1,179 research outputs found

    Evolvable Neuronal Paths: A Novel Basis for Information and Search in the Brain

    Get PDF
    We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity. The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the identification of such informational paths in the brain

    Mismatch responses: Probing probabilistic inference in the brain

    Get PDF
    Sensory signals are governed by statistical regularities and carry valuable information about the unfolding of environmental events. The brain is thought to capitalize on the probabilistic nature of sequential inputs to infer on the underlying (hidden) dynamics driving sensory stimulation. Mis-match responses (MMRs) such as the mismatch negativity (MMN) and the P3 constitute prominent neuronal signatures which are increasingly interpreted as reflecting a mismatch between the current sensory input and the brain’s generative model of incoming stimuli. As such, MMRs might be viewed as signatures of probabilistic inference in the brain and their response dynamics can provide insights into the underlying computational principles. However, given the dominance of the auditory modality in MMR research, the specifics of brain responses to probabilistic sequences across sensory modalities and especially in the somatosensory domain are not well characterized. The work presented here investigates MMRs across the auditory, visual and somatosensory modality by means of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). We designed probabilistic stimulus sequences to elicit and characterize MMRs and employed computational modeling of response dynamics to inspect different aspects of the brain’s generative model of the sensory environment. In the first study, we used a volatile roving stimulus paradigm to elicit somatosensory MMRs and performed single-trial modeling of EEG signals in sensor and source space. Model comparison suggested that responses reflect Bayesian inference based on the estimation of transition probability and limited information integration of the recent past in order to adapt to a changing environment. The results indicated that somatosensory MMRs reflect an initial mismatch between sensory input and model beliefs represented by confidence-corrected surprise (CS) followed by model adjustment dynamics represented by Bayesian surprise (BS). For the second and third study we designed a tri-modal roving stimulus paradigm to delineate modality specific and modality general features of mismatch processing. Computational modeling of EEG signals in study 2 suggested that single-trial dynamics reflect Bayesian inference based on estimation of uni-modal transition probabilities as well as cross-modal conditional dependencies. While early mismatch processing around the MMN tended to reflect CS, later MMRs around the P3 rather reflect BS, in correspondence to the somatosensory study. Finally, the fMRI results of study 3 showed that MMRs are generated by an interaction of modality specific regions in higher order sensory cortices and a modality general fronto-parietal network. Inferior parietal regions in particular were sensitive to expectation violations with respect to the cross-modal contingencies in the stimulus sequences. Overall, our results indicate that MMRs across the senses reflect processes of probabilistic inference in a complex and inherently multi-modal environment.Sensorische Signale sind durch statistische Regularitäten bestimmt und beinhalten wertvolle Informationen über die Entwicklung von