. In addition, this chapter also encompasses objectives

1, 4 and 5.

The challenge of determining the optimal sequence for robotic disassembly lies in its inherent

complexity and nondeterministic polynomial (NP) nature. Traditional exact methods often struggle

with computational intractability due to the NP-completeness of this problem. To overcome this

challenge, the application of metaheuristic algorithms has gained prominence, offering significant

advantages over exact methods. Over the past decade, metaheuristic algorithms have demonstrated

their dominance in solving complex optimisation problems, including RDSP. As indicated in Table

2.1 in Chapter 2 literature review, metaheuristics have been the predominant approach since 2011.

Therefore, the focus of this chapter is to utilise the bees algorithm (BA) as optimisation tools for

solving the RDSP.

35
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In addition, this chapter contributes to the existing literature by introducing a sustainability

model that has not been previously explored, as depicted in Table 2.1 of the research position,

thereby achieving objective 1 of this study. The sustainability model developed in this research

is explained in detail, providing a comprehensive understanding of its key components and

methodology. Furthermore, four sustainability recovery scenarios are outlined for each component,

considering factors such as material reuse, recycling, remanufacturing, and disposal. One

of the scenarios involves the use of an autonomous recovery strategy utilising the algorithm.

Additionally, three of the scenarios are based on data collection and interviews conducted with

remanufacturers in England and Spain. These scenarios aim to maximise resource recovery and

minimise environmental impact, thereby contributing to the overall sustainability objectives of the

disassembly process.

Objective 4 is addressed in this chapter by conducting a detailed case study on gear pumps

to validate the proposed approach. The rationale for selecting this specific case study is

thoroughly explained, providing a comprehensive understanding of the reasons behind this choice.

Additionally, a comprehensive description of the gear pumps is provided, offering insight into

the specific components and characteristics of the system. Furthermore, objective 5 is addressed

in this chapter, focusing on determining the optimal parameter settings and performance metrics

for optimisation algorithms in the context of robotic disassembly. To achieve this, the chapter

introduces a novel statistical performance metric (SPM) and performance evaluation index (PEI),

which serve as valuable tools for assessing the performance of optimisation algorithms and

determining optimal parameter settings.

This research makes several significant contributions to the field of RDSP. First, the research

utilises a multiobjective nondominated bees algorithm to concurrently optimise multiple objectives,

considering trade-offs between different objectives. Second, the research introduces a sustainability

model that has not been addressed in previous studies. Third, it introduces the novel concept of

selecting the best recovery option for each disassembly component, which none of the previous
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studies have addressed. This feature provides comprehensive guidance for the disassembly

process and enhances the practicality and usefulness of the proposed model. Fourth, the

research incorporates an autonomous recovery strategy identification mechanism utilises the

algorithm, allowing for dynamic evaluation and selection of optimal recovery strategies based

on given constraints and objectives. This autonomous decision-making capability improves the

adaptability and effectiveness of the solution. Fifth, the research adopts a realistic simulation

approach that closely replicates the real disassembly process, ensuring alignment with real-world

scenarios. Reliable data collected from relevant remanufacturers adds credibility and strengthens

the applicability of the proposed model. Lastly, two novel tools for performance measurement,

statistical performance metric (SPM) and performance evaluation index (PEI), are incorporated

to provide a comprehensive evaluation that combines statistical rigour and simplicity for

decision-making purposes. These contributions collectively enhance the reliability, robustness, and

practicality of the proposed solution for RDSP.

The overview of the contents of this chapter as follows. In the first section, Section 3.1, the

chosen case study is presented along with a detailed justification for its selection. The proposed

performance evaluation is elaborated upon in Section 3.2, providing a thorough explanation of its

methodology. Section 3.3 explains the model and methodology used in this research. Section 3.4

presents the conducted experiments and the corresponding results, followed by a detailed discussion

in Section 3.5. Finally, Section 3.6 concludes the chapter by summarising the key findings and

outlining recommendations for practitioners and future research directions.

3.1 Case Study Description

The case study chosen for this research is focused on industrial gear pumps, which have been

frequently used in previous studies on robotic disassembly of EoL products [47–49, 51, 54, 86,



38 CHAPTER 3. ROBOTIC DISASSEMBLY SEQUENCE PLANNING

122, 125, 128, 130]. Furthermore, the broad industrial application and low wear of gear pumps

make them an ideal candidate for demonstrating the optimisation results and studying complete

disassembly without destruction, highlighting their suitability as a test subject in this research. The

results of this study on the robotic disassembly of gear pumps contribute to the broader context of

robotic disassembly research, as they demonstrate the potential of using optimisation algorithms to

disassemble EoL products efficiently and sustainably.

3.1.1 Case study: industrial gear pumps

A gear pump is a hydraulic pump variant that comprises two gears that are enclosed within a

compact housing. The process involves the conversion of motor-generated kinetic energy into

hydraulic energy through the flow of oil generated by the pump. External gear pumps are widely

utilised in industrial applications due to their compactness, high power output, durability, and

cost-effectiveness. The utilisation of pressurised oil flow is a common method for inducing motion

in the actuator that is integrated within a given machine or application. The primary part of the

pump is the gear pair that is coupled together. The gear pair comprises of two shafts, namely

the drive shaft, which is powered by the motor shaft, and the driven shaft. The principle of

displacement, which is caused by the contact between the teeth of the shaft gears, results in the

rotation of the driven shaft by the driving shaft. Upon activation of the pump, oil is drawn into the

inlet (suction) orifice as a result of the pressure differential generated by the disengagement of the

teeth of one gear from those of the other. The transportation of oil occurs through the flanks of the

gear teeth until it reaches the outlet orifice of the pump. At this point, the oil is propelled towards

the outlet orifice, or experiences a pressure, as a result of the interaction between the teeth of the

driving and driven shafts. The gear pump is a subject of significant interest for remanufacturers

in the context of end-of-life product recovery. This is because certain components of the gear

pump exhibit minimal wear and tear after prolonged use, rendering them suitable for reuse or
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remanufacturing in new products. Gear pumps are a viable sustainable alternative, as they aid in

waste reduction and encourage the implementation of circular economy principles. Moreover, the

adaptability of gear pumps enables their utilisation in a diverse array of applications, spanning from

hydraulic systems to fuel transfer. The remaining parts may be either recycled or disposed of as a

last resort.

The two gear pumps depicted in Figures 3.1 and 3.2 have different flow rates; Gear Pump A

has a flow rate of 7.5 l/min, while Gear Pump B has a flow rate of 10 l/min. The data utilised

in this study were derived from academic sources, including the research conducted by [54] and

[122], in addition to 3D models acquired from Grabcad [178]. Furthermore, the perspectives of

expert remanufacturers based in the United Kingdom and Spain were collected for this study. As

previously mentioned regarding the disassembly distances, the path distance (PD) matrices for

Gear Pumps A and B depict the proximity between adjacent disassembly points while considering

collision avoidance computations and all potential routes, including impractical trajectories that

limit the choice of prohibited paths during the disassembly procedure. The input data provided in

Appendix A.

3.1.2 Key input data and calculation assumptions in this thesis

In order to ensure the appropriate conduct of the case study, it is necessary to make several

assumptions. The aforementioned assumptions are relevant to diverse facets of the disassembly

procedure, encompassing types of disassembly, task times, the operation of the remanufacturing

companies, the expenses incurred, and the robot configurations. The lists are as follows:

• The disassembly procedure is sequential, with operations performed one at a time.

• The disassembly is a complete disassembly, indicating that the entire product is broken down

into its component parts.
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Figure 3.1: Gear Pump A: (a) assembled view; (b) exploded view.

• The disassembly procedure of the components involves non-destructive actions, which

presupposes that the robot is capable of executing conventional tasks such as rotation,

unscrewing, detachment, gripping, and other similar actions to accomplish all disassembly

tasks.

• The task times are known and deterministic. Hence, the robot completes the same operation

in the same amount of time for all disassembled components.

• It is presumed that the remanufacturing company operates for a single 8-hour shift each day,

for a total of 220 working days per year.

• Given that the robotic cell operates with just one type of gear pump throughout the year, a

projection of 70,000 units annually for Gear Pump A and 55,000 units per annually for Gear

Pump B is assumed. The data utilised in this study is derived from remanufacturers of gear

pumps located in the United Kingdom.
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Figure 3.2: Gear Pump B: (a) assembled view; (b) exploded view.

• According to a commercial quotation from a robot manufacturer, the robotic cell’s upfront

costs (investment) are estimated to be 0.15 Me, and its hourly cost is 120 e/h.

• The study assumes a straight-line depreciation of machinery over 10 years.

• The allocation of overhead expenses is based on the utilisation of resources for individual

disassembly procedures. As per [122]’s methodology, a scoring system has been employed

to determine the appropriate treatment for various components. The components to be reused

are assigned a weight of 2 out of 10, while those to be remanufactured are given a weight of 5

out of 10. Similarly, components designated for recycling and disposal are assigned weights

of 2 out of 10 and 1 out of 10, respectively.

• According to the manufacturer’s specifications [179], the linear velocity of the robot’s

end-effector is 12 mm/s, and it will take 10 seconds for the robot to change the tool in the

tool magazine (M).
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• The penalty times, p1 and p2, for changing the direction of a process are assumed to be 1 and

2 seconds, respectively.

3.2 Proposed Performance Evaluation

The literature review reveals that prior research has not fully utilised the potential of statistics, as

they were only applied to the final outcomes. In addition, contradictory results have been observed

across various performance metrics, see Chapter 2.5. To bridge these identified gaps, two novel

approaches are proposed in this thesis. One approach involves the application of statistical tests,

while the other utilises a straightforward yet versatile metric. These proposed methods aim to

address shortcomings and provide valuable insights into the performance analysis of the algorithm.

The specifics of the first approach are elaborated upon in Section 3.2.1, while the details of the

second approach are provided in Section 3.2.2.

3.2.1 Proposed Statistical Performance Metric

The proposed method, SPM, employs a statistical test not only for evaluating algorithm

performance but also for identifying optimal parameter settings. This method follows a

well-defined selection process for the appropriate statistical test. The advantage of this approach

lies in its ability to statistically analyse observed differences and determine the optimal parameter

settings for the chosen algorithm. The methodology is outlined as follows: Initially, the results

are visualised using descriptive statistics. Subsequently, the assumption checklist is performed. If

the number of experiments conducted exceeds 30, it is necessary to test whether the data adhere to

certain assumptions, such as normality and homogeneity. In the case of any assumption violations,

a nonparametric test is carried out. Conversely, if the number of experiments is below 30, a
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nonparametric test is employed. Finally, if the results indicated statistical significance, a post

hoc test was conducted. The decision process can be observed in the Algorithm 1. The choice

of software for conducting the statistical analysis is dependent on the researcher’s preference and

may involve the use of either commercial or freely available statistical software. In this thesis,

the statistical tests were performed using IBM SPSS Statistics 27 and MATLAB 2020b. The SPM

introduced in our publication [1].

By employing this method, researchers can rigorously analyse the performance of an algorithm

and identify the optimal parameter settings in a statistically sound manner. This systematic

approach adds credibility to the experimental results and contributes to the advancement of

algorithm optimisation techniques.

3.2.2 Proposed Performance Evaluation Index

As previously mentioned, relying solely on diagrams or figures to illustrate these indicators is

insufficient, as it neglects the possibility of conflicting indicators, an aspect that has not received

sufficient attention in scholarly investigations. Evaluating the performance of MO optimisation

presents greater complexity compared to SO optimisation, as it entails analysing a set of solutions

rather than a singular solution as previously discussed. As previously mentioned, there is a

possibility of conflicting results of indicators [43]. The second contribution of this research

addresses this gap by introducing a performance index that has not been previously employed

for evaluating algorithm performance. The concept behind the proposed performance evaluation

index (PEI) is derived from formulas commonly used in the Multiple-Criteria Decision-Making

(MCDM) literature. The index provides decision makers with a valuable tool for expediently

evaluating multiple criteria and facilitating prompt decision-making. To calculate the index, two

approaches are discussed in the MCDM literature. The first approach involves assigning weights

to different criteria and summing the scores to obtain an overall score. However, this approach
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Algorithm 1: Statistical Performance Metric
Require: data

1 Function PerformDescriptiveStatisticsAndBoxplot(data):
2 Calculate descriptive statistics for the data;
3 Generate a boxplot to visually represent the results;
4 Function PerformAssumptionChecklist(data):
5 Check the data size;
6 if the data size is below the threshold (e.g., 30) then
7 Perform a nonparametric test;
8 Choose an appropriate nonparametric test;
9 return;

10 end
11 Test for normality;
12 Test for homogeneity of variances;
13 Function DecisionStepOne(data):
14 assumptionFail← false;
15 PerformAssumptionChecklist(data);
16 if any assumption fails (data size, normality, or homogeneity) then
17 Perform a nonparametric test based on the failed assumption;
18 assumptionFail← true;
19 end
20 if all assumptions are met and assumptionFail is false then
21 Perform a parametric test;
22 end
23 Function DecisionStepTwo(result):
24 if result of the test is statistically significant then
25 Conduct post hoc tests to determine specific group differences;
26 return;
27 end
28 return;
29 Main Algorithm;
30 PerformDescriptiveStatisticsAndBoxplot(data);
31 DecisionStepOne(data);
32 DecisionStepTwo(result);

has certain limitations, including the need for additional computations such as normalisation and

the inadequate accommodation of conflicting objectives related to specific criteria maximisation

or minimisation. To address these limitations, [180] introduced the second approach, known

as the multiplicative approach. This approach resolves the limitations of the first approach by
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considering the multiplicative combination of scores, resulting in a simplified computation process

and improved accommodation of conflicting objectives. In contrast to the additive method, the

multiplicative approach does not require the normalisation or re-scaling of criteria, as the final

outcome is unaffected by these operations [180].

The multiplicative approach is followed by the proposed PEI methodology, whereby the PEI

is derived through the multiplication of indicators that are desired to have higher values and the

division of indicators that are preferred to have lower values. Equal weights (ω) were assigned to

all the functions, as all the indicators were deemed to be of equal significance. It should be noted

that the value of ω is subject to the discretion of decision makers, who may set it based on their

individual preferences.

In this example, a common MO-ND performance metric is considered: the Hypervolume

Indicator (HI), the Pareto optimal solutions (POSs), and number of function evaluations (NFE).

A higher HI is desirable because it signifies a wider range of POSs. Having a higher number of

POSs is also desirable. On the other hand, the NFE serves as a reliable measure of computational

complexity and is independent of the computer system. In this case, a lower NFE is preferred. The

mathematical expression is represented by Equation (3.1) as follows:

PEI = [HIω1POSsω2 ]/NFEω3 (3.1)

The PEI is a versatile metric that can be tailored by researchers to align with their preferred

evaluation criteria through the modification of equations. The addition of supplementary metrics

can be incorporated into the equations based on whether higher or lower values are desired. As

previously mentioned, metrics with higher desired outcomes are included in the numerator, while

those with lower desired outcomes are placed in the denominator. By consolidating multiple

performance indices into a single metric, this method streamlines the evaluation process and offers

valuable insights for decision-making in complex optimisation scenarios. In addition, the PEI can

be used to evaluate the performance of MO as well as SO.



46 CHAPTER 3. ROBOTIC DISASSEMBLY SEQUENCE PLANNING

3.3 Model and methodology

The sustainability model for RDSP developed in this research comprises of these steps: model

building, model formulation, optimisation methods using single-objective (SO) and multiobjective

(MO) aggregate approaches, optimisation using the MO-ND approach, and performance

measurement. In the first step, model building, the necessary frameworks and structures for the

RDSP decision-making model are constructed. This involves the collection of relevant input data,

including product information, component properties, and recovery feasibility, obtained from CAD

designs and collaborations with remanufacturers in England and Spain. The gathered data plays a

crucial role in evaluating the interference between disassembly parts and establishing precedence

relationships. The primary objective is to eliminate infeasible sequences and ensure an optimised

disassembly process. The insights and input from remanufacturers are particularly valuable in

establishing sustainable recovery strategies and acquiring data for the defined objectives. In

the subsequent step, model formulation, a comprehensive explanation is provided regarding the

sustainable objectives and recovery strategies. This stage entails the precise definition of specific

objectives that contribute to the sustainability of the disassembly process, considering profit,

energy savings and environmental impact reduction. The model formulation integrates these

objectives, creating a comprehensive framework that serves as the basis for decision-making.

The third step focuses on the application of optimisation methods to the RDSP decision-making

model, employing both SO and MO aggregate approaches. Initially, SO optimisation is utilised

to determine the maximum value of each individual objective. Subsequently, an MO aggregate

approach is employed to evaluate the maximum value, assuming linear relationships between the

objectives and treating them as an SO.

The subsequent step encompasses the application of the MO-ND approach, which allows for the

identification of optimal solutions that are not dominated by others within the objective space. By
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considering multiple objectives simultaneously, the model achieves a comprehensive evaluation and

generates a set of solutions that strike a balance between competing objectives, thereby fostering

a more sustainable and balanced robotic disassembly process. As previously mentioned, this

research primarily focuses on utilising the BA as the primary optimisation approach. The MOBA

represents a nondominated and modified version of the EDBA, specifically tailored to address the

complexities of multiple objectives and recovery options. To facilitate comprehensive comparisons

and robust evaluations, two additional comparative algorithms, NSGA-II and PESA-II, are used as

well-established algorithms for comparison. These algorithms serve as valuable reference points

and benchmarks for assessing the performance and effectiveness of the MOBA in solving RDSP.

Lastly, the final step focuses on performance measurement. The research utilises the SPM

and the PEI to effectively assess the performance of the optimisation algorithms under different

parameter settings. These performance measurement tools provide robust statistical analysis and

enable the systematic comparison and evaluation of the algorithms.

3.3.1 RDSP Model Building

The RDSP model building process begins with the collection of input data regarding the products,

their components, properties, and their feasibility for recovery. Some of the data is gathered from

remanufacturers located across England and Spain. The CAD design provides valuable information

that is extracted and used as input for subsequent steps. The collected data is then utilised

to evaluate the interference between disassembly parts and establish precedence relationships

among them, with the goal of eliminating infeasible sequences [33]. Robotic disassembly

presents unique challenges compared to manual disassembly, as discussed in Chapter 2. Collision

avoidance plays a crucial role in robotic disassembly planning, affecting the disassembly time and

trajectory of the robot’s end effector. Previous studies have commonly neglected the product’s

contour when designing the robot’s path. To address this, researchers have devised methods
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to achieve collision-free robotic disassembly. These methods involve considering the object’s

geometry, calculating distances between disassembly points, and ensuring a minimum distance

of 10 mm between the end effector’s path and the contours of the end-of-life (EoL) product

[49, 54]. Additionally, in contrast to manual disassembly, the model requires additional information

regarding the disassembly direction to guide the robot’s movements effectively. To address this,

feasible disassembly sequences and directions are generated using the modified space interference

matrix and interference matrix analyses, known as Modified Feasible Solution Generation (MFSG)

[54]. These techniques, originally proposed by Jin et al. [181, 182], provide a comprehensive

representation of disassembly precedence between components in six directions (X+, X-, Y+, Y-,

Z+, Z-). The interference matrix (C), see Equation (3.2) [181, 182], plays a crucial role in capturing

the blocking relationships between components in different directions. Each element in the matrix

is a multidimensional vector, indicating whether part j obstructs the movement of part i along

the X+, X-, Y+, Y-, Z+, or Z- direction. Specifically, if there is a blockage, the corresponding

element (Cij) is assigned a value of 1; otherwise, it is set to 0. It is worth noting that Jin et al.’s

method considers the transpose of the positive direction matrix for the negative direction [181, 182].

However, this approach becomes problematic when dealing with fasteners such as bolts. In such

cases, disassembling the components before removing the bolts is not feasible. To overcome this

limitation, this thesis adopts the technique proposed by [54] as mentioned earlier. This technique

involves analysing each matrix individually, ensuring that the disassembly process accounts for the

presence of fasteners. By doing so, the model ensures that components are not disassembled before

their corresponding fasteners, thus guaranteeing a realistic disassembly process. Additionally, the

feasibility of disassembly direction is taken into account, particularly when the product incorporates

fasteners, making it a viable approach for practical applications.
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C =



0 C12 · · · C1n

C21 0 · · · C2n

...
... . . . ...

Cn1 Cn2 · · · 0


(3.2)

Robotic Cell

In this thesis, a robotic cell illustration was created to represent the experiments in the RDSP setting.

The robotic cell consists of a robot and a tool magazine (M) equipped with a robotic tool changer.

Figure 3.3 depicts the layout of the robotic cell, highlighting the positioning of the robot, the tool

magazine (M), and the selected gear (pump A or B) depending on the specific case study being

examined.

The KUKA LBR iiwa R820 is a 7-axis lightweight robotic system equipped with a jointed arm,

specifically designed to accommodate a maximum payload of 14 kg and an 820 mm reach [179].

Its operational efficiency is facilitated by a spacious working volume of 1.8 m3 and repeatability

of 0.15 mm (ISO 9283). The tool magazine (M) serves as an integral component of the robotic

system, housing the necessary tools for executing disassembly tasks. It provides a convenient and

organised storage solution for the tools required during the disassembly process. In cases where a

tool replacement becomes necessary for the subsequent disassembly step, the robot is programmed

to navigate to the tool magazine’s designated position. In the simulated environment, the tool

magazine (M) is located at coordinates x = 300 mm, y = 200 mm, and z = 150 mm. Unfastening

and pulling/pushing are the two main categories of disassembly operations for the gear pump. Three

types of spanners, spanner 1, spanner 2, and spanner 3, are used to effectively loosen bolts and nuts

during the unfastening process. Gripper 1 and gripper 2 are used for the remaining disassembly

operations. Appendix A contains detailed information regarding the specific disassembly tools
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used for each operation, the corresponding coordinates of the disassembly points relative to the

origin coordinates, and the time required to complete each disassembly operation.

Figure 3.3: Layout of the robotic cell [1]

3.3.2 RDSP Model Formulation

The solution to the robotic disassembly problem within the sustainability model is approached as

a MO problem. The primary objective is to find an optimal solution that effectively balances three

key goals: maximising profit (f1), maximising energy savings (f2), and maximising environmental

impact reduction (f3).

Goal 1. Profit

Equation (3.3) [183] defines the first goal, which is profit, and comprises seven main components.

These components include the revenue generated from the reuse or remanufacturing of components,

the revenue obtained from recycling components, the costs associated with the disposal of
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components, the overall disassembly cost, the expenses related to the recovery of components

for reuse or remanufacturing, the company’s overhead costs, and the depreciation costs of the

machinery (robotic cell) used in the disassembly process.

f1 =

Np∑
i=1

2∑
j=1

RPi ri,j αi +

Np∑
i=1

RCi ri,3 αi −
Np∑
i=1

CDi ri,4 (1− αi)−

−
[ Np−1∑

i=1

tb(xi) αi cT +

Np−1∑
i=1

(
PD(xi,M)

ve
+ tc(xi, xi+1) +

PD(M,xi+1)

ve
+ tu(xi,M) +

+ tw(M,xi+1)

)
γi αi cT ++

Np−1∑
i=1

(
PD(xi, xi+1)

ve
+ tz(xi, xi+1)

)
(1− γi) αi cT

]
−

−
Np∑
i=1

2∑
j=1

rci,j ri,j αi −
Np∑
i=1

4∑
j=1

ohi,j ri,j αi −
Np∑
i=1

4∑
j=1

dpi,j ri,j αi (3.3)

where:

• i is the index for each component and varies from 0 to Np

• j is the indicator of the recovery mode and equal to 1 if component i is assigned to be reused,

2 if it is to be remanufactured, 3 if it is to be recycled or 4 if it is to be disposed of.

• RPi is the revenue obtained due to the component i to be reused or remanufactured not having

been manufactured again for a new product

• ri,j is an indicator of the recovery mode: 1 if mode j is assigned to component i

• αi is an indicator that takes the value of 1 if component i is to be disassembled and 0

otherwise.

• RCi is the revenue obtained from component i being recycled

• CDi is the disposal cost of component i being disposed of

• tb(xi) is the basic time to perform disassembly operation xi

• cT is the cost per unit of time

• PD(xi,M) is the distance between the point of the disassembly operation xi and the position
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of the tool magazine (M)

• ve is the line velocity of the industrial robot’s end effector

• tc(xi, xi+1) is the tool change time and depends on the tool type

• PD(M,xi+1) is the length between the position of the tool magazine (M) and the point of

the disassembly operation xi+1

• tu(xi,M) is the penalty time for process direction changes along the path between xi and the

tool magazine (M) and formulated as follows:

– 0 if the direction is not changed

– p1 if the direction is changed by 90º

– p2 if the direction is changed by 180º

• tw(M,xi+1) is the penalty time for process direction changes along the path between the tool

magazine (M) and xi+1, and is formulated as tu

• γi is an indicator taking the value 1 if operation xi+1 requires changing the tool used in

previous operation xi

• PD(xi, xi+1) is the distance between the point of the disassembly operation xi and the point

of disassembly operation xi+1

• tz(xi, xi+1) is the penalty time for process direction changes along the path between xi and

xi+1, and is formulated as tu

• rci,j is the recovery cost of component i being reused or remanufactured

• ohi,j is the overhead cost assigned to component i to be disassembled

• dpi,j is the depreciation cost assigned to component i to be disassembled

Goal 2. Energy savings

The energy savings, represented by f2, are achieved through the disassembly process and

subsequent recovery of components, as shown in Equation (3.4) [183]. By reusing or
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remanufacturing some of the disassembled components, the model accounts for the energy saved

by avoiding the production of new components for new products. This objective, f2, comprises

four key components: the total energy reclaimed from reused or remanufactured components, the

energy consumed by the robot during the overall disassembly process, the energy consumed in

recovering components for reuse, remanufacturing, or recycling, and the energy consumed in the

final treatment of disposed components.

f2 =

Np∑
i=1

2∑
j=1

ri,j gri,j fW αi −
Np−1∑
i=1

[
gd1,i(xi) + gd2,i(xi,M) γi + gd3,i(M) γi+

+ gd4,i(M,xi+1) γi + gd5,i(xi, xi+1) (1− γi)

]
fW αi −

−
Np∑
i=1

3∑
j=1

ri,j gci,j fW αi −
Np∑
i=1

ri,4 gci,4 fW (1− αi) =

=

Np∑
i=1

2∑
j=1

ri,j gri,j fW αi −
Np−1∑
i=1

[
tb(xi)PR1 γi +

PD(M,xi) PR2 γi
ve

+ tc(xi, xi+1)PR2 γi+

+
PD(M,xi+1) PR2 γi

ve
+

PD(xi, xi+1) PR2 (1− γi)

ve

]
fW αi

3, 600
−

−
Np∑
i=1

3∑
j=1

ri,j gci,j fW αi −
Np∑
i=1

ri,4 gci,4 fW (1− αi) (3.4)

where:

• gri,j is the energy reclaimed from component i being reused or remanufactured

• fW is a conversion factor from kWh to monetary units

• gd1,i(xi) is the energy consumption of the robot in the disassembly operation of component i

• gd2,i(xi,M) is the energy consumption of the robot in the movement between the position xi

and M

• gd3,i(M) is the energy consumption of the robot in the tool change

• gd4,i(M,xi+1) is the energy consumption of the robot in the movement between M and xi+1
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• gd5,i(xi, xi+1) is the energy consumption of the robot in the movement between xi and xi+1

• gci,j is the energy consumption involved in recovering component i with mode j

• PR1 is the power of the robot used in the disassembly operation

• PR2 is the power of the robot used in the movements between the disassembly points

Goal 3. Environmental impact reduction

Environmental impact reduction, represented by f3 in Equation (3.5) [183], evaluate the positive

environmental outcomes obtained from the disassembly process and subsequent component

recovery. This objective takes into account five key components: the total environmental

impact reduction reclaimed from components to be reused or remanufactured, the environmental

impact reduction resulting from the recovery process of components for reuse, remanufacturing,

or recycling, the environmental impact reduction associated with the treatment of disposed

components, the environmental impact reduction derived from the disassembly operations, and

the environmental impact reduction generated by the movements of the robot between disassembly

points.

f3 =

Np∑
i=1

2∑
j=1

ri,j eri,j αi −
Np∑
i=1

3∑
j=1

ri,j eci,j αi −
Np∑
i=1

ri,4 eci,4 (1− αi)−

−
Np−1∑
i=1

ed(xi) αi −
Np−1∑
i=1

ed(xi, xi+1) αi

(3.5)

where:

• eri,j is the reclaimed environmental benefits from component i being reused or

remanufactured

• eci,j is the environmental benefits in the recovering process of component i with mode j

• ed(xi) represents the environmental benefits in disassembly operation xi.
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• ed(xi, xi+1) represents the environmental benefits produced by the movement of the robot

between disassembly operations xi and xi+1, considering that the robot has to change the

tool in M if operation xi+1 requires using a different tool to the one used in the previous

operation xi.

Constraints

4∑
j=1

ri,j = 1 ∀i (3.6)

ri,1 + ri,2 + ri,3 ≤ αi (3.7)

αi ≥ αi+1 (3.8)

Np∑
i=1

αi ≤ Np − 1 (3.9)

where:

• Eq. (3.6) [183] guarantees that each component, i, has only one recovery mode.

• Eq. (3.7) [183] assures that all components to be reused, remanufactured or recycled must be

disassembled.

• Eq. (3.8) [183] guarantees that if the disassembly operation of component i is the prerequisite

of the disassembly operation of component i+1, component i must be disassembled.

• Eq. (3.9) [183] guarantees the maximum number of total disassembled components.
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Sustainability recovery scenarios

The assessment of the three goals is based on the disassembly process outcomes and the subsequent

recovery and market sale of the disassembled components. The available recovery options for

the components include reuse, remanufacturing, recycling, or disposal. To explore the impact of

different recovery choices on outcomes, the model incorporates four distinct scenarios referred

to as sustainability recovery scenarios. Tables 3.1 and 3.2 present these scenarios, which were

formulated in consultation with remanufacturing industries in Spain and England. The scenarios

are named as follows: recycling (REC) scenario, remanufacturing (REM) scenario, reuse (REU)

scenario, and automated recovery strategy (ARS) scenario.

