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Streaming is a model where an input graph is provided one edge at a time, instead of being 
able to inspect it at will. In this work, we take a parameterized approach by assuming a 
vertex cover of the graph is given, building on work of Bishnu et al. [COCOON 2020]. We 
show the further potency of combining this parameter with the Adjacency List streaming 
model to obtain results for vertex deletion problems. This includes kernels, parameterized 
algorithms, and lower bounds for the problems of �-free Deletion, H-free Deletion, and 
the more specific forms of Cluster Vertex Deletion and Odd Cycle Transversal. We focus 
on the complexity in terms of the number of passes over the input stream, and the 
memory used. This leads to a pass/memory trade-off, where a different algorithm might 
be favourable depending on the context and instance. We also discuss implications for 
parameterized complexity in the non-streaming setting.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Streaming is an algorithmic paradigm to deal with data sets that are too large to fit into main memory [1]. Instead, 
elements of the data set are inspected in a fixed order1 and aggregate data is maintained in a small amount of memory 
(much smaller than the total size of the data set). It is possible to make multiple passes over the data set. The goal is to 
design algorithms that analyze the data set while minimizing the combination of the number of passes and the required 
memory. We note that computation time is not measured in this paradigm. Streaming has proved very successful and is 
extensively studied in many diverse contexts [2,3]. In this work, we focus on the case where the data sets are graphs and 
the streamed elements are the edges of the graph.

A significant body of work on graph streaming works in the semi-streaming model, where Õ(n) memory2 is allowed, 
with the aim of limiting the number of necessary passes to one or two. This memory requirement might still be too much 
for the largest of networks. Unfortunately, many basic problems in graphs require �(n) or even worse space [4,5] to compute 
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Fundamentals of Computation Theory (FCT 2021), LNCS vol. 12867, Springer, 2021, pp. 413–426; see https://doi .org /10 .1007 /978 -3 -030 -86593 -1 _29.
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in a constant number of passes. Therefore, Fafianie and Kratsch [6] and Chitnis et al. [7] introduced concepts and analysis 
from parameterized complexity [8] to the streaming paradigm. For example, it can be decided whether a graph has a vertex 
cover of size at most K using one pass and Õ(K 2) space, which is optimal. This led to various further works [9–11] and 
the first systematic study by Chitnis and Cormode [12].

Our work continues this line of research and follows up on recent work by Bishnu et al. [10,13].3 They made two 
important conceptual contributions. First, they analyzed the complexity of parameterized streaming algorithms in three 
models that prescribe the order in which the edges arrive in the stream and that are commonly studied in the literature [10,
14,2,15]. The Edge Arrival (EA) model prescribes some permutation of all the edges of the graph. The Vertex Arrival (VA) 
requires that the edges appear per vertex: if we have seen the vertices V ′ ⊆ V already, and the next vertex is w , then the 
stream contains the edges between w and the vertices in V ′ . Finally, the Adjacency List (AL) gives the most information, as 
it requires the edges to arrive per vertex, but when vertex v appears in the stream, we also see all edges incident to v . This 
means we effectively see every edge twice in a single pass, once for both of its endpoints. Due to the nature of streams 
consisting of edges, we assume no degree-0 vertices are present in our input graphs.

The second and more important contribution of Bishnu et al. [13] was to study the size K of a vertex cover 
in the graph as a parameter. This has been broadly studied in parameterized complexity (see e.g. the PhD thesis of 
Jansen [16]). They showed that the very general F -Subgraph Deletion and F -Minor Deletion problems all admit one 
pass, Õ(�(F) · K �(F)+1) space streaming algorithms in the AL model, by computing small kernels to which then a straight-
forward exhaustive algorithm is applied. On the other hand, such generic streaming algorithms are not possible in the EA 
and VA models, as then (super-) linear lower bounds exist even if the size of a smallest vertex cover is constant [13].

We focus on the induced subgraph version of the vertex deletion problem, parameterized by the size of a vertex cover. 
Here, � is a collection of graphs.

�-free Deletion [VC]

Input: A graph G with a vertex cover X , and an integer � ≥ 1.
Parameter: The size K := |X | of a vertex cover.
Question: Is there a set S ⊆ V (G) of size at most � such that G[V (G) \ S] does not contain a graph in � as an 
induced subgraph?

To avoid triviality,4 we assume K ≥ �. We assume the vertex cover is given as input; if only the size is given, we can 
use one pass and Õ(K 2) space or 2K passes and Õ(K ) space to obtain it [7,12] (this does not meaningfully impact our 
results). The unparameterized version of this problem is well known to be NP-hard [17] for any nontrivial and hereditary 
property �. It has also been well studied in the parameterized setting (see e.g. [18–20]). When parameterized by the 
vertex cover number, it has been studied from the perspective of kernelization: while a polynomial kernel cannot exist in 
general [21,22], polynomial kernels exist for broad classes of families � [22,23]. Moreover, the algorithm of Cai [18] implies 
an FPT algorithm for �-free Deletion [VC] for any fixed � (but is XP in the maximum size of any graph in �). As far as 
we are aware, parameterized algorithms for this parameterization have not been explicitly studied.

In the streaming setting, Chitnis et al. [9] showed for the unparameterized version of this problem in the EA model 
that any p-pass algorithm needs �(n/p) space if � satisfies a mild technical constraint. For some �-free Deletion [VC]

problems, the results by Bishnu et al. [13] imply single-pass, poly(K ) space streaming algorithms (through their kernel for
F -Subgraph Deletion [VC]) in the AL model and lower bounds in the EA/VA model. They also provide an explicit kernel for
Cluster Vertex Deletion [VC] in the AL/EA/VA models. However, this still leaves the streaming complexity of many cases of 
the �-free Deletion [VC] problem open.

Our contributions. We determine the streaming complexity of the general �-free Deletion [VC] problem. Our main positive 
result is a unified approach to a single-pass polynomial kernel for �-free Deletion [VC] for a broad class of families �. 
In particular, we show that the kernelization algorithms by Fomin et al. [22] and Jansen and Kroon [23] can be adapted to 
the streaming setting. The kernels of Fomin et al. [22] consider the case when � can be characterized by few adjacencies, 
which intuitively means that for any vertex of any member of �, adding or deleting edges between all but a few (say at 
most c�) distinguished other vertices does not change membership of �. The exponent of the polynomial kernels depends 
on c� . Jansen and Kroon [23] considered even more general families �. We show that these kernels can be computed in 
the AL model using a single pass and polynomial space (where the exponent depends on c�). This generalizes the previous 
results by Bishnu et al. [13] as well as their kernel for F -Subgraph Deletion [VC].

To complement the kernels, we take a direct approach to find more memory-efficient algorithms, at the cost of using 
many passes. We show novel parameterized streaming algorithms that require Õ(K 2) space and O(K )O(K ) passes. Here, all 
hidden constants depend on � and c� . Crucially, however, the exponent of the space usage of these algorithms does not, 
which provides an advantage over computing the kernel. We also provide explicit streaming algorithms for Cluster Vertex 
Deletion [VC] and Odd Cycle Transversal [VC] that require Õ(K ) space (both) and 2K K 2 and 3K passes respectively, as 

3 As the Arxiv version contains more results, we refer to this version from here on.
4 Otherwise, removing the entire vertex cover is a trivial solution.
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well as streaming algorithms for �-free Deletion [VC,|V (H)|] when � = {H} and the problem is parameterized by K and 
|V (H)|. A crucial ingredient to these algorithms is a streaming algorithm that finds induced subgraphs isomorphic to a given 
graph H . For these algorithms, a � of large size can lead to large memory use. To this end, we also give algorithms using 
an oracle to learn information about �, similar to an algorithm by Cai [18]. Further details are provided in Section 3.

The above results provide a trade-off in the number of passes and memory complexity of the algorithm used. However, 
we should justify using both the AL model and the parameter vertex cover. To this end, in Section 4, we investigate lower 
bounds for streaming algorithms for �-free Deletion [VC]. The (unparameterized) linear lower bound of Chitnis et al. [9]
in the EA model requires that � contains a graph H for which |E(H)| ≥ 2 and no proper subgraph is a member of �. We 
prove that the lower bound extends to both the VA and AL models, with only small adjustments. Hence, parameterization 
is necessary to obtain sublinear passes and memory for most �. Since Vertex Cover is one of the few natural graph 
parameters that has efficient parameterized streaming algorithms [6,7], this justifies the use of the vertex cover parameter. 
We also extend the reductions by Bishnu et al. [13] to general hardness results for �-free Deletion in the VA and EA model 
when the size of the vertex cover is a constant (dependent on �), justifying the use of the AL model for most �.

We also consider the parameterized complexity of H-free Deletion [VC] in the non-streaming setting. While polynomial 
kernels were known in the non-streaming setting [22], we are unaware of any investigation into explicit parameterized 
algorithms for these problems. We give a general 2O (K 2)poly(n, |V (H)|) time algorithm. This contrasts the situation for H-

free Deletion parameterized by the treewidth t of the graph, where a 2o(t|V (H)|−2)poly(n, |V (H)|) time lower bound is known 
under the Exponential Time Hypothesis (ETH) [20]. We also construct a graph property � for which we provide a lower 
bound of 2o(K log K )poly(n, |V (H)|) for �-free Deletion [VC] under ETH. Further details are provided in Section 3.

Preliminaries. We work on undirected graphs G = (V , E), where |V | = n, |E| = m. We denote an edge e ∈ E between v ∈ V
and u ∈ V with uv ∈ E . For a set of vertices V ′ ⊆ V , denote the subgraph induced by V ′ as G[V ′]. Denote the neighbourhood 
of a vertex v with N(v) and we write N[v] for N(v) including v , so N[v] = N(v) ∪ {v}. The vertex cover of a graph H is 
denoted with VC(H).

We denote the parameters of a problem in [·] brackets, a problem A parameterized by vertex cover number and solution 
size is denoted by A [VC, �].

Further related work. Our main algorithm for �-free Deletion [VC] uses a procedure that finds an occurrence of an induced 
subgraph H in the input graph G . To this end, there is related work on the Induced Subgraph Isomorphism problem. In 
general, finding an induced copy of a graph H of size k can be brute-forced in O(nk) time. Nešetřil and Poljak [24] show 
that finding an induced copy of a graph H can be reduced in time O(k2n2) to the k-Clique or k-Independent Set problem, 
which makes a k-clique and a k-independent set essentially the hardest patterns to detect. With this in mind, it is logical 
that knowing a vertex cover of the input graph can help in our approach. Dalirrooyfard et al. [25] show that under the 
Hadwiger conjecture, the hardness of Induced Subgraph Isomorphism can be reduced to the hardness of k-Clique. Also 
assuming ETH, this implies that for almost all H of size k, finding an H in a graph G cannot be done in time no(k/ log k) .

In terms of upper bounds, the running time of detecting a k-clique is related to fast matrix multiplication [26,24,27]. 
There is also work on Induced Subgraph Isomorphism on specific graph classes [28,29], and on specific small patterns H
[30,31,27,32–37]. Eppstein [38] investigates the parameterized complexity of the Induced Subgraph Isomorphism problem 
with the parameter treewidth, and shows an algorithm listing all occurrences of H of size w that contain a vertex of a 
set S ⊆ V (G) in time 2O(w log w)n +O(kw) for graphs of treewidth w , where k is the number of isomorphisms. This result 
is related to our algorithm in that a vertex cover of size k implies bounded treewidth, and our running time is similar. 
However, our result is more general because we allow freedom in the size of H as compared to the graph parameter.

1.1. Memory complexity of branching algorithms

In this work, we will see branching algorithms which branch on, for example, including a certain vertex in the solution 
set. The stated memory complexities can only be attained by making good use of memory. For example, when branching, 
we re-use the branch set already in memory, and when returning out of recursion, we select again the subset of memory 
which (still) corresponds to the memory of that branch. When returning from recursion to continue with another branching 
option, it might also pose a memory problem to have in memory what these branching options are (with b branching 
options along k recursion steps this requires Õ(bk) bits of memory). To overcome this, we can recompute the branching 
options when returning out of recursion, increasing the time complexity or number of passes by a factor b. Such memory 
complexity tricks are also used in [11, Appendix B.1].

2. Adapting existing kernels

We first show that very general kernels for vertex cover parameterization admit straightforward adaptations to the AL

streaming model. The kernels considered are those by Fomin et al. [22] and by Jansen and Kroon [23]. Fomin et al. [22]
provide general kernelization theorems that make extensive use of a single property, namely that some graph properties 
can be characterized by few adjacencies.
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Definition 1. ([22, Definition 3]) A graph property � is characterized by c� ∈N adjacencies if for all graphs G ∈ �, for every 
vertex v ∈ V (G), there is a set D ⊆ V (G) \ {v} of size at most c� such that all graphs G ′ that are obtained from G by adding 
or removing edges between v and vertices in V (G) \ D , are also contained in �.

Fomin et al. show that graph problems such as �-free Deletion [VC], can be solved efficiently through kernelization 
when � is characterized by few adjacencies (and meets some other demands), by making heavy use of the Reduce algorithm 
they provide. The idea behind the Reduce algorithm is to save enough vertices with specific adjacencies in the vertex cover, 
and those vertices that we forget have equivalent vertices saved to replace them. The sets of adjacencies we have to consider 
can be reduced by making use of the characterization by few adjacencies, as more than c� adjacencies are not relevant. The 
number of vertices we retain is ultimately dependent on � ≤ K . The kernel by Fomin et al. [22] is given as follows.

