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Abstract

The simple assembly line balancing problem type E (abbreviated as SALBP-E) occurs when the

number of workstations and the cycle time are variables and the objective is to maximise the line

efficiency. In contrast with other types of SALBPs, SALBP-E has received little attention in the

literature. In order to solve optimally SALBP-E, we propose a mixed integer liner programming

model and an iterative procedure. Since SALBP-E is NP-hard, we also propose heuristics derived

from the aforementioned procedures for solving larger instances. An extensive experimentation is

carried out and its results show the improvement of the SALBP-E resolution.

MSC: 90C27 (Combinatorial Optimisation).

Keywords: Assembly line balancing, SALBP, manufacturing optimisation.

1. Introduction

Assembly line balancing problems (ALBPs) consist in assigning optimally (according to

a given objective function) the tasks of an assembly or production process to the ordered

workstations of an assembly line (or several assembly lines) such that some specific

conditions are satisfied. These NP-hard problems (Gutjahr and Nemhauser, 1964) have

an important relevance in many production systems such as in automotive and electronic

industries (Battaı̈a and Dolgui, 2013). Thus, ALBPs have been extensively studied in

the literature and several surveys have been published. Some recent surveys are Erel

and Sarin (1998), Rekiek et al. (2002), Becker and Scholl (2006), Scholl and Becker

(2006a,b), Boysen et al. (2008), Battaı̈a and Dolgui (2013).
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The most basic family of ALBPs is the simple assembly line balancing problem

(SALBP). SALBP is defined with the following assumptions (Baybars, 1986): 1) a task

cannot be split among workstations; 2) there are precedence relations between tasks; 3)

all tasks must be processed; 4) the task process times are independent of the workstation,

they are known with certainty, they are not sequence dependent and they are additive at

any workstation; 5) all workstations have the same associated costs; 6) any task can be

processed at any workstation; 7) the line is serial and without feeder or parallel sub-

assembly lines; 8) the line is designed for a unique model of a single product.

According to Baybars’ nomenclature, when the objective is to minimise the number

m of workstations for a given upper bound on the cycle time ct, the SALBP is called

SALBP-1; if the objective is to minimise ct for a given m, the problem is called SALBP-

2. On the other hand, SALBP-E is a more general version of SALBP which consists in

finding the combination of m and ct such that the line efficiency is maximised. The effi-

ciency is measured as the sum of task process times, tsum, divided by the product m · ct.

In practice SALBP-E has a lower bound on m (due to a desired degree of the division

of the labour) and/or an upper bound on ct (due to a minimum desired production rate);

otherwise, SALBP-E would be trivial since a line with m = 1 and ct = tsum has an effi-

ciency equal to 1. When the aim is to find a feasible line balance for a given combination

of m and ct, the problem is called SALBP-F.

SALBP-1 is the most studied problem in the ALBP literature and a lot of exact

and heuristic procedures have been designed for its resolution (see Scholl and Becker,

2006b). SALBP-2 has been also studied although there exist fewer procedures and most

of them are based on repeatedly solving SALBP-1 with different values (see Scholl and

Becker, 2006b, Uğurdağ et al., 1997). SALBP-F can be solved with modified SALBP-1

or SALBP-2 procedures (Scholl and Becker, 2006b).

In the last years researchers have intensified their efforts studying ALBPs with addi-

tional characteristics. For instance, among others: general assignment constraints (e.g.

Scholl et al., 2010), task times depending on the sequence (e.g. Capacho et al., 2009),

setup times between tasks (e.g. Martino and Pastor, 2010), uncertainty on task times

(e.g. Saif et al., 2014), task times dependent on the workers (e.g. Moreira et al., 2015),

space constraints (e.g. Chica et al., 2016), constrained resources (e.g. Corominas et al.,

2011), lengths of the workpieces larger than the accessibility windows of the worksta-

tions (e.g. Calleja et al., 2014), ergonomics considerations (e.g. Bautista et al., 2016),

mixed-model lines (e.g. Battaı̈a et al., 2015), robotic lines (Levitin et al., 2006, Gao et

al., 2009, Yoosefelahi et al., 2012), U-shaped lines (e.g. Ogan and Azizoglu, 2015), ma-

chining transfer lines (e.g. Battaı̈a and Dolgui, 2012) and parallel two-sided assembly

lines (e.g. Tapkan et al., 2016).

