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Probabilistic Encoding of Vocalizations in Macaque Ventral
Lateral Prefrontal Cortex
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We examined strategies for classifying macaque vocalizations into their corresponding categories, as well as whether or not there was
evidence that prefrontal auditory neurons were related to this process. We found that static estimates of the spectral and temporal
contrasts of the calls were not effective features for discriminating among the call classes. A hidden Markov model (HMM), however, was
more effective at discriminating among the call classes, reaching a performance of almost 75% correct. Finally, we found that the
responses of prefrontal auditory neurons could be predicted more effectively as linear functions of the probabilistic output of the HMM
than as linear functions of the spectral features of the calls. This provides evidence that, for call recognition, the macaque auditory system
likely performs dynamic processing of vocalizations, and that prefrontal auditory neurons carry a signal related to the output of this
processing.
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Introduction
Understanding sensory processing in the brain is a complex
problem. Although representations close to sensory receptors can
be reasonably well characterized by models that assume the re-
sponses are linearly related to simple features of the stimuli (Kim
and Young, 1994; Pillow et al., 2005), these models fail as early as
the cochlear nucleus (Nelken et al., 1997) and the inferior collicu-
lus (Escabi and Schreiner, 2002) in the auditory system. Many
laboratories are investigating the special problems associated
with natural stimuli and sensory systems (Theunissen et al., 2000;
Vinje and Gallant, 2000; Hsu et al., 2004; Machens et al., 2004).
An ecologically important class of natural stimuli for primates is
their vocalizations (Ghazanfar and Hauser, 1999, 2001; Seyfarth
et al., 2005), and an extensive body of behavioral research has
shown that primates, including rhesus macaques, discriminate
among different calls (Dittus, 1984; Gouzoules et al., 1984;
Cheney and Seyfarth, 1988; Gouzoules et al., 1998). These studies
have also provided evidence that the calls provide semantic
meaning (i.e., they are mapped to symbolic representations or
referents) (Seyfarth et al., 1980; Macedonia and Evans, 1993;
Zuberbühler et al., 1997, 1999; Hauser, 1998) (but see Owren and
Rendall, 2001), making primate vocalizations an important
model system for studying human language (Seyfarth et al.,
2005).

How does perceptual processing map the sound pressure

waveform of calls from different classes into a percept? The first
step toward answering this question is to understand which fea-
tures of the calls are useful for distinguishing among categories. If
a feature is not useful for distinguishing among the classes of calls,
it would not be a useful feature for the auditory system to encode
for the purpose of call discrimination. Behavioral research sug-
gests that primates use multiple features to discriminate among
calls, including the interpulse interval in noisy calls, the overall
amplitude envelope and the location of inflections in the fre-
quency contour (Hauser et al., 1998; Le Prell and Moody, 2000;
Ghazanfar et al., 2001a, 2002). Previous research on the primate
auditory cortex suggests that the frequency (Barbour and Wang,
2003) or temporal contrast of sounds is being represented. An-
other possibility, not mutually exclusive to the others, is that the
auditory system is performing a dynamic analysis of the sound,
taking into account the time-varying structure of its spectral fea-
tures, which can be modeled by a hidden Markov model (HMM)
(Rabiner, 1989).

In this study, we began by estimating how well macaque vo-
calizations could be discriminated using spectral and temporal
contrast, and compared these results to the performance ob-
tained by an HMM. These analyses showed that the HMM per-
formed better than the spectral and temporal contrast for dis-
criminating among calls from different classes. Although this
doesn’t necessarily imply that the auditory system is explicitly
implementing an HMM, it does imply that the HMM models
reasonably well, at a formal level, the computation being per-
formed by the auditory system during the recognition of vocal-
izations. After this we compared encoding models which tried to
predict the time-varying response of neurons in ventral-lateral
prefrontal cortex (VLPFC) based on either linear functions of the
time-frequency representation of the sounds, or the time-varying
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probabilistic output of the HMM. We found that linear functions
of the probabilistic HMM output were more effective at predict-
ing the firing rates of neurons than linear functions of the spectral
representations. This suggests that the computations performed
by the HMM might approximate the computations performed in
the brain, between the time-frequency representation present in
the cochlea, and the representation in prefrontal auditory
neurons.