Algorithm 1 Reduce(Graph G , Vertex Cover X ⊆ V (G), r ∈N , c ∈N) [22, Algorithm 1].

for all Y ∈ ( X
≤c

)
and a partition of Y into Y + ∪ Y − do

Z := {v ∈ V (G) \ X | v is adjacent to all of Y + and none of Y −}
Mark r arbitrary vertices of Z (if |Z | < r then mark all of them)

Delete from G all unmarked vertices that are not contained in X

Notice that if the input contains no degree-0 vertices, then neither does the kernel output by Algorithm 1, as any vertex 
in X has at least some marked neighbour. In the AL streaming model, we have enough information to compute this kernel, 
by careful memory management in counting adjacencies towards specific subsets of the vertex cover. We now go into detail 
on the streaming adaptation of this kernel, as given in Algorithm 2.

Theorem 1. For a fixed constant c� , ReduceStr(G, X, r, c�), where G is provided as a stream in the AL model, is a streaming equivalent 
of Reduce, using one pass, and O((|X | + |X |c�) log(n)) bits of memory resulting in a kernel on O(|X | + r · |X |c�) vertices, output as 
an EA stream.

Proof. Let us first elaborate on the working of Algorithm 2. The set Z stores all the partitions considered in the original
Reduce, together with two counters per partition. The first counter, x, tracks the total amount of vertices already ‘marked’ 
with this partition, which does not exceed r. The second counter is reset at every vertex, and tracks whether v is adjacent 
to the entirety of Y + . This means these two counters mimic exactly the marking behaviour that Reduce applies, except that 
the marking is not on arbitrary vertices, but dependent on the order of the stream (this does not impact the correctness). 
The rest of the algorithm merely interacts with Z correctly and uses some storage, S and V ′ , to make sure the output is 
constructed correctly without using too much memory. V ′ remembers which vertices in X we have already seen, to avoid 
outputting the same edge twice. S saves the set of edges adjacent to a vertex v , and if we mark v , we output S . As the 
output of Reduce contains no degree-0 vertices, the stream output by ReduceStr contains all marked vertices and those in 
X .

Let it be clear by the above motivation that the output of ReduceStr can also be an output of Reduce, and therefore, the 
algorithm works correctly. Let us analyse the space usage. The main concern is the space usage of the set Z , which contains 
partitions of sets in 

( X
≤c

)
. There are O(|X |c) such sets, each with at most 2c partitions, and each set has at most c elements 

(using log n space). This means Z uses O(c · 2c · |X |c · log n) =O(|X |c log n) bits of space. The set S is reset at every vertex v
(which is not part of the vertex cover), and contains at most all edges incident on v . As v is not an element of the vertex 
cover, the degree of v is at most |X |. So the set S uses O(|X | logn) bits of space. The set V ′ has size at most |X |, and so 
uses O(|X | logn) bits of space. All in all, our memory never exceeds O((|X | + |X |c) log n) bits. �

An interesting observation is that Algorithm 2 takes as input a stream and outputs the kernel as an EA stream, which 
we will now call a streaming kernel. This should not have a lot of impact, as a subsequent algorithm may want to store the 
entire kernel anyway. However, if we want the algorithm itself to store the entire kernel, this might increase the memory 
use, as we would have to store all edges contained in the kernel. The same goes for if we would want to output the kernel 
as an AL stream (which is how our input is provided). Let us shortly analyse how much memory would be needed for 
this. For a vertex cover X in a graph G , saving G[X] entirely can take up to O(|X |2 log n) bits. Next to the vertex cover, 
the output kernel consists of O(r · |X |c) vertices, each of degree at most |X |, as these vertices are not part of the vertex 
cover. Therefore, the total memory use with this approach can be O((|X |2 + r · |X |c+1) log n) bits. To clarify, this is not the 
approach we take, our algorithms output a stream and do not save the kernel to memory.

The following theorem then shows how this algorithm leads to streaming kernels for �-free Deletion [VC] as an adap-
tation of [22, Theorem 2]. We call a graph G vertex-minimal with respect to � if G ∈ � and for all S � V (G), G[S] /∈ �.

Theorem 2. If � is a graph property such that:

(i) � is characterized by c� adjacencies,
(ii) every graph in � contains at least one edge, and
4



J.J. Oostveen and E.J. van Leeuwen Theoretical Computer Science 979 (2023) 114178
Algorithm 2 ReduceStr(Graph G = (V , E) given as a stream in the AL model, Vertex Cover X ⊆ V (G), r ∈N , c ∈N).

1: for each Y ∈ ( X
≤c

)
and a partition of Y into Y + ∪ Y − do 	 Calculate and store partitions

2: Store (Y +, Y −, 0, 0) in Z

3: Store the output vertices V ′ ← ∅ 	 Required for neatly outputting X
4: for each v ∈ V in the stream do 	 This entire loop requires only one pass
5: if v ∈ X then
6: for each (v, w) ∈ E in the stream do
7: if w ∈ V ′ then Output (v, w) as part of the kernel

8: V ′ ← V ′ ∪ {v}
9: else 	 v /∈ X

10: for each (Y +, Y −, x, y) ∈ Z do 	 Reset local counters
11: y ← 0

12: Store an edge set S ← ∅ 	 Reset local edge memory
13: for each (v, w) ∈ E in the stream do
14: for each (Y +, Y −, x, y) ∈ Z where x < r and y ≥ 0 do 	 Count ‘correct’ partitions
15: if w ∈ Y + then y ← y + 1

16: if w ∈ Y − then y ← −1

17: S ← S ∪ {(v, w)}. 	 If we mark v , then (v, w) needs to be added

18: if ∃(Y +, Y −, x, y) ∈ Z where y = |Y +| then 	 Mark v and output what we can
19: x ← x + 1 	 Increment x so that this partition marks at most r vertices
20: Output S as part of the kernel

(iii) there is a non-decreasing polynomial p : N → N such that all graphs G that are vertex-minimal with respect to � satisfy 
|V (G)| ≤ p(K ),

then �-free Deletion [VC] admits a kernel on O((K + p(K ))K c�) vertices output as an EA stream in the AL streaming model using 
one pass and O((K + K c�) log(n)) space, where K is the vertex cover number of the input graph.

Proof. Combine Theorem 1 with the proof of [22, Theorem 2], where instead of calling Reduce(G , X , � + p(|X |), c�) we call
ReduceStr(G , X , � + p(|X |), c�). �

We note that the theorem applies to F -Subgraph Deletion [VC] when �(F) (the maximum degree) is bounded as well 
as to Cluster Vertex Deletion [VC]. As such, our streaming kernels generalize the kernels of Bishnu et al. [13] for these 
problems, while the memory requirements and kernel sizes are fairly comparable. Next we have a discussion and further 
implications for several general problems, following Fomin et al. [22].

Let us go over a few applications of Theorem 2. Consider Cluster Vertex Deletion [VC]. This problem is exactly �-free 
Deletion [VC] where � = {P3}, as any P3-free graph can only contain clusters. Notice that c� = 2 and p(K ) = 3 suffice 
to meet the demands of Theorem 2. This implies that, given that we already have a vertex cover for our graph, we have 
a one-pass streaming algorithm for CVD in the AL model using O(K 2 log n) space (or O(K 3 log n) bits of space to save 
the kernel). Considering that this algorithm is a simple adaptation of known results, it is interesting to observe that it 
compares quite well to e.g. a more recent result of Bishnu et al. [13], who show that CVD admits a one-pass (randomized) 
streaming algorithm in the AL model using O(K 2 log4(n)) space when parameterized by the size K of a vertex cover. Note 
that the kernel sizes differ, as the kernel given by Bishnu et al. [13] uses O(K 2 log2 n) bits of space, while the kernel from 
Algorithm 2 uses O(K 3 log n) bits of space.

Next consider Triangle Deletion [VC]. This problem is exactly �-free Deletion [VC] where � = {C3}. Once again, it is 
easy to observe that c� = 2, and p(K ) = 3 suffice to meet the demands of Theorem 2. This means that, given that we 
already have a vertex cover, we have a one-pass streaming algorithm for TD in the AL model using O(K 3 log n) bits of space 
(if we save the entire kernel). Once again, this result compares very well to a result of Bishnu et al. [13], who show that TD

admits a one-pass streaming algorithm in the AL model using Õ(K 3) bits of space when parameterized by the size K of a 
vertex cover.

Most interesting is that Theorem 2 also applies to F -Subgraph Deletion [VC] when d = �(F) ≤ K is also bounded. 
Bishnu et al. [13] showed that this problem admits a one-pass, O(d · K d+1 · log n) bits memory, algorithm in the AL model. 
To apply Theorem 2 to F -Subgraph Deletion [VC], construct � from F by adding for each F ∈ F to � both F and all 
graphs F ′ obtained by adding some set of edges to F (i.e. we end up with all graphs on the same vertex set that contain 
F as a subgraph). Notice that this � is characterized by c� = �(F) adjacencies, and because �(F) ≤ K , the size of every 
graph is also bounded by p(K ) = O(K 2). Now Theorem 2 gives us a kernel of O(K �(F)+2) vertices obtained in one pass and 
O(K �(F) log n) space in the AL model. This implies a one-pass algorithm using O(K �(F)+2 logn) space for the F -Subgraph 
Deletion [VC] problem when �(F) ≤ K in the AL model. Notice that this result is comparable to that of Bishnu et al. [13], 
while our kernel is more generally applicable.

The second general result is for finding largest induced subgraphs.
5
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Largest Induced �-Subgraph [VC]

Input: A graph G with a vertex cover X , and an integer � ≥ 1.
Parameter: The size K := |X | of the vertex cover.
Question: Is there a set P ⊆ V (G) of size at least � such that G[P ] ∈ �?

With this definition, we give the following theorem as an adaptation of [22, Theorem 3].

Theorem 3. If � is a graph property such that:

(i) � is characterized by c� adjacencies, and
(ii) there is a non-decreasing polynomial p :N →N such that all graphs G ∈ � satisfy |V (G)| ≤ p(K ),

then Largest Induced �-Subgraph [VC] admits a kernel on O(p(K ) · K c�) vertices output as an EA stream in the AL streaming 
model using one pass and O((K + K c�) log(n)) bits of space, where K is the vertex cover number of the input graph.

Proof. Combine Theorem 1 with the proof of [22, Theorem 3], where instead of calling Reduce(G , X , p(|X |), c�) we call
ReduceStr(G , X , p(|X |), c�). �

Examples of problems fitting in the Largest Induced �-Subgraph [VC] category, that are also characterized by few 
adjacencies, are Long Cycle, Long Path, and H-Packing.

The third general result is for graph partitioning problems.

Partition into q Disjoint �-Free Subgraphs [VC]

Input: A graph G with a vertex cover X .
Parameter: The size K := |X | of the vertex cover.
Question: Is there a partition of the vertex set into q sets S1 ∪ S2 ∪ . . . ∪ Sq such that for each i ∈ [q] the graph 
G[Si] does not contain a graph in � as an induced subgraph?

Note that q is regarded a constant.

Theorem 4. If � is a graph property such that:

(i) � is characterized by c� adjacencies, and
(ii) there is a non-decreasing polynomial p : N → N such that all graphs G that are vertex-minimal with respect to � satisfy 

|V (G)| ≤ p(K ),

then Partition into q Disjoint �-Free Subgraphs [VC] admits a kernel on O(p(K ) · K q·c�) vertices output as an EA stream in the
AL streaming model using one pass and O((K + K q·c�) log(n)) bits of space, where K is the vertex cover number of the input graph.

Proof. Combine Theorem 1 with the proof of [22, Theorem 4] and [22, Lemma 2], where instead of calling Reduce(G , X , 
q · p(|X |), q · c�) we call ReduceStr(G , X , q · p(|X |), q · c�). �

Examples of problems fitting in the Partition into q Disjoint �-Free Subgraphs [VC] category, that are also characterized 
by few adjacencies, are Partition into q Independent Sets, Partition into q Cliques, Partition into q Planar Graphs, and
Partition into q Forests.

2.1. Kernel for characterization by low-rank adjacencies

We also give an adaptation of a more recent kernel by Jansen and Kroon [23], which has another broad range of implica-
tions for streaming kernels. This kernel uses a different characterization of the graph family, however, the adaptation to the
AL streaming model is very similar. The adaptation of this kernel leads to streaming algorithms for problems like Perfect 
Deletion [VC], AT-free Deletion [VC], Interval Deletion [VC], and Wheel-free Deletion [VC].

The characterization for � in this case is a characterization by low-rank adjacencies. For this, however, we need the 
definition of a c-rank incidence vector.
6
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Definition 2. ([23, Definition 3.1]5) Let G be a graph with vertex cover X and let c ∈N . Let Q ′, R ′ ⊆ X such that |Q ′| +|R ′| ≤
c and Q ′ ∩ R ′ = ∅. We define the c-incidence vector incc,(Q ′,R ′)

(G,X) (u) for a vertex u ∈ V (G) \ X as a vector over F2 that has an 
entry for each (Q , R), where Q , R ⊆ X with Q ∩ R = ∅, such that |Q | +|R| ≤ c, Q ′ ⊆ Q and R ′ ⊆ R . It is defined as follows:

incc,(Q ′,R ′)
(G,X) (u)[Q , R] =

{
1 if NG(u) ∩ Q = ∅ and R ⊆ NG(u),

0 otherwise.

The superscript (Q ′, R ′) is dropped when Q ′ = R ′ = ∅. Note that the order of the coordinates of the vector is fixed, but 
not explicit, as any order suffices. Therefore, we can also sum such incidence vectors coordinate-wise.

With this, we can give the definition of a graph property being characterized by rank-c adjacencies.

