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Abstract
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in
the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows
for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant
and memory is O(log n) for any fixed k. Underlying these algorithms is a method to execute a
breadth-first search in O(k) passes and O(k log n) bits of memory. On the negative end, we show
that many other parameters lead to lower bounds in the AL model, where Ω(n/p) bits of memory
is needed for any p-pass algorithm even for constant parameter values. In particular, this holds
for graphs with a known modulator (deletion set) of constant size to a graph that has no induced
subgraph isomorphic to a fixed graph H, for most H. For some cases, we can also show one-pass,
Ω(n log n) bits of memory lower bounds. We also prove a much stronger Ω(n2/p) lower bound for
Diameter on bipartite graphs.

Finally, using the insights we developed into streaming parameterized graph exploration al-
gorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k.
This yields a kernel of 2k vertices (with O(k2) edges) produced as a stream in poly(k) passes and
only O(k log n) bits of memory.
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1 Introduction

Graph algorithms, such as to compute the diameter of an unweighted graph (Diameter) or
to determine whether it is connected (Connectivity), often rely on keeping the entire graph
in (random access) memory. However, very large networks might not fit in memory. Hence,
graph streaming has been proposed as a paradigm where the graph is inspected through a
so-called stream, in which its edges appear one by one [38]. To compensate for the assumption
of limited memory, multiple passes may be made over the stream and computation time is
assumed to be unlimited. The complexity theory question is which problems remain solvable
and which problems are hard in such a model, taking into account trade-offs between the
amount of memory and passes.
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Many graph streaming problems require Ω(n) bits of memory [33, 34] for a constant
number of passes on n-vertex graphs. Any p-pass algorithm for Connectivity needs Ω(n/p)
bits of memory [38]. Single pass algorithms for Connectivity or Diameter need Ω(n log n)
bits of memory on sparse graphs [50]. A 2-approximation of Diameter requires Ω(n3/2)
bits of memory on weighted graphs [34]. A naive streaming algorithm for Connectivity or
Diameter stores the entire graph, using O(m log n) = O(n2 log n) bits and a single pass.
For Connectivity, union-find yields a 1-pass, O(n log n) bits of memory, algorithm [43].

An intriguing aspect on Diameter and Connectivity is that some classic algorithms
for them rely on breadth-first search (BFS) or depth-first search (DFS). These seem difficult
to execute efficiently in a streaming setting. It was a longstanding open problem to compute
a DFS tree using o(n) passes and o(m log n) bits of memory. This barrier was recently
broken [42], through an algorithm that uses O(n/k) passes and O(nk log n) bits of memory,
for any k. The situation for computing single-source shortest paths seems similar [30],
although good approximations exist even on weighted graphs (see e.g. [43, 31]). We do
know that DFS algorithms cannot be executed in logarithmic space [48]. In streaming,
any BFS algorithm that explores k layers of the BFS tree must use at least k/2 passes or
Ω(n1+1/k/(log n)1/k) space [34]. Hence, much remains unexplored when it comes to graph
exploration- and graph distance-related streaming problems such as BFS/DFS, Diameter,
and Connectivity. In particular, most lower bounds hold for general graphs. As such, a
more fine-grained view of the complexity of these problems has so far been lacking.

In this paper, we seek to obtain this fine-grained view using parameterized complexity [25].
The idea of using parameterized complexity in the streaming setting was first introduced
by Fafianie and Kratsch [32] and Chitnis et al. [21]. Many problems are hard in streaming
parameterized by their solution size [32, 21, 18]. Crucially, however, deciding whether a graph
has a vertex cover of size k has a one-pass, Õ(k2)-memory kernelization algorithm by Chitnis
et al. [19], and a 2k-passes, Õ(k)-memory direct algorithm by Chitnis and Cormode [18].

Bishnu et al. [10] then showed that knowing a vertex cover of size k is useful in solving
other deletion problems using p(k) passes and f(k) log n memory, notably H-free deletion;
this approach was recently expanded on by Oostveen and van Leeuwen [46]. This leads to
the more general question how knowing a (small) H-free modulator, that is, a set X such
that G − X has no induced subgraph isomorphic to H (note that H = P2 in Vertex Cover
[k]1), would affect the complexity of streaming problems and of BFS/DFS, Diameter, and
Connectivity in particular. We are not aware of any investigations in this direction.

An important consideration is the streaming model (see [38, 36, 41, 44] or the survey by
McGregor [43]). In the Edge Arrival (EA) model, each edge of the graph appears once in the
stream, and the edges appear in some fixed but arbitrary order. Most aforementioned results
use this model. In the Vertex Arrival (VA) model the edges arrive grouped per vertex, and
an edge is revealed at its endpoint that arrives latest. In the Adjacency List (AL) model
the edges also arrive grouped per vertex, but each edge is present for both its endpoints.
This means we see each edge twice and when a vertex arrives we immediately see all its
adjacencies (rather than some subset dependent on the arrival order, as in the VA model).
This model is quite strong, but as we shall see, unavoidable for our positive results. We do
not consider dynamic streaming models in this paper, although they do exist.