Materials and Methods
Electrophysiological recording methods. We recorded extracellular neuro-
nal activity from the VLPFC of two awake, behaving macaque monkeys
(Macaca mulatta) in response to a set of species-specific vocalizations.
Single and multiunit activity was recorded from chronically implanted
recording chambers centered over the VLPFC auditory region (Roman-
ski et al., 1999; Romanski and Goldman-Rakic, 2002). All surgical, be-
havioral and electrophysiological procedures were in accordance with
National Institutes of Health guidelines and with University of Rochester
Committee on Animal Resources and have been described previously
(Romanski et al., 2005).

Macaque vocalizations. Monkey vocalizations were provided by M. D.
Hauser (Harvard University, Boston, MA) and included a large reper-
toire of rhesus macaque vocalizations recorded on the island of Cayo
Santiago, Puerto Rico. The vocalization type, context and caller identity
of all vocalizations have been characterized. The types of vocalizations
presented in the current experiment included aggressive calls (i.e., barks
and pant threats), coos, copulation screams, gekkers, grunts, girneys,
harmonic arches, shrill barks, submissive screams, and warbles. These
vocalization categories are based on the behavioral context in which the
vocalizations were emitted, as well as spectral features of the calls.

All calls were presented to the animals at their original sampling fre-
quencies, which were between 20 and 44.1 kHz, but were subsampled to
20 kHz for the analyses performed with the HMM. Subsampling was
performed using the “resample” command of Matlab. This function first
low-pass filters, and then subsamples the signal, when it has to down-
sample. There is little information in the calls above 10 kHz, so the
subsampling helps reduce the dimensionality of the calls without throw-
ing away information. Furthermore, it is necessary to have all calls rep-
resented at the same sampling rate for comparison of frequency contrast
values across calls.

Task. Neuronal activity was acquired and digitized during a passive
listening task in which monkeys fixated a central point on a monitor
while vocalization and nonvocalization stimuli were presented from
speakers (Audix, PH5-vs), located 30 inches in front of the monkeys.
Sounds were presented at 60 –75 dB sound pressure level measured at the
level of the monkey’s ears. Eye position was continuously monitored
using either an implanted scleral search coil (one animal) or an ISCAN
(Burlington, MA) infrared pupil monitoring system. The animals were
required to fixate a central point for the entire trial, which included a 500
ms pretrial fixation period, the stimulus presentation, and a 500 ms
poststimulus fixation period. A juice reward was delivered at the termi-
nation of the poststimulus fixation period and the fixation requirement
was then released. Losing fixation at any time during the task resulted in
an aborted trial. There was a 2 s intertrial interval.

Each isolated unit (n � 301) was tested with one of several lists of 10
vocalizations, including one vocalization from each of the 10 categories.
Each cell was tested with a single list, with 9 –12 repetitions of each call in
a randomized block design. For the next cell isolated, the next stimulus
list was used and, thus, the population of VLPFC cells was tested with a
large stimulus ensemble spread over the population of cells. Results re-
ported here are based on only the units (n � 122) that were significant for
call type in an ANOVA ( p � 0.05) of the firing rate of the neuron. Here
we were interested in whether or not we could predict the temporal
structure of the response of the neurons which responded to the
vocalizations.