Definition 3. ([23, Definition 3.3]) Let c ∈N be a natural number. A graph property � is characterized by rank-c adjacencies 
if the following holds. For each graph H , for each vertex cover X of H , for each set D ⊆ V (H) \ X , for each v ∈ V (H) \(D ∪ X), 
if

• H − D ∈ �, and
• incc

(H,X)(v) = ∑
u∈D incc

(H,X)(u) when evaluated over F2,

then there exists D ′ ⊆ D such that H − v − (D \ D ′) ∈ �. If there always exists such set D ′ of size 1, then we say � is 
characterized by rank-c adjacencies with singleton replacements.

Jansen and Kroon note that the intuition here is that if we have a set D such that H − D ∈ �, and the c-incidence 
vectors of D sum to the vector of some vertex v over F2, then there exists D ′ ⊆ D such that removing v from H − D and 
adding back D ′ results in a graph that is still contained in �. We can notice how there is some similarity in essential and 
non-essential adjacencies for occurrences of graphs in � when comparing this characterization to that of few adjacencies 
(see Definition 1).

We will give the kernelization algorithm as given by Jansen and Kroon [23] next, but first, we recall a linear algebraic 
definition, that of a basis. As Jansen and Kroon state [23], “a basis of a set S of d-dimensional vectors over a field F is 
a minimum-size subset B ⊆ S such that all �v ∈ S can be expressed as linear combinations of elements of B , i.e., �v =∑

�u∈B α�u · �u for a suitable choice of coefficients α�u ∈ F . When working over the field F2, the only possible coefficients are 
0 and 1, which gives a basis B of S the stronger property that any vector �v ∈ S can be written as 

∑
�u∈B ′ �u, where B ′ ⊆ B

consists of those vectors which get a coefficient of 1 in the linear combination”.
The essence of the kernel comes down to computing the basis of a set of incidence vectors of the remaining graph and 

adding vertices corresponding to the basis to the kernel. We give this kernel here as Algorithm 3.

Algorithm 3 Low-Rank Reduce(Graph G , Vertex Cover X ⊆ V (G), � ∈N , c ∈N) [23, Algorithm 1].
1: Let Y1 := V (G) \ X
2: for i ← 1 to � do
3: Let V i = {incc

(G,X)(y) | y ∈ Yi} and compute a basis Bi of V i over F2.
4: For each �v ∈ Bi , choose a unique vertex y�v ∈ Yi such that �v = incc

(G,X)(y�v ).
5: Let Ai := {y�v | �v ∈ Bi} and Yi+1 = Yi \ Ai .

6: return G[X ∪ ⋃�
i=1 Ai ]

Jansen and Kroon show that Algorithm 3 runs in polynomial time in � and the size of G (for a constant c), and returns 
a graph on O(|X | + � · |X |c) vertices. Also here, the output contains no degree-0 vertices, if the input does not contain any. 
We will now adapt Algorithm 3 to the streaming setting, and conclude it to be a streaming equivalent of [23, Theorem 3.5].

2.1.1. Adapting low-rank reduce
If we want to adapt Algorithm 3, Low-Rank Reduce, to the streaming setting, we are faced with a few challenges. For one, 

the set V i consists of O(n) vectors, so saving this entire set is not desirable. We also have to consider how we can compute 
the basis of the set V i if we do not want to save it. Luckily, the incidence vectors are computable from local information 
combined with the vertex cover, and computing a basis can be done incrementally by checking linear (in)dependence. With 
this small motivation, we give the adaptation of Low-Rank Reduce into the streaming setting, Low-Rank ReduceStr, in 
Algorithm 4.

Theorem 5. Algorithm 4 is a streaming equivalent of Algorithm 3, that is, given a graph G as an AL stream with a vertex cover X, 
and integer � and a constant c, Algorithm 4 returns a graph on O(|X | + � · |X |c) vertices as an AL stream that could be the output of 
Algorithm 3 given the same input. Algorithm 4 uses � + 1 passes and O((|X | + � · |X |c) log n + |X |2c) bits of memory.

5 We define each (Q , R) slightly different to [23], where they use (Q , R) ∈ X × X . The notation Q , R ⊆ X correctly reflects what the authors meant.
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Algorithm 4 Low-Rank ReduceStr(Graph G as an AL stream, Vertex Cover X ⊆ V (G), � ∈N , c ∈N).
1: Let A ← ∅
2: for i ← 1 to � do
3: Ai ← ∅
4: B ← ∅
5: for each Vertex v ∈ V \ (X ∪ A) in the stream do 	 Entire loop in one pass
6: Save the ≤ |X | adjacencies of v in X (until the next vertex)
7: Let �v ← incc

(G,X)(v) 	 Can be computed from X and the adjacencies of v
8: If �v is linearly independent w.r.t. B over F2, do B ← B ∪ {�v} and Ai ← Ai ∪ {v}.

9: Let A ← A ∪ Ai .
10: return G[X ∪ A]

Proof. Let us first show the equivalence of Algorithm 4 to Algorithm 3. Let G be a graph with vertex cover X , and let � and 
c be integers. Algorithm 4 and Algorithm 3 both do � iterations over some process over all vertices, excluding the vertices 
in X and a set A (for both algorithms, A = ⋃�

i=1 Ai ). With these vertices, Algorithm 3 computes the incidence vector of 
each of them, and then computes a basis for this set. The new vertices added to A are then vertices with incidence vectors 
equivalent to those in the basis. Algorithm 4 computes the incidence vectors of these vertices one vertex at a time. It then 
checks whether the current incidence vector is linearly independent of a set B , and if so, the incidence vector is added to 
B . We can see that B must consist of a basis of all incidence vectors seen so far. Therefore, after Algorithm 4 has seen every 
vertex (excluding those in X and A), B is a basis that could also be found by Algorithm 3 for the same set of vertices. 
We conclude that in every iteration, Algorithm 4 adds to A a set of vertices which Algorithm 3 can also add to A in the 
corresponding iteration. As both algorithms return G[X ∪ A], the output of Algorithm 4 can also be an output of Algorithm 3.

As the incidence vector of a vertex v can be computed from the adjacencies of v together with X alone, and linear 
(in)dependence checking only requires the vectors to be in memory, we only require one pass for each 1 ≤ i ≤ �. Another 
pass is used to compute the output, as we can produce an AL stream corresponding to G[X ∪ A] by simply using a pass and 
output only those edges between vertices in X ∪ A. Therefore, Algorithm 4 uses � + 1 passes over the stream.

In terms of memory, Algorithm 4 stores A, B , X , adjacencies of a vertex v , and an incidence vector of v , �v . Clearly, 
the memory used by the adjacencies of v and �v is dominated by saving X and B in memory. The computation of �v also 
requires no more memory than X uses, as it iterates subsets of X to compute entries of the vector. Saving X requires 
Õ(|X |) bits of memory. B consists of at most O(|X |c) vectors, and each vector consists of O(|X |c) bits, as motivated by 
Jansen and Kroon [23, Proposition 3.4]. It follows that B requires O(|X |2c) bits of space. The set A consists of at most 
O(� · |X |c) vertices, as in every iteration B contains at most O(|X |c) vectors. We conclude that the total memory usage is 
O((|X | + � · |X |c) log n + |X |2c) bits. �

With Theorem 5 we are ready to give the streaming equivalent of [23, Theorem 3.5].

Theorem 6. If � is a graph property such that:

(i) � is characterized by rank-c adjacencies,
(ii) every graph in � contains at least one edge, and

(iii) there is a non-decreasing polynomial p : N → N such that all graphs G that are vertex-minimal with respect to � satisfy 
|V (G)| ≤ p(K ),

then �-free Deletion [VC] in the AL streaming model admits a kernel on O((K + p(K )) · K c) vertices output as an AL stream using 
K + p(K ) + 2 passes and O((K + p(K )) · K c log n + K 2c) bits of memory, where K is the vertex cover number of the input graph.

Proof. See the proof of [23, Theorem 3.5], where instead of Low-Rank Reduce(G, X, � := k +1 + p(|X |), c) we call Low-Rank 
ReduceStr(G, X, � := k + 1 + p(|X |), c). By Theorem 5 the theorem follows. �

Let us shortly list some implications of Theorem 6, which consist of some problems admitting streaming kernels, follow-
ing Jansen and Kroon [23].

The first result is for Perfect Deletion [VC]. Perfect Deletion [VC] is �-free Deletion [VC] where � is the set of all 
graphs that contain an odd hole or an odd anti-hole. An odd hole is a cycle consisting of an odd number of vertices, and an 
odd anti-hole is the complement graph of an odd hole.

Theorem 7. Perfect Deletion [VC] in the AL streaming model admits a kernel on O(K 5) vertices output as an AL stream using O(K )

passes and O(K 5 log n + K 8) bits of memory, where K is the vertex cover number of the input graph.

Proof. See [23, Theorem 4.4], but instead of applying [23, Theorem 3.5] we apply Theorem 6. �

8



J.J. Oostveen and E.J. van Leeuwen Theoretical Computer Science 979 (2023) 114178
The second result is for AT-free Deletion [VC]. This is �-free Deletion [VC] where � is the set of all graphs that contain 
an asteroidal triple. An asteroidal tiple is a set of three vertices where every two vertices in the triple are connected by a 
path that avoids the neighbourhood of the third.

Theorem 8. AT-free Deletion [VC] in the AL streaming model admits a kernel on O(K 9) vertices output as an AL stream using O(K )

passes and O(K 9 log n + K 16) bits of memory, where K is the vertex cover number of the input graph.

Proof. See [23, Theorem 4.12], but instead of applying [23, Theorem 3.5] we apply Theorem 6. �
The third result is for Interval Deletion [VC]. This is �-free Deletion [VC] where � is the set of all graphs that contain 

either an asteroidal triple or an induced cycle of length at least 4, or both.

Theorem 9. Interval Deletion [VC] in the AL streaming model admits a kernel on O(K 9) vertices output as an AL stream using 
O(K ) passes and O(K 9 log n + K 16) bits of memory, where K is the vertex cover number of the input graph.

Proof. See [23, Theorem 4.13], but instead of applying [23, Theorem 3.5] we apply Theorem 6. �
The fourth result is for Wheel-free Deletion [VC]. This is �-free Deletion [VC] where � is the set of all graphs that 

contain a wheel of size at least 3. A wheel of size n ≥ 3 is a set of n + 1 vertices, where n vertices form a cycle, and one 
vertex is connected to all vertices on the cycle (the center of the wheel).

Theorem 10. Wheel-free Deletion [VC] in the AL streaming model admits a kernel on O(K 5) vertices output as an AL stream using 
O(K ) passes and O(K 5 log n + K 8) bits of memory, where K is the vertex cover number of the input graph.

Proof. See [23, Theorem 4.25], but instead of applying [23, Theorem 3.5] we apply Theorem 6. �
It is interesting to note that the above problems are not characterized by few adjacencies, but are characterized by rank-c

adjacencies, therefore requiring Algorithm 4 to admit a streaming kernel.

3. A direct FPT approach

In this section, we give direct FPT streaming algorithms for �-free Deletion [VC] for the same cases as Theorem 2. This 
is motivated by the fact that Chitnis and Cormode [12] found a direct FPT algorithm for Vertex Cover using O(2k) passes 
and only Õ(k) space in contrast to the kernel of Chitnis et al. [9] using one pass and Õ(k2) space. Therefore, we aim to 
explore the pass/memory trade-off for �-free Deletion [VC] as well.

For enumeration of sets in our algorithms in this section, we use a black box dictionary technique also used by Chitnis 
and Cormode [39,12]. One can implement such a dictionary using k pointers (for sets of size ≤ k) to the universe, and 
increment the last pointer (or reset it and increment second to last, etc.) to implement the Next operation. This way the 
dictionaries are memory efficient.

Definition 4. ([39, Definition 9]) Let U = {u1, u2, . . . , un} and k ≤ n. Let U≤k denote the set of all 
∑k

i=0

(|U |
i

)
subsets of 

U which have at most k elements, and let DictU≤k be the dictionary ordering on U≤k . Given a subset X ∈ U≤k , let 
DictU≤k (Next(X)) denote the subset that comes immediately after X in the ordering DictU≤k . We denote the last sub-
set in the dictionary order of U≤k by Last(U≤k), and similarly the first subset as First(U≤k), and use the notation that 
DictU≤k (Next(Last(U≤k))) = ♠. Similarly, we define Uk as the set of all 

(|U |
k

)
subsets of U with exactly k elements, and 

define U as the set of all subsets of U, and analogously define the dictionary ordering on these sets.

3.1. P3-free deletion

We start with the scenario where � = {P3}, which means we consider the problem Cluster Vertex Deletion [VC]. The 
general idea of the algorithm is to branch on what part of the given vertex cover should be in the solution. In a branch, 
we first check whether the ‘deletion-free’ part of the vertex cover (Y ) contains a P3, which invalidates a branch. Otherwise, 
what remains is some case analysis where either one or two vertices of a P3 lie outside the vertex cover, for which we 
deterministically know which vertices have to be removed to make the graph P3-free. We illustrate this step in Fig. 1. Case 1 
and 2 have only one option for removal of a vertex. After Case 1 and 2 no longer occur, we can find Case 3 occurrences and 
show that we can delete all but one neighbour of y in such an occurrence. So, if this process can be executed in a limited 
number of passes, the algorithm works correctly.

We give the full algorithm in Algorithm 5.
9
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Fig. 1. The different cases how a P3 can exist with respect to Y , part of the vertex cover. Notice that the case where the entire P3 is contained in Y is not 
included here. Case 3 assumes there are no Case 1 or Case 2 P3’s in the graph anymore.

