9,389 research outputs found

    On the Complexity of Finding a Sun in a Graph

    Get PDF
    The sun is the graph obtained from a cycle of length even and at least six by adding edges to make the even-indexed vertices pairwise adjacent. Suns play an important role in the study of strongly chordal graphs. A graph is chordal if it does not contain an induced cycle of length at least four. A graph is strongly chordal if it is chordal and every even cycle has a chord joining vertices whose distance on the cycle is odd. Farber proved that a graph is strongly chordal if and only if it is chordal and contains no induced suns. There are well known polynomial-time algorithms for recognizing a sun in a chordal graph. Recently, polynomial-time algorithms for finding a sun for a larger class of graphs, the so-called HHD-free graphs (graphs containing no house, hole, or domino), have been discovered. In this paper, we prove the problem of deciding whether an arbitrary graph contains a sun is NP-complete

    A Note on Quasi-Triangulated Graphs

    Get PDF
    A graph is quasi-triangulated if each of its induced subgraphs has a vertex which is either simplicial (its neighbors form a clique) or cosimplicial (its nonneighbors form an independent set). We prove that a graph G is quasi-triangulated if and only if each induced subgraph H of G contains a vertex that does not lie in a hole, or an antihole, where a hole is a chordless cycle with at least four vertices, and an antihole is the complement of a hole. We also present an algorithm that recognizes a quasi-triangulated graph in O(nm) time
    corecore