In contrast, to the best of our knowledge, very few procedures have been discussed

for SALBP-E. Plans and Corominas (1999) formulated a MILP model which solves

optimally SALBP-E. The model is tested only on seven instances and, thus, the com-

putational experiment is insufficient. Scholl and Becker (2006b) outlined the following

exact approach. All combinations of m and ct values are (implicitly) considered and
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SALBP-F is examined (that is, whether there is a feasible solution with m workstations

and a cycle time equal to ct). The feasible combination with best efficiency would be the

optimal SALBP-E solution. The drawback is that a lot of combinations may be consid-

ered and SALBP-F is itself NP-hard. Wei and Chao (2011) designed an exact procedure

based on solving optimally as many SALBP-2 as admissible values for m; each SALBP-

2 is solved by means of mixed integer linear programming (MILP). That work contains

some errors which are corrected in Garcı́a-Villoria and Pastor (2013). Additionally, the

computational experiment in Wei and Chao (2011) is limited to small instances that can

be solved optimally in a short computing time. An ALBP type-E considering stochastic

task times has been dealt in Gurevsky et al. (2012) and Zacharia and Nearchou (2013),

in which two heuristic procedures and a genetic algorithm are developed, respectively.

A genetic algorithm is also used in Al-Hawari et al. (2015) to solve a multi-objective

ALBP, which includes the maximization of the line efficiency. Esmaeilbeigi et al. (2015)

proposed mathematical programming for SALBP-E and different variants of a model

and redundant constraints are compared.

The aim of this study is to improve the resolution of SALBP-E. We propose a MILP

model together with an enhanced procedure based on the iterative one designed by Wei

and Chao (2011). A computational experiment shows that our proposal outperforms the

previously published methods.

The remaining paper is organised as follows. First, Section 2 presents the terminol-

ogy, bounds on the objective function and the cycle time, and the MILP model. The

enhanced iterative procedure and its derived heuristics are presented in Section 3. In

Section 4 the proposed procedures are tested on a well-known benchmark set of in-

stances; the procedures are compared and the results show that the SALBP-E resolution

is improved. We conclude with the final conclusions in Section 5.

2. Terminology, lower and upper bounds and MILP

The data that define a SALBP-E instance are the following:

n Number of tasks

ti Process time for task i (i = 1, . . . ,n)
IP Set of immediate precedence relations, such that (h, i) ∈ IP means that task h

must be performed before task i

mmin, mmax The minimum and maximum number of workstations allowed, respectively

The SALBP-E objective is to maximise the efficiency E of the line (recall that

E = tsum/(m · ct), where tsum =
∑

i=1...n ti). Note that this objective is equivalent to min-

imise the line capacity Z = m · ct. We propose the following bounds on the cycle time

and the line capacity, where ⌈x⌉ (⌊x⌋) is the operator that returns the smallest (greatest)

integer that is equal to or greater (smaller) than x:
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LBct Lower bound of cycle time: LBct = LBct
mmax

, where LBct
m = max(maxi=1...n ti,

⌈tsum/m⌉)
UBct Upper bound of cycle time: UBct =UBct

mmin
, where UBct

m = max(maxi=1...n ti, 2 ·

⌊tsum/m⌋)
LBZ Lower bound on the line capacity: LBZ = minm=mmin...mmax(m ·LBct

m)

UBZ Upper bound on the line capacity: UBZ = minm=mmin...mmax(m ·UBct
m)

LBct
m and UBct

m are a lower and upper bound, respectively, on the cycle time for a given

number of workstations m; that is, they are bounds of SALBP-2 (Scholl, 1999). Thus,

LBct
mmax

and UBct
mmin

are lower and upper bounds on the cycle time of SALBP-E, re-

spectively. With respect to the bounds on the line capacity, they are straightforwardly

deduced from the bounds on the efficiency formulated in Scholl (1999).

