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Abstract
In this paper we study graph problems in dynamic streaming model, where the input is defined by
a sequence of edge insertions and deletions. As many natural problems require Ω(n) space, where
n is the number of vertices, existing works mainly focused on designing Õ(n) space algorithms.
Although sublinear in the number of edges for dense graphs, it could still be too large for many
applications (e.g. n is huge or the graph is sparse). In this work, we give single-pass algorithms
beating this space barrier for two classes of problems. We present o(n) space algorithms for
estimating the number of connected components with additive error εn and (1+ε)-approximating
the weight of minimum spanning tree. The latter improves previous Õ(n) space algorithm given
by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the
study of approximate graph property testing in the dynamic streaming model, where we want to
distinguish graphs satisfying the property from graphs that are ε-far from having the property.
We consider the problem of testing k-edge connectivity, k-vertex connectivity, cycle-freeness and
bipartiteness (of planar graphs), for which, we provide algorithms using roughly Õ(n1−ε) space,
which is o(n) for any constant ε. To complement our algorithms, we present Ω(n1−O(ε)) space
lower bounds for these problems, which show that such a dependence on ε is necessary.
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1 Introduction

Graphs or networks are a natural way to describe structural information. For example, users
of Facebook and the acquaintance relations among them form a social network, the proteins
together with interactions between them define a biological network, and web-pages and
hyperlinks give rise to a huge web graph. Due to the rapid development of information
technology, many such graphs become extremely large, and are constantly changing, which
poses great challenges for analyzing their structures. Over the last decade, the data stream
model [34] has proven to be successful in dealing with big data. In this model, the algorithm
should make only one pass (or a few passes) over the stream, and use sublinear working space.
The time required to output the final answer and process each element is also important.
There is a growing body of work studying graph problems over data streams. Graph streams
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18:2 Dynamic Graph Stream Algorithms in o(n) Space

were first considered by Henzinger et al. [24], and later have been extensively studied in
the insertion-only model (eg., [17, 18, 34]), where there is no edge deletion in the stream.
Recently, starting from the seminal works of Ahn, Guha and McGregor [2, 3], the interest has
shifted to the dynamic streaming model, where the edges can be both inserted and deleted
(see eg., [28, 29, 1, 5, 9, 10, 7, 31, 6, 33, 15, 23]). In this setting, most algorithms designed are
linear sketch-based, which is also an effective technique for processing distributed graphs. For
more information about graph streaming algorithms see the recent survey by McGregor [32].

For graph streams, both insertion-only and dynamic, the research in the past has mostly
focused on the semi-streaming model, in which the algorithms are allowed to use Õ(n) space,
where n is the number vertices in the graph. (For notational convenience, we will use Õ(g)
and Ω̃(g) to hide poly log(g) factors.) The reason behind this is that even in the insertion-only
model, many natural graph problems require Ω(n) space (e.g. testing if the graph is connected
[18]). Note that the allowed space in semi-streaming model is sublinear in the input size
as the number of edges of the graph might be as large as Ω(n2). However, in many real
applications n is huge and the input graph is already very sparse, an Õ(n) algorithm might
be even worse than just storing all the edges. From this perspective, one may naturally ask
the question which kind of problems can be solved with even less space, i.e., o(n) space.

To the best of our knowledge, very few results are known in this direction. Chitnis et
al. [10] and Fafianie and Kratsch [16] introduced parameterized graph stream algorithms which
may only use o(n) space with some promise of the size of the solution. This parameterized
setting has been further investigated in [9]. In addition, it has been shown that the size of
the maximum matching can be approximated within constant factor in Õ(n4/5) space for
graphs with bounded arboricity [14, 9, 7].

In this paper, we study two classes of graph problems that admit single-pass o(n) space
algorithms in the dynamic streaming model. The first class contains the problems of
estimating the number of connected components and the weight of minimum spanning tree
(MST). We show that one can estimate the number of connected components within an
additive error of εn with o(n) space and post-processing time, for any small constant ε > 0.
We also present an algorithm to (1 + ε)-approximate the weight of MST with o(n) space and
post-processing time for connected graphs with bounded edge weights, which improves the
best known algorithm with Õ(n) space in the same setting given by Ahn et al. [2]. It is worthy
noting that the problem of estimating the number of connected components within small
multiplicative error requires Ω(n) space, as it is generally harder than the problem of (exactly)
testing graph connectivity; and that estimating the weight of MST for graphs with arbitrarily
large edge weights (e.g., Ω(logn)) requires Ω(n) space (see Theorem 12). Previously these two
problems have been studied in the framework of sublinear time algorithms (see eg. [8, 39]).

The second class consists of problems that are relaxations of deciding graph properties.
Given a huge graph, it is very useful to know whether the graph has some predetermined
property, such as k-connectivity, bipartiteness, cycle-freeness and etc., which provide valuable
information about the graph. However, besides the requirement of Ω(n) space, exactly testing
of these properties sometimes is a too strong requirement for analyzing highly dynamic
graphs, since the answer may change in the next second due to an insertion or deletion of
a single edge. In this paper, we initiate the study of approximate graph property testing in
the dynamic streaming model: we want to test whether a graph satisfies some property or
one has to modify a small constant fraction of edges to make it have the property. This
notion of approximation is adapted from the framework of property testing [21, 22, 36], and
a large number of existing literatures have given efficient testing algorithms (called testers)
for many properties under different query models (see surveys [20, 38]). We show that some
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Table 1 Upper and lower bounds of streaming testers.