Table 3.1: The scenarios for the case study gear pump A

Part REC scenario REM scenario REU scenario ARS scenario

1 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
2 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
3 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
4 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
5 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
6 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
7 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
8 Disposal Disposal Disposal Disposal
9 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*

10 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
11 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
12 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
13 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
14 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
15 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*

Note: *algorithm automates recovery strategy identification.

The REC, REM, and REU scenarios are all predetermined based on the typical recovery

scenarios employed by industries for each part. These scenarios aim to maximise component

recycling, remanufacturing, and reuse, respectively. In contrast, the ARS scenario utilises an

autonomous recovery strategy identification mechanism using an algorithm, allowing for greater

adaptability and flexibility in locating optimal solutions. The data presented in Tables 3.1 and 3.2
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Table 3.2: The scenarios for the case study gear pump B

Part REC scenario REM scenario REU scenario ARS scenario

1 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
2 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
3 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
4 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
5 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
6 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
7 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
8 Disposal Disposal Disposal Disposal
9 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*

10 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
11 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
12 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
13 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
14 Disposal Disposal Disposal Disposal
15 Disposal Disposal Disposal Disposal
16 Disposal Disposal Disposal Disposal
17 Disposal Disposal Disposal Disposal
18 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
19 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
20 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse*
21 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
22 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
23 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*
24 Recycle Recycle Recycle Recycle/Remanufacture/Reuse*

Note: *algorithm automates recovery strategy identification.

clearly indicate the allocation of recovery options for each part of the ARS scenario. For instance,

components 1, 2, and 3 each offer multiple recovery options, such as recycling, remanufacturing, or

reuse. Conversely, component 8 only provides the disposal option as it is the only viable alternative

for this particular component.

3.3.3 RDSP (SO and MO aggregate approach)

As previously stated, the SO approach utilises the BA to determine the optimal value for each

objective across all recovery scenarios. The outcomes were then compared to the MO approaches.

The SO approach has similar steps to the MO aggregate approach. The only distinction is that
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the SO approach calculates each objective separately, whereas the aggregate approach adds the

objectives together and treat it as an SO [97]. The first step of the algorithm involves setting

the parameter settings and determining the maximum number of iterations. As mentioned earlier,

the input data is a disassembly information matrix based on the MFSG proposed by [54]. This

matrix ensures that the disassembly process takes into consideration the presence of fasteners while

being feasible by adhering to precedence constraints. Using the matrix thus produces feasible

disassembly sequences. In the pseudo-code, the input is the robotic disassembly information

matrix, denoted as dis m. A set of scout bees, denoted as ”n”, is generated using the Modified

Feasible Solution Generation (MFSG) technique to represent all feasible disassembly sequences.

These scout bees are then sorted based on their fitness values. Next, the best scout bees from

the initial population, referred to as elite site bees (nep), undergo a local search in the elite sites

(e). This local search is performed using the swap, insert, and mutation operators, as illustrate in

Figure 3.4. The swap and insert operators enable movement of the disassembly sequence, direction,

recovery mode, and tools, while the mutation operator only modifies the direction and recovery

mode. The mutation operator mutates the best bee of the nep to explore different solutions and

find the best fitness value. If the fitness value of the mutated bee is higher than that of the best bee

of the nep, it replaces the existing bee. Otherwise, no changes are made. The selection process

for the other selected sites (m-e) follows a similar approach to the elite sites (e). The remaining

bees (n–m) perform a random search using the MFSG technique to explore the solution space

further. The population is then sorted based on fitness values, and the best RDSP information is

updated. This process continues until the maximum number of iterations is reached, ensuring that

the algorithm continually seeks to improve the RDSP solution by iteratively updating and refining

the population of scout bees. The pseudo-code of SO BA and MOBA with aggregate approach is

presented in the Algorithm 2.
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Figure 3.4: Local search illustration in this thesis



60 CHAPTER 3. ROBOTIC DISASSEMBLY SEQUENCE PLANNING

Algorithm 2: The pseudo-code SO and MOBA aggregate approach for RDSP
Input : n: number of scout bees, m: number of selected sites, e: number of elite sites, nsp: recruited bees for other selected sites,

nep: recruited bees for elite sites, dis m: robotic disassembly information matrix
Output: RDSP(sequence, direction, mode, tool, (f1, f2, f3 or ∗f = sum(f1, f2, f3)) *MOBA aggregate approach

1 Function EDBA(n, m, e, nsp, nep):
2 Start
3 initialRDSP← GlobalMFSG(dis m : sequence, direction,mode) // Generate initial population with

feasible disassembly sequences
4 while stopping criterion not met do
5 Evaluate population fitness
6 f ← FVALUE(initialRDSP)
7 Sort population according to f
8 Select m sites for local search

// Generate local sites with waggle dance
9 for EliteSite(1 to e) do

// Assign best elite site bee
10 BestEliteSiteBee← the scout bee that found the elite site
11 for RecruitedEliteSiteBee(1 to nep) do

// Do feasibility check
12 while feasibility not met do
13 RecruitedEliteSiteBee← WaggleDance(dis m : sequence, direction)
14 end

// Mutate the disassembly direction and mode
15 RecruitedEliteSiteBee← Mutation(dis m : direction,mode)
16 Evaluate fitness of RecruitedEliteSiteBee
17 if RecruitedEliteSiteBee is better than BestEliteSiteBee then

// Update BestEliteSiteBee
18 BestLocalBee← RecruitedEliteSiteBee
19 end
20 end
21 end
22 for OtherSelectedSite(1 to (m− e)) do

// Assign best other selected site bee
23 BestOtherSelectedSiteBee← the scout bee that found the other selected site
24 for RecruitedOtherSelectedSiteBee(1 to (nsp) do

// Do feasibility check
25 while feasibility not met do
26 RecruitedOtherSelectedSiteBee← WaggleDance(dis m : sequence, direction)
27 end

// Mutate the disassembly direction and mode
28 RecruitedOtherSelectedSiteBee← Mutation(dis m : direction,mode)
29 Evaluate fitness of RecruitedOtherSelectedSiteBee
30 if RecruitedOtherSelectedSiteBee is better than BestOtherSelectedSiteBee then

// Update BestOtherSelectedSiteBee
31 BestLocalBee← RecruitedOtherSelectedSiteBee
32 end
33 end
34 end

// Assign remaining scout bees for global search
35 for RemainingScoutBee(1 to (n−m) do
36 RemianingScoutBee← GlobalRDSP(dis m : sequence, direction,mode)
37 end
38 Evaluate fitness of the new population
39 Sort population according to f

// Store the best RDSP with maximum f
40 Best RDSP = BestBee
41 end
42 return Best RDSP (BestBee)
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When there is a clear priority among the objectives and the decision-maker is interested in

optimising a specific objective, the SO approach is frequently employed. However, it may not

provide a comprehensive perspective on the issue because it does not take into account objective

trade-offs, especially if the objectives contradict each other. Therefore, as stated earlier, the thesis

emphasises the MO-ND approach, which will be described further in the next section.

3.3.4 RDSP (MO nondominated approach)

To achieve the best balance among the three goals, the MO-ND algorithm is employed. This

algorithm generates a set of Pareto-optimal solutions, visualised in the objective space known as

the Pareto front [97]. These solutions provide valuable insights for decision-makers, enabling them

to choose the most appropriate option according to their preferences.

In this section, the primary focus is on employing the MOBA for the optimisation of the RDSP.

Additionally, two benchmark algorithms, namely the Nondominated Sorting Genetic Algorithm -

II (NSGA-II) and the Pareto Envelope-based Selection Algorithm - II (PESA-II), are utilised for

comparison and evaluation purposes. NSGA-II, in particular, is widely recognised and extensively

used in research on RDSP. By employing MOBA, NSGA-II, and PESA-II, this research aims to

explore the capabilities and performance of different algorithms in solving the RDSP problem.

The MOBA is an enhanced and adapted version of the BA that was discussed earlier. It has been

specifically tailored to handle MO optimisation problems by incorporating nondominated sorting

and crowding distance concepts. This adaptation allows MOBA to generate a set of Pareto optimal

solutions that represent trade-offs between conflicting objectives. The pseudo-code for MOBA is

presented in Algorithms 3.

Visualising multiple objectives can indeed be challenging, especially when dealing with a

large number of objectives. In addition, previous researchers have employed various performance

metrics to assess the effectiveness of optimisation algorithms for the RDSP problem. This is due



62 CHAPTER 3. ROBOTIC DISASSEMBLY SEQUENCE PLANNING

to the fact that no single metric can adequately capture all aspects of performance. Considering

these factors, the upcoming section will provide a detailed and comprehensive discussion on

the proposed performance evaluation of the MO-ND algorithm. This evaluation aims to shed

light on the algorithm’s effectiveness and provide valuable insights into its performance across

multiple metrics. By doing so, it will contribute to the development of a straightforward yet robust

framework for comparing and evaluating the performance of different algorithms.

3.3.5 Performance Evaluation

In assessing the performance of the MO-ND algorithm, several metrics are frequently employed,

such as the quantity of nondominated solutions produced, the Hypervolume Indicator (HI), and

the number of function evaluations (NFE) as discussed in Chapter 2. This thesis employed these

metrics to evaluate the algorithms’ performance. The number of nondominated solutions, also

known as Pareto optimal solutions (POSs), serves as a measure of convergence speed [171].

However, relying solely on this criterion is inadequate because a higher number of nondominated

solutions does not necessarily indicate diverse solutions. Therefore, additional indicators are

necessary to comprehensively assess the algorithms’ performance. In this thesis, HI is employed

to measure both the convergence and diversity of the solution sets obtained from the optimal

Pareto front [97, 172]. To ensure a fair contribution from each objective, linear normalisation,

as recommended by Knowles et al. [184], is applied using Equation (3.10). Specifically, the

normalisation is conducted within the range of [0, 1], with a reference point set at [1.2, 1.2, 1.2].

fnorm =
f − fmin

fmax − fmin

(3.10)

where: f = objective

A higher value of the HI is considered more preferable as it indicates a wider range of Pareto
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Algorithm 3: The pseudo-code of MOBA for RDSP
Input : n: number of scout bees, m: number of selected sites, e: number of elite sites, nsp: recruited bees for other selected sites,

nep: recruited bees for elite sites, dis m: robotic disassembly information matrix
Output: RDSP(sequence, direction, mode, tool, POSs)

1 Function MOBA(n, m, e, nsp, nep):
2 Start
3 initialRDSP← GlobalMFSG(dis m : sequence, direction,mode) // Generate initial population with

feasible disassembly sequences and Pareto front set
4 while stopping criterion not met do
5 Evaluate population fitness
6 f ← FVALUE(initialRDSP)
7 Sort population based on nondominated sorting
8 Select m sites for local search

// Generate local sites with waggle dance
9 for EliteSite(1 to e do

// Assign best elite site bee
10 BestEliteSiteBee← the scout bee that found the elite site
11 for RecruitedEliteSiteBee(1 to nep) do

// Do feasibility check
12 while feasibility not met do
13 RecruitedEliteSiteBee← WaggleDance(dis m : sequence, direction)
14 end

// Mutate the disassembly direction and mode
15 RecruitedEliteSiteBee← Mutation(dis m : direction,mode)
16 Evaluate fitness of RecruitedEliteSiteBee based on nondominated sorting
17 if RecruitedEliteSiteBee is better than BestEliteSiteBee then

// Update BestEliteSiteBee
18 BestLocalBee← RecrutiedEliteSiteBee
19 end
20 end
21 end
22 for OtherSelectedSite(1 to (m− e)) do

// Assign best other selected site bee
23 BestOtherSelectedSiteBee← the scout bee that found the other selected site
24 for RecruitedOtherSelectedSiteBee(1 to nsp) do

// Do feasibility check
25 while feasibility not met do
26 RecruitedOtherSelectedSiteBee← WaggleDance(dis m : sequence, direction)
27 end

// Mutate the disassembly direction and mode
28 RecruitedOtherSelectedSiteBee← Mutation(dis m : direction,mode)
29 Evaluate fitness of RecruitedOtherSelectedSiteBee based on nondominated sorting
30 if RecruitedOtherSelectedSiteBee is better than BestOtherSelectedSiteBee then

// Update BestOtherSelectedSiteBee
31 BestLocalBee← RecruitedOtherSelectedSiteBee
32 end
33 end
34 end

// Assign remaining scout bees for global search
35 for RemainingScoutBee(1 to (n−m)) do
36 RemainingScoutBee← GlobalRDSP(dis m : sequence, direction,mode)
37 end
38 Evaluate fitness of the new population
39 Sort population based on nondominated sorting

// Store the Pareto frontier
40 BestRDSP← BestBee
41 end
42 return Best RDSP (BestBee)



64 CHAPTER 3. ROBOTIC DISASSEMBLY SEQUENCE PLANNING

optimal solutions [170]. Additionally, the NFE is utilised to measure the speed at which solutions

are found. The novel tools, SPM and PEI, introduced in this chapter were employed to analyse the

experimental findings. The main goal of these methods is to determine the best parameter values

and offer a simple indicator for evaluating the best-performing algorithms. In this chapter, the PEI

is calculated using Equation (3.1), which was introduced in Section 3.2.2.

3.4 Experimental results

The algorithms were implemented and executed using MATLAB 2020b on the University of

Birmingham’s BEAR cloud service platform. The statistical tests were conducted using IBM SPSS

27. The stopping criteria employed for the algorithms are based on the number of iterations. The

iteration size varies from 100 to 500, increasing by 100 in each step. Similarly, the number of

populations used ranges from 50 to 80, with increments of 10. In total, there are 20 different

parameter settings. To enhance clarity and ease of analysis, each parameter setting is assigned a

specific naming convention. For example, ”100 50” represents iteration 100 and population size

50. These naming conventions are used to identify and distinguish the groups for statistical testing

purposes. Group 1 corresponds to ”100 50,” Group 2 corresponds to ”100 60,” up to Group 20,

which corresponds to ”500 80.”

In this research, the parameters of the BA were set as follows: the number of elite sites (e) was

set to 1, the number of selected sites (m) was set to 5, the number of recruited bees around elite

sites (nep) was set to 10, and the number of recruited bees around selected sites (nsp) was set to

5. The parameter settings for NSGA-II and PESA-II in this study were established by referencing

prior research [145]. The crossover probability was set to 0.95, and the mutation probability was

set to 0.02. Additionally, for PESA-II, a grid size of 7, an inflation factor of 0.1, and an archive

size equal to the number of the population were used. Therefore, if the population size was 50, the
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archive size was also set to 50.

3.4.1 SO and MO aggregate results

The SO and MO aggregate approach is employed in this thesis to determine the best solutions

by evaluating the objectives individually and by aggregating them linearly. Given that previous

research has demonstrated the BA as the best-performing algorithm for the RDSP problem [44, 48,

54, 79], no additional comparisons with other algorithms are conducted.

Figure 3.5 displays the maximum fitness value obtained, while Table 3.3 presents the example

of disassembly results for Gear Pump A. Figure 3.6 presents the boxplot of the MO aggregate

approach for the ARS scenarios. The results of the normality and homogeneity tests can be

found in Appendix B. As these tests indicated a violation of the assumptions for parametric tests,

non-parametric tests were conducted instead. Specifically, the Kruskal-Wallis test was used for the

ARS scenario in both the SO approach and the MO aggregate approach, as shown in Tables 3.4

and 3.5. For the SO approach, the Dunn-Sidak test results for the ARS scenario are presented in

Figures 3.7 and 3.8, while Figure 3.9 displays the results for the MO aggregate approach.
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Figure 3.5: Maximum Fitness Value of Gear pumps A and B
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(a) Gear Pump A

(b) Gear Pump B

Figure 3.6: Boxplot MO aggregate (ARS strategy)
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Table 3.3: Example of Disassembly Output of Gear Pump A

REC scenario REM scenario REU scenario ARS scenario
Goal 1

Part sequence 15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 15-14-13-1-2-3-4-5-6-7-12-11-9-10-8
Direction 1-2-2-2-2-2-2-2-2-2-2-1-1-2-2 1-2-2-2-2-2-2-2-2-2-2-1-1-2-1 1-2-2-2-2-2-2-2-2-2-2-1-2-2-1 1-1-1-2-2-2-2-2-2-2-1-2-2-2-2
Recovery option 3-3-3-3-3-3-3-3-3-3-3-3-3-4-3 2-3-3-3-3-3-3-2-2-2-2-2-2-4-2 1-3-3-3-3-3-3-1-1-1-1-1-1-4-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4
Tool 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 2-3-3-1-1-1-1-1-1-4-4-3-3-3-3
MFV (Euros) -11.11 37.58 63.62 64.43

Goal 2
Part sequence 2-1-6-5-4-3-7-9-11-10-8-15-12-13-14 6-1-2-3-4-5-7-11-9-10-8-15-12-13-14 3-4-5-6-1-2-7-11-9-10-8-15-12-13-14 2-1-6-5-4-3-15-14-13-12-7-9-11-10-8
Direction 2-2-2-2-2-2-2-2-2-2-2-1-2-2-2 2-2-2-2-2-2-2-2-2-2-2-1-2-2-1 2-2-2-2-2-2-2-2-2-2-2-1-2-2-1 2-2-2-2-2-2-1-1-1-1-2-1-2-1-1
Recovery option 3-3-3-3-3-3-3-3-3-3-4-3-3-3-3 3-3-3-3-3-3-2-2-2-2-4-2-2-2-2 3-3-3-3-3-3-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4
Tool 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 1-1-1-1-1-1-2-3-3-4-4-3-3-3-3
MFV (Euros) -0.15 0.55 0.77 0.86

Goal 3
Part sequence 3-6-4-5-1-2-15-14-13-12-11-10-7-9-8 3-5-4-1-6-2-7-8-10-9-13-11-15-12-14 6-2-1-5-3-4-15-7-9-11-14-10-12-13-8 2-3-4-5-6-1-15-7-14-13-11-12-9-10-8
Direction 2-2-2-2-2-2-1-1-1-1-1-1-2-2-1 2-2-2-2-2-2-2-2-2-2-2-2-1-2-1 2-2-2-2-2-2-1-2-2-2-1-2-1-2-2 2-2-2-2-2-2-1-2-1-1-2-1-2-2-2
Recovery option 3-3-3-3-3-3-3-3-3-3-3-3-3-3-4 3-3-3-3-3-3-2-4-2-2-2-2-2-2-2 3-3-3-3-3-3-1-1-1-1-1-1-1-1-4 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4
Tool 1-1-1-1-1-1-2-3-3-4-3-3-4-3-3 1-1-1-1-1-1-4-3-3-3-3-3-2-4-3 1-1-1-1-1-1-2-4-3-3-3-3-4-3-3 1-1-1-1-1-1-2-4-3-3-3-4-3-3-3
MFV (Euros) -0.04 0.46 0.59 0.61

Goal 123
Part sequence 15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 15-14-13-1-2-3-4-5-6-7-12-9-11-10-8
Direction 1-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-2-2-2-2-2-2-2-2-2-2-1-2-2-1 1-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-2-2-2-2-2-2-2-1-1-1-1-1
Recovery option 3-3-3-3-3-3-3-3-3-3-3-3-3-4-3 2-3-3-3-3-3-3-2-2-2-2-2-2-4-2 1-3-3-3-3-3-3-1-1-1-1-1-1-4-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4
Tool 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 2-3-3-1-1-1-1-1-1-4-4-3-3-3-3
MFV (Euros) -11.64 36.79 64.38 65.31
Note:
Direction: 1 = Y+ direction, 2 = Y- direction
Recovery option: 1=reuse, 2=remanufacturing, 3=recycling, 4=disposal
Tool: 1=Spanner-I, 2 = Spanner-II, 3 = Gripper-I, 4 = Gripper-II
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Table 3.4: Kruskal-Wallis test results ARS scenario (SO)

Table 3.5: Kruskal-Wallis test results ARS scenario (MO aggregate)
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(a) Goal 1

(b) Goal 2

(c) Goal 3

Figure 3.7: Dunn-Sidak test result SO (ARS scenario) Gear Pump A
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(a) Goal 1

(b) Goal 2

(c) Goal 3

Figure 3.8: Dunn-Sidak test result SO (ARS scenario) Gear Pump B
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(a) Gear Pump A

(b) Gear Pump B

Figure 3.9: Dunn-Sidak test result MO aggregate (ARS scenario)

3.4.2 Multiobjective nondominated results

The MO-ND results from these experiments are enormous. To ensure clarity in presenting the

results, Figures 3.10 to 3.13 show only one example of the Pareto optimal solutions for iteration

500 with population size 50 for the REC, REM, REU, and ARS scenarios, respectively. These

figures represent a small sample of the whole experiment and show how the results of the four

algorithms compare in each scenario.
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The disassembly output of Gear Pumps A and B using MOBA is presented in Tables 3.6 and 3.7.

The number of POSs of Gear Pumps A and B for all scenarios and parameter settings is presented

in Figures 3.14 and 3.15. The NFE exhibits a consistent pattern across all scenarios and algorithms,

with smaller parameter settings resulting in smaller NFE values, while higher parameter settings

correspond to higher NFE values. Due to this clear pattern, the overview of the total NFE for Gear

Pumps A and B is shown in Figures 3.16 and 3.17, respectively. The detailed results are presented

in Appendix B.

Figures 3.18 and 3.19 show the HI of Gear Pumps A and B for the whole experiment, using

the three MO-ND optimisation algorithms MOBA, NSGA-II, and PESA-II for all four scenarios.

The higher the HI, the better the set. The PEI, as introduced in Section 3.2.2, is a single index

that measures all performance metrics, where a higher index indicates better performance. Figures

3.20 and 3.21 show the PEI for Gear Pumps A and B for all experiments individually, based on the

algorithms used in each scenario. Figures 3.22 and 3.23 show the total PEI for each scenario and

algorithm for easier interpretation in general.
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(a) Gear pump A

(b) Gear pump B

Figure 3.10: RDSP POSs (REC scenario)
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(a) Gear pump A

(b) Gear pump B

Figure 3.11: RDSP POSs (REM scenario)
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(a) Gear pump A

(b) Gear pump B

Figure 3.12: RDSP POSs (REU scenario)
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(a) Gear pump A

(b) Gear pump B

Figure 3.13: RDSP POSs (ARS scenario)
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Table 3.6: Pareto Optimal Solutions of Gear Pump A (MOBA - Iteration 500, population size 50)
ARS scenario

No. Disassembly Sequence Disassembly Direction Disassembly mode Disassembly Tool f1 f2 f3
1 1-2-3-6-5-4-15-7-11-9-10-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.669 0.8583 -0.195
2 1-6-4-5-3-2-15-7-11-9-10-8-12-14-13 2-2-2-2-2-2-1-2-2-2-2-2-2-1-1 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 1-1-1-1-1-1-2-4-3-3-3-3-4-3-3 64.945 0.8627 -0.195
3 1-6-5-4-3-2-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.443 0.8643 -0.195
4 1-6-4-3-2-5-15-7-9-11-10-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.696 0.8588 -0.195
5 2-1-3-4-5-6-15-7-9-11-10-8-12-13-14 2-2-2-2-2-2-1-2-2-2-2-2-2-2-2 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 1-1-1-1-1-1-2-4-3-3-3-3-4-3-3 64.699 0.8647 -0.195
6 2-1-6-5-4-3-7-10-11-9-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.192 0.8656 -0.195
7 2-1-6-5-4-3-15-7-10-11-9-13-14-8-12 2-2-2-2-2-2-1-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.781 0.8595 -0.195
8 2-1-6-5-4-3-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.48 0.8646 -0.195
9 2-4-1-6-3-5-7-9-11-10-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 64.805 0.862 -0.195

10 3-2-5-4-6-1-15-7-10-9-11-8-12-14-13 2-2-2-2-2-2-1-2-2-2-2-2-2-1-1 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 1-1-1-1-1-1-2-4-3-3-3-3-4-3-3 64.864 0.8622 -0.195
11 3-2-1-5-4-6-7-15-14-13-9-11-10-8-12 2-2-2-2-2-2-2-1-1-1-2-2-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-4-2-3-3-3-3-3-3-4 65.503 0.8602 -0.195
12 3-4-5-6-1-2-7-10-11-9-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.456 0.8646 -0.195
13 3-4-5-6-1-2-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.546 0.8646 -0.195
14 3-4-6-1-2-5-15-7-10-11-9-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.841 0.8601 -0.195
15 5-1-2-3-4-6-7-11-10-9-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.242 0.8624 -0.195
16 5-2-4-3-1-6-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.198 0.862 -0.195
17 5-4-3-2-1-6-15-7-10-11-9-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.915 0.8608 -0.195
18 5-4-3-2-1-6-7-10-11-9-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.456 0.8646 -0.195
19 5-4-3-2-1-6-7-11-9-10-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.149 0.8656 -0.195
20 6-1-2-3-4-5-15-7-9-11-10-13-14-8-12 2-2-2-2-2-2-1-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.675 0.8586 -0.195
21 6-3-5-1-2-4-15-7-10-9-11-14-13-8-12 2-2-2-2-2-2-1-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 65.561 0.8575 -0.195
22 6-1-2-5-4-3-7-15-14-13-9-11-10-8-12 2-2-2-2-2-2-2-1-1-1-2-2-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-4-2-3-3-3-3-3-3-4 65.472 0.8599 -0.195
23 6-1-2-3-4-5-7-10-11-9-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.126 0.8656 -0.195
24 6-1-2-3-4-5-7-11-9-10-8-15-12-14-13 2-2-2-2-2-2-2-2-2-2-2-1-2-1-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.546 0.8646 -0.195
25 6-1-2-3-4-5-7-11-9-10-8-15-12-13-14 2-2-2-2-2-2-2-2-2-2-2-1-2-2-1 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1 1-1-1-1-1-1-4-3-3-3-3-2-4-3-3 65.149 0.8656 -0.195
26 15-6-1-2-3-4-5-7-10-11-9-14-13-8-12 1-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 66.121 0.8595 -0.195
27 15-1-2-3-4-5-6-7-10-11-9-14-13-8-12 1-2-2-2-2-2-2-2-2-2-2-1-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 66.162 0.8602 -0.195
28 15-1-2-3-6-4-5-7-9-11-10-13-14-8-12 1-2-2-2-2-2-2-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 65.728 0.8562 -0.195
29 15-6-4-5-2-3-1-7-11-9-10-8-12-14-13 1-2-2-2-2-2-2-2-2-2-2-2-2-1-1 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 2-1-1-1-1-1-1-4-3-3-3-3-4-3-3 65.117 0.8611 -0.195
30 15-1-5-4-3-2-6-7-11-9-10-13-14-8-12 1-2-2-2-2-2-2-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 65.869 0.8572 -0.195
31 15-2-5-4-6-1-3-7-11-9-10-8-12-14-13 1-2-2-2-2-2-2-2-2-2-2-2-2-1-2 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1 2-1-1-1-1-1-1-4-3-3-3-3-4-3-3 65.09 0.8615 -0.195
32 15-6-5-4-3-2-1-7-9-10-11-13-14-8-12 1-2-2-2-2-2-2-2-2-2-2-2-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 65.737 0.856 -0.195
Notes:
Disassembly direction: 1 = Y+ direction and 2 = Y- direction.
Disassembly mode: 1 = reuse, 2 = remanufacturing, 3 = recycle, 4 = disposal.
Disassembly tool: 1 = Spanner-I, 2 = Spanner-II, 3 = Gripper-I, 4 = Gripper-II.
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Table 3.7: Pareto Optimal Solutions of Gear Pump B (MOBA - Iteration 500, population size 50) ARS Scenario

