551 research outputs found

    Parcellation of Human Amygdala Subfields Using Orientation Distribution Function and Spectral K-means Clustering

    Get PDF
    Amygdala plays an important role in fear and emotional learning, which are critical for human survival. Despite the functional relevance and unique circuitry of each human amygdaloid subnuclei, there has yet to be an efficient imaging method for identifying these regions in vivo. A data-driven approach without prior knowledge provides advantages of efficient and objective assessments. The present study uses high angular and high spatial resolution diffusion magnetic resonance imaging to generate orientation distribution function, which bears distinctive microstructural features. The features were extracted using spherical harmonic decomposition to assess microstructural similarity within amygdala subfields are identified via similarity matrices using spectral k-mean clustering. The approach was tested on 32 healthy volunteers and three distinct amygdala subfields were identified including medial, posterior-superior lateral, and anterior-inferior lateral

    High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas

    Get PDF
    Available online 4 May 2017The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100–150 µm) at 7 T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p < .05) estimations of the whole amygdala derived from the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders.This work was supported by the PHS grant DA023427 and NICHD/ NIH grant F32HD079169 (Z.M.S); Feodor Lynen Postdoctoral Fellowship of the Alexander von Humboldt Foundation (D.K.); R21(MH106796), R21 (AG046657) and K01AG28521 (J.C.A.), the National Cancer Institute (1K25CA181632-01) as well as the Genentech Foundation (M.R.); the European Union's Horizon 2020 Marie Sklodowska-Curie grant agreement No 654911 (project ”THALAMODEL”) and ERC Starting Grant agreement No 677697 (project “BUNGEE-TOOLS”); and the Spanish Ministry of Economy and Competitiveness (MINECO) reference TEC2014-51882-P (J.E.I.); and the NVIDIA hardware award (M.R. and J.E.I.). Further support for this research was provided in part by the National Institute for Biomedical Imaging and Bioengineering (P41EB015896, R01EB006758, R21EB018907, R01EB019956, R01- EB013565), the National Institute on Aging (5R01AG008122, R01AG016495), the National Institute of Diabetes and Digestive and Kidney Diseases (1-R21-DK-108277-01), the National Institute for Neurological Disorders and Stroke (R01NS0525851, R21NS072652, R01NS070963, R01NS083534, 5U01NS086625), the Massachusetts ADRC (P50AG005134) and was made possible by the resources provided by Shared Instrumentation Grants 1S10RR023401, 1S10RR019307, and 1S10RR023043. Additional support was provided by the NIH Blueprint for Neuroscience Research (5U01-MH093765), part of the multi-institutional Human Connectome Project. In addition, BF has a financial interest in CorticoMetrics, a company whose medical pursuits focus on brain imaging and measurement technologies. BF's interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. The collection and sharing of the ADNI MRI data used in the evaluation was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2- 0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer's Association; Alzheimer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www. fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    Charting human subcortical maturation across the adult lifespan with in vivo 7 T MRI

    Get PDF
    The human subcortex comprises hundreds of unique structures. Subcortical functioning is crucial for behavior, and disrupted function is observed in common neurodegenerative diseases. Despite their importance, human subcortical structures continue to be difficult to study in vivo. Here we provide a detailed account of 17 prominent subcortical structures and ventricles, describing their approximate iron and myelin contents, morphometry, and their age-related changes across the normal adult lifespan. The results provide compelling insights into the heterogeneity and intricate age-related alterations of these structures. They also show that the locations of many structures shift across the lifespan, which is of direct relevance for the use of standard magnetic resonance imaging atlases. The results further our understanding of subcortical morphometry and neuroimaging properties, and of normal aging processes which ultimately can improve our understanding of neurodegeneration

    Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI

    Get PDF
    Despite remarkable advances in mapping the functional connectivity of the cortex, the functional connectivity of subcortical regions is understudied in living humans. This is the case for brainstem nuclei that control vital processes, such as autonomic, limbic, nociceptive and sensory functions. This is because of the lack of precise brainstem nuclei localization, of adequate sensitivity and resolution in the deepest brain regions, as well as of optimized processing for the brainstem. To close the gap between the cortex and the brainstem, on 20 healthy subjects, we computed a correlation-based functional connectome of 15 brainstem nuclei involved in autonomic, limbic, nociceptive, and sensory function (superior and inferior colliculi, ventral tegmental area-parabrachial pigmented nucleus complex, microcellular tegmental nucleus-prabigeminal nucleus complex, lateral and medial parabrachial nuclei, vestibular and superior olivary complex, superior and inferior medullary reticular formation, viscerosensory motor nucleus, raphe magnus, pallidus, and obscurus, and parvicellular reticular nucleus – alpha part) with the rest of the brain. Specifically, we exploited 1.1mm isotropic resolution 7 Tesla resting-state fMRI, ad-hoc coregistration and physiological noise correction strategies, and a recently developed probabilistic template of brainstem nuclei. Further, we used 2.5mm isotropic resolution resting-state fMRI data acquired on a 3 Tesla scanner to assess the translatability of our results to conventional datasets. We report highly consistent correlation coefficients across subjects, confirming available literature on autonomic, limbic, nociceptive and sensory pathways, as well as high interconnectivity within the central autonomic network and the vestibular network. Interestingly, our results showed evidence of vestibulo-autonomic interactions in line with previous work. Comparison of 7 Tesla and 3 Tesla findings showed high translatability of results to conventional settings for brainstem-cortical connectivity and good yet weaker translatability for brainstem-brainstem connectivity. The brainstem functional connectome might bring new insight in the understanding of autonomic, limbic, nociceptive and sensory function in health and disease

    Manual delineation approaches for direct imaging of the subcortex

    Get PDF
    The growing interest in the human subcortex is accompanied by an increasing number of parcellation procedures to identify deep brain structures in magnetic resonance imaging (MRI) contrasts. Manual procedures continue to form the gold standard for parcellating brain structures and is used for the validation of automated approaches. Performing manual parcellations is a tedious process which requires a systematic and reproducible approach. For this purpose, we created a series of protocols for the anatomical delineation of 21 individual subcortical structures. The intelligibility of the protocols was assessed by calculating Dice similarity coefficients for ten healthy volunteers. In addition, dilated Dice coefficients showed that manual parcellations created using these protocols can provide high-quality training data for automated algorithms. Here, we share the protocols, together with three example MRI datasets and the created manual delineations. The protocols can be applied to create high-quality training data for automated parcellation procedures, as well as for further validation of existing procedures and are shared without restrictions with the research community.Action Contro
    • …
    corecore