Analysis of spectral and temporal contrast. The spectral and temporal
contrasts of each call were characterized by first calculating the spectro-
gram of each call. Spectrograms were calculated using a 512 point Black-

man windowed discrete Fourier transform, at an interval of 100 samples.
They were subsequently filtered using a symmetric two-dimensional
(2D) Gaussian window with an SD of 1.3 samples. Modulation spectra
were then calculated by taking the 2D Fourier transform of the spectro-
gram, and computing its power (Singh et al., 2003; Hsu et al., 2004). The
average frequency modulation was then calculated by averaging along
the temporal axis of the modulation spectra, and the average temporal
modulation was calculated by averaging along the frequency axis. To
collapse these average vectors into a scalar estimate of the contrast, each
average was normalized so that it summed to one, and then its entropy
was calculated. The entropy associated with a particular call, c, which is
an estimate of the amount of variability in a particular dimension, is
given by the following:

H�c� � � �
i�1

N

pc�i� ln pc�i�, (1)

where N is the number of dimensions along either the spectral or the
temporal axis of the modulation spectra and pc(i) is the value of the
contrast in dimension i. Because the calls were of varying lengths we
zero-padded each spectrogram, to make all spectrograms the same
length. The zero padding makes the temporal modulation dimension the
same for all modulation spectra. Because zero-padding the spectrograms
introduces smoothing in the modulation spectra, we smoothed all the
modulation spectra to normalize the amount of resolution obtained
across calls of different lengths. This did not have a strong effect on our
classification performance, and because the spectral and temporal con-
trast were not found to be good measures for discrimination, any residual
discriminability attributable to call length does not impact any of our
scientific claims. Specifically, we tried combinations of zero padding and
not zero padding, as well as using the SD of the distribution instead of the
entropy, and including the squares of the predictor variables in the de-
coding analysis, and achieved classification performances from 27 to
40% correct. SD did not tend to work as well, and without zero padding
the classification performance also decreased slightly.

Classification on the spectral and temporal contrast measures was
performed using both linear discriminant analysis (LDA), and k-nearest
neighbor classification (Duda et al., 2001). K-nearest neighbor classifica-
tion was used because LDA is limited to using linear separating hyper-
planes to separate the categories. We found the performance of LDA to be
superior to that of k-nearest neighbors, and so we only report analyses
using LDA in the results. Classification was performed using twofold
cross-validation. Therefore, the set of calls was divided in half and the
discriminant functions were estimated on half the data, then the decod-
ing performance was calculated on the other half of the data. The two
datasets were then switched and the analysis repeated such that all calls
were classified. The number of calls in each category is given in Table 1 by
the row totals.

To extend the average spectral and temporal contrast measures, we
used non-negative matrix factorization (NNMF) (Lee and Seung, 2001)
to extract more information from the modulation spectra. NNMF is
similar to singular value decomposition (SVD) in that it is an algorithm
for factoring matrices into component dimensions. However, NNMF
was used instead of SVD because the calculation of entropy (Eq. 1) re-
quires all positive values. Thus, 20 factors were extracted from each mod-
ulation spectra matrix and the entropy of each of these factors was cal-
culated. This provided a higher dimensional representation of the calls
on which to do classification. As with the results on the average spectral
and temporal contrast, classification was done using LDA.

HMM. The HMM is a statistical tool for characterizing time-varying
stimuli (Rabiner, 1989). The hidden part of the HMM name comes from
the fact that the observations are assumed to come from the hidden states
of the system. The Markov part of the name comes from the fact that the
transition from one hidden state to the next depends only on the previous
hidden state, not hidden states further removed in time. The model has
two sets of variables that have to be fit to the data, the probability distri-
bution of observed values associated with each hidden state and a set of
transition probabilities that describe the probability of transitioning
from one hidden state to another (Fig. 1).
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In the model, the observed variables are generated probabilistically
conditioned on the state of the system, which is hidden and therefore not
directly observed. In the case of the simple example shown in Figure 1a,
the observed variables (O(t)) are the power at each frequency in the
spectrogram at a single point in time. To simplify the exposition, we can
assume that each state corresponds approximately to a pattern of power
in the spectrogram. For example, the initial harmonic segment of this call
could correspond to one state, whereas the frequency sweep could be
represented by a couple of states, depending on the position in the sweep.
Because the probability of observing a particular pattern at a single point
in time in the spectrogram is only dependent on the current state, the
down sweep can be represented by the same states as the up sweep (com-
pare the fourth and sixth examples in spectrogram). The transition prob-
abilities represent the probability of transitioning from one state to the
next (Fig. 1b). Thus, the transition probabilities for the harmonic section
at the beginning of the call reflect the fact that the call tends to stay in this
state for awhile with a high self-transition [i.e., p(s(t � 1) � 1 � s(t) � 1) �
0.6]. They also reflect the fact that when it does transition, it tends to
transition to state 2, which is the first state of the frequency sweep. State
2 also tends to transition to state 3, and state 3 to state 4. Thus, the
frequency sweep is represented by a sequence of states, and the transition
between the states. The hidden states represent probable patterns in the
observable variables (the spectrogram at a single time point), and the
transition probabilities represent the temporal sequence of the states. In
the case of a simple call, like the coo (see Fig. 2), which is harmonic and has
relatively little temporal modulation, a few states will be sufficient to repre-
sent the frequency patterns, and the transition probabilities would reflect the
fact that these calls tend to remain in states for a relatively long time.