No Disassembly Sequence Disassembly Direction Disassembly Recovery Option Disassembly Tool f1 f2 f3
1 1-2-23-24-22-21-20-19-6-4-5-3-18-13-7-17-16-11-8-15-9-10-14-12 2-2-1-1-1-1-1-1-2-2-2-2-1-1-2-1-1-2-2-1-2-2-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-1-4-4-1-1-4-1 1-1-3-3-3-3-2-2-1-1-1-1-4-4-5-4-4-4-4-4-4-4-4-5 73.408 7.956 0.741
2 1-4-3-5-6-2-23-21-24-22-20-19-18-13-7-8-9-10-17-16-12-15-14-11 2-2-2-2-2-2-1-1-1-1-1-1-1-1-2-2-2-2-1-1-2-1-2-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-4-4-1-4-4-1 1-1-1-1-1-1-3-3-3-3-2-2-4-4-5-4-4-4-4-4-5-4-4-4 74.609 7.967 0.741
3 1-5-6-4-3-2-24-23-21-22-7-19-20-11-9-18-10-17-8-13-16-15-14-12 2-2-2-2-2-2-1-1-1-1-2-1-1-2-2-1-2-1-2-1-1-1-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-1-4-4-4-1 1-1-1-1-1-1-3-3-3-3-5-2-2-4-4-4-4-4-4-4-4-4-4-5 76.394 7.972 0.741
4 1-5-6-4-24-2-23-21-22-19-20-18-17-13-3-7-8-10-9-11-12-14-15-16 2-2-2-2-1-2-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-1 1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-1-1-1-1-4-4-4 1-1-1-1-3-1-3-3-3-2-2-4-4-4-1-5-4-4-4-4-5-4-4-4 68.272 7.933 0.741
5 1-5-6-4-3-2-24-23-21-22-7-19-20-11-9-18-10-17-8-13-16-15-14-12 2-2-2-2-2-2-1-1-1-1-2-1-1-2-2-1-2-1-2-1-1-1-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-1-4-4-4-1 1-1-1-1-1-1-3-3-3-3-5-2-2-4-4-4-4-4-4-4-4-4-4-5 76.394 7.972 0.741
6 1-5-3-4-6-24-23-21-22-19-2-20-18-17-7-13-16-10-9-15-14-11-8-12 2-2-2-2-2-1-1-1-1-1-2-1-1-1-2-1-1-2-2-1-1-2-2-1 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-4-1-1-4-4-1-4-1 1-1-1-1-1-3-3-3-3-2-1-2-4-4-5-4-4-4-4-4-4-4-4-5 73.754 7.960 0.741
7 1-6-5-4-2-24-23-22-21-19-20-3-7-18-10-11-13-9-8-17-16-12-15-14 2-2-2-2-2-1-1-1-1-1-1-2-2-1-2-2-1-2-2-1-1-2-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-4-1-4-4 1-1-1-1-1-3-3-3-3-2-2-1-5-4-4-4-4-4-4-4-4-5-4-4 73.759 7.962 0.741
8 1-6-4-5-2-23-24-22-21-20-19-3-18-17-16-7-13-9-10-11-15-8-14-12 2-2-2-2-2-1-1-1-1-1-1-2-1-1-1-2-1-2-2-2-1-2-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-1-1-1-1-1-4-4-4-1 1-1-1-1-1-3-3-3-3-2-2-1-4-4-4-5-4-4-4-4-4-4-4-5 75.086 7.967 0.741
9 2-1-3-6-4-5-24-23-7-21-22-20-19-18-17-8-10-13-9-16-15-12-14-11 2-2-2-2-2-2-1-1-2-1-1-1-1-1-1-2-2-1-2-1-1-2-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-1-1-1-4-4-1-4-1 1-1-1-1-1-1-3-3-5-3-3-2-2-4-4-4-4-4-4-4-4-5-4-4 72.489 7.948 0.741
10 2-24-1-3-22-20-5-23-21-19-4-18-6-7-13-8-9-10-12-14-17-16-15-11 2-1-2-2-1-1-2-1-1-1-2-1-2-2-1-2-2-2-2-2-1-1-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-4-4-4-1 1-3-1-1-3-2-1-3-3-2-1-4-1-5-4-4-4-4-5-4-4-4-4-4 60.251 7.885 0.741
11 3-4-1-5-2-6-24-22-23-21-7-20-19-10-11-18-17-9-13-8-12-14-15-16 2-2-2-2-2-2-1-1-1-1-2-1-1-2-2-1-1-2-1-2-2-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-4-1-4-4-4 1-1-1-1-1-1-3-3-3-3-5-2-2-4-4-4-4-4-4-4-5-4-4-4 74.420 7.960 0.741
12 3-5-4-1-2-6-23-21-24-22-7-20-19-10-9-18-11-13-8-17-16-15-14-12 2-2-2-2-2-2-1-1-1-1-2-1-1-2-2-1-2-1-2-1-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-4-4-4-1 1-1-1-1-1-1-3-3-3-3-5-2-2-4-4-4-4-4-4-4-4-4-4-5 76.177 7.971 0.741
13 3-5-2-23-21-24-4-1-22-20-19-6-18-17-7-8-16-10-13-9-15-12-14-11 2-2-2-1-1-1-2-2-1-1-1-2-1-1-2-2-1-2-1-2-1-2-2-1 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-4-4-1-1-1-4-1-4-1 1-1-1-3-3-3-1-1-3-2-2-1-4-4-5-4-4-4-4-4-4-5-4-4 69.445 7.933 0.741
14 4-5-2-24-23-21-22-1-19-20-3-6-18-17-16-7-13-10-8-9-15-12-14-11 2-2-2-1-1-1-1-2-1-1-2-2-1-1-1-2-1-2-2-2-1-2-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-1-1-1-4-1-4-1-4-1 1-1-1-3-3-3-3-1-2-2-1-1-4-4-4-5-4-4-4-4-4-5-4-4 71.143 7.942 0.741
15 4-1-3-2-6-24-23-21-22-20-5-19-7-18-8-9-10-13-17-12-14-15-11-16 2-2-2-2-2-1-1-1-1-1-2-1-2-1-2-2-2-1-1-2-2-2-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-1-4-4-1-4 1-1-1-1-1-3-3-3-3-2-1-2-5-4-4-4-4-4-4-5-4-4-4-4 71.506 7.948 0.741
16 4-5-3-1-6-23-21-24-22-2-7-20-19-18-9-13-17-16-8-10-11-15-14-12 2-2-2-2-2-1-1-1-1-2-2-1-1-1-2-1-1-1-2-2-2-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-4-1-1-4-4-1 1-1-1-1-1-3-3-3-3-1-5-2-2-4-4-4-4-4-4-4-4-4-4-5 75.579 7.970 0.741
17 5-1-2-6-4-3-24-23-22-21-20-19-7-8-10-11-9-18-13-12-17-16-14-15 2-2-2-2-2-2-1-1-1-1-1-1-2-2-2-2-2-1-1-2-1-1-2-1 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-1-1-4-4-4-4 1-1-1-1-1-1-3-3-3-3-2-2-5-4-4-4-4-4-4-5-4-4-4-4 74.028 7.961 0.741
18 5-1-2-3-4-6-23-21-24-22-20-19-18-17-13-7-8-10-11-9-16-12-15-14 2-2-2-2-2-2-1-1-1-1-1-1-1-1-1-2-2-2-2-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-4-1-1-1-4-1-4-4 1-1-1-1-1-1-3-3-3-3-2-2-4-4-4-5-4-4-4-4-4-5-4-4 74.595 7.968 0.741
19 5-2-1-4-3-6-24-23-22-21-20-19-7-8-18-11-13-17-9-16-15-10-14-12 2-2-2-2-2-2-1-1-1-1-1-1-2-2-1-2-1-1-2-1-1-2-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-1-4-4-1-4-1 1-1-1-1-1-1-3-3-3-3-2-2-5-4-4-4-4-4-4-4-4-4-4-5 75.931 7.967 0.741
20 5-3-1-6-24-22-23-21-2-20-19-4-18-7-17-10-13-9-8-12-16-11-14-15 2-2-2-2-1-1-1-1-2-1-1-2-1-2-1-2-1-2-2-2-1-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-1-4-1-4-4 1-1-1-1-3-3-3-3-1-2-2-1-4-5-4-4-4-4-4-5-4-4-4-4 69.467 7.933 0.741
21 5-4-6-23-24-2-22-21-20-19-18-3-1-7-8-10-9-13-17-12-16-14-11-15 2-2-2-1-1-2-1-1-1-1-1-2-2-2-2-2-2-1-1-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-1-4-4-1-4 1-1-1-3-3-1-3-3-2-2-4-1-1-5-4-4-4-4-4-5-4-4-4-4 68.455 7.929 0.741
22 6-5-4-1-2-24-23-21-22-19-20-3-18-7-8-13-17-16-10-9-12-15-11-14 2-2-2-2-2-1-1-1-1-1-1-2-1-2-2-1-1-1-2-2-2-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-4-4-1-1-1-4-1-4 1-1-1-1-1-3-3-3-3-2-2-1-4-5-4-4-4-4-4-4-5-4-4-4 70.919 7.945 0.741
23 6-5-2-4-23-1-24-21-22-3-20-19-18-17-7-8-10-11-9-13-16-15-12-14 2-2-2-2-1-2-1-1-1-2-1-1-1-1-2-2-2-2-2-1-1-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-4-1-1-1-1-4-4-1-4 1-1-1-1-3-1-3-3-3-1-2-2-4-4-5-4-4-4-4-4-4-4-5-4 70.466 7.942 0.741
24 23-5-3-2-1-6-21-24-22-19-20-18-17-4-13-16-7-8-15-10-9-12-14-11 1-2-2-2-2-2-1-1-1-1-1-1-1-2-1-1-2-2-1-2-2-2-1-1 1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-4-1-4-4-1-1-1-4-1 3-1-1-1-1-1-3-3-3-2-2-4-4-1-4-4-5-4-4-4-4-5-4-4 70.230 7.940 0.741
25 23-6-1-5-2-24-21-22-19-20-3-18-17-16-4-7-15-14-13-9-10-11-8-12 1-2-2-2-2-1-1-1-1-1-2-1-1-1-2-2-1-1-1-2-2-2-2-2 1-1-1-1-1-1-1-1-1-1-1-1-4-4-1-1-4-4-1-1-1-1-4-1 3-1-1-1-1-3-3-3-2-2-1-4-4-4-1-5-4-4-4-4-4-4-4-5 72.492 7.953 0.741
26 23-6-2-4-5-24-22-21-19-20-3-1-18-17-7-8-13-9-16-11-15-10-14-12 1-2-2-2-2-1-1-1-1-1-2-2-1-1-2-2-1-2-1-2-1-2-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-4-1-1-4-1-4-1-4-1 3-1-1-1-1-3-3-3-2-2-1-1-4-4-5-4-4-4-4-4-4-4-4-5 72.569 7.949 0.741
27 24-23-22-5-6-4-2-3-21-19-20-18-1-7-8-13-17-10-9-16-15-12-14-11 1-1-1-2-2-2-2-2-1-1-1-1-2-2-2-1-1-2-2-1-1-2-1-2 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-4-1-1-4-4-1-4-1 3-3-3-1-1-1-1-1-3-2-2-4-1-5-4-4-4-4-4-4-4-5-4-4 70.029 7.937 0.741
28 24-2-3-5-6-1-23-21-22-20-19-18-17-4-7-16-15-8-10-11-14-13-9-12 1-2-2-2-2-2-1-1-1-1-1-1-1-2-2-1-1-2-2-2-1-1-2-2 1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-4-4-4-1-1-4-1-1-1 3-1-1-1-1-1-3-3-3-2-2-4-4-1-5-4-4-4-4-4-4-4-4-5 73.340 7.961 0.741
Note:
Disassembly Direction: 1 = Y+ direction, 2 = Y- direction
Disassembly Recovery Option: 1=reuse, 2=remanufacturing, 3=recycling, 4=disposal
Disassembly Tool: 1=Spanner-I, 2 = Spanner-II, 3 = Spanner-III, 4 = Gripper-I, 5 = Gripper-II
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Figure 3.14: Number of Pareto optimal solutions for RDSP of Gear Pump A
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Figure 3.15: Number of Pareto optimal solutions for RDSP of Gear Pump B
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Figure 3.16: Number Function of Evaluation for RDSP of Gear Pump A: The lower the better

Figure 3.17: Number Function of Evaluation for RDSP of Gear Pump B: The lower the better
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Figure 3.18: Hypervolume Indicator for RDSP of Gear Pump A: The higher the better
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Figure 3.19: Hypervolume Indicator for RDSP of Gear Pump B: The higher the better
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Figure 3.20: PEI for RDSP of Gear Pump A: The higher the better
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Figure 3.21: PEI for RDSP of Gear Pump B: The higher the better
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Figure 3.22: Total PEI for RDSP of Gear Pump A: The higher the better

Figure 3.23: Total PEI for RDSP of Gear Pump B: The higher the better
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3.5 Discussion

The MO-ND approach differs from the SO and MO aggregate approaches in that it provides a

set of solutions rather than a single solution. The discussion begins by presenting the results of

the SO and MO aggregate approaches, focusing on identifying the maximum value for each goal

and when the goals are aggregated under a linear assumption. On the other hand, the MO-ND

approach aims to identify a set of solutions that are not dominated by any other solution in

terms of all the objectives simultaneously. This approach offers a more comprehensive analysis

of the trade-offs and compromises between different goals. It provides decision-makers with a

range of solutions that represent various trade-offs between the objectives, allowing them to select

the solution that best aligns with their priorities. Overall, the SO, MO aggregate, and MO-ND

approaches all provide valuable insights for the planning of disassembly sequences. They provide

distinct perspectives and considerations for optimising the disassembly process based on particular

objectives and trade-offs.

3.5.1 SO and MO aggregate Analysis

Figure 3.5 presents the maximum fitness value (MFV) obtained from the experimental results of

both the SO and MO aggregate method for all scenarios. The REU and ARS scenarios consistently

demonstrate higher monetary value across all individual goals and when aggregated. However,

the REC scenario exhibits a negative monetary value, which can be attributed to the additional

processing involved. When evaluating the goals individually, Goal 1 (profit) consistently yields the

highest value. In the ARS scenario, Gear Pump A achieves the highest value at e 64.43 , closely

followed by the REC scenario at e 63.62. The REM scenario yields a value of e 37.58, while the

REC scenario results in a negative value of e 11.11. Similarly, for Goal 2 (energy savings), the
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ARS scenario achieves the highest value of e 0.856, with the REU scenario following closely at

e 0.77. The REM scenario shows a value of e 0.55, while the REC scenario exhibits a negative

value of e 0.15. For Goal 3 (environmental impact reduction), the ARS scenario yields the highest

value of e 0.61, followed by the REU scenario at e 0.59. The REM scenario yields a value of

e 0.46, while the REC scenario results in a negative value of e 0.04.

The MO aggregate methods were utilised to combine Goals 1, 2, and 3, resulting in similar

trends to Goal 1. In the ARS scenario, the aggregated value closely mirrors the results of Goal 1,

at e 65.31. Likewise, the REU scenario demonstrates an aggregated value of e 64.38, followed

by the REM scenario at e 36.79. However, the REC scenario exhibits a lower aggregated value of

negative e 11.64. Gear Pump B shows similar results to Gear Pump A. Concerning Goal 1 (profit),

the highest value is observed in the ARS scenario at e 78.326, followed by the REU scenario at

e 75.85. The REM scenario yields a value of e 63.03, while the REC scenario results in a negative

value of e 14.94. For Goal 2 (energy savings), the ARS scenario achieves the highest value of

e 7.61, followed by the REU scenario at e 6.76. The REM scenario shows a value of e 4.84,

while the REC scenario exhibits a negative value of e 1.3. Similarly, for Goal 3 (environmental

impact reduction), the ARS scenario yields a value of e 0.74, the REC scenario yields e 0.72, the

REM scenario yields e 0.58, and the REC scenario results in a negative value of e 0.51. The MO

aggregate methods were again employed to combine Goals 1, 2, and 3, resulting in similar results

to Goal 1. In the ARS scenario, the aggregated value is e 87.63, in the REU scenario, it is e 83.7,

in the REM scenario, it is e 68.79, and in the REC scenario, it is negative e 16.45.

Table 3.3 presents example of the disassembly output, including the disassembly sequence,

direction, recovery option, tool, and maximum fitness values for Goals 1, 2, 3, and the aggregated

goals within the REC, REM, REU, and ARS scenarios. This comprehensive approach provides

a more insightful analysis by considering the specific recovery options in each scenario and their

relationship to the disassembly sequences and other relevant disassembly information. In contrast

to prior studies that mainly concentrate on the end result, this comprehensive analysis provides a
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more profound comprehension of the disassembly process and its significance in attaining different

objectives within the area of robotic disassembly sequence planning. It is interesting to observe that

the ARS scenario predominantly suggests the reuse option for most of the components. This finding

highlights the algorithm’s ability to identify the optimal recovery option, as it recognises that the

knowledge of reusing these components leads to the highest monetary value. The BA’s capability

to prioritise reuse demonstrates its effectiveness in optimising the goals of the disassembly process.

Figure 3.6 presents the boxplot results for Gear Pump A and Gear Pump B in the ARS strategy

for the MO aggregate method. The boxplot displays the maximum, minimum, 25th and 75th

percentiles, median, and outliers. The detailed results for other scenarios can be found in Appendix

B. Notably, the visual representation of the results does not exhibit a normal distribution for Gear

Pump A and Goal 3 in Gear Pump B.

To determine the optimal parameter settings, the methodology introduced in Section 3.2.1,

which utilises the novel statistical performance metric, was followed. The study conducted a

total of 50 runs, surpassing the minimum requirement of 30 runs for conducting a parametric

test. Normality and homogeneity tests were performed to verify if the data followed a normal

distribution and if the variance was equal across the groups.

To further investigate the mean differences among the groups, a post hoc test using the

Dunn-Sidak method was conducted, as shown in Figures 3.7, 3.8, and 3.9 for ARS scenario.

The results revealed significant differences between the groups with 100 iterations and population

sizes of 50, 60, 70, 80, and 200 iterations with population sizes of 50 and 60. This implies

that, from a statistical standpoint, similar results were obtained starting from 200 iterations with

a population size of 60 up to the largest parameter setting of 500 iterations with 80 population.

These parameter settings can be utilised to determine the optimal MFV for both the SO and MO

aggregate approaches. For example, using 200 iterations with a population size of 60 yields the

same results as using 500 iterations with a population size of 80. This means that researchers

can choose to use the smaller parameter settings to achieve the same results. It is important to
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note that for Gear Pump B, which has a greater number of components compared to Gear Pump

A, the optimal parameter settings ranged from 200 iterations with a population size of 70 to 500

iterations with a population size of 80. This observation is understandable, as the increased number

of components in Gear Pump B leads to a larger search space. Therefore, researchers conducting

future studies with a similar number of components or the same case study can utilise the parameter

settings derived from this research. These findings highlight the potential of exploring the statistical

performance metric in identifying the optimal parameter settings for the algorithm.

Overall, the experimental results consistently demonstrate that the REU and ARS scenarios

generate higher monetary values for both gear pumps. Conversely, the REC scenarios yield negative

values. These findings reinforce the existing literature, which emphasises that recycling should

be regarded as a last resort within a CE due to its higher energy consumption and processing

requirements compared to alternative recovery options such as reuse and remanufacturing. The

ARS and REU scenarios exhibit similar outcomes, with the BA identifying the ARS scenario

as the optimal recovery option, indicating that reusing each component would yield the highest

monetary value across all objectives. Furthermore, the results demonstrate that remanufacturing

tends to yield a lower monetary value compared to reuse, likely due to the additional processing

required. This aligns with the understanding that reusing products is generally more cost-effective

than remanufacturing them. Lastly, it is evident that Goal 1 (profit) consistently yields higher

monetary values compared to Goal 2 (energy savings) and Goal 3 (environmental impact reduction)

in all scenarios. This finding is consistent with the results obtained from the MO aggregate analysis,

where Goal 1 contributes the most to the overall aggregate of the objectives. The higher monetary

value associated with Goal 1 suggests that it has a greater impact on the profitability aspect of

the disassembly process. This aligns with the understanding that maximising profit is often a

primary concern in business and economic contexts. The emphasis on Goal 1 in the MO aggregate

results indicates its significant contribution to the overall optimisation of the disassembly sequence.

Although the monetary values for energy savings and environmental impact reduction may be
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relatively smaller in comparison to profit, it is imperative to consider all three goals within the

sustainability model. The next analysis of the nondominated results will provide further insights

into the importance of incorporating multiple objectives in the decision-making process and the

trade-offs involved in optimising across these objectives.

3.5.2 Multiobjective nondominated Analysis

The MO-ND approach considers trade-offs between objectives, and the results obtained from this

approach are presented in Figures 3.10, 3.11, 3.12, and 3.13 for the REC, REM, REU, ARS

scenarios, respectively. These figures show the POSs using MOBA, NSGA-II, and PESA-II for

iteration 500 and population size 50. In these figures, similarities can be observed between the

results of NSGA-II and PESA-II.

To exemplify the value of the detailed output, Tables 3.6 and 3.7 provide a comprehensive detail

of the disassembly process for an ARS scenario using the MOBA. These tables include information

on the disassembly sequence, direction, recovery mode, tool, and objective values. They enable a

thorough evaluation and comparison of objectives, offering valuable insights that have often been

overlooked in previous literature. In prior research, there has been a predominant focus on objective

results, neglecting the importance of providing a comprehensive detail of disassembly output.

However, analysing these details facilitates a deeper understanding of the disassembly process,

validation of model accuracy, and more informed decision-making. By employing the MO-ND

approach, this study generates a set of solutions that can be compared to results obtained from

SO and MO aggregate approaches based on the objectives. Specifically, for Gear Pump A, Figure

3.5 visually represents this comparison by presenting the maximum values of individual goals as

e 64.43, e 0.86, and e 0.61, with an aggregated value of e 65.31. However, when considering

trade-off solutions, the values shift to approximately e 65, e 0.86, and negative e 0.2, as shown

in Table 3.6. Similarly, Table 3.7 showcases the results for Gear Pump B. The MO-ND solutions,
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considering trade-offs, demonstrate values of e 76.39, e 7.9, and e 0.74 for Goal 1, Goal 2, and

Goal 3, respectively. The individual goal maximums are e 78.33, e 7.61, and e 0.74, with an

aggregated value of e 87.63, as depicted in Figure 3.5. The observed discrepancies in both cases

indicate that the aggregated goals do not adhere to a linear pattern, suggesting the presence of

conflicting objectives. Therefore, the nondominated approach proves more suitable for addressing

such scenarios and providing a more comprehensive understanding of the disassembly process for

Gear Pump A and Gear Pump B. By incorporating the detailed disassembly output into the analysis,

this study fills a gap in the existing literature and contributes to a more holistic understanding of

objectives across different approaches. This integration of detailed output in the comparison of

objectives represents a novel contribution that has not been explored previously.

The first performance metric in this thesis is the number of POSs. Figures 3.14 and 3.15 present

the results for Gear Pumps A and B, respectively. It is evident that there is a consistent trend of

increasing POSs as the number of parameter settings increases across all scenarios and algorithms

depicted in both figures. MOBA yield higher POSs compared to NSGA-II and PESA-II. Based

on these findings, it can be concluded that MOBA is the best-performing algorithms, consistently

generating a higher number of POSs across all experiments in the four scenarios.

Figures 3.16 and 3.17 depict the NFE for Gear Pumps A and B, respectively, which serve as

the second performance metric for evaluating the effectiveness of the MO-ND result. The NFE is

influenced by the parameter settings, with smaller settings resulting in fewer function evaluations.

These figures offer an aggregated overview of the total NFE for each scenario and algorithm,

facilitating a comprehensive analysis. For a detailed output of the NFE results, please refer to

Appendix B, which presents the previously mentioned pattern. Smaller NFE values are desirable,

suggesting that the algorithm performs better in terms of computational efficiency. The figures

clearly demonstrate that MOBA consistently achieves the lowest total NFE, followed by PESA-II,

and NSGA-II for both gear pumps. This compellingly indicates that MOBA outperforms the other

algorithms in terms of NFE comparison.
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Figures 3.18 and 3.19 show the HI and demonstrate comparable outcomes between NSGA-II

and PESA-II. The higher values of HI for MOBA suggest it is performs better than the other

algorithms. Moreover, MOBA demonstrate greater consistency in their HI values when compared

to the remaining algorithms. The comparison of HI values across different scenarios reveals

interesting findings. Notably, scenario ARS demonstrates the lowest HI value among the four

scenarios, indicating a smaller hypervolume and a more concentrated or narrowly distributed set of

solutions in the objective space. The difference in HI values between scenario ARS and the other

three predefined scenarios (REC, REM, and REU) can be attributed to the distinct nature of the

ARS scenario. In REC, REM, and REU, the recovery option is predefined, providing the algorithm

with a single predetermined recovery option. However, in the ARS scenario, the algorithm has

the autonomy to explore and determine the best recovery options independently. Furthermore, the

disassembly output indicates that the ARS scenario provides reuse as the most preferred recovery

option. This preference for reuse, which is associated with the highest monetary value for the three

sustainability goals in the model, may contribute to the reduced diversity observed in the ARS

scenario.

Based on the analysis of the three parameter metrics, MOBA demonstrate superior performance

compared to the other algorithms. However, since each metric measures different aspects of

performance, it is important to consider multiple metrics rather than relying on a single performance

metric. While conflicting results among different metrics are less commonly reported in the

literature, it is still essential to consider multiple metrics to obtain a comprehensive evaluation

of algorithm performance. Many studies often use one or two metrics without explicitly discussing

conflicting results. However, by incorporating multiple metrics, the proposed PEI integrates these

metrics into a single index to provide a comprehensive evaluation and overcome this issue. The

individual PEI results can be observed in Figures 3.20 and 3.21 for both gear pumps. It is worth

noting that higher PEI values indicate better performance, as they reflect higher metric values.

Across almost all scenarios and algorithms considered in this thesis, it is evident that smaller
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parameter settings led to higher PEI values, emphasising the significant impact of parameter

configuration on performance. To further reinforce this finding, Figures 3.22 and 3.23 display the

PEI values for all scenarios and algorithms across all parameter settings. Each parameter setting

is represented by a distinct colour, resulting in a total of 20 colours. Despite the multitude of

colours, the figures maintain clarity and readability. By examining the tallest bars in the charts, it

becomes apparent that these correspond to the best-performing algorithms across all cases, offering

a concise representation of the superior performance achieved by certain algorithms. Notably,

MOBA consistently achieves the highest PEI values for both gear pumps, highlighting its strong

overall performance across the evaluated scenarios and parameter settings in solving RDSP.

3.6 Summary

The increasing adoption of robotics in disassembly processes aims to enhance their effectiveness

and efficiency compared to manual disassembly. RDSP has emerged as an important area for

improving efficiency and cost-effectiveness in disassembly operations. RDSP involves determining

the optimal order for disassembling parts and components within a robotic cell, addressing

objective 2 of this thesis. To handle the inherent complexity and NP nature of determining

the optimal disassembly sequence, metaheuristic algorithms have gained prominence, offering

significant advantages over traditional exact methods that struggle with computational intractability

due to the NP-completeness of the problem. This chapter utilises the BA, to find the optimal

solutions for RDSP. Objective 4 is met by conducting a case study on gear pumps, validating

the effectiveness of the proposed approach and sustainability model. Objective 1 is realised by

introducing a new sustainability model with the objectives of maximising profit, energy savings,

and reducing environmental impact. The research introduces the novel concept of selecting the best

recovery option (automatic recovery scenario) for each disassembly component, thereby enhancing
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the practicality and usefulness of the proposed model. Three predefined scenarios, namely REC,

REM, and REU, along with one scenario defined automatically by the algorithm called ARS,

exhibit distinct outcomes for the disassembly sequences based on the recovery options of each part.

The ARS scenario yields the highest monetary value, followed by REU, REM, and REC. These

results consistently demonstrate a similar pattern across all algorithms employed. These findings

provide support for the notion that recycling should be regarded as a last resort for recovery, as

it entails higher energy consumption and lower monetary value. To assess the effectiveness of

the proposed approach, objective 5 involves analysing outcomes and evaluating the algorithm’s

performance using the proposed novel SPM and PEI.

Overall, MOBA consistently demonstrate superior performance compared to the other

algorithms across multiple performance metrics, including POSs, HI, NFE, and PEI. Their

effectiveness in finding solutions that balance conflicting objectives and provide better trade-offs

is evident. These findings have significant implications for the selection of suitable algorithms

in the context of robotic disassembly sequence planning in various scenarios. The superior

performance of MOBA in terms of POSs indicates their ability to generate a greater number of

POSs, highlighting their efficiency in exploring the solution space. Additionally, MOBA achieve

lower total NFE, implying their efficiency in reaching high-quality solutions with fewer function

evaluations. Furthermore, the higher HI values indicate a good convergence and diversity in the

objective space. The integration of these metrics into the PEI further supports the superiority

of MOBA in providing comprehensive and well-balanced solutions. These findings contribute

valuable insights into the selection and application of algorithms for disassembly sequence planning

in different scenarios. The superior performance of MOBA across multiple metrics showcases their

potential for achieving optimal trade-offs and addressing conflicting objectives. Researchers and

practitioners can leverage these findings to make informed decisions when choosing algorithms for

similar optimisation problems in the domain of RDSP.

Despite the significant results obtained in this thesis, it is crucial to acknowledge the ongoing



3.6. SUMMARY 97

challenge posed by the complexity of RDSP. The model assumptions in this research consider an

ideal condition for disassembly, assuming that all parts can be completely disassembled and have

deterministic times. However, it is important to recognise that real-world disassembly processes

may involve various uncertainties and complexities that go beyond these ideal assumptions.

Furthermore, it is necessary to consider the generalisability of the proposed model. The research

primarily focuses on specific scenarios and components, such as gear pumps, and incorporates

data collected from remanufacturers in England and Spain. While these insights are valuable, it is

important to conduct further investigation to determine the applicability and generalisability of the

proposed model to a wider range of disassembly processes and contexts.

In light of the complexity of RDSP, it is important to consider this model as a foundational

framework for understanding the ideal conditions of disassembly, using real gear pumps as a case

study. The presence of conflicting objectives emphasises the need for a nondominated approach to

effectively address this problem. Future research should aim to incorporate the stochastic nature

of incoming EoL products and explore the use of other EoL products with increased complexity to

further enhance the practicality and applicability of the model.

Moreover, subsequent to the publication of this chapter, recent advancements in RDSP research

have focused on the utilisation of deep learning techniques, and one publication has presented

the application of digital twins technology. These emerging technologies offer potential solutions

to tackle the complexities and uncertainties inherent in RDSP. By incorporating AI, it becomes

possible to achieve more accurate predictions and improve decision-making in disassembly

processes. Additionally, digital twins technology enables virtual modelling and simulation of the

disassembly operations. Therefore, it is recommended that future research integrates these AI

techniques and digital twins approaches to further enhance the practicality and effectiveness of

RDSP.

Overall, the research highlights the significance of utilising robotics and metaheuristic

algorithms in RDSP to enhance efficiency and effectiveness in disassembly processes. It introduces
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a new sustainability model, considers multiple objectives, use the bees algorithm and incorporates

a novel performance evaluation index. Future research must consider the complexity of RDSPs,

the applicability of the proposed model to various EoL products, and the most recent technological

and tool advancements.



Chapter 4

Sequence-Dependent Robotic Disassembly

Line Balancing

In the preceding chapter, the interconnection of disassembly line balancing and disassembly

sequence planning was highlighted. Disassembly sequence plans aim to determine the optimal

sequence for disassembly, while disassembly line balancing focuses on achieving a balanced

production line. By carefully designing sequence plans and achieving line balance, the efficiency

of the disassembly process can be enhanced [47–49]. This chapter is dedicated to addressing the

research problem of sequence-dependent robotic disassembly line balancing (RDLBSD), which

will be further explained in the subsequent paragraphs. By focusing on this problem, the chapter

achieves objective 3 of the thesis. Moreover, the chapter also encompasses objectives 1, 4, and 5,

which are as follows: (1) to develop a sustainability model and recovery scenarios for the end-of-life

(EoL) products in the RDLBSD problem, (2) to validate the effectiveness of the proposed approach

through a case study involving gear pumps; and (3) to determine the optimal parameter settings and

performance metrics for optimisation algorithms employed in the RDLBSD problem.