Our Contributions. The main takeaway from our work is that the vertex cover number
likely sits right at the frontier of parameters that are helpful in computing Diameter and
Connectivity. As our main positive result, we show the following.

1 See Section 2 for the notation.
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▶ Theorem 1. Given a vertex cover of size k, Diameter [k] and Connectivity [k] can be
solved using O(2kk) passes and O(k log n) bits of space or using one pass and O(2k + k log n)
bits of space, in the AL model.

The crux to our approach is to perform a BFS in an efficient manner, using O(k) passes
and O(k log n) space. Knowledge of a vertex cover is not a restricting assumption, as one
may be computed using similar memory requirements [19, 18]. An extension allows the
one-pass result to work without a vertex cover being given, at the cost of increasing the
memory use to O(4k + k log n) bits of space.

As a contrasting result, we observe that in the VA model, even a constant-size vertex
cover does not help in computing Diameter and Connectivity. Moreover, the bound on
the vertex cover seems necessary, as we can prove that any p-pass algorithm for Diameter
requires Ω(n2/p) bits of memory even on bipartite graphs and any p-pass algorithm for
Connectivity requires Ω(n/p) bits of memory, both in the AL model. This indicates that
both the permissive AL model and a low vertex cover number are truly needed.

In some cases, we are also able to prove that a single-pass algorithm requires Ω(n log n)
bits of memory (due to lack of space these proofs are fully deferred to the full version of the
paper [47]).

More broadly, knowledge of being H-free (that is, not having a fixed graph H as an
induced subgraph) or having an H-free modulator does not help even in the AL model:

▶ Theorem 2. For any fixed graph H with H ̸⊆i P4 (H is not an induced subgraph of P4)
and H ̸= 3P1, P3 + P1, P2 + 2P1, any streaming algorithm for Diameter in the AL model
that uses p passes over the stream must use Ω(n/p) bits of memory on graphs G even when
G is H-free.

We note that these results hold for H-free graphs (without the need for a modulator).
The case when H ⊆i P4 is straightforward to solve with O(log n) bits of memory, as the
diameter is either 1 or 2 (an induced path of length 3 is a P4). If the graph has diameter 1,
it is a clique. This can be tested in a single pass by counting the number of edges.

▶ Theorem 3. For any fixed graph H with H ̸= P2 + sP1 for s ∈ {0, 1, 2} and H ̸= sP1 for
s ∈ {1, 2, 3}, any streaming algorithm for Diameter in the AL model that uses p passes over
the stream must use Ω(n/p) bits of memory on graphs G even when given a set X ⊆ V (G)
of constant size such that G − X is H-free. If G − X must be connected and H-free, then
additionally H ̸= P3.

We note that the case when H = P2 or H = P1 is covered by Theorem 1. Cobipartite
graphs seem to be a bottleneck class. The cases when H = 2P1 or when H = P3 and G − X

must be connected lead to a surprising second positive result.

▶ Theorem 4. Given a set X of size k such that G − X is a disjoint union of ℓ cliques,
Diameter [k, ℓ] and Connectivity [k, ℓ] can be solved using O(2kkℓ) passes and O((k +
ℓ) log n) bits of space or one pass and O(2kℓ + (k + ℓ) log n) bits of space, in the AL model.

The approach for this result is similar as for Theorem 1. Moreover, we show a comple-
mentary lower bound in the VA model, even for ℓ = 1 and constant k.

Our results for Diameter are summarized in Table 1 and 2. In words, generalizing
Theorem 1 using the perspective of an H-free modulator does not seem to lead to a positive
result (Theorem 4). Instead, connectivity of the remaining graph after removing the modulator
seems crucial. However, this perspective only helps for Theorem 4, while the problem remains

IPEC 2022
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hard for most other H-free modulators and even for the seemingly simple case of a modulator
to a path. While Theorem 4 would also hint at the possibility of using a modulator to a few
components of small diameter, this also leads to hardness.

We emphasize that all instances of Diameter in our hardness reductions are connected
graphs. Hence, the hardness of computing Diameter is separated from the hardness of
computing Connectivity.

For Connectivity, we also give two broad theorems that knowledge of being H-free or
having an H-free modulator does not help even in the AL model.

▶ Theorem 5. For any fixed graph H that is not a linear forest containing only paths of
length at most 5, any streaming algorithm for Connectivity in the AL model that uses p

passes over the stream must use Ω(n/p) bits of memory on graphs G even when G is H-free.