All HMM analyses were implemented using the HMM Matlab toolbox
developed by K. P. Murphy (University of British Columbia, Vancouver,
British Columbia, Canada). Model fitting in this toolbox is done by the
expectation maximization algorithm. In our model, the probability dis-
tribution of observed variables is parameterized as a multidimensional
Gaussian distribution conditioned on the hidden state. Specifically,

p�O�t��s�t� � i� � N�mi , Qi�, (2)

where mi is the vector mean of the distribution, and Qi is the covariance
matrix for state i. A separate mean vector and covariance matrix are
estimated for each hidden state. The state transition matrix, A, describes
the probability of transitioning from one state to another and, thus,
contains entries which specify p(s(t � 1) � i � s(t) � j). Once the state
transition matrix and the probability distribution of the observed vari-
ables have been specified for all of the hidden states, the probability, or
likelihood of any sequence of observations, given the model, can be cal-
culated. The log of this quantity, referred to as the log likelihood, will be
used in several places in the manuscript. If we write the sequence of T
observations as follows:

O1,T � O�1�, O�2�, . . . , O�T�, (3)

and collect all of the model parameters in V � (A, m1, Q1, . . . , mH,QH),
where H is the number of hidden states in the model, we can write the

likelihood of the entire sequence of observations
for a given model as, p(O1,T � V). Correspond-
ingly, we can consider a subset of the observations
up to time t, as p(O1,t � V). These probabilities are
estimated in the toolbox using the forward-
backward algorithm (Rabiner, 1989).

The HMM that was implemented followed
closely HMMs used in speech recognition
(Huang et al., 2001). The first step in the imple-
mentation of the HMM was preprocessing of the
vocalizations to generate a series of time-varying
observables for each call. We did not use the spec-
trogram, but rather a cepstral representation of
the sound (Fig. 1d), because this has been found
to be more efficient. Statistically, this is closely re-
lated to the log of the spectrogram. Specifically,
the time sequence of observables, O1,T, was gen-
erated by first calculating a spectrogram, as de-

scribed above. Each time slice of the spectrogram was then passed through a
bank of triangular filters whose width increased with frequency according to
mel frequency scaling (Huang et al., 2001). These filters overlapped such that
filters to the left and right of a central filter tapered to zero at the center point
of the central filter. Furthermore, the left and right endpoints of each filter
were evenly distributed in mel frequency space, which is related to untrans-
formed frequency space by B( f) � 1125ln(1 � f/700). This generated a
representation similar to that seen in the auditory nerve (Evans, 1972), as
well as significantly reducing the dimensionality of the observation vector, as
we used a rather small number of filters (see below). The discrete cosine
transform (DCT) was then computed on the log transform of the filter
outputs. The DCT of the log filter outputs results in a representation known
as the cepstrum (Huang et al., 2001), and the specific implementation we
calculated is known as the mel-frequency cepstrum (Huang et al., 2001),
because of the increasing bandwidth of the filters with