The requirement to establish a feasible disassembly sequence for the product under

investigation poses a significant constraint on disassembly line balancing [41]. The result is

99
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modelled as an n-dimensional integer, deterministic, multi-criteria decision-making problem with

an exponentially growing search space, where n represents the number of parts to be removed

[41]. This situation gives rise to two key challenges in the field of disassembly line balancing.

The first challenge involves finding a feasible disassembly sequence that adheres to the constraints

and requirements of the product under investigation. Achieving a feasible disassembly sequence

becomes increasingly complex as the number of parts to be disassembled grows exponentially,

leading to a combinatorial explosion in the search space. In disassembly line balancing research,

the focus has traditionally been on finding a feasible disassembly sequence and addressing the

subsequent line balancing problem. However, recent studies have shed light on the importance

of simultaneously addressing both sequence feasibility and line balance. This holistic approach

recognises the interdependence between sequencing and line balancing and aims to optimise

both aspects simultaneously. By considering the order in which parts are disassembled and the

assignment of tasks to workstations, researchers aim to minimise idle times, improve efficiency,

and achieve a well-balanced disassembly line. The concept of sequence-dependent disassembly

line balancing has gained considerable attention in both manual and robotic disassembly research.

Manual disassembly line balancing studies have explored the integration of sequencing and line

balancing techniques to improve the efficiency of manual disassembly processes [130–135].

Similarly, in robotic disassembly, researchers have investigated sequence-dependent line balancing

strategies to optimise the performance of robotic disassembly systems [47–49, 51, 52]. Overall,

the integration of sequence feasibility and line balance in disassembly line balancing research

reflects a shift towards a more comprehensive and optimised approach. By considering both aspects

simultaneously and leveraging advancements in manual and robotic disassembly techniques,

researchers aim to achieve efficient and effective disassembly processes while maintaining product

integrity and minimising waste.

The disassembly sequence problem and the disassembly line balancing problem are

NP-complete problems, implying that computing optimal solutions for large-scale instances is
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a challenging and time-consuming process [41]. As previously stated, these issues display

exponential growth in the search space, thereby compounding their complexity. Addressing this

second challenge requires the adoption of efficient solution methods that can handle the complexity

of the problem within reasonable time frames. Researchers have resorted to metaheuristic

algorithms as a potential solution to this challenge. Metaheuristic algorithms utilise intelligent

search strategies to efficiently explore solution spaces and provide approximate solutions, which

are faster than exact methods. These algorithms are suitable for solving complex problems where

finding optimal solutions is impractical within time constraints. Table 2.2 in Chapter 2 provides

a summary of the metaheuristic algorithms commonly used in robotic disassembly line balancing

(RDLB) research, highlighting their applicability and effectiveness in addressing the problem’s

complexity. The BA is one of the algorithms used to solve optimisation problems in RDLB.

Recognised for its ability to handle the complexity of the RDLB problem [47, 49, 51], the BA

has established itself as a viable and effective method for addressing this challenge. This facilitates

the optimisation of RDLBSD processes, using the MOBA.

Moreover, this chapter contributes a novel sustainability model, as illustrated in Table 2.2 of the

research position, thereby accomplishing objective 1 of the study. Although the four sustainability

scenarios employed in the previous chapter remain unchanged, the sustainability model has been

specifically tailored to address the challenges of the RDLBSD problem. This integration of

sustainability considerations within the context of robotic disassembly underscores the area where

previous studies were not considered previously. Consequently, this chapter effectively addresses

objectives 1 and 4 of the thesis, which entail the practical application of the sustainability model

and the thorough examination of specific case studies. This cohesive approach aligns with

the overarching theme of the thesis. Furthermore, the continued utilisation of the same novel

performance indicator, previously introduced in the preceding chapter, demonstrates a consistent

adherence to the central theme of the thesis. This alignment is congruent with objective 5, which

centres on the effective utilisation and rigorous evaluation of performance metrics for optimisation
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algorithms.

Overall, this research makes several contributions to the field of RDLBSD. First, the enhanced

BA is further adapted for the RDLBSD problem. The rest of the following contributions are:

the introduction of a sustainability model specifically tailored for the area of RDLB, addressing a

gap in previous research. Furthermore, the research incorporates an autonomous recovery strategy

identification, similar to the approach adopted in the Chapter 3, enabling dynamic evaluation and

selection of optimal recovery strategies based on given constraints and objectives. The research

employs a realistic simulation approach based on reliable data collected from relevant sources,

enhancing the applicability of the proposed model and its alignment with real-world problems.

Lastly, the utilisation of a proposed performance indicator introduced in the previous chapter, which

simplifies decision-making processes, is a novel contribution in the research area. Collectively,

these contributions present a comprehensive solution to the RDLBSD problem.

The content of this chapter is organised as follows. Section 4.1 presents the research model

and methodology, outlining the approach used to address the research objectives. In Section 4.2,

the experiments and results are presented, providing an analysis of the collected data. A detailed

discussion of the findings is provided in Section 4.3, where the implications and insights derived

from the results are thoroughly examined. Finally, Section 4.4 summarises the main findings of

the chapter and offers recommendations for practitioners and suggestions for future research. The

conclusion of the chapter highlights the key takeaways and emphasises the importance of research

in advancing the research area of RDLBSD.

4.1 Model and methodology

In this chapter, a similar four-stage approach to the one used in the robotic disassembly sequence

planning (RDSP) framework is adopted. The initial stage entails the construction of a model
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using the Modified Feasible Solution Generation (MFSG) technique, which closely aligns with

the process described in Section 3.3.1. However, there are notable differences in the second and

fourth stages compared to the preceding stages. In the second step, multiobjective nondominated

(MO-ND) approaches are employed, consistent with previous research on RDLB literature, where

the consideration of multiple objectives necessitates the use of MO-ND approach. Finally, in the

last stage, the performance evaluation index (PEI), introduced in Section 3.2.2, is utilised as a novel

approach for evaluating performance without relying solely on statistical testing methods. This

integration of the PEI provides a valuable contribution to the field by offering a comprehensive and

robust performance evaluation framework.

4.1.1 RDLBSD Model Building

The process of constructing the RDLBSD model follows the same approach as the previous RDSP

model (see Chapter 3.3.1), as it leverages the same case studies and sustainability model. However,

the RDLBSD model introduces a fourth objective, which aims to minimise line imbalances within

the disassembly line. Figure 4.1 provides a visual representation of the robotic disassembly line,

highlighting the differences compared to the RDSP robotic station. The disassembly line comprises

three KUKA robots, a gear pump and a conveyor system that operate in a coordinated sequence to

execute the disassembly tasks efficiently. Figure 4.2 shows an example of RDLBSD output.
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Figure 4.1: Robotic workstations illustration, created using RoboDK

Figure 4.2: Example output of RDLBSD
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4.1.2 RDLBSD Model Formulation

The model formulation in this chapter builds upon the sustainability model introduced in the

previous chapter, which involves maximising profit (f1), energy savings (f2), and environmental

impact reduction (f3). Additionally, a fourth objective is incorporated, aiming to minimise

unbalanced lines (f4) within the disassembly process. By considering all four objectives

simultaneously, the model seeks to optimise the disassembly line’s performance by balancing

these four goals. In line balancing, achieving a state of perfect equilibrium with no idle times is

considered the ideal scenario [41]. This practise imposes penalties on solutions that have long idle

times, thereby equalising the workload distribution among workstations. The minimum numerical

performance value represents the optimal solution with the fewest workstations and balanced idle

times. Line balancing methods aim to reduce the number of workstations and equalise idle times,

resulting in a nonlinear objective function [41]. This measurement is represented by Equation (4.1)

[41], which quantifies the level of balance within the disassembly line. The cumulative operational

duration of the robotic workstations (ST ) should not exceed the cycle time (CyT ) of the disassembly

line. The cycle time for gear pumps A and B is set as 210 and 320 seconds, respectively.

f4 =
NWS∑
i=1

(CyT − STi
)2 (4.1)

where:

• f4 is unbalanced line

• CyT is the cycle time

• NWS is the number of workstations

• ST is the station time

The sustainability recovery scenarios (REC, REM, REU, ARS) that were utilised in the RDSP

study are also employed in the RDLBSD study. These scenarios are consistently used throughout
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the thesis to evaluate and compare different recovery approaches and strategies.

4.1.3 RDLBSD (MO nondominated approach)

The literature review conducted in Chapter 2 highlights the prevalent use of MO-ND approaches in

previous research within the area of RDLB. Out of the total 37 articles reviewed, 24 employed

MO-ND methods, indicating their prominence in addressing the complexities in this area. In

contrast, a smaller number of studies (3 articles) utilises an MO aggregate approach, which

aggregates multiple objectives into an SO function. Furthermore, a limited number of articles

(5 articles) focuses on SO, which aims to optimise a single criterion. This analysis of the literature

reveals a clear preference for MO-ND approaches, underscoring their effectiveness in handling

the multiple conflicting objectives inherent to RDLB. This observation can be attributed to the

intrinsic nature of the RDLB problem, which necessitates the optimisation of multiple objectives

concurrently. Drawing upon these findings, this section of the study adopts an MO-ND approach

to address the intricate complexities associated with the RDLB problem. Furthermore, the findings

presented in Chapter 3 clearly indicate that the nondominated approach is more suitable for this

model compared to the aggregate approach. This finding underscores the importance of considering

the trade-offs between multiple goals.

The RDLBSD problem introduces a distinct approach compared to RDLB. In RDLB, the

focus is primarily on finding a feasible disassembly sequence for the line and subsequently

addressing the task of line balancing. However, in RDLBSD, the challenge lies in simultaneously

considering both the feasibility of the disassembly sequence and achieving line balance. This

means that in RDLBSD, the optimisation process takes into account the interplay between the

sequencing of disassembly tasks and the distribution of these tasks across workstations to achieve

a well-balanced disassembly line. By addressing both sequence feasibility and line balance

simultaneously, RDLBSD aims to optimise the efficiency and effectiveness of the disassembly
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process. It ensures that the sequences not only satisfies feasibility requirements but also optimally

allocates disassembly tasks to minimise unbalanced line and maximise profit, energy savings,

and environmental impact savings. This integration of sequence feasibility and line balance

distinguishes RDLBSD from RDLB, allowing for a more comprehensive and optimised approach

to robotic disassembly line balancing.

In the context of optimising robotic disassembly line balancing within sequence-dependent

scenarios, a noteworthy analogy can be drawn to the well-established bin packing problem. In

this comparison, the ’robotic workstation’ serves as an analogue to the ’bin’ in the classical

bin packing problem, wherein items are strategically placed within containers. In our context,

the ’bin capacity’ transmutes into the ’cycle time’ constraint, a pivotal limitation that each

robotic workstation must adhere to, mandating that the cumulative processing time remains within

acceptable bounds. Similarly, the ’robotic disassembly time,’ analogous to the ’item sizes’ in

bin packing, represents the temporal resources required for individual disassembly tasks. This

temporal aspect takes on added significance due to its influence on overall system efficiency.

Central to this matter is ”task allocation”, which parallels ”item placement” by assigning robotic

disassembly tasks to specific robotic workstations while considering the constraints and objectives.

Notably, this comparison isn’t devoid of nuance. Unlike the unrestricted assignment nature of

the traditional bin packing problem, the ’robotic disassembly assignment’ requires adherence to

’feasible disassembly sequences.’ Consequently, the challenge extends beyond mere allocation;

it encompasses constructing sequences that ensure not only the temporal feasibility but also the

logical integrity of the disassembly process.

To illustrate, the optimal robotic disassembly sequence emerges as ”6-5-2-3-1-4-7” (see Figure

4.2), with respective times of 20s, 25s, 15s, 8s, 10s, 28s, and 10s, within a cycle time of 50s. For the

sake of simplicity in this example, the moving time, encompassing disassembly time, tool change

time, and direction change time, is considered 1s. The assignment process allocates parts to robotic

workstations based on the stipulated cycle time of 50 seconds. As such, the initial assignment
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designates parts 6 and 5 to the first robotic workstation. Following this, parts 2, 3, and 1 are

allocated to the second workstation. Lastly, the third workstation accommodates parts 4 and 7.

Algorithm 4 presents the pseudo-code for the MOBA, outlining the step-by-step process for

solving the RDLBSD problem using an MO-ND approach. Given that this research serves as

a further development of the disassembly sequence plans, the MOBA steps explained in the

algorithms exhibit a degree of similarity to Chapter 3. Nonetheless, a marked divergence becomes

apparent as the focal point transitions towards the disassembly line, introducing a new objective

and constraints. The initialisation following similar steps as previously described in Chapter 3. The

same parameter settings as in the previous chapter were used. The scout bees were generated using

the MFSG techniques, which resulted in feasible disassembly solutions, and then they were used

to generate the robotic assignment as described earlier. The scout bees then explore the objective

space, and the quality of the sites is sorted by the cost value using nondominated sorting. The

selected sites (m) are the best of that sorting, which consists of ’elite sites (e)’ and the ’other

selected sites (m − e)’ chosen to do an exploitation of the sites. In the local search, the recruited

bees for elite sites (nep) exploit the elite sites, and the recruited bees for other selected sites (nsp)

exploit the other selected sites. The swap, insert, and mutation operators are the same as those

in Chapter 3. The difference is that in Chapter 3, swap, insert, and mutation are applied to the

whole sequence. In this chapter, swap, insert, and mutation operations were executed on sequences

within the robotic workstations. The procedure is repeated until robotic workstation disassembly

sequences are feasible. The remaining scout bees (n −m) are exploring the objective space. The

fitness of the newly formed population was assessed, and a sorting process based on nondominated

sorting was performed. Subsequently, the best bee was preserved for progression into the next

iteration. The iterative process continues until the predetermined stopping criterion, which is the

achievement of the maximum iteration count, is met.



4.1. MODEL AND METHODOLOGY 109

Algorithm 4: The pseudo-code of MOBA for RDLBSD
Input : n: number of scout bees, m: number of selected sites, e: number of elite sites, nsp: recruited bees for other selected sites,

nep: recruited bees for elite sites, dis m: robotic disassembly information matrix
Output: RDLBSD(sequence, direction, mode, tool, robotic workstation, POSs)

1 Function MOBA(n, m, e, nsp, nep):
2 Start
3 initialRDSP← GlobalMFSG(dis m : sequence, direction,mode, tool) // Generate initial RDSP with

feasible disassembly sequences
4 initialRDLBSD← RoboticAssignment(initialRDSP) // Generate robotic disassembly line solutions

based on initial RDSP and Pareto front set
5 while stopping criterion not met do
6 Evaluate population fitness
7 f ← FVALUE(initialRDLB)
8 Sort population based on nondominated sorting
9 Select m sites for local search

// Generate local sites with waggle dance
10 for EliteSite(1 to e) do

// Assign best elite site bee
11 BestEliteSiteBee← the scout bee that found the elite site
12 for RecruitedEliteSiteBee(1 to nep) do

// Do feasibility check
13 while feasibility not met do
14 RecruitedEliteSiteBee← WaggleDance(dis m : sequence, direction,mode)
15 end
16 end

// Mutate the disassembly direction and mode
17 RecruitedEliteSiteBee← Mutation(dis m : direction,mode)
18 Evaluate fitness of RecruitedEliteSiteBee based on nondominated sorting
19 if RecruitedEliteSiteBee is better than BestEliteSiteBee then

// Update BestEliteSiteBee
20 BestLocalBee← RecruitedEliteSiteBee
21 end
22 end
23 for OtherSelectedSite(1 to (m− e)) do

// Assign best other selected site bee
24 BestOtherSelectedSiteBee← the scout bee that found the other selected site
25 for RecruitedOtherSelectedSiteBee(1 to nsp) do

// Do feasibility check
26 while feasibility not met do
27 RecruitedOtherSelectedSiteBee← WaggleDance(dis m : sequence, direction)
28 end

// Mutate the disassembly direction and mode
29 RecruitedOtherSelectedSiteBee← Mutation(dis m : direction,mode)
30 Evaluate fitness of RecruitedOtherSelectedSiteBee based on nondominated sorting
31 if RecruitedOtherSelectedSiteBee is better than BestOtherSelectedSiteBee then

// Update BestOtherSelectedSiteBee
32 BestLocalBee← RecruitedOtherSelectedSiteBee
33 end
34 end
35 end

// Assign remaining scout bees for global search
36 for RemainingScoutBee(1 to (n−m)) do
37 RemainingScoutBeeRDSP← GlobalMFSG(dis m : sequence, direction,mode)
38 GlobalRDLBSD← RoboticAssignment(RemainingScoutBeeRDSP)
39 end
40 Evaluate fitness of the new population
41 Sort population based on nondominated sorting

// Store the Pareto frontier
42 Best RDLBSD← BestBee
43 end
44 return Best RDLBSD (BestBee)
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4.1.4 Performance Evaluation

The calculation of the PEI in this chapter is based on Equation (3.1), which was introduced and

discussed in Section 3.2.2. The PEI serves as a valuable tool for evaluating and comparing the

performance of different optimisation algorithms. As previously explained, the PEI provides a

simple yet effective visualisation and resolution for the conflicting performance metrics that are

commonly encountered in MO-ND optimisation problems. The PEI simplifies the evaluation of

algorithm performance and aids decision-makers in making informed choices by consolidating

multiple decision-making criteria into a single index.

4.2 Experimental results

The experiments in this chapter were conducted using the same platform as the previous chapter,

MATLAB 2020b on the BEAR cloud service offered by the University of Birmingham. The

statistical tests were performed using IBM SPSS version 29. The parameter settings for all

algorithms used in this chapter, including the number of iterations and population size, remained

consistent with those used in the Chapter 3. The focus of this section is to provide a clear and

comprehensive representation of the experimental outcomes, specifically highlighting the results

from iteration 100 with a population size of 50 for the ARS scenario. These particular settings were

deliberately chosen to emphasise the performance of the algorithms under the smallest parameter

settings.

Figures 4.3 and 4.4 display the POSs obtained by the MOBA, NSGA-II, and PESA-II. These

figures provide a visual representation of the trade-offs between the different objectives in the

RDLBSD. By plotting the solutions in the objective space, the figures demonstrate the diverse

range of solutions that exist, allowing decision-makers to select the most suitable solution based
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on their preferences and priorities. Due to the large number of POSs from gear pump A (more

than 60), the decision is made to present the example output taken from gear pump B in Table

4.1. This table illustrates the detailed disassembly output information generated by the MOBA in

the ARS scenario using 100 iterations and 50 populations. The table offer comprehensive insights

into the disassembly process, providing specific details about the disassembly sequence, direction,

recovery mode, tools, and robotic stations for each solution. This information allows researchers

and practitioners to analyse and compare the characteristics and feasibility of different disassembly

solutions generated by the algorithms.

(a) MOBA

(b) NSGA-II (c) PESA-II

Figure 4.3: RDLBSD POSs (ARS scenario) - Gear pump A
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(a) MOBA

(b) NSGA-II (c) PESA-II

Figure 4.4: RDLBSD POSs (ARS scenario) - Gear pump B



4.2. EXPERIMENTAL RESULTS 113

The remaining presentation of the experiment output in this section closely aligns with that of

Chapter 3, serving the purpose of enabling a seamless comparison and comprehensive examination

of the results. This consistent presentation format ensures ease of interpretation and analysis.

Figures 4.5 and 4.6 present the number of POSs for Gear Pumps A and B across all scenarios

and parameter settings. A consistent pattern emerges in the relationship between the NFE and

the parameter settings, whereby smaller parameter settings correspond to lower NFE values, while

higher parameter settings result in higher NFE values. To provide an overview of the total NFE

for Gear Pumps A and B, Figures 4.7 and 4.8 are provided, while detailed results can be found in

Appendix B. The HI depicted in Figures 4.9 and 4.10 shows its values for Gear Pumps A and B

throughout the entire experiment. These figures encompass the use of three MO-ND optimisation

algorithms: MOBA, NSGA-II, and PESA-II, across all four scenarios. As previously explained,

a higher HI is considered desirable, as it indicates a better performance in terms of convergence

and diversity. Furthermore, the PEI, is also desirable to have a higher value, as it signifies better

overall performance across multiple metrics. Figures 4.11 and 4.12 present the PEI results for Gear

Pumps A and B, respectively, reflecting the experiments conducted with the algorithms employed

in each scenario. For a more comprehensive interpretation, Figures 4.13 and 4.14 display the total

PEI values for each scenario and algorithm.
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Table 4.1: Example RDLBSD output of Gear pump B (ARS Scenario)

Disassembly Sequence 3-23-1-4-2-5-21-6-19-24-7-8-11-22-9-10-20-18-17-13-12-16-15-14 6-23-21-1-19-4-3-5-2-7-8-24-9-22-11-10-20-18-13-12-14-15-16-17 23-1-6-21-2-5-3-4-24-7-9-22-10-20-8-11-19-18-17-16-13-12-14-15
Disassembly Direction 2-1-2-2-2-2-1-2-1-1-2-2-2-1-2-2-1-1-1-1-2-1-1-1 2-1-1-2-1-2-2-2-2-2-2-1-2-1-2-2-1-1-1-2-2-2-2-1 1-2-2-1-2-2-2-2-1-2-2-1-2-1-2-2-1-1-1-1-1-2-2-2
Recovery Option 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-1-1-4-1-1-4-4-4 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-1-1-1-1-1-4-4-4-4 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-4-1-1-4-4
Disassembly Tool 1-3-1-1-1-1-3-1-2-3-5-4-4-3-4-4-2-4-4-4-5-4-4-4 1-3-3-1-2-1-1-1-1-5-4-3-4-3-4-4-2-4-4-5-4-4-4-4 3-1-1-3-1-1-1-1-3-5-4-3-4-2-4-4-2-4-4-4-4-5-4-4
Robotic Workstation 1-1-1-1-1-1-1-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3 1-1-1-1-1-2-2-2-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3 1-1-1-1-1-1-1-1-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3
goal 1 61.428 63.061 61.594
goal 2 7.898 7.905 7.897
goal 3 0.492 0.492 0.492
goal 4 3005.47 5522.20 2451.59
Disassembly Sequence 4-1-24-6-22-20-3-5-23-21-19-18-2-7-17-9-13-16-15-14-8-10-11-12 2-3-4-1-5-23-24-22-6-21-7-8-20-19-11-9-10-18-17-16-15-13-12-14 23-2-4-21-6-3-5-1-19-7-8-10-24-9-22-20-18-11-17-13-12-16-15-14
Disassembly Direction 2-2-1-2-1-1-2-2-1-1-1-1-2-2-1-2-1-1-1-1-2-2-2-2 2-2-2-2-2-1-1-1-2-1-2-2-1-1-2-2-2-1-1-1-1-1-2-1 1-2-2-1-2-2-2-2-1-2-2-2-1-2-1-1-1-2-1-1-2-1-1-1
Recovery Option 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-4-4-4-4-1-1-1 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-1-1-4-4-4-1-1-4 1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-1-1-1-4-1-1-4-4-4
Disassembly Tool 1-1-3-1-3-2-1-1-3-3-2-4-1-5-4-4-4-4-4-4-4-4-4-5 1-1-1-1-1-3-3-3-1-3-5-4-2-2-4-4-4-4-4-4-4-4-5-4 3-1-1-3-1-1-1-1-2-5-4-4-3-4-3-2-4-4-4-4-5-4-4-4
Robotic Workstation 1-1-1-1-1-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3 1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-3-3 1-1-1-1-1-1-1-1-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3
goal 1 63.274 70.561 62.899
goal 2 7.898 7.944 7.905
goal 3 0.507 0.492 0.492
goal 4 3936.33 71235.74 4223.05
Disassembly Sequence 24-6-5-1-3-22-2-20-23-4-7-8-10-9-21-11-19-18-13-12-17-16-14-15 5-4-2-24-23-6-22-1-20-21-3-7-19-11-8-10-18-9-13-17-16-15-14-12 23-4-2-5-6-1-24-21-19-22-3-7-20-11-18-17-10-9-13-8-12-16-14-15
Disassembly Direction 1-2-2-2-2-1-2-1-1-2-2-2-2-2-1-2-1-1-1-2-1-1-2-2 2-2-2-1-1-2-1-2-1-1-2-2-1-2-2-2-1-2-1-1-1-1-1-1 1-2-2-2-2-2-1-1-1-1-2-2-1-2-1-1-2-2-1-2-2-1-2-2
Recovery Option 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-1-1-1-1-4-4-4-4 1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-4-4-4-4-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-1-4-4-4
Disassembly Tool 3-1-1-1-1-3-1-2-3-1-5-4-4-4-3-4-2-4-4-5-4-4-4-4 1-1-1-3-3-1-3-1-2-3-1-5-2-4-4-4-4-4-4-4-4-4-4-5 3-1-1-1-1-1-3-3-2-3-1-5-2-4-4-4-4-4-4-4-5-4-4-4
Robotic Workstation 1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3 1-1-1-1-1-1-1-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3-3 1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3
goal 1 61.846 66.718 68.694
goal 2 7.902 7.919 7.934
goal 3 0.492 0.507 0.492
goal 4 3563.04 21580.52 45508.66
Disassembly Sequence 24-4-23-6-3-22-20-2-5-21-19-18-17-1-7-13-8-10-11-16-15-9-14-12 2-5-3-6-4-24-23-1-22-7-21-19-10-11-9-8-20-18-13-12-14-15-17-16
Disassembly Direction 1-2-1-2-2-1-1-2-2-1-1-1-1-2-2-1-2-2-2-1-1-2-1-1 2-2-2-2-2-1-1-2-1-2-1-1-2-2-2-2-1-1-1-2-2-2-1-2
Recovery Option 1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-4-1-1-4-4-1-4-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-4-4-4-4
Disassembly Tool 3-1-3-1-1-3-2-1-1-3-2-4-4-1-5-4-4-4-4-4-4-4-4-5 1-1-1-1-1-3-3-1-3-5-3-2-4-4-4-4-2-4-4-5-4-4-4-4
Robotic Workstation 1-1-1-1-1-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3 1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-3-3-3-3-3-3-3
goal 1 65.422 67.888
goal 2 7.916 7.932
goal 3 0.507 0.492
goal 4 8765.01 35963.69
Disassembly Sequence 23-24-2-6-5-4-1-22-20-3-21-19-18-7-13-17-8-9-10-16-15-11-12-14 4-23-1-21-6-5-3-2-24-19-7-22-8-10-11-20-18-17-9-13-16-15-14-12
Disassembly Direction 1-1-2-2-2-2-2-1-1-2-1-1-1-2-1-1-2-2-2-1-1-2-2-2 2-1-2-1-2-2-2-2-1-1-2-1-2-2-2-1-1-1-2-1-1-1-1-2
Recovery Option 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-4-4-1-1-4-4-1-1-4 1-1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-4-1-1-4-4-4-1
Disassembly Tool 3-3-1-1-1-1-1-3-2-1-3-2-4-5-4-4-4-4-4-4-4-4-5-4 1-3-1-3-1-1-1-1-3-2-5-3-4-4-4-2-4-4-4-4-4-4-4-5
Robotic Workstation 1-1-1-1-1-1-1-1-1-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3 1-1-1-1-1-2-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3-3
goal 1 66.349 66.484
goal 2 7.924 7.924
goal 3 0.492 0.507
goal 4 25960.74 16956.98
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Figure 4.5: Number of Pareto optimal solutions for RDLBSD of Gear Pump A
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Figure 4.6: Number of Pareto optimal solutions for RDLBSD of Gear Pump B
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Figure 4.7: Number Function of Evaluation for RDLBSD of Gear Pump A: The lower the better

Figure 4.8: Number Function of Evaluation for RDLBSD of Gear Pump B: The lower the better
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Figure 4.9: Hypervolume Indicator for RDLBSD of Gear Pump A: The higher the better
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Figure 4.10: Hypervolume Indicator for RDLBSD of Gear Pump B: The higher the better
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Figure 4.11: PEI for RDLBSD of Gear Pump A: The higher the better
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Figure 4.12: PEI for RDLBSD of Gear Pump B: The higher the better
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Figure 4.13: Total PEI for RDLBSD of Gear Pump A: The higher the better

Figure 4.14: Total PEI for RDLBSD of Gear Pump B: The higher the better
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4.3 Discussion

The results obtained from the MO-ND approach consist of sets of solutions that represent the

various trade-offs between the four defined goals in this thesis: maximising profit, maximising

energy savings, maximising reduction in environmental impact, and minimising unbalanced lines.

These objectives, being conflicting and distinct, as shown in the Chapter 3, necessitate the use of

the MO-ND approach to identify solutions that are not dominated by others and provide a range of

feasible options for decision-making. Figures 4.3 and 4.4 visually depict the trade-offs between the

different objectives, showcasing the diverse sets of POSs obtained from the MOBA, NSGA-II, and

PESA-II in the ARS scenario. These solutions were achieved by applying these algorithms in four

dimensions using the smallest parameter setting. By examining the figures, it becomes evident that

NSGA-II and PESA-II exhibit similarities in their results, while MOBA yield different outcomes,

for both gear pumps.

Visualising outcomes with four dimensions can be challenging, but it is evident that the number

of POSs from MOBA is higher. This consistent performance aligns with the findings of the

previous chapter, where MOBA demonstrated similar advantages in solving the robotic disassembly

problem. While visual presentations in four dimensions may be more difficult to interpret, the next

step uses performance measurement, which is valuable for evaluating the algorithms’ performance

in achieving a balance between profitability, energy efficiency, environmental impact, and line

balance in RDLBSD.

Table 4.1 provide examples of the output from the RDLBSD for Gear Pump B. By examining

the table, it becomes evident that the output bears similarity to the results obtained from the RDSP.