Moreover, we define the following additional data that are derived from the above

data and bounds:

Pi Set of all tasks which must precede task i (i = 1 . . .n):
Pi =

⋃
h=1...n|(h,i)∈IP({h}∪Ph)

Si Set of all tasks which must succeed task i (i = 1 . . .n):
Si =

⋃
h=1...n|(i,h)∈IP({h}∪Sh)

Ei Earliest workstation to which task i can be assigned (i = 1 . . .n):

Ei = ⌈(ti+
∑

h∈Pi
th)/UBct⌉

Li Latest workstation to which task i can be assigned (i = 1 . . .n):

Li = maxm=mmin...mmax(m+1−⌈(ti+
∑

h∈Si
th)/UBct

m⌉)
Wj Set of tasks that can be assigned to workstation j ( j = 1 . . .mmax):

Wj = {i = 1 . . .n : Ei ≤ j ≤ Li}

Formulations of SALBP-1 (also of SALBP-2) usually define the earliest and latest

workstation in which each task can be assigned based on the precedence relations (e.g.

Saltzman and Baybars, 1987). Analogously for SALBP-E, we define Ei and Li as the

earliest and latest workstation in which task i can be assigned, respectively. They are

used to reduce significantly the size of the MILP model of the problem.

The mathematical model is formulated as follows:

Variables

z Line capacity: LBZ ≤ z ≤UBZ

ct Cycle time: LBct ≤ ct ≤UBct

xi j ∈ {0,1} 1 if task i is assigned to station j; 0 otherwise (i = 1 . . .n; j = Ei . . .Li)

y j ∈ {0,1} 1 if station j exists; 0 otherwise ( j = mmin +1 . . .mmax)
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Model

[MIN] z (1)

∑Li
j=Ei

xi j = 1 i = 1 . . .n (2)

∑
i∈W j

ti · xi j ≤ ct j = 1 . . .mmax (3)

∑Lh
j=Eh

j · xh j ≤
∑Li

j=Ei
j · xi j ∀(h, i) ∈ IP (4)

∑
i∈W j

xi j ≤ ‖Wj‖ · y j j = mmin +1 . . .mmax (5)

z ≥ mmin · ct (6)

z ≥ j · ct −M j · (1− y j) j = mmin +1 . . .mmax

where M j = j ·UBct −min j−1
m=mmin

(m ·LBct
m) (7)

y j ≥ yk j = mmin +1 . . .mmax −1;k = j+1 . . .mmax (8)

Objective function (1) minimises the line capacity (recall that it is equivalent to max-

imise the line efficiency). Constraints (2) ensure that each task is assigned to one and

only one workstation. Constraints (3) imply that the cycle time is not lower than the to-

tal task process time assigned to any workstation. Constraints (4) impose the precedence

relations. Constraints (5) force a workstation to be open when some task is assigned to

it. Constraints (6) and (7) link the line capacity with the number of open workstations

and the cycle time. Finally, constraints (8) impose that the open workstations must be

contiguous (as it is done in Pastor et al., 2011) and break symmetries.

The main differences between our enhanced MILP model and the model proposed in

Plans and Corominas (1999) (let they be named Enh-MILP and CP-MILP, respectively)

are: (i) the addition of a lower bound on the cycle time and a lower and upper bound

on the line capacity; and (ii) the constraints that impose the contiguousness of the open

workstations.

3. Iterative procedures

First we explain in Section 3.1 the procedure proposed in Wei and Chao (2011) and

corrected in Garcı́a-Villoria and Pastor (2013); let it be named Iterative Procedure (IP).

Then we propose our enhanced iterative procedure in Section 3.2; let it be named En-

hanced Iterative Procedure (EIP). When non-small instances are solved, the above pro-

cedures may need a huge computational time to solve optimally them, so a maximum
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global time has to be set. Section 3.3 discuses several heuristics based on IP and EIP in

which the maximum time is shared among their iterations in different ways.

