
Towards a Theory of Parameterized Streaming
Algorithms
Rajesh Chitnis
School of Computer Science, University of Birmingham, UK
rajeshchitnis@gmail.com

Graham Cormode
University of Warwick, UK
g.cormode@warwick.ac.uk

Abstract
Parameterized complexity attempts to give a more fine-grained analysis of the complexity of problems:
instead of measuring the running time as a function of only the input size, we analyze the running time
with respect to additional parameters. This approach has proven to be highly successful in delineating
our understanding of NP-hard problems. Given this success with the TIME resource, it seems but
natural to use this approach for dealing with the SPACE resource. First attempts in this direction
have considered a few individual problems, with some success: Fafianie and Kratsch [MFCS’14] and
Chitnis et al. [SODA’15] introduced the notions of streaming kernels and parameterized streaming
algorithms respectively. For example, the latter shows how to refine the Ω(n2) bit lower bound for
finding a minimum Vertex Cover (VC) in the streaming setting by designing an algorithm for the
parameterized k-VC problem which uses O(k2 logn) bits.

In this paper, we initiate a systematic study of graph problems from the paradigm of parameterized
streaming algorithms. We first define a natural hierarchy of space complexity classes of FPS, SubPS,
SemiPS, SupPS and BrutePS, and then obtain tight classifications for several well-studied graph
problems such as Longest Path, Feedback Vertex Set, Dominating Set, Girth, Treewidth, etc. into
this hierarchy (see Figure 1 and Table 1). On the algorithmic side, our parameterized streaming
algorithms use techniques from the FPT world such as bidimensionality, iterative compression and
bounded-depth search trees. On the hardness side, we obtain lower bounds for the parameterized
streaming complexity of various problems via novel reductions from problems in communication
complexity. We also show a general (unconditional) lower bound for space complexity of parameterized
streaming algorithms for a large class of problems inspired by the recently developed frameworks for
showing (conditional) kernelization lower bounds.

Parameterized algorithms and streaming algorithms are approaches to cope with TIME and
SPACE intractability respectively. It is our hope that this work on parameterized streaming
algorithms leads to two-way flow of ideas between these two previously separated areas of theoretical
computer science.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Parameterized Algorithms, Streaming Algorithms, Kernels

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.7

Related Version Full version of the paper is available at https://arxiv.org/abs/1911.09650

Funding Rajesh Chitnis: Work done while at University of Warwick, UK and supported by ERC
grant 2014-CoG 647557.
Graham Cormode: Supported by ERC grant 2014-CoG 647557.

Acknowledgements We thank MohammadTaghi Hajiaghayi, Robert Krauthgamer and Morteza
Monemizadeh for helpful discussions. Algorithm 1 was suggested to us by Arnold Filtser.

© Rajesh Chitnis and Graham Cormode;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248561866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rajeshchitnis@gmail.com
mailto:g.cormode@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.IPEC.2019.7
https://arxiv.org/abs/1911.09650
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Towards a Theory of Parameterized Streaming Algorithms

1 Introduction

Designing and implementing efficient algorithms is at the heart of computer science. Tra-
ditionally, efficiency of algorithms has been measured with respect to running time as a
function of instance size. From this perspective, algorithms are said to be efficient if they can
be solved in time which is bounded by some polynomial function of the input size. However,
very many interesting problems are NP-complete, and so are grouped together as “not known
to be efficient”. This fails to discriminate within a large heterogenous group of problems,
and in response the theory of parameterized (time) algorithms was developed in late 90’s by
Downey and Fellows [20]. Parameterized complexity attempts to delineate the complexity of
problems by expressing the costs in terms of additional parameters. Formally, we say that a
problem is fixed-parameter tractable (FPT) with respect to parameter k if the problem can
be solved in time f(k) · nO(1) where f is a computable function and n is the input size. For
example, the problem of checking if a graph on n vertices has a vertex cover of size at most
k can be solved in 2k · nO(1) time. The study of various parameters helps to understand
which parameters make the problem easier (FPT) and which ones cause it to be hard. The
parameterized approach towards NP-complete problems has led to development of various
algorithmic tools such as kernelization, iterative compression, color coding, and more [21, 14].

Kernelization: A key concept in fixed parameter tractability is that of kernelization which
is an efficient preprocessing algorithm to produce a smaller, equivalent output called the
“kernel”. Formally, a kernelization algorithm for a parameterized problem Q is an algorithm
which takes as an instance 〈x, k〉 and outputs in time polynomial in (|x|+ k) an equivalent1
instance 〈x′, k′〉 such that max{|x′|, k′} ≤ f(k) for some computable function f . The output
instance 〈x′, k′〉 is called the kernel, while the function f determines the size of the kernel.
Kernelizability is equivalent to fixed-parameter tractability, and designing compact kernels
is an important question. In recent years, (conditional) lower bounds on kernels have
emerged [3, 16, 17, 22, 27].

Streaming Algorithms: A very different paradigm for handling large problem instances
arises in the form of streaming algorithms. The model is motivated by sources of data
arising in communication networks and activity streams that are considered to be too big to
store conveniently. This places a greater emphasis on the space complexity of algorithms.
A streaming algorithm processes the input in one or a few read-only passes, with primary
focus on the storage space needed. In this paper we consider streaming algorithms for graph
problems over fixed vertex sets, where information about the edges arrives edge by edge [29].
We consider variants where edges can be both inserted and deleted, or only insertions are
allowed. We primarily consider single pass streams, but also give some multi-pass results.