This similarity arises from the fact that in RDLBSD, the optimal disassembly line balancing is

achieved simultaneously with the feasible disassembly sequence. This synchronisation between

line balancing and sequencing ensures an efficient and effective disassembly process, optimising
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both the balance of the assembly line and the disassembly order. Similar to the previous chapter,

the performance measurement of the MO-ND approach in this study relies on several indicators.

These include the number of POSs, HI, NFE and PEI.

Consistently across all scenarios, the findings demonstrate that the MOBA outperform the

comparison algorithms in various aspects. Specifically, the MOBA yield a higher number of POSs,

indicating a more diverse and comprehensive range of optimal solutions, as shown in Figures 4.5

and 4.6. Additionally, the MOBA require a lower NFE to achieve these results, highlighting its

efficiency in optimising the objectives, as shown in Figures 4.7 and 4.8. Furthermore, the higher

HI further signifies their effectiveness in covering a larger area within the Pareto front, indicating a

better spread of solutions, as shown in Figures 4.9 and 4.10. Finally, the higher PEI reinforces its

suitability for finding optimum solutions for both the RDSP and RDLBSD problems. Figures 4.11

and 4.12 provide valuable insights into the PEI for different scenarios and parametric settings.

Notably, the highest PEI varies across scenarios and case studies, suggesting that the optimal

parameter settings may differ depending on the specific context. Interestingly, the results indicate

that even the smallest parameter settings can yield optimal solutions for both case studies. This

finding highlights the importance of carefully selecting parameter settings during the disassembly

planning process. Future researchers working on similar case studies are advised to use parameter

settings slightly higher than those identified in this study to achieve more effective and efficient

results. Furthermore, as the case study involves an increasing number of parts, it is recommended

to employ higher parameter settings. This adjustment accounts for the additional complexity

introduced by a larger number of parts, ensuring that the disassembly planning process remains

robust and capable of handling more intricate scenarios.

Figures 4.13 and 4.14 presents the PEI for all scenarios and algorithms across various parameter

settings, providing a comprehensive overview of the results. The figure utilising 20 distinct colours

to differentiate the parameter settings. Despite the multitude of colours, the figure provides a

holistic view without sacrificing detailed information. By examining the highest total PEI (the
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highest bar in the chart), it becomes apparent which algorithms are the top performers, offering

a clear indication of their superior performance. The figure reveals that MOBA consistently

outperform the comparison algorithms for both Gear Pumps A and B.

These consistent findings across the chapters further strengthen the position of MOBA as robust

and effective approaches for solving complex robotic disassembly problems. Similar to the findings

in Chapter 3, the analysis of the ARS scenario in terms of objective 1 (profit) reveals that it

consistently yields the highest monetary value, with the majority of recovery options focusing on

reusing the parts. This finding further reinforces the conclusion that all the algorithms employed

in this study can identify optimal and sustainable recovery options for each part, regardless of

the specific algorithm used. The difference lies in the performance of the algorithms used. The

successful application of these algorithms to finding the best recovery options highlights the

suitability and novelty of the proposed approach for further research. Furthermore, the results

for the REU, REM, and REC scenarios are in line with the findings presented in Chapter 3. The

REU scenario emerges as the second-best recovery option in terms of profit, followed by REM

and REC. These consistent findings provide additional support for the literature review, which

emphasises that recycling should be considered a last resort in sustainability practises and should

only be employed when alternative recovery modes are not feasible.

4.4 Summary

In conclusion, this chapter addresses the research problem of RDLBSD and aims to enhance

the efficiency and effectiveness of the disassembly process. By considering the interconnection

between disassembly sequence planning and line balancing, a holistic approach is adopted

to optimise both aspects simultaneously. The challenges of finding a feasible disassembly

sequence and achieving line balance are tackled through the utilisation of metaheuristic algorithms,
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specifically the BA, which has proven to be effective in handling the complexity of the RDLBSD

problem. The research contributes by developing a sustainability model tailored for RDLBSD

and providing recovery scenarios for EoL products, determining optimal parameter settings and

performance metrics for optimisation algorithms. The research findings demonstrate the superiority

of the MOBA in generating diverse and optimal solutions, as well as its efficiency in covering

a larger area within the Pareto front. The integration of line balancing and sequencing in

RDLBSD leads to an efficient and effective disassembly process that balances profit, energy

savings, environmental impact reduction, and line balance. The consistent findings in the four

scenarios (REC, REM, REU, and ARS) further reinforce that recycling should be considered the

last option for recovery. The similarity in outcomes between the RDSP and RDLBSD for these

four scenarios strengthens the conclusion that recycling should be prioritised after exploring other

recovery options.

The insights gained from the study emphasise the importance of selecting appropriate parameter

settings for different disassembly planning scenarios, enabling future researchers to enhance

their approaches and achieve improved optimisation and performance in robotic disassembly

processes. Overall, the research contributes to the advancement of knowledge in the field of robotic

disassembly line balancing and provides valuable insights for practitioners using sustainability

model and optimisation of robotic disassembly plans and balancing processes. In addition

to the aforementioned contributions, this thesis successfully achieves its objectives, which are

outlined as follows: Objective 1 is accomplished through the introduction of a new sustainability

model tailored specifically for the RDLBSD problem. The model addresses the challenges and

requirements of RDLB, bridging the gap in previous research and providing a framework for

sustainable disassembly practises. Objective 3 is achieved by focusing on the research problem

of RDLBSD. Objective 4 is addressed by validating the effectiveness of the proposed approach

through a case study involving gear pumps. The application of the proposed methodology to a real

EoL products demonstrates its practicality and potential for optimising robotic disassembly line
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balancing processes. Finally, objective 5 is met by determining the optimal parameter settings and

performance metrics for the optimisation algorithms employed in the RDLBSD problem. Through

rigorous evaluation and comparison, the thesis identifies the most suitable parameter settings for

achieving optimal results in different disassembly planning scenarios. By addressing this problem

and providing innovative solutions, the thesis contributes to the advancement of knowledge in the

area of robotic disassembly line balancing. Overall, the thesis successfully meets its objectives and

makes contribution to the RDLBSD research, laying the groundwork for further advancements in

the optimisation of robotic disassembly processes. Furthermore, similar to the previous chapter on

RDSP, advancements in technology and Artificial Intelligence (AI) offer significant opportunities

for the development of the RDLB research area. However, unlike RDSP, which has seen recent

publications utilising digital twins and deep learning techniques, there is a noticeable gap in the

recent RDLB literature in terms of utilising these technologies and AI. This presents an important

opportunity for further research and exploration in order to leverage the potential of digital twins

and deep learning approaches in the context of RDLB.
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Chapter 5

Enhanced Bees Algorithm for Robotic

Disassembly Planning

This chapter provides an overview of the bees algorithm (BA) since its inception in 2005, along with

information on its variants and applications. The objective of this chapter is to address objectives

2, 4, 5, and 6 outlined in this thesis. The first objective is to enhance the BA as an effective tool

for solving the robotic disassembly problem adressing objective 6. To achieve this objective, the

chapter explores the sources of inspiration derived from the remarkable life of bees, uncovering

the key concepts that have significantly influenced the algorithm’s development. Additionally,

the chapter conducts an extensive investigation of other algorithms that share similar names with

the inspirations, offering a comparative analysis and deeper insights into the distinct approaches

employed in these algorithms. This analysis serves to distinguish the novelty of the proposed

enhancement of the BA compared to its variants and other metaheuristic algorithms. Objectives 2

and 4 of this thesis is achieved through the conduct of a case study on gear pumps, as described

in Chapter 3.1, in order to validate the effectiveness of the proposed enhancement of the BA in

RDSP problem. Furthermore, objective 5 is addressed through the analysis of the outcomes and

the evaluation of the algorithm’s performance using the proposed performance evaluation.

129
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The chapter is structured as follows: Section 5.1 provides an overview of the BA and its variants,

highlighting its application in the context of the robotic disassembly problem. Section 5.2 focuses

on the proposed enhancement of the BA, drawing inspiration from the Fibonacci sequence to yield

the Fibonacci bees algorithm, or BAF. A review of other metaheuristics inspired by Fibonacci is

provided to highlight the novelty of BAF. Section 5.3 presents the experiments conducted using

both the BA and the enhanced version in RDSP. Section 5.4 discusses the results obtained. Finally,

the chapter concludes by summarising the key findings and insights obtained from the research and

suggesting areas for further investigation.

5.1 Bees Algorithm

The BA, originally developed for continuous problems, has six user-determined parameters [160]

and is commonly referred to as the basic bees algorithm (BBA). The pseudocode of the BBA [161]

is given in Algorithm 5.
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Algorithm 5: Basic Bees Algorithm Pseudocode
Input : n: number of scout bees, m: number of selected sites, e: number of elite sites,

nsp: recruited bees for other selected sites, nep: recruited bees for elite sites,

ngh: initial size of neighbourhood

1 Function BBA(n, m, e, nsp, nep, ngh):

2 InitialisePopulation with random solutions

3 EvaluateFitness of the population

4 while stopping criterion not met do

5 Forming new population

6 SelectSites for neighbourhood search

7 RecruitBees for selected sites (more bees for the best e sites) and evaluate fitness

8 SelectFittestBees from each patch

9 AssignRandomBees to search randomly and evaluate their fitness

10 end

11 return BestBee

The neighbourhood (ngh) for combinatorial problems depends on the design of the local search,

which may involve various operators like swap, insert, reverse, mutation, 2-OPT, and 3-OPT. In

the combinatorial version of BBA [54, 185–187], where the swap, insert, and reverse operators

are used, the neighbourhood size is considered equal to the sequence length. Therefore, for the

combinatorial version, only five parameters need to be set: n, m, e, nsp, and nep.

The introduction of site abandonment and neighbourhood shrinking to BBA, resulting in

two additional parameters that need to be configured [159, 188, 189], represents a noteworthy

enhancement and gives rise to a variant of the algorithm known as the standard bees algorithm

(SBA). SBA requires seven to eight parameters to be set by the user. Alternative methods for

recruitment, neighbourhood modification, and site abandonment have been extensively explored

in the literature [159]. For a comprehensive understanding of the variants of the BA developed
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until 2017, interested readers are encouraged to refer to the survey paper by Hussein et al., which

provides an in-depth analysis of the various modifications and enhancements in the algorithm [190].

The utilisation of metaheuristics has been the subject of critique owing to their dependence

on parameter values. This reliance can result in a lengthy procedure, as the optimal settings for

each problem must be determined while considering their unique attributes. Previous researchers

opted for the application of Taguchi and Design of Experiments (DoE) methods to discern the

optimal parameter setting. However, these techniques are time-consuming [166]. Several efforts

have been made to reduce the parameter tuning setting in the BA, such as the application of

fuzzy selection for self-tuning [191]. The Ternary Bees Algorithm (TBA), introduced by [44],

uses only 3 bees and incorporates a single parameter setting for the site abandonment thresholds.

Another reduced-parameter version of BA is BA2, which has two parameters. BA2 is inspired

by the traplining foraging behaviour of honeybees [192, 193]. The achievement of an adaptive

parameter-free version and the potential for further parameter removal remain uncertain in the

pursuit of enhanced versions of the BA [159]. However, it is apparent that reducing the number of

parameters significantly decreases the effort required for parameter tuning.

In the field of robotic disassembly research, BA has been widely employed and proven to be

superior to other algorithms [44, 47–49, 54, 79, 86, 88, 89, 126, 130]. However, only one robotic

disassembly study [44] has been conducted on parameter reduction.

BA2, initially developed for continuous problems and later extended to address combinatorial

problems by incorporating specialised local operators tailored for the vehicle routing problem VRP,

has been previously investigated by Ismail [192]. However, the primary focus of this thesis centres

around robotic disassembly problems. RDSP entails planning the sequence and actions required

to disassemble objects, considering factors such as interdependencies, sizes, shapes, connections,

accessibility, tools, and multiple dimensions. These inherent complexities differentiate robotic

disassembly from the VRP, which typically deals with fewer dimensions. Therefore, direct

comparison with both the continuous version of BA2 or its combinatorial version of VRP falls
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outside the scope of this thesis. While earlier research by [192] drew inspiration from the traplining

behaviour of bees to reduce the parameter count of the BA, this study takes a different approach by

drawing inspiration from the Fibonacci sequence-based family tree pattern of honeybees. Building

upon this unique source of inspiration, the proposed enhancement to the algorithm introduces

a new configuration with four parameters. By exploring this alternative parameter setting, the

research aims to investigate potential benefits and performance improvements. This novel approach

contributes to the field by offering a fresh perspective on parameter configuration in the BA for

robotic disassembly problems.

To ensure a meaningful and relevant evaluation, this chapter appropriately employs a

comparison with Enhanced Discrete Bees Algorithm (EDBA), which is the most commonly

adopted BA for RDSP. This choice enables an assessment of the effectiveness of the proposed

enhancements in addressing the specific challenges posed by robotic disassembly problems. By

aligning with the objectives and scope of this study, this approach facilitates a comprehensive

examination of the proposed enhancements and their impact on addressing the complexities

associated with robotic disassembly.

5.1.1 Bees Algoritm in RDSP and RLDB

As observed in the preceding chapter, it becomes evident that the predominant approach to

address the RDSP involves framing it as a single-objective (SO) problem. This is also reflected

in the use of the BA for solving the RDSP, where an SO approach is commonly employed

[1, 2, 44, 48, 54, 79, 86, 88, 89, 126]. However, it is worth noting that this thesis is offering a

novel perspective to use SO, MO aggregate and multiobjective nondominated (MO-ND) approach

and analyse the results for solving the RDSP, that has been elaborated in Chapters 3 and 4.

Furthermore, in contrast to RDSP, RDLB problem is predominantly formulated and approached

as a multiobjective (MO) problem. Based on the literature review, the MO approach of the BA is



134CHAPTER 5. ENHANCED BEES ALGORITHM FOR ROBOTIC DISASSEMBLY PLANNING

utilised in addressing the RDLB problem. In the studies conducted by [47, 49], the MO aggregate

approach was employed, wherein the objectives were aggregated and treated as an SO formulation.

Furthermore, the MO-ND approach was adopted by [51] and this thesis, specifically considering

the objectives as non-dominated. None of this previous research has reduced the BA parameters

in RDLBSD and only one research using reduced-parameter version of BA in RDSP. A notable

research gap exists in the specific focus on reducing parameters of BA in robotic disassembly. This

study aims to address this gap by investigating parameter reduction tailored specifically for robotic

disassembly. By providing a dedicated examination of parameter reduction within the context of

robotic disassembly, this research extends the existing literature and contributes to the advancement

of knowledge in the research area.

As previously mentioned, the BA was initially developed for the continuous domain. However,

when the algorithm is applied to combinatorial problems such as the Travelling Salesman Problem

(TSP), the local search component needs to be modified accordingly. In the case of the TSP,

the BBA incorporates local search operators such as swap, insert, and reverse [186], which are

specifically designed to manipulate the sequence of cities. Similarly, in the context of the RDSP

and RDLB problems, the BBA’s local search is adapted to include swap, insert, and mutation

operators [47, 49, 51, 54] that are tailored to address the specific requirements and constraints of

these combinatorial problems. In this research, the BA and the proposed BA utilise the swap, insert,

and mutation operators in their local search, as desribed by [54].

5.2 Fibonacci Bees Algorithm

Leonardo Fibonacci, a mathematician from the 13th century, is widely recognised for his significant

contributions to the field of mathematics. One of his most notable achievements was the

introduction of the Fibonacci sequence [194]. This sequence is a series of numbers, where each
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number is the sum of the two preceding numbers. It begins with 0 and 1, and the subsequent

numbers are generated by adding the previous two numbers. The sequence progresses as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, and subsequent numbers. The pattern extends indefinitely, revealing a

sequence that possesses unique mathematical properties and occurs in diverse natural phenomena.

The pattern can be found in a variety of natural phenomena, including leaf arrangements, spirals

in seashells, tree branches and flower petals [194, 195]. The bee lineage parallels the Fibonacci

sequence, establishing a link between bee ancestry and the numerical pattern seen in the Fibonacci

sequence. The family tree of a male bee or drone exhibits a fascinating relationship with the

Fibonacci sequence, as the number of ancestors in each successive generation corresponds to the

Fibonacci numbers [194, 195]. Drones originate from unfertilised eggs through a reproductive

process known as parthenogenesis. Parthenogenesis involves the development of embryos without

fertilisation, resulting in male offspring that possess a mother but do not have a father. In contrast,

female bees, which include both worker bees and queen bees, originate from fertilised eggs. Figure

5.1 illustrates the family tree of a drone in a simple ancestry model [194, 196]. Interestingly,

upon counting the total number of bees in each generation, it is revealed that they conform to the

Fibonacci sequence. This correlation emphasises the prevalence of Fibonacci patterns in honeybee

population and the drone’s mathematical structure in its genealogical lineage.
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Figure 5.1: Fibonacci sequence in the family tree of a drone (adapted from [196])

To investigate whether previous enhancements of the BA have incorporated the inspiration

from the Fibonacci sequence, given it relevance to bees, the following steps were conducted. An

extensive search was conducted using the Scopus database, employing the keywords ”bee” and

”Fibonacci.” This search yielded a total of 9 articles; however, none of them were found to be

directly relevant to the BA. Additionally, a search was performed using the Scite database, but no

pertinent results were found regarding the utilisation of the Fibonacci sequence in the BA. These

searches across multiple databases indicate that, as of the present, there is no scholarly evidence

to suggest that prior versions of the BA have integrated the Fibonacci sequence as a means of

enhancement.

Further exploration was conducted using the Scopus database, employing the keywords

”Fibonacci” and ”heuristic,” with the aim of identifying algorithms that draw inspiration from

Fibonacci. The initial search yielded a total of 62 articles. After refining the search based on titles

and language criteria (English only), and availability of content, 43 articles were retained for further
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analysis. Upon examining the contents, 9 articles were deemed irrelevant and were excluded from

the analysis. Additionally, 18 articles that were identified as improvements to the original algorithm

were also removed. Of the remaining articles, 15 focused on metaheuristic algorithms, many of

which were improved or hybridised with other algorithms such as the genetic algorithm (GA)

[197–199], Salp Swarm Algorithm (SSA) [200], Wolf Pack Algorithm (WPA) [201], Tabu Search

(TS) [202], Particle Swarm Optimisation (PSO) [203], and Grey Wolf Optimiser (GWO) [203].

These articles covered a range of inspirations related to Fibonacci, including the Fibonacci search,

Fibonacci heaps, Fibonacci trees, the golden ratio, and the application of Fibonacci indicators in

the stock market.

Table 5.1 summarises the Fibonacci inspirations of these algorithms and their applications. The

Automated Hybrid Genetic Algorithm (AHGA) is utilised for benchmark function optimisation,

wherein a combination of a GA and a Local Optima Avoidance (LOA) mechanism is employed

[197]. Fibonacci numbers are used to select the number of GA banks in AHGA. The Memetic

Algorithm (MA) is utilised for solving the multi-stage supply chain network problem, with

the option of Fibonacci number generation to select the best offspring regardless of its origin

[198]. The Fibonacci Tree Optimisation (FTO) algorithm is designed specifically for power grid

optimisation, utilising a data storage structure known as a Fibonacci tree [204]. The Fibonacci

Indicator Algorithm (FIA) finds its application in benchmark function optimisation, incorporating

Fibonacci retracement and time zone techniques commonly utilised in stock market trading [205].

For wellbore trajectory optimisation in the oil and gas industry, the Fibonacci Sequence-based

Quantum Genetic Algorithm (FSQGA) is employed, reflecting the rotation angle step in the

quantum GA [199]. The Golden Ratio Optimisation Method (GROM) is applied to benchmark

function optimisation, with the movement direction of the algorithm following the formulation

of the golden ratio [206]. Similarly, the Improved Wolf Pack Algorithm (IWPA) is employed

in benchmark function optimisation, where the step length of scout wolves is adjusted based on

the Fibonacci sequence [201]. The Child Drawing Development Optimisation (CDDO) algorithm
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uses the golden ratio to calculate two solution points in benchmark function optimisation [207].

The Opposition-based Learning PSO GWO (Opp-PSOGWO) algorithm is applied to benchmark

function optimisation, generating an opposite population for searching using the Fibonacci

sequence [203]. In the area of bridge structural health monitoring, a Fibonacci Sequence-based

Optimisation Algorithm (FSOA) rearranges the population of the algorithm using the golden ratio

[200]. Additionally, the table includes algorithms employed for solving the collection centre

location problem inspired by the Fibonacci search [202], project scheduling problem using the

Multi-Objective Fibonacci Based Algorithm (MOFA) inspired by the Fibonacci sequence [208],

and VRP using Broad Local Search Algorithm (BLSA), Adaptive Variable Neighbourhood Search

(AVNS), and Evolutionary Local Search (ELS) that inspired by Fibonacci heaps [209–211].



5.2.
FIB

O
N

A
C

C
IB

E
E

S
A

L
G

O
R

IT
H

M
139

Table 5.1: Metaheuristics inspired by Fibonacci

Author(s) Year Name Fibonacci Application Hybrid

Gudla and Ganguli [197] 2005 AHGA sequence Benchmark function GA

Yeh [198] 2006 MA sequence Multistage supply chain network GA, greedy

Aras and Aksen [202] 2008 not named search Collection Centre Location problem Tabu search

Zachariadis and Kiranoudis [209] 2010 BLSA heaps VRP

Wei et al. [210] 2014 AVNS heaps VRP

Zhang et al. [211] 2015 ELS heaps VRP

Da et al. [204] 2018 FTO tree Power Grid

Etminaniesfahani et al. [205] 2018 FIA retracement and time zone Benchmark function

Sha and Pan [199] 2018 FSQGA sequence Oil and Gas (wellbore trajectory) GA

Nematollahi et al. [206] 2020 GROM goden ratio Benchmark function

Zhao et al. [201] 2020 IWPA sequence Benchmark function WPA

Hosseinian and Baradaran [208] 2020 MOFA sequence Project Scheduling problem

Abdulhameed and Rashid [207] 2022 CDDO goden ratio Benchmark function

Khosla and Verma [203] 2022 Opp-PSOGWO sequence Benchmark function PSO, GWO

Tran-Ngoc et al. [200] 2023 FSOA golden ratio Bridge Structural Health Monitoring SSA
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The findings presented in Table 5.1 provide additional support for the distinctiveness of

the proposed Fibonacci bees algorithm (BAF) compared to previous research. While previous

algorithms utilised Fibonacci numbers in various ways, such as for selecting the number of banks,

reflecting rotation angles, adjusting step lengths, or generating populations, the BAF introduces a

novel framework specifically inspired by the Fibonacci sequence. In the process of improving BA,

various ideas were experimented with and tested to identify improvements. The chosen and most

effective idea is outlined below.

BAF is based on the observed Fibonacci sequence-based family tree pattern in drones, where

the number of drone ancestors follows the Fibonacci sequence, as mentioned earlier. However,

the BAF introduces a different approach. Instead of employing the Fibonacci sequence to count

ancestors, BAF uses it to determine the number of bees sent to the flower patches. This decision is

motivated by the inherent growth pattern represented by the Fibonacci sequence, which aligns

with the objective of maximising the foraging efficiency of the algorithm. By employing a

ranking-based approach that recruit bees according to the Fibonacci sequence for targeting the most

promising patches,BAF aims to exploit the patches more effectively, potentially yielding improved

results. This departure from the conventional interpretation of the Fibonacci sequence within the

context of drone ancestry showcases an innovative adaptation of the concept to address the specific

requirements of the proposed algorithm.

In addition, unlike the original BA, which employs ’elite’ and ’other selected’ sites, BAF focuses

solely on the selected sites, eliminating the need to distinguish between ’elite’ and ’other selected’

categories in the best sites. Within these selected sites (sites with the best fitness values), bees

conduct their search, and the allocation of bees to exploit the selected sites (nr) is determined by

a ranking system that follows the Fibonacci sequence. The top-ranked bee receives the maximum

number from the specified Fibonacci sequence, while lower-ranking bees are assigned decreasing

numbers from the sequence. For example, with three patches, m = 3 and maxnr = 8. The 1st

patch attracts 8 recruited bees (nr1 = maxnr = 8), the 2nd patch attracts 5 recruited bees (nr2 =
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5), and the 3rd patch attracts 3 recruited bees (nr3 = 3). Although it is not certain if the allocation

of foragers in nature follows the Fibonacci sequence, this differential allocation does reflect the

fact that more foragers are allocated to higher-quality flower patches [212, 213]. After a specified

number of tries, if the fittest bee in a patch remains unchanged, nr for that patch becomes zero and

a fresh set of patches is initialised.

Both BBA and EDBA share the same parameters and structure, with the only distinction being

the incorporation of a check for disassembly sequence feasibility after random initialisation. By

disregarding that minor point, comparing EDBA and BAF becomes equivalent to comparing BBA

and BAF. This chapter will compare the proposed BAF and EDBA in the context of RDSP.

The problem is the minimisation of disassembly time. The comparison will utilise the statistical

performance metric (SPM) and the performance evaluation index (PEI) presented in Chapter 3. The

objective function and number of function evaluations (NFE) will be recorded for the comparison

purposes. As outlined in Chapter 3, the input data consists of a disassembly information matrix

based on MFSG introduced by [54]. This matrix guarantees that the disassembly procedure

considers fasteners while following to precedence constraints. Thus, the matrix yields feasible

disassembly sequences. The input in the pseudo-code is represented by the robotic disassembly

information matrix, denoted as dis m. The pseudo-code for EDBA in the RDSP has been provided

in Algorithm 2 in Chapter 3, while the pseudo-code for BAF is presented in Algorithm 6.
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Algorithm 6: The pseudo-code of BAF for RDSP
Input: n: number of scout bees, m: number of selected sites, nr: number of bees recruited for selected sites using ranking based

recruitment, max rv: maximum number of re-visits before the nr is set to zero, dis m: robotic disassembly information matrix
Output: RDSP(sequence, direction, tool, f :cost)

1 Function BAF(n, m, nr, max rv):
2 Start
3 initialRDSP← GlobalMFSG(dis m : sequence, direction) // Generate initial population of feasible

disassembly sequences
4 revisit = 0
5 while stopping criterion not met do
6 Evaluate population fitness
7 f ← FVALUE(initialRDSP )
8 Sort population according to f
9 Select m sites for local search

// Generate local sites with waggle dance
10 for Selected Site (1 to m) do

// Assign best local bee
11 BestLocalBee← the scout bee that found the site

// Allocation of bees to the selected sites
12 nsp← number from Fibonacci sequence
13 for Recruited Bee(1 to nr) do

// Do feasibility check
14 while feasibility not met do
15 RecruitedBee← WaggleDance(dis m : sequence, direction)
16 end

// Mutate the disassembly direction
17 RecruitedBee←Mutation(dis m : direction)
18 Evaluate fitness of RecruitedBee
19 if RecruitedBee is better than BestLocalBee then

// Update BestLocalBee
20 BestLocalBee = RecruitedBee

21 end
22 else
23 revisit← revisit + 1
24 if revisit ≥max rv then

// Abandon site and randomly generate a new site
25 NewSite← MFSG(dis m : sequence, direction)

26 end
27 end
28 end
29 end

// Assign remaining scout bees for global search
30 for RemainingScoutBee (1 to (n−m)) do
31 RemainingScoutBee← GlobalMFSG(dis m : sequence, direction)
32 end
33 Evaluate fitness of the new population
34 Sort population according to f

// Store the best RDSP with minimum cost f
35 Best RDSP = Bee with minimum cost f
36 end
37 return Best RDSP (Bee with minimum cost f )
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5.3 Experiments

The selected test problem for investigation is the RDSP problem with a single-objective (SO)

approach. As previously explained, the EDBA proposed by Liu et al. [54] serves as the basic

bees algorithm (BBA) employed to address the challenges of the robotic disassembly problem.

The objective in this RDSP is to minimise the disassembly time, as expressed in Equation (5.1)

[54].

Z =

Np−1∑
i=0

tb(xi) +

Np−2∑
i=0

tz(xi, xi+1) +

Np−2∑
i=0

tt(xi, xi+1) +

Np−2∑
i=0

mt(xi, xi+1) (5.1)

where

• Z is the total disassembly time

• Np is the number of total parts

• tb(xi) is the basic time for disassembling part xi

• tz(xi, xi+1) is the penalty time for disassembly direction changes between part xi and xi+1

• tt(xi, xi+1) is the penalty time for disassembly tool changes between part xi and xi+1

• mt(xi, xi+1) is the moving time between part xi and xi+1

5.3.1 Experimental Setup and Metrics

There are two commonly employed stopping criteria in optimisation algorithms: iterations or NFE.

In this thesis, the stopping criteria for the algorithm are based on the number of iterations. The

parameter settings used for the EDBA are based on the recommended settings from [54]. In

their work, the authors applied population numbers of 10, 20, 30, 40, and 50 for Gear Pump A

at iterations 100, 200, 300, and 400. Similarly, for Gear Pump B, the same population numbers



144CHAPTER 5. ENHANCED BEES ALGORITHM FOR ROBOTIC DISASSEMBLY PLANNING

were employed between iterations 100 and 600. The values for the numbers of selected sites (m),

elite sites (e), recruited bees for other selected sites (nsp), and recruited bees for elite sites (nep)

were assigned as follows: 4, 1, 1, and 2, respectively. According to their findings, the best results

were obtained for Gear Pump A at iteration 300 using a population of 20 and for Gear Pump B at

iteration 500 using a population of 40 [54]. In this thesis, to ensure a fair comparison, the iteration

and population sizes for all algorithms have been set to the same values.

To ensure a meaningful comparison with the best results obtained from EDBA, it was decided to

use 100, 200, 300, 400, and 500 iterations for both gear pumps, along with population sizes of 21,

31, 41 and 51. It is important to note that in the context of the EDBA article, the term ”populations”

refers to the number of scout bees (n) . Therefore, when calculating the total populations using the

EDBA parameter settings and applying Equation (5.2) [188], the corresponding values for EDBA

are 21, 31, 41, and 51 for the population sizes.

BApop = (e ∗ nep) + ((m− e) ∗ nsp) + (n−m) (5.2)

5.3.2 Experimental Parameter Setting

In this section, the determination of the experimental parameters employed in the study is presented.

