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Abstract

Amygdala plays an important role in fear and emotional learning, which are critical for human 

survival. Despite the functional relevance and unique circuitry of each human amygdaloid 

subnuclei, there has yet to be an efficient imaging method for identifying these regions in vivo. A 

data-driven approach without prior knowledge provides advantages of efficient and objective 

assessments. The present study uses high angular and high spatial resolution diffusion magnetic 

resonance imaging to generate orientation distribution function, which bears distinctive 

microstructural features. The features were extracted using spherical harmonic decomposition to 

assess microstructural similarity within amygdala subfields are identified via similarity matrices 

using spectral k-mean clustering. The approach was tested on 32 healthy volunteers and three 

distinct amygdala subfields were identified including medial, posterior-superior lateral, and 

anterior-inferior lateral.
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1 Introduction

The amygdala, a subcortical structure in the human brain, is associated with fear and 

emotional learning [1]; with such, it regulates social behavior and perception, and memory 
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consolidation in other brain regions [2]. These functionalities of amygdala, especially fear 

learning and conditioning, are critical for survival. Functionally distinct subfields compose 

the whole amygdala, coarsely separated into the lateral, basolateral, and centromedial nuclei 

[3]. The lateral and basolateral nuclei receive afferent fibers that deliver highly processed 

sensory information from cortices while the centromedial nuclei project efferent fibers to 

hypothalamus and limbic nuclei. Conventionally, our knowledge of amygdala and its 

subfields has been derived from studies of compromised human brain using direct electrical 

stimulation [4]. Thus, having an accessible approach for imaging amygdala is valuable for 

advancing amygdala research in vivo.

In vivo studies of function and structure of the human amygdala have been made possible 

through neuroimaging, notably functional magnetic resonance imaging (fMRI) and diffusion 

magnetic resonance imaging (dMRI). The whole amygdala appears as a compact small 

region of grey matter in conventional magnetic resonance T1-weighted (T1W) imaging. 

Finer granularity of amygdala subfields may be parceled using ultra-high resolution T1W 

imaging [5], dMRI probability tractography [6, 7], or combining tasked fMRI and diffusion 

tensor imaging (DTI) streamline tractography [8]. These studies, however, require priori 

knowledge. The ultra-high resolution T1W imaging segmentation requires manually tracing 

with prior knowledge of amygdala histology; studies involving dMRI tractography call for 

pre-defined amygdala-cortical projections.

Alternatively, a data-driven approach without prior knowledge provides advantages of 

efficient and objective assessments. Spectral clustering algorithm has been applied to DTI 

principle directions (i.e., major eigenvector of the diffusion tensor), and yielded two 

directionally coherent subfields separated by a boundary called septa [9]. However, in the 

DTI framework, the water diffusion is approximated by an ellipsoid with a major 

eigenvector representing an overall direction of underlying microstructural organization 

[10]. Thus, local complexity and important features of microstructures may be lost in the 

simplified tensor model [11, 12]. To overcome DTI limitations, orientation distribution 

function (ODF) was proposed [13–18]. Compared to DTI major eigenvector, which has only 

three vector components, ODF describes a three-dimensional diffusion probability function 

defined on the surface of a unit sphere. ODF elucidates complex microstructures with 

multiple crossing and their probability distribution, and is believed to provide richer and 

more complete information of diffusion directionality.

In this study, ODF is used to parcel amygdala subfields that have similar microstructural 

characteristics. Specifically, ODF is first decompose to a combination of spherical 

harmonics, from which features of the ODF surface will be extracted. Similar to Fourier 

basis functions (i.e., a series of sinusoidal functions), the spherical harmonic basis functions 

are orthogonal with each other, and their coefficients describe distinctive features of the 

ODF surfaces. Coefficients of spherical harmonics have been used to segment the brain into 

different levels of microstructural complexity [19, 20]. Herein, we use the spherical 

harmonic coefficients to assess similarity between imaging voxels within amygdala. 

Amygdala subfields are identified via similarity matrices using spectral k-mean clustering 

[21]. We tested our approach on healthy volunteers who received high angular and high 

spatial resolution diffusion imaging.
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2 Material and Methods

2.1 Data Acquisition

MRI scans were performed on 32 healthy volunteers at a 3.0T Phililps Achieva INTERA 

scanner with a 32-channel head coil. Written informed consent was obtained from all 

participants in accordance with ethical approval from the Dartmouth College Internal 

Review Board.

High spatial resolution dMRI sequence was acquired with a single-shot spin-echo echo-

planer imaging sequence at an isotropic voxel size of 1.6mm with four repetitions (TE/

TR=79/3382, FOV=230mm×230mm×35.2mm, in-plane matrix size = 114×114, 22 slices). 