Umweltereignissen. Es wird angenommen, dass das Gehirn die Wahrscheinlichkeitseigenschaften sequenzieller Reize nutzt um auf die zugrundeliegenden (verborgenen) Dynamiken zu schließen, welche sensorische Stimulation verursachen. Diskrepanz-Reaktionen ("Mismatch responses"; MMRs) wie die "mismatch negativity" (MMN) und die P3 sind bekannte neuronale Signaturen die vermehrt als Signale einer Diskrepanz zwischen der momentanen sensorischen Einspeisung und dem generativen Modell, welches das Gehirn von den eingehenden Reizen erstellt angesehen werden. Als solche können MMRs als Signaturen von wahrscheinlichkeitsbasierter Inferenz im Gehirn betrachtet werden und ihre Reaktionsdynamiken können Einblicke in die zugrundeliegenden komputationalen Prinzipien geben. Angesichts der Dominanz der auditorischen Modalität in der MMR-Forschung, sind allerdings die spezifischen Eigenschaften von Hirn-Reaktionen auf Wahrscheinlichkeitssequenzen über sensorische Modalitäten hinweg und vor allem in der somatosensorischen Modalität nicht gut charakterisiert. Die hier vorgestellte Arbeit untersucht MMRs über die auditorische, visuelle und somatosensorische Modalität hinweg anhand von Elektroenzephalographie (EEG) und funktioneller Magnetresonanztomographie (fMRT). Wir gestalteten wahrscheinlichkeitsbasierte Reizsequenzen, um MMRs auszulösen und zu charakterisieren und verwendeten komputationale Modellierung der Reaktionsdynamiken, um verschiedene Aspekte des generativen Modells des Gehirns von der sensorischen Umwelt zu untersuchen. In der ersten Studie verwendeten wir ein volatiles "Roving-Stimulus"-Paradigma, um somatosensorische MMRs auszulösen und modellierten die Einzel-Proben der EEG-Signale im sensorischen und Quell-Raum. Modellvergleiche legten nahe, dass die Reaktionen Bayes’sche Inferenz abbilden, basierend auf der Schätzung von Transitionswahrscheinlichkeiten und limitierter Integration von Information der jüngsten Vergangenheit, welche eine Anpassung an Umweltänderungen ermöglicht. Die Ergebnisse legen nahe, dass somatosen-sorische MMRs eine initiale Diskrepanz zwischen sensorischer Einspeisung und Modellüberzeugung reflektieren welche durch "confidence-corrected surprise" (CS) repräsentiert ist, gefolgt von Modelanpassungsdynamiken repräsentiert von "Bayesian surprise" (BS). Für die zweite und dritte Studie haben wir ein Tri-Modales "Roving-Stimulus"-Paradigma gestaltet, um modalitätsspezifische und modalitätsübergreifende Eigenschaften von Diskrepanzprozessierung zu umreißen. Komputationale Modellierung von EEG-Signalen in Studie 2 legte nahe, dass Einzel-Proben Dynamiken Bayes’sche Inferenz abbilden, basierend auf der Schätzung von unimodalen Transitionswahrscheinlichkeiten sowie modalitätsübergreifenden bedingten Abhängigkeiten. Während frühe Diskrepanzprozessierung um die MMN dazu tendierten CS zu reflektieren, so reflektierten spätere MMRs um die P3 eher BS, in Übereinstimmung mit der somatosensorischen Studie. Abschließend zeigten die fMRT-Ergebnisse der Studie 3 dass MMRs durch eine Interaktion von modalitätsspezifischen Regionen in sensorischen Kortizes höherer Ordnung mit einem modalitätsübergreifenden fronto-parietalen Netzwerk generiert werden. Inferior parietale Regionen im Speziellen waren sensitiv gegenüber Erwartungsverstoß in Bezug auf die modalitätsübergreifenden Wahrscheinlichkeiten in den Reizsequenzen. Insgesamt weisen unsere Ergebnisse darauf hin, dass MMRs über die Sinne hinweg Prozesse von wahrscheinlichkeitsbasierter Inferenz in einer komplexen und inhärent multi-modalen Umwelt darstellen