▶ Theorem 6. For any fixed graph H that is not a linear forest containing only paths of
length at most 1, any streaming algorithm for Connectivity in the AL model that uses p

passes over the stream must use Ω(n/p) bits of memory on graphs G even when given a set
X ⊆ V (G) of constant size such that G − X is H-free.

As a final result, we use our insights into graph exploration on graphs of bounded vertex
cover to show a result on the Vertex Cover problem itself. In particular, a kernel on
2k vertices for Vertex Cover [k] can be obtained as a stream in O(k3) passes in the EA
model using only Õ(k) bits of memory. In the AL model, the number of passes is only O(k2).
This kernel still may have O(k2) edges, which means that saving it in memory would not give
a better result than that of Chitnis et al. [19] (which uses Õ(k2) bits of memory). Indeed, a
better kernel seems unlikely to exist [24]. However, the important point is that storing the
(partial) kernel in memory is not needed during its computation. Hence, it may be viewed
as a possible first step towards a streaming algorithm for Vertex Cover [k] using Õ(k)
bits of memory and poly(k) passes, which is an important open problem in the field, see [18].
Our kernel is constructed through a kernel by Buss and Goldsmith [14], and then finding a
maximum matching in an auxiliary bipartite graph (following Chen et al. [16]) of bounded
size through repeated DFS applications.

Related work. There has been substantial work on the complexity of graph-distance and
reachability problems in the streaming setting. For example, Guruswami and Onak [37]
showed that any p-pass algorithm needs n1+Ω(1/p)/pO(1) memory when given vertices s, t to
test if s, t are at distance at most 2p + 2 in undirected graphs or to test s-t reachability in
directed graphs. Further work on directed s-t reachability [6] recently led to a lower bound
that any o(

√
log n)-pass algorithm needs n2−o(1) bits of memory [17]. Other recent work

considers p-pass algorithms for ϵ-property testing of connectivity [51, 39, 4], including strong
memory lower bounds n1−O(ϵ·p) on bounded-degree planar graphs [5]. Further problems in
graph streaming are extensively discussed and referenced in these works; see also [3].

In the non-streaming setting, the Diameter problem can be solved in O(nm) time by
BFS. There is a lower bound of n2−ϵ for any ϵ > 0 under the Strong Exponential Time
Hypothesis (SETH) [49]. Parameterizations of Diameter have been studied with parameter
vertex cover [13], treewidth [1, 40, 13], and other parameters [23, 8], leading to a 2O(k)n1+ϵ

time algorithm on graphs of treewidth k [13]. Running time 2o(k)n2−ϵ for graphs of treewidth
k is not possible under SETH [1]. Subquadratic algorithms are known for various hereditary
graph classes; see e.g. [15, 22, 26, 27, 28, 29, 35] and references in [22].
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2 Preliminaries

We work on undirected, unweighted graphs. We denote a computational problem A with
A [k], where [.] denotes the parameterization. The default parameter is solution size, if
not mentioned otherwise. Diameter is to compute maxs,t∈V d(s, t) where d(s, t) denotes
the distance between s and t. Connectivity asks to decide whether or not the graph is
connected. A twin class consists of all vertices with the same open neighbourhood. In a
graph with vertex cover size k, we have O(2k) twin classes. For two graphs G, H, G + H

denotes their disjoint union. We also use 2G to denote G + G; 3G is G + G + G, etc. A linear
forest is a disjoint union of paths. A path on a vertices is denoted Pa and has length a − 1.

We employ the following problem in communication complexity.

Disjn (Disjointness)
Input: Alice has a string x ∈ {0, 1}n given by x1x2 . . . xn. Bob has a string
y ∈ {0, 1}n given by y1y2 . . . yn.
Question: Bob wants to check if ∃1 ≤ i ≤ n such that xi = yi = 1. (Formally, the
answer is NO if this is the case.)

The communication complexity necessary between Alice and Bob to solve this problem is
well understood, and can be used to prove lower bounds on the memory use of streaming
algorithms. This was first done by Henzinger et al. [38]. The following formulation by Bishnu
et al. [9] comes in very useful.

▶ Proposition 7 (Rephrasing of item (ii) of [9], Proposition 5.6). If we can show a reduction
from Disjn to problem Π in streaming model M such that in the reduction, Alice and Bob
construct one model-M pass for a streaming algorithm for Π by communicating the memory
state of the algorithm only a constant number of times to each other, then any streaming
algorithm working in the model M for Π that uses p passes requires Ω(n/p) bits of memory,
for any p ∈ N [20, 11, 2].

If we can show a reduction from Disjointness, we call a problem “hard”, as it does not
admit algorithms using only poly-logarithmic memory.

Any upper bound for the EA model holds for all models, and an upper bound for the
VA model also holds for the AL model. On the other hand, a lower bound in the AL model
holds for all models, and a lower bound for the VA model also holds for the EA model.

