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a b s t r a c t 

The human subcortex comprises hundreds of unique structures. Subcortical functioning is crucial for behavior, 

and disrupted function is observed in common neurodegenerative diseases. Despite their importance, human sub- 

cortical structures continue to be difficult to study in vivo. Here we provide a detailed account of 17 prominent 

subcortical structures and ventricles, describing their approximate iron and myelin contents, morphometry, and 

their age-related changes across the normal adult lifespan. The results provide compelling insights into the het- 

erogeneity and intricate age-related alterations of these structures. They also show that the locations of many 

structures shift across the lifespan, which is of direct relevance for the use of standard magnetic resonance imag- 

ing atlases. The results further our understanding of subcortical morphometry and neuroimaging properties, and 

of normal aging processes which ultimately can improve our understanding of neurodegeneration. 
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. Introduction 

The human subcortex comprises hundreds of unique structures

 Alkemade et al., 2013; Forstmann et al., 2017 ) which receive inter-

st from a broad range of neuroscientific disciplines (e.g. Lozano et al.,

019; Raznahan et al., 2014; Shepherd, 2013; Tian et al., 2020 ). Sub-

ortical functioning is crucial for normal behavior and physiology in-

luding decision making ( Ding and Gold, 2013 ), reward processing

 O’Doherty et al., 2004; Schultz et al., 1997 ), and motor behavior ( Mink,

996 ). Disruption of subcortical structures is observed in common neu-

odegenerative diseases including Parkinson’s ( Hirsch et al., 1988 ) and

lzheimer’s disease ( Ehrenberg et al., 2017; German et al., 1987 ). Sub-

ortical structures are also of interest as (potential) deep brain stimu-

ation (DBS) targets in Parkinson’s disease ( Fasano and Lozano, 2015;

imousin et al., 1995 ) and other disorders such as major depression and

pilepsy ( Lozano et al., 2019 ). 

Research into the subcortex depends on the imaging of individual

ubcortical structures. However, visualizing subcortical structures using

n vivo methods such as magnetic resonance imaging (MRI) is challeng-

ng due to their close spatial proximity, biophysical properties, and mor-

hometry ( Keuken et al., 2018 ). As a consequence, our understanding of
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he subcortex remains limited, and lags behind our understanding of the

ortex. Quantitative ultra-high field 7 Tesla MRI provides a method to

vercome the challenges associated with visualizing subcortical struc-

ures ( Bazin et al., 2020; Keuken et al., 2018 ), which we use here to

rovide a cross-sectional account of the subcortex across the adult lifes-

an. 

The biophysical properties that determine the appearance of brain

tructures on MR images include the iron and myelin contents, which

nfluence the main sources of contrast in MRI: the longitudinal and ef-

ective transverse relaxation rates, and the local susceptibility to mag-

etic fields. Furthermore, iron and myelin are highly biologically rel-

vant: Myelin plays an important role in plasticity and development

e.g. Fields, 2015; Hill et al., 2018; Turner, 2019 ), and iron is crucial

or normal tissue functioning (e.g. Zecca et al., 2004 ). Iron deposition

 Daugherty and Raz, 2013; Hallgren and Sourander, 1958; Raz and Ro-

rigue, 2006; Ward et al., 2014; Zecca et al., 2004 ) and decreased myeli-

ation ( Raz and Rodrigue, 2006; Shen et al., 2008 ) are part of normal

ging processes, but excessive iron accumulation and myelin degrada-

ion are prominent in diseases including Parkinson’s and Alzheimer’s

isease (e.g. Mancini et al., 2020; Zecca et al., 2004 ). A description of

ormal age-related changes in iron and myelin content can therefore
stmann). 
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rovide a frame of reference to contrast pathological iron accumulation

nd myelin degradation, and to refine methods for the early detection

f pathological alterations using MRI measures as biomarkers. 

An additional factor determining the appearance of the human sub-

ortex is the small size of the individual structures. Prominent subcor-

ical structures such as the subthalamic nucleus are as small as a few

illimeters thick, limiting the number of voxels they encompass on MR

mages commonly used in research and in the clinic. Moreover, voxels

t the border of structures likely include tissue from adjacent structures

partial voluming), which can lead to biases especially when voxel sizes

re large relative to the structure ( Mulder et al., 2019 ). Structure size

hould therefore be taken into account when imaging the subcortex. An

mportant additional consideration here is the development of atrophy

ith increasing age, which is reflected in reduced volume of gray matter

tructures ( Cherubini et al., 2009; Courchesne et al., 2000; Herting et al.,

018; Lemaitre et al., 2012; Raz, 2004; Raz and Rodrigue, 2006; Wal-

ovd et al., 2005 ) and which results in more cerebrospinal fluid (CSF)

nd larger ventricles ( Good et al., 2001; Greenberg et al., 2008; Stafford

t al., 1988; Walhovd et al., 2005 ). In addition to volume changes, at-

ophy can result in a shift in the location of structures ( Keuken et al.,

017; 2013; Kitajima et al., 2008 ). 

These factors combined hamper visualization of the subcortex when

sing conventional MRI techniques. Furthermore, the age-related alter-

tions in these factors alter the appearance of the subcortex with increas-

ng age. In this study, we provide a detailed account of 17 subcortical

tructures and ventricles using data from 105 healthy participants across

he adult lifespan obtained with in vivo methods tailored for studying

he human subcortex ( Alkemade et al., 2020a ). For practical reasons,

nd without intending to make any claims on how a subcortical struc-

ure should be defined, we define subcortical as any anatomical struc-

ure located inferior to the corpus callosum. 

Compared to previous studies, which often focus on a select set of

egions and/or MRI or morphometry measures at a time, we simulta-

eously study a wider range of structures and measures. These include

tructures and measures that have not been studied before in the con-

ext of aging. The structures under investigation include gray matter

egions, white matter tracts, and the ventricles. The inclusion of a va-

iety of structures allows us to study across-region similarities and dif-

erences in aging effects. Similarly, the large set of quantitative MRI

qMRI) contrasts and morphometry measures allows us to explore aging

s a multidimensional process. As such, we provide a wide picture of

ubcortical aging across metrics and regions. 

Furthermore, we improve upon previous methods by using qMRI

cquired at 7 Tesla (T) with 0.7 mm isotropic resolution, and em-

loy the MASSP method ( Bazin et al., 2020 ) to obtain automated

elineations with an accuracy that approximates the gold standard

f manual delineations ( Alkemade et al., 2021; Bazin et al., 2020 ).

ullo et al. (2019) have shown that the choice of delineation method

an influence which age-related change models provide best fits to em-

irical data, illustrating the importance of high-quality delineations in

ging studies. Additional methodological improvements include the de-

elopment of a subcortical thickness estimation method, which provides

 thickness estimate analogous to cortical thickness metrics; as well as

he development of iron and myelin approximation methods. Combined,

hese methods allow us to interpret our results in terms of the hypothe-

ized biological processes that occur during aging: myelin degradation,

ron accumulation, and atrophy (changes in size, shape, and location). 

. Methods 

.1. Participants 

We used the Amsterdam ultra-high field adult lifespan database

AHEAD; Alkemade et al., 2020a ), which consists of multimodal MRI

ata from 105 healthy participants. Inclusion criteria were age 18–80

ears and self-reported health at the time of inclusion. A histogram de-
2 
icting the distribution of ages in the sample is shown in Fig. S1. Exclu-

ion criteria were any factors that could potentially interfere with MRI

canning, including MRI incompatibility (e.g., pacemakers), pregnancy,

nd self-reported claustrophobia. At least six males and females were

ncluded in each age decade to ensure full coverage of the adult lifes-

an. All participants gave written informed consent prior to the onset

f data collection. The local ethics board approved the study. 