Space Space lower bound
Õ Ω

Connectivity n1−ε n1−8ε

k-edge connectivity k1+ε · n1−ε

k-vertex connectivity k1+ε/4

ε
· n1−ε/4

Cycle-freeness n1−ε+ε2
n1−8ε

Bipartiteness of planar graphs n1−Ω(ε2) n1−4ε

fundamental properties can be tested in both o(n) space and post-processing time in the
dynamic streaming model and we also present close lower bounds for these problems which
hold even in the insertion-only model. We remark that McGregor [32] also suggested to
study the (approximate) property testers in graph streaming model, and asked whether more
space-efficient algorithms exist for these problems, and we thus give affirmative answer to
this question.

1.1 Our results

Now we formally state our main results. Our results regarding estimating the number of
connected components and the MST weight are as follows.

Estimating the number of connected components. We present a dynamic streaming
algorithm that estimates the number of connected components within additive error εn
in Õ(n1−ε+εq+1) space and post-processing time for any constant q ≥ 1. We note that a
lower bound of Ω(n1−O(ε)) for this problem follows from the work [41].
Estimating the weight of minimum spanning tree (MST). In this problem, we want to
estimate the weight of the MST of a graph with edge weights in the set {1, 2, · · · ,W}. We
give a dynamic streaming algorithm that computes a (1 + ε)-approximation of the MST
weight and uses space and post-processing time Õ(Wn

1− ε
W−1 + εt

(W−1)t ) for any constant
t ≥ 1. By an argument in [8], the result can be extended to non-integral weights, as long
as the ratio between the largest and the smallest weight is bounded. A space lower bound
of Ω(n1− 4ε

W−1 ) is shown for this problem.

We also present approximate testing algorithms for a number of fundamental graph
properties. Before stating the performance of these algorithms, we first introduce some
definitions. Given a graph property Π, an m-edge graph G is called ε-far from having Π if
one has to modify more than εm edges of G to get a graph G′ satisfying Π. This distance
definition is adapted from [36] and is most suitable for general graphs where neither edge
density nor maximum degree is restricted. We call an algorithm a (dynamic) streaming
tester for Π, if it makes a single-pass over a stream of edge insertions and deletions, with
probability at least 2/3, accepts any graph satisfying Π, and rejects any graph that is ε-far
from having Π.

We give sketch-based streaming testers for properties of being connected, k-edge connected,
k-vertex connected, cycle-freeness and bipartite (for planar graphs). The performance of our
testers are summarized in Table 1. We stress that most of our testers have (asymptotically)
the same post-processing time as the space they used except for testing k-edge connectivity
when k ≥ Ω(nε/(1+ε)) and k-vertex connectivity when k ≥ Ω(nε/(4+ε)).

ICALP 2016
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1.2 Our techniques

To estimate the number of connected components with small additive error εn, we note
that it is sufficient to estimate the number scc(G) of connected components of small size
(i.e., O(1/ε)), since the number of components of size larger than this is at most O(εn) (see
also [8]). To estimate scc(G), the following vertex sampling framework is used: we sample a
sufficient large set of vertices S by sampling each vertex in G with some probability p, and
then use the statistics of the sampled connected components of the original graph to estimate
scc(G). For any small connected component C in G, it is likely that all the vertices in C
will be sampled out. Conditioned on this, we add 1/p|C| to our final estimator, which is the
reciprocal of the probability that C is entirely sampled out. Now the task is then to identify
which subsets of S are connected components in the original graph. A trivial way is to check
all subsets of S, which takes too much time. A more efficient way is to only check all the
connected components in G[S], since a sampled component of G must also form a component
in G[S]. We carefully use a set of linear sketches to do this. More specifically, we first recover
all connected components in G[S] by invoking a sketch-based streaming algorithm given
in [2], which only needs space near-linear in |S|. Then we use (different) linear sketches to
check if any of these components is indeed a connected component of the original graph. We
remark that the first set of linear sketches of a vertex v sketch its neighborhood information
in G[S], while the second set sketch its neighborhood information in G. Our o(n) space
streaming algorithm for (1 + ε)-approximating the weight of MST follows via a connection
between the number of connected components and the weight of MST established in [8].

To give testers for some graph property Π in dynamic streaming model, we start from
the observation that if a graph G is far from having Π, then typically, there exist many
small disjoint subgraphs, each of which is a witness that the graph G does not satisfy Π.
(For example, if Π is connectivity, then there exists at least Ω(εm) connected components
of size at most O(1/ε) in a graph that is ε-far from being connected.) This implies that by
sampling a sufficient large set of vertices, with high probability, one of such subgraphs will
be entirely sampled. Checking which vertices form a witness of the original graph can then
be done by using the aforementioned framework. Different sketches will be used for testing
different properties.

To prove lower bounds for our studied problems, we give reductions from Boolen Hidden
Hypermatching (BHH) problem that was studied in [41]. Our reductions share similarity
with the reduction in [41] to the cycle-counting problem and the reductions in [27, 30] to the
approximate max-cut problem.