Algorithm 5 P3-free Deletion(Graph G = (V , E) given as a stream in the AL model, integer �, Vertex Cover X ⊆ V (G)).
1: S ← First(X≤�)

2: while S ∈ X≤�, S �= ♠ do
3: Y ← X \ S 	 Y is the part of the vertex cover not in the solution S
4: S ′ ← S 	 If S ′ ever exceeds size �, move to the next S
5: P ← First(Y2)

6: while P = (y1, y2) ∈ Y2, P �= ♠ do 	 We enumerate all pairs in Y
7: for each Vertex v ∈ Y \ P do
8: If v and P form a P3, Y is invalid, move to the next S 	 Requires a pass

9: P ← DictY2 (Next(P ))

10: P ← First(Y2)

11: while P = (y1, y2) ∈ Y2, P �= ♠ do 	 We enumerate all pairs in Y
12: if y1 y2 is an edge then
13: for each Vertex v ∈ V \ (X ∪ S ′) in the stream do
14: if Either v y1 or v y2 is present and the other is not then S ′ ← S ′ ∪ {v}
15: else
16: for each Vertex v ∈ V \ (X ∪ S ′) in the stream do
17: if Both v y1 and v y2 are present then S ′ ← S ′ ∪ {v}
18: P ← DictY2 (Next(P ))

19: for each y ∈ Y do
20: b ← False
21: for each Vertex v ∈ V \ (X ∪ S ′) in the stream do
22: if The edge v y is present and b = False then b ← T rue
23: else if The edge v y is present then S ′ ← S ′ ∪ {v}
24: if |S ′| ≤ � then return S ′

25: S ← DictX≤�
(Next(S))

26: return NO 	 No branch resulted in a solution

To limit the number of passes, the use of the AL model is crucial. Notice that for every pair of vertices y1, y2 in the 
vertex cover, we can identify a Case 1 or 2 P3 of Fig. 1, or these cases with v in the vertex cover as well, in a constant 
number of passes. This is because we can first use a pass to check the presence of an edge between y1 and y2, and 
afterwards use a pass to check the edges of every other vertex towards y1 and y2 (which are given together because of 
the AL model). This means we can find P3’s contained in the vertex cover or corresponding to Case 1 or 2 P3’s in O(K 2)

passes total. The remaining Case 3 can be handled in O(K ) passes from the viewpoint of each y ∈ Y . So this algorithm 
takes O(2K K 2) passes (including branching).

Theorem 11. We can solve Cluster Vertex Deletion [VC] in the AL streaming model using O(2K K 2) passes and O(K logn) space, 
where K is the vertex cover number of the input graph.

Proof. We claim that Algorithm 5 does exactly this.
Let us first reason that the number of passes and memory use are as stated. Let X be the provided vertex cover, and let 

|X | = K . The number of different sets S can take is bounded by 2K . The first and second loop enumerate all pairs of vertices 
in the vertex cover, and use a two passes per pair to detect a P3, which gives us O(K 2) passes. The last loop enumerates 
all K vertices in the vertex cover and uses one pass per iteration. Therefore, the total number of passes is bounded by 
O(2K K 2).

No set in memory exceeds O(K log n) bits, so the stated memory complexity is correct.
Let us now show the correctness of the algorithm. The main idea of the algorithm is to branch on what part of the 

vertex cover is contained in the solution S ′ . This is modelled through the use of the sets Y and S , where in each branch, 
we cannot add vertices in Y to S ′ . Therefore, we first check whether Y fully contains a P3, and if one is found we stop, as 
we may not delete any vertex of this P3 in this branch. For a fixed pair (v, w) in the vertex cover, checking for a P3 that 
contains v and w only takes two passes because the only necessary information is whether v and w are neighbours (one 
pass), and the adjacencies of v and w towards another vertex, which is provided in the stream local to that vertex (see also 
Case 1 and Case 2 in the following analysis).
10
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What remains is a careful analysis of the different cases of the structure of P3’s with respect to Y . An illustration is given 
in Fig. 1. The loop of line 11 considers all pairs of vertices in Y . There are two cases we are interested in: Case 1 and Case 
2 in Fig. 1. If we look at a single pair of vertices y1 and y2 either there is an edge between them (Case 1) or a non-edge 
(Case 2). These two vertices can then form a P3 with any vertex outside Y in a very specific manner, which the algorithm 
looks for. It is then trivial that the one vertex outside Y has to be removed to make the graph P3 free if a P3 is found.

If there are no Case 1 or Case 2 P3’s in the graph any more, we move on to Case 3. Note that this is the only remaining 
way a P3 can be in the graph at all, because Y ⊆ X is (part of) a vertex cover. In Case 3 at first it seems undecided which 
of the two vertices outside Y to remove, as one might lead to a solution and the other not. Let y1, v, w form a Case 3 P3, 
where y1 ∈ Y . Let us consider the scenario where v has another adjacency y2 ∈ Y . Because there are no Case 2 P3’s, y1
and y2 must be adjacent. Because there are no Case 1 P3’s, w must now also be adjacent to y2. This means the structure 
extends as illustrated on the right in Case 3 in Fig. 1. We can observe that we need to delete all but one of the vertices 
attached to y, which is what the algorithm does. It does not matter which vertex we do not delete, as this vertex forms 
triangles if it has multiple adjacencies. Therefore, after these cases have all been handled, no induced P3 ’s remain in the 
graph. If during the process S ′ never exceeded size �, this means we have found a solution; otherwise, we move on to the 
next branch.

By the above reasoning, if there exists a solution of size at most � for the Cluster Vertex Deletion [VC] problem, then 
this solution contains some subset of the vertex cover X , which corresponds to some branch in the algorithm. As the 
removal of vertices is deterministic in each branch (as in, the solution must contain these vertices), and there exists a 
solution, the algorithm must find a solution too in that branch. If there exists no solution of size at most �, then there exists 
no subset of vertices S ′ such that G \ S ′ is induced P3 free, and so in each branch of the algorithm S ′ will exceed size � at 
some point, which results in the algorithm returning NO. �

Let us stress some details. The use of the AL model is crucial, as it allows us to locally inspect the neighbourhood of a 
vertex when it appears in the stream. The same approach would require more memory or more passes in other models to 
accomplish this result. As a side-note, we could implement this algorithm in a normal setting (the graph is in memory, and 
not a stream) to get an algorithm for Cluster Vertex Deletion [VC] with a running time of O(2K · K 2 · (n + m)) (although 
faster algorithms exist, see e.g. [40]).

3.2. H-free deletion

We now consider a more generalized form of �-free Deletion [VC], where � = {H}, a single graph. Unfortunately, the 
approach when H = P3 does not seem to carry over to this case, because the structure of a P3 is simple and local.

Theorem 12. We can solve H-free Deletion [VC] in 2O (K 2) poly(n, |V (H)|) time, where H contains at least one edge and K is the
vertex cover number of the input graph.

Proof. Let X be a vertex cover of G = (V , E) of size K . Then G[V \ X] has no edges and thus does not contain an occurrence 
of H . It follows that there is a solution of size at most K . Now call two vertices of V \ X equivalent if their neighbourhood
in X is the same. This yields 2K equivalence classes. Observe that vertices in an equivalence class are interchangeable with 
respect to a solution for H-free Deletion [VC]: one can be exchanged for another without changing the validity of the solu-
tion. Hence, we may select the vertices of a solution from the first K vertices of an equivalence class. This means that there 
is a set of at most (2K + 1)K vertices in G that form a superset of some solution. Then we can enumerate all possible such 
solutions, which have size at most K , in 2O (K 2) time. The validity of a solution can be checked in 2O (K log K )poly(n, |V (H)|)
time through the algorithm of Abu-Khzam [41]. �

In order to analyze the complexity with respect to H more precisely and to obtain a streaming algorithm, we present 
a different algorithm that works off a simple idea. We branch on the vertex cover, and then try to find occurrences of H
of which we have to remove a vertex outside the vertex cover. We branch on these removals as well, and repeat this find-
and-branch procedure. In an attempt to keep the second branching complexity low, we start by searching for occurrences of 
H such that only one vertex lies outside the vertex cover, and increase this number as we find no occurrences. For clarity, 
we present the occurrence detection part of the algorithm first, a procedure we call FindH. Note that this is not (yet) a 
streaming algorithm.

Lemma 13. Given a graph G with vertex cover X, graph H with at least one edge, sets S and Y ⊆ X where S ∩ Y = ∅, and integer i, 
Algorithm 6 finds an occurrence of H in G that contains no vertices in S and X \ Y and contains |V (H)| − i vertices in Y , if it exists. It 
runs in O

((h
i

)[i2 + ( K
h−i

)
(h − i)!((h − i)2 + Kn + (h − i)in)]

)
time, where |V (H)| = h and |X | = K .

Proof. The correctness of the algorithm follows from the enumeration of all possibilities.
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Algorithm 6 The procedure FindH.
1: function FindH(solution set S , forbidden set Y ⊆ X , integer i)
2: for each Set O of i vertices of H that can be outside X do 	 Check non-edges
3: Denote H ′ = H \ O
4: for each Occurrence HY of H ′ in Y do 	 Check O(

( |X |
h−i

)
(h − i)!) options

5: S ′ ← ∅, O ′ ← O
6: for each Vertex v ∈ V \ (S ∪ X) do
7: Check the edges/non-edges towards HY

8: if v is equivalent to some w ∈ O ′ for H ′ then
9: S ′ ← S ′ ∪ {v}, O ′ ← O ′ \ {w}

10: if O ′ = ∅ then return S ′ ∪ HY 	 We found an occurrence of H

11: return ∅ 	 No occurrence of H found

Let us analyse the running time. Checking all possible sets O takes O(
(h

i

)
i2) time resulting in at most O(

(h
i

)
) options for 

O . There are at most O(
( K

h−i

)
(h − i)!) options for H ′ in Y : checking all of them costs O(

( K
(h−i)

)
(h − i)!(h − i)2) time. Then we 

take O((K + (h − i)i)n) time to, for each vertex, save adjacencies to H ′ , and check whether the adjacencies match a vertex 
in O . Here the factor K is from enumerating the adjacency list of a vertex not in X , and the (h − i) factor is for checking 
adjacencies towards H ′ . Therefore, the running time of FindH is O

((h
i

)[i2 + ( K
h−i

)
(h − i)!((h − i)2 + Kn + (h − i)in)]

)
. �

Now let us give the complete FPT algorithm for H-free Deletion [VC] (not in the streaming setting), see Algorithm 7.

Algorithm 7 H-free Deletion FPT(Graph G = (V , E), integer �, Vertex Cover X ⊆ V (G)).
1: for each Partition of X into S, Y where |S| ≤ � do
2: if H is not contained in Y then 	 Check all O(

(|X |
h

)
h!) options

3: if Branch(S , Y , 1) then
4: return YES 	 If any returns YES, we also return YES

5: return NO

6: function Branch(solution set S , forbidden set Y ⊆ X , integer i)
7: B ← FindH(S , Y , i) 	 Try to find an H with i vertices outside Y
8: if B = ∅ and i = |V (H)| then return YES
9: else if B = ∅ then Branch(S , Y , i + 1) 	 No H found

10: else if |S| = � then return NO 	 Found an H but cannot remove it
11: else
12: for each v ∈ B \ Y do
13: if Branch(S ∪ {v}, Y , i) then return YES

Together with Lemma 13 we can analyse the performance of Algorithm 7 in its entirety.

Theorem 14. Algorithm 7 is an FPT algorithm for H-free Deletion [VC] using O(2K hK K h+1h!h2n) time or alternatively 
O(2K hK K !Kh!h2n) time, where |V (H)| = h, H contains at least one edge, and K is the vertex cover number of the input graph.

Proof. Let us first go into detail on the correctness of the algorithm. Assume the algorithm returns YES for some instance 
G, H, �, X where |X | = K and |V (H)| = h. The only way the algorithm returns YES, is if in some partition of X into S and 
Y the Branch function returns YES. The Branch function only returns YES if any recursive call returns YES, or when B = ∅
and i = h. As the latter is the only base case, this must have occurred for this instance. As i starts at 1 and is only ever 
incremented, we can conclude that for every i at some point B = ∅ while |S| ≤ �. The algorithm calls on FindH for every i
to find if there is an occurrence of H with i vertices outside of Y ∪ S and |V (H)| − i vertices in Y . By Lemma 13, FindH

correctly finds occurrences of H where i vertices are outside Y . As the algorithm returned YES, FindH must have returned 
an empty set for each i at some point, and so no occurrences of H are present in the graph G[V \ S] (otherwise, such an 
occurrence must have i vertices outside Y ∪ S for some i). This means that the algorithm is correct in returning YES.

For the other direction, assume that for an instance G, H, �, X where |X | = K there exists a smallest set Sopt such that 
G[V \ Sopt] is H-free and |Sopt | ≤ �. Then Sopt must contain some part of the vertex cover X , and as we enumerate all 
possibilities, the algorithm considers this option. As G[V \ Sopt] is H-free, clearly, for every set B the function FindH finds, 
at least one vertex in B is also in Sopt . As we branch on each possibility of the vertices in B , the algorithm also considers 
exactly the option where the set S in the algorithm is a subset of Sopt . This means there is a branch where the algorithm 
terminates with S = Sopt , which means it returns YES as G[V \ Sopt] is H-free. We conclude that the algorithm solves H-free 
Deletion correctly.