1.1 Parameterized Streaming Algorithms and Kernels
Given that parameterized algorithms have been extremely successful for the TIME resource,
it seems natural to also use it attack the SPACE resource. In this paper, we advance the
model of parameterized streaming algorithms, and start to flesh out a hierarchy of complexity
classes. We focus our attention on graph problems, by analogy with FPT, where the majority
of results have addressed graphs. From a space perspective, there is perhaps less headroom

1 By equivalent we mean that 〈x, k〉 ∈ Q⇔ 〈x′, k′〉 ∈ Q

R. Chitnis and G. Cormode 7:3

than when considering the time cost: for graphs on n vertices, the entire graph can be stored
using O(n2) space2. Nevertheless, given that storing the full graph can be prohibitive, there
are natural space complexity classes to consider. We formalize these below, but informally,
the classes partition the dependence on n as: (i) (virtually) independent of n; (ii) sublinear
in n; (iii) (quasi)linear in n; (iv) superlinear but subquadratic in n; and (v) quadratic in n.

Naively, several graph problems have strong lower bounds: for example, the problem
of finding a minimum vertex cover on graphs of n vertices has a lower bound of Ω(n2)
bits. However, when we adopt the parameterized view, we seek streaming algorithms for
(parameterized) graph problems whose space can be expressed as a function of both the
number of vertices n and the parameter k. With this relaxation, we can separate out the
problem space and start to populate our hierarchy. We next spell out our results, which derive
from a variety of upper and lower bounds building on the streaming and FPT literature.

1.2 Our Results & Organization of the paper
For a graph problem with parameter k, there can be several possible choices for the space
complexity needed to solve it in the streaming setting. In this paper, we first define some
natural space complexity classes below:
1. Õ(f(k)) space: Due to the connection to running time of FPT algorithms, we call the

class of parameterized problems solvable using Õ(f(k)) bits as FPS (fixed-parameterized
streaming)3.

2. Sublinear space: When the dependence on n is sublinear, we call the class of parameterized
problems solvable using Õ(f(k) · n1−ε) bits as SubPS (sublinear parameterized streaming)

3. Quasi-linear space: Due to the connection to the semi-streaming model [26, 33], we call the
set of problems solvable using Õ(f(k) · n) bits as SemiPS (parameterized semi-streaming).

4. Superlinear, subquadratic space: When the dependence on n is superlinear (but subquad-
ratic), we call the class of parameterized problems solvable using Õ(f(k) · n1+ε) bits (for
some 1 > ε > 0) as SupPS (superlinear parameterized streaming).

5. Quadratic space: We call the set of graph problems solvable using O(n2) bits as BrutePS
(brute-force parameterized streaming). Note that every graph problem is in BrutePS
since we can just store the entire adjacency matrix using O(n2) bits (see Remark 2).

I Remark 1. Formally, we need t consider the following 7-tuple when we attempt to find its
correct position in the aforementioned hierarchy of complexity classes:

[Problem, Parameter, Space,# of Passes, Type of Algorithm, Approx. Ratio, Type of Stream]

By type of algorithm, we mean that the algorithm could be deterministic or randomized.
For the type of stream, the standard alternatives are (adversarial) insertion, (adversarial)
insertion-deletion, random order, etc. Table 2 gives a list of results for the k-VC problem (as
a case study) in various different settings. Unless stated otherwise, throughout this paper,
we consider the space requirement for 1-pass exact deterministic algorithms for problems
with the standard parameter (size of the solution)on insertion-only streams.

I Remark 2. There are various different models for streaming algorithms depending on how
much computation is allowed on the stored data. In this paper, we consider the most general
model by allowing unbounded computation at each edge update, and also at the end of the
stream.

2 Throughout the paper, by space we mean words/edges/vertices. Each word can be represented using
O(logn) bits

3 Throughout this paper, we use the Õ notation to hide logO(1) n factors

IPEC 2019

7:4 Towards a Theory of Parameterized Streaming Algorithms

Our goal is to provide a tight classification of graph problems into the aforementioned
complexity classes. We make progress towards this goal as follows: Section 2 shows how various
techniques from the FPT world such as iterative compression, branching, bidimensionality,
etc. can also be used to design parameterized streaming algorithms. First we investigate
whether one can further improve upon the FPS algorithm of Chitnis et al. [9] for k-VC
which uses O(k2 · logn) bits and one pass. We design two algorithms for k-VC which use
O(k · logn) bits4: an 2k-pass algorithm using bounded-depth search trees (Section 2.1) and
an (k · 22k)-pass algorithm using iterative compression (Section 2.2). Finally, Section 2.3
shows that any minor-bidimensional problem belongs to the class SemiPS.

Section 3 deals with lower bounds for parameterized streaming algorithms. First, in
Section 3.1 we show that some parameterized problems are tight for the classes SemiPS
and BrutePS. In particular, we show that k-Treewidth, k-Path and k-Feedback-Vertex-Set
are tight for the class SemiPS, i.e., they belong to SemiPS but do not belong to the sub-
class SubPS. Our SemiPS algorithms are based on problem-specific structural insights. Via
reductions from the Perm problem [35], we rule out algorithms which use Õ(f(k) · n1−ε)
bits (for any function f and any ε ∈ (0, 1)) for these problems by proving Ω(n logn) bits
lower bounds for constant values of k. Then we show that some parameterized problems
such as k-Girth and k-Dominating-Set are tight for the class BrutePS, i.e, they belong to
BrutePS but do not belong to the sub-class SupPS. Every graph problem belongs to BrutePS
since we can store the entire adjacency matrix of the graph using O(n2) bits. Via reductions
from the Index problem [30], we rule out algorithms which use Õ(f(k) · n1+ε) bits (for any
function f and any ε ∈ (0, 1)) for these problems by proving Ω(n2) bits lower bounds for
constant values of k.

Section 3.2 shows a lower bound of Ω(n) bits for any algorithm that approximates (within
a factor β

32) the size of min dominating set on graphs of arboricity (β + 2), i.e., this problem
has no Õ(f(β) · n1−ε) bits algorithm (since β is a constant), and hence does not belong to
the class SubPS when parameterized by β. In Section 3.3 we obtain unconditional lower
bounds on the space complexity of 1-pass parameterized streaming algorithms for a large
class of graph problems inspired by some of the recent frameworks to show conditional lower
bounds for kernels [3, 16, 17, 22, 27]. In the full version we also show that any parameterized
streaming algorithm for the d-SAT problem (for any d ≥ 2) must (essentially) follow the
naive algorithm of storing all the clauses.