3.1. Iterative Procedure (IP)

The Wei and Chao’s iterative procedure (IP) consists in solving the corresponding SALBP-

2 for each value of m between mmin and mmax. Figure 1 shows its pseudocode.

Let CT(Sol) be the cycle time of solution Sol

Z∗ = ∞

For m = mmin . . .mmax do:

Sol = Solve SALBP-2 with m workstations

If m ·CT (Sol)≤ Z∗ then Sol∗ = Sol, Z∗ = m ·CT (Sol) End if

End for

Return Sol∗

Figure 1: Pseudocode of Iterative Procedure for SALBP-E.

The following MILP model is used to solve SALBP-2:

Additional data

m Number of workstations

E ′
i Earliest workstation to which task i (i = 1 . . .n) can be assigned:

E ′
i = ⌈(ti +

∑
h∈Pi

th)/UBct
m⌉

L′
i Latest workstation to which task i (i = 1 . . .n) can be assigned:

L′
i = m+1−⌈(ti+

∑
h∈Si

th)/UBct
m⌉

W ′
j Set of tasks that can be assigned to workstation j ( j = 1 . . .m):

W ′
j = {i = 1 . . .n : E ′

i ≤ j ≤ L′
i}

Variables

ct Cycle time: LBct
m ≤ ct ≤UBct

m

xi j ∈ {0,1} 1 if task i is assigned to station j; 0 otherwise (i = 1 . . .n; j = E ′
i . . .L

′
i)

Model

[MIN] ct 1(9)

∑L′i
j=E ′

i
xi j = 1 i = 1 . . .n (10)
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∑
i∈W ′

j
ti · xi j ≤ ct j = 1 . . .m (11)

∑L′h
j=E ′

h
j · xh j ≤

∑L′i
j=E ′

i
j · xi j ∀(h, i) ∈ IP (12)

3.2. Enhanced Iterative Procedure (EIP)

One drawback of IP is that each resolution of SALBP-2 does not use any information

of the previous SALBP-2 solutions. To improve the performance of IP we propose an

enhanced iterative procedure (EIP), which takes advantage of the best solution known

up to the current iteration.

Let ni = mmax −mmin + 1 be the number of iterations of the IP and let Z∗
p be the

best line capacity value found at the beginning of iteration p (p = 1 . . .ni); we consider

Z∗
1 =∞. The SALBP-2 to solve at iteration p has m= p+mmin−1 workstations; let Solm

be its optimum solution. The cycle time of Solm, CT (Solm), must fulfil the following

condition in order to have a better line capacity than the best SALBP-E solution known

at the moment:

m ·CT (Solm)< Z∗
p ≡CT (Solm)≤ ⌊(Z∗

p −1)/m⌋ (13)

Eq. 13 assumes, without loss of generality, that the process task times are integers,

restricting cycle times and line capacities to integer values.

EIP is an adaptation of IP in order to reduce the search space of each SALBP-2

thanks to the condition expressed in Eq. 13. Thus, each iteration of EIP may be more

efficient. The EIP pseudocode is very similar to the one shown in Figure 1. The differ-

ences are at each iteration p the Z∗
p value is available and the domain of variable ct of the

MILP model to solve SALBP-2 may be tighter. The ct domain is expressed in Eq. 14:

LBct
m ≤ ct ≤ min(UBct

m,⌊(Z
∗
p −1)/m⌋) (14)

Note that the SALBP-2 model used by EIP may be infeasible. Its infeasibility at

iteration p means that the optimum solution of SALBP-2 with m = p+mmin −1 work-

stations is not better than the best SALBP-E solution found up to iteration p−1. Thus,

EIP continues the search at the next iteration.