Let us analyse the running time of the algorithm. There are O(2K ) possible partitions of X into S and Y . Checking 
whether H is contained in Y takes O(

(K
h

)
h!h2) time. Because H contains at least one edge, we can assume that � ≤ K , 

as otherwise X is a trivial solution. The function Branch is called in worst case O(h�) = O(hK ) times (branching on 
at most h vertices each time). FindH is called at most once for every i in every branch. By Lemma 13, FindH runs in 
12
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O
((h

i

)[i2 + ( K
h−i

)
(h − i)!((h − i)2 + Kn + (h − i)in)]

)
time. Here is where there is some variance in how we round these 

complexities, namely when concerning e.g. 
(K

h

)
. This is because we can both say 

(K
h

) = O(K h), and 
(K

h

) = O(K !). Which of 
these is a tighter bound comes down to the value of h in comparison to K . The total complexity of the algorithm comes 
down to

O
(

2K
((K

h

)
h!h2 + hK ∑h

i=1

(h
i

)[i2 + ( K
h−i

)
(h − i)!((h − i)2 + Kn + (h − i)in)]

))
time, which we can shorten to either O(2K hK K h+1h!h2n) or O(2K hK K !Kh!h2n) time. �

FindH is adaptable to the streaming setting, as is the complete algorithm, see Algorithm 8. All the actions FindH takes 
are local inspection of edges, and many enumeration actions, which lend itself well to usage of the AL streaming model. 
The number of passes of the streaming version is closely related to the running time of the non-streaming algorithm. This 
then leads to the full find-and-branch procedure.

It should be clear that the functionality of Algorithm 8 is the same as that of Algorithm 7, but translated to the streaming 
model using as little memory as possible. Once again we make use of dictionary orderings, see Definition 4 for the formal 
definition.

Algorithm 8 H-free Deletion Stream(Graph G = (V , E) in the AL model, integer �, Vertex Cover X ⊆ V (G)).
1: S ← First(X≤�)

2: while S ∈ X≤�, S �= ♠ do
3: Y ← X \ S
4: S ′ ← S
5: if ¬ Check(H ,Y ) then
6: if Branch(S ′ , Y , 1) then
7: return YES 	 If any returns YES, we also return YES

8: S ← DictX≤�
(Next(S))

9: return NO

10: function Check(set to find H , search space Y )
11: P ← First(Yh)

12: while P ∈ Yh, P �= ♠ do
13: for each Permutation p of the vertices of H do
14: Use a pass to check if p matches P 	 Go to the next p if some edges do not match
15: if p matches P then return YES

16: P ← DictYh (Next(P ))

17: return NO

18: function Branch(solution set S , forbidden set Y ⊆ X , integer i)
19: B ← FindH(S , Y , i) 	 Try to find an H with i vertices outside Y
20: if B = ∅ and i = h then return YES
21: else if B = ∅ then Branch(S , Y , i + 1) 	 No H found
22: else if |S| = � then return NO 	 Found an H but cannot remove it
23: else
24: for each v ∈ B \ Y do
25: if Branch(S ∪ {v}, Y , i) then return YES

26: function FindH(solution set S , forbidden set Y ⊆ X , integer i)
27: for each Set O of i vertices of H that can be outside Y do 	 Check non-edges in H
28: Denote H ′ = H \ O , and h′ = |V (H ′)|
29: P ← First(Yh′ )
30: while P ∈ Yh′ , P �= ♠ do
31: for each Permutation p of the vertices of H ′ do
32: Use a pass to check if p matches P
33: if p matches P then
34: S ′ ← ∅, O ′ ← O
35: for each Vertex v ∈ V \ (S ∪ Y ) do
36: Check the edges/non-edges towards H ′ ∈ Y
37: if v is equivalent to some w ∈ O ′ for H ′ then
38: S ′ ← S ′ ∪ {v}, O ′ ← O ′ \ {w}
39: if O ′ = ∅ then return S ′ ∪ P 	 We found an H occurrence
40: P ← DictYh′ (Next(P ))

41: return ∅ 	 No occurrence of H found

Theorem 15. We can solve H-free Deletion [VC] in the AL model, where H contains at least one edge, using O(2K hK+2 K hh!) or 
alternatively O(2K hK+2 K !h!) passes and O((K + h2) log n) space, where |V (H)| = h and K is the vertex cover number of the input 
graph.
13
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Proof. The algorithm in question is Algorithm 8. When we say ‘check if p matches P ’, this means the permutation p of 
vertices in H or H ′ specifies an order of those vertices, and we check if associating the vertices of P with those in H or H ′
in that order contains exactly those edges/non-edges between vertices in P that are in H or H ′.

Let it be clear from the algorithm that the approach to solving H-free Deletion has not changed from Algorithm 7. 
Therefore, if the graph stream is handled correctly, we can conclude that H-free Deletion is solved correctly. As we have H
in memory, we only require to use passes of the stream to determine (parts of) X and G . The dictionary orderings require 
no passes because we have the vertices of X in memory. The only places where we require passes of the stream thus are 
when concerning edges of the vertex cover, and edges/vertices in the rest of the graph (V \ X). Notice that at such points in 
Algorithm 8 we correctly mention the use of a pass. The loop over all vertices in V \ (S ∪ Y ) only requires one pass because 
of the use of the AL model. Therefore, the algorithm is a correct adaptation of Algorithm 7 to the streaming model.

What remains is to analyse the number of passes and memory use. Let us analyse the memory use per function. The 
entire algorithm keeps track of the vertex cover X , and the forbidden graph H . Denote |X | = K and |V (H)| = h. The vertex 
cover uses Õ(K ) bits, and because we save the entirety of H we use Õ(h2) bits. The main function uses the set S of at most 
� elements of X , likewise S ′ , and the set Y of size O(K ). The function Check uses a set P of h elements, a permutation p
of h elements, and O(1) bits to check if p matches P , as it can stop when it does not match. The function Branch uses a 
set B of at most h elements and increases the size of the set S , but only when it does not exceed � elements. The function
FindH uses sets O , H ′ , P , O ′ , p, all of at most h vertices. It also uses O(1) bits to check if p matches P , and O(h) bits to 
save the adjacencies to H ′ to check if some vertex matches one in O ′ . S ′ can only contain an element for each element in 
O ′ . Therefore, S ′ contains at most h elements.

We can conclude the memory use of a single branch is bounded by O((K +h2) log n) bits. However, in this algorithm we 
branch on h options, which is not a constant. Therefore, to be able to return out of recursion when branching and continue 
where we left off, we need to save the set B , or recompute it when we return. Saving the sets B takes Õ(hK ) bits because 
we have at most K active instances. Alternatively, recomputing B adds a factor h to the number of passes. Then we only 
need to save a counter which branch to do next, and call FindH again to find the same set B . Seeing as we aim to be 
memory efficient, we opt for this second option here.

The number of passes used by the algorithm is closely aligned with the running time of Algorithm 7. There are only three 
places in which we use a pass of the stream, namely, line 14 in the function Check, and line 32 and line 35 in the function
FindH. The loop of line 35 requires only one pass because the stream is given in the Adjacency List model. The number of 
passes is clearly dominated by the number of times the passes in line 32/35 are used. Now we can use the same analysis 
as for Algorithm 7, but make some nuances in the running time, as we have to distinguish running time which leads to 
more passes and running time which will be ‘hidden’ in the allowed unbounded computation. Consider the running time 
of FindH, as given by Lemma 13, O

((h
i

)[i2 + ( K
h−i

)
(h − i)!((h − i)2 + (h − i)in)]

)
. The running time factors i2 and (h − i)2

are checks over some amount of edges, which will be hidden by the unbounded computation. The factor (h − i)in comes 
from the finding of vertices that fit the current form of H , and can be done in one pass, which means this factor falls away 
as well. We now have that the FindH function costs us O

((h
i

)( K
h−i

)
(h − i)!

)
passes. This can be shortened to O(K hh!) by 

expanding the 
(h

i

)
factor, and bounding 

( K
h−i

) =O(K h). We can also bound this by O(K !h!) as discussed before. As FindH is 
called for every 1 ≤ i ≤ h in every branch, we get an extra h factor in the total number of passes. Another factor h is added 
for recomputing B when returning out of recursion at every step. This means the total number of passes comes down to 
either O(2K hK+2 K hh!) or O(2K hK+2 K !h!). �
3.3. Towards �-free deletion

An issue with extending the previous approach to the general �-free Deletion problem is the dependence on the 
maximum size h of the graphs H ∈ �. Without further analysis, we have no bound on h. However, we can look to the 
preconditions used by Fomin et al. [22] on � in e.g. Theorem 2 to remove this dependence.

The first precondition is that the set �′ ⊆ � of graphs that are vertex-minimal with respect to � have size bounded by 
a function in K , the size of the vertex cover. That is, for these graphs H ∈ �′ we have that |V (H)| ≤ f (K ), where f (K ) is 
some function. We can prove that it suffices to only remove vertex-minimal elements of � to solve �-free Deletion, see 
Lemma 16. Note that Fomin et al. [22] require that this is a polynomial, we have no need to demand this.

Lemma 16. Let � be some graph property, and denote the set of vertex-minimal graphs in � with �′ . Let G be some graph and 
S ⊆ V (G) some vertex set. Then G[V (G) \ S] is �-free if and only if G[V (G) \ S] is �′-free.

Proof. Assume the preconditions in the lemma, and assume that G[V (G) \ S] is not �′-free. As �′ ⊆ �, clearly, G[V (G) \ S]
is not �-free.

Now assume that G[V (G) \ S] is �′-free. Assume there is some H ∈ � such that H ∈ G[V (G) \ S] (that is, H is isomorphic 
to an induced subgraph of G[V (G) \ S]). As the graph is �′-free, H is a non-vertex-minimal graph with respect to �. By 
definition of vertex-minimal, removal of a specific set of one or more vertices of H results in a vertex-minimal graph I ∈ �′ . 
But if we ignore the same set of vertices in H ∈ G[V (G) \ S], clearly, I ∈ G[V (G) \ S]. This contradicts our assumption that 
14
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G[V (G) \ S] is �′-free. Therefore, there cannot be a H ∈ � such that H ∈ G[V (G) \ S], which means that G[V (G) \ S] is 
�-free. �

If we also assume that we know the set �′ , we obtain the following result.

Theorem 17. If � is a graph property such that:

(i) we have explicit knowledge of �′ ⊆ �, which is the subset of q graphs that are vertex-minimal with respect to �, and
(ii) there is a non-decreasing function f :N →N such that all graphs G ∈ �′ satisfy |V (G)| ≤ f (K ), and

(iii) every graph in � contains at least one edge,

then �-free Deletion [VC] can be solved using O(q · 2K · f (K )K · K ! · K · f (K )! · f (K )2 ·n) time, where K is the vertex cover number 
of the input graph.

Proof. This result can be achieved by adjusting Algorithm 7 to search for each of the q graphs in �′ instead of only H . This 
increases the complexity by a factor q as we search for more graphs than just one. Then, using Theorem 14 and Lemma 16, 
the theorem follows. �

Note that we require explicit knowledge of �′ and f (K ) to achieve Theorem 17. Also note that we chose to write the 
K ! alternative here, as likely K f (K ) > K ! (i.e. for f (K ) = K , a linear function, we have that K f (K ) = K K > K !).

We argue this algorithm is essentially tight, under the Exponential Time Hypothesis (ETH) [42], by augmenting a reduc-
tion by Abu-Khzam et al. [43]. Recall that the Induced Subgraph Isomorphism problem is defined as follows: given two 
graphs G1 (the pattern) and G2 (the host), does G2 contain an induced subgraph that is isomorphic to G1. Abu-Khzam et 
al. [43] proved that Induced Subgraph Isomorphism[VC] has no 2o(K log K )poly(|G1|, |G2|) time algorithm unless ETH fails, 
where K is the sum of the vertex cover numbers of G1 and G2. Crucially, in �-free Deletion [VC] the graph property � is 
part of the problem specification, not of the input. Hence, the original reduction of Abu-Khzam et al. [43] does not directly 
apply. We strengthen their reduction to yield the following result.

Theorem 18. There is a graph property � for which we cannot solve �-free Deletion [VC] in 2o(K log K )poly(n) time, unless ETH fails, 
where K is the vertex cover number of G, even if each graph that has property � has size quadratic in its vertex cover number.

Proof. We augment the reduction by Abu-Khzam et al. [43]. Their reduction is from the k × k Permutation Clique problem. 
In this problem, the input is a graph G = (V , E) on the vertex set V = [k] × [k] and the question is whether it has a clique 
that contains exactly one vertex from each row and column. That is, whether there exists a set C ⊆ [k] × [k] such that for 
each distinct (i, j), (i′, j′) ∈ C , it holds that i �= i′ , j �= j′ , and (i, j), (i′, j′) ∈ E . Then we say that G has a permutation clique 
of size k. Lokshtanov et al. [44] proved that this problem has no 2o(k log k) time algorithm, unless ETH fails.

Abu-Khzam et al. show that, given an instance of (G, k) of k × k Permutation Clique, in polynomial time an equivalent 
instance of Induced Subgraph Isomorphism[VC] can be constructed with pattern graph G1 and host graph G2 that both 
have a vertex cover of size K = O (k). By inspection of their reduction, we observe that G1 has size quadratic in k. Moreover, 
both G1 and G2 have a unique clique (called D̃r and Dr respectively) of size 6 with designated vertex r̃ and r respectively 
that is the only vertex that has edges to vertices outside the clique. The isomorphism in the proof of equivalence maps D̃r
to Dr and r̃ to r.