3 Upper Bounds for Diameter

We give an overview of our upper bound results for Diameter in Table 1. The memory-
efficient results rely on executing a BFS on the graph, which is made possible by both the
parameter and the use of the AL model. The one-pass results rely on the possibility to save
the entire graph in a bounded fashion. Our upper bounds assume the deletion set related to
the parameter is given, that is, it is in memory.

▶ Lemma 8 (♣). In a graph with vertex cover size k, any simple path has length at most 2k.

(Further discussions and proofs for results marked with ♣ appear in the full online version
of the paper [47].)

Lemma 8 is useful in that the diameter of such a graph can be at most 2k if the graph is
connected. Our algorithm will simulate a BFS for 2k rounds, deciding on the distance of a
vertex to all other vertices.

IPEC 2022
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Table 1 Overview of the algorithms and their complexity for Diameter and Connectivity.
The results for the Vertex Cover parameter are given in Theorems 10,11.

Parameter (k) Passes Memory (bits) Model
Vertex Cover O(2kk) O(k log n) AL

1 O(2k + k log n) AL
Distance to ℓ cliques O(2kℓk) O((k + ℓ) log n) AL

1 O(2kℓ + (k + ℓ) log n) AL

▶ Lemma 9. Given a graph G as an AL stream with a vertex cover X of size k, we can
compute the distance from a vertex v to all others using O(k) passes and O(k log n) bits of
memory.

Proof. We simulate a BFS originating at v for at most 2k rounds on our graph, using a
pass for each round. Contrary to a normal BFS, we only remember whether we visited the
vertices in the vertex cover and their distances, to reduce memory complexity.

For every vertex w ∈ X, we save its tentative distance d(w) from v; if this is not yet
decided, this field has value ∞. Our claim will be that after round i, the value of d(w) for
vertices w within distance i from v is correct. We initialize the distance of v as d(v) = 0 (we
store d(v) regardless of whether v ∈ X).

Say we are in round i ≥ 1. We execute a pass over the stream. Say we view a vertex
w ∈ X ∪ {v} in the stream with its adjacencies. If w has a distance of d(w), we update
the neighbours of w in X to have distance d(u) = min(d(u), d(w) + 1). If instead we view
a vertex w /∈ X ∪ {v} in the stream, we do the following. Locally save all the neighbours
and look at their distances, and let z be the neighbour with minimum d(z) value. For every
u ∈ N(w) we update the distance as d(u) = min(d(z) + 2, d(u)). This simulates the distance
of a path passing through w (note that this may not be the shortest path, but this may be
resolved by other vertices). This completes the procedure for round i.

Notice that we use only O(k log n) bits of memory during the procedure, and that the
total number of passes is indeed O(k) as we execute 2k rounds, using one pass each.

For the correctness, let us first argue the correctness of the claim after round i, the value
of d(w) of vertices w ∈ X within distance i from v is correct. We proceed by induction,
clearly the base case of 0 is correct. Now consider some vertex w at distance i from v.
Consider a shortest path from v to w. Look at the last vertex on the path before visiting w.
If this vertex is in X, then by induction, this vertex has a correct distance after round i − 1,
and so, in round i this vertex will update the distance of w to be i. If this vertex is not in X,
then it has a neighbour with distance i − 2, which is correct after round i − 2 by induction,
and so, the vertex not in X will (have) update(d) the distance of w to be i in round i.

The correctness of the algorithm now follows from the claim, together with Lemma 8,
and the fact that we can now output all distances using a single pass by either outputting
the value of the field d(w) for a vertex w ∈ X, or by looking at all neighbours of a vertex
w /∈ X and outputting the smallest value +1. ◀

Related is a lower bound result by Feigenbaum et al. [34], which says that any BFS
procedure that explores k layers of the BFS tree must use at least k/2 passes or super-linear
memory. This indicates that memory- and pass-efficient implementations of BFS, as in
Lemma 9, are hard to come by.

We can now use Lemma 9 to construct an algorithm for finding the diameter of a graph
parameterized by vertex cover, essentially by executing Lemma 9 for every twin class, which
considers all options for vertices in the graph.
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▶ Theorem 10 (♣). Given a graph G as an AL stream with vertex cover X of size k, we
can solve Diameter [k] in O(2kk) passes and O(k log n) bits of memory.

We show an alternative one-pass algorithm, by saving the graph as a representation by
its twin classes, thereby completing the proof of Theorem 1.

▶ Theorem 11 (♣). Given a graph G as an AL stream, we can solve Diameter [k] in one
pass and O(4k + k log n) bits of memory, or correctly report that a vertex cover of size k does
not exist. When a vertex cover of size k is given, the memory use is O(2k + k log n).