3.3. Heuristics derived from IP and EIP

Wei and Chao (2011) assumed that, at each iteration of IP, its corresponding SALBP-2

would be solved optimally. However, for non-small instances, the required time may be

huge in practice. Heuristics can be derived from IP and EIP limiting the maximum total
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computing time to D and returning the best solution found. In that case, one question

that arises is how to distribute the available time among the ni iterations. We propose

three ways similarly as it is done in the ALBP literature (see, for example,Pastor 2011):

T1 The maximum computing time for solving SALBP-2 at the first iteration is D, at

the second iteration is the remaining time (if any), and so on. That is, the time

limit at iteration p, TLp, is the following:

TLp = D−
∑

q=1...p−1 τq for p = 1 . . .ni, where τq is the time spent for solving

SALBP-2 at iteration q.

T2 The maximum computing time for solving SALBP-2 is half of the remaining time

(except for the last SALBP-2, which is all remaining time). That is:

TLp =(1/2) ·(D−
∑

q=1...p−1 τq) for p= 1 . . .ni−1, and TLni =D−
∑

q=1...ni−1 τq.

T3 The maximum computing time for solving SALBP-2 is the remaining time di-

vided by the number of the remaining iterations. That is:

TLp = (D−
∑

q=1...p−1 τq)/(ni− p+1) for p = 1 . . .ni.

Combining the two iterative procedures (IP and EIP) and the three ways of splitting

the available computing time (T1, T2 and T3) results in a total of six heuristics: IP-

T1, IP-T2, IP-T3, EIP-T1, EIP-T2 and EIP-T3. Note that two heuristics can also be

derived from the introduced mathematical models (Section 2) limiting their maximum

computing time to D.

Illustrative example of the heuristics mechanism

In order to clarify how the proposed heuristics work, we will show as example the

iterations of EIP-T1 when it is applied to solve the instance named Lutz3 with mmin = 12

and mmax = 15 with a total computing time D= 3600 s. Thus, EIP-T1 will iterate 4 times

(ni = mmax −mmin +1 = 4).

EIP-T1

Iteration p= 1. Z∗
1 =∞. TL1 =D= 3600. SALBP-2 is solved with m= 12 worksta-

tions and a solution is found; let it be called Sol12, with ct(Sol12)= 138. Let Sol∗ = Sol12

(whose line capacity is equal to 12 · 138 = 1656 ). The time spent in this iteration is

τ1 = 14.

Iteration p = 2. Z∗
2 = 1656. T L2 = D− τ1 = 3586. SALBP-2 is solved with m = 13

workstations and the model is infeasible (therefore, there is no solution with 13 worksta-

tions and a line capacity smaller than Z∗
2 , recall Eq. 14). The time spent in this iteration

is τ2 = 1.

Iteration p = 3. Z∗
3 = 1656. TL3 = D− τ1 − τ2 = 3585. SALBP-2 is solved with

m = 14 workstations and a solution is found; let it be called Sol14, with ct(Sol14) = 118.



Albert Corominas, Alberto Garcı́a-Villoria and Rafael Pastor 235

Let Sol∗ = Sol14 (whose line capacity is equal to 14 · 118 = 1652 ). The time spent in

this iteration is τ3 = 5.

Iteration p = 4. Z∗
4 = 1652. TL4 =D−τ1−τ2−τ3 = 3580. SALBP-2 is solved with

m = 15 workstations and a solution is found; let it be called Sol15, with ct(Sol15) = 110.

Let Sol∗ = Sol15 (whose line capacity is equal to 54 ·110 = 1650 ).

Return solution Sol∗

EIP-T2 and EIP-T3 would iterate in a similar way but the time limits at each iteration

would be the following. For EIP-T2: TL1 = D/2 = 1800, TL2 = (D− τ1)/2 = 1793,

TL3 = (D− τ1 − τ2)/2 = 1792 and TL4 = D− τ1 − τ2 − τ3 = 3580. And for EIP-T3:

TL1 =D/4= 900, TL2 = (D−τ1)/3= 1195, T L3 = (D−τ1−τ2)/2= 1792 and TL4 =

D− τ1 − τ2 − τ3 = 3580. Note that the results at each iteration would not be different

since τp < TLp for p = 1 . . .4.