1.3 Related work

Ahn et al. [2] initiated the study of graph sketches, and gave dynamic semi-streaming
algorithms for computing a spanning forest (which can be used to count the exact number of
connected components), and (1 + ε)-approximate the weight of MST. They also proposed
algorithms to exactly testing of a set of properties, including testing connectivity, k-edge
connectivity, and bipartiteness. Recently, Guha et al. gave dynamic streaming algorithms
for exactly testing of k-vertex connectivity [23]. All these algorithms use Õ(n) space (Õ(kn)
for k-connectivity). On the other hand, the randomized space lower bounds for these exact
testing problems were known to be Ω(n) in the insertion-only model [17, 18]. Recently, Sun
and Woodruff improved these lower bounds to Ω(n logn) [40]. Verbin and Yu [41] proved a
lower bound for cycle-counting, which implied a lower bound of Ω(n1−O(ε)) for estimating
the number of components.
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In the random order insertion-only model Kapralov et al. [26] gave a one pass streaming
algorithm that estimates the maximum matching size with polylogarithmic approximation
ratio in polylogarithmic space. Although sublinear in n, the model considered is very different
from ours.

Sublinear time algorithms for estimating the number of connected component and the
weight of MST were first given by Chazelle et al. [8]. Later these two problems have been
further considered in geometric settings [11, 13, 19]. In particular, Frahling et al. studied the
problem of (1 + ε)-approximating the weight of MST in dynamic geometric data stream [19].

There has been a rich line of work on graph property testing in the query model (see
surveys [38, 20]) and the goal there is to design fast algorithms that make as few queries as
possible. The query models that are mostly related to ours are bounded degree model and
general graph model. In particular, our definition of ε-far is adapted from the general graph
model. Goldreich and Ron [22] initiated the study of property testers in bounded degree
graph model, and gave testers for connectivity, k-edge connectivity, 2, 3-vertex connectivity,
cycle-freeness, Eulerianity. Testing k-vertex connectivity in bounded degree graphs for
arbitrary constant k was given in [42]. These testers have later been generalized to general
graph model [36, 35]. Testing bipartiteness in planar graphs was studied in [12].

After having submitted the paper, we became aware that Hossein Jowhari [25] has
independently studied the problem of estimating the number of connected components and
provided similar results as ours, while he did not consider the streaming property testers
considered here.

2 Preliminaries

2.1 Notations
We use [n] = {1, · · · , n} to denote the vertex set of the graph G defined by the stream, and
let m denote the number of edges of G. For an undirected graph G = ([n], E) and a vertex
i ∈ [n], we let Γ(i) denote all the neighbors of i. For a set C ⊆ [n], let Γ(C) denote the set
of vertices in V \ C that have at least one neighbor in C, that is, Γ(C) = ∪i∈CΓ(i) \ C. Let
E(C, V \ C) denote the set of edges crossing C and V \ C. We will use G[C] to denote the
subgraph induced by C.

For each vertex i, we define two vectors ∆i ∈ {−1, 0, 1}(
n
2) and Λi ∈ {0, 1}n to encode

the neighborhood information of i as follows:

∆i
j,k =


1 if i = j < k and (j, k) ∈ E
−1 if j < k = i and (j, k) ∈ E
0 otherwise

Λi
j =

{
1 if j ∈ Γ(i) or j = i

0 otherwise

By simple induction arguments, it is easy to prove that for any vertex set C ⊂ V , the
nonzero entries in the vector ∆C :=

∑
i∈C ∆i corresponds to the edges between C and

its complement V \ C. The nonzero entries in
∑
i∈C Λi corresponds exactly to vertices in

C ∪ Γ(C).

2.2 Linear sketches
Linear sketch (or sketch for short) is a powerful tool widely used in the streaming model and
other areas. Given a large vector x ∈ Rn, we want to construct a small sketch L(x), from which
certain properties of x can be recovered. We call L a linear sketch if L(x + y) = L(x) +L(y)
for all x,y, and this additive property make it trivial to implement linear sketches in the

ICALP 2016
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dynamic streaming model. As in the previous works, we will use linear sketches as our main
tool.

AGM sketch. We will use a dynamic streaming algorithm for constructing a spanning forest
of a graph by Ahn, Guha and McGregor [2], which is summarized as follows.

I Theorem 1 (AGM sketch [2]). There exists a single-pass sketch-based dynamic streaming
algorithm that uses O(n log3 n) space, and recovers a spanning forest of the graph with
probability 0.99. The recovery time of the algorithm is Õ(n), and the update time is poly logn.

AMS sketch. To check whether the input vector x is 0 or not, one can simply maintain a
constant approximation of its second frequency moment, that is F2(x) :=

∑
i x

2
i , which can

be done in O(logn) space by using the classical AMS sketch that was introduced by Alon,
Matias and Szegedy [4].

Exact k-sparse recovery. We call a vector k-sparse if |supp(x)| ≤ k. Given a non-zero
vector x ∈ Rn, the goal here is to recover x if x is k-sparse, otherwise outputs Fail. We have
the following result from [37].