The ideas of Theorem 10 and Theorem 11 also work for a similar setting with a few
adjustments. This is the setting of Theorem 4, that our problem is parameterized by
Distance to ℓ Cliques, where both the deletion distance k and the number of remaining
cliques ℓ are bounded. The BFS idea works here as well, as shortest paths are of bounded
length, and we can save information for every vertex in the deletion set, as well as some
information for every clique. There is also a concept of twin classes in such an instance,
where we also distinguish which clique a vertex belongs to, and this is useful for the BFS
from “every” vertex, as well as a one-pass algorithm where we save the entire graph in a
compressed representation. The details of the theorems and proofs that make up Theorem 4
are given in the full version (♣). When the number of cliques is not bounded, this setting
admits a lower bound, which we will see in Section 4.

4 Lower Bounds for Diameter

We work with reductions from Disjn, and we construct graphs where Alice controls some of
the edges, and Bob controls some of the edges, depending on their respective input of the
Disjn problem, and some parts of the graph are fixed. The aim is to create a gap in the
diameter of the graph, that is, the answer to Disjn is YES if and only if the diameter is
above or below a certain value. The lower bound then follows from Proposition 7. Here n

may be the number of vertices in the graph construction, but may also be different (possibly
forming a different lower bound). Our lower bounds hold for connected graphs.

We start by proving simple lower bounds for the VA model when our problem is paramet-
erized by the vertex cover number, and when our problem is parameterized by the distance
to ℓ cliques. This shows that we actually need the AL model to achieve the upper bounds in
Section 3. The constructions are illustrated in Figure 1 and Figure 2. Generally, a-vertices
(b-vertices) and their incident edges are controlled by Alice (Bob). To give an idea of the
reduction technique, we describe how a VA stream is constructed by Alice and Bob, in the
construction of Figure 1. First, Alice reveals the middle vertices including the vertex c and
the fixed edges, then reveals the vertex a with the edges dependent on her input. Then the
memory state of the algorithm is given to Bob who can reveal his vertex b with the edges
dependent on his input. Notice that this is a valid VA stream, and Alice and Bob need no
information about the input of the other.

▶ Theorem 12 (♣). Any streaming algorithm for Diameter on graphs of vertex cover
number at least 3 in the VA model that uses p passes over the stream requires Ω(n/p) bits of
memory.

▶ Theorem 13 (♣). Any streaming algorithm for Diameter on graphs of distance 2 to ℓ = 1
clique in the VA model that uses p passes over the stream requires Ω(n/p) bits of memory.

IPEC 2022
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Table 2 An overview of the lower bounds for Diameter, with the parameter (k) on the left.
These results hold for connected graphs. (M, m, p)-hard means that any algorithm using p passes in
model M (or weaker) requires Ω(m) bits of memory. FVS stand for Feedback Vertex Set number,
FEN for Feedback Edge Set number. Most proofs of the results in this table are deferred to the full
paper (♣).

Parameter (k) / Graph class Size Bound
General and Bipartite Graphs (AL, n2/p, p)-hard
Vertex Cover ≥ 3 (VA, n/p, p)-hard
Distance to ℓ cliques k ≥ 2, ℓ ≥ 1 (VA, n/p, p)-hard
FVS, FES ≥ 0 (AL, n/p, p)-hard

≥ 0 (AL, n log n, 1)-hard
Distance to matching ≥ 3 (AL, n/p, p)-hard
Distance to path ≥ 2 (AL, n/p, p)-hard

≥ 2 (AL, n log n, 1)-hard
Distance to depth ℓ tree k ≥ 3, ℓ ≥ 2 (AL, n/p, p)-hard

k ≥ 0, ℓ ≥ 5 (AL, n/p, p)-hard
k ≥ 0, ℓ ≥ 7 (AL, n log n, 1)-hard

Dist. to ℓ comps. of diam. x k, x ≥ 2 (AL, n/p, p)-hard
Domination Number ≥ 3 (AL, n/p, p)-hard
Maximum Degree ≥ 3 (AL, n/p, p)-hard

≥ 3 (AL, n log n, 1)-hard
Split graphs (AL, n/p, p)-hard

The lower bounds in Figure 1 and Figure 2 do not work for the AL model because there
are vertices that may or may not be adjacent to both a and b, so neither Alice nor Bob can
produce the adjacency list of such a vertex alone. For the “Simple VA” construction, we can
“fix” this by extending these vertices to edges but this is destructive to the small vertex cover
number of the construction. This “fixed” construction is fully deferred to the full version of
the paper (♣). It should be clear that AL reductions require care: no vertex may be incident
to variable edges of both Alice and Bob.

The following theorem is a combination of several constructions, implying AL hardness
on trees, splits graphs, and for many deletion-distance-to-x parameters. An overview of all
hardness results for Diameter is given in Table 2. See Figures 3, 4, 5 for illustrations of the
constructions and an idea of the proof.

▶ Theorem 14 (♣). Any streaming algorithm for Diameter that works on a family of
graphs that includes the “Windmill”, “Diamond”, or “Split” construction in the AL model
using p passes over the stream requires Ω(n/p) bits of memory.