4. Computational experiments

The MILP models are solved using the IBM ILOG CPLEX 12.2 Optimiser; the abso-

lute MIP gap tolerance is set to 0.9999 (since process task times are integer values). The

iterative procedures are implemented in Java SE 1.6.21. The experiments are run on a

PC 3.16 GHz Pentium Intel Core 2 Duo E8500 with 3.46 GB of RAM. The maximum

computing time D per instance and procedure is limited to 3,600 seconds. Note that in a

real application, when the design of the assembly line is a strategic problem, the compu-

tational time could be much greater; however, one hour seems a reasonable compromise

in order to use a variety of instances and, at the same time, make the computational

experiment affordable.

Section 4.1 presents the test instances used in the experiments. Section 4.2 shows

the obtained results and Section 4.3 compares the heuristic procedures between them.

Section 4.4 studies the quality of the proposed heuristics according to the characteristics

of the instances. Finally, Section 4.5 analyses how the distribution of the computing time

among the iterations affects the performance of the heuristics.

4.1. Description of the test instances

Our experiments are performed on the 256 benchmark SALBP-E instances that are

available in Scholl and Klein’s assembly line balancing research website (www.assembly-

line-balancing.de). Scholl (1993) generated these instances from twenty-four problems

varying the mmin and mmax values. Table 1 shows the problem name, its number of tasks,
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Table 1: Test problems.

Name Number Process time Order mmin mmax

of tasks Minimum Maximum Average strength range range

Arcus1 83 233 3691 912.1 59.09 3 to 19 9 to 21

Arcus2 111 10 5689 1354.9 40.38 3 to 22 7 to 27

Barthold 148 3 383 38.1 25.8 3 to 14 5 to 15

Barthol2 148 1 83 28.6 25.8 3 to 51 10 to 52

Bowman 8 3 17 9.4 75 3 to 4 5 to 5

Buxey 29 1 25 11.2 50.74 3 to 10 7 to 13

Gunther 35 1 40 13.8 59.5 3 to 12 8 to 13

Hahn 53 40 1775 264.6 83.82 3 to 7 4 to 8

Heskiaoff 28 1 108 36.6 22.49 3 to 9 10 to 10

Jackson 11 1 7 4.2 58.18 3 to 5 7 to 7

Jaeschke 9 1 6 4.1 83.33 3 to 6 7 to 7

Killbridge 45 3 55 12.3 44.55 3 to 10 11 to 11

Lutz1 32 100 1400 441.9 83.47 3 to 10 11 to 11

Lutz2 89 1 10 5.4 77.55 3 to 46 13 to 49

Lutz3 89 1 74 18.5 77.55 3 to 19 9 to 23

Mansoor 11 2 45 16.8 60 3 to 4 5 to 5

Mertens 7 1 6 4.1 52.38 3 to 4 5 to 5

Mitchell 21 1 13 5 70.95 3 to 7 9 to 9

Roszieg 25 1 13 5 71.67 3 to 9 10 to 10

Sawyer 30 1 25 10.8 44.83 3 to 10 7 to 13

Scholl 297 5 1386 234.5 58.16 3 to 50 4 to 51

Tonge 70 1 156 50.1 59.42 3 to 21 12 to 23

Warnecke 58 7 53 26.7 59.1 3 to 28 13 to 30

Wee-Mag 75 2 27 20 22.67 3 to 36 9 to 38

their minimum, maximum and average process times, the order strength of the prece-

dence graph and the ranges on the mmin and mmax values used to generate the instances.

4.2. Results of the procedures

When the objective function value of the obtained solution is equal to the lower bound,

LB, value (or, strictly speaking, when the difference between them is less than one),

then the solution optimality is demonstrated. In the case of the MILP procedures for

SALBP-E, LB is equal to the lower bound returned by CPLEX. In the case of the iter-

ative procedures, LB is calculated as follows. Let LBcplexct
m be the lower bound on the

cycle time returned by CPLEX when it solves SALBP-2 with workstations; thus, LB is
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equal to minm=mmin...mmax(m ·LBcplexct
m). Moreover, we consider that LBcplexct

m = LBct
m

when no lower bound is returned by CPLEX within the maximum time assigned and

LBcplexct
m = ∞ when the SALBP-2 model is infeasible.