Figure 1 provides a pictorial representation of the complexity classes, and the known
classification of several graph problems (from this paper and some previous work) into these
classes. Table 1 summarizes our results, and clarifies the stream arrival model(s) under which
they hold.

1.3 Prior work on Parametrized Streaming Algorithms
Prior work began by considering how to implement kernels in the streaming model. Formally,
a streaming kernel [25] for a parameterized problem (I, k) is a streaming algorithm that
receives the input I as a stream of elements, stores f(k) · logO(1) |I| bits and returns an
equivalent instance5. This is especially important from the practical point of view since
several real-world situations can be modeled by the streaming setting, and streaming kernels
would help to efficiently preprocess these instances. Fafianie and Kratsch [25] showed that

4 Which is essentially optimal since the algorithm also returns a VC of size k (if one exists)
5 [25] required f(k) = kO(1), but we choose to relax this requirement

R. Chitnis and G. Cormode 7:5

FPS

SubPS

SemiPS

SupPS

BrutePS

k-Girth, k-Dominating Set

k-Path, k-FVS, k-Treewidth

k-VC

O(d)-approx. for est. max matching
on graphs of arboricity d in

dynamic streams [7]

O(logn
δ)-approx. for DomSet in Õ(n1+δ) space

and O(1/δ) passes [28]

Minor-Bidimensional-problems

β
32 -approx for estimating

DomSet in graphs of arboricity (β + 2)

Figure 1 Pictorial representation of classification of some graph problems into complexity classes:
our results are in black and previous work is referenced in blue. All results are for 1-pass deterministic
algorithms on insertion-only streams unless otherwise specified. It was already known that k-VC
∈ FPS [9, 7] using only 1-pass, but here we design an algorithm with optimal space storage at the
expense of multiple passes.

the kernels for some problems like Hitting Set and Set Matching can be implemented in the
streaming setting, but other problems such as Edge Dominating Set, Feedback Vertex Set,
etc. do not admit (1-pass) streaming kernels.

Chitnis et al. [9] studied how to circumvent the worst case bound of Ω(n2) bits for Vertex
Cover by designing a streaming algorithm for the parameterized k-Vertex-Cover (k-VC)6.
They showed that the k-VC problem can be solved in insertion-only streams using storage
of O(k2) space. They also showed an almost matching lower bound of Ω(k2) bits for any
streaming algorithm for k-VC. A sequence of papers showed how to solve the k-VC problem
in more general streaming models: Chitnis et al. [9, 8] gave an Õ(k2) space algorithm under
a particular promise, which was subsequently removed in [7].

6 That is, determine whether there is a vertex cover of size at most k?

IPEC 2019

7:6 Towards a Theory of Parameterized Streaming Algorithms

Table 1 Table summarizing our results (in the order in which they appear in the paper). All our
algorithms are deterministic. All the lower bounds are unconditional, and hold even for randomized
algorithms in insertion-only streams. Proofs of results labeled with [?] appear in the full version.

Problem Passes
of

Number

Stream
Type of

Upper Bound
Space

Lower Bound
Space

problems [Sec. 2.3]
g(r)-minor-bidimensional

1 Ins-Del. words
Õ((g−1(k + 1))10n)

—
k-VC [Sec. 2.2] 22k · k Ins-only O(k) words Ω(k) words
k-VC [Sec. 2.1] 2k Ins-only O(k) words Ω(k) words

k-Treewidth [Sec. 3.1]
k-FVS, k-Path

1 Ins-only O(k · n) words bits algorithm
No f(k) · n1−ε logO(1) n

k-Treewidth [Sec. 3.1]
k-FVS, k-Path

1 Ins-Del. Õ(k · n) words bits algorithm
No f(k) · n1−ε logO(1) n

[Sec. 3.1]
k-Girth, k-DomSet,

1 Ins-Del. O(n2) bits bits algorithm
No f(k) · n2−ε logO(1) n

arboricity β [Sec. 3.2]
min DomSet on graphs of

β
32 -approximation for size of

1 Ins-only Õ(nβ) bits bits algorithm
No f(β) · n1−ε

problems [Sec. 3.3]
and OR-compatible

AND-compatible problems

1 Ins-only O(n2) bits bits algorithm
No Õ(f(k) · n1−ε)

N variables [?]
d-SAT with

1 Arrival
Clause

Õ(d ·Nd) bits Ω((N/d)d) bits

Table 2 Table summarizing some of the results for the k-VC problem in the different settings
outlined in Remark 1. Proofs of results labeled with [?] appear in the full version.

Problem Passes
of

Stream
Type of

Algorithm
Type of

Ratio
Approx.

Bound
Space

k-VC 1 Ins-only Det. 1 O(k2 logn) bits [9]
k-VC 1 Ins-only Rand. 1 Ω(k2) bits [9]
k-VC 1 Ins-Del. Rand. 1 O(k2 logO(1) n) bits [7]
k-VC 2k Ins-only Det. 1 O(k logn) bits [Algorithm 1]
k-VC k · 2k Ins-only. Det. 1 O(k logn) bits [?]

Estim. k-VC Ω(k/ logn) Ins-only. Rand. 1 O(k logn) bits [1, Theorem 16]

on Trees
Estim. k-VC

1 Ins-only. Rand.
Det.

(3/2− ε) Ω(
√
n) bits [24, Theorem 6.1]

Ω(n) bits [24, Theorem 6.1]

Recently, there have been several papers considering the problem of estimating the size
of a maximum matching using o(n) space in graphs of bounded arboricity. If the space
is required to be sublinear in n, then versions of the problem that involve estimating the
size of a maximum matching (rather than demonstrating such a matching) become the
focus. Since the work of Esfandiari et al. [24], there have been several sublinear space
algorithms [31, 32, 12, 7] which obtain O(α)-approximate estimations of the size of maximum
matching in graphs of arboricity α. The current best bounds [4, 12] for insertion-only streams
is O(logO(1) n) space and for insertion-deletion streams is Õ(α · n4/5). All of these results
can be viewed as parameterized streaming algorithms (FPS or SubPS) for approximately
estimating the size of maximum matching in graphs parameterized by the arboricity.