.2. MRI scanning 

Images were acquired at the Spinoza Centre for Neuroimaging in Am-

terdam, the Netherlands, using a Philips Achieva 7 T MRI scanner with

 32-channel phased-array coil. Routine quality checks of the quanti-

ative maps appearance were performed previously ( Alkemade et al.,

020a ) and all subjects from the database were included for analy-

is. T1-weighted, T2 ∗ contrasts were obtained using a MP2RAGEME

multi-echo magnetization-prepared rapid gradient echo) sequence

 Caan et al., 2019 ). The MP2RAGEME is an extension of the MP2RAGE

equence ( Marques et al., 2010 ) and consists of two rapid gradi-

nt echo (GRE 1,2 ) images that are acquired in the sagittal plane

fter a 180 degrees inversion pulse and excitation pulses with in-

ersion times TI 1,2 = [670 ms, 3675.4 ms]. A multi-echo readout

as added to the second inversion at four echo times (TE 1 = 3 ms,

E 2,1-4 = 3, 11.5, 19, 28.5 ms). Other scan parameters include flip

ngles FA 1,2 = [4, 4] degrees; TR GRE1,2 = [6.2 ms, 31 ms]; band-

idth = 404.9 MHz; TR MP2RAGE = 6778 ms; acceleration factor SENSE

A = 2; FOV = 205 × 205 × 164 mm; acquired voxel size =
.7 × 0.7 × 0.7 mm; acquisition matrix was 292 x 290; reconstructed

oxel size = 0.64 × 0.64 × 0.7 mm; turbo factor (TFE) = 150 resulting

n 176 shots; Total acquisition time = 19.53 min. No B1 field correction

as performed; instead, the B1 field was optimized for subcortex during

ata acquisition. 

.3. Quantitative MRI modeling and parcellation 

The MP2RAGEME consists of two interleaved MPRAGEs with dif-

erent inversions and four echoes in the second inversion. Based on

hese images, we estimated quantitative MR parameters of R1, R2 ∗ and

SM as follows. First, we took advantage of the redundancy in the

P2RAGEME sequence to perform a PCA-based denoising with LCPCA

 Bazin et al., 2019 ). R1 maps were then computed using the standard

ook-up table approach of Marques et al. (2010) to recover T1 values

rom the measured signals. R2 ∗ -maps were computed by least-squares

tting of the exponential signal decay over the four echoes of the sec-

nd inversion. QSM images were obtained from the phase maps of the

econd, third, and fourth echoes of the second inversion with TGV-QSM

 Langkammer et al., 2015 ). Skull stripping, required for QSM, was per-

ormed on the second inversion, first echo magnitude image ( Bazin et al.,

014 ). 

The anatomical regions of interest were defined with the MASSP au-

omated algorithm ( Bazin et al., 2020 ) on the basis of the R1, R2 ∗ and

SM image maps. The algorithm combines location, shape, and quanti-

ative MRI priors to define 17 subcortical anatomical regions and ven-

ricles, listed in Table 2 . Separate masks for left and right hemisphere

ere obtained except for 3V, 4V, and fx . 

For this study, the MASSP algorithm was trained on renormalized

ersions of the quantitative contrasts using a fuzzy C-means cluster-

ng of intensities, and linearly interpolating between cluster centroids

 Pham and Bazin, 2009 ). The renormalized contrasts were thus less sen-

itive to the intensity variations induced by aging. Additionally, the

egistration to the MASSP atlas was performed in two successive steps,

roducing more accurate alignment of the anatomical priors with each

ubject. This second step was particularly important to compensate for

he large variability of ventricular size and shape in the study cohort.

he algorithm itself was unchanged, and we re-validated the accuracy

f the method against manual delineations as in Bazin et al. (2020) .
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Table 1 

Model comparisons for the iron (top) and myelin (bottom) approximation models. Bold face indicates the 

winning models, which have the lowest AIC and BIC values. 

Parameterized model R 2 AIC BIC 

Iron 𝑦 = 8 . 27718 0.0 117.2952 118.1285 

𝑦 = −6 . 83576 + 0 . 33962 ×𝑅 2 ∗ 0.9161 77.1614 78.8278 

𝑦 = −11 . 25376 + 29 . 28218 × 𝑅 1 0.4811 108.1415 109.8079 

𝑦 = −3 . 45436 − 9 . 2427 × 𝑅 1 + 0 . 40217 ×𝑅 2 ∗ 0.933 75.3461 77.8458 

𝑦 = 4 . 68168 + 274 . 40993 × QSM 0.8107 90.9972 92.6637 

𝐲 = − 𝟑 . 𝟖𝟐𝟖𝟑𝟒 + 𝟎 . 𝟐𝟒𝟑𝟏 × 𝐑𝟐 ∗ + 𝟗𝟖 . 𝟐𝟕𝟗𝟒𝟕 ×𝐐𝐒𝐌 0.9461 71.6371 74.1368 

𝑦 = −2 . 59147 + 11 . 83574 × 𝑅 1 + 227 . 0019 × QSM 0.8651 87.2357 89.7354 

𝑦 = −2 . 41386 − 5 . 22683 ×𝑅 1 + 0 . 29445 × 𝑅 2 ∗ +82 . 01402 × QSM 0.9507 72.1302 75.463 

Myelin 𝑦 = 9 . 34013 0.0 78.8674 79.4324 

𝑦 = 4 . 41227 + 0 . 09621 × 𝑅 2 ∗ 0.2178 77.6741 78.804 

𝑦 = −6 . 25936 + 21 . 5651 ×𝑅 1 0.7746 61.4997 62.6296 

𝐲 = − 𝟕 . 𝟗𝟖𝟗𝟔𝟓 + 𝟑𝟏 . 𝟖𝟕𝟒𝟖𝟑 × 𝐑𝟏 − 𝟎 . 𝟏𝟏𝟏𝟖𝟐 × 𝐑𝟐 ∗ 0.8918 53.963 55.6579 

𝑦 = 8 . 80294 + 25 . 38923 × QSM 0.0211 80.5908 81.7207 

𝑦 = −0 . 24058 + 0 . 25117 ×𝑅 2 ∗ −155 . 23593 × QSM 0.4399 75.3327 77.0276 

𝑦 = −7 . 7523 + 25 . 33129 ×𝑅 1 − 58 . 19931 × QSM 0.8616 57.1586 58.8535 

𝑦 = −7 . 97876 + 32 . 10295 × 𝑅 1 − 0 . 11662 × 𝑅 2 ∗ +3 . 32451 × QSM 0.8918 55.9549 58.2147 

Table 2 

Regions of interest. Midline structures were parcellated as a 

single structure, all other structures (indicated by bold-faced 

letters) were parcellated separately per hemisphere. Abbrevia- 

tions in italics indicate white matter structures. 

AMG : Amygdala SN : Substantia nigra 

CL : Claustrum STN : Subthalamic nucleus 

fx : Fornix STR : Striatum 

GPe : Globus Pallidus Externa THA : Thalamus 

GPi : Globus Pallidus Interna VTA : Ventral Tegmental Area 

ic : Internal Capsule LV : Lateral ventricle 

PAG : Periaqueductal gray 3V: Third ventricle 

PPN : Pedunculopontine nucleus 4V: Fourth ventricle 

RN : Red nucleus 
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mprovements were noticeable for more variable structures such as the

entricles, fornix, and claustrum, as well as some of the more challeng-

ng smaller structures, see Fig. S2. 

.4. Iron and myelin approximation 

Iron and myelin are main determinants of MR image contrast

 Stüber et al., 2014 ). Several lines of research indicate that the concen-

rations of iron and myelin are approximately linearly related to qMRI

etrics R1, R2 ∗ and QSM ( Hametner et al., 2018; Mangeat et al., 2015;

arques et al., 2017; Metere and Möller, 2018; Rooney et al., 2007;

tüber et al., 2014 ). Whereas many studies make inferences on iron and

yelin contents based on a single MRI modality (e.g., Daugherty and

az, 2013; Khattar et al., 2021 ), we use the multimodal quantitative

ature of our data to estimate the relation between multiple modalities

nd iron and myelin. Assuming a linear relationship between iron and

yelin on the one hand, and qMRI on the other, linear models can be

t and used to predict iron and myelin contents based on qMRI values

 Metere and Möller, 2018 ): 

𝑟𝑜𝑛 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑤 𝑖,𝑞𝑠𝑚 ∗ 𝑄𝑆𝑀 + 𝑤 𝑖,𝑅 2 ∗ ∗ 𝑅 2 ∗ + 𝑤 𝑖,𝑅 1 ∗ 𝑅 1 
𝑦𝑒𝑙𝑖𝑛 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑤 𝑚,𝑞𝑠𝑚 ∗ 𝑄𝑆𝑀 + 𝑤 𝑚,𝑅 2 ∗ ∗ 𝑅 2 ∗ + 𝑤 𝑚,𝑅 1 ∗ 𝑅 1 (1) 

Estimating the parameters 𝑤 of these models requires population-

verage estimates of iron and myelin content for a variety of regions

f interest that cover the range of R1, R2 ∗ , and QSM values observed

cross the brain. Following the approach by Metere and Möller (2018) ,

e obtained these values from the literature ( Hallgren and Sourander,

958; Metere and Möller, 2018; Randall, 1938 ), and supplemented those

alues using observations in post mortem tissue (detailed below). For

ron estimates, Hallgren and Sourander (1958) provided quantifications

cross a number of subcortical and cortical regions, which, combined
3 
ith the corresponding qMRI values obtained using our own MRI data,

llowed for stable estimators of the weights in Eq. (1) . An iron concen-

ration of 0.061 in the ventricles was assumed (following Metere and

öller, 2018 , who based this value on LeVine et al., 1998 ). 