I Lemma 2 ([37]). There exists an O(k logn logk δ−1) space sketch-based algorithm that
takes as input a non-zero vector x ∈ Rn, and with probability 1 − δ, recovers x if x is
k-sparse, otherwise outputs Fail. The update time is O(poly logn) and the recovery time is
O(k · poly logn).

3 Estimating the number of connected components and MST weight

In this section, we present and analyze our algorithms for estimating the number of the
connected components in a graph and (1 + ε)-approximating the weight of the MST.

3.1 Estimating the number of connected components
Our first observation is that, to estimate the number of connected components within additive
error εn, we can simply ignore all the large components (see also [8]). In particular, the
number of components of size larger than Ω(1/ε) is at most O(εn). Thus it will be sufficient
to estimate the number of components of small size, for which we have the following theorem.

I Theorem 3. For any constant t ≥ 1, there exists a one-pass dynamic streaming algorithm
that uses O(etn1−ε · poly logn) space and post-processing time to estimates the number of
connected components of size at most 1/ε within an additive error εtn. The update time is
O(poly logn).

By invoking Theorem 3 with parameter ε′ = (1−εq)ε and t = (q+1), we get an estimator
for the number of connected components of size smaller than 1/ε′ within additive error at
most εq+1n. Since the number of components of size at least 1/ε′ is at most ε′n = εn−ε1+qn,
the estimator also approximates the total number of connected components within additive
error at most εn. The space of the algorithm is Õ(eq+1n1−ε+εq+1), and we have the following
result.

I Theorem 4. Let q ≥ 1 be a constant. There exists a one-pass dynamic streaming algorithm
that with constant success probability, estimates the number of connected components of a
graph within an additive error εn in O(eq+1n1−ε+εq+1 · poly logn) space and post-processing
time.
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Algorithm 1 EstimateNumSCC

1: Sample each vertex with probability p := (ε2tn/16)−ε. If more than 16np vertices are
sampled, then abort and output Fail. Let S denote the set of sampled vertices.

2: Maintain an AGM sketch of G[S] using Theorem 1.
3: For each v ∈ S, maintain an AMS sketch AMS(∆v), sketching the neighborhood of v in
G.

4: Post-Processing:
5: Use the AGM sketch to recover a spanning forest F of the induced graph G[S] using

Theorem 1.
6: For each component C ∈ F , estimate F2(∆C) using the AMS sketch AMS(∆C) =∑

v∈C AMS(∆v), and set XC = 1 if F2 = 0, otherwise set XC = 0. For each 1 ≤ ` ≤ 1
ε ,

let X` :=
∑
C:|C|=`XC .

7: Output Y :=
∑
`≤ 1

ε

X`

p` .

Now we give the proof of Theorem 3. Recall that the vectors ∆C encode the information
of the number of edges between C and V \ C.

Proof of Theorem 3. Let scc(G) denote the number of connected components of size at
most 1/ε in G. Our algorithm for estimating scc(G) is as follows. We first sample each vertex
with probability p := (ε2tn/16)−ε. Let S be the set of sampled vertices. We then use the
AGM sketch from Theorem 1 to maintain a spanning forest F of the subgraph induced by
S. Then for each component C in F , we test whether C is actually a connected component
in G by testing whether the vector ∆C :=

∑
v∈C ∆v is 0, which can be done by the AMS

sketch. If ∆C = 0, we set XC = 1, otherwise set XC = 0. Our estimator is then defined as∑
C

XC

p|C|
, where C ranges over all components of F with size at most 1

ε . See Algorithm 1 for
the details.

Note that the algorithm samples at most 16np = O(ε−2tε·n1−ε) vertices and we maintained
an AGM sketch on G[S] and an AMS sketch for each sampled vertex, which imply that the
space complexity of the algorithm is O(ε−2tεn1−ε · poly logn). By simple calculus, for any ε,
it holds that ε−2ε ≤ e2/e < e, so the space is at most Õ(etn1−ε). The post-processing time
is near linear in the space, and the update time is O(poly logn).

Now we prove the correctness of the above algorithm. First we note that the expected
number of sampled vertices in Step (1) is np, and thus by Markov inequality, the probability
that more than 16np vertices are sampled is at most 1

16 . Also note that with probability at
least 1− 1

16 , the AGM sketch returns a true spanning forest of G[S]. In addition, since the
number of components in F is at most n, we will query the AMS sketch at most n times.
Thus if we set the error probability of the AMS sketch to be 1

16n (with an extra logn factor
in space), then with probability at least 1− 1

16 , all invocations of AMS sketches for testing if
∆C = 0 will give the correct answer. Conditioned on this event, X` defined in Step (6) is
exactly the number of connected components B of size ` in G such that all vertices in B are
sampled out, which is true since for any component C ∈ F , F2(∆C) = 0 if and only if C is a
connected component in G.

Let B1, · · · , Bscc(G) be the connected components of size at most 1
ε of G. For any

integer ` ≤ 1
ε , let B` denote the set of connected components of size ` in G, that is,

B` = {Bi : 1 ≤ i ≤ scc(G), |Bi| = `}. Let b` := |B`|. Note that scc(G) =
∑
`≤ 1

ε
b`. For any

set B, let ZB denote the indicator random variable that all the vertices in B have been
sampled. Note that Pr[ZB = 1] = p|B|. Now by the above argument, X` =

∑
B∈B`

ZB,

ICALP 2016
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and E[X`] = b` · p`. Furthermore, we have Y =
∑
`≤ 1

ε

X`

p` =
∑
`≤ 1

ε

∑
B∈B`

ZB

p` , and thus
E[Y ] =

∑
`≤ 1

ε
b` = scc(G).