We augment the construction of G1 and G2 as follows. Add a clique of size 7 to G1 and G2 (called Ã and A respectively), 
with a designated vertex (called ã and a) respectively. Then add a path P̃ (P ) of length k from ã (a) to a designated vertex 
d̃ �= r̃ (d �= r). Since Ã (A) is the unique clique of size 7 in G1 (G2), any isomorphism from the augmented versions of G1
to G2 will map Ã to A. Since a is the only vertex of A of degree 7, ã will be mapped to a. Repeating such arguments, 
P̃ will be mapped to P , d̃ to d, D̃r to Dr , and r̃ to r. Then the remainder of the proof of Abu-Khzam et al. carries over 
without further modification, and we again obtain an instance of Induced Subgraph Isomorphism[VC] that is equivalent to 
the original instance of k × k Permutation Clique.

By inspecting the reduction of Abu-Khzam et al. and the above augmentation, we note that the construction of the 
pattern graph G1 is actually independent of G , and only depends on k. So denote by G�

1 the pattern graph constructed 
when k = �. Moreover, we note that the above isomorphism between P̃ and P can only occur when their length is the 
same. Hence, an induced subgraph of G2 is isomorphic to G�

1 only if � = k. Now let � be the set of graphs isomorphic to 
G�

1 for any � ≥ 1. Observe that this � is independent of the original instance of Induced Subgraph Isomorphism and can 
thus be part of the problem specification of �-free Deletion [VC].

To complete the argument, consider any algorithm for �-free Deletion [VC] running in time 2o(K log K )poly(n). Let (G, k)

be any instance of k × k Permutation Clique. Apply the reduction of Abu-Khzam et al. to G with the above augmentation 
to obtain the host graph G2. As argued above, G2 contains an induced subgraph isomorphic to G�

1 for any � if and only if G
has a permutation clique of size k. Hence, the instance of �-free Deletion [VC] for the constructed property � with input 
graph G2 has solution size at least 1 if and only if G2 contains an induced subgraph isomorphic to G� for any �, if and only 
1
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if G has a permutation clique of size k. Hence, using this transformation on an instance of k × k Permutation Clique and 
then applying the assumed algorithm for �-free Deletion [VC], we obtain an algorithm for k × k Permutation Clique with 
running time 2o(k log k)poly(n). Such an algorithm cannot exist unless ETH fails. �

Next, we look to further improve the bound of Theorem 17. Note that so far, we have made no use at all of the charac-
terization by few adjacencies of �, as in Theorem 2. We now argue that there may be graphs in � that cannot occur in G
simply because it would not fit with the vertex cover.

Lemma 19. If � is a graph property such that

(i) every graph in � is connected and contains at least one edge, and
(ii) � is characterized by c� adjacencies,

and G is some graph with vertex cover X, |X | = K , and S ⊆ V (G) some vertex set. Then G[V (G) \ S] is �-free if and only if G[V (G) \ S]
is �′-free, where �′ ⊆ � contains only those graphs in � with ≤ (c� + 1)K vertices.

Proof. Assume the preconditions in the lemma. When G[V (G) \ S] is �-free, it must also be �′-free, as �′ ⊆ � by defini-
tion.

Now assume that G[V (G) \ S] is not �-free, let us say some H ∈ � occurs in the graph. Consider a vertex v of the 
graph H . Because � is characterized by c� adjacencies, there exists a set D ⊆ V (H) with |D| ≤ c� such that changing the 
adjacencies between v and V (H) \ D does not change the presence of H ∈ �. Remove all adjacencies existing between v
and V (H) \ D . Then deg(v) ≤ c� . Our new version of H is still contained in �, so we can repeat this process for every vertex 
in H . But then every vertex v in H has deg(v) ≤ c� . Given that H can contain at most K vertices of the vertex cover in G , 
each with degree at most c� , we know that this edited version of H can have at most (c� + 1)K vertices. Although this 
version of H is still in �, it might not exactly be in G , as we might have deleted essential adjacencies. However, changing 
all the adjacencies did not increase or decrease the number of vertices, as every graph in � is connected and H remains in 
� at every step. Therefore, every H occurring in G[V (G) \ S] is in �′ , and so the graph is not �′-free either. �

The precondition that every graph in � is connected is necessary to obtain this result. If not every graph in � is 
connected, the removal of adjacencies might leave a vertex without edges, but then this vertex might still be required for 
the presence in �, which is problematic. Seeing that we want to bound the size of possible graphs in �, to be able to 
bound the size of graphs we need that the vertex cover together with c� gives us information on the size of the graph, 
which is not the case for a disjoint union of graphs.

We can use Lemma 19 in combination with Theorem 17 to obtain a new result. Alternatively, using a streaming version 
of the algorithm instead of the non-streaming one, immediately also provides a streaming result.

Theorem 20. Given a graph G with vertex cover X, |X | = K , if � is a graph property such that

(i) every graph in � is connected and contains at least one edge, and
(ii) � is characterized by c� adjacencies, and

(iii) we have explicit knowledge of �′ ⊆ �, which is the subset of q graphs of at most size (c� + 1)K that are vertex-minimal with 
respect to �,

then �-free Deletion [VC] can be solved using O(q · 2K · ((c� + 1)K )K · K ! · K · ((c� + 1)K )! · ((c� + 1)K )2 · n) time. Assuming 
c� ≥ 1 this can be simplified to O(q · 2K · c�

K · K K+3 · K ! · (c�K )! · n) time. In the streaming setting, �-free Deletion [VC] can be 
solved using O(q · 2K · cK

� · K K+2 · K ! · (c�K )!) passes in the AL streaming model, using Õ(q · (c� · K )2) space.

Proof. Given some � characterized by c� adjacencies, where every graph in � is connected, we can see that through 
Lemma 19 we only need to consider those graphs with size ≤ (c� + 1)K in �, and with this subset, using Theorem 17
where f (K ) = (c� + 1)K , the fpt part of the theorem follows.

For the streaming part, we use Theorem 15 with the above analysis. The main factor q · (c� · K )2 of the memory usage 
comes from the fact that we need to explicitly store �′ . �

The required explicit knowledge of �′ might give memory problems. That is, we have to store �′ somewhere to make 
this algorithm work, which takes Õ(q · (c� + K )2) space. Note that q can range up to KO(K ) . We adapt the streaming 
algorithm to the case when we have oracle access to � in Section 3.4.

3.4. �-free deletion without explicit �

One of the issues in Section 3 is that having the graph property � explicitly saved might cost us a lot of memory. 
To circumvent this, we can assume to be working with some oracle, which we can call to learn something about �, and 
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generalizes saving � explicitly. For some � it may be easier to check membership than using the explicit graphs that are 
forbidden, hence an oracle would be applicable. In general, if we have an oracle algorithm A, let us assume that it takes 
a graph G as input as a stream. We then denote PA(n), MA(n) as respectively the number of passes and the memory use 
of the oracle algorithm A when called on a streamed (sub)graph G with n vertices. In this section, we will discuss two 
different oracles and their use for �-free Deletion [VC]. We also assume that the graphs in � have a maximum size ν , and 
that ν is known.

As the oracle algorithms take a stream as an input, but we usually might want to pass a subgraph of G , we require a full 
pass over the stream for each call to an oracle algorithm. This way, we can select exactly the sub-stream that corresponds 
to the graph we wish to pass to the oracle algorithm while being memory-less (for each edge we only need to decide 
whether or not it should appear in the oracle input, and pass it to the oracle if it should). Actually, if the oracle algorithm 
uses multiple passes over its input, we need to generate this stream every time it does so.

The first oracle model is where our oracle algorithm A1, when called on a graph G , returns whether or not G ∈ �. Our 
approach then has to be different from Algorithm 8, as in Algorithm 8 we rely on knowing whether a part of the vertex 
cover is contained in some H ∈ �. This is not information the oracle can give us. The general idea is the following: we 
still branch on what part of the vertex cover is in the solution, and consider every subset of (the remaining part of) the 
vertex cover in each branch. To avoid having to test every combination of vertices outside the vertex cover together with 
this subset, we consider the notion of twin vertices. Two vertices u, v /∈ X , where X is a vertex cover, are called twins when 
N(u) = N(v) ⊆ X , their neighbourhoods are equal. If EC is a set of vertices where each pair u, v are twins, and EC is 
maximal under this property, we call EC an equivalence class. When trying to test which graphs might be in �, we can 
ignore twin vertices if we have tested one of them before. Also, if we delete a vertex from an equivalence class, we may 
need to delete the entire equivalence class. We can identify twins easily in the AL streaming model. The issue here is that 
saving the equivalence classes is not memory efficient. Nonetheless, we use this idea here in Algorithm 9.

In Algorithm 9, the set EC saves the sizes of each equivalence class, and can be seen as a set of key-value pairs (key, val), 
where key is a K -bit string representing the adjacencies towards the vertex cover, and val is the number of vertices in this 
equivalence class. Notice that we can find the set EC using a single pass over the stream. This can be done by, for each 
vertex, locally saving its adjacencies as a K -bit string, and then finding and incrementing the correct counter in EC . We 
only need one pass to find EC in its entirety.

With slight abuse of notation, we write DictEC≤k to denote a dictionary ordering on choosing ≤ k ‘vertices’ out of the 
2K equivalence classes such that if an equivalence class key is chosen twice, then val is at least 2. This is essentially 
enumerating picking ≤ k vertices out of V \ X except that we do not pick vertices explicitly, but we pick the equivalence 
classes they are from. An entry of this ordering is a set of key-value pairs (key, count), such that key corresponds to some 
equivalence class, and count is the number of vertices we pick out of this equivalence class.

Algorithm 9 �-free Deletion with A1(Graph G = (V , E) in the AL model, integer �, integer ν , Vertex Cover X ⊆ V (G)).
1: S ← First(X≤�)

2: while S ∈ X≤�, S �= ♠ do
3: Y ← X \ S
4: S ′ ← S
5: if ∀Y ′ ⊆ Y : A1(Y ′) = false then 	 Test if Y is �-free
6: EC ← Count the sizes of the equivalence classes of vertices in V \ X with their adjacencies towards Y 	 Use a pass for this
7: if Search(S ′ , Y , EC ) then return YES

8: S ← DictX≤�
(Next(S))

9: return NO

10: function Search(solution set S , forbidden set Y ⊆ X , equivalence class sizes EC )
11: J ← First(Y≤ν )

12: I ← First(EC≤(ν−| J |))
13: while J ∈ Y≤ν , J �= ♠ do
14: while I ∈ EC≤(ν−| J |), I �= ♠ do
15: if A1(I, J ) then 	 I ∪ J ∈ �

16: if |S| ≥ � then return NO 	 No budget to branch
17: else
18: for each (k, count) ∈ I do
19: Update EC such that (k, val) ← (k, count − 1) 	 Remove all but count − 1 vertices from class k
20: if |S| + val − (count − 1) > � then return NO
21: else
22: V S ← Find val − (count − 1) vertices that belong to class k 	 Uses a pass
23: if Search(S ∪ V S , Y , EC ) then return YES 	 Branch

24: I ← DictEC≤(ν−| J |) (Next(I))

25: J ← DictY≤ν (Next( J ))
26: I ← First(EC≤(ν−| J |))
27: return YES
17
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Theorem 21. If � is a graph property such that the maximum size of graphs in � is ν , and A1 is an oracle algorithm that, when given 
subgraph H on h vertices, decides whether or not H is in � using PA1(h) passes and MA1(h) bits of memory, then Algorithm 9 solves
�-free Deletion [VC] on a graph G on n vertices given as an AL stream with a vertex cover of size K using O(3K νK 2νK [1 + PA1 (ν)])
passes and O(2K (K + logn) + ν log n + MA1 (ν)) bits of memory.

Proof. Let us argue on the correctness of Algorithm 9. In essence, the algorithm tries every option of how an occurrence 
of a graph in � can occur in G , by enumerating all subsets of the vertex cover ( J ) combined with vertices from outside 
the vertex cover (I). This process is optimized by use of the equivalence classes, removing multiple equivalent vertices at 
once to eliminate such an occurrence. If the algorithm returns YES, then for every combination of I and J , no occurrence 
of a graph in � was found or branching happened on any such occurrence. Each branch eliminates the found occurrence 
of a graph in �, as enough vertices are removed from an equivalence class to make the same occurrence impossible. As 
removing vertices from the graph cannot create new occurrences of graphs in �, this means that every occurrence found 
was removed, and no new occurrences were created. But then there is no occurrence of a graph in �, as every combination 
of such a graph occurring was tried. So the graph is �-free. If the algorithm returns NO, then in every branch at some point 
we needed to delete vertices to remove an occurrence of a graph in � but had not enough budget left. Removing any less 
than val − (count − 1) vertices in line 22 results in at least count vertices of that equivalence class remaining, which means 
the same occurrence of a graph in � persists. Therefore, the conclusion that we do not have enough budget is correct, and 
so there is no solution to the instance. We can conclude that the algorithm works correctly.

Let us analyse the space usage. Almost all sets used are bounded by K entries. The exceptions are the sets EC , I , and J . 
J contains at most ν vertices, and so uses at most O(ν log n) bits of space. EC contains at most 2K key-value pairs, each 
using K + logn bits, so EC uses O(2K (K + log n)) bits. The set I contains only subsets of EC . The oracle algorithm A1 uses 
at most MA1 (ν) bits. Therefore, the memory usage of this algorithm is O(2K (K + log n) + ν log n + MA1(ν)) bits of space. 
Note that we branch on at most ν options together spanning at most ν vertices, which is a constant factor in the memory 
use (for remembering what we branch on when returning out of recursion). The algorithm also repeats the process for each 
I and J in each branch to avoid having to keep track of these sets in memory when returning from recursion.