As a reference for myelin concentrations, we used work by

andall (1938) , which provides lipid concentrations for the corona ra-

iata, frontal and parietal white matter, brain stem, thalamus, cau-

ate, and frontal and parietal gray matter. Following Metere and

öller (2018) , we assumed that these lipid concentrations reflect myelin

oncentrations. Unfortunately, the reported regions do not include iron-

ich nuclei, which limits the range of (especially) R2 ∗ and QSM values

ith known corresponding lipid concentrations. Using a limited num-

er of regions of interest to estimate the myelin model could limit the

eneralizability of the estimated parameters to structures with lower

2 ∗ and/or QSM values, which would bias myelin estimates in iron-rich

tructures like some basal ganglia nodes (e.g., based on using only Ran-

all’s (1938) lipid concentrations, Metere and Möller (2018) obtained

egative myelin concentrations in various basal ganglia structures). 

To supplement the literature-based myelin concentrations, we ap-

roximated the myelin contents of other regions of interest using

 post mortem specimen. Specifically, we used specimen #7 from

lkemade et al. (2020b) , which was a 75 year old female, non-demented

ontrol. At the time the current experiments were performed, this was

he only specimen fully processed. Here, we made the following assump-

ions: 

1. The optic density of tissue in our silver stains is approximately lin-

early related to the concentration of myelin in that tissue in our re-

gions of interest (see Fig. 1 ). Here, we confirmed that silver stains

were not saturated even in the white matter regions; 

2. The myelin concentrations in the post mortem specimen do not show

gross abnormalities. We found no indications that our post mortem

specimen showed major abnormalities in myelin properties. We con-

firmed that the donor had no clinical record of neurodegenerative

disease, a diagnosis that was confirmed post mortem by a board-

certified neuropathologist; 

3. The myelin concentrations in white matter reported by

Randall (1938) are in the same range of the myelin concentra-

tion in the internal capsule. Similarly, the myelin concentrations

in parietal cortex are in the same range of the concentrations in

insular cortex. 

Seven 200 μm coronal sections of a single specimen were stained

ccording to the method described by Bielschowsky (for details, see

lkemade et al., 2020b ). Sections included the caudate nucleus, tha-

amus, internal capsule, and insular cortex, in which we estimated

he median intensity of the lightness of the stain (the optic density).
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Fig. 1. Procedure of estimating myelin contents using a post 

mortem specimen. In each section (seven in total), the stain 

intensities corresponding to CAU, THA, insular cortex (CTX) 

and the internal capsule (ic/wm) were estimated. For each sec- 

tion individually, a calibration curve was estimated to map 

stain intensity to myelin values (solid blue lines and equa- 

tions). Within the range of interest, the relation between stain 

intensity and myelin content could be approximated with a lin- 

ear trend. Then, within each section separately, the intensity 

values for putamen (PUT), GP, STN, RN, and SN were esti- 

mated (colored dashed lines; note that not all sections con- 

tained all structures), and the corresponding myelin values 

were calculated. Per region, the median estimate (across sec- 

tions) was used as a final estimate. Boxplots in the right panel 

show across-section variability in estimated myelin contents 

and suggest agreement across sections. The center line in each 

box marks the median, box limits are the across-section in- 

terquartile range, and whiskers are at 1.5 times the interquar- 

tile range below and above the box limits. ROI = Region of 

interest. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this 

article.) 
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andall (1938) reports quantified lipid concentrations of the caudate

ucleus and thalamus, which can be directly compared to the stain

ntensities, as well as of parietal gray and white matter. The caudate

ucleus, thalamus, and parietal gray and white matter (as reported by

andall (1938) ) were not visible in the same histological section, and

e therefore used insular cortex as a reference region for gray matter,

nd the internal capsule as a reference region for white matter. For each

ection separately, we then created a linear calibration curve, which al-

owed us to determine lipid concentrations based on the stain intensity

 Fig. 1 ) for putamen, globus pallidus, subthalamic nucleus, red nucleus,

nd substantia nigra. 

For the region of which population-averaged iron and myelin con-

ents were known, we estimated the qMRI values using the MRI data.

edian qMRI values were calculated using the MASSP masks for subcor-

ical regions, and a MGDM and CRUISE parcellation was used to obtain

ndividual masks for brain stem, cerebellum, and cortex ( Bazin et al.,

014 ). We included only participants of 30 years and older to match

he ages of the specimens on which the iron and myelin estimates are

ased. For brain regions for which we had estimated the myelin content

sing our post mortem specimen, we only included AHEAD subjects of 70

ears and older (17 participants total) to approximately match ages of

he MRI data and the specimen. Tables S1 and S2 list the iron and myelin

oncentrations, respectively, and their corresponding qMRI values, that

ere used to estimate the parameters in Eq. (1) . 

To test whether all qMRI metrics were required as predictors to accu-

ately predict iron and myelin content, we fitted linear models with all

ight possible combinations of R1, R2 ∗ , and QSM. Models were fitted

sing ordinary least squares (OLS). For each model, we estimated the

kaike information criterion (AIC; Akaike, 1973 ) to identify the model

hat is expected to have the highest predictive performance, and used

he model with lowest AIC values (AIC and BIC values agreed on the

inning model). We used the AIC here instead of the BIC as the AIC

s expected to select models with the highest cross-validated predictive
4 
erformance, whereas the BIC is expected to select the data-generating

odel ( Wagenmakers and Farrell, 2004 ). The model comparisons, in-

luding the parameterized winning models, can be found in Table 1 . 

Comparisons of the explained variance (R 

2 ) of the individual mod-

ls show that, when relying on single qMRI metrics, R2 ∗ explained most

ariance in iron (91.6%), followed by QSM (81.1%). Combining R2 ∗ and

SM increased the explained variance to 94.6%, which implies R2 ∗ and

SM largely (but not only) explain the same variance in iron. Nonethe-

ess, the increase in variance explained acquired by adding QSM to the

2 ∗ model was sufficient to warrant the additional model complexity,

s evidenced by the lower AIC and BIC values. 

As expected, R1 explained most variance in myelin (77.4%), while

2 ∗ explained only limited variance in myelin (21.78%, only marginally

etter than an intercept-only model). However, the combination of R1

nd R2 ∗ explained 89.2% of variance, suggesting R1 and R2 ∗ do not

argely explain the same variance in myelin, but each explain unique

roportions. AIC and BIC values preferred the model that included both

1 and R2 ∗ as predictors. 

Fig. 2 visualizes quality of fit of the winning models. Note that

he model weights cannot directly be compared to the weights from

tüber et al. (2014) , which were obtained using formalin fixated post

ortem tissue. Formalin fixation can change qMRI values ( Birkl et al.,

016; Langkammer et al., 2012; Schmierer et al., 2008; Shepherd et al.,

009; Tovi and Ericsson, 1992 ). A second complicating factor is that

MRI values can vary between MRI sites ( Mancini et al., 2020 ), suggest-

ng the need to re-estimate model weights when using qMRI obtained

t a different site. 

Using these simplified biophysical models, we calculated whole-

rain iron and myelin maps, and obtained participant-specific myelin

nd iron values for all structures using the MASSP masks. Iron and

yelin maps of a representative participant are shown in Fig. 3 . To con-

rm our models are able to reproduce the between-region variability

n iron and myelin that has been reported in the literature, we com-
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Fig. 2. Quality of fit of the myelin (left) and iron (right) 

model. The planes are given by the winning models in Table 1 . 