    The brain as a generative model: information-theoretic surprise in learning and action

    Get PDF
    Our environment is rich with statistical regularities, such as a sudden cold gust of wind indicating a potential change in weather. A combination of theoretical work and empirical evidence suggests that humans embed this information in an internal representation of the world. This generative model is used to perform probabilistic inference, which may be approximated through surprise minimization. This process rests on current beliefs enabling predictions, with expectation violation amounting to surprise. Through repeated interaction with the world, beliefs become more accurate and grow more certain over time. Perception and learning may be accounted for by minimizing surprise of current observations, while action is proposed to minimize expected surprise of future events. This framework thus shows promise as a common formulation for different brain functions. The work presented here adopts information-theoretic quantities of surprise to investigate both perceptual learning and action. We recorded electroencephalography (EEG) of participants in a somatosensory roving-stimulus paradigm and performed trial-by-trial modeling of cortical dynamics. Bayesian model selection suggests early processing in somatosensory cortices to encode confidence-corrected surprise and subsequently Bayesian surprise. This suggests the somatosensory system to signal surprise of observations and update a probabilistic model learning transition probabilities. We also extended this framework to include audition and vision in a multi-modal roving-stimulus study. Next, we studied action by investigating a sensitivity to expected Bayesian surprise. Interestingly, this quantity is also known as information gain and arises as an incentive to reduce uncertainty in the active inference framework, which can correspond to surprise minimization. In comparing active inference to a classical reinforcement learning model on the two-step decision-making task, we provided initial evidence for active inference to better account for human model-based behaviour. This appeared to relate to participants’ sensitivity to expected Bayesian surprise and contributed to explaining exploration behaviour not accounted for by the reinforcement learning model. Overall, our findings provide evidence for information-theoretic surprise as a model for perceptual learning signals while also guiding human action.Unsere Umwelt ist reich an statistischen Regelmäßigkeiten, wie z. B. ein plötzlicher kalter Windstoß, der einen möglichen Wetterumschwung ankündigt. Eine Kombination aus theoretischen Arbeiten und empirischen Erkenntnissen legt nahe, dass der Mensch diese Informationen in eine interne Darstellung der Welt einbettet. Dieses generative Modell wird verwendet, um probabilistische Inferenz durchzuführen, die durch Minimierung von Überraschungen angenähert werden kann. Der Prozess beruht auf aktuellen Annahmen, die Vorhersagen ermöglichen, wobei eine Verletzung der Erwartungen einer Überraschung gleichkommt. Durch wiederholte Interaktion mit der Welt nehmen die Annahmen mit der Zeit an Genauigkeit und Gewissheit zu. Es wird angenommen, dass Wahrnehmung und Lernen durch die Minimierung von Überraschungen bei aktuellen Beobachtungen erklärt werden können, während Handlung erwartete Überraschungen für zukünftige Beobachtungen minimiert. Dieser Rahmen ist daher als gemeinsame Bezeichnung für verschiedene Gehirnfunktionen vielversprechend. In der hier vorgestellten Arbeit werden informationstheoretische Größen der Überraschung verwendet, um sowohl Wahrnehmungslernen als auch Handeln zu untersuchen. Wir haben die Elektroenzephalographie (EEG) von Teilnehmern in einem somatosensorischen Paradigma aufgezeichnet und eine trial-by-trial Modellierung der kortikalen Dynamik durchgeführt. Die Bayes'sche Modellauswahl deutet darauf hin, dass frühe Verarbeitung in den somatosensorischen Kortizes confidence corrected surprise und Bayesian surprise kodiert. Dies legt nahe, dass das somatosensorische System die Überraschung über Beobachtungen signalisiert und ein probabilistisches Modell aktualisiert, welches wiederum Wahrscheinlichkeiten in Bezug auf Übergänge zwischen Reizen lernt. In einer weiteren multimodalen Roving-Stimulus-Studie haben wir diesen Rahmen auch auf die auditorische und visuelle Modalität ausgeweitet. Als Nächstes untersuchten wir Handlungen, indem wir die Empfindlichkeit gegenüber der erwarteten Bayesian surprise betrachteten. Interessanterweise ist diese informationstheoretische Größe auch als Informationsgewinn bekannt und stellt, im Rahmen von active inference, einen Anreiz dar, Unsicherheit zu reduzieren. Dies wiederum kann einer Minimierung der Überraschung entsprechen. Durch den Vergleich von active inference mit einem klassischen Modell des Verstärkungslernens (reinforcement learning) bei der zweistufigen Entscheidungsaufgabe konnten wir erste Belege dafür liefern, dass active inference menschliches modellbasiertes Verhalten besser abbildet. Dies scheint mit der Sensibilität der Teilnehmer gegenüber der erwarteten Bayesian surprise zusammenzuhängen und trägt zur Erklärung des Explorationsverhaltens bei, das jedoch nicht vom reinforcement learning-Modell erklärt werden kann. Insgesamt liefern unsere Ergebnisse Hinweise für Formulierungen der informationstheoretischen Überraschung als Modell für Signale wahrnehmungsbasierten Lernens, die auch menschliches Handeln steuern

    Computational neuroimaging strategies for single patient predictions

    Get PDF
    AbstractNeuroimaging increasingly exploits machine learning techniques in an attempt to achieve clinically relevant single-subject predictions. An alternative to machine learning, which tries to establish predictive links between features of the observed data and clinical variables, is the deployment of computational models for inferring on the (patho)physiological and cognitive mechanisms that generate behavioural and neuroimaging responses. This paper discusses the rationale behind a computational approach to neuroimaging-based single-subject inference, focusing on its potential for characterising disease mechanisms in individual subjects and mapping these characterisations to clinical predictions. Following an overview of two main approaches – Bayesian model selection and generative embedding – which can link computational models to individual predictions, we review how these methods accommodate heterogeneity in psychiatric and neurological spectrum disorders, help avoid erroneous interpretations of neuroimaging data, and establish a link between a mechanistic, model-based approach and the statistical perspectives afforded by machine learning