R. Chitnis and G. Cormode 7:7

2 Parameterized Streaming Algorithms Inspired by FPT techniques

In this section we design parameterized streaming algorithms using three techniques from the
world of parameterized algorithms, viz. branching, iterative compression and bidimensionality.

2.1 Multipass FPS algorithm for k-VC using Branching
The streaming algorithm from Section 2.2 already uses optimal storage of O(k logn) bits but
requires O(22k · k) passes. In this section, we show how to reduce the number of passes to 2k
(while still maintaining the same storage) using the technique of bounded-depth search trees
(also known as branching). The method of bounded-depth search trees gives a folklore FPT
algorithm for k-VC which runs in 2O(k) · nO(1) time. The idea is simple: any vertex cover
must contain at least one end-point of each edge. We now build a search tree as follows:
choose an arbitrary edge, say e = u− v in the graph. Start with the graph G at the root
node of the search tree. Branch into two options, viz. choosing either u or v into the vertex
cover7. The resulting graphs at the two children of the root node are G − u and G − v.
Continue the branching process. Note that at each step, we branch into two options and
we only need to build the search tree to height k for the k-VC problem. Hence, the binary
search tree has 2O(k) leaf nodes. If the resulting graph at any leaf node is empty (i.e., has no
edges) then G has a vertex cover of size ≤ k which can be obtained by following the path
from the root node to the leaf node in the search tree. Conversely, if the resulting graphs at
none of the leaf nodes of the search tree are empty then G does not have a vertex cover of
size ≤ k: this is because at each step we branched on all the (two) possibilities at each node
of the search tree.

Simulating branching-based FPT algorithm using multiple passes: We now simulate the
branching-based FPT algorithm described in the previous section using 2k passes and
O(k logn) bits of storage in the streaming model.

I Definition 3. Let V (G) = {v1, v2, . . . , vn}. Fix some ordering φ on V (G) as follows:
v1 < v2 < v3 < . . . < vn. Let Dictk be the dictionary ordering on the 2k binary strings
of {0, 1}k. Given a string X ⊆ {0, 1}k, let Dictk(Next(X)) denote the string that comes
immediately after X in the ordering Dictk. We set Dictk(Next(1k)) = ♠

We formally describe our multipass algorithm in Algorithm 1. This algorithm crucially
uses the fact that in each pass we see the edges of the stream in the same order.

I Theorem 4. [?] 8 Algorithm 1 correctly solves the k-VC problem using 2k passes and
O(k logn) bits of storage.

Note that the total storage of Algorithm 1 is O(k logn) bits which is essentially optimal
since the algorithm also outputs a vertex cover of size at most k (if one exists).

The next natural question is whether one need exponential (in k) number of passes when
we want to solve the k-VC problem using only O(k logn) bits. A lower bound of (k/ logn)
passes follows for such algorithms from the following result of Abboud et al.

I Theorem 5. (rewording of [1, Thm 16]) Any algorithm for the k-VC problem which uses
S bits of space and R passes must satisfy RS ≥ n2

7 Note that if we choose u in the first branch then that does not imply that we cannot or will not choose
v later on in the search tree

8 Proofs of results labeled with [?] appear in the full version.

IPEC 2019

7:8 Towards a Theory of Parameterized Streaming Algorithms

Algorithm 1 2k-pass Streaming Algorithm for k-VC using O(k logn) bits via Branching.
Input: An undirected graph G = (V,E) and an integer k.
Output: A vertex cover S of G of size ≤ k (if one exists), and NO otherwise
Storage: i, j, S, X
1: Let X = 0k, and suppose the edges of the graph are seen in the order e1, e2, . . . , em
2: while X 6= ♠ do

S = ∅, i = 1, j = 1
3: while i 6= k + 1 do
4: Let ej = u− v such that u < v under the ordering φ
5: if Both u /∈ S and v /∈ S then
6: if X[i] = 0 then S ← S ∪ {u}
7: else S ← S ∪ {v}
8: i← i+ 1
9: j ← j + 1

10: if j = m+ 1 then Return S and abort
11: else X ← Dictk(Next(X))
12: if X = ♠ then Return NO

2.2 Multipass FPS algorithm for k-VC using Iterative Compression
The technique of iterative compression was introduced by Reed et al. [34] to design the first
FPT algorithm for the k-OCT problem9. Since then, iterative compression has been an
important tool in the design of faster parameterized algorithms [6, 10, 5] and kernels [15].
In the full version, using the technique of iterative compression, we design an algorithm for
k-VC which uses O(k logn) bits but requires O(k · 22k) passes. Although this algorithm is
strictly worse (same storage, but higher number of passes) compared to Algorithm 1, we
mention it here to illustrate that the technique of iterative compression can be used in the
streaming setting.

As in the FPT setting, a natural problem to attack using iterative compression in the
streaming setting would be the k-OCT problem. It is known that 0-OCT, i..e, checking if
a given graph is bipartite, in the 1-pass model has an upper bound of O(n logn) bits [26]
and a lower bound of Ω(n logn) bits [35]. For k ≥ 1, can we design a g(k)-pass algorithm
for k-OCT which uses Õ(f(k) · n) bits for some functions f and g, maybe using iterative
compression? To the best of our knowledge, such an algorithm is not known even for 1-OCT.

2.3 Minor-Bidimensional problems belong to SemiPS

The theory of bidimensionality [18, 19] provides a general technique for designing (subexpo-
nential) FPT for NP-hard graph problems on various graph classes. In this section, we briefly
sketch how we can use this technique to show that a large class of problems belong to the
class SemiPS. All the details (including graph-theoretic definitions such as minors, treewidth,
etc.) of this section are deferred to the full version.