Note that all ZBi
’s are mutually independent for all i, so it holds that

Var[Y ] =
∑
`≤ 1

ε

∑
B∈B`

Var[ZB ]
p2` =

∑
`≤ 1

ε

b`(p` − p2`)
p2` ≤

∑
`≤ 1

ε

b`
p`

≤
∑
`≤ 1

ε
b`

p1/ε = scc(G)
p1/ε ≤

n

p1/ε = ε2tn2/16, (1)

where we use the fact that scc(G) ≤ n, and p = (ε2tn/16)−ε. Then by Chebyshev’s inequality,

Pr[|Y − scc(G)| ≥ εtn] = Pr[|Y − E[Y ]| ≥ εtn] ≤ Var[Y ]
ε2tn2 ≤ 1/16.

By the union bound, the algorithm will succeed with probability at least 2
3 . J

3.2 Approximating the weight of minimum spanning tree
We use the previous algorithm on estimating the number of connected components to
approximate the weight of a minimum spanning tree of a weighted graph. Let W ≥ 2 be
an integer, G be a connected graph with integer edge weights from [W ] := {1, · · · ,W}, and
c(MST) be the weight of an MST of G. For any 1 ≤ ` ≤ W , let G(`) denote the subgraph
of G consisting of all edges of weight at most `. Let cc(`) denote the number of connected
components of G(`). Chazelle et al. [8] give the following lemma relating the weight of MST
to the number of connected components of G(`).

I Lemma 5 ([8]). It holds that c(MST) = n−W +
∑W−1
`=1 cc(`).

For a connected graph with integer edge weights, the weight of any MST is at least n− 1,
so it is sufficient to estimate cc(`) within an additive error of εn/(W − 1) for each `. To do
this, we can simply run W − 1 parallel instances of Theorem 4, each of which sketches a
subgraph G(`). Then the space of the algorithm will be Õ(Wn1− ε

W−1 ).

I Theorem 6. Let t ≥ 1 be any constant. There exists a single-pass dynamic stream-
ing algorithm that uses space and post-processing time O(etWn

1− ε
W−1 + εt

(W−1)t poly logn) to
compute a (1 + ε)-approximation of the weight of the MST.

We remark that Ahn et al. [2] have given a dynamic streaming algorithm for this problem
for any graph with maximum edge weight upper bounded by O(poly(n)), and their algorithm
uses space O(n · poly logn). Our algorithm uses o(n) space for any connected graph with
maximum edge weight bounded by o(logn) (for constant ε), which improves the algorithm
of [2] in this setting. We also note that Ω(n) space is necessary for estimating the weight of
MST for graphs with maximum edge weight at least c logn for constant ε and some large
universal constant c (see Theorem 12). Finally, we remark that the algorithm can also be
extended to the setting where non-integral weights are allowed (see [8] for more details).

4 Dynamic streaming testers

In this section, we give our streaming testers for k-edge connectivity and cycle-freeness. Due
to space constraints, we present the testers for k-vertex connectivity, Eulerianity and planar
graph bipartiteness in the full version of the paper.
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Algorithm 2 TestConnectivity
1: Sample each vertex with probability p := (εn/10)−ε. If more than 16np vertices are

sampled, abort and output Fail. Let S denote the set of sampled vertices.
2: For each v ∈ S, maintain an AMS sketch AMS(∆v), sketching the neighborhood of v in
G.

3: Maintain an AGM sketch of G[S] using Theorem 1.
4: Post-Processing:
5: Use the above sketch to construct a spanning forest F of G[S] as guaranteed by Theorem 1.
6: For each connected component C ∈ F , estimate F2(∆C) using the AMS sketch
AMS(∆C) =

∑
v∈C AMS(∆v). If the answer F̃2 = 0, Reject.

7: Accept.

4.1 Testing k-edge connectivity
A graph is k-edge connected if the minimum cut of the graph has size at least k. We start
from the simplest case, i.e., k = 1, which is equivalent to the problem of testing connectivity.

4.1.1 Connectivity
It is clear that if G is ε-far from being connected, one must add at least εm edges to make it
connected, which implies that there are at least εm+ 1 connected components in G [22, 36].
Therefore, we can also solve this by estimating the number connected components by setting
the error parameter appropriately, however, by a more careful analysis, we can improve this
by a factor of O(nO(ε)).

I Theorem 7. There exists a dynamic streaming tester for 1-edge connectivity that runs in
Õ(n1−ε) post-processing time and space.

Proof. First observe that one can simply reject the input graph if m < n− 1, since in this
case, the graph is disconnected. Thus, in the following we assume m ≥ n− 1 and our tester
is described in Algorithm 2.

It is easy to see that Algorithm 2 only use Õ(|S|) space, which is bounded by Õ(np) =
Õ(ε−εn1−ε) = Õ(n1−ε). The post-processing time is nearly linear in the size of S, since the
AGM algorithm needs Õ(|S|) post-processing time, and we invoke at most |S| AMS queries,
each of which takes Õ(1) time. The update time is poly logn.