It remains to show the number of passes used by the algorithm. Let it be clear that the number of passes made by the 
algorithm is dominated by the number of calls made to A1, which requires at least one pass. The number of calls made is 
heavily dependent on the total number of branches in the algorithm, together with how many options the sets I and J can 
span. This total can be concluded to be O(3K νK 2νK ). Let us elaborate on this. The factor 3K comes from the fact that any 
vertex in the vertex cover is either in J , in S , or in Y (and not in J ). The factor νK comes from the worst case branching 
process, as we branch on at most ν different deletions, and we branch at most � ≤ K times. The remaining factor is the 
number of options we have for the set I , which picks, for each size i between 1 and ν , i times between at most 2K options 
(the equivalence classes). This number of options is bounded by O(2νK ). This means the total number of passes is bounded 
by O(3K νK 2νK [1 + PA1 (ν)]). �

Next, we look at a different oracle model, as the memory complexity of O(2K K ) is not ideal.
The second oracle model is where our oracle algorithm A2, when called on a graph G , returns whether or not G is 

induced �-free (that is, it returns YES when it is induced �-free, and NO if there is an occurrence of a graph in � in G).
We observe that both oracle models A1 and A2 admit a streaming algorithm parameterized by solution size by applying 

the approach of Cai [18]. By enumerating all subsets of vertices of size ≤ ν we can find an occurrence of a graph in � in 
O(nν) calls to either oracle. Then we can branch on the ≤ ν options for deleting a vertex and repeat. We get an extra ν
factor for recomputing the set to branch on each time we return out of recursion, to be memory-efficient.

Observation 22. If � is a graph property such that the maximum size of graphs in � is ν , for oracle model A =A1, A2 using PA(h)

passes and MA(h) bits of space when called on a graph on h vertices, the algorithmic approach by Cai [18] can be implemented as 
a streaming algorithm to solve �-free Deletion [�] using O(ν�+1nν · [1 + PA(ν)]) passes and O((ν + �) log n + MA(ν)) bits of 
space.

Another approach in which we do not demand ν is known comes from the algorithm that Theorem 12 proposes. We 
work with oracle model A2, which can check whether a given stream is �-free. We can enumerate the (2K + 1) · K possible 
solutions by saving O(K 2) bits corresponding to the deletion of O(K ) vertices of equivalence classes, which each require 
O(K ) bits to represent. We can enumerate all these (2K + 1) · K options by using Dictionary Orderings. This immediately 
provides an algorithm, as for each possible solution, for each pass the oracle requires, we make a pass over the AL stream 
and pass on to A2 only the vertices from an equivalence class when the first i have been skipped (where i corresponds 
to the number of deletions in this equivalence class according to the current proposed solution). The correctness of this 
process follows from Theorem 12, and the number of passes comes down to O(2O (K 2) · PA2 (n)), with a memory usage of 
O(K 2 + K log n + MA2 (n)) bits.

We have now seen some algorithms for using an oracle to obtain information about � instead of explicitly saving it. 
This way, we have gotten closer to a memory-optimal algorithm, but the number of passes over the stream has increased 
significantly in comparison to algorithms from Section 3.
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3.5. Odd cycle transversal

Specific forms of �-free Deletion [VC] allow for improvement over Theorem 20, which we illustrate for the problem of
Odd Cycle Transversal [VC]. Note that odd cycle-free and induced odd cycle-free are equivalent.

Odd Cycle Transversal [VC]

Input: A graph G with a vertex cover X , and an integer �.
Parameter: The size K := |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most � such that G[V (G) \ S] contains no induced odd cycles?

The interest in this problem comes from the FPT algorithm using iterative compression provided in [45, Section 4.4], 
based on work by Reed et al. [46]. Although Chitnis and Cormode [12] have shown how iterative compression can be 
used in the streaming setting, adapting the algorithm out of Reed et al. seems difficult. The main cause for this is the use 
of a maximum-flow algorithm, which does not seem to lend itself well to the streaming setting because of its memory 
requirements. Instead, we present the following approach.

It is well known that a graph without odd cycles is a bipartite graph (and thus 2-colourable) and vice versa. In the 
algorithm, we guess what part of the vertex cover is in the solution, and then we guess the colouring of the remaining part. 
Then vertices outside the vertex cover for which not all neighbours have the same colour must be deleted. This step can be 
done in one pass if we use the AL streaming model. In the same pass, we can also check if the colouring is valid within the 
vertex cover. If the number of deletions does not exceed the solution size and the colouring is valid within the vertex cover, 
then the resulting graph is bipartite and thus odd cycle free.

The total number of guesses comes down to O(3K ) options, as any vertex in the vertex cover is either in the solution, 
coloured with colour 1 or coloured with colour 2. This directly corresponds to the number of passes, as only one pass is 
needed per guessed colouring.

The full algorithm is given in Algorithm 10.

Algorithm 10 OCT(Graph G = (V , E) in the AL model, integer �, Vertex Cover X ⊆ V (G)).
1: S ← First(X≤�)

2: while S ∈ X≤�, S �= ♠ do
3: Y ← X \ S
4: Y1 ← First(Y)

5: Y2 ← Y \ Y1

6: while Y1 ⊆ Y , Y1 �= ♠ do
7: success ← true, S ′ ← S 	 Reset local values
8: for each v ∈ V \ S ′ do 	 Use one pass
9: if v ∈ Y and v ∈ Yi then 	 v ∈ X

10: Check that all neighbours of v in Y are in Y3−i

11: If one is not, success ← f alse
12: else 	 v /∈ X
13: Check if all neighbours of v in Y are in the same Yi

14: If not, and |S ′| < �, S ′ ← S ′ ∪ {v}
15: Else, success ← f alse

16: if |S ′| ≤ � and success then return YES

17: Y1 ← DictY (Next(Y1)) 	 Try the next colouring
18: Y2 ← Y \ Y1

19: S ← DictX≤�
(Next(S))

20: return NO

Theorem 23. Given a graph G given as an AL stream with vertex cover X, |X | = K , we can solve Odd Cycle Transversal [VC] using 
O(3K ) passes and O(K log n) space.

Proof. We claim that Algorithm 10 does exactly this.
Let us first prove the correctness of Algorithm 10. Let G = (V , E) be a graph with vertex cover X , |X | = K . Let O , |O | ≤ �

be a solution for Odd Cycle Transversal [VC]. Denote Y ′ = X \ O as the part of X that is not contained in the solution. 
Because Algorithm 10 enumerates all possibilities for the set Y , at some point it must consider Y = Y ′ . As O is a solution, 
G[X \ Y ′] must be bipartite, and so admits a proper 2-colouring Y ′

1, Y ′
2. For Y = Y ′ , Algorithm 10 considers at some point 

Y1 = Y ′
1 and Y2 = Y ′

2 (Y ′
1 ∪ Y ′

2 = Y ′ = Y because Y ′
1 and Y ′

2 form a proper 2 colouring), because it considers all possibilities 
for the set Y1 ⊆ Y . As Y1 and Y2 now form a proper 2-colouring of Y , the check in line 10 never fails. The check in line 13
only fails if a vertex outside of X is adjacent to two different coloured vertices in Y . But then this vertex must also be in 
O , as Y1 and Y2 mimic exactly the 2-colouring in G[X \ Y ′]. Therefore, Algorithm 10 can at least find O as well, which 
means it returns YES. For the reverse implication, when Algorithm 10 returns YES, it has found a set S such that |S| ≤ �

and G[V \ S] admits a proper 2-colouring given by deterministically adding vertices outside the vertex cover to Y1 and Y2. 
But then S is a solution to Odd Cycle Transversal [VC]. We can conclude that Algorithm 10 works correctly.
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Let us analyse the memory usage of Algorithm 10. All sets used in the algorithm have size at most K (� ≤ K ). The only 
worry is whether or not the checks in lines 10 and 13 require more memory. The first check only requires us to remember 
in what set the vertex v is contained in, and whether or not we have seen a ‘wrong’ colour yet, which should only take a 
constant number of bits. The second check merely needs to remember in what set all neighbours up until this point were, 
which should also only take a constant number of bits. Therefore, the algorithm uses O(K log n) bits of memory.

Let us analyse the number of passes of Algorithm 10 does over the stream. Firstly, the for-loop over all vertices only 
requires a single pass because the checks only need to know what all the neighbours of the current vertex are, which is 
what the AL stream gives us. The total number of times this for-loop can be executed is bounded by O(3K ), as any vertex 
in the vertex cover can either be in S , in Y1 or in Y2. We can conclude that Algorithm 10 uses O(3K ) passes over the graph 
stream. �

If we think about this algorithm, we can notice that often the colouring we guess on the vertex cover is invalid. An 
alternative approach follows by noting that a connected component within the vertex cover can only have two possible 
valid colourings. We can exploit this to decrease the number of passes when the number of connected components in the 
vertex cover is low. This comes at a price: to easily find components of the vertex cover, we store it in memory, which 
increases the memory complexity. Alternatively, we can use O(K ) passes to find the connected components of the vertex 
cover in every branch. We formalize this in Algorithm 11 and Theorem 24.

Algorithm 11 OCT-CC(Graph G = (V , E) in the AL model, integer �, Vertex Cover X ⊆ V (G)).
1: S ← First(X≤�)

2: while S ∈ X≤�, S �= ♠ do
3: Y ← X \ S
4: Use a pass to find and save the edges in Y
5: Find the connected components and their two 2-colourings
6: If this fails, move to the next option for S
7: for each Combination of colourings of the CCs do 	 Does 2#CCs iterations
8: success ← true, S ′ ← S 	 Reset local values
9: for each v ∈ V \ (X ∪ S ′) do 	 Use one pass

10: Check if all neighbours of v in Y have the same colour
11: If not, and |S ′| < �, S ′ ← S ′ ∪ {v}
12: Else, success ← f alse

13: if |S ′| ≤ � and success then return YES

14: S ← DictX≤�
(Next(S))

15: return NO

Theorem 24. Given a graph G given as an AL stream with vertex cover X, |X | = K , Algorithm 11 solves Odd Cycle Transversal [VC] 
using O(3K ) passes and O(K 2 log n) bits of memory.

Proof. The correctness of Algorithm 11 quickly follows from the correctness of Algorithm 10. Where Algorithm 10 enu-
merates all 2-colourings of Y , Algorithm 11 only enumerates those which are feasible 2-colourings for Y (combinations of 
2-coloured components). This means Algorithm 11 only leaves out colourings which are not feasible anyway, which means 
that it still works correctly.

The number of passes is heavily dependent on the amount of connected components in G[Y ] in an iteration. But, in 
worst case, this is |Y |, which would mean it considers all 2-colourings of Y . But this is a worst case where the behaviour 
exactly mimics that of Algorithm 10, and so the worst case number of passes is the same.

Let it be clear that the memory use is O(K 2 log n) bits, as we save (a part of) the vertex cover with edges to enable easy 
colouring and component finding. The rest of the sets in the algorithm use O(K log n) bits of memory. �

Let us denote again that Algorithm 11 on paper is strictly worse than Algorithm 10 in worst case complexity. However, 
we believe there to be many cases where Algorithm 11 can outperform Algorithm 10 because of its behaviour of clever 
enumeration instead of trying all possibilities. We also want to mention that, instead of saving the vertex cover using 
O(K 2 log n) bits of memory, we could find the connected components of the vertex cover in O(K ) passes in each branch. 
This increases the number of passes by a factor K , but remains memory-optimal, using O(K log n) bits of memory.

4. Lower bounds

We show lower bounds for �-free Deletion. To prove lower bounds for streaming, we can show reductions from prob-
lems in communication complexity, as first shown by Henzinger et al. [1]. An example of such a problem is Disjointness.

Disjointness

Input: Alice has a string x ∈ {0, 1}n given by x1x2 . . . xn . Bob has a string y ∈ {0, 1}n given by y1 y2 . . . yn .
Question: Bob wants to check if ∃1 ≤ i ≤ n such that xi = yi = 1. (Formally, the answer is NO if this is the case.)
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The following proposition is given and used by Bishnu et al. [13], and gives us one important consequence of reductions 
from a problem in communication complexity to a problem for streaming algorithms.

Proposition 25. (Rephrasing of item (ii) of [13, Proposition 5.6]) If we can show a reduction from Disjointness to problem P in 
streaming model M such that in the reduction, Alice and Bob construct one model-M pass for a streaming algorithm for P by com-
municating the memory state of the algorithm only a constant number of times to each other, then any streaming algorithm working 
in the model M for P that uses p passes requires �(n/p) bits of memory, for any p ∈N [47–49].

The structure of these reductions is relatively simple: have Alice and Bob construct the input for a streaming algorithm 
depending on their input to Disjointness. If we do this in such a manner that the solution the streaming algorithm outputs 
gives us exactly the answer to Disjointness, we can conclude that the streaming algorithm must abide the lower bound of
Disjointness.

Chitnis et al. [9, Theorem 6.3] prove hardness for many �, those that abide to a small precondition. However, Chitnis et 
al. do not describe in their reduction how Alice and Bob give their ‘input’ as a stream to the algorithm for �-free Deletion, 
and thus it would apply only to the EA streaming model. However, if we observe the proof closely, we can see it extends to 
the VA model.

We would also like it to extend to the AL model. However, this requires a slightly stronger precondition on the graph 
class �.

Theorem 26. If � is a set of graphs such that each graph in � is connected, and there is a graph H ∈ � such that

• H is a minimal element of � under the operation of taking subgraphs, i.e., no proper subgraph of H is in �, and
• H has at least two disjoint edges,

then any p-pass (randomized) streaming algorithm working on the AL streaming model for �-free Deletion [�] needs �(n/p) bits 
of space.