We can now prove Theorem 2 and Theorem 3; full proofs are deferred (♣). Intuitively, if
H contains a cycle or a vertex of degree 3, a modification of “Windmill” is H-free; if H is a
linear forest, a modification of “Split” is (almost) H-free.

We can also prove a quadratic bound for general graphs; see Figure 6 for the construction.

▶ Theorem 15 (♣). Any streaming algorithm for Diameter on general (dense) graphs in
the AL model using p passes over the stream requires Ω(n2/p) bits of memory.

Splitting up uA and uB into two vertices each, and making the tails from t′
i to ti at least

three edges longer for each i makes the lower bound work for bipartite graphs (♣).
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a b

c

Figure 1 VA lower bound for diameter with
vertex cover size 3, called “Simple VA”. The
vertices in the middle are indexed 1, . . . , n. An
edge incident to a (b) is present when the entry
of Alice (Bob) at the corresponding index is 1.
The vertex c ensures the graph is connected.

a b

v0 vn+1v1 v2 · · ·

Figure 2 VA lower bound for diameter with
distance 2 to 1 clique, called “Clique VA”. A
dashed edge is present when the entry at the
corresponding index is 1. The vertices inside the
grey area form a clique. Hence, deletion distance
to a clique is 2 (remove a and b).

5 Connectivity

In this section, we show results for Connectivity. Connectivity is an easier problem
than Diameter, that is, solving Diameter solves Connectivity as well, but not the other
way around. Hence, lower bounds in this section also imply lower bounds for Diameter (in
non-connected graphs). In general graphs, a single pass, O(n log n) bits of memory algorithm
exists by maintaining connected components in a Disjoint Set data structure [43], which
is optimal in general graphs [50]. The interesting part about Connectivity is that some
graph classes admit fairly trivial algorithms by a counting argument. For example, if the
input is a forest, we can decide on Connectivity by counting the number of edges, which
is a 1-pass, O(log n) bits of memory, algorithm. An overview of the results in this section is
given in Table 3. The following upper bounds follow from applications of the Disjoint Set
data structure.

▶ Observation 16 (♣). Given a graph G as an AL stream with vertex cover number k, we
can solve Connectivity [k] in 1 pass and O(k log n) bits of memory.

A
B

0

1

index i

ai,1

ai,2

ai,3

bi,1

bi,3bi,2

Figure 3 AL lower bound for diameter consisting of a tree, called “Windmill”. The difference in
an entry 1 or 0 is shown on the left. The gadget for index i combines a 0/1-gadget for Alice and a
0/1-gadget for Bob. It makes two 1 entries at this index a path of length 5, and a tree structure of
depth at most 4 otherwise. These n gadgets are then identified at ai,1 and a tail is added.
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a

b

a

b

pi,2

pi,4

pi,6

pi,8

Figure 4 AL lower bound for diameter consisting of a path and 2 vertices, called “Diamond”.
Note that a is connected to b with an edge (indicated with a dashed line here). On the left the
gadget for a single index i is shown, where the dotted edges are present when the entry at index i is
0 (for Alice incident on a, for Bob incident on b). On the right, the construction is sketched in full.

a0 b0a1an a2 b1 b2 bn

a′n a′1a′2 b′1 b′2 b′n· · · · · ·

· · · · · ·

Figure 5 AL lower bound for diameter on split graphs, called “Split”. Depending on the input,
some a′

i either has an edge to a0 or ai when xi = 0 or 1. The same holds for b′
i with yi. The grey

area forms a clique, and each ai is connected to all b′
j where i ̸= j, and the same holds for bi and a′

j .

uA uB

s1

sn

S

Alice Boba1a′1

a′n an

b1 b′1

bn b′n

s2

t1

t2

tn

t′1

t′n

T

A B

Figure 6 AL lower bound for diameter where Alice and Bob have n2 bits but the graph has O(n)
vertices. The bits are seen as an adjacency matrix in the bipartite graphs A and B, identically: the
red edge a′

i to aj in A is the same index as the red edge bj to b′
i in B. Edges are present when the

entry is a 0. Then, each si, tj pair can discern whether or not at least one of the edges ai to a′
j or bi

to b′
j is present, hence deciding whether or not both Alice and Bob have a 1 at that entry.
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Table 3 Overview of the results for Connectivity. All hardness results listed here are through
reductions from Disjointness. (M, m, p)-hard means that any algorithm using p passes in model
M (or weaker) requires Ω(m) bits of memory. (M, m, p)-str. means that there is an algorithm that
uses p passes in model M (or stronger) using O(m) bits of memory. FVS stand for Feedback Vertex
Set number, FEN for Feedback Edge Set number. We state most upper bounds only as observations,
and most proofs of the results in this table are deferred to the full paper (♣).