I Definition 6 (minor-bidimensional). A graph problem Π is g(r)-minor-bidimensional if
The value of Π on the r × r grid is ≥ g(r)
Π is closed under taking minors, i.e., the value of Π does not increase under the operations
of vertex deletions, edge deletions, edge contractions.

9 Is there a set of size at most k whose deletion makes the graph odd cycle free, i.e. bipartite

R. Chitnis and G. Cormode 7:9

Hence, we obtain the following “win-win” approach for designing FPT algorithms for
bidimensional problems:

Either the graph has small treewidth and we can then use dynamic programming al-
gorithms for bounded treewidth graphs; or
The treewidth is large10 which implies that the graph contains a large grid as a minor.
This implies that the solution size is large, since the parameter is minor-bidimensional.

Several natural graph parameters are known to be minor-bidimensional. For example,
treewidth is Ω(r)-minor-dimensional and Feedback Vertex Set, Vertex Cover, Minimum
Maximal Matching, Long Path, etc are Ω(r2)-minor-bidimensional. To design parameterized
streaming algorithms, we will replace the dynamic programming step for bounded treewidth
graphs by simply storing all the edges of such graphs. The main theorem of this section is
that minor-bidimensional problems belong to the class SemiPS.

I Theorem 7. [?] (minor-bidimensional problems ∈ SemiPS) Let Π be a g(r)-minor-dimensional
problem. Then the k-Π problem on graphs with n vertices can be solved using

O((g−1(k + 1))10 · n) space in insertion-only streams
Õ((g−1(k + 1))10 · n) space in insertion-deletion streams

Theorem 7 implies the following results for specific graph problems11:
Since Treewidth is Ω(r)-minor-bidimensional, it follows that k-Treewidth has an O(k10 ·n)
space algorithm in insertion-only streams and Õ(k10 · n) space algorithm in insertion-
deletion streams.
Since problems such as Long Path, Vertex Cover, Feedback Vertex Set, Minimum Maximal
Matching, etc. are Ω(r2)-minor-bidimensional, it follows that their parameterized versions
have O(k5 · n) space algorithm in insertion-only streams and Õ(k5 · n) space algorithm in
insertion-deletion streams.

In Section 3.1, we design algorithms for some of the aforementioned problems with smaller
storage. In particular, we design problem-specific structural lemmas to reduce the dependency
of k on the storage from kO(1) to k.

I Remark 8. It is tempting to conjecture a lower bound complementing Theorem 7: for
example, can we show that the bounds for minor-bidimensional problems are tight for SemiPS,
i.e., they do not belong to SubPS or even FPS? Unfortunately, we can rule out such a converse
to Theorem 7 via the two examples of Vertex Cover (VC) and Feedback Vertex Set (FVS)
which are both Ω(r2)-minor-bidimensional. Chitnis et al. [9] showed that k-VC can be solved
in O(k2) space and hence belongs to the class FPS. However, we show in the full version that
k-FVS cannot belong to SubPS since it has a Ω(n logn) bits lower bound for k = 0.

3 Lower Bounds for Parameterized Streaming Algorithms

3.1 Tight Problems for the classes SemiPS and BrutePS

In this section we show that certain problems are tight for the classes SemiPS and BrutePS.
All of the results hold for 1-pass in the insertion-only model. Our algorithms are deterministic,
while the lower bounds also hold for randomized algorithms.

10Chuzhoy and Tan [11] showed that treewidth = O(r9 · logO(1) r)⇒ there is a r × r grid minor
11We omit the simple proofs of why these problems satisfy the conditions of Definition 6

IPEC 2019

7:10 Towards a Theory of Parameterized Streaming Algorithms

Tight Problems for the class SemiPS: We now show that some parameterized problems
are tight for the class SemiPS, i.e.,

They belong to SemiPS, i.e., can be solved using Õ(g(k) · n) bits for some function g.
They do not belong to SubPS, i.e., there is no algorithm which uses Õ(f(k) · n1−ε) bits
for any function f and any constant 1 > ε > 0. We do this by showing Ω(n · logn) bits
lower bounds for these problems for constant values of k.

For each of the problems considered in this section, a lower bound of Ω(n) bits (for constant
values of k) was shown by Chitnis et al. [7]. To obtain the improved lower bound of Ω(n · logn)
bits for constant k, we will reduce from the Perm problem defined by Sun and Woodruff [35].

Perm
Input: Alice has a permutation δ : [N]→ [N] which is represented as a bit string
Bδ of length N logN by concatenating the images of 1, 2, . . . , N under δ. Bob has
an index I ∈ [N logN].
Goal: Bob wants to find the I-th bit of Bδ

Sun and Woodruff [35] showed that the one-way (randomized) communication complexity of
Perm is Ω(N · logN). Using the Perm problem, we show Ω(n · logn) bit lower bounds for
constant values of k for various problem such as k-Path, k-Treewidth, k-Feedback-Vertex-Set,
etc. We also show a matching upper bound for these problems: for each k, these problems
can be solved using O(kn · logn) words in insertion-only streams and Õ(kn · logn) words in
insertion-deletion streams. The proofs of these results are deferred to the full version. To
the best of our knowledge, the only problems known previously to be tight for SemiPS were
k-vertex-connectivity and k-edge-connectivity [13, 35, 23].

Tight Problems for the class BrutePS: We now show that some parameterized problems
are tight for the class BrutePS, i.e.,

They belong to BrutePS, i.e., can be solved using O(n2) bits. Indeed any graph problem
can be solved by storing the entire adjacency matrix which requires O(n2) bits.
They do not belong to SubPS, i.e., there is no algorithm which uses Õ(f(k) · n1+ε) bits
for any function f and any ε ∈ (0, 1). We do this by showing Ω(n2) bits lower bounds for
these problems for constant values of k via reductions from the Index problem.