The objective was to find the optimal parameter settings for BAF and assess its performance in

comparison to EDBA. To steps taken to determine the optimal parameter settings for BAF are as

follows:

1. Experimental Design: Define the experimental parameters. The numbers of selected sites

(m), the maximum number of recruited bees around the selected sites (maxnr), and the

maximum number of re-visits (max rv) are configured as depicted in Table 5.2.

2. Initial Runs: Perform 10 runs for each scenario, E1 to E100.
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3. Top Results Identification: Identify the best results from the initial runs.

4. Iterations and Performance Validation: Evaluate the performance of the selected best results

from the initial runs across 50 runs using 100 iterations.

5. Descriptive Statistics: Analyse the descriptive statistics of the results.

6. Best Result Selection: Identify and select the best result.

Table 5.2: Experimental design for BAF

m maxnr
max rv

0 1 5 10 15

2

3 E1 E2 E3 E4 E5
5 E6 E7 E8 E9 E10
8 E11 E12 E13 E14 E15
13 E16 E17 E18 E19 E20
21 E21 E22 E23 E24 E25

3

3 E26 E27 E28 E29 E30
5 E31 E32 E33 E34 E35
8 E36 E37 E38 E39 E40
13 E41 E42 E43 E44 E45
21 E46 E47 E48 E49 E50

4

3 E51 E52 E53 E54 E55
5 E56 E57 E58 E59 E60
8 E61 E62 E63 E64 E65
13 E66 E67 E68 E69 E70
21 E71 E72 E73 E74 E75

5

3 E76 E77 E78 E79 E80
5 E81 E82 E83 E84 E85
8 E86 E87 E88 E89 E90
13 E91 E92 E93 E94 E95
21 E96 E97 E98 E99 E100

Since BAF uses a ranking-based mechanism to give the number of bees sent to the selected sites,

for comparison purposes, it is necessary to calculate the population, as shown in the Equation (5.3),

to obtain comparable population sizes for BAF and EDBA. Table 5.3 presents values calculated

using m = 5 and various maxnr with a target maximum population of 51 bees. The maximum

value of nr is nr1.
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BAFpopulation = (n−m) +
m∑
i=1

(nri) (5.3)

Table 5.3: Example of BAF for a population of 51

Experiment n maxnr=nr1 nr2 nr3 nr4 nr5 BAFpopulation
E76 48 3 2 1 1 1 51
E81 44 5 3 2 1 1 51
E86 37 8 5 3 2 1 51
E91 25 13 8 5 3 2 51
E96 6 21 13 8 5 3 51

The experiment was then conducted ten times on gear pump B for a maximum of 100 iterations

each. Gear pump B was selected as it was more complex than gear pump A. The parameter settings

and average results of BAF are presented in Table 5.4. Using the best parameter settings from [54],

the EDBA achieved a disassembly time of 150.113 with 5550 function evaluations.

Table 5.4: BAF results of the initial runs (10 independent runs)

Experiments m maxnr n NFE
Disassembly time

max rv=0 max rv=1 max rv=5 max rv=10 max rv=15
E1 to E5 2 3 48 5348 173.8317 171.5567 160.185 145.065 151.3192
E6 to E10 2 5 45 5345 164.3175 165.0625 151.9225 145.7392 151.4817
E11 to E15 2 8 40 5340 160.9383 154.3392 147.3933 148.6567 143.74
E16 to E20 2 13 32 5332 150.0267 151.0992 148.7533 142.4158 142.9308
E21 to E25 2 21 19 5319 148.09 146.1292 146.4492 144.4858 144.3008
E26 to E30 3 3 48 5448 172.5958 168.9592 155.4217 146.0192 155.5033
E31 to E35 3 5 44 5444 160.6658 167.5758 149.49 143.3275 146.0117
E36 to E40 3 8 38 5438 161.3008 156.2958 146.8142 146.0458 144.9183
E41 to E45 3 13 28 5428 153.625 148.8067 143.9108 144.1133 143.245
E46 to E50 3 21 12 5412 151.1475 145.6175 141.955 142.8275 143.6292
E51 to E55 4 3 48 5548 173.1675 173.7192 153.4317 149.655 147.2775
E56 to E60 4 5 44 5544 165.3075 169.1067 148.6542 145.0658 145.8825
E61 to E65 4 8 37 5537 152.553 160.473 146.28 145.689 144.548
E66 to E70 4 13 26 5526 149.4717 150.3658 143.9317 142.383 142.0917
E71 to E75 4 21 8 5508 148.7025 147.88 144.2342 143.1633 143.0742
E76 to E80 5 3 48 5648 173.423 177.248 154.938 144.268 147.38
E81 to E85 5 5 44 5644 162.987 165.988 149.543 144.179 148.528
E86 to E90 5 8 37 5637 156.544 157.107 144.883 143.512 143.217
E91 to E95 5 13 25 5625 149.994 152.092 144.622 143.033 141.015
E96 to E100 5 21 6 5606 151.319 150.675 143.292 142.158 147.656
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The preliminary findings indicate that all scenarios exhibit fewer NFEs compared to the

benchmark algorithm, EDBA. Furthermore, the majority of results across all scenarios demonstrate

lower average disassembly times compared to EDBA. These results suggest that BAF offers higher

accuracy and efficiency. However, further experiments were necessary before definitive conclusions

could be drawn. Based on the average results and NFE, experiments E48, E49, E50, E68, E69, and

E70 were selected for further investigations through 50 independent runs. The statistical results are

shown in Table 5.5.

Table 5.5: Descriptive Statistics of E48, E49, E50, E68, E69, and E70 (50 runs)

Table 5.5 shows that scenario E69 yielded a lower standard error of the mean (SEM). This lower

SEM signifies a more accurate estimate of the population mean. Moreover, the standard deviation

is also smaller, indicating reduced data variability. This characteristic is desirable regardless of

whether the objective is to minimise or maximise a certain parameter. The preference is for results

to cluster closely around the means, as it signifies greater precision in achieving the intended

outcome. Therefore, scenario E69 with m = 4, maxnr = 13, n = 26 emerges as the optimal choice.

Fifty independent runs were subsequently conducted with the above parameter settings to compare

BAF and EDBA. The best parameter settings for BAF specified a minimum population size of 31.

Consequently, the comparative assessment with a population size 21 was eliminated.
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5.3.3 Experimental Results

The experiments were run 50 times with stopping criteria set at iterations 100, 200, 300, 400,

and 500, while the population sizes used were 31, 41 and 51. For ease of reference, a grouping

code was employed, where ”100 31” indicates the experiment with a stopping criterion of 100 and

a population size of 31. This coding scheme helps to conveniently identify the specific parameter

settings used in each experiment. The best disassembly results using the EDBA and BAF algorithms

are presented in Tables 5.6 and 5.7 for Gear Pump A and Gear Pump B, respectively.These tables

display the sequence, direction, tool, and total time of disassembly. The best result aligns with

the best-known values for the case study, as reported in [54], who conducted experiments using

1000 runs and obtained values of 87.5731 and 135.3167 for gear pumps A and B, respectively.

Tables 5.8 and 5.9 display the average values of the disassembly time, SEM, average NFE, and

delta. Delta is the percentage difference between the average objective value (disassembly time) to

the best-known value. The boxplots for gear pumps A and B are presented in Figures 5.2 and 5.3,

respectively.
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Table 5.6: Gear pump A best results (EDBA and BAF)

Best Disassembly Output
Sequence 2-1-6-5-4-3-7-10-9-11-8-13-15-14-12
Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-1-1
Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-3-4
Time 89.5731
Sequence 2-1-6-5-4-3-7-10-11-9-8-13-15-14-12
Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-1-1
Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-3-4
Time 89.5731
Sequence 3-4-5-6-1-2-7-10-11-9-8-13-15-14-12
Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-1-1
Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-3-4
Time 89.5731
Sequence 3-4-5-6-1-2-7-10-9-11-8-13-15-14-12
Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-1-1
Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-3-4
Time 89.5731
Sequence 5-4-3-2-1-6-7-10-11-9-8-13-15-14-12
Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-1-1
Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-3-4
Time 89.5731
Sequence 5-4-3-2-1-6-7-10-9-11-8-13-15-14-12
Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-1-1
Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-3-4
Time 89.5731
Sequence 6-1-2-3-4-5-7-10-11-9-8-13-15-14-12
Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-1-1
Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-3-4
Time 89.5731
Sequence 6-1-2-3-4-5-7-10-9-11-8-13-15-14-12
Direction 2-2-2-2-2-2-2-2-2-2-2-2-1-1-1
Tool 1-1-1-1-1-1-4-3-3-3-3-3-2-3-4
Time 89.5731
Note:
Direction: 1 = Y+ direction, 2 = Y- direction
Tool: 1=Spanner-I, 2 = Spanner-II, 3 = Gripper-I, 4 = Gripper-II
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Table 5.7: Gear pump B best results (EDBA and BAF)

Best Disassembly Output
Sequence 24-22-20-23-21-19-1-2-3-4-5-6-7-13-10-9-8-12-14-15-16-17-18-11
Direction 1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-1-1
Tool 3-3-2-3-3-2-1-1-1-1-1-1-5-4-4-4-4-5-4-4-4-4-4-4
Time 135.3167
Sequence 24-22-20-23-21-19-1-6-5-4-3-2-7-13-10-9-8-12-14-15-16-17-18-11
Direction 1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-1-1
Tool 3-3-2-3-3-2-1-1-1-1-1-1-5-4-4-4-4-5-4-4-4-4-4-4
Time 135.3167
Note:
Direction: 1 = Y+ direction, 2 = Y- direction
Tool: 1 = Spanner-I, 2 = Spanner-II, 3 = Spanner-III, 4 = Gripper-I, 5 = Gripper-II

Table 5.8: EDBA and BAF average results for gear pump A

Iteration population EDBA BAF

Mean SEM Delta Ave NFE Mean SEM Delta Ave NFE
100 31 90.5237 0.33 0.95% 3530 90.0960 0.213 0.52% 3506
200 31 90.0357 0.27 0.46% 7030 89.7208 0.064 0.15% 7006
300 31 89.8065 0.23 0.23% 10530 89.5731 0.000 0.00% 10506
400 31 89.6047 0.03 0.03% 14030 89.5731 0.000 0.00% 14006
500 31 89.7387 0.14 0.17% 17530 89.5731 0.000 0.00% 17506
100 41 90.6014 0.32 1.03% 4540 89.7404 0.137 0.17% 4516
200 41 89.8637 0.21 0.29% 9040 89.5731 0.000 0.00% 9016
300 41 89.6364 0.04 0.06% 13540 89.5731 0.000 0.00% 13516
400 41 89.5747 0.00 0.00% 18040 89.5731 0.000 0.00% 18016
500 41 89.5731 0.00 0.00% 22540 89.5731 0.000 0.00% 22516
100 51 89.7875 0.08 0.21% 5550 89.5731 0.000 0.00% 5526
200 51 89.7066 0.08 0.13% 11050 89.5731 0.000 0.00% 11026
300 51 89.6047 0.03 0.03% 16550 89.5731 0.000 0.00% 16526
400 51 89.6047 0.03 0.03% 22050 89.5731 0.000 0.00% 22026
500 51 89.6047 0.03 0.03% 27550 89.5731 0.000 0.00% 27526
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Table 5.9: EDBA and BAF average results for gear pump B

Iteration population EDBA BAF
Mean SEM Delta Ave NFE Mean SEM Delta Ave NFE

100 31 150.9088 1.36 15.59% 3530 146.6653 1.08 11.35% 3506
200 31 146.918 0.90 11.60% 7030 140.9998 0.36 5.68% 7006
300 31 145.5225 0.91 10.21% 10530 140.5303 0.42 5.21% 10506
400 31 142.217 0.70 6.90% 14030 139.7332 0.35 4.42% 14006
500 31 142.0165 0.45 6.70% 17530 139.1772 0.27 3.86% 17506
100 41 148.5027 0.97 13.19% 4540 142.6655 0.63 7.35% 4516
200 41 143.5897 0.56 8.27% 9040 140.5633 0.34 5.25% 9016
300 41 142.4695 0.63 7.15% 13540 139.8480 0.19 4.53% 13516
400 41 142.0715 0.81 6.75% 18040 139.0933 0.23 3.78% 18016
500 41 141.9507 0.54 6.63% 22540 138.6493 0.21 3.33% 22516
100 51 148.5675 1.08 13.25% 5550 141.6850 0.39 6.37% 5526
200 51 143.7058 0.59 8.39% 11050 139.9833 0.29 4.67% 11026
300 51 142.9958 0.69 7.68% 16550 139.2005 0.15 3.88% 16526
400 51 142.0362 0.60 6.72% 22050 139.2242 0.15 3.91% 22026
500 51 142.0932 0.64 6.78% 27550 138.8473 0.14 3.53% 27526
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Figure 5.2: EDBA and BAF results (Gear Pump A)
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Figure 5.3: EDBA and BAF results (Gear Pump B)



154CHAPTER 5. ENHANCED BEES ALGORITHM FOR ROBOTIC DISASSEMBLY PLANNING

5.3.4 Statistical Performance Metric Results

The statistical assumptions, as discussed in Section 3.2.1, were checked prior to conducting the

subsequent statistical test. From the boxplots, it is evident that the distribution of the data do not

follow a normal distribution. The statistical tests for normality and homogeneity, as presented in the

Appendix B, confirm that the results deviate from both normality and homogeneity assumptions.

Therefore, since the data violate the statistical assumptions required for conducting parametric

tests, nonparametric tests are employed. The significance of differences between the mean ranks

of various iterations and population sizes on EDBA and BAF results is examined using the

Kruskal-Wallis ANOVA test, as depicted in Tables 5.10 and 5.11. The test results indicate the

rejection of the null hypothesis (p < 0.05), providing strong evidence of a difference between

at least one pair of iterations and population sizes. Consequently, a post hoc test, namely, the

Dunn-Sidak test, is conducted. The results of the Dunn-Sidak test are presented in Figures 5.4 and

5.5.

Table 5.10: Kruskal-Wallis test results (Gear Pump A)

Table 5.11: Kruskal-Wallis test results (Gear Pump B)
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Figure 5.4: Dunn-Sidak test results (Gear Pump A)
Notes: Group 1 =100 31 EDBA, Group 2 = 100 31 BAF, Group 3 = 200 31 EDBA, Group 4 = 200 31

BAF,..., Group 29 = 500 51 EDBA, Group 30 = 500 51 BAF

The Dunn-Sidak results offer detailed insights into the groups that display variation in

performance based on iteration within each group size. Specifically, for Gear Pump A, the results

show significant differences of groups 1 and 11 (100 31 EDBA and 100 EDBA) to the other groups.

It is noteworthy that the BAF yielded consistent outcomes across all parameters, as evidenced by

the groups with an even-numbered labels. However, in the case of Gear Pump B, which as a

larger dataset in comparison to Gear Pump A, both EDBA and BAF displayed more pronounced

disparities across all groups.

These findings emphasise the importance of selecting optimal parameter settings for

disassembly time optimisation, taking into account both iteration size and population size. The

observed variability in performance highlights the need for careful parameter selection to achieve

optimal results.
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Figure 5.5: Dunn-Sidak test results (Gear Pump B)
Notes: Group 1 =100 31 EDBA, Group 2 = 100 31 BAF, Group 3 = 200 31 EDBA, Group 4 = 200 31

BAF,..., Group 29 = 500 51 EDBA, Group 30 = 500 51 BAF

In the subsequent step, groups with significant differences from the previous statistical test

are eliminated, and all iterations and population sizes are combined to focus on the groups that

demonstrate similar performance with the lowest mean objective values. This step ensures that

the final test results only include the groups that yield the best results. The outcomes of the final

statistical tests can be found in Figure 5.6, Tables 5.12 and 5.13.
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Figure 5.6: EDBA and BAF boxplot final results
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Table 5.12: Kruskal-Wallis final results (Gear Pump A)

Table 5.13: Kruskal-Wallis final results (Gear Pump B)

5.3.5 PEI results

As previously highlighted, PEI is designed to serve as a versatile index. In this experiment, the

objective is to minimise the disassembly time while also aiming for the lowest value of the NFE.

To achieve this, both metrics are placed in the denominator during the PEI calculation, as shown in

Equation (5.4), with equal weight assigned to all the metrics. It is important to note that since none

of the metrics are desirable to have the highest value, a value of 1 is assigned to the numerator.

PEI = 1/[Objω1NFEω2 ] (5.4)

To ensure a meaningful comparison, only the groups that exhibited no significant differences

in means were considered for the calculation. Figures 5.7a and 5.7b and Appendix B show the

PEI calculation results, scaled to units of 10−6. The figures provide a visual representation of the

PEI values for the selected groups, allowing for an easy comparison of their performance. Note

that, although this work employs both SPM and PEI, they can be used on their own as they are

independent performance measures. SPM is more suitable for an SO problem, while PEI can be
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utilised for both SO and MO optimisation.

(a) Gear Pump A

(b) Gear Pump B

Figure 5.7: PEI (histogram) and Average Disassembly Time (dot): Higher PEI and Lower
Disassembly Time are Better

Note: The line shows the highest PEI; EDBA represented by blue and BAF by purple colour.
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5.4 Discussion

The experimentation process for determining the optimal parameters setting for BAF was conducted

systematically in six steps, including statistical tests for result analysis. This approach was

implemented to ensure that the best parameters are obtained for the subsequent step of comparing

with EDBA. The best parameters for the RDSP problem were found to be m=4, maxnr = 13, and

maxrv = 10. The study conducted by [54] used a population range of 21 to 51. The number of

scout bees (n) in BAF was chosen in the range 6 to 26 to yield a similar population size of 31 to 51.

As previously mentioned, the population size 21 was eliminated from the final experiments. After

determining the optimal parameters settings, 50 independent runs were conducted for both EDBA

and BAF.

The minimum disassembly time can be achieved using both the EDBA and BAF, as presented

in Tables 5.6 and 5.7 for both gear pumps. These tables give the sequence, direction, tools, and

total time required to disassemble the gear pumps. However, the average results reveal differences

between the EDBA and BAF. The average results of EDBA and BAF, presented in Tables 5.8

and 5.9, indicate that BAF outperforms EDBA. Examination of the outcomes for Gear Pump A

shows that BAF consistently exhibits superior performance in comparison to EDBA across all 15

parameter configurations. BAF achieves a perfect accuracy rate in 12 instances, as evidenced by a

delta value of 0%, indicating that the accuracy is 100%. In contrast, EDBA only achieves 100%

accuracy once with the same settings. The standard error of the mean (SEM) and delta exhibit a

decreasing trend as larger parameter values are used. EDBA performed best in 500 iterations and

with a population size of 41, giving an average NFE of 22,540. In contrast, BAF demonstrated the

best performance in almost all cases. The average NFE was 5526 was the lowest NFE required to

achieve optimal outcomes in 100 iterations and with a population size of 51. Similarly, on Gear

Pump B, it is evident that BAF outperforms EDBA for all population sizes and iterations. Figure
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2 displays the boxplot results for Gear Pump A, indicating that BAF achieves better results. The

algorithm demonstrates the ability to find the minimum disassembly time with minimal data spread,

particularly at higher iterations for all tested population sizes. In Figure 3, the boxplot results for

Gear Pump B exhibit improved data visualisation, allowing for better observation of data spread.

In this boxplot, it becomes even clearer that BAF outperforms EDBA in terms of mean, minimum

disassembly time, and data spread across all tested iterations and population sizes.

As mentioned earlier, research by [54] indicates that EDBA performs best on Gear Pump

A in 300 iterations and with a population of 21 (NFE = 7520), while Gear Pump B achieves

optimal performance in 500 iterations with a population of 41 (NFE = 22,540). However, it is

important to emphasise that the conclusions drawn in this thesis are not solely based on statistically

descriptive results. To ensure the reliability and validity of the findings, additional statistical tests

are imperative to validate the parameter settings that yield the best performance. Relying solely

on the statistically descriptive results may not provide the conclusive evidence required to draw

robust conclusions. Since the experiments involved 50 independent runs, it is necessary to assess

whether parametric statistical tests can be employed, as discussed in Section 3.2.1. The statistical

assumptions for parametric tests include having a sample size of more than 30, data following a

normal distribution, and data belonging to the same populations. However, the boxplot results

indicate that the data do not follow a normal distribution, and thus normality and homogeneity

tests were conducted. The results confirm that the data violate the assumptions of normality and

homogeneity, necessitating the use of nonparametric tests despite the sample size exceeding 30.

As previously mentioned, the Kruskal-Wallis test indicated a significant difference among the

iterations within the same population size groups (see Tables 5.10 and 5.11. To further investigate

these differences, the Dunn-Sidak post hoc test was employed to identify specific groups that

exhibited statistically significant variations in mean values.

Figures 5.4 and 5.5 clearly demonstrate noticeable differences, particularly in the outcome

obtained from EDBA. Subsequently, the groups with significant differences are removed, and
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the statistical tests are repeated. The boxplot results, as shown in Figure 5.6, visually indicate

that the data distributions in each group are similar. The Kruskal-Wallis test (see Tables 5.12 and

5.13) confirmed that there was no statistically significant difference among the groups (p > 0.05).

Therefore, post hoc tests are not needed, as the Kruskal-Wallis test has already confirmed the

similarity among the groups.

The final step involves the utilisation of the proposed index, as detailed in Section 3.2.2. Within

this chapter, the index is calculated based on the disassembly time and NFE. The calculation for the

index has been previously explained in the previous section, and the obtained results, depicted in

Figure 5.7, exhibit the PEI values in conjunction with the average disassembly time. By examining

Figure 5.7, the parameter settings that yield the highest PEI can be identified, while the average

disassembly time has been graphically presented for analytical purposes. As mentioned previously,

the PEI is designed to be interpreted such that a higher index indicates better performance. The PEI

results reveal that the best PEI of 9.87 x 10−6 for Gear pumps A was obtained in 100 iterations and

with a population size of 41 for BAF while for EDBA the optimum PEI of 4.23 x 10−6 was found in

300 iterations and with a population size of 31. The results indicate that BAF with smaller NFE can

produce statistically similar outcomes to those with a higher NFE. Figure 5.7a displays the average

disassembly time as a dot, indicating that BAF consistently outperforms EDBA in all instances.

Directly comparing similar parameter settings for the two algorithms reveals that BAF consistently

yields higher PEI values – a highly desirable outcome for both gear pumps. In term of average

disassembly time, BAF yields lower values, aligning with the desired objective of minimising the

disassembly time. The results obtained from the PEI analysis of Gear Pump B (Figure 5.7b) clearly

indicate that the BAF outperforms the EDBA. The optimal results were achieved after 400 iterations

and with a population size of 31, yielding a PEI value of 2.04 x 10−6.

These findings highlight the robustness of the chosen parameter settings, which cannot be easily

discerned based on statistical description alone. It is evident from the results that the average

disassembly time exhibits a pattern of decreasing values with higher population size and iteration.
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However, when considering the average disassembly time and the PEI together, it becomes apparent

that the parameter settings yielding the lowest average disassembly time may not always be the

optimal ones. This is because the NFE also plays a crucial role, as a higher NFE indicates that

the algorithm required more evaluations to achieve the best results. Therefore, a balance between

the average disassembly time and the NFE needs to be considered to determine the best parameter

settings.

By utilising the SPM and PEI, it becomes possible to identify the optimal parameter settings

and evaluate the performance of the algorithms. From a statistical standpoint, it is evident that BAF

outperform EDBA, with BAF demonstrating a faster convergence (smaller NFE). This observation

is further supported by the average results presented in Tables 5.8 and 5.9, where it can be seen that

BAF consistently achieves lower disassembly times across various iterations and population sizes.

BAF consistenly outperforms EDBA for both gear pumps, particularly in larger datasets, such as

Gear Pump B, demonstrating that it is capable of handling more complex problems. Moreover,

the statistical tests and PEI calculations consistently indicate that BAF outperforms EDBA. These

findings provide valuable insights into the comparative performance of the algorithms and highlight

the advantages of employing BAF in terms of achieving lower disassembly times and higher PEI

values.

5.5 Summary

The enhancement of the BA was achieved by reducing the number of parameters to 4 and by

simplifying the algorithm steps, removing elite sites and incorporating the Fibonacci sequence to

guide the recruitment of bees for exploring the local search space. The SPM and PEI analyses

conducted in this study indicate that BAF exhibits better performance than the benchmark EDBA

in this RDSP problem. EDBA has been compared against other algorithms, including EDBA
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variants (EDBA without mutation operator (EDBA-WMO)), Genetic Algorithm with Precedence

Preserving Crossover (GA-PPX), and Self-Adaptive Simplified Swarm Optimisation (SASSO), and

has demonstrated better performance. Therefore, the fact that BAF outperforms EDBA in the

current study means that BAF also outperforms these other algorithms. This further strengthens

the evidence supporting the effectiveness of BAF as a robust and efficient algorithm in the context

of RDSP. This conclusion is supported by several key factors, including the lower NFE values

and the ability to achieve a minimum disassembly time. BAF consistently outperforms EDBA

on both gear pumps. These findings highlight the effectiveness of BAF as an optimal choice

for achieving efficient and effective RDSP. The SPM and PEI are both valuable tools in the

field of algorithm analysis. These tools serve as effective means to identify optimal parameter

settings and evaluate the performance of algorithms. SPM allows for statistical comparison and

analysis of algorithm performance based on specific metrics, providing insights into variations

and differences among different parameter settings. The PEI is a versatile metric that combines

multiple metrics, such as disassembly time and NFE, into a single index to provide a comprehensive

evaluation of algorithm performance. By combining SPM and PEI, researchers and practitioners

can make informed decisions regarding parameter settings and algorithm selection to optimise their

outcomes in various domains. Moreover, the validation of the proposed approach through a case

study provides substantial evidence of the algorithm’s robustness and effectiveness in successfully

solving the robotic disassembly problem, achieving objective 4. Although this chapter specifically

focuses on addressing the challenges of the RDSP problem, it is important to consider the wider

applicability of the proposed algorithm in future research. Future studies will explore and compare

the proposed enhancements with the BA2 approach in a broader context, encompassing both

continuous and combinatorial problems. The parameters used in this study are smaller compared

to those in TSP and VRP problems, which typically employ population sizes of 200 to 400 or even

larger. This suggests the need for further research on the potential applications of BAF in other

contexts. This would enable a comprehensive evaluation and understanding of the algorithm’s
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performance across different problem domains. Furthermore, investigating analogies with other

features of honeybees, such as their learning process, olfactory system, and hive organisation, could

lead to more improvements to the BA. The algorithm can also be utilised for parameter tuning in

machine learning including deep learning, thereby increasing its usefulness as an advanced AI tool.

This extension and exploration of the BA in different contexts will contribute to its versatility and

applicability in various optimisation domains.
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Chapter 6

Conclusion

Remanufacturing, as the backbone of acircular economy (CE), plays a vital role in prolonging

the lifespan of products and providing benefits to both customers and manufacturers. The initial

step in the remanufacturing process is disassembly, and the integration of robots in disassembly

operations enhances efficiency and effectiveness. The research in this field primarily focuses

on two key aspects: disassembly sequence planning and line balancing, both of which involve

NP-complete problems. To address these challenges, approximate optimisation methods, such as

metaheuristics, are commonly employed. In this thesis, the overarching aim is to explore and

develop efficient and sustainable solutions for robotic disassembly sequence planning (RDSP) and

robotic disassembly sequence planning (RDSP), with a specific emphasis on the application of the

bees algorithm (BA) and its novel enhancement as an intelligent nature-inspired algorithm. This

thesis presents a comprehensive investigation into these solutions, examining their effectiveness

and highlighting their contributions to the field.

The thesis can be summarised by the following key components:

1. Problem Definition and Research Overview: In Chapter 1, the research problem was clearly

defined, emphasising the increasing adoption of robotics in disassembly processes and the

associated challenges of optimising disassembly sequences and balancing workloads. An

167
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overview of the subsequent chapters was provided to establish the structure and direction of

the research.

2. Literature Review and Gap Identification: Chapter 2 gives a thorough literature review,

analysing existing research in the areas of RDSP and RDLB. Through the research position

table and bibliometric analysis, critical gaps in the fields of RDSP and RDLB were identified,

emphasising the need to bridge these gaps to achieve more efficient disassembly processes.

3. RDSP using the sustainability model, sustainability scenarios and case study validation:

Chapter 3 addresses the challenges of the RDSP problem by introducing a sustainability

model and sustainability scenarios. A case study on gear pumps was conducted to validate

the proposed approach and demonstrate its effectiveness in achieving efficient and effective

disassembly processes. The optimisation process focused on the utilisation of the BA.

Both single-objective (SO) and multiobjective (MO) approaches, including the aggregate

approach and the nondominated approach, were employed. The findings indicated that

nondominated approaches were more suitable for addressing the RDSP problem. The

analysis of the sustainable recovery option scenarios using the algorithm revealed that it

yielded the highest objectives in terms of monetary value compared to the three predefined

scenarios, thereby highlighting the viability of using algorithms to identify the best recovery

options. The multiobjective nondominated bees algorithm (MOBA) outperformed other

benchmark algorithms, as evidenced by the SPM and PEI results.

4. RDLBSD using the sustainability model, sustainability scenarios and case study validation:

Chapter 4 focuses on addressing the problem of sequence-dependent robotic disassembly

line balancing (RDLBSD) by adopting a holistic approach that considers the interconnection

between disassembly sequence planning and line balancing. The utilisation of the

sustainability model, scenarios, and case study validation was consistent with the approach

employed in the previous chapter. Building on the findings from Chapter 3, which highlighted
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the suitability of the nondominated approach, the MOBA was employed to optimise both

aspects simultaneously. This approach resulted in an efficient and effective disassembly

process that balanced profitability, energy savings, environmental impact reduction, and line

balance. The performance of MOBA algorithm was demonstrated through the PEI, and it

outperformed other algorithms.