Parameter (k) / Graph class Size Bound
General Graphs (EA, n log n, 1)-str. via Disjoint Set [43]

(EA, n log n, 1)-hard by Sun and Woodruff [50]
Vertex Cover Number ≥ 0 (AL, k log n, 1)-str. Disjoint Set on Vertex Cover

≥ 2 (VA, n/p, p)-hard by Henzinger et al. [38]
Distance to ℓ cliques ≥ 0 (AL, (k + ℓ) log n, 1)-str. via Disjoint Set
FVS = 0 (EA, log n, 1)-str. by counting.

≥ 1 (AL, n/p, p)-hard
FES ≥ 0 (EA, log n, 1)-str. by counting.
Distance to matching ≥ 2 (AL, n/p, p)-hard
Distance to path ≥ 0 (EA, k log n, 1)-str. by checking connection to path
Distance to depth ℓ tree ≥ 0 (EA, k log n, 1)-str. by checking connection to tree
Domination Number ≥ 2 (AL, n/p, p)-hard
Distance to Chordal ≥ 1 (AL, n/p, p)-hard
Maximum Degree ≥ 2 (AL, n/p, p)-hard, (AL, n log n, 1)-hard
Bipartite Graphs (AL, n/p, p)-hard, (AL, n log n, 1)-hard
Interval Graphs (VA, n/p, p)-hard
Split graphs (EA, n/p, p)-str. by finding degree 0 vertex

(VA, n/p, p)-hard

▶ Observation 17 (♣). Given a graph G as an AL stream with a deletion set X of size k to
ℓ cliques, we can solve Connectivity [k, ℓ] in 1 pass and O((k + ℓ) log n) bits of memory.

We fully defer a simple lower bound construction for the AL model to the full version (♣).
An interesting lower bound is for a unique case: graphs of maximum degree 2. We

mentioned that for a forest we have a simple counting algorithm for Connectivity, so the
hardness must be for some graph which consists of one or more cycles. Although we show
(♣) that Connectivity is hard for graphs with a Feedback Vertex Set of constant size, we
now show that in the specific case of maximum degree 2-graphs, the problem is still hard,
see Figure 7 for an illustration of the construction. We note that this reduction is similar to
the problem tackled by Verbin and Yu [51] and Assadi et al. [4], but our result is slightly
stronger in this setting, as it concerns a distinction between 1 or 2 disjoint cycles.

▶ Theorem 18 (♣). Any streaming algorithm for Connectivity that works on a family of
graphs that includes graphs of maximum degree 2 in the AL model using p passes over the
stream requires Ω(n/p) bits of memory.

We note that we can make the result of Theorem 18 hold for bipartite graphs of maximum
degree 2 by subdividing every edge, making the graph odd cycle-free, and thus bipartite.
The proofs of Theorems 5 and 6 follow, and are deferred the the full version (♣).

Interval and split graphs are hard in the VA model, see Figures 8 and 9.

▶ Theorem 19 (♣). Any streaming algorithm for Connectivity that works on a family of
graphs that includes interval graphs or split graphs in the VA model using p passes over the
stream requires Ω(n/p) bits of memory.
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i i+ 1

0

0

0

1

i+ 2

1

1

ai,2

ai,1 ai,4

ai,3

bi,2

bi,1

bi,3

bi,4

a0

b0

an+1

bn+1

Figure 7 AL lower bound for connectivity, called “Cycles”. The graph consists of one or multiple
cycles depending on the output of Disjn. The black edges are always present. The red (blue) edges
are controlled by Alice (Bob) and are in a crossing (horizontal) or vertical configuration depending
on whether the i-th entry of Alice (Bob) is 0 or 1.

ai

bi

ui vi

ai

bi

Figure 8 VA lower bound for connectivity on interval
graphs, called “Interval”. We see the gadget for index i,
where the dotted lines are present when the corresponding
value is 0. The black edges are always present, and the
red (blue) edges correspond to the input of Alice (Bob).
The n gadgets are placed consecutively.

v1 vnv2 · · ·

a b

Figure 9 VA lower bound for con-
nectivity on split graphs, called “Split-
Conn”. The dashed edges towards vi

are present when there is a 0 at index
i.

For split graphs, in any model, Connectivity admits a one-pass, O(n) bits of memory
algorithm by counting if there is a vertex of degree 0 (and so also for any p a p-pass algorithm
using O(n/p) bits by splitting up the work in p parts)2. If there can be no isolated vertices,
then a split graph is always connected.