Diffusion-weighted (DW) images were acquired at one b-value = 0 s/mm2 (b0) and 61 

noncollinear DW directions at b-value = 1000 s/mm2 with a total acquisition time of 45 

minutes. Other imaging protocols included: A matched field-of-view (FOV) gradient-echo 

sequence with 2-echo times (TE = 7 and 8 ms) to generate fieldmap to correct for dMRI 

geometric distortion; and a whole brain T1W image using a magnetization-prepared rapid 

acquisition gradient echo sequence (MP-RAGE) with TE/TR= 3.72/8.18ms, 

FOV=224mm×224mm×220mm, and isotropic voxel size of 1 mm.

2.2 Post-processing

Motion correction, eddy current correction and susceptibility distortion correction were 

applied to each volume of the DW images before averaging over the four repetitions using 

the toolbox in FSL (FMRIB Software Library, University of Oxford, http://

fsl.fmrib.ox.ac.uk/fsl/). Motion and eddy current distortion were corrected using a linear 

registration to the b0 image (eddy_correct, FSL) for each volume within each repetition. 

Susceptibility distortion was corrected by calculating the geometric distortion and signal loss 

from the field map and was compensated for on the DW images (fudge, FSL). A final 

motion correction was applied to all four repetitions by rigidly registering the b0 images 

from each repetition before averaging.

In the diffusion space, the averaged DW images were then used to calculate the structural 

ODF profiles of the amygdala using in-house MATLAB programs [22] with a Q-ball 

Imaging (QBI) algorithm [14]. Spherical Harmonics (SH) coefficients of each ODF profile 

were extracted up to an order of 6, i.e., lmax =6. As a symmetric ODF was assumed and odd 

orders contain only noise information, only coefficients of even orders were kept [19, 20]. A 

total of 28 SH coefficient pairs (i.e., magnitude and phase) that represent the shape and 

orientation of ODF in each voxel were entered into the subsequent spectral clustering. Fig. 1 

shows simulated ODFs of single fiber orientation (0°, 30°, 60°, 90°) and their SH 

coefficients. Fig. 2 shows simulated ODFs for crossing fibers with rotating 2nd fiber (0°, 30°, 

60°, 90°) and their SH coefficients. Consistent to observations described in [19], the shape 

(e.g., number of crossing fibers) and the orientation (e.g., rotation angle) of ODF are 

described by the combination of magnitude and phase components of the SH coefficients.
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2.3 Amygdala Segmentation

The amygdala probability mask was first obtained from the Harvard-Oxford subcortical 

structural Atlas provided in FSL in the MNI 152 standard space. The mask was then warped 

to the subject diffusion space through the transformation achieved by aligning T1W of each 

subject to the T1W in MNI space using nonlinear registration (fnirt, FSL). A threshold of 

50% was then applied to the probability mask to exclude extraneous tissue. The resulting 

masks were conservatively away from the edge to avoid alignment errors and imaging partial 

voluming.

2.4 Amygdala Parcellation: K-mean Spectral Clustering

For each voxel, 28 SH coefficient pairs (lmax=6, even orders) were used to characterize the 

ODF that reflects the diffusion characteristics determined by the underlying tissue 

microstructure. Voxels within the mask of the amygdala would be grouped together 

according to the similarity of their SH coefficients.

To prepare for the subsequent Laplacian transformation of Spectral Clustering, the graph 

similarities (Sij) between two voxels i, j were computed by converting the weighted pair-

wise Pearson’s correlation coefficient, Cij of the SH coefficients according to their spherical 

distance [21]. The weighting, Wij, is to adjust physical (Euclidean) distance between voxels 

i, j. The dimension of S matrix, M × M, equals to the number of voxels within the segmented 

amygdala.

(1)

Sigma is a threshold parameter that deems the important cells in C where values below 

sigma are penalized. Therefore, S is a sparser matrix than C while also preserves the 

correlation as higher similarity Sij was achieved when the two voxels i, j had similar SH 

coefficients and were physically close to each other. The value of sigma was optimized by 

iteratively incrementing sigma until minimum Fiedler Value of the Laplacian matrix (see 

below or [21]) was achieved.

The graph similarity matrix (S) of each subject was then transformed into normalized 

symmetric graph Laplacian matrix, on which eigen decomposition was performed. 