Index
Input: Alice has a string B = b1b2 . . . bN ∈ {0, 1}N . Bob has an index I ∈ [N]
Goal: Bob wants to find the value bI

There is a Ω(N) lower bound on the (randomized) one-way communication complexity
of Index [30]. Via reduction from the Index problem, we are able to show Ω(n2) bits for
constant values of k for several problems such as k-Dominating-Set and k-Girth. The proofs
of these reductions are deferred to the full version.

I Remark 9. We usually only design FPT algorithms for NP-hard problems. However, paramet-
erized streaming algorithms make sense for all graph problems since we are only comparing
ourselves against the naive choice of storing all the O(n2) bits of adjacency matrix. Hence,
here we consider the k-Girth problem as an example of a polynomial time solvable problem.

Finally, in the full version, we also show that for any d ≥ 2, any streaming algorithm
for d-SAT (in the clause arrival model) must essentially store all the clauses (and hence fits
into the “brute-force” streaming setting). This is the only non-graph-theoretic result in this
paper, and may be viewed as a “streaming analogue” of the Exponential Time Hypothesis.

R. Chitnis and G. Cormode 7:11

3.2 Lower bound for approximating size of minimum Dominating Set
on graphs of bounded arboricity

I Theorem 10. Let β ≥ 1 be any constant. Then any algorithm which β
32 -approximates the

size of a min dominating set on graphs of arboricity β + 2 requires Ω(n) space.

Note that Theorem 10 shows that the naive algorithm which stores all the O(nβ) edges
of an β-arboriticy graph is essentially optimal. Our lower bound holds even for randomized
algorithms (required to have success probability ≥ 3/4) and also under the vertex arrival
model, i.e., we see at once all edges incident on a vertex. We (very) closely follow the
outline from [2, Theorem 4] who used this approach for showing that any α-approximation
for estimating size of a minimum dominating set in general graphs requires Ω̃(n

2

α2) space.
Because we are restricted to bounded arboriticy graphs, we cannot just sue their reduction
as a black-box but need to adapt it carefully for our purposes.

Let V (G) = [n + 1], and Fβ be the collection of all subsets of [n] with cardinality β.
Consider the following distribution Dest for DomSetest.

Distribution Dest: A hard input distribution for DomSetest.

Alice. The input of Alice is a collection of n sets S ′ = {S′1, S′2, . . . , S′n} where for
each i ∈ [n] we have that S′i = {i} ∪ Si with Si being a set chosen independently and
uniformly at random from Fβ .
Bob. Pick θ ∈ {0, 1} and i∗ ∈ [n] independently and uniformly at random; the input
of Bob is a single set T defined as follows.

If θ = 0, then T = [n] \ T is a set of size β/8 chosen uniformly at random from Si∗ .
If θ = 1, then T = [n] \ T is a set of size β/8 chosen uniformly at random from
[n] \ Si∗ .

Recall that OPT(S ′, T) denotes the size of the minimum dominating set of the graph G
whose edge set is given by N [i] = {i}∪Si for each i ∈ [n] and N [n+1] = {n+1}∪T . It is easy
to see that G has arboricity ≤ (β+2) since it has (n+1) vertices and ≤ (β+1)n+(1+n− β

8)
edges. We first establish the following lemma regarding the parameter θ and OPT(S ′, T) in
the distribution Dest.

I Lemma 11. [?] Let α = β
32 . Then, for (S ′, T) ∼ Dest we have

1. Pr (OPT(S ′, T) = 2 | θ = 0) = 1.
2. Pr (OPT(S ′, T) > 2α | θ = 1) = 1− o(1).

The proof of Lemma 11 is deferred to the full version. The first observation is that the
distribution Dest is not a product distribution due to the correlation between the input given
to Alice and Bob. However, we can express the distribution Dest as a convex combination
of a relatively small set of product distributions. The proof of Theorem 10 then follows by
showing a lower bound on this set of product distributions. This proof is a bit technical, and
we defer it to the full version.

3.3 Streaming Lower Bounds Inspired by Kernelization Lower Bounds
Streaming algorithms and kernelization are two (somehwhat related) compression models. In
kernelization, we have access to the whole input but our computation power is limited to
polynomial time whereas in streaming algorithms we don’t have access to the whole graph
(have to pay for whatever we store) but have unbounded computation power on whatever
part of the input we have stored.

IPEC 2019

7:12 Towards a Theory of Parameterized Streaming Algorithms

A folklore result states that a (decidable) problem is FPT if and only if it has a kernel.
Once the fixed-parameter tractability for a problem is established, the next natural goals
are to reduce the running time of the FPT algorithm and reduce the size of the kernel. In
the last decade, several frameworks have been developed to show (conditional) lower bounds
on the size of kernels [3, 16, 17, 22, 27]. Inspired by these frameworks, we define a class of
problems, which we call as AND-compatible and OR-compatible, and show (unconditionally)
that none of these problems belong to the class SubPS.

I Definition 12. We say that a graph problem Π is AND-compatible if there exists a constant
k such that

for every n ∈ N there exists a graph GYES of size n such Π(GYES, k) is a YES instance
for every n ∈ N there exists a graph GNO of size n such Π(GNO, k) is a NO instance
for every t ∈ N we have that Π

(
]ti=1 Gi, k

)
= ∧ti=1Π(Gi, k) where G =]ti=1Gi denotes

the union of the vertex-disjoint graphs G1, G2, . . . , Gt

Examples of AND-compatible graph problems are k-Treewidth, k-Girth, k-Pathwidth,
k-Coloring, etc.