5. Enhancement of the BA: Chapter 5 was dedicated to enhancing the BA specifically for

the robotic disassembly problem, with validation conducted on the RDSP problem. The

proposed Fibonacci bees algorithm (BAF), a novel enhancement that reduces parameter

settings from six to four and simplifies algorithm steps, was introduced. The effectiveness of

BAF was rigorously evaluated using two novel tools introduced in the Chapter 3: the SPM

and the PEI. A comparison was made between BAF and the EDBA, demonstrating that BAF

outperforms the EDBA in solving the RDSP problem.

6.1 Contributions

This work has made the following key contributions:

1. Sustainability model and sustainability scenarios: Objective 1 in this thesis has been

successfully achieved through the development of a sustainability model and scenarios, as

demonstrated in Chapters 3 and 4. The sustainability model addresses three objectives

in RDSP and four objectives in RDLBSD. The findings demonstrate that these problems

are well suited to be solved using a nondominated approach, which takes into account

the inherent conflicts among the objectives and the need for trade-offs in decision-making.

Notably, the profit objective yields the highest monetary value, highlighting the profitability

of remanufacturing and its significant role in promoting a CE. Additionally, remanufacturing

contributes to reducing the environmental burden by extending the product lifespan and
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enabling multiple reuse cycles before recycling or disposal. To explore various recovery paths

for each part, predefined scenarios of recycling (REC), remanufacturing (REM), and reuse

(REU) were employed. A novel scenario, ARS, was also introduced, where the algorithm

identifies the optimal recovery option for each part. The findings illustrate that the ARS

scenario can identify the optimal recovery option under ideal circumstances where all parts

can be disassembled and are in suitable condition for reuse. This sustainability model serves

as a foundation for future research endeavours, enabling the incorporation of complexities

such as unexpected disassembly scenarios.

2. Optimal Sequence Order in Robotic Disassembly: Chapters 3 and 5 were dedicated to

achieving the second objective of this thesis, which focused on determining the optimal

sequence order in robotic disassembly. The BA was applied in chapter 3, while the BAF was

applied in chapter 5. The findings of chapter 3 demonstrated that the MOBA outperforms

other algorithms, as proven by the SPM and PEI. The integration of the sustainability model

and scenarios provided valuable insights into incorporating sustainability considerations into

the decision-making process. In chapter 5, the enhancement of BA, BAF, is introduced,

and the findings demonstrate that the BAF outperforms the basic bees algorithm in the

robotic disassembly problem, EDBA. In both chapters, the optimal parameter settings were

successfully identified.

3. Sequence-Dependent Robotic Disassembly Line Balancing: Chapter 4 addressed the third

objective of this thesis by optimising RDLBSD. The interconnection between disassembly

sequence planning and line balancing was taken into account. To achieve this, the MOBA

was employed, utilising the sustainability model and scenarios developed earlier in the thesis.

The work presented in this chapter successfully optimised RDLBSD while considering

sustainability objectives.

4. Case Study Validation: The selection of real end-of-life (EoL) gear pumps as the case
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study not only highlights their practical applicability but also their suitability for validating

the proposed approach. These gear pumps have been extensively studied in the literature

of robotic disassembly sequence planning and line balancing, further emphasising their

relevance in achieving objective 4 of this thesis. By using these gear pumps as the case

study, the research successfully validates the proposed approach in Chapters 3, 4, and 5.

5. Novel Methods for Optimal Parameter Settings and Performance Evaluation. Novel

methods were proposed in this thesis to address the challenges of finding optimal parameter

settings and evaluating algorithm performance, effectively achieving the fifth objective.

These methods fill the gaps in previous research where the potential of statistical tests

was underutilised and conflicting results from multiple performance metrics needed to be

simplified. Chapter 3 introduces the use of SPM to identify optimal parameter settings

through rigorous statistical tests specifically suited for SO approaches. Additionally, the PEI

was introduced as a simple yet versatile index to evaluate algorithm performance, applicable

to both SO and MO-ND approaches. Both SPM and PEI were utilised in Chapters 3, 4, and 5,

providing valuable insights and streamlining the evaluation process. Notably, these tools are

not limited to robotic disassembly but can be generalised to compare optimisation algorithms

in various domains, further contributing to the field.

6. Enhancement of the BA for Robotic Disassembly Planning: Inspired by the Fibonacci

sequence inherited from drone ancestry, the BA was augmented by incorporating the

concept of the Fibonacci sequence into the local search process and reducing the number of

parameter settings to four. This enhancement, BAF, was introduced in chapter 5, successfully

achieving objective 6 of this study. The BAF was utilised in the SO version, applied in the

RDSP problem. The findings demonstrate that the BAF outperforms EDBA, especially on

larger problems. This highlights the BAF’s effectiveness in addressing complex real-world

disassembly challenges. Furthermore, the reduction of parameter settings not only improves
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the algorithm’s performance but also reduces the time required for parameter tuning.

6.2 Implications of Findings

The findings of this thesis carry significant implications that extend beyond the field of robotic

disassembly.

1. Theoretical implications:

(a) The development and application of the sustainability model contribute to the

theoretical understanding of incorporating sustainability principles into robotic

disassembly. This expands the theoretical knowledge base and promotes a broader

understanding of sustainable practices.

(b) The investigation and optimisation of sequence order in robotic disassembly expand

existing theories and models. The nondominated approach proves suitable for achieving

optimal sequence orders, advancing theoretical understanding in the field.

(c) The use of sequence-dependent robotic disassembly line balancing aligns with current

theories on sequence-dependent line balancing methodologies.

(d) The application and extension of multiple criteria decision-making concepts to robotic

disassembly through the PEI offer new insights into evaluating algorithm performance,

advancing theoretical understanding in complex decision-making scenarios.

(e) The use of statistical methodologies for parameter settings, SPM, presents a novel

perspective on optimising the efficacy of evaluation tools for assessing algorithm

performance.

(f) The introduction of the BAF represents a theoretical contribution by incorporating the

Fibonacci sequence concept into the BA. This advancement enhances the theoretical
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understanding of algorithmic improvements inspired by natural phenomena, drawing

analogies from the drone’s ancestry.

(g) Another significant theoretical contribution is the reduction of parameter settings in the

BA, a novel approach not fully explored in the context of robotic disassembly before.

This reduction saves time in finding optimal parameter settings without compromising

algorithm performance.

2. Methodological implications:

(a) SPM: The introduction of SPM addresses a methodological gap by leveraging statistical

tests to assess performance in optimisation. This extends beyond robotic disassembly

and enhances the methodology of performance evaluation.

(b) PEI: The PEI provides a simplified and versatile approach to evaluating algorithm

performance that is applicable to various optimisation problems. This methodological

improvement facilitates effective algorithm selection and enables fair comparisons

among different approaches.

3. Practical implications: The practical implications highlight the application and benefits

of the developed sustainability model in real-world scenarios, particularly for EoL

products. By incorporating sustainability objectives and automatic recovery scenarios into

decision-making, the model empowers industry practitioners to make informed decisions

that align with sustainability goals. One significant practical implication is the potential to

encourage industry focus on remanufacturing by showcasing its profitability and aligning

it with sustainability goals. The sustainability model guides industry practitioners towards

more sustainable practices, including remanufacturing, as a viable business strategy.
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6.3 Future work

While this thesis has made contributions to the area of robotic disassembly and the enhancement of

the BA, there are several areas for future research that can further enhance the understanding and

application of these findings. Potential directions for future research include the following:

1. Stochastic and Uncertainty Analysis: Incorporating stochastic elements and addressing

uncertainties in disassembly processes can provide a more realistic representation of

real-world scenarios. Future research should explore the use of probabilistic models and

optimisation algorithms capable of handling uncertainties in disassembly sequences and line

balancing.

2. Hazardous and Selective Disassembly: Expanding the scope of the robotic disassembly

problem to include hazardous parts and selective disassembly, such as prioritising the

retrieval of expensive components, presents opportunities for future research to address more

complex scenarios and considerations.

3. Leveraging Advanced Artificial Intelligence (AI) Techniques and Technologies: Integrating

advanced AI techniques and technologies, such as deep learning and digital twin technology,

holds promise for improving the accuracy and decision-making capabilities of disassembly

processes. While the most recent research in RDSP has explored the use of digital twins and

deep learning, these techniques are still in their infancy and require further exploration. It

is noteworthy that their application in RDLB is currently limited in the literature, presenting

an opportunity for future research to investigate their potential impact on the line balancing

efficiency and effectiveness. By utilising deep learning algorithms and leveraging digital

twin technology, researchers can optimise and refine the disassembly processes, enabling

more precise decision-making and improved overall performance.
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4. Generalisability and scalability: While this thesis has focused on specific scenarios and

components, future research should aim to assess the generalisability and scalability of

the proposed models. Conducting studies on a wider range of real EoL products and

more complex items will help validate the effectiveness and applicability of the proposed

approaches.

5. Industry Collaboration and Implementation: Collaborating with industry stakeholders and

implementing the proposed models and algorithms in real-world settings can provide

valuable insights and practical feedback. Future research should aim to establish partnerships

with remanufacturers and manufacturers to validate and implement the proposed approaches

in industrial settings.

6. Extension of BAF: Future research should explore extending the BAF to other optimisation

problems and domains to assess its applicability. Additionally, conducting a fair comparison

between BAF and the recently introduced bees algorithm with 2 parameters (BA2) can provide

further insights into their relative performance and effectiveness. Furthermore, investigating

analogies with other features of honeybees, such as their learning process, olfactory system,

and hive organisation, could lead to more improvements to the BA. The BA can also be

utilised for parameter tuning in machine learning and deep learning, thereby enhancing its

potential to address advanced artificial intelligence techniques, as mentioned in point 3. This

extension and exploration of the BA in different contexts will contribute to its versatility and

applicability in various optimisation domains.

By addressing these future research directions, the field of robotic disassembly can continue

to advance and develop more efficient and sustainable disassembly processes. Moreover, these

research directions can contribute to the ongoing development of the BA and its applications in

various domains.
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[144] Z. A. Çil, S. Mete, F. Serin, Robotic Disassembly Line Balancing Problem: A Mathematical
model and Ant Colony Optimization Approach, Applied Mathematical Modelling 86 (2020)
335–348.

[145] Y. Fang, H. Xu, Q. Liu, D. T. Pham, Evolutionary Optimization using Epsilon
Method for Resource-Constrained Multi-Robotic Disassembly Line Balancing, Journal of
Manufacturing Systems 56 (2020) 392–413.

[146] Y. Fang, H. Zhang, Q. Liu, Z. Zhou, B. Yao, D. T. Pham, Interval Multi-Objective
Evolutionary Optimization for Disassembly Line Balancing with Uncertain Task Time,
volume 2, American Society of Mechanical Engineers, 2020.

[147] S. Lei, X. Guo, M. Zhou, J. Wang, L. Qi, S. Qin, A constrained decomposition grid approach
to disassembly line balancing problems, volume 2021-December, IEEE Computer Society,
2021, pp. 162–167.

[148] H. E. Tseng, C. C. Chang, T. W. Chung, Applying Improved Particle Swarm Optimization
to Asynchronous Parallel Disassembly Planning, IEEE Access 10 (2022) 80555–80564.

[149] Y. Laili, Y. Wang, Y. Fang, D. T. Pham, Evolutionary Optimisation for Robotic
Disassembly Sequence Planning and Line Balancing, Optimisation of Robotic Disassembly
for Remanufacturing (2022) 85–110.



188 REFERENCES

[150] S. Zhang, P. Liu, X. Guo, J. Wang, S. Qin, Y. Tang, An Improved Tabu Search Algorithm
for Multi-robot Hybrid Disassembly Line Balancing Problems, in: 2022 International
Conference on Cyber-Physical Social Intelligence (ICCSI), IEEE, 2022, pp. 315–320.

[151] S. Zhang, X. Guo, J. Wang, S. Liu, S. Qin, Z. Zhao, An Improved Multi-Objective
Multi-Verse Optimization Algorithm for Multifunctional Robotic Parallel Disassembly Line
Balancing Problems, in: 2022 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), IEEE, 2022, pp. 562–567.

[152] Y. Laili, Y. Wang, Y. Fang, D. T. Pham, Solutions for Robotic Disassembly Line Balancing,
Optimisation of Robotic Disassembly for Remanufacturing (2022) 143–151.

[153] G. Xu, Z. Zhang, Z. Li, X. Guo, L. Qi, X. Liu, Multi-Objective Discrete Brainstorming
Optimizer to Solve the Stochastic Multiple-Product Robotic Disassembly Line Balancing
Problem Subject to Disassembly Failures, Mathematics 11 (2023) 1557.

[154] S. Qin, S. Zhang, J. Wang, S. Liu, X. Guo, L. Qi, Multi-objective Multi-verse Optimizer
for Multi-robotic U-shaped Disassembly Line Balancing Problems, IEEE Transactions on
Artificial Intelligence (2023).

[155] K. Z. Gao, Z. He, Y. Huang, P. Y. Duan, P. N. Suganthan, A Survey on
Meta-Heuristics for Solving Disassembly Line Balancing, Planning and Scheduling
Problems in Remanufacturing, Swarm and Evolutionary Computation 57 (2020) 100719.

[156] A. Lambert, Optimal Disassembly of Complex Products, International Journal of Production
Research 35 (1997) 2509–2524.

[157] B. Yuce, M. S. Packianather, E. Mastrocinque, D. T. Pham, A. Lambiase, Honey Bees
Inspired Optimization Method: The Bees Algorithm, Insects 4 (2013) 646–662.

[158] H. De la Torre Gutiérrez, D. T. Pham, Identification of Patterns in Control Charts for
Processes with Statistically Correlated Noise, International Journal of Production Research
56 (2018) 1504–1520.

[159] M. Castellani, D. T. Pham, The Bees Algorithm—A Gentle Introduction, Springer
International Publishing, Cham, 2023, pp. 3–21.

[160] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, M. Zaidi, The Bees Algorithm,
Technical Note, Manufacturing Engineering Centre, Cardiff University, UK (2005).
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Appendix A

Input Data

Table A.1: Gear pump A. Properties and disassembly requirements for all components.
.

Item Name Material Volume Weight Disassembly point Disassembly tb(xi)
(mm3) (g.) X Y Z tool (s)

1 Bolt A Steel 1.006,5 7,9 49,4 105,5 -12,6 Spanner-I 3
2 Bolt B Steel 1.006,5 7,9 74,4 81 -12,6 Spanner-I 3
3 Bolt C Steel 1.006,5 7,9 74,4 45 -12,6 Spanner-I 3
4 Bolt D Steel 1.006,5 7,9 49,4 20,5 -12,6 Spanner-I 3
5 Bolt E Steel 1.006,5 7,9 24,4 45 -12,6 Spanner-I 3
6 Bolt F Steel 1.006,5 7,9 24,4 81 -12,6 Spanner-I 3
7 Cover Steel 68.552,5 538,1 49,4 63 -20,6 Gripper-II 4
8 Gasket Rubber 4.450,4 4,2 49,4 105,5 1,4 Gripper-I 3
9 Gear A Steel 15.215,5 119,4 49,4 81 3,4 Gripper-I 6

10 Gear B Steel 15.215,5 119,4 49,4 45 3,4 Gripper-I 6
11 Driven Shaft A Steel 5.207,0 40,9 49,4 81 -7,6 Gripper-I 4
12 Base Steel 195.539,3 1535,0 49,4 81 49,4 Gripper-II 8
13 Driven Shaft B Steel 18.267,2 143,4 49,4 45 152,4 Gripper-I 4
14 Packing Gland Steel 2.709,0 21,3 49,4 45 91,4 Gripper-I 2
15 Gland Nut Steel 12.046,9 94,6 49,4 45 96,4 Spanner-II 3
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Table A.2: Gear pump B. Properties and disassembly requirements for all components.

Item Name Material Volume Weight Disassembly point Disassembly tb(xi)
(mm3) (g.) X Y Z tool (s)

1 Bolt A Steel 1,243.1 9.8 59.1 114 -48.4 Spanner-I 4
2 Bolt B Steel 1,243.1 9.8 90.3 89 -48.4 Spanner-I 4
3 Bolt C Steel 1,243.1 9.8 90.3 33 -48.4 Spanner-I 4
4 Bolt D Steel 1,243.1 9.8 59.1 8 -48.4 Spanner-I 4
5 Bolt E Steel 1,243.1 9.8 27.9 33 -48.4 Spanner-I 4
6 Bolt F Steel 1,243.1 9.8 27.9 89 -48.4 Spanner-I 4
7 Cover Steel 95,973.5 753.4 59.1 82 -64.6 Gripper-II 5
8 Gasket Rubber 5,496.3 5.2 59.1 114 -31.4 Gripper-I 4
9 Gear A Steel 21,301.7 167.2 59.1 82 -30.9 Gripper-I 6

10 Gear B Steel 21,301.7 167.2 59.1 40 -30.9 Gripper-I 6
11 Shaft A Steel 6,430.7 50.5 59.1 40 -48.9 Gripper-I 4
12 Base Steel 273,755.0 2149.0 59.1 114 7.1 Gripper-II 4
13 Shaft B Steel 22,560.0 177.1 59.1 82 136.1 Gripper-I 8
14 Gland A PTFE 3,243.6 7.1 59.1 94.8 34.1 Gripper-I 3
15 Gland B PTFE 3,243.6 7.1 59.1 94.8 41.1 Gripper-I 3
16 Gland C PTFE 3,243.6 7.1 59.1 94.8 48.1 Gripper-I 3
17 Gland D PTFE 3,243.6 7.1 59.1 94.8 55.1 Gripper-I 3
18 Gland E Steel 14,456.3 113.5 59.1 82 79.1 Gripper-I 3
19 Bolt stud A Steel 998.1 7.8 35.1 82 89.1 Spanner-II 3
20 Bolt stud B Steel 998.1 7.8 83.1 82 89.1 Spanner-II 3
21 Nut A Steel 289.5 2.3 35.1 82 84.1 Spanner-III 4
22 Nut B Steel 289.5 2.3 83.1 82 84.1 Spanner-III 4
23 Nut C Steel 289.5 2.3 35.1 82 87.1 Spanner-III 4
24 Nut D Steel 289.5 2.3 83.1 82 87.1 Spanner-III 4

Table A.3: Gear pump A. (PD Matrix)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M
1 0.0 55.0 85.5 121.0 85.5 55.0 70.5 Inf Inf Inf Inf 164.4 258.6 209.9 213.3 202.6
2 55.0 0.0 56.0 85.5 97.6 86.0 59.8 Inf Inf Inf Inf 195.5 285.5 238.3 241.5 191.9
3 85.5 56.0 0.0 55.0 86.0 97.6 59.8 Inf Inf Inf Inf 231.5 321.5 274.3 277.5 189.3
4 121.0 85.5 55.0 0.0 55.0 85.5 70.5 Inf Inf Inf Inf 249.4 343.6 294.9 298.3 196.8
5 85.5 97.6 86.0 55.0 0.0 56.0 59.8 Inf Inf Inf Inf 231.5 321.5 274.3 277.5 189.3
6 55.0 86.0 97.6 85.5 56.0 0.0 59.8 Inf Inf Inf Inf 195.5 285.5 238.3 241.5 191.9
7 70.5 59.8 59.8 70.5 59.8 59.8 0.0 72.5 62.0 62.0 51.0 209.9 311.5 260.4 273.8 187.3
8 Inf Inf Inf Inf Inf Inf 72.5 0.0 64.5 100.5 53.5 145.3 244.6 195.9 199.3 215.6
9 Inf Inf Inf Inf Inf Inf 62.0 64.5 0.0 78.0 11.0 171.7 271.0 222.3 225.7 212.8

10 Inf Inf Inf Inf Inf Inf 62.0 100.5 78.0 0.0 67.0 207.7 307.0 258.3 261.7 210.4
11 Inf Inf Inf Inf Inf Inf 51.0 53.5 11.0 67.0 0.0 178.9 278.1 229.4 232.8 201.8
12 164.4 195.5 231.5 249.4 231.5 195.5 209.9 145.3 171.7 207.7 178.9 0.0 144.2 84.9 96.1 171.9
13 258.6 285.5 321.5 343.6 321.5 285.5 311.5 244.6 271.0 307.0 278.1 144.2 0.0 61.0 56.0 423.1
14 209.9 238.3 274.3 294.9 274.3 238.3 260.4 195.9 222.3 258.3 229.4 84.9 61.0 0.0 Inf 362.1
15 213.3 241.5 277.5 298.3 277.5 241.5 273.8 199.3 225.7 261.7 232.8 96.1 56.0 Inf 0.0 316.5
M 202.6 191.9 189.3 196.8 189.3 191.9 187.3 215.6 212.8 210.4 201.8 171.9 423.1 362.1 316.5 0.0
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Table A.4: Gear pump B (PD Matrix)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 M
1 0.0 76.2 132.2 126.0 132.2 76.2 68.2 Inf Inf Inf Inf 75.5 236.5 121.7 128.7 135.7 142.7 179.5 213.5 213.5 208.5 208.5 211.5 211.5 244.1
2 76.2 0.0 76.0 132.2 138.4 82.4 74.4 Inf Inf Inf Inf 131.7 242.7 139.5 146.5 153.5 160.5 185.7 219.7 171.7 214.7 166.7 217.7 169.7 219.0
3 132.2 76.0 0.0 76.2 82.4 138.4 116.4 Inf Inf Inf Inf 187.7 284.7 195.5 202.5 209.5 216.5 227.7 261.7 213.7 256.7 208.7 259.7 211.7 240.7
4 126.0 132.2 76.2 0.0 76.2 132.2 110.2 Inf Inf Inf Inf 181.5 278.5 189.3 196.3 203.3 210.3 221.5 255.5 255.5 250.5 250.5 253.5 253.5 280.1
5 132.2 138.4 82.4 76.2 0.0 76.0 116.4 Inf Inf Inf Inf 187.7 284.7 195.5 202.5 209.5 216.5 227.7 213.7 261.7 208.7 256.7 211.7 259.7 296.6
6 76.2 82.4 138.4 132.2 76.0 0.0 74.4 Inf Inf Inf Inf 131.7 242.7 139.5 146.5 153.5 160.5 185.7 171.7 219.7 166.7 214.7 169.7 217.7 279.3
7 Inf Inf Inf Inf Inf Inf 0.0 85.2 Inf Inf Inf 123.7 220.7 131.5 138.5 145.5 152.5 163.7 197.7 197.7 192.7 192.7 195.7 195.7 250.3
8 Inf Inf Inf Inf Inf Inf Inf 0.0 52.5 94.5 Inf 58.5 219.5 104.7 111.7 118.7 125.7 162.5 196.5 196.5 191.5 191.5 194.5 194.5 245.8
9 Inf Inf Inf Inf Inf Inf Inf Inf 0.0 62.0 Inf 90.0 187.0 97.8 104.8 111.8 118.8 130.0 164.0 164.0 159.0 159.0 162 162 252.6

10 Inf Inf Inf Inf Inf Inf Inf Inf 62.0 0.0 38.0 132.0 229.0 139.8 146.8 153.8 160.8 172.0 206.0 206.0 201.0 201.0 204 204 267.0
11 Inf Inf Inf Inf Inf Inf Inf Inf 80.0 Inf 0.0 150.0 247.0 157.8 164.8 171.8 178.8 190.0 224.0 224.0 219.0 219.0 222 222 265.3
12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 253.9
13 236.5 242.7 284.7 278.5 284.7 242.7 220.7 219.5 187.0 229.0 247.0 181.0 0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 320.8
14 121.7 139.5 195.5 189.3 195.5 139.5 131.5 104.7 97.8 139.8 157.8 66.2 134.8 0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 266.1
15 128.7 146.5 202.5 196.3 202.5 146.5 138.5 111.7 104.8 146.8 164.8 73.2 Inf 27.0 0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf 268.8
16 135.7 153.5 209.5 203.3 209.5 153.5 145.5 118.7 111.8 153.8 171.8 80.2 Inf Inf 27.0 0.0 Inf Inf Inf Inf Inf Inf Inf Inf 271.6
17 142.7 160.5 216.5 210.3 216.5 160.5 152.5 125.7 118.8 160.8 178.8 87.2 Inf Inf Inf 27.0 0.0 Inf Inf Inf Inf Inf Inf Inf 274.6
18 179.5 185.7 227.7 221.5 227.7 185.7 163.7 162.5 130.0 172.0 190.0 124.0 Inf Inf Inf Inf 56.8 0.0 Inf Inf Inf Inf Inf Inf 288.6
19 213.5 219.7 261.7 255.5 213.7 171.7 197.7 196.5 164.0 206.0 224.0 158.0 Inf Inf Inf Inf Inf 54.0 0.0 68.0 Inf 73.0 Inf 70 313.7
20 213.5 171.7 213.7 255.5 261.7 219.7 197.7 196.5 164.0 206.0 224.0 158.0 Inf Inf Inf Inf Inf 54.0 68.0 0.0 73.0 Inf 70 Inf 274.4
21 208.5 214.7 256.7 250.5 208.7 166.7 192.7 191.5 159.0 201.0 219.0 153.0 Inf Inf Inf Inf Inf Inf 25.0 73.0 0.0 68.0 Inf 71 311.3
22 208.5 166.7 208.7 250.5 256.7 214.7 192.7 191.5 159.0 201.0 219.0 153.0 Inf Inf Inf Inf Inf Inf 73.0 25.0 68.0 0.0 71 Inf 271.6
23 211.5 217.7 259.7 253.5 211.7 169.7 195.7 194.5 162.0 204.0 222.0 156.0 Inf Inf Inf Inf Inf Inf Inf 70.0 23.0 71.0 0 68 312.7
24 211.5 169.7 211.7 253.5 259.7 217.7 195.7 194.5 162.0 204.0 222.0 156.0 Inf Inf Inf Inf Inf Inf 70.0 Inf 71.0 23.0 68 0 273.3
M 244.1 219.0 240.7 280.1 296.6 279.3 250.3 245.8 252.6 267.0 265.3 253.9 320.8 266.1 268.8 271.6 274.6 288.6 313.7 274.4 311.3 271.6 312.7 273.3 0
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Table A.5: Input data for f1. Gear pump A.

Item RPi RCi CDi rci,1 rci,2 ohi,1 ohi,2 ohi,3 ohi,4 dpi,1 dpi,2 dpi,3 dpi,4

1 0.35 0.0024 0 0.1 0.3 0.0022 0.0056 0.0022 0.0011 0.09 0.13 0.10 0.07

2 0.35 0.0024 0 0.1 0.3 0.0022 0.0056 0.0022 0.0011 0.09 0.13 0.10 0.07

3 0.35 0.0024 0 0.1 0.3 0.0022 0.0056 0.0022 0.0011 0.09 0.13 0.10 0.07

4 0.35 0.0024 0 0.1 0.3 0.0022 0.0056 0.0022 0.0011 0.09 0.13 0.10 0.07

5 0.35 0.0024 0 0.1 0.3 0.0022 0.0056 0.0022 0.0011 0.09 0.13 0.10 0.07

6 0.35 0.0024 0 0.1 0.3 0.0022 0.0056 0.0022 0.0011 0.09 0.13 0.10 0.07

7 8.50 0.1614 0 1.2 4 0.1530 0.3826 0.1530 0.0765 0.12 0.17 0.14 0.09

8 0.00 0.0000 0.3 0 0 0.0012 0.0030 0.0012 0.0006 0.09 0.13 0.10 0.07

9 12.70 0.0358 0 1 7.5 0.0340 0.0849 0.0340 0.0170 0.17 0.26 0.21 0.14

10 12.70 0.0358 0 1 7.5 0.0340 0.0849 0.0340 0.0170 0.17 0.26 0.21 0.14

11 3.50 0.0123 0 0.3 2 0.0116 0.0291 0.0116 0.0058 0.12 0.17 0.14 0.09

12 37.00 0.4605 0 4.5 8.3 0.4366 1.0914 0.4366 0.2183 0.23 0.35 0.28 0.18

13 6.30 0.0430 0 0.7 3.2 0.0408 0.1020 0.0408 0.0204 0.12 0.17 0.14 0.09

14 2.50 0.0064 0 0.5 1.2 0.0060 0.0151 0.0060 0.0030 0.06 0.09 0.07 0.05

15 3.00 0.0284 0 0.7 1.6 0.0269 0.0672 0.0269 0.0134 0.09 0.13 0.10 0.07



197

Table A.6: Input data for f1. Gear pump B.