For the correctness of the algorithm, we condition on the event that the number of
sampled vertices is at most 16np, which occurs with probability at least 1− 1

16 , and on the
event that the spanning forest F is constructed correctly, which occurs with probability 0.99.
By setting the error probability of the AMS sketch to be 1/n2 (with an extra logn factor in
space), with probability 0.99, all the answers from AMS sketches are all correct, and we also
condition on this.

If G is connected, then it will always be accepted, since for each C ∈ F , ∆C 6= 0, and
conditioned on the correctness of the AMS sketch, F̃2 will never be 0. On the other hand, if
the graph is ε-far from being connected, the number of connected components in G, denoted as
cc(G), is at least 1+εm ≥ εn. Let B1, · · · , Bcc(G) denote all connected components in G. Let
pi = p|Bi| for 1 ≤ i ≤ cc(G). Using the inequality 1− x ≤ e−x for all x, the probability that
none of the components is entirely sampled out is (1−p1) · (1−p2) · · · · (1−pcc(G)) ≤ e−

∑
i
pi .

Then by the AM-GM inequality, this probability is at most

e−cc(G)·(
∏

i
pi)1/cc(G)

= e−cc(G)·pn/cc(G)
≤ e−cc(G)·p1/ε

≤ e−εn·p
1/ε

≤ 1/16,

ICALP 2016



18:10 Dynamic Graph Stream Algorithms in o(n) Space

where we use the fact that p = (εn/10)−ε and cc(G) ≥ εn. So the probability that at least
one of the components is sampled out is at least 15/16. Conditioned on this, F2(∆C) = 0
for some component in G[S] and the algorithm will output Reject. By union bound, our
algorithm will succeed with probability 1− 1

16 − 0.01− 0.01− 1
16 > 3/4. J

4.1.2 k-edge connectivity: k ≥ 2
By using a slightly more involved argument and replacing AMS sketches with (k − 1)-sparse
recovery sketches, we can generalize the above idea to testing k-edge connectivity for k ≥ 2.
We have the following theorem on testing k-edge connectivity. See the full version for the
proof.

I Theorem 8. Let k ≤ O(nε/(1+ε)). There exists a single-pass dynamic streaming tester for
k-edge connectivity with post-processing time and space O(k1+ε · n1−ε · poly logn).

4.2 Testing cycle-freeness
Now we consider the problem of testing cycle-freeness, which is equivalent to testing if the
graph is a forest. Let cc(G) denote the number of connected components of the input graph
G. Let B1, · · · , Bcc(G) be the connected components in G. Note that if G is cycle-free, then
for each i ≤ cc(G), |E(Bi)| = |Bi| − 1, and thus the total number of edges in G is

m =
cc(G)∑
i=1
|E(Bi)| =

cc(G)∑
i=1

(|Bi| − 1) = n− cc(G),

that is, cc(G) = n−m. If G is ε-far from being cycle-free, i.e., one has to delete more than
εm edges to make it cycle-free, then cc(G) > n−m+ εm. Therefore, to test cycle-freeness
of a graph, it will be sufficient to approximate the number of connected components with
additive error εm/2. One may try to directly invoke Algorithm 1 with parameter ε′ = εm

2n .
However, m could be much smaller than n and we do not know m in advance. We overcome
this obstacle by a case analysis.

I Theorem 9. There exists a single-pass dynamic streaming algorithm that tests cycle-freeness
of a graph with space and post-processing time O(n1−ε+ε2 · poly logn).

Proof. Note that if m > n− 1, then the graph must contain at least one cycle, and thus we
can safely reject the graph. In the following, we assume that m ≤ n− 1. Our algorithm for
testing cycle-freeness depends on the construction of AGM sketch, in which each vertex u
maintains a linear sketch of ∆u (denoted as A(∆u)). Each such sketch has size poly logn
and the property that A(0) = 0 (it consists of O(logn) l0-samplers, see [2] for details). Our
main idea is to maintain a sparse recovery sketch for the AGM sketch (i.e. a composition of
sparse recovery sketch and AGM sketch). Now we describe our algorithm as follows.

Note that the space used by the algorithm is max{Õ(np), k · poly logn} = Õ(n1−ε+ε2),
and the post-processing time is near linear in space. Now we prove the correctness of
the algorithm. We define G′ ⊆ G to be a subgraph which consists of all the vertices of
positive degree. Let n′ = |G′|. Note that m ≥ n′/2. If n′ ≤ n1−η, then the vector Υ is
Õ(n1−η)-sparse, since for all isolated vertices u, we have A(∆u) = 0, and thus we can recover
the entire Υ exactly. Then by Step (2) and Theorem 1, we can get the exact number of
components of G′. Since the number of vertices of G′ is |Y |, and λ = m is the total number
of edges, then the graph is cycle-free if and only if c̃1 = |Y | − λ.
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Algorithm 3 TestCycleFreeness
1: Maintain a count λ of the number of edges.
2: Let η = ε/(1 + ε+ ε2). Let k = n1−ηpoly logn. Maintain an exact k-sparse recovery

sketch S of the vector Υ := (A(∆u))u∈V using Lemma 2.
3: Run Algorithm 1 with parameter p = (22tn1−η/16)−η, while in step (6) of Algorithm 1,

ignore all the isolated vertices that are sampled out (i.e., set XC = 0 whenever |C| = 1).
4: Post-Processing:
5: Recover Υ from S.
6: if The recovery does not fail then
7: Use Υ to construct a spanning forest on vertex set Y := {u : A(∆u) 6= 0} using

Theorem 1. Let c̃1 denote the number of connected components of this forest. If
c̃1 = |Y | − λ, Accept; otherwise, Reject.

