1,288 research outputs found

    Parameterized Streaming Algorithms for Vertex Cover

    Full text link
    As graphs continue to grow in size, we seek ways to effectively process such data at scale. The model of streaming graph processing, in which a compact summary is maintained as each edge insertion/deletion is observed, is an attractive one. However, few results are known for optimization problems over such dynamic graph streams. In this paper, we introduce a new approach to handling graph streams, by instead seeking solutions for the parameterized versions of these problems where we are given a parameter kk and the objective is to decide whether there is a solution bounded by kk. By combining kernelization techniques with randomized sketch structures, we obtain the first streaming algorithms for the parameterized versions of the Vertex Cover problem. We consider the following three models for a graph stream on nn nodes: 1. The insertion-only model where the edges can only be added. 2. The dynamic model where edges can be both inserted and deleted. 3. The \emph{promised} dynamic model where we are guaranteed that at each timestamp there is a solution of size at most kk. In each of these three models we are able to design parameterized streaming algorithms for the Vertex Cover problem. We are also able to show matching lower bound for the space complexity of our algorithms. (Due to the arXiv limit of 1920 characters for abstract field, please see the abstract in the paper for detailed description of our results)Comment: Fixed some typo

    Towards a Theory of Parameterized Streaming Algorithms

    Get PDF
    Parameterized complexity attempts to give a more fine-grained analysis of the complexity of problems: instead of measuring the running time as a function of only the input size, we analyze the running time with respect to additional parameters. This approach has proven to be highly successful in delineating our understanding of NP-hard problems. Given this success with the TIME resource, it seems but natural to use this approach for dealing with the SPACE resource. First attempts in this direction have considered a few individual problems, with some success: Fafianie and Kratsch [MFCS\u2714] and Chitnis et al. [SODA\u2715] introduced the notions of streaming kernels and parameterized streaming algorithms respectively. For example, the latter shows how to refine the Omega(n^2) bit lower bound for finding a minimum Vertex Cover (VC) in the streaming setting by designing an algorithm for the parameterized k-VC problem which uses O(k^{2}log n) bits. In this paper, we initiate a systematic study of graph problems from the paradigm of parameterized streaming algorithms. We first define a natural hierarchy of space complexity classes of FPS, SubPS, SemiPS, SupPS and BrutePS, and then obtain tight classifications for several well-studied graph problems such as Longest Path, Feedback Vertex Set, Dominating Set, Girth, Treewidth, etc. into this hierarchy (see Figure 1 and Table 1). On the algorithmic side, our parameterized streaming algorithms use techniques from the FPT world such as bidimensionality, iterative compression and bounded-depth search trees. On the hardness side, we obtain lower bounds for the parameterized streaming complexity of various problems via novel reductions from problems in communication complexity. We also show a general (unconditional) lower bound for space complexity of parameterized streaming algorithms for a large class of problems inspired by the recently developed frameworks for showing (conditional) kernelization lower bounds. Parameterized algorithms and streaming algorithms are approaches to cope with TIME and SPACE intractability respectively. It is our hope that this work on parameterized streaming algorithms leads to two-way flow of ideas between these two previously separated areas of theoretical computer science

    Parameterized Complexity of Streaming Diameter and Connectivity Problems

    Get PDF
    We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is O(logn) for any fixed k. Underlying these algorithms is a method to execute a breadth-first search in O(k) passes and O(klogn) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where Ω(n/p) bits of memory is needed for any p-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H, for most H. For some cases, we can also show one-pass, Ω(nlogn) bits of memory lower bounds. We also prove a much stronger Ω(n2/p) lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k. This yields a kernel of 2k vertices (with O(k2) edges) produced as a stream in poly(k) passes and only O(klogn) bits of memory

    Streaming deletion problems parameterized by vertex cover

    Get PDF
    Streaming is a model where an input graph is provided one edge at a time, instead of being able to inspect it at will. In this work, we take a parameterized approach by assuming a vertex cover of the graph is given, building on work of Bishnu et al. [COCOON 2020]. We show the further potency of combining this parameter with the Adjacency List streaming model to obtain results for vertex deletion problems. This includes kernels, parameterized algorithms, and lower bounds for the problems of Π-free Deletion, H-free Deletion, and the more specific forms of Cluster Vertex Deletion and Odd Cycle Transversal. We focus on the complexity in terms of the number of passes over the input stream, and the memory used. This leads to a pass/memory trade-off, where a different algorithm might be favourable depending on the context and instance. We also discuss implications for parameterized complexity in the non-streaming setting

    Parameterized Streaming Algorithms for Min-Ones d-SAT

    Get PDF
    In this work, we initiate the study of the Min-Ones d-SAT problem in the parameterized streaming model. An instance of the problem consists of a d-CNF formula F and an integer k, and the objective is to determine if F has a satisfying assignment which sets at most k variables to 1. In the parameterized streaming model, input is provided as a stream, just as in the usual streaming model. A key difference is that the bound on the read-write memory available to the algorithm is O(f(k) log n) (f: N -> N, a computable function) as opposed to the O(log n) bound of the usual streaming model. The other important difference is that the number of passes the algorithm makes over its input must be a (preferably small) function of k. We design a (k + 1)-pass parameterized streaming algorithm that solves Min-Ones d-SAT (d >= 2) using space O((kd^(ck) + k^d)log n) (c > 0, a constant) and a (d + 1)^k-pass algorithm that uses space O(k log n). We also design a streaming kernelization for Min-Ones 2-SAT that makes (k + 2) passes and uses space O(k^6 log n) to produce a kernel with O(k^6) clauses. To complement these positive results, we show that any k-pass algorithm for or Min-Ones d-SAT (d >= 2) requires space Omega(max{n^(1/k) / 2^k, log(n / k)}) on instances (F, k). This is achieved via a reduction from the streaming problem POT Pointer Chasing (Guha and McGregor [ICALP 2008]), which might be of independent interest. Given this, our (k + 1)-pass parameterized streaming algorithm is the best possible, inasmuch as the number of passes is concerned. In contrast to the results of Fafianie and Kratsch [MFCS 2014] and Chitnis et al. [SODA 2015], who independently showed that there are 1-pass parameterized streaming algorithms for Vertex Cover (a restriction of Min-Ones 2-SAT), we show using lower bounds from Communication Complexity that for any d >= 1, a 1-pass streaming algorithm for Min-Ones d-SAT requires space Omega(n). This excludes the possibility of a 1-pass parameterized streaming algorithm for the problem. Additionally, we show that any p-pass algorithm for the problem requires space Omega(n/p)