Red dots illustrate data points, gray dots are the model predic- 

tions for these data points. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 3. Example of myelin (left) and iron map (right) of a representative par- 

ticipant. The top row shows the R1, R2 ∗ , and QSM maps, which were linearly 

combined into myelin and iron maps (middle and bottom row) using the win- 

ning models detailed in Table 1 . Note the hyperintense appearance of iron rich 

structures such as the rounded shape of the red nucleus. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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ared the myelin and iron predictions to the concentrations in the liter-

ture ( Fig. 4 ). We also compared the myelin predictions to the myelin

oncentrations estimated based on the post mortem tissue. These com-

arisons suggest reasonable correspondence between literature-derived

nd qMRI-derived iron and myelin concentrations for most regions, but

ot all. Regions with relatively large discrepancies include the brain-

tem, which might arise due to the fact that the iron literature reported

oncentrations in the medulla oblongata, whereas the qMRI data de-

ineation included the entire brainstem. Similarly, the iron literature

rovided separate estimates for the putamen and caudate, whereas the

MRI delineations included the striatum as a single region, and as such

he qMRI-derived iron concentrations cannot recover any differences

etween the putamen and caudate. Finally, the qMRI-derived myelin

stimates are higher than the post mortem estimates, which might be

elated to neuromelanin, as this results in a lower intensity in the post
5 
ortem tissue, potentially resulting in a negative bias in the correspond-

ng myelin estimate. 

It is important to emphasize that the iron and myelin estimates we

eport are based on simplifying assumptions with regard to the linearity

f the relation between qMRI and iron/myelin, and on the iron/myelin

oncentrations on which the biophysical models are fitted (detailed

bove). As such, the iron and myelin estimates should be not be in-

erpreted as absolute measurements, but rather as approximations that

erve to guide the interpretations of qMRI values in terms of the most

ikely underlying biological contributors to those values. 

.5. Thickness estimation 

We calculated local structure thickness based on a medial skeleton

epresentation: for each structure, we estimated the skeleton as the ridge

quidistant to the structure boundaries. Thickness was defined as twice

he distance between the skeleton and the closest boundary, using the

ethod described in Bazin et al. (2020) . In other words, local thickness

easures at every location inside the structure the distance between the

wo closest boundaries of that structure, extending the concept of cor-

ical thickness to more complex shapes. Contrary to volume, thickness

an be determined at the position of each voxel within a structure, thus

roviding local information. A similar thickness measure was also used

n Ho et al. (2020) to detect subtle shape differences. 

.6. Center of mass 

For all structures, we calculated the center of masses in Cartesian

, y, and z coordinates per participant after an affine transformation to

roup space by aligning each subject to the MNI template with ANTs

 Avants et al., 2008 ) using mutual information. The affine transforma-

ion was necessary to define a common space in which to compare struc-

ure location between subjects. It was preferred over a rigid or a non-

inear transformation in order to correct for inter-individual differences

n intracranial volume and neurocranium shape, while retaining inter-

ndividual variability in anatomy relative to the neurocranium. 

.7. Age-related change modeling 

We describe the age-related changes in iron concentration, myelin

ontent, volume, and thickness, as well as in the center of mass in x,

 and z coordinates. For iron, myelin and thickness, we report both a

edian reflecting the central tendency and interquartile range reflecting

tructure homogeneity. For thickness, the interquartile range reflects the

ithin-structure variability of thickness, quantifying the regularity of

he shape. We also analyzed the R1, R2 ∗ , and QSM values, which can

e found in the online app ( https://subcortex.eu/app ). 

Exploratory modeling of the between-hemisphere differences per

tructure suggested no between-hemisphere difference in aging patterns

or most structures. Therefore, we subsequently assumed that the age-

elated changes in each structure were the same in both hemispheres,

https://subcortex.eu/app
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Fig. 4. Comparison between qMRI-derived 

iron (left) and myelin (right) values in our 

data and values reported in the literature. For 

myelin, we also compare the qMRI-derived es- 

timates to the estimates in the post mortem tis- 

sue. Error bars indicate standard deviations. No 

error bars are present for the bars representing 

post mortem tissue, as these come from a single 

brain. 

Fig. 5. Procedure of estimating total amount 

of change across the adult lifespan. The left 

column shows two example models: One in- 

verted U-shape (median myelin change in the 

internal capsule), and one linear increase (me- 

dian iron change in the amygdala). Formally, 

change across ages is given by the first deriva- 

tive (middle column). To collapse over the di- 

rection of change (increase or decrease), we 

took the absolute of the derivative (right col- 

umn). The sum of this absolute derivative (il- 

lustrated by the gray area under the curve) rep- 

resents the total amount of change in a region. 

As a final step (not illustrated), the sum of the 

absolute derivative is divided by the model pre- 

diction at 19 years old, which represents the total amount of change relative to the baseline value. 
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u  
o reduce the total number of models fitted. We collapsed across hemi-

pheres by taking the mean value across both hemispheres per structure

nd participant. 

Prior to fitting the aging models, we excluded outliers based on

heir Mahalanobis distance (cut-off 10.827, corresponding to 𝑝 < 0.001,

.69% of all data points). Per ROI and dependent variable, we then fit

he following set of 24 potential models, with all possible combinations

f the following predictors: A linear influence of age, a quadratic influ-

nce of age, sex, an interaction between age and sex, and an interaction

etween a quadratic influence of age and sex. We excluded models with

oth interaction terms, as this would imply implausibly large between-

ex differences in aging patterns. 

Models were fit with OLS as implemented in statsmodels

 Seabold and Perktold, 2010 ) for the Python programming language.

odels were compared with the Bayesian Information Criterion (BIC;

chwarz, 1978 ), which quantifies the quality of fit penalized for

odel complexity. Lower BIC values indicate more parsimonious trade-

ffs between quality of fit and model complexity and are preferred.

ased on the winning model, we removed influential data points us-

ng Cook’s distance (cut-off 0.2, 0.18% of all data points; we used

 more conservative cut-off than 4∕ 𝑛 , which is sometimes recom-

ended Rawlings et al., 1998 ). We then refitted all models on the

ata excluding the influential data points, and performed a new model

omparison. 

Using the winning age-related change models, we quantified the to-

al age-related change. Fig. 5 illustrates the procedure to estimate this

alue, which involves taking the first derivative of the winning model

which quantifies the mean amount of change on every year), then tak-

ng the absolute (which quantifies the amount of change, irrespective of

he direction of change), and then integrating over the age range of 19

o 75 years old. By integrating over the absolute derivative, age-related

ecreases and increases in a metric do not cancel out, but both count as

change’ and sum up across the range of the adult lifespan. To retain the

ean direction of change in the metric, we took the negative of the total
6 
ge-related change when the model’s predicted value at 75 was lower

han at 19. 

The age range under consideration was limited to 75 because our

ata contains only one data point older than 75. Extrapolation of fitted

egression models to beyond the range of the original data can lead to

iases (e.g., Hahn, 1977 ), and since our data only contains one data

oint older than 75, we deemed it more conservative to restrict our

nferences to the maximum of 75 years old. For winning models that

ncluded sex (or interactions between age and sex) as a predictor, the

otal age-related changes were calculated for both sexes separately and

hen averaged. Finally, we divided the total age-related change by the

odel’s predicted value at 19 years old, in order to quantify the total

ge-related change relative to a baseline value. 

.8. Confidence intervals and standard errors 

Confidence intervals in Fig. 6 were obtained using a bootstrapping

rocedure with 10,000 iterations. We iteratively sampled 105 random

bservations with replacement from the data, based on which we es-

imated the median, and took the 2.5th and 97.5th percentile of the

0,000 medians as the 95% confidence interval. The standard errors

n Fig. S5 were obtained using a similar bootstrapping procedure, in

hich winning model specifications were iteratively fit on 10,000 ran-

om samples (drawn with replacement) from the data. Per iteration,

he total age-related change metrics were estimated. The standard devi-

tion of the total age-related change metrics across iterations was used

s an estimator of the standard error. For winning models that do not

nclude age as a predictor variable, the standard error is 0 since the total

ge-related change metric is 0 in each iteration. 

. Results 

One hundred and five healthy volunteers were scanned using an

ltra-high field 7 Tesla MRI scanner as part of the openly available
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Fig. 6. Across-participant distributions of within- 

structure median and IQR of iron and myelin, and vol- 

umes per structure. The center line in each box marks 

the median, box limits are the across-participant IQR, 

and whiskers are at 1.5 times the IQR below and above 

the box limits. Error bars drawn inside boxes indicate 

95% confidence intervals around the median, obtained 

by bootstrapping with 10,000 iterations. Colors indi- 

cate hemisphere (LH = left hemisphere, RH = right 

hemisphere, Single = structures that are continuous 

across the hemispheres), ppm = parts per million, 

mm = millimeter. 
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msterdam ultra-high field adult lifespan database project (AHEAD;

lkemade et al., 2020a ). A quantitative, multi-modal MP2RAGE-ME se-

uence ( Caan et al., 2019 ) with 0.7 mm isotropic resolution was used

o simultaneously estimate R1, R2 ∗ and quantified susceptibility map-

ing (QSM) values in a single scanning sequence. For each participant,

7 subcortical structures and ventricles (see Table 2 ) were delineated

sing the Multi-contrast Anatomical Subcortical Structures Parcellation

ethod (MASSP; Bazin et al., 2020 ). 