8: else
9: Let c̃2 be the resulting estimator of Algorithm 1 in Step 3. If c̃2 ≤ n− (1− ε− ε3

4 )λ,
Accept; otherwise, Reject.

10: end if

If n′ > n1−η, then by Theorem 3, c̃2 is an estimator for the number of components in G′
of size smaller than 1/η with additive error ηt

√
n′n1−η. This follows by the upper bound

η2tn1−ηn′/16 of the variance of the estimator (which can be shown similarly to inequality
(1) in Section 3) and the Chebyshev’s inequality. Now note that the additive error is at
most ηtn′ ≤ ε3m/8 for some constant t since n′ > n1−η and m ≥ n′/2. Let L be the number
of components in G′ of size larger than 1/η, then −ε3m/8 ≤ cc(G′) − c̃2 ≤ L + ε3m/8
holds with high probability. Conditioned on this, Step (8) outputs the correct answer if
L+ ε3m/8 + ε3m/8 = L+ ε3m/4 < εm. Now if L < εm/4, we are done. If L ≥ εm/4, then
by our choice of η and the fact that m ≥ L · (1/η − 1), εm ≥ L+ Lε2 ≥ L+ ε3m/4. This
completes the proof of the theorem. J

5 Lower bounds

In this section we present lower bounds, which hold in the insertion-only model. Our proofs
are based on the reductions to the Boolean Hidden Hypermatching (BHH) problem (See [41]),
which are in the same spirit as the lower bound proof for the Cycle Counting problem in [41].
We first give the definition of the boolean hidden hypermatching problem.

I Definition 10 (BHHtn). In this problem, Alice gets a boolean vector x ∈ {0, 1}n, where n =
2kt for some integer k. Bob gets a partition (or hypermatching) of the set [n], {m1, · · · ,mn/t},
where the size of each mi is t, and a vector w ∈ {0, 1}n/t. For convenience, we will also use
the corresponding n-dimensional boolean indicator vector Mi to represent mi, and let M be
a n/t× n matrix, the i row of which is Mi. The promise of the input is either Mx+ w = 1
or Mx+w = 0, where all the operations are modulo 2. The goal of the problem is to output
1 when Mx+ w = 1, and output 0 otherwise.

I Theorem 11 ([41]). The randomized one-way communication complexity of BHHtn when
n = 2kt for some integer k ≥ 1 is Ω(n1−1/t).

Our lower bounds will be built upon the following basic construction.

Construction of G(x, M). Given vector x and matrix M respectively, Alice and Bob
construct a bipartite graph G(x,M) = (U, V,E), where U = {u1, · · · , u2n} and V =
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v2i−1

v2i

u2i−1

u2i

v2i−1

v2i

u2i−1

u2i

xi = 0 xi = 1

Figure 1 Parallel (left) and crossing (right) matching according to the value of xi.

v2mi,j−1

v2mi,j u2mi,j

v2mi,j+1−1

v2mi,j+1

u2mi,j+1−1

u2mi,j+1

xmi,j
= 0 xmi,j+1

= 1

u2mi,j−1

Figure 2 Bob connects (u2mi,j −1, v2mi,j+1−1) and (u2mi,j , v2mi,j+1 ) for each j ∈ [t− 1].

{v1, · · · , v2n}, as follows. Given x ∈ {0, 1}n, Alice adds a perfect matching between U

and V . For each i ∈ [n], if xi = 0, she adds two parallel edges (u2i−1, v2i−1) and (u2i, v2i);
otherwise if xi = 1, she adds two crossing edges (u2i−1, v2i) and (u2i, v2i−1) (see Figure 1).

Given M , Bob will do the following. For each i ∈ [n/t] and the hyperedge mi ⊂ [n] (that
corresponds to the ith row Mi), we use mi,j ∈ [n] to denote the jth element in mi and we
let Si := {w|w = v2mi,j−1 or v2mi,j or u2mi,j−1 or u2mi,j , j ∈ [t]}. For each i ∈ [n/t] and
j ∈ [t− 1], Bob adds two edges (u2mi,j−1, v2mi,j+1−1) and (u2mi,j

, v2mi,j+1) (See Figure 2).
Observe that the edges added by Alice and Bob form two paths p2i−1, p2i over vertex

set Si, where p2i−1 starts from v2mi,1−1 and p2i starts from v2mi,1−1 for each i. The entire
graph G(x,M) consists of 2n/t disjoint paths {p1 · · · , p2n/t}.

Note that G(x,M) has the following property. Based on the value of (Mx)i, we have: 1)
if (Mx)i = 0, then p2i−1 is a path from v2mi,1−1 to u2mi,t−1 and p2i is a path from v2mi,1 to
u2mi,t ; 2) if (Mx)i = 1, then p2i−1 is a path from v2mi,1−1 to u2mi,t and p2i is a path from
v2mi,1 to u2mi,t−1.