I Definition 13. We say that a graph problem Π is OR-compatible if there exists a constant
k such that

for every n ∈ N there exists a graph GYES of size n such Π(GYES, k) is a YES instance
for every n ∈ N there exists a graph GNO of size n such Π(GNO, k) is a NO instance
for every t ∈ N we have that Π(]ti=1Gi, k) = ∨ti=1Π(Gi, k) where G =]ti=1Gi denotes
the union of the vertex-disjoint graphs G1, G2, . . . , Gt

A general example of an OR-compatible graph problem is the subgraph isomorphism
problem parameterized by size of smaller graph: given a graph G of size n and a smaller
graph H of size k, does G have a subgraph isomorphic to H? Special cases of this problem
are k-Path, k-Clique, k-Cycle, etc.

I Theorem 14. If Π is an AND-compatible or an OR-compatible graph problem then
Π /∈ SubPS

Proof. Let Π be an AND-compatible graph problem, and G =]ti=1Gi for some t ∈ N. We
claim that any streaming algorithm ALG for Π must use t bits. Intuitively, we need at least
one bit to check that each of the instances (Gi, k) is a YES instance of Π (for all 1 ≤ i ≤ t).
Consider a set of t graphs G = {G1, G2, . . . , Gt}: note that we don’t fix any of these graphs
yet. For every subset X ⊆ [t] we define the instance (GX , k) of Π where GX =]j∈JGj .
Suppose that ALG uses less than t bits. Then by pigeonhole principle, there are two subsets
I, I ′ of [t] such that ALG has the same answer on (GI , k) and (GI′ , k). Since I 6= I ′ (without
loss of generality) there exists i∗ such that i∗ ∈ I \ I ′. This is where we now fix each of
the graphs in G to arrive at a contradiction: consider the input where Gi = GYES for all
(I ∪ I ′) \ i∗ and Gi∗ = GNO. Then, it follows that (GI , k) is a NO instance but (GI′ , k) is a
YES instance.

Suppose that Π ∈ SubPS, i.e., there is an algorithm for Π which uses f(k) ·N1−ε · logO(1) N

bits (for some 1 > ε > 0) on a graph G of size N to decide whether (G, k) is a YES or NO
instance. Let G =]ti=1Gi where |Gi| = n for each i ∈ [t]. Then |G| = N = nt. By the
previous paragraph, we have that

f(k) · (nt)1−ε · logO(1)(nt) ≥ t⇒ f(k) · n1−ε · logO(1)(nt) ≥ tε

R. Chitnis and G. Cormode 7:13

Choosing t = n
2−ε
ε we have that f(k) · logO(1) n1+(2−ε

ε) ≥ n, which is a contradiction for
large enough n (since k and ε are constants).

We now prove the lower bound for AND-compatible problems. Recall that De Morgan’s
law states that ¬(∨iPi) = ∧i(¬Pi). Hence, if Π is an OR-compatible graph problem then the
complement12 problem Π is an AND-compatible graph problem, and hence the lower bound
follows from the previous paragraph. J

I Remark 15. Note that throughout this paper we have considered the model where we allow
unbounded computation at each edge update, and also at the end of the stream. However, if
we consider a restricted model of allowing only polynomial (in input size n) computation at
each edge update and also at end of the stream, then it is easy to see that existing (conditional)
lower bounds from the parameterized algorithms and kernelization setting translate easily
to this restricted model. For example, the following two lower bounds for parameterized
streaming algorithms follow immediately in the restricted (polytime computation) model:

Let X be a graph problem that is W [i]-hard parameterized by k (for some i ≥ 1). Then
(in the polytime computation model) X /∈ FPS unless FPT = W [i].

Let X be a graph problem that is known to not have a polynomial kernel unless NP ⊆
coNP/poly. Then (in the polytime computation model) X does not have a parameterized
streaming algorithm which uses kO(1) · logO(1) n bits, unless NP ⊆ coNP/poly.

4 Conclusions & Open Problems

In this paper, we initiate a systematic study of graph problems from the paradigm of
parameterized streaming algorithms. We define space complexity classes of FPS, SubPS,
SemiPS, SupPS and BrutePS, and then obtain tight classifications for several well-studied
graph problems such as Longest Path, Feedback Vertex Set, Girth, Treewidth, etc. into these
classes. Our parameterized streaming algorithms use techniques of bidimensionality, iterative
compression and branching from the FPT world. In addition to showing lower bounds for
some parameterized streaming problems via communication complexity, we also show how
(conditional) lower bounds for kernels and W-hard problems translate to lower bounds for
parameterized streaming algorithms.

Our work leaves open several concrete questions. We list some of them below:

The streaming algorithm (Algorithm 1) for k-VC (on insertion-only streams) from
Section 2.1 has an optimal storage of O(k logn) bits but requires 2k passes. Can we
reduce the number of passes to poly(k), or instead show that we need passes which are
superpolynomial in k if we restrict space usage to O(k logn) bits? The only known lower
bound for such algorithms is (k/ logn) passes (see Theorem 5).

For k ≥ 1 can we design algorithms which use f(k) · n · logO(1) n bits and g(k) passes for
the k-OCT problem (for some functions f, g)? The technique of iterative compression
seems like a natural tool to use here.

12By complement, we mean that Π(G, k) is YES if and only if Π(G, k) is NO

IPEC 2019

7:14 Towards a Theory of Parameterized Streaming Algorithms

References
1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller Cuts, Higher Lower

Bounds. CoRR, abs/1901.01630, 2019. arXiv:1901.01630.
2 Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass streaming

complexity of the set cover problem. In STOC, pages 698–711, 2016. doi:10.1145/2897518.
2897576.

3 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
Problems Without Polynomial Kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

4 Marc Bury, Elena Grigorescu, Andrew McGregor, Morteza Monemizadeh, Chris Schwiegel-
shohn, Sofya Vorotnikova, and Samson Zhou. Structural Results on Matching Estima-
tion with Applications to Streaming. Algorithmica, 81(1):367–392, 2019. doi:10.1007/
s00453-018-0449-y.

5 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.
doi:10.1016/j.jcss.2008.05.002.

6 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008.
doi:10.1145/1411509.1411511.