6 Vertex Cover kernelization

We now show how our insights into parameterized, streaming graph exploration can aid in
producing a new kernelization algorithm for Vertex Cover [k]3. The basis for our result
is a well-known kernel for the Vertex Cover [k] problem of Buss and Goldsmith [14],
consisting of O(k2) edges. Constructing this kernel is simple: find all vertices with degree
bigger than k, and remove them from the graph, and decrease the parameter with the number
of vertices removed, say to k′. Then, there is no solution if there are more than k · k′ edges.
Therefore, we have a kernel consisting of O(k2) edges. We are able to achieve this same kernel
in the AL model, as counting the degree of a vertex is possible in this model. Interestingly,
we do not require Õ(k2) bits of memory to produce a stream corresponding to the kernel
of O(k2) edges. This result is also possible in the EA model, by allowing vertices up to
degree 2k.

2 This assumes the vertices are labelled 1 . . . n and do not have arbitrary labels.
3 This section is based on the master thesis “Parameterized Algorithms in a Streaming Setting” by the

first author.
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▶ Theorem 20 (♣). Given a graph G as an AL stream, we can make an AL stream
corresponding to an O(k2)-edge kernel for the Vertex Cover [k] problem using two passes
and Õ(k) bits of memory. When we work with an EA stream, we can make an EA stream
corresponding to an O(k2)-edge kernel using four passes and Õ(k) bits of memory.

Next, we show how to use Theorem 20 to produce a kernel of even smaller size, using
only Õ(k) bits of memory. This requires Theorem 20 to convert the original graph stream
into the kernel input for the next theorem, which only increases the number of passes by a
factor 2 or 4 (we have to apply Theorem 20 every time the other procedure uses a pass).

Interestingly, Chen et al. [16] show a way to convert the kernel of Buss and Goldsmith into
a 2k-vertex kernel for Vertex Cover [k], using a theorem by Nemhauser and Trotter [45].
We will adapt this method in the streaming setting. The kernel conversion is done by
converting the O(k2) edges kernel into a bipartite graph (two copies of all vertices V, V ′, and
an edge (x, y) translates to the edges (x, y′), (x′, y)), in which we find a minimum vertex cover
using a maximum matching (see for example [12, Page 74, Theorem 5.3]). The minimum
vertex cover we find gives us the sets stated in the theorem by Nemhauser and Trotter [45],
as indicated by the constructive proof of the same theorem by Bar-Yehuda and Even [7].
Lastly, we use these sets to give the 2k kernel in the streaming setting as indicated by Chen
et al. [16]. This also works for the EA model, because we only require the input kernel to
consist of O(k2) edges, not that it specifically is the kernel by Buss and Goldsmith.

▶ Lemma 21 (♣). Given a graph G as a stream in model AL or EA, we can produce a
stream in the same model corresponding to the Phase 1 bipartite graph of [7, Algorithm NT]
using two passes and Õ(1) bits of memory.

By making some observations on the conversions by Chen et al. [16], we can conclude that
the maximum matching we need to find in the bipartite graph consists of at most 4k = O(k)
edges, and otherwise we can return NO. For more details, see ♣. To find the maximum
matching we execute a DFS procedure, which can be done with surprising efficiency in this
restricted bipartite setting.

▶ Theorem 22 (♣). Given a bipartite graph B as an AL stream with O(k) vertices, we can
find a maximum matching of size at most O(k) using O(k2) passes and Õ(k) bits of memory.
For the EA model this can be done in O(k3) passes.

Using this maximum matching, we can find a vertex cover kernel of size 2k. The final
result is as follows, which consists of putting the original stream through each step for every
time we require a pass, i.e. the number of passes of each of the parts of this theorem combine
in a multiplicative fashion.

▶ Theorem 23 (♣). Given a graph G as an AL stream, we can produce a kernel of size 2k

for the Vertex Cover [k] problem using O(k2) passes and Õ(k) bits of memory. In the
EA model, this procedure takes O(k3) passes.

7 Conclusion

We studied the complexity of Diameter and Connectivity in the streaming model, from
a parameterized point of view. In particular, we considered the viewpoint of an H-free
modulator, showing that a vertex cover or a modulator to the disjoint union of ℓ cliques
effectively forms the frontier of memory- and pass-efficient streaming algorithms. Both
problems remain hard for almost all other H-free modulators of constant size (often even of
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size 0). We believe that this forms an interesting starting point for further investigations
into which other graph classes or parameters might be useful when computing Diameter
and Connectivity in the streaming model.

On the basis of our work, we propose four concrete open questions:
What is the streaming complexity of computing Distance to ℓ Cliques? On the
converse of Vertex Cover [k], we are not aware of any algorithms to compute this
parameter, even though it is helpful in computing Diameter and Connectivity.
Are there algorithms or lower bounds for Diameter or Connectivity in the AL model
for interval graphs?
Assuming isolated vertices are allowed in the graph, can we solve Connectivity in the
AL model on split graphs using O(log n) bits of memory?
Is there a streaming algorithm for Vertex Cover [k] using O(poly(k)) passes and
O(poly(k, log n)) bits of memory, or can it be shown that one cannot exist? This result
would be relevant in combination with our kernel.
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