5.1 Minimum spanning tree

I Theorem 12. In the insertion-only model, if all edges of the graph have weights in [W ],
any algorithm that (1± ε)-approximates the weight of the MST must use Ω(n1− 4ε

W−1 ) bits of
space.

Proof. Given x and M , Alice and Bob first construct the graph G(x,M) as describe above.
Next Bob adds (u2mi,t−1, v2mi,1−1) and (u2mi,t

, v2mi,1) if wi = 0; adds (u2mi,t−1, v2mi,1) and
(u2mi,t

, v2mi,1−1) if wi = 1. The weight of all the edges added so far is 1. Next Bob places
edges (v2mi,t , v2mi+1,1) with weight 1 for i = 1, · · · , n/t − 1 and edges (v2mi,t , u2mi,t) with
weight W for each i ∈ [n/t], so that the graph become connected. By similar argument
as above, if Mx + w = 0, all the edges (v2mi,t , u2mi,t) must be picked in any minimum
spanning tree, since each of these edges forms a cut, and thus the weight of any MST is
nW/t + 4n − n/t − 1 = 4nε + 4n − 1, where we set t = (W − 1)/4ε. On the other hand,
when Mx+ w = 1, the weight of the MST is 4n− 1, since in this case, the graph is already
connected without those edges with weight W . So if the algorithm can compute an (1 + ε)-
approximation of the weight of the minimum spanning tree, it solves the BHHtn problem.
This completes the proof. J
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5.2 Testing connectivity

I Theorem 13. In the insertion-only model, to distinguish whether a graph of 4n vertices is
connected or 1

8t+1 -far from being connected, any algorithm must use Ω(n1−1/t) bits of space.

Proof. Given x and M , Alice and Bob first construct the graph G(x,M). Next Bob
adds another set of edges based on vector w. If wi = 0, he adds (u2mi,t−1, v2mi,1−1)
and (u2mi,t

, v2mi,1); if wi = 1, he adds (u2mi,t−1, v2mi,1) and (u2mi,t
, v2mi,1−1). So when

(Mx)i+wi = 0, p2i−1 and p2i become 2 disjoint cycles. On the other hand, when (Mx)i+wi =
1, p2i−1 and p2i together form a larger cycle. Now Bob places (v2mi,t

, v2mi+1,1) in E for
i = 1, · · · , n/t − 1 which connect p2i with p2(i+1) for all i ∈ [n/t − 1], i.e. all the paths in
G(x,M) with even indices become a connected component. The total number of edges is
8n + n/t. When Mx + w = 0, the graph has n/t + 1 components which is 1

8t+1 -far from
connected; when Mx + w = 1 the graph is connected. So if a streaming algorithm can
distinguish whether a graph of size 4n is connected or 1/8t-far from being connected, it
solves BHHtn, since Alice can first run the algorithm on her part of the graph and send the
memory to Bob, and then Bob continues to run the algorithm on his part and output the
answer. Therefore, the communication lower bound of BHHtn implies a space lower bound of
testing connectivity. J

5.3 Testing cycle-freeness

As in the proof of Theorem 13, given x and M , Alice and Bob first construct G(x,M). Then,
for i ∈ [n/t], Bob adds (u2mi,t−1, v2mi,1−1) if wi = 0; adds (u2mi,t−1, v2mi,1) if wi = 1. The
total number of edges is less than 8n. Through similar arguments, it is easy to verify that
if if Mx + w = 0, the graph has exactly n/t cycles and n/t paths, which is 1/8t-far from
cycle-free. On the contrary, if Mx+ w = 1, the graph has n/t paths and no cycle. So if an
algorithm can distinguish whether a graph of size 4n is cycle-free or 1/8t-far from cycle-free,
it solves BHHtn.

I Theorem 14. In the insertion-only model, any algorithm that can distinguish whether a
graph of 4n vertices is cycle-free or 1/8t-far from being cycle-free, must use Ω(n1−1/t) bits of
space.

5.4 Testing bipartiteness of planar graphs

Alice and Bob first construct the graph G(x,M). Next, for each i ∈ [n/t], Bob adds edges
(v2mi,1−1, ξ1) and (v2mi,1 , ξ2), where ξ1, ξ2 are new vertices. For i ∈ [n/t], Bob also adds
(u2mi,t−1, ξ1) and (u2mi,t

, ξ2) if wi = 0; adds (u2mi,t−1, ξ2) and (u2mi,t
, ξ1) if wi = 1. For this

problem we assume t is odd. So by similar arguments, we can easily verify that, ifMx+w = 0,
the graph contains 2n/t edge-disjoint cycles of length 2t+ 1, and if Mx+ w = 1, the graph
has no odd cycle, and thus bipartite. The graph constructed is planar and has 4n+ 2 vertices
and 8n+ 4n/t edges, so we have the following lower bound for testing bipartiteness.

I Theorem 15. In the insertion-only model, any algorithm that can distinguish whether
a planar graph of 4n + 2 vertices is bipartite or 1

4t+2 -far from being bipartite, must use
Ω(n1−1/t) bits space.
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