Item RPi RCi CDi rci,1 rci,2 ohi,1 ohi,2 ohi,3 ohi,4 dpi,1 dpi,2 dpi,3 dpi,4

1 0.43 0.0049 0 0.1 0.3 0.0024 0.0060 0.0024 0.0012 0.12 0.17 0.14 0.09

2 0.43 0.0049 0 0.1 0.3 0.0024 0.0060 0.0024 0.0012 0.12 0.17 0.14 0.09

3 0.43 0.0049 0 0.1 0.3 0.0024 0.0060 0.0024 0.0012 0.12 0.17 0.14 0.09

4 0.43 0.0049 0 0.1 0.3 0.0024 0.0060 0.0024 0.0012 0.12 0.17 0.14 0.09

5 0.43 0.0049 0 0.1 0.3 0.0024 0.0060 0.0024 0.0012 0.12 0.17 0.14 0.09

6 0.43 0.0049 0 0.1 0.3 0.0024 0.0060 0.0024 0.0012 0.12 0.17 0.14 0.09

7 11.90 0.3767 0 1.2 2.5 0.1854 0.4634 0.1854 0.0927 0.14 0.22 0.17 0.12

8 0.00 0.0026 0.2 0 0 0.0013 0.0032 0.0013 0.0006 0.12 0.17 0.14 0.09

9 15.78 0.0836 0 0.6 3 0.0411 0.1029 0.0411 0.0206 0.17 0.26 0.21 0.14

10 15.78 0.0836 0 0.6 3 0.0411 0.1029 0.0411 0.0206 0.17 0.26 0.21 0.14

11 4.32 0.0252 0 0.3 0.9 0.0124 0.0311 0.0124 0.0062 0.12 0.17 0.14 0.09

12 37.80 1.0745 0 1.5 3.5 0.5287 1.3218 0.5287 0.2644 0.12 0.17 0.14 0.09

13 7.78 0.0885 0 0.7 2 0.0436 0.1089 0.0436 0.0218 0.23 0.35 0.28 0.18

14 0.00 0.0036 0.15 0 0 0.0018 0.0044 0.0018 0.0009 0.09 0.13 0.10 0.07

15 0.00 0.0036 0.15 0 0 0.0018 0.0044 0.0018 0.0009 0.09 0.13 0.10 0.07

16 0.00 0.0036 0.15 0 0 0.0018 0.0044 0.0018 0.0009 0.09 0.13 0.10 0.07

17 0.00 0.0036 0.15 0 0 0.0018 0.0044 0.0018 0.0009 0.09 0.13 0.10 0.07

18 3.60 0.0567 0 0.2 0.7 0.0279 0.0698 0.0279 0.0140 0.09 0.13 0.10 0.07

19 0.35 0.0039 0 0.1 0.3 0.0019 0.0048 0.0019 0.0010 0.09 0.13 0.10 0.07

20 0.35 0.0039 0 0.1 0.3 0.0019 0.0048 0.0019 0.0010 0.09 0.13 0.10 0.07

21 0.20 0.0011 0 0.1 0.3 0.0006 0.0014 0.0006 0.0003 0.12 0.17 0.14 0.09

22 0.20 0.0011 0 0.1 0.3 0.0006 0.0014 0.0006 0.0003 0.12 0.17 0.14 0.09

23 0.20 0.0011 0 0.1 0.3 0.0006 0.0014 0.0006 0.0003 0.12 0.17 0.14 0.09

24 0.20 0.0011 0 0.1 0.3 0.0006 0.0014 0.0006 0.0003 0.12 0.17 0.14 0.09
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Table A.7: Input data for f2. Gear pump A.

Item gri,1 gri,2 gd1,i gd3,i gci,1 gci,2 gci,3 gci,4

1 0.115 0.115 0.042 0.069 0.006 0.035 0.012 0.023

2 0.115 0.115 0.042 0.069 0.006 0.035 0.012 0.023

3 0.115 0.115 0.042 0.069 0.006 0.035 0.012 0.023

4 0.115 0.115 0.042 0.069 0.006 0.035 0.012 0.023

5 0.115 0.115 0.042 0.069 0.006 0.035 0.012 0.023

6 0.115 0.115 0.042 0.069 0.006 0.035 0.012 0.023

7 1.302 1.302 0.056 0.069 0.065 0.391 0.130 0.260

8 0.014 0.014 0.042 0.069 0.001 0.004 0.001 0.003

9 0.850 0.850 0.083 0.069 0.043 0.255 0.085 0.170

10 0.850 0.850 0.083 0.069 0.043 0.255 0.085 0.170

11 0.138 0.138 0.056 0.069 0.007 0.041 0.014 0.028

12 2.480 2.480 0.111 0.069 0.124 0.744 0.248 0.496

13 0.592 0.592 0.056 0.069 0.030 0.178 0.059 0.118

14 0.234 0.234 0.028 0.069 0.012 0.070 0.023 0.047

15 0.284 0.284 0.042 0.069 0.014 0.085 0.028 0.057

Note: gd2,i, gd4,i and gd5,i values are obtained from the GD matrix
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Table A.8: GD matrix for f2. Gear pump A.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M
1 0.000 0.032 0.050 0.071 0.050 0.032 0.263 Inf Inf Inf Inf 0.254 0.401 0.366 0.339 0.017
2 0.032 0.000 0.033 0.050 0.057 0.050 0.257 Inf Inf Inf Inf 0.248 0.395 0.359 0.333 0.016
3 0.050 0.033 0.000 0.032 0.050 0.057 0.256 Inf Inf Inf Inf 0.247 0.394 0.358 0.331 0.016
4 0.071 0.050 0.032 0.000 0.032 0.050 0.260 Inf Inf Inf Inf 0.251 0.398 0.362 0.336 0.016
5 0.050 0.057 0.050 0.032 0.000 0.033 0.256 Inf Inf Inf Inf 0.247 0.394 0.358 0.331 0.016
6 0.032 0.050 0.057 0.050 0.033 0.000 0.257 Inf Inf Inf Inf 0.248 0.395 0.359 0.333 0.016
7 Inf Inf Inf Inf Inf Inf 0.000 0.271 Inf Inf Inf 0.123 0.392 0.357 0.330 0.016
8 Inf Inf Inf Inf Inf Inf Inf 0.000 0.038 0.059 Inf 0.262 0.143 0.115 0.347 0.018
9 Inf Inf Inf Inf Inf Inf Inf Inf 0.000 0.046 0.006 0.260 0.159 0.130 0.345 0.018

10 Inf Inf Inf Inf Inf Inf Inf Inf 0.046 0.000 0.039 0.259 0.180 0.151 0.343 0.017
11 Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.039 0.000 0.254 0.163 0.134 0.338 0.017
12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.000 Inf Inf Inf 0.014
13 0.401 0.395 0.394 0.398 0.394 0.395 0.392 0.143 0.159 0.180 0.163 0.383 0.000 Inf Inf 0.035
14 0.366 0.359 0.358 0.362 0.358 0.359 0.357 0.115 0.130 0.151 0.134 0.348 0.036 0.000 Inf 0.030
15 0.339 0.333 0.331 0.336 0.331 0.333 0.330 0.347 0.345 0.343 0.338 0.321 Inf 0.432 0.000 0.026
M 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.018 0.018 0.017 0.017 0.014 0.035 0.030 0.026 0.000



200 APPENDIX A. INPUT DATA

Table A.9: Input data for f2. Gear pump B.

Item gri,1 gri,2 gd1,i gd3,i gci,1 gci,2 gci,3 gci,4
1 0.896 0.896 0.056 0.056 0.045 0.269 0.090 0.179
2 0.896 0.896 0.056 0.056 0.045 0.269 0.090 0.179
3 0.896 0.896 0.056 0.056 0.045 0.269 0.090 0.179
4 0.896 0.896 0.056 0.056 0.045 0.269 0.090 0.179
5 0.896 0.896 0.056 0.056 0.045 0.269 0.090 0.179
6 0.896 0.896 0.056 0.056 0.045 0.269 0.090 0.179
7 11.152 11.152 0.069 0.056 0.558 3.346 1.115 2.230
8 0.112 0.112 0.056 0.056 0.006 0.034 0.011 0.022
9 6.791 6.791 0.083 0.056 0.340 2.037 0.679 1.358

10 6.791 6.791 0.083 0.056 0.340 2.037 0.679 1.358
11 1.111 1.111 0.056 0.056 0.056 0.333 0.111 0.222
12 21.897 21.897 0.056 0.056 1.095 6.569 2.190 4.379
13 4.733 4.733 0.111 0.056 0.237 1.420 0.473 0.947
14 0.122 0.122 0.042 0.056 0.006 0.037 0.012 0.024
15 0.122 0.122 0.042 0.056 0.006 0.037 0.012 0.024
16 0.122 0.122 0.042 0.056 0.006 0.037 0.012 0.024
17 0.122 0.122 0.042 0.056 0.006 0.037 0.012 0.024
18 4.819 4.819 0.042 0.056 0.241 1.446 0.482 0.964
19 0.885 0.885 0.042 0.056 0.044 0.266 0.089 0.177
20 0.885 0.885 0.042 0.056 0.044 0.266 0.089 0.177
21 0.223 0.223 0.056 0.056 0.011 0.067 0.022 0.045
22 0.223 0.223 0.056 0.056 0.011 0.067 0.022 0.045
23 0.223 0.223 0.056 0.056 0.011 0.067 0.022 0.045
24 0.223 0.223 0.056 0.056 0.011 0.067 0.022 0.045

Note: gd2,i, gd4,i and gd5,i values are obtained from the GD matrix
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Table A.10: GD matrix for f2. Gear pump B.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 M
1 0.000 0.044 0.077 0.073 0.077 0.044 0.039 Inf Inf Inf Inf 0.044 0.137 0.070 0.074 0.079 0.083 0.104 0.124 0.124 0.121 0.121 0.122 0.122 0.141
2 0.044 0.000 0.044 0.077 0.080 0.048 0.043 Inf Inf Inf Inf 0.076 0.140 0.081 0.085 0.089 0.093 0.107 0.127 0.099 0.124 0.096 0.126 0.098 0.127
3 0.077 0.044 0.000 0.044 0.048 0.080 0.067 Inf Inf Inf Inf 0.109 0.165 0.113 0.117 0.121 0.125 0.132 0.151 0.124 0.149 0.121 0.150 0.123 0.139
4 0.073 0.077 0.044 0.000 0.044 0.077 0.064 Inf Inf Inf Inf 0.105 0.161 0.110 0.114 0.118 0.122 0.128 0.148 0.148 0.145 0.145 0.147 0.147 0.162
5 0.077 0.080 0.048 0.044 0.000 0.044 0.067 Inf Inf Inf Inf 0.109 0.165 0.113 0.117 0.121 0.125 0.132 0.124 0.151 0.121 0.149 0.123 0.150 0.172
6 0.044 0.048 0.080 0.077 0.044 0.000 0.043 Inf Inf Inf Inf 0.076 0.140 0.081 0.085 0.089 0.093 0.107 0.099 0.127 0.096 0.124 0.098 0.126 0.162
7 Inf Inf Inf Inf Inf Inf 0.000 0.049 Inf Inf Inf 0.072 0.128 0.076 0.080 0.084 0.088 0.095 0.114 0.114 0.112 0.112 0.113 0.113 0.145
8 Inf Inf Inf Inf Inf Inf Inf 0.000 0.030 0.055 Inf 0.034 0.127 0.061 0.065 0.069 0.073 0.094 0.114 0.114 0.111 0.111 0.113 0.113 0.142
9 Inf Inf Inf Inf Inf Inf Inf Inf 0.000 0.036 Inf 0.052 0.108 0.057 0.061 0.065 0.069 0.075 0.095 0.095 0.092 0.092 0.094 0.094 0.146

10 Inf Inf Inf Inf Inf Inf Inf Inf 0.036 0.000 0.022 0.076 0.133 0.081 0.085 0.089 0.093 0.100 0.119 0.119 0.116 0.116 0.118 0.118 0.154
11 Inf Inf Inf Inf Inf Inf Inf Inf 0.046 Inf 0.000 0.087 0.143 0.091 0.095 0.099 0.103 0.110 0.130 0.130 0.127 0.127 0.128 0.128 0.154
12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.000 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.147
13 0.137 0.140 0.165 0.161 0.165 0.140 0.128 0.127 0.108 0.133 0.143 0.105 0.000 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.186
14 0.070 0.081 0.113 0.110 0.113 0.081 0.076 0.061 0.057 0.081 0.091 0.038 0.078 0.000 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.154
15 0.074 0.085 0.117 0.114 0.117 0.085 0.080 0.065 0.061 0.085 0.095 0.042 Inf 0.016 0.000 Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.156
16 0.079 0.089 0.121 0.118 0.121 0.089 0.084 0.069 0.065 0.089 0.099 0.046 Inf Inf 0.016 0.000 Inf Inf Inf Inf Inf Inf Inf Inf 0.157
17 0.083 0.093 0.125 0.122 0.125 0.093 0.088 0.073 0.069 0.093 0.103 0.050 Inf Inf Inf 0.016 0.000 Inf Inf Inf Inf Inf Inf Inf 0.159
18 0.104 0.107 0.132 0.128 0.132 0.107 0.095 0.094 0.075 0.100 0.110 0.072 Inf Inf Inf Inf 0.033 0.000 Inf Inf Inf Inf Inf Inf 0.167
19 0.124 0.127 0.151 0.148 0.124 0.099 0.114 0.114 0.095 0.119 0.130 0.091 Inf Inf Inf Inf Inf 0.031 0.000 0.039 Inf 0.042 Inf 0.041 0.182
20 0.124 0.099 0.124 0.148 0.151 0.127 0.114 0.114 0.095 0.119 0.130 0.091 Inf Inf Inf Inf Inf 0.031 0.039 0.000 0.042 Inf 0.041 Inf 0.159
21 0.121 0.124 0.149 0.145 0.121 0.096 0.112 0.111 0.092 0.116 0.127 0.089 Inf Inf Inf Inf Inf Inf 0.014 0.042 0.000 0.039 Inf 0.041 0.180
22 0.121 0.096 0.121 0.145 0.149 0.124 0.112 0.111 0.092 0.116 0.127 0.089 Inf Inf Inf Inf Inf Inf 0.042 0.014 0.039 0.000 0.041 Inf 0.157
23 0.122 0.126 0.150 0.147 0.123 0.098 0.113 0.113 0.094 0.118 0.128 0.090 Inf Inf Inf Inf Inf Inf Inf 0.041 0.013 0.041 0.000 0.039 0.181
24 0.122 0.098 0.123 0.147 0.150 0.126 0.113 0.113 0.094 0.118 0.128 0.090 Inf Inf Inf Inf Inf Inf 0.041 Inf 0.041 0.013 0.039 0.000 0.158
M 0.141 0.127 0.139 0.162 0.172 0.162 0.145 0.142 0.146 0.154 0.154 0.147 0.186 0.154 0.156 0.157 0.159 0.167 0.182 0.159 0.180 0.157 0.181 0.158 0.000
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Table A.11: Input data for f3. Gear pump A.

Item eri,1 eri,2 eci,1 eci,2 eci,3 eci,4 ed(xi)

1 0,00213 0,00213 0,00021 0,00064 0,00111 0,00221 0,00262

2 0,00213 0,00213 0,00021 0,00064 0,00111 0,00221 0,00262

3 0,00213 0,00213 0,00021 0,00064 0,00111 0,00221 0,00262

4 0,00213 0,00213 0,00021 0,00064 0,00111 0,00221 0,00262

5 0,00213 0,00213 0,00021 0,00064 0,00111 0,00221 0,00262

6 0,00213 0,00213 0,00021 0,00064 0,00111 0,00221 0,00262

7 0,11637 0,11637 0,01164 0,03491 0,07534 0,15068 0,00349

8 0,00030 0,00030 0,00003 0,00009 0,00001 0,00355 0,00262

9 0,02490 0,02490 0,00249 0,00747 0,01672 0,03344 0,00524

10 0,02490 0,02490 0,00249 0,00747 0,01672 0,03344 0,00524

11 0,00779 0,00779 0,00078 0,00234 0,00572 0,01145 0,00349

12 0,43960 0,43960 0,04396 0,13188 0,21490 0,42980 0,00000

13 0,02717 0,02717 0,00272 0,00815 0,02008 0,04015 0,00349

14 0,00508 0,00508 0,00051 0,00152 0,00298 0,00595 0,00175

15 0,02109 0,02109 0,00211 0,00633 0,01324 0,02648 0,00262

Note: ed(xi, xi+1) values are obtained from the ED matrix
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Table A.12: ED matrix for f3. Gear pump A.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M
1 0.00000 0.00184 0.00286 0.00405 0.00286 0.00184 0.01505 Inf Inf Inf Inf 0.01453 0.02294 0.02090 0.01937 0.00096
2 0.00184 0.00000 0.00187 0.00286 0.00326 0.00288 0.01469 Inf Inf Inf Inf 0.01417 0.02258 0.02054 0.01901 0.00091
3 0.00286 0.00187 0.00000 0.00184 0.00288 0.00326 0.01460 Inf Inf Inf Inf 0.01409 0.02249 0.02045 0.01892 0.00090
4 0.00405 0.00286 0.00184 0.00000 0.00184 0.00286 0.01485 Inf Inf Inf Inf 0.01434 0.02274 0.02070 0.01918 0.00093
5 0.00286 0.00326 0.00288 0.00184 0.00000 0.00187 0.01460 Inf Inf Inf Inf 0.01409 0.02249 0.02045 0.01892 0.00090
6 0.00184 0.00288 0.00326 0.00286 0.00187 0.00000 0.01469 Inf Inf Inf Inf 0.01417 0.02258 0.02054 0.01901 0.00091
7 Inf Inf Inf Inf Inf Inf 0.00000 0.01548 Inf Inf Inf 0.00702 0.02242 0.02038 0.01886 0.00089
8 Inf Inf Inf Inf Inf Inf Inf 0.00000 0.00216 0.00336 Inf 0.01497 0.00818 0.00655 0.01980 0.00102
9 Inf Inf Inf Inf Inf Inf Inf Inf 0.00000 0.00261 0.00037 0.01487 0.00906 0.00744 0.01971 0.00101

10 Inf Inf Inf Inf Inf Inf Inf Inf 0.00261 0.00000 0.00224 0.01479 0.01027 0.00864 0.01963 0.00100
11 Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.00224 0.00000 0.01451 0.00930 0.00767 0.01934 0.00095
12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.00000 Inf Inf Inf 0.00081
13 0.02294 0.02258 0.02249 0.02274 0.02249 0.02258 0.02242 0.00818 0.00906 0.01027 0.00930 0.02191 0.00000 Inf Inf 0.00200
14 0.02090 0.02054 0.02045 0.02070 0.02045 0.02054 0.02038 0.00655 0.00744 0.00864 0.00767 0.01987 0.00204 0.00000 Inf 0.00171
15 0.01937 0.01901 0.01892 0.01918 0.01892 0.01901 0.01886 0.01980 0.01971 0.01963 0.01934 0.01834 Inf 0.02470 0.00000 0.00150
M 0.00096 0.00091 0.00090 0.00093 0.00090 0.00091 0.00089 0.00102 0.00101 0.00100 0.00095 0.00081 0.00200 0.00171 0.00150 0.00000
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Table A.13: Input data for f3 objective. Gear pump B.

Item eri,1 eri,2 eci,1 eci,2 eci,3 eci,4 ed(xi)

1 0,00223 0,00223 0,00022 0,00067 0,00137 0,00273 0,00349

2 0,00223 0,00223 0,00022 0,00067 0,00137 0,00273 0,00349

3 0,00223 0,00223 0,00022 0,00067 0,00137 0,00273 0,00349

4 0,00223 0,00223 0,00022 0,00067 0,00137 0,00273 0,00349

5 0,00223 0,00223 0,00022 0,00067 0,00137 0,00273 0,00349

6 0,00223 0,00223 0,00022 0,00067 0,00137 0,00273 0,00349

7 0,16291 0,16291 0,01629 0,04887 0,10547 0,21095 0,00437

8 0,00183 0,00183 0,00018 0,00055 0,00001 0,00439 0,00349

9 0,03483 0,03483 0,00348 0,01045 0,02341 0,04682 0,00524

10 0,03483 0,03483 0,00348 0,01045 0,02341 0,04682 0,00524

11 0,00962 0,00962 0,00096 0,00289 0,00707 0,01413 0,00349

12 0,54442 0,54442 0,05444 0,16332 0,30086 0,60171 0,00349

13 0,03375 0,03375 0,00337 0,01012 0,02479 0,04959 0,00699

14 0,00155 0,00155 0,00016 0,00047 0,00002 0,00599 0,00262

15 0,00155 0,00155 0,00016 0,00047 0,00002 0,00599 0,00262

16 0,00155 0,00155 0,00016 0,00047 0,00002 0,00599 0,00262

17 0,00155 0,00155 0,00016 0,00047 0,00002 0,00599 0,00262

18 0,02528 0,02528 0,00253 0,00758 0,01589 0,03177 0,00262

19 0,00162 0,00162 0,00016 0,00049 0,00110 0,00219 0,00262

20 0,00162 0,00162 0,00016 0,00049 0,00110 0,00219 0,00262

21 0,00047 0,00047 0,00005 0,00014 0,00032 0,00064 0,00349

22 0,00047 0,00047 0,00005 0,00014 0,00032 0,00064 0,00349

23 0,00047 0,00047 0,00005 0,00014 0,00032 0,00064 0,00349

24 0,00047 0,00047 0,00005 0,00014 0,00032 0,00064 0,00349

Note: ed(xi, xi+1) values are obtained from the ED matrix
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Table A.14: ED matrix for f3. Gear pump B.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 M
1 0.0000 0.0025 0.0044 0.0042 0.0044 0.0025 0.0206 Inf Inf Inf Inf 0.0207 0.0229 0.0211 0.0212 0.0213 0.0214 0.0218 0.0227 0.0214 0.0226 0.0213 0.0226 0.0213 0.0082
2 0.0025 0.0000 0.0025 0.0044 0.0046 0.0028 0.0197 Inf Inf Inf Inf 0.0198 0.0221 0.0202 0.0203 0.0204 0.0205 0.0210 0.0218 0.0205 0.0218 0.0204 0.0218 0.0205 0.0073
3 0.0044 0.0025 0.0000 0.0025 0.0028 0.0046 0.0204 Inf Inf Inf Inf 0.0206 0.0228 0.0210 0.0211 0.0211 0.0212 0.0217 0.0226 0.0212 0.0225 0.0211 0.0225 0.0212 0.0081
4 0.0042 0.0044 0.0025 0.0000 0.0025 0.0044 0.0218 Inf Inf Inf Inf 0.0219 0.0241 0.0223 0.0224 0.0225 0.0226 0.0230 0.0239 0.0226 0.0238 0.0225 0.0238 0.0225 0.0094
5 0.0044 0.0046 0.0028 0.0025 0.0000 0.0025 0.0223 Inf Inf Inf Inf 0.0224 0.0247 0.0228 0.0229 0.0230 0.0231 0.0236 0.0244 0.0231 0.0243 0.0230 0.0244 0.0231 0.0099
6 0.0025 0.0028 0.0046 0.0044 0.0025 0.0000 0.0217 Inf Inf Inf Inf 0.0219 0.0241 0.0223 0.0223 0.0224 0.0225 0.0230 0.0239 0.0225 0.0238 0.0224 0.0238 0.0225 0.0093
7 Inf Inf Inf Inf Inf Inf 0.0000 0.0206 Inf Inf Inf 0.0041 0.0231 0.0213 0.0214 0.0215 0.0216 0.0220 0.0229 0.0216 0.0228 0.0215 0.0228 0.0215 0.0084
8 Inf Inf Inf Inf Inf Inf Inf 0.0000 0.0018 0.0032 Inf 0.0207 0.0073 0.0035 0.0037 0.0040 0.0042 0.0054 0.0066 0.0214 0.0226 0.0213 0.0227 0.0214 0.0082
9 Inf Inf Inf Inf Inf Inf Inf Inf 0.0000 0.0021 Inf 0.0210 0.0063 0.0033 0.0035 0.0037 0.0040 0.0043 0.0055 0.0216 0.0229 0.0215 0.0229 0.0216 0.0084

10 Inf Inf Inf Inf Inf Inf Inf Inf 0.0021 0.0000 0.0013 0.0214 0.0077 0.0047 0.0049 0.0051 0.0054 0.0058 0.0069 0.0221 0.0234 0.0220 0.0234 0.0221 0.0089
11 0.0211 0.0202 0.0209 0.0223 0.0228 0.0222 0.0213 0.0037 0.0027 0.0013 0.0000 0.0214 0.0083 0.0053 0.0055 0.0057 0.0060 0.0064 0.0075 0.0221 0.0233 0.0220 0.0233 0.0220 0.0089
12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.0000 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.0085
13 0.0229 0.0221 0.0228 0.0241 0.0247 0.0241 0.0231 0.0073 0.0063 0.0077 0.0083 0.0232 0.0000 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.0107
14 0.0211 0.0202 0.0210 0.0223 0.0228 0.0223 0.0213 0.0035 0.0033 0.0047 0.0053 0.0214 0.0045 0.0000 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.0089
15 0.0212 0.0203 0.0211 0.0224 0.0229 0.0223 0.0214 0.0037 0.0035 0.0049 0.0055 0.0215 Inf 0.0009 0.0000 Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.0090
16 0.0213 0.0204 0.0211 0.0225 0.0230 0.0224 0.0215 0.0040 0.0037 0.0051 0.0057 0.0216 Inf Inf 0.0009 0.0000 Inf Inf Inf Inf Inf Inf Inf Inf 0.0091
17 0.0214 0.0205 0.0212 0.0226 0.0231 0.0225 0.0216 0.0042 0.0040 0.0054 0.0060 0.0217 Inf Inf Inf 0.0009 0.0000 Inf Inf Inf Inf Inf Inf Inf 0.0092
18 0.0218 0.0210 0.0217 0.0230 0.0236 0.0230 0.0220 0.0054 0.0043 0.0058 0.0064 0.0222 Inf Inf Inf Inf 0.0019 0.0000 Inf Inf Inf Inf Inf Inf 0.0097
19 0.0227 0.0218 0.0226 0.0239 0.0244 0.0239 0.0229 0.0227 0.0230 0.0234 0.0234 0.0230 Inf Inf Inf Inf Inf 0.0242 0.0000 0.0023 Inf 0.0236 Inf 0.0236 0.0105
20 0.0214 0.0205 0.0212 0.0226 0.0231 0.0225 0.0216 0.0214 0.0216 0.0221 0.0221 0.0217 Inf Inf Inf Inf Inf 0.0228 0.0023 0.0000 0.0236 Inf 0.0237 Inf 0.0092
21 0.0226 0.0218 0.0225 0.0238 0.0243 0.0238 0.0228 0.0226 0.0229 0.0234 0.0233 0.0229 Inf Inf Inf Inf Inf Inf 0.0249 0.0236 0.0000 0.0023 Inf 0.0024 0.0104
22 0.0213 0.0204 0.0211 0.0225 0.0230 0.0224 0.0215 0.0213 0.0215 0.0220 0.0220 0.0216 Inf Inf Inf Inf Inf Inf 0.0236 0.0223 0.0023 0.0000 0.0024 Inf 0.0091
23 0.0226 0.0218 0.0225 0.0238 0.0244 0.0238 0.0228 0.0227 0.0229 0.0234 0.0233 0.0230 Inf Inf Inf Inf Inf Inf Inf 0.0237 0.0008 0.0024 0.0000 0.0023 0.0105
24 0.0213 0.0205 0.0212 0.0225 0.0231 0.0225 0.0215 0.0214 0.0216 0.0221 0.0220 0.0216 Inf Inf Inf Inf Inf Inf 0.0236 Inf 0.0024 0.0008 0.0023 0.0000 0.0091
M 0.0082 0.0073 0.0081 0.0094 0.0099 0.0093 0.0084 0.0082 0.0084 0.0089 0.0089 0.0085 0.0107 0.0089 0.0090 0.0091 0.0092 0.0097 0.0105 0.0092 0.0104 0.0091 0.0105 0.0091 0.0000
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208 APPENDIX B. STATISTICAL RESULTS AND EXPERIMENTS

Table B.1: Chapter 3 - Normality Test Results – Goal 1 for Gear pump A and B (ARS scenario)
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Table B.2: Chapter 3 - Normality Test Results – Goal 2 for Gear pump A and B (ARS scenario)
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Table B.3: Chapter 3 - Normality Test Results – Goal 3 for Gear pump A and B (ARS scenario)
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Table B.4: Chapter 3 - Homogeneity Test Results for Gear pump A and B (ARS scenario)



212 APPENDIX B. STATISTICAL RESULTS AND EXPERIMENTS

Figure B.1: Chapter 3 - NFE Gear Pump A: The lower the better (all scenario)
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Figure B.2: Chapter 3 - NFE Gear Pump B: The lower the better (all scenario)
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Figure B.3: Chapter 3 - Total HI Gear Pump A

Figure B.4: Chapter 3 - Total HI Gear Pump B



215

Figure B.5: Chapter 4 - NFE Gear Pump A: The lower the better (all scenario)
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Figure B.6: Chapter 4 - NFE Gear Pump B: The lower the better (all scenario)
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Figure B.7: Chapter 4 - Total HI Gear Pump A

Figure B.8: Chapter 4 - Total HI Gear Pump B
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Table B.5: Chapter 5 - Statistic Descriptive Gear pump A (EDBA)
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Table B.6: Chapter 5 - Statistic Descriptive Gear pump A (BAF)
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Table B.7: Chapter 5 - Statistic Descriptive Gear pump B (EDBA)
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Table B.8: Chapter 5 - Statistic Descriptive Gear pump B (BAF)
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Table B.9: Chapter 5 - Gear pump A normality test
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Table B.10: Chapter 5 - Gear pump B normality test



224 APPENDIX B. STATISTICAL RESULTS AND EXPERIMENTS

Table B.11: Chapter 5 - Gear pump A and B homogeneity test
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Table B.12: PEI values - Gear pump A

Iteration population Algorithm Average disassembly time Average NFE PEI (x 0.000001)
300 31 EDBA 89.8065 10530 4.23
300 31 BAF 89.5731 10506 4.25
400 31 EDBA 89.6047 14030 3.18
400 31 BAF 89.5731 14006 3.19
500 31 EDBA 89.7387 17530 2.54
500 31 BAF 89.5731 17506 2.55
100 41 BAF 89.7404 4516 9.87
200 41 BAF 89.5731 9016 4.95
300 41 EDBA 89.6364 13540 3.30
300 41 BAF 89.5731 13516 3.30
400 41 EDBA 89.5747 18040 2.48
400 41 BAF 89.5731 18016 2.48
500 41 EDBA 89.5731 22540 1.98
500 41 BAF 89.5731 22516 1.98
100 51 BAF 89.5731 5526 8.08
200 51 BAF 89.5731 11026 4.05
300 51 EDBA 89.6047 16550 2.70
300 51 BAF 89.5731 16526 2.70
400 51 EDBA 89.6047 22050 2.02
400 51 BAF 89.5731 22026 2.03
500 51 EDBA 89.6047 27550 1.62
500 51 BAF 89.5731 27526 1.62

Table B.13: PEI values - Gear pump B

Iteration population Algorithm Average disassembly time Average NFE PEI (x 0.000001)
400 31 BAF 139.7332 14006 2.04
500 31 BAF 139.1772 17506 1.64
400 41 BAF 139.0933 18016 1.60
500 41 BAF 138.6493 22516 1.28
300 51 BAF 139.2005 16526 1.74
400 51 BAF 139.2242 22026 1.30
500 51 BAF 138.8473 27526 1.05
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