Proof. We add onto the proof of [9, Theorem 6.3], by specifying how Alice and Bob provide the input to the p-pass stream-
ing algorithm.

Let H be a minimal graph in � which has at least two disjoint edges, say e1 and e2. Let H ′ := H \ {e1, e2}. Create as an 
input for the streaming algorithm n copies of H ′ , where in copy i we add the edges e1 and e2 if and only if the input of
Disjointness has a 1 for index i for Alice and Bob respectively.

As e1 and e2 are disjoint, e2 is incident on two vertices v, w which are not incident to e1. For every pass the algorithm 
requires, we do the following. We provide all the copies of H as input to the streaming algorithm by letting Alice input all 
vertices V (H) \ {v, w} as an AL stream. Note that Alice has enough information to do this, as the vertices incident on the 
edge e2 in each copy of H is never included in this part of the stream. Then Alice passes the memory of the streaming 
algorithm to Bob, who inputs the edges incident to the vertices v, w for each copy of H (which includes e2 if and only if 
the respective bit in the input of Disjointness is 1). This ends a pass of the stream.

Note that Alice and Bob have input the exact specification of a graph as described by Chitnis et al. [9, Theorem 6.3], but 
now as an AL stream. Hence, the correctness follows. �

Theorem 26 provides a lower bound for, for example, Even Cycle Transversal [�] (where � is the set of all graphs that 
contain a C4, C6, . . .), and similarly Odd Cycle Transversal [�] and Feedback Vertex Set [�]. Theorem 26 does not hold for 
the scenario where � contains only stars.

Notice that the lower bound proof makes a construction with a vertex cover size linear in n. Therefore, these bounds do 
not hold when the vertex cover size is bounded. We can prove lower bounds with constant vertex cover size for H-free 
Deletion with specific requirements on H , for the EA and VA models. These results follow by adapting the known lower 
bound construction by Bishnu et al. [13]. The idea is as follows. We take a copy of H , and extend some path of three vertices 
to the construction in Fig. 2, which we will call a double fan. The n vertices in the overlap of the two fans we will call the 
center vertices. The idea of this construction is that both Alice and Bob input the edges of one of the fans in the double fan, 
as those edges will be determined by the input to Disjointness. If there is some 1 ≤ i ≤ n such that the i-th bit in both 
Alice’s and Bobs input is 1, then the double fan will have a completed path from A to B , creating an induced copy of H in 
the graph. If we make sure the budget is � = 0, then the answer to H-free Deletion must be NO if and only if the answer 
to Disjointness is NO. If we manage this, Proposition 25 gives us a lower bound result.

It is important to note that this construction does not always make a correct reduction. Most importantly, it innately has 
trouble if H is some star. This is because the double fan construction can form exactly H even if Bobs input exists entirely of 
zeroes. Therefore, we must be careful to form conditions that exclude stars from the lower bounds proofs. Also, we cannot 
work on the AL model in this construction. That would mean that for each center vertex, we require some information from 
both Alice and Bob to construct the stream, which is something that neither Alice nor Bob can do. Avoiding this by making 
the center vertices edges increases the vertex cover size linearly.
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Fig. 2. A reduction technique which we call a double fan. The right construction can imitate the input to the Disjointness instance, forming the left 
construction if and only if the answer to Disjointness is NO.

Theorem 27. If H is a connected graph with at least 3 edges and a vertex of degree 2, then any algorithm for solving H-free Deletion 
[VC] on a graph G with |VC(G)| ≥ |VC(H)| + 1 requires �(n/p) bits when using p passes in the VA/EA models, even when the solution 
size � = 0.

Proof. Similar to the reductions given by Bishnu et al. [13], we give a reduction from Disjointness to H-free Deletion [VC]

in the VA model when the solution size parameter � = 0. The idea is to build a graph G with bounded vertex cover size, 
and construct edges according to the input of Disjointness, such that G is H-free if and only if the output of Disjointness

is YES.
Let A be a streaming algorithm that solves H-free Deletion [VC] in the VA model, such that |VC(G)| ≤ |VC(H)| + 1, and 

the space used is o(n). Let G be a graph with n + |V (H)| − 1 vertices consisting of H where a degree-2 vertex in H is 
expanded to a double fan (i.e., the two adjacencies of this degree-2 vertex correspond to A and B , and the degree-2 vertex 
is replaced by the n center vertices of the double fan). Let x, y be the input strings, consisting of n bits each, of Alice and 
Bob for Disjointness, respectively.

Alice exposes to A all the vertices of G , except for the vertex B . Here, Alice exposes an edge between A and the i-th 
center vertex of the double fan if and only if the i-th bit of x is 1. Notice that Alice can expose all these vertices according 
to the VA model, as only the addition of the vertex B will require information of the input of Bob, y. If Alice has exposed 
all vertices of G except for B , then she passes the memory of A to Bob. Bob then exposes the vertex B , including an edge 
between B and the i-th center vertex of the double fan if and only if the i-th bit of y is 1. This completes one pass of the 
input for A.

From the construction, observe that |V C(G)| ≤ |V C(H)| + 1, as we may need to include both A and B in the vertex cover 
in G while it was optimal to include the degree-2 vertex in the vertex cover in H .

If the answer to Disjointness is NO, that is, there exists an index i such that xi = yi = 1, then in G the edges from A
and B connect in the i-th center vertex, creating an induced copy of H in G , and so the graph is not H-free. Because � = 0,
H-free Deletion [VC] must also be answered with NO.

If the answer to Disjointness is YES, that is, there is no index i such that xi = yi = 1, then there is no path from A to B
through a center vertex in G . We will show that there is no induced occurrence of H in G . If the degree-2 vertex that we 
split into the double fan is contained in a cycle in H , then now this cycle is no longer present in the graph. As the rest of 
the graph simply consists of a (partial) copy of H , this means there cannot be enough cycles in the graph to get exactly H , 
and so H does not appear in G . Otherwise, the degree-2 vertex is not contained in a cycle, and so there is no path between 
A and B . Hence, for H to occur in G , it must occur in either the component containing A or the component containing B . 
If A or B was a degree-1 vertex in H , then the component containing it is now a star, and H is not a star by assumption. 
Otherwise, in a component, the number of vertices with degree 2 or higher is lower than the number of vertices in H with 
degree 2 or higher, as the double fan only adds degree-1 vertices in this case, and destroyed a degree-2 vertex, while A or 
B was already of degree 2 or higher. Hence, H cannot occur in either component of G . So the answer to H-free Deletion 
[VC] is YES.

Now, from Proposition 25 it follows that any algorithm for solving H-free Deletion [VC] on a graph G with |VC(G)| ≥
|VC(H)| + 1 requires at least n/p bits when using p passes in the VA/EA models, even when � = 0. This can be generalized 
for every � by adding � disjoint copies of H to G , which also increases the vertex cover of G by a constant amount for each 
copy. �

There are other conditions for which this reduction works as well.

Theorem 28. If H is a graph with a vertex of degree at least 2 for which every neighbour has an equal or larger degree, then any 
algorithm for solving H-free Deletion [VC] on a graph G with |VC(G)| ≥ |V (H)| requires �(n/p) bits when using p passes in the 
VA/EA models, even when the solution size � = 0.

Proof. Similar to the reductions given by Bishnu et al. [13], we give a reduction from Disjointness to H-free Deletion [VC]

in the VA model when the solution size parameter � = 0. The idea is to build a graph G with bounded vertex cover size, 
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and construct edges according to the input of Disjointness, such that G is H-free if and only if the output of Disjointness

is YES.
Let A be a streaming algorithm that solves H-free Deletion [VC] in the VA model, such that |VC(G)| ≤ |V (H)|, and the 

space used is o(n). Let G be a graph with n + |V (H)| − 1 vertices consisting of H where a vertex degree at least 2 for 
which every neighbour has an equal or larger degree in H is expanded to a double fan, i.e., two adjacencies of this vertex 
correspond to A and B , and the vertex is replaced by the n center vertices of the double fan. All other adjacencies of this 
vertex are connected to all of the center vertices. Note that this is possible, as the vertex has degree at least 2. Let x, y be 
the input strings, consisting of n bits each, of Alice and Bob for Disjointness, respectively.

Alice exposes to A all the vertices of G , except for the vertex B . Here, Alice exposes an edge between A and the i-th 
center vertex of the double fan if and only if the i-th bit of x is 1. Notice that Alice can expose all these vertices according 
to the VA model, as only the addition of the vertex B will require information of the input of Bob, y. If Alice has exposed 
all vertices of G except for B , then she passes the memory of A to Bob. Bob then exposes the vertex B , including an edge 
between B and the i-th center vertex of the double fan if and only if the i-th bit of y is 1. This completes one pass to the 
input for A.

From the construction, observe that |V C(G)| ≤ |V (H)|, as the vertex cover of G can always be bounded by taking all 
vertices originally in H , which covers the edges towards the n center vertices.

If the answer to Disjointness is NO, that is, there exists an index i such that xi = yi = 1, then in G the edges from A
and B connect in the i-th center vertex, creating an induced copy of H in G , and so the graph is not H-free. Because � = 0,
H-free Deletion [VC] must also be answered with NO.

If the answer to Disjointness is YES, that is, there is no index i such that xi = yi = 1, then there is no path from A
to B directly through a center vertex in G . We will show that there is no induced occurrence of H in G . Let us call the 
vertex that was expanded into the center vertices v , and say it has degree d ≥ 2. Then all the neighbours of this vertex 
must also have degree at least d in H . However, the center vertices in G have degree at most d − 1, as no center vertex can 
be adjacent to both A and B . Hence, no center vertex can be used for v or any of its neighbours in an induced copy of H
in G . Consider in H all vertices of degree at least d where the neighbours also have degree at least d, and say there are c
many of these vertices. In any induced copy of H in G , these vertices must still have this relation of degrees. However, as 
none of the center vertices has degree at least d, G contains at most c − 1 such vertices, which means an induced copy of 
H cannot occur in G . Hence, the answer to H-free Deletion [VC] is YES.

Now, from Proposition 25 it follows that any algorithm for solving H-free Deletion [VC] on a graph G with |VC(G)| ≥
|V (H)| requires at least n/p bits when using p passes in the VA/EA models, even when � = 0. This can be generalized for 
every � by adding � disjoint copies of H to G , which also increases the vertex cover of G by a constant amount for each 
copy. �

In Theorem 28 we only demand that the vertex cover size is at least |V (H)|, the number of vertices in H . One can 
wonder if this bound can be tightened, as in Theorem 27, where we only demand that the vertex cover size is at least 
|VC(H)| + 1. The problem in Theorem 28, is that we might split a vertex of high degree. To get a valid vertex cover without 
it having linear size in n, the only option is to include at least all adjacencies of the center vertices. This makes it that the 
vertex cover can get a size up to |V (H)|, and so this is the only safe demand.

For clarity, we summarize these lower bounds for bounded vertex cover size in a corollary.

Corollary 29. If H is such that either:

1. H is a connected graph with at least 3 edges and a vertex of degree 2, or,
2. H is a graph with a vertex of degree at least 2 for which every neighbour has an equal or larger degree,

then any algorithm for solving H-free Deletion [VC] on a graph G with |VC(G)| ≥ |V (H)| requires �(n/p) bits when using p passes 
in the VA/EA models, even when the solution size � = 0.

Corollary 29 gives a lower bound for Cograph Deletion [VC], as this is H-free Deletion [VC] with H = {P4}. Examples for 
which Corollary 29 does not give a lower bound include Cluster Vertex Deletion [VC] (indeed, then a kernel is known [13]), 
or more generally, H-free Deletion [VC] when H is a star.

We observe that these constructions can be straightforwardly modified to apply to the problems of Odd Cycle Transver-

sal [VC], Even Cycle Transversal [VC], Feedback Vertex Set [VC], so these problems admit a similar lower bound to 
Corollary 29.

5. Conclusion

We have seen different streaming algorithms and lower bounds for �-free Deletion and its more specific forms, making 
use of the minimum vertex cover as a parameter. We have seen the potency of the AL streaming model in combination with 
the vertex cover, where in other streaming models lower bounds arise. It is interesting that for very local structures like a P3, 
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this combination works effortlessly, giving a very efficient memory-optimal algorithm. For more general structures troubles 
arise, but nonetheless, we can solve the more general problems with a many-pass, low-memory approach. Alternatively, the 
adaptations of kernels give rise to a few-pass, high-memory algorithm, which provides a possible trade-off when choosing 
an algorithm.

We also propose the following open problems. Can lower bounds be found expressing a pass/memory trade-off in the 
vertex cover size for the �-free Deletion [VC] problem? Or alternatively, can we find an upper bound for �-free Dele-

tion [VC] using O(K log n) bits of memory but only a polynomial in K number of passes? Essentially, here we ask whether 
or not our algorithm is reasonably tight, or can be improved to only use a polynomial number of passes in K . A lower 
bound expressing a trade-off in terms of the vertex cover size is a standalone interesting question, as most lower bound 
statements about streaming algorithms express a trade-off in terms of n.

We also ask about the unparameterized streaming complexity of Cluster Vertex Deletion in the AL model. While lower 
bounds for most other �-free Deletion problems in the AL model follow from our work (Theorem 26) and earlier work of 
Bishnu et al. [13], this appears an intriguing open case.

Finally, we ask if there is a 2o(K log K ) lower bound for �-free Deletion [VC] when � is characterized by few adjacencies?
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