7 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via Sampling with
Applications to Finding Matchings and Related Problems in Dynamic Graph Streams. In
SODA, pages 1326–1344, 2016. doi:10.1137/1.9781611974331.ch92.

8 Rajesh Hemant Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
and Morteza Monemizadeh. Brief Announcement: New Streaming Algorithms for Paramet-
erized Maximal Matching & Beyond. In SPAA, pages 56–58, 2015. doi:10.1145/2755573.
2755618.

9 Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. Parameterized Streaming: Maximal Matching and Vertex Cover. In SODA,
pages 1234–1251, 2015. doi:10.1137/1.9781611973730.82.

10 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

11 Julia Chuzhoy and Zihan Tan. Towards Tight(er) Bounds for the Excluded Grid Theorem. In
SODA, pages 1445–1464, 2019. doi:10.1137/1.9781611975482.88.

12 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
Sparse Awakens: Streaming Algorithms for Matching Size Estimation in Sparse Graphs. In
ESA, pages 29:1–29:15, 2017. doi:10.4230/LIPIcs.ESA.2017.29.

13 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic Graphs in the Sliding-
Window Model. In ESA, pages 337–348, 2013. doi:10.1007/978-3-642-40450-4_29.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

15 Frank K. H. A. Dehne, Michael R. Fellows, Frances A. Rosamond, and Peter Shaw. Greedy
Localization, Iterative Compression, Modeled Crown Reductions: New FPT Techniques, an
Improved Algorithm for Set Splitting, and a Novel 2k Kernelization for Vertex Cover. In
IWPEC, pages 271–280, 2004. doi:10.1007/978-3-540-28639-4_24.

16 Holger Dell. AND-Compression of NP-Complete Problems: Streamlined Proof and Minor
Observations. Algorithmica, 75(2):403–423, 2016. doi:10.1007/s00453-015-0110-y.

17 Holger Dell and Dieter van Melkebeek. Satisfiability Allows no Nontrivial Sparsification
Unless the Polynomial-Time Hierarchy Collapses. In STOC, pages 251–260, 2010. doi:
10.1145/1806689.1806725.

http://arxiv.org/abs/1901.01630
https://doi.org/10.1145/2897518.2897576
https://doi.org/10.1145/2897518.2897576
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1007/s00453-018-0449-y
https://doi.org/10.1007/s00453-018-0449-y
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1137/1.9781611974331.ch92
https://doi.org/10.1145/2755573.2755618
https://doi.org/10.1145/2755573.2755618
https://doi.org/10.1137/1.9781611973730.82
https://doi.org/10.1145/2700209
https://doi.org/10.1137/1.9781611975482.88
https://doi.org/10.4230/LIPIcs.ESA.2017.29
https://doi.org/10.1007/978-3-642-40450-4_29
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-28639-4_24
https://doi.org/10.1007/s00453-015-0110-y
https://doi.org/10.1145/1806689.1806725
https://doi.org/10.1145/1806689.1806725

R. Chitnis and G. Cormode 7:15

18 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

19 Erik D. Demaine and MohammadTaghi Hajiaghayi. The Bidimensionality Theory and Its
Algorithmic Applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/comjnl/bxm033.

20 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

21 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

22 Andrew Drucker. New Limits to Classical and Quantum Instance Compression. In FOCS,
pages 609–618, 2012. doi:10.1109/FOCS.2012.71.

23 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification
- a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.
doi:10.1145/265910.265914.

24 Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming Algorithms for Estimating the Matching Size in Planar Graphs
and Beyond. In SODA, pages 1217–1233, 2015. doi:10.1137/1.9781611973730.81.

25 Stefan Fafianie and Stefan Kratsch. Streaming Kernelization. In MFCS, pages 275–286, 2014.
doi:10.1007/978-3-662-44465-8_24.

26 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

27 Lance Fortnow and Rahul Santhanam. Infeasibility of Instance Compression and Succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.007.

28 Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards Tight Bounds
for the Streaming Set Cover Problem. In PODS, pages 371–383, 2016. doi:10.1145/2902251.
2902287.

29 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. External memory algorithms, 50:107–118, 1998.

30 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

31 Andrew McGregor and Sofya Vorotnikova. Planar Matching in Streams Revisited. In AP-
PROX/RANDOM, pages 17:1–17:12, 2016. doi:10.4230/LIPIcs.APPROX-RANDOM.2016.17.

32 Andrew McGregor and Sofya Vorotnikova. A Simple, Space-Efficient, Streaming Algorithm for
Matchings in Low Arboricity Graphs. In SOSA, pages 14:1–14:4, 2018. doi:10.4230/OASIcs.
SOSA.2018.14.

33 S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in
Theoretical Computer Science, 1(2), 2005. doi:10.1561/0400000002.

34 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

35 Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems in Insertion Streams.
In APPROX-RANDOM, pages 435–448, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.
435.

IPEC 2019

https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1109/FOCS.2012.71
https://doi.org/10.1145/265910.265914
https://doi.org/10.1137/1.9781611973730.81
https://doi.org/10.1007/978-3-662-44465-8_24
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1145/2902251.2902287
https://doi.org/10.1145/2902251.2902287
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.17
https://doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.1561/0400000002
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435

	Introduction
	Parameterized Streaming Algorithms and Kernels
	Our Results & Organization of the paper
	Prior work on Parametrized Streaming Algorithms

	Parameterized Streaming Algorithms Inspired by FPT techniques
	Multipass FPS algorithm for k-VC using Branching
	Multipass FPS algorithm for k-VC using Iterative Compression
	Minor-Bidimensional problems belong to SemiPS

	Lower Bounds for Parameterized Streaming Algorithms
	Tight Problems for the classes SemiPS and BrutePS
	Lower bound for approximating size of minimum Dominating Set on graphs of bounded arboricity
	Streaming Lower Bounds Inspired by Kernelization Lower Bounds

	Conclusions & Open Problems