    Streaming Kernelization

    Full text link
    Kernelization is a formalization of preprocessing for combinatorially hard problems. We modify the standard definition for kernelization, which allows any polynomial-time algorithm for the preprocessing, by requiring instead that the preprocessing runs in a streaming setting and uses O(poly(k)logx)\mathcal{O}(poly(k)\log|x|) bits of memory on instances (x,k)(x,k). We obtain several results in this new setting, depending on the number of passes over the input that such a streaming kernelization is allowed to make. Edge Dominating Set turns out as an interesting example because it has no single-pass kernelization but two passes over the input suffice to match the bounds of the best standard kernelization

    Parameterized Complexity of Streaming Diameter and Connectivity Problems

    Get PDF
    We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is O(log n) for any fixed k. Underlying these algorithms is a method to execute a breadth-first search in O(k) passes and O(klog n) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where Ω(n/p) bits of memory is needed for any p-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H, for most H. For some cases, we can also show one-pass, Ω(nlog n) bits of memory lower bounds. We also prove a much stronger Ω(n2/p) lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k. This yields a kernel of 2k vertices (with O(k2) edges) produced as a stream in poly(k) passes and only O(klog n) bits of memory

    Semi-Streaming Set Cover

    Full text link
    This paper studies the set cover problem under the semi-streaming model. The underlying set system is formalized in terms of a hypergraph G=(V,E)G = (V, E) whose edges arrive one-by-one and the goal is to construct an edge cover FEF \subseteq E with the objective of minimizing the cardinality (or cost in the weighted case) of FF. We consider a parameterized relaxation of this problem, where given some 0ϵ<10 \leq \epsilon < 1, the goal is to construct an edge (1ϵ)(1 - \epsilon)-cover, namely, a subset of edges incident to all but an ϵ\epsilon-fraction of the vertices (or their benefit in the weighted case). The key limitation imposed on the algorithm is that its space is limited to (poly)logarithmically many bits per vertex. Our main result is an asymptotically tight trade-off between ϵ\epsilon and the approximation ratio: We design a semi-streaming algorithm that on input graph GG, constructs a succinct data structure D\mathcal{D} such that for every 0ϵ<10 \leq \epsilon < 1, an edge (1ϵ)(1 - \epsilon)-cover that approximates the optimal edge \mbox{(11-)cover} within a factor of f(ϵ,n)f(\epsilon, n) can be extracted from D\mathcal{D} (efficiently and with no additional space requirements), where f(ϵ,n)={O(1/ϵ),if ϵ>1/nO(n),otherwise. f(\epsilon, n) = \left\{ \begin{array}{ll} O (1 / \epsilon), & \text{if } \epsilon > 1 / \sqrt{n} \\ O (\sqrt{n}), & \text{otherwise} \end{array} \right. \, . In particular for the traditional set cover problem we obtain an O(n)O(\sqrt{n})-approximation. This algorithm is proved to be best possible by establishing a family (parameterized by ϵ\epsilon) of matching lower bounds.Comment: Full version of the extended abstract that will appear in Proceedings of ICALP 2014 track

    Dynamic Graph Stream Algorithms in o(n)o(n) Space

    Get PDF
    In this paper we study graph problems in dynamic streaming model, where the input is defined by a sequence of edge insertions and deletions. As many natural problems require Ω(n)\Omega(n) space, where nn is the number of vertices, existing works mainly focused on designing O~(n)\tilde{O}(n) space algorithms. Although sublinear in the number of edges for dense graphs, it could still be too large for many applications (e.g. nn is huge or the graph is sparse). In this work, we give single-pass algorithms beating this space barrier for two classes of problems. We present o(n)o(n) space algorithms for estimating the number of connected components with additive error εn\varepsilon n and (1+ε)(1+\varepsilon)-approximating the weight of minimum spanning tree, for any small constant ε>0\varepsilon>0. The latter improves previous O~(n)\tilde{O}(n) space algorithm given by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the study of approximate graph property testing in the dynamic streaming model, where we want to distinguish graphs satisfying the property from graphs that are ε\varepsilon-far from having the property. We consider the problem of testing kk-edge connectivity, kk-vertex connectivity, cycle-freeness and bipartiteness (of planar graphs), for which, we provide algorithms using roughly O~(n1ε)\tilde{O}(n^{1-\varepsilon}) space, which is o(n)o(n) for any constant ε\varepsilon. To complement our algorithms, we present Ω(n1O(ε))\Omega(n^{1-O(\varepsilon)}) space lower bounds for these problems, which show that such a dependence on ε\varepsilon is necessary.Comment: ICALP 201
    corecore