Table 2 summarises the type of solutions obtained with each procedure. The follow-

ing information is given: the number of instances with a proved optimal solution (#Opt);

the number of instances with a feasible solution whose optimality is not proven (#Fea);

and the number of instances without finding a feasible solution (#Uns).

Table 2: Type of the obtained solutions.

CP-MILP Enh-MILP IP-T1 IP-T2 IP-T3 EIP-T1 EIP-T2 EIP-T3

#Opt 72 90 121 124 120 144 143 141

#Fea 175 156 135 132 135 112 113 114

#Uns 9 10 0 0 1 0 0 1

In terms of proved optimal solutions, our proposed MILP model, Enh-MILP, out-

performs the model proposed in Plans and Corominas (1999), CP-MILP. Nevertheless,

both approaches are clearly worse than any iterative procedure. Moreover, Enh-MILP

and CP-MILP cannot find a solution in 10 and 9 instances, respectively, whereas the

iterative procedures always find a solution (IP-T1, IP-T2, EIP-T1 and EIP-T2) or only

the same 1 instance remains unsolved (IP-T3 and EIP-T3).

4.3. Comparison between the heuristic procedures

We focus on the comparison of the heuristic pairs (IP-T1, EIP-T1), (IP-T2, EIP-T2) and

(IP-T3, EIP-T3). Table 3 shows, for each pair, the number of instances in which both

procedures guarantee the optimal solution (#Opt) and the average computational time,

in seconds, for solving these instances (Time). Table 3 also shows, for each pair, the

number of instances when none of the procedures guarantees the optimal solution in the

computing time allowed (#Fea) and the number of times that a procedure finds a better

solution than the another procedure (#Best).

Table 3: Results when both procedures guarantee the optimal solution or when neither procedure guaran-

tees the optimal solution.

Optimal solutions Feasible solutions

Time

distribution

#Opt
Time

#Fea
#Best

IP EIP IP EIP

T1 121 1057.1 201.39 112 0 24

T2 124 1189.39 180.38 113 0 42

T3 120 1045.42 191.94 114 0 32
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Results in Tables 2 and 3 confirm the effectiveness of the proposed improvements

regardless of how the global time is shared among the iterations of the procedures. EIP

heuristics are able to find around 15% more proven optimal solutions than the IP heuris-

tics and all instances solved optimally by one IP heuristic are also solved optimally by

its analogous EIP heuristic. Regarding the computational time, the average times spent

by EIP heuristics when an instance is solved optimally are at least five times less than

the IP average times. Furthermore, all feasible solutions reached by an EIP heuristic has

the same or better quality than the solutions reached by its analogous IP heuristic.

4.4. Quality of the proposed heuristics according to the instance
characteristics

We now focus on the comparison of the three EIP heuristics, which are the best heuris-

tics, taking into account the influence of the characteristics of the instances (as outlined

in Table 1) on the quality of the results. Specifically, we create subset of instances ac-

cording to the number of tasks and order strength. The number of tasks is respectively

classified as low, medium and high according to the ranges (7, 35), (45, 111) and (148,

297). Likewise, the order strength is respectively considered low, medium and high ac-

cording to the ranges (22.49, 25.80), (40.38, 60.00) and (70.95, 83.82).

Table 4: Number of proven optimal solutions for each combination of number of tasks and order strength.

Procedure
LL LM LH ML MM MH HL HM

(6) (30) (20) (22) (67) (40) (39) (32)

EIP-T1 6 30 20 14 25 31 15 3

EIP-T2 6 30 20 14 24 32 15 2

EIP-T3 6 30 20 14 22 31 15 3

Table 5: Quality of the solutions for each combination of number of tasks and order strength.

