2,409 research outputs found

    Long Circuits and Large Euler Subgraphs

    Full text link
    An undirected graph is Eulerian if it is connected and all its vertices are of even degree. Similarly, a directed graph is Eulerian, if for each vertex its in-degree is equal to its out-degree. It is well known that Eulerian graphs can be recognized in polynomial time while the problems of finding a maximum Eulerian subgraph or a maximum induced Eulerian subgraph are NP-hard. In this paper, we study the parameterized complexity of the following Euler subgraph problems: - Large Euler Subgraph: For a given graph G and integer parameter k, does G contain an induced Eulerian subgraph with at least k vertices? - Long Circuit: For a given graph G and integer parameter k, does G contain an Eulerian subgraph with at least k edges? Our main algorithmic result is that Large Euler Subgraph is fixed parameter tractable (FPT) on undirected graphs. We find this a bit surprising because the problem of finding an induced Eulerian subgraph with exactly k vertices is known to be W[1]-hard. The complexity of the problem changes drastically on directed graphs. On directed graphs we obtained the following complexity dichotomy: Large Euler Subgraph is NP-hard for every fixed k>3 and is solvable in polynomial time for k<=3. For Long Circuit, we prove that the problem is FPT on directed and undirected graphs

    The parameterised complexity of counting even and odd induced subgraphs

    Get PDF
    We consider the problem of counting, in a given graph, the number of induced k-vertex subgraphs which have an even number of edges, and also the complementary problem of counting the k-vertex induced subgraphs having an odd number of edges. We demonstrate that both problems are #W[1]-hard when parameterised by k, in fact proving a somewhat stronger result about counting subgraphs with a property that only holds for some subset of k-vertex subgraphs which have an even (respectively odd) number of edges. On the other hand, we show that each of the problems admits an FPTRAS. These approximation schemes are based on a surprising structural result, which exploits ideas from Ramsey theory

    Data Reduction for Graph Coloring Problems

    Full text link
    This paper studies the kernelization complexity of graph coloring problems with respect to certain structural parameterizations of the input instances. We are interested in how well polynomial-time data reduction can provably shrink instances of coloring problems, in terms of the chosen parameter. It is well known that deciding 3-colorability is already NP-complete, hence parameterizing by the requested number of colors is not fruitful. Instead, we pick up on a research thread initiated by Cai (DAM, 2003) who studied coloring problems parameterized by the modification distance of the input graph to a graph class on which coloring is polynomial-time solvable; for example parameterizing by the number k of vertex-deletions needed to make the graph chordal. We obtain various upper and lower bounds for kernels of such parameterizations of q-Coloring, complementing Cai's study of the time complexity with respect to these parameters. Our results show that the existence of polynomial kernels for q-Coloring parameterized by the vertex-deletion distance to a graph class F is strongly related to the existence of a function f(q) which bounds the number of vertices which are needed to preserve the NO-answer to an instance of q-List-Coloring on F.Comment: Author-accepted manuscript of the article that will appear in the FCT 2011 special issue of Information & Computatio

    Finding Even Subgraphs Even Faster

    Get PDF
    Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on nn vertices and a positive integer parameter kk, find if there exist kk edges (arcs) whose deletion results in a graph that satisfies some specified parity constraints. In particular, when the objective is to obtain a connected graph in which all the vertices have even degrees---where the resulting graph is \emph{Eulerian}---the problem is called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where the resulting graph should be strongly connected and every vertex should have the same in-degree as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [\emph{Algorithmica, 2014}] showed that these problems are fixed parameter tractable (FPT), and gave algorithms with the running time 2O(klogk)nO(1)2^{O(k \log k)}n^{O(1)}. They also asked, as an open problem, whether there exist FPT algorithms which solve these problems in time 2O(k)nO(1)2^{O(k)}n^{O(1)}. In this paper we answer their question in the affirmative: using the technique of computing \emph{representative families of co-graphic matroids} we design algorithms which solve these problems in time 2O(k)nO(1)2^{O(k)}n^{O(1)}. The crucial insight we bring to these problems is to view the solution as an independent set of a co-graphic matroid. We believe that this view-point/approach will be useful in other problems where one of the constraints that need to be satisfied is that of connectivity

    Parameterized Edge Hamiltonicity

    Full text link
    We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke
    corecore