According to spectral clustering theory [21], the first few ordered eigen values contain 

critical structural information regarding the data. To determine the number of eigen values 

that best reflect the underlying structure, we tested the eigen values against those generated 

from unstructured data. The unstructured data were generated by randomizing the SH 

coefficients. The randomization process was bootstrapped for 1200 iterations to create a null 

distribution of eigenvalues of the unstructured Laplacian matrices. For each subject, 

eigenvalues of original “structured” Laplacian matrix were tested against the null 

distribution using z-scoring, and the number of significant eigenvalues were determined as 

the number of clusters, denoted as N.
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To perform k-mean clustering to classify the voxels within the amygdala, we picked the N 
eigenvectors corresponding to the N eigenvalues starting from Fiedler Value. Each eigen-

vector has M elements that equals to the dimension of the Laplacian and S matrix. Note that 

M also denotes the number of voxels within the segmented amygdala. The N eigen-vectors 

were stacked up to form a N × M matrix. Thus, the N × M matrix described N distinct 

features for M voxels. K-mean clustering was performed across M voxels to yield a cluster 

label for each voxel. The clustering would then be complete and yield N amygdala subfields 

for each subject in the native space. In order to check the inter-subject variability, the 

individual results were transformed to the template brain. Individual clusters were averaged 

across subjects to generate a consistency map.

3 Results

Consistently three eigenvalues of the Laplacian transformed similarity matrix were found to 

be statistically significant across 32 subjects with p < 0.001. Such significance indicated that 

there was a consistent pattern whose optimal solution was related to the three eigenvalues. 

Therefore, N=3 was the optimal cluster number found for this study. In addition, we found 

that this N was independent from the sigma during the iterative optimization process where 

we found sigma = 0.55 gives minimal Fiedler Value.

The ODF profiles of the right amygdala with various orientations, shapes, and peaks are 

shown in Fig. 3. The ODFs were overlaid on the results of the clustering algorithm from one 

subject on an axial slice. It can be seen that groups of amygdala voxels show 

characteristically different orientations and shapes of the ODF that were associated with 

fiber structures.

The similarity matrix (S) calculated from the SH coefficients of the ODF profiles as 

described in 2.4 of the same subject in Fig. 3 is shown in Fig. 4. Red suggests high 

similarity. Three clusters are noticeable, which corresponded to three regions with distinct 

ODF characteristics. As the similarity matrix also contains voxel correspondence, it 

demonstrates consistent region separations as well.

The 3D scatter plot of the center of masses of each cluster across subjects is shown in Fig. 5. 

The coordinates are in voxels and were oriented to match with the image in coronal view 

(top-left) in Fig. 6. The spatial distribution of the center of masses may be a measure of 

across subject consistency. Alternatively, Fig. 6 shows the consistency map of clusters across 

subjects overlaid on coronal, sagittal, and axial T1W slices for the left amygdala. It clearly 

shows three clusters as the following subfields: medial (red), posterior-superior-lateral 

(green), anterior-inferior-lateral (blue).

4 Discussion and Conclusions

This study demonstrates that with high angular and spatial resolution diffusion imaging, 

amygdala can be parceled into three subfields. The automated clustering uses only 

microstructural information within the amygdala and does not require prior knowledge of 

histology or cortical functional projections of amygdaloid subnuclei. The physical locations 

of the three subfields infer three subnuclei including lateral, basolateral, and centromedial 
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nuclei. However, further study is warranted to further validate their cortical projections by 

incorporating dMRI tractography to link each cluster to functionally relevant cortical regions 

and to compare with histologically defined subnuclei.
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Fig. 1. 
The top panel shows simulated ODFs of single fiber orientation (0°, 30°, 60°, 90°). The 

ODFs were simulated with single tensor of axial diffusivity of 1200 mm2/s and radial 

diffusivity of 250 mm2/s at b=2500 s/mm2. The middle panel shows magnitude components 

of SH coefficients. The bottom panel shows phase components of SH coefficients. l and m 
are orders of Legendre function in the spherical harmonic bases. For Illustrating purpose, SH 

coefficients of l = 0 to 4 and m = −l to l are shown here.
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Fig. 2. 
The top panel shows simulated ODFs for crossing fibers with rotating 2nd fiber (0°, 30°, 60°, 

90°). The ODFs were simulated with two tensors at b=2500 s/mm2 and each has axial 

diffusivity of 1200 mm2/s and radial diffusivity of 250 mm2/s. The middle panel shows 

magnitude components of SH coefficients. The bottom panel shows phase components of 

SH coefficients. l and m are orders of Legendre function in the spherical harmonic bases; 

and SH coefficients of l = 0 to 4 and m = −l to l are shown here.
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Fig. 3. 
Right amygdala (axial view) with ODF overlaid on T1W for one subject.
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Fig. 4. 
The similarity matrix, S (300×300), of a subject’s amygdala with 300 voxels for cluster 

number N=3. Three distinct regions are noticeable. Red suggests high similarity.
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Fig. 5. 
3D scatter plot of cluster center of masses across subjects. Coordinates are by image voxels 

in the standard MNI space. The color code and orientation of the scatter plot match with the 

image in coronal view (top -left) in Fig. 6.
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Fig. 6. 
Consistency map of the three clusters in the left amygdala across subjects in coronal (top-

left), axial (bottom), and sagittal (top-right) views.
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