    MULTIVARIATE MODELING OF COGNITIVE PERFORMANCE AND CATEGORICAL PERCEPTION FROM NEUROIMAGING DATA

    Get PDF
    State-of-the-art cognitive-neuroscience mainly uses hypothesis-driven statistical testing to characterize and model neural disorders and diseases. While such techniques have proven to be powerful in understanding diseases and disorders, they are inadequate in explaining causal relationships as well as individuality and variations. In this study, we proposed multivariate data-driven approaches for predictive modeling of cognitive events and disorders. We developed network descriptions of both structural and functional connectivities that are critical in multivariate modeling of cognitive performance (i.e., fluency, attention, and working memory) and categorical perceptions (i.e., emotion, speech perception). We also performed dynamic network analysis on brain connectivity measures to determine the role of different functional areas in relation to categorical perceptions and cognitive events. Our empirical studies of structural connectivity were performed using Diffusion Tensor Imaging (DTI). The main objective was to discover the role of structural connectivity in selecting clinically interpretable features that are consistent over a large range of model parameters in classifying cognitive performances in relation to Acute Lymphoblastic Leukemia (ALL). The proposed approach substantially improved accuracy (13% - 26%) over existing models and also selected a relevant, small subset of features that were verified by domain experts. In summary, the proposed approach produced interpretable models with better generalization.Functional connectivity is related to similar patterns of activation in different brain regions regardless of the apparent physical connectedness of the regions. The proposed data-driven approach to the source localized electroencephalogram (EEG) data includes an array of tools such as graph mining, feature selection, and multivariate analysis to determine the functional connectivity in categorical perceptions. We used the network description to correctly classify listeners behavioral responses with an accuracy over 92% on 35 participants. State-of-the-art network description of human brain assumes static connectivities. However, brain networks in relation to perception and cognition are complex and dynamic. Analysis of transient functional networks with spatiotemporal variations to understand cognitive functions remains challenging. One of the critical missing links is the lack of sophisticated methodologies in understanding dynamics neural activity patterns. We proposed a clustering-based complex dynamic network analysis on source localized EEG data to understand the commonality and differences in gender-specific emotion processing. Besides, we also adopted Bayesian nonparametric framework for segmentation neural activity with a finite number of microstates. This approach enabled us to find the default network and transient pattern of the underlying neural mechanism in relation to categorical perception. In summary, multivariate and dynamic network analysis methods developed in this dissertation to analyze structural and functional connectivities will have a far-reaching impact on computational neuroscience to identify meaningful changes in spatiotemporal brain activities

    Expecting space:an enactive and active inference approach to transitions

    Get PDF

    A Predictor-Informed Multi-Subject Bayesian Approach for Dynamic Functional Connectivity

    Full text link
    Time Varying Functional Connectivity (TVFC) investigates how the interactions among brain regions vary over the course of an fMRI experiment. The transitions between different individual connectivity states can be modulated by changes in underlying physiological mechanisms that drive functional network dynamics, e.g., changes in attention or cognitive effort as measured by pupil dilation. In this paper, we develop a multi-subject Bayesian framework for estimating dynamic functional networks as a function of time-varying exogenous physiological covariates that are simultaneously recorded in each subject during the fMRI experiment. More specifically, we consider a dynamic Gaussian graphical model approach, where a non-homogeneous hidden Markov model is employed to classify the fMRI time series into latent neurological states, borrowing strength over the entire time course of the experiment. The state-transition probabilities are assumed to vary over time and across subjects, as a function of the underlying covariates, allowing for the estimation of recurrent connectivity patterns and the sharing of networks among the subjects. Our modeling approach further assumes sparsity in the network structures, via shrinkage priors. We achieve edge selection in the estimated graph structures, by introducing a multi-comparison procedure for shrinkage-based inferences with Bayesian false discovery rate control. We apply our modeling framework on a resting-state experiment where fMRI data have been collected concurrently with pupillometry measurements, leading us to assess the heterogeneity of the effects of changes in pupil dilation, previously linked to changes in norepinephrine-containing locus coeruleus, on the subjects' propensity to change connectivity states
    • …
    corecore