We analyzed each structure by first estimating the iron and myelin

oncentrations, using simplified biophysical models that translate the

easured R1, R2 ∗ , and QSM values into the most likely corresponding

ron and myelin concentrations (see Methods). Note that these concen-

rations are approximations and do not reflect measured myelin and iron

oncentrations (see Limitations section). We obtained both the (within-

tructure) median of iron and myelin distributions, and the interquar-

ile range (IQR) which reflects image noise and tissue (in)homogeneity.

econd, we analyzed the structure morphometry by estimating volume

nd thickness. Thickness is defined as twice the distance between the

oundary and the internal skeleton of the structure. As a local measure

contrary to volume), it is defined for every voxel in a structure, and

t depends on the structure’s shape. Also for thickness, we determined

oth the median and IQR, the latter reflecting the regularity of the struc-

ure’s shape: Regularly shaped structures (e.g., the red nucleus) have a

imilar thickness at each voxel’s location, resulting in lower between-

oxel IQRs compared to complex shaped structures (e.g., the striatum).

hird, we determined the location (center of mass in 3 Cartesian coor-

inates) of each structure. Center of mass was determined after apply-

ng an affine transformation to a group template, to account for inter-

ndividual differences in intracranial volume and shape, while retaining

nter-individual variability in distances relative to the neurocranium. 

The distributions of iron, myelin, and volumes revealed a large

etween-structure heterogeneity in the human subcortex ( Fig. 6 ). The

lobus pallidus externa and interna, red nucleus, substantia nigra, and

ubthalamic nucleus displayed the highest iron concentrations (both me-

ian and IQR), corroborating earlier reports ( Haacke et al., 2005; Hall-

ren and Sourander, 1958; Ramos et al., 2014 ). In line with expecta-

ions, low iron concentrations in combination with high myelin con-

entrations were observed in the white matter structures under study:

he internal capsule and the fornix. The estimated myelin concentra-

ions of the subthalamic nucleus, red nucleus, and ventral tegmental

rea were relatively high, which causes the limited visibility of these

tructures on T1-weighted images ( Keuken et al., 2018 ). For compari-

on, the estimated myelin concentrations of the striatum and amygdala

ere substantially lower, resulting in intensities comparable to cortical

ray matter on T1-weighted images. 
r  

7 
The within-structure IQR of iron scaled with the median estimates.

his was the case across participants in all individual structures except

or the left claustrum and left periaqueductal gray (lowest significant

earson’s correlation coefficient = 0.206 in the right claustrum; highest

orrelation coefficient = 0.876 in left striatum; all significant after cor-

ection for the false discovery rate at 𝑞 < 0 . 05 ), as well as for the median

nd IQR of iron across structures ( 𝑟 = 0 . 827 , 𝑡 (26) = 7 . 35 , 𝑝 < 0 . 001 ). 
Across subjects, the IQR of myelin decreased with increasing median

yelin concentrations for all regions except the left pedunculopontine

ucleus, right substantia nigra, left amygdala, both claustrums, right

nternal capsule, and fornix (significant correlation coefficients varied

etween − 0.2183 for the left VTA and − 0.58 for the right periaqueductal

ray; all significant after correction for the false discovery rate at 𝑞 <

 . 05 ). Across regions, however, no correlation was observed between

he median and IQR of myelin. The fornix had a particularly high IQR

f myelin. This could potentially have been caused by partial voluming

ith the lateral ventricles, decreasing the myelin estimates at voxels

ear the boundary of the fornix. 

.1. Maturation effects 

We next studied the age-related alterations in iron, myelin, and mor-

hometry across the adult lifespan. We fit a set of 24 regression model

pecifications (with, as predictor variables, linear and/or quadratic ef-

ects of age, plus sex and potential interactions between sex and age) for

ll structures and measures individually. As we had no a priori hypothe-

is on lateralization, we collapsed across hemispheres to reduce the total

umber of fitted models. The model specification that showed the most

arsimonious trade-off between quality of fit and model complexity (as

uantified using the Bayesian information criterion; Schwarz (1978) )

as considered the winning model and used for further analyses. To

elp navigate the winning models of each structure and measure (in-

luding R1, R2 ∗ , and QSM values), we developed an online interactive

pp, which is accessible at https://subcortex.eu/app (see also Fig. S4).

ext to in the online app, all winning models (including the parameter-

zation) can also be found in Figs. S6–S12. 

We observed (median) iron accumulation in all structures except for

he claustrum, globus pallidus interna, and periaqueductal gray, which

nstead showed stable iron concentrations ( Fig. 7 ). With the exception

f the globus pallidus interna, the iron-rich basal ganglia appeared to ac-

umulate most iron during aging in absolute terms. The IQRs increased

ith age for all structures, revealing a global decrease in structure homo-

eneity. Since this decrease in homogeneity was also present in the struc-

ures where no median iron increase was observed, it likely partially

eflects an increase in image noise. However, the increases in IQR were

https://subcortex.eu/app
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Fig. 7. Age-related changes in iron content. The meshes are based on the young (18–30 years old, mean 23; left) and elderly (70–80 years old, mean 73; right) 

participants after a non-linear transformation to MNI2009b space. Mesh colors illustrate the model predictions for the median and IQR of iron distributions at 23 (left) 

and 73 (right) years old, corresponding to the mean ages of the participant groups on which the meshes were based. Colors in the top-left meshes of all structures 

indicate model predictions at 23 years old. In case the winning model did not include sex as a predictor variable, the model predictions are shown in black lines; 

otherwise, green and orange lines are used for the predictions for women and men, respectively. The total amount of change in median (Med.) and IQR are shown 

in each scatterplot. The ventricles are assumed to have no iron and are excluded from this graph. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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igher in the structures that accumulate most iron (correlation between

edian and IQR iron increases across structure 𝑟 = 0 . 598 , 𝑡 (12) = 2 . 584 ,
 = 0 . 024 , two-sided), suggesting that the (median) iron accumulation

or these structures was not homogeneously distributed within the struc-

ure. This decrease in homogeneity was particularly strong in striatum

nd the red nucleus. 

In line with expectations, we observed a general myelin degrada-

ion (see Fig. 8 ), except for in the amygdala, claustrum, and substan-

ia nigra, where no alterations in myelin concentrations were detected.

he largest (absolute) reduction of myelin was present in the fornix;

he other white matter structure, internal capsule, showed a smaller

ecrease in myelin. The globus pallidus interna, periaqueductal gray,

edunculopontine nucleus, substantia nigra, and ventral tegmental area

howed slightly higher median myelin concentrations in females than in

ales. Like in the case of iron, the increases in IQR of myelin reflected a

rend of decreasing structure homogeneity across structures. Since these

QR increases were present for structures that did not show any change
8 
n median myelin content, they likely partially reflect increases in image

oise. 

Next, we analyzed the effects of atrophy ( Fig. 9 ). The lateral and

hird ventricle showed a substantial volume increase with age, which

an at least partially be explained by the filling of the intracranial space

reated by atrophied brain tissue. Contrary to expectations, the volume

f the fourth ventricle decreased rather than increased. Inspection of the

esh of the fourth ventricle in the elderly suggests this may be caused by

hrinkage of the superior part. Volume decreases were also found in the

triatum, thalamus, amygdala, ventral tegmental area, periaqueductal

ray, pedunculopontine nucleus, and red nucleus, likely reflecting at-

ophy. The internal capsule, fornix and globus pallidus interna showed

 small increase in volume with age, suggesting white matter swelling,

hich could be caused by neuroinflammatory processes. 

Atrophy of specific subparts of a structure, as a result of increased

ulnerability to atrophy in that part, could result in shape changes ( Ho

t al., 2020; Raznahan et al., 2014 ). Shape changes can be detected by
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Fig. 8. Age-related changes in myelin content. The meshes are based on the young (18–30 years old, mean 23; left) and elderly (70–80 years old, mean 73; right) 

participants after a non-linear transformation to MNI2009b space. Mesh colors illustrate the model predictions for the median and IQR of myelin distributions at 

23 (left) and 73 (right) years old, corresponding to the mean ages of the participant groups on which the meshes were based. Colors in the top-left meshes of all 

structures indicate model predictions at 23 years old. In case the winning model did not include sex as a predictor variable, the model predictions are shown in black 

lines; otherwise, green and orange lines are used for the predictions for women and men, respectively. The total amount of change in median (Med.) and IQR are 

shown in each scatterplot. The ventricles are assumed to have no myelin and are excluded from this graph. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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nalyzing changes the median and IQR of thickness, which depend on

he structure’s shape. Specifically, when changes in the median thick-

ess and volume point in the same direction (as is the case in, e.g., the

ateral ventricles, striatum), this suggests overall thickening or thinning

f a structure. Instead, increases in median thickness combined with de-

reases in volume can indicate atrophy in a thinner part of the structure,

s this would decrease the amount of voxels with relatively low thick-

ess, increasing the median thickness. This specific effect appeared to be

resent in the ventral tegmental area, pedunculopontine nucleus and pe-

iaqueductal gray. Furthermore, increases in IQR indicate decreases in

tructure regularity, which was observed in the globus pallidus interna,

ubstantia nigra, periaqueductal gray, pedunculopontine nucleus, and

ed nucleus. 

A third potential effect of atrophy is a change in the location of in-

ividual structures relative to the neurocranium ( Keuken et al., 2017;

013; Kitajima et al., 2008 ): As the brain atrophies, the resulting phys-

cal space is filled with CSF, leading to location shifts of other brain
9 
tructures. For the majority of brain structures under investigation, we

bserved location shifts in the lateral and inferior direction ( Fig. 10 ).

he center of mass of the lateral and third ventricles and the claustrum

lso shifted in the posterior direction; the fornix and striatum shifted in

nterior direction. 

Combined, we observed age-related changes in all measures: iron,

yelin, volume, thickness, and location. These effects were in line with

he expected effects of iron accumulation, myelin degradation, and at-

ophy, but there appeared to be strong between-region variability in the

egree to which regions change with age, which we focus on in the next

ection. 

.2. Between-structure variability in maturation 

Because the winning models of age-related change trajectories in-

luded either linear or quadratic influences of age, the parameter esti-

ates of the different models cannot be directly compared. To provide
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Fig. 9. Age-related changes in structure morphometry. The meshes are based on the young (18–30 years old, mean 23; left) and elderly (70–80 years old, mean 73; 

right) participants after a non-linear transformation to MNI2009b space. The lines in each scatterplot visualize the winning model predictions. In case the winning 

model did not include sex as a predictor variable, the model predictions are shown in black lines; otherwise, green and orange lines are used for the predictions for 

women and men, respectively. The total amount of change in median (Med.) and IQR of thickness and volume (Vol.) are shown in each scatterplot. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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v  

b  

s  

a  

I  
 quantity that summarizes the amount of age-related change (irrespec-

ive of the underlying model specification), we calculated the sum of

he absolute yearly changes between 19 and 75 years old, relative to

he model’s predicted value at 19 years old to take into account base-

ine differences (see Fig. 5 ). 

For each structure, we then plotted the total age-related change per

etric as a radar chart in Fig. 11 , which defines a ‘fingerprint‘ of aging

er structure. Formal comparison of these fingerprints by means of a
10 
orrelation matrix would require more than 7 metrics to achieve suffi-

ient statistical power and assess significance. Here, we are restricted to

ualitative comparisons. These fingerprints suggest strong interregion

ariability in aging patterns, also within groups of structures that could

e grouped on anatomical grounds such as the basal ganglia. However,

imilarities can be found between various individual structures. For ex-

mple, the red nucleus and striatum both show strong increases in the

QR of iron and myelin, combined with increases in median iron and



S. Mileti ć, P.-L. Bazin, S.J.S. Isherwood et al. NeuroImage 249 (2022) 118872 

Fig. 10. Age-related changes in structure location, posterior 

view. Meshes were based on the young (18–30 years old) par- 

ticipants after non-linearly transforming to MNI2009b space. 

Arrows depict the model predictions for the location shift, 

starting at the center of mass of each structure in MNI2009b 

space, and pointing to the predicted center of mass of the struc- 

ture at 75 years old. The left graph shows all 17 subcortical 

structures and ventricles under investigation, the right graph 

excludes the lateral ventricles, internal capsule, and thalamus, 

to improve the visibility of the smaller structures. 

Fig. 11. Radar charts quantifying the total 

amount of age-related change (relative to the 

baseline value at 19 years old) along the seven 

metrics (radial axes), for each region sepa- 

rately. Each axis runs from − 0.5 to 1, which 

correspond to total amounts of change equal 

to 50% in negative direction and 100% in posi- 

tive direction, respectively. The axes for the red 

nucleus and striatum run to 1.25 to accommo- 

date the large amounts of change in the IQR 

of iron in these regions. Solid lines indicate 0 

(no change) and 1. Red dots indicate the mea- 

sured amount of change. (For interpretation of 

the references to color in this figure legend, the 

reader is referred to the web version of this ar- 

ticle.) 
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ecreases in median myelin. Additionally, the aging patterns in the tha-

amus and ventral tegmental area suggest similarities, with median and

QR iron increases of comparable sizes, and relative stability on the other

etrics. Median and IQR increases in iron combined with IQR increases

n myelin were found in the substantia nigra and subthalamic nucleus,

ith the other measures remaining relatively stable. Finally, some struc-

ures including the periaqueductal gray, pedunculopontine nucleus, and

nternal capsule appear to remain relatively stable across all metrics. 

. Discussion 

Interest in the human subcortex is rapidly growing in cognitive and

linical neuroscience due to the relevance of subcortical regions as (po-

ential) targets for DBS and their role in cognition. Here, we studied 17

ubcortical structures and ventricles in terms of their iron and myelin

ontents, their sizes, as well as the intricate age-related alterations.

ur results highlight the heterogeneity in the subcortex, presenting the

trong variability in iron, myelin, and morphometry that exists between

tructures. Furthermore, our results indicate global effects of iron accu-

ulation, myelin degradation, and atrophy in the subcortex across the

ormal adult lifespan, and strong variability in the extent to which the

ifferent structures are affected by each type of age-related change. 

To better navigate the rich landscape of subcortical aging, we also

hare our results in an online app (Fig. S4, https://subcortex.eu/app )

hat can be used to create interactive and intuitive 3D visualizations of

he human subcortex across the lifespan and across modalities. It allows

or inspection and reuse of the underlying models and data of each in-

ividual structure. The app was designed in a flexible way, so that it

an be augmented with more structures and contrasts to expand it to a

omprehensive chart of the human subcortex. The underlying data can

eadily be downloaded for further analyses. 

Understanding the aging processes in the subcortex is paramount in

esearch and in clinical practice. While iron accumulation and myelin

egradation are part of normal aging processes, increased accumulation

nd myelin degradation are part of multiple neurodegenerative disor-

ers including Parkinson’s and Huntington’s disease ( Andersen et al.,

014; Collingwood and Davidson, 2014; Ward et al., 2014; Zecca et al.,

004 ). An accurate description of the distributions of iron and myelin

cross the lifespan in health provides a frame of reference against which

athological iron accumulation and myelin degradation can be con-

rasted, and can prove useful in the development of biomarkers for

isease ( Guan et al., 2017; Mancini et al., 2020; Martin et al., 2008;

chenck and Zimmerman, 2004; Zecca et al., 2004 ). 

Iron and myelin are also the two main determinants of MRI con-

rast. Many subcortical structures, such as the subthalamic nucleus, can-

ot readily be distinguished on conventional T1-weighted MRI images

ue to a lack of contrast with nearby regions. Because of the limited

isibility of subcortical structures on conventional MR images, a com-

on practice is to use atlases to locate individual structures ( Devlin and

oldrack, 2007; Evans et al., 2012 ). Stereotactic atlases based on post

ortem tissue are often used for planning DBS surgery, and probabilis-

ic MRI atlases are conventionally used in cognitive neuroscientific re-

earch. Subcortical MRI atlases are growing in numbers ( Keuken et al.,

014; Lau et al., 2020; Pauli et al., 2018; Trutti et al., 2021; Ye et al.,

021 ) due to improvements in MRI resolution and contrasts. However,

RI atlases are typically developed using anatomical images obtained

rom young participants, which can cause biases when such atlases are

ubsequently used to infer anatomical information in older participants

r patient populations ( Evans et al., 2012; Keuken et al., 2013; Samanez-

arkin and D’Esposito, 2008 ). In cognitive neuroscience research, it is

ommon to apply spatial normalization procedures to a group space to

ccount for individual differences in anatomy, but consistent deviations

rom the group template are likely to introduce normalization errors

 Samanez-Larkin and D’Esposito, 2008 ). These biases can result from

ron accumulation and myelin degradation (which change the contrast

f images) and from atrophy (which change the size and the location of
12 
tructures). Our results can help understand the biases that could occur

hen conventional MRI atlases, based on young participants, are used

o analyze data from older participants, and call for the development of

ge-specific MRI atlases of the subcortex to remedy these biases. 

The between-region variation in iron contents has important conse-

uences for blood oxygenation level dependent (BOLD) functional MRI.

ecause iron decreases T2 ∗ relaxation times, on which contrast-to-noise

atios (CNR) of BOLD-fMRI sequences depend, BOLD CNR varies sub-

tantially between regions. For instance, within young participants, the

NR in the red nucleus is expected to be 74% lower than in the amyg-

ala, when using an echo time of 42 ms at 7 T (corresponding to the T2 ∗ 

f the amygdala in young participants), solely due to the differences in

2 ∗ (see supplement for details). Age-related alterations in iron contents

an have similar effects. For instance, the CNR in the red nucleus at 50

ears old is 32% lower than at 19 years old when using an echo time of

8 ms at 7 T (corresponding to the T2 ∗ of the red nucleus at 19 years

ld). Thus, iron deposition can confound fMRI studies into age-related

hanges of BOLD responses. 

However, substantial gains in CNR can be achieved by optimizing

he echo time to meet the specific requirements of studying a structure

f interest (see also De Hollander et al., 2017; Mileti ć et al., 2020 ). For

nstance, when targeting the red nucleus, decreasing the echo time to

8 ms (corresponding to the T2 ∗ of the red nucleus at 19 years old) is

xpected to lead to a 62% higher CNR compared to an echo time of

2 ms (which would be optimal to target the amygdala). Similarly, the

cho time can be adjusted to partially mitigate the effects of age-related

hanges in T2 ∗ : By decreasing the echo time from 18 ms to 13 ms (cor-

esponding to the T2 ∗ of the red nucleus at 50 years old), a modest 6%

ncrease in CNR can be expected. Using our online app as a resource

or participant-specific predictions of R1, R2 ∗ , and QSM values, we en-

ision the use of MRI protocols tailored to the structure of interest and

he participant’s age and sex. 

.1. Comparison with previous aging studies 

The majority of previous subcortical aging studies focused on volume

etrics. Direct comparison with other studies is hindered by differences

n anatomical region definitions (e.g., striatum versus putamen and cau-

ate, entire pallidum versus internal and external segments), delineation

ethods, modeling approaches (parametric versus non-parametric), and

ifferences in age ranges (see also Coupé et al., 2017; Walhovd et al.,

016 ), although our results fall in line with previous reports. 

The thalamus and striatum are studied most often and have consis-

ently been reported to decrease in volume across the adult lifespan.

tudies differ, however, in the shape of the reported trajectories: Some

uggest quadratic or cubic volume decreases in both thalamus ( Coupé

t al., 2017; Dima et al., 2021; Potvin et al., 2016; Tullo et al., 2019;

ang et al., 2019 ) and striatum ( Coupé et al., 2017; Potvin et al., 2016;

ullo et al., 2019 ), others show linearity or suggest approximate linear-

ty ( Fjell et al., 2013; Sullivan et al., 2004; Walhovd et al., 2011; Wang

t al., 2019 ). In concordance with the latter reports, our data suggest lin-

ar volume decreases, although we cannot rule out that small non-linear

rends are present that we could not detect with our sample size. 

Other subcortical structures previously studied include the globus

allidus, for which linear and quadratic volume decreases have been

eported ( Coupé et al., 2017; Fjell et al., 2013; Goodro et al., 2012;

ullo et al., 2019; Walhovd et al., 2011; Wang et al., 2019 ), although

ot consistently: Other studies have reported stable volumes across age

 Inano et al., 2013; Jernigan et al., 2001 ). Our data suggested a sta-

le volume in the external part of the globus pallidus, but we found

 volume increase in the internal part (c.f. Keuken et al., 2017 , who

ound volume increases in the external part). In the amygdala, we found

uadratic volume decreases. Recent large-sample studies ( Coupé et al.,

017; Dima et al., 2021 ) suggest that the amygdala volume remains

table between approximately 20–70 years old, and then declines. This

mplies that the maturation pattern strongly depends on the age range

https://subcortex.eu/app
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tudied, which could explain the discrepancies in results from earlier

tudies that reported stable volumes ( Jernigan et al., 2001 ), and linear

 Narvacan et al., 2017; Walhovd et al., 2011; Wang et al., 2019 ) and

uadratic ( Goodro et al., 2012; Inano et al., 2013 ) volume decreases. 

Volume increases in the lateral ventricles have been shown to be

uadratic previously ( Inano et al., 2013; Walhovd et al., 2005; Wal-

ovd et al., 2011 ; see also Goodro et al., 2012 ). While our thickness

stimates indeed suggest quadratic increases, the volume estimates in-

tead indicate linear increases. Earlier reports on volume changes in the

ourth ventricle are not consistent: Some studies have reported volume

ncreases ( Walhovd et al., 2005 ) or stable volumes in the fourth ventri-

le ( Inano et al., 2013; Keuken et al., 2017; Walhovd et al., 2011 ). Here,

e found a volume decrease in the fourth ventricle. 

While our method of estimating iron contents has not been used to

tudy aging before, our results can be compared to studies focusing on

q)MRI markers of iron. Daugherty and Raz (2013) provided a meta-

nalysis of early (q)MRI studies on iron accumulation in the caudate,

ed nucleus, and substantia nigra, and concluded that iron accumulates

n these regions. The underlying studies used R2( ∗ ), the field-dependent

ncrease in R2, and phase information based on susceptibility weighted

maging (SWI) as markers for iron. Later studies employing QSM and

2 ∗ /R2 ∗ are generally consistent with these findings ( Acosta-Cabronero

t al., 2016; Betts et al., 2016; Callaghan et al., 2014; Keuken et al.,

017; Li et al., 2021; Zhang et al., 2018 ; but see Khattar et al., 2021 , who

eport no change in these areas). In line with these reports, our results

uggest iron accumulation in these regions, specifically in inverted U-

haped trajectories. 

Studies on iron accumulation in other subcortical regions have

arying and sometimes conflicting conclusions. Daugherty and

az (2013) also suggested iron accumulation in the globus pallidus.

ur data found linear iron accumulation in the external, but no

hange in the internal segment. In contrast, Keuken et al. (2017) re-

orted no change in T2 ∗ or QSM for the external segment (poten-

ially indicating stable iron concentrations). They did report a T2 ∗ in-

rease (which could indicate iron decreases) and stable QSM in the

nternal segment. Khattar et al. (2021) showed no change the SWI

hase in the (entire) globus pallidus, in line with the findings from

i et al. (2021) who studied QSM as an iron marker. Our results sug-

est linear iron accumulation in the amygdala as well. Based on QSM,

costa-Cabronero et al. (2016) instead reported stable iron contents

n the amygdala (similar to Zhang et al. (2018) , although the differ-

nce in age ranges under study hinders direct comparison). Finally,

e also found inverted U-shaped iron trajectories in the thalamus.

hattar et al. (2021) found decreasing SWI phase in thalamus (suggest-

ng iron increases), but Li et al. (2021) showed decreasing QSM values

n the thalamus which instead suggests iron decreases. 

Most earlier studies focusing on age-related change in myelin used

he ratio of T1w/T2w as a myelin marker, which is controversial ( Arshad

t al., 2016; Glasser and van Essen, 2011; Grydeland et al., 2019; Uddin

t al., 2018; 2019 ). Inverted U-shape trajectories of T1w/T2w have been

eported in both cortex ( Grydeland et al., 2019 ), and in the striatum and

allidum ( Tullo et al., 2019 ). Our data instead suggest quadratic but

onotonic decreases in myelination in these areas. Other microstruc-

ure markers include DTI-derived metrics such as fractional anisotropy

nd mean diffusivity, which suggested linear declines in microstruc-

ure of the thalamus, putamen, and caudate ( Cherubini et al., 2009;

ang et al., 2010 ). Similarly, Callaghan et al. (2014) used magnetiza-

ion transfer as a microstructure marker in the thalamus and caudate,

hich also suggested linear declines. Our results for the white matter

racts showed demyelination in fornix and the internal capsule, the pat-

ern of which is qualitatively in line with earlier studies ( Lebel et al.,

012; Madden et al., 2012 ) that analyzed DTI measures in white matter

racts. 

More recently, myelin-water fraction (MWF; MacKay et al.,

994 ) estimation is gaining popularity as a proxy for myelin.

rshad et al. (2016) demonstrated that MWF in the internal capsule
13 
hows an inverted U-shaped age-related change trajectory, which shows

ualitative similarity to our results in the internal capsule. Finally,

hattar et al. (2021) used MWF to analyze subcortical nuclei, which

uggested inverted U-shaped aging trajectories across many subcortical

egions, even for those where our results suggested stable myelin con-

ents or monotonically decreasing trends. 

.2. Limitations 

The present study has several limitations. A first limitation is the esti-

ation of iron and myelin, which was done using simplified biophysical

odels that translate qMRI contrast values into the most likely under-

ying iron and myelin concentrations. The basic assumption underlying

hese models is that qMRI values are linearly related to iron and myelin

oncentrations. This is supported by previous studies ( Mangeat et al.,

015; Marques et al., 2017; Metere and Möller, 2018; Rooney et al.,

007; Stüber et al., 2014 ). 

Stüber et al. (2014) fit the parameters of their linear models using

he iron, myelin concentrations and qMRI values in a single post mortem

pecimen, across many voxels. Metere and Möller (2018) generalized

his approach by fitting the linear models on population-average myelin,

ron concentrations and qMRI values, across many regions. The litera-

ure on the population-average iron and myelin concentrations, how-

ver, is sparse, especially in the case of myelin. This sparsity required

s to estimate myelin contents of several subcortical regions using a post

ortem specimen, which in turn required additional simplifying assump-

ions. The lack of a well-established, quantified ‘ground truth‘ of myelin

oncentrations across the human brain is a limitation not only for the

ccuracy of the estimated calibration curve, but also prevents us from

alidating our results directly against it. 

Our myelin estimates can be validated indirectly by qualitative

omparison with observations from earlier reports that rely on other

ethods. While there is currently no exact qMRI marker of myelin,

he aforementioned MWF estimation ( MacKay et al., 1994 ) has been

hown to be a relatively accurate method ( Mancini et al., 2020 ).

hattar et al. (2021) reported MWF estimates in subcortical regions, and

onsistent with our results, their data suggest that myelin concentrations

n subcortical gray matter regions may exceed myelin concentrations of

ortical gray matter. Similarly, comparison with histology suggests that

ptical densities of myelin stains in deep gray matter regions such as the

halamus and globus pallidus are higher than cortical gray matter (e.g.,

ametner et al., 2018 ). 

Despite their limitations, our estimates of iron and myelin —com-

ared to qMRI values — offers a distinct advantage in terms of inter-

retation. Multiple previous studies (reviewed above) into age-related

hanges aim to infer changes in iron concentrations by relying on a

ingle (q)MRI metric such R2 ∗ or QSM, but R2 ∗ ( Li et al., 2009 ) and

SM (e.g., Hametner et al., 2018; Liu et al., 2015 ) have been shown

o also correlate with myelin concentrations (see also Daugherty and

az, 2015 ). Similarly, there currently exists no perfect method to es-

imate myelin contents in vivo ( Mancini et al., 2020 ), and while R1

ovaries with myelin, studies suggest that it also covaries with iron

 Ogg and Steen, 1998; Rooney et al., 2007; Stüber et al., 2014 ; but

ee Steen et al., 2000 ). As such, disentangling the contributions of iron

nd myelin to qMRI contrasts requires simultaneously consideration

f multiple qMRI contrasts at once. Future studies that quantify iron

nd myelin concentrations across the brain, for example using system-

tic chemical assays or advanced microscopy (e.g. Brammerloh et al.,

021 ) on post mortem materials, can provide key information to validate

nd further improve upon our models. Finally, qMRI measurements are

lso prone to biases, for instance B1 inhomogeneities in R1 mapping

 Haast et al., 2016 ), which are recalibrated when transforming qMRI

alues to myelin and iron estimates. 

A second limitation is that the number of structures included in these

tudies is still limited. We intend to expand the number of structures

n our future efforts. The hippocampus is of particular interest in the
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ontext of aging due to its well-known atrophy associated with cogni-

ive decline and neurodegenerative disease ( Bettio et al., 2017 ). How-

ver, given its cortical origin, the hippo-campus has not been prioritized

n this research and at present cannot be delineated by the MASSP al-

orithm. Since gold standard manual delineations have not been per-

ormed on the present data, we are currently unable to confirm the reli-

bility of other algorithms for hippocampal delineation on our specific

ata. We intend to incorporate the hippocampus in MASSP in a future

tudy. 

Third, we cannot exclude age-related changes in parcellation accu-

acy. This is a general problem with aging studies, as parcellation ac-

uracy tends to decrease with age due to decreased contrast between

tructures, even when structures are delineated manually. We relied on

he MASSP algorithm ( Bazin et al., 2020 ) to parcellate the 17 subcor-

ical regions and ventricles in each participant individually. The per-

ormance of MASSP, like manual delineations, varies per structure, and

epends on structure size and contrast ( Alkemade et al., 2021 ). Com-

ared to manual delineations, the performance of MASSP also tends to

ecrease with age. Fortunately, the impact of age-related biases in par-

ellation was shown to be limited for the quantitative MRI measures

 Bazin et al., 2020 ) on which the iron and myelin estimates are based,

uggesting that the age-related changes in myelin and iron are unlikely

o be caused by age-related differences in parcellation performance. On

he other hand, size estimates (volume and to a lesser extent thickness)

re more susceptible to the age-related changes in parcellation quality.

ere, we used an improved version of MASSP to mitigate these effects

nd could observe increased delineation accuracy for ventricles, fornix,

laustrum, GPi and VTA (see Fig. S3). However, a replication of the age

ependency study of Bazin et al. (2020) using the improved version of

ASSP did not show much improvement in the consistency of thickness

nd volume estimate in smaller structures, where we cannot exclude

ge-related decreases in parcellation accuracy. While other automated

arcellation algorithms incorporate certain structures of interest (such

s the hippocampus, see above), we are not aware of any algorithm that

an parcellate the same breadth of subcortical regions on qMRI data

s MASSP. Future developments of MASSP or other algorithms might

mprove parcellation accuracy and thereby improve the robustness of

odels of age-related changes. 

Finally, we are limited to descriptions of the age-related changes that

esult from iron accumulation, myelin degradation, and atrophy. While

ur results indicate a between-region heterogeneity in the age-related

hanges, they do not explain why certain regions appear to change more

han others with increasing age. Similarly, we did not study the specific

elation between qMRI metrics and morphometry ( Lorio et al., 2016;

ardif et al., 2017; Weiskopf et al., 2015 ). 

.3. Conclusions 

Our results extend previous studies into aging patterns of the sub-

ortex, which focus on a smaller number of typically large subcortical

reas, often based on MRI with lower field strengths ( Aquino et al., 2009;

herubini et al., 2009; Daugherty and Raz, 2013; 2016; Fjell et al., 2013;

reenberg et al., 2008; Herting et al., 2018; Keuken et al., 2017; Khattar

t al., 2021; Li et al., 2014; Raz, 2004; Raz et al., 2005; Raz and Ro-

rigue, 2006; Raznahan et al., 2014; Walhovd et al., 2005; Wang et al.,

019 ). Experiments using very large numbers of participants detected

omplex nonlinear age-related changes in some subcortical structures

 Coupé et al., 2017; Dima et al., 2021; Fjell et al., 2013 ). Our study had

 more modest sample size, which did not allow to evaluate complex

on-linear trends. On the other hand, by leveraging an open database of

ltra-high field 7 T quantitative MRI, we could provide a first view on

any structures and variables at once, which may be refined as more

 T quantitative MRI data sets become available. As such, our study

rovides a richer and more extensible description of subcortical compo-

ition, morphometry and aging. 
14 
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