Procedure
LL LM LH ML MM MH HL HM

(6) (30) (20) (22) (67) (40) (39) (32)

= 6 30 20 20 32 30 19 2

EIP-T1 0 (0) 0 (0) 0 (0) 0 (2) 5 (9) 0 (1) 3 (4) 15 (2)

EIP-T2 0 (0) 0 (0) 0 (0) 0 (0) 12 (3) 1 (0) 4 (4) 7 (2)

EIP-T3 0 (0) 0 (0) 0 (0) 0 (0) 7 (15) 2 (7) 1 (8) 5 (23)

Tables 4 and 5 report the results obtained by each procedure for combinations of

order strength and number of tasks. The column headers use L, M and H for low, medium

and high, respectively. The first letter is for the number of tasks and the second letter

for the order strength. This is followed by the number of instances in the subset, which
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is shown between parentheses. Table 4 shows the number of instances with a proved

optimal solution. Table 5 contains the number of times that all procedure obtains the

same quality solution (”=”) and, for each procedure, the number of times that it obtains

a better solution (and a worst solution between parentheses) than the other two solutions

obtained with the other procedures; we consider the non-existent solution of the only

instance unsolved with EIP-T3 (see Table 2) worse than any feasible solution.

Results show that all EIP procedures are very similar with respect to the number

of optimal solutions regardless of the characteristics of the instances. However, with

respect to the quality of the solutions, we can see EIP-T3 that is, on average, worse than

EIP-T1 and EIP-T2. EIP-T2 tends to be better than EIP-T1 in terms of quantity of best

and worst solutions; the exception is in instances with high number of tasks and medium

order strength, in which EIP-T1 performs, on average, better.

4.5. Analysis of the proposed heuristics

Lastly, we investigate the different performances of the EIP heuristics. To do so, we

record for each instance the number of workstations of the best known solution, m∗ (i.e.

the best solution obtained with any of the eight procedures). If multiple best solutions

have been obtained, then the one with the lowest number of workstations is considered.

Table 6 reports the number of times (#Ins) that the difference between m∗ and mmin is 0,

1, 2, etc.

Table 6: Differences between the best number of workstations and mmin.

m∗−mmin = 0 = 1 = 2 = 3 = 4 ≥ 5

#Ins 168 44 26 11 3 4

We can observe that most of the number of workstations of the best found solutions

are equal to or close to the minimum value allowed. Thus, it seems reasonable that

EIP-T3, which tends to share equally the maximum global time among all SALBP-

2 resolutions, performs worse than EIP-T1 and EIP-T2, which tend to give priority to

SALBP-2 with fewer number of workstations. On the other hand, EIP-T1 might perform

slightly worse than EIP-T2 because in some cases the time spent by EIP-T1 in the first

SALBP-2 may be too much (potentially all time could be spent in it and no SALBP-2 is

solved with other numbers of workstations).

5. Conclusions and future research

SALBP is the type of assembly line balancing problems most studied in the literature.

However, most research efforts are reduced to SALBP-1 and SALBP-2. The resolution

of SALBP-E, in which the number of workstations and cycle time are variables, has
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not received enough attention in the literature with the notable exceptions of Plans and

Corominas (1999) and Wei and Chao (2011).

The special interest in our work has been the exact resolution of SALBP-E. We pro-

pose an enhanced MILP model, together with an iterative procedure (based on solving

SALBP-2 at each iteration) which improves the one proposed by Wei and Chao (2011).

Since we expected that large instances cannot be solved optimally in a practical time,

we proposed several heuristics based on limiting the maximum computing time and re-

turning the best solution found. Specifically, we propose three ways of distributing the

available time among the different SALBP-2 resolutions of the iterative procedures.

Through extensive experimentation, we have been able to determine the benefits

of adding the proposed improvements to the existing iterative procedure. On the other

hand, we have detected that a direct approach as the proposed MILP model performs

worse than any iterative procedure. Nevertheless, other direct approaches should not

be dismissed and a procedure based on, for instance, branch & bound will be studied.

Regarding the heuristic resolution of this problem, another line of search that we will

follow is the use of metaheuristics, which may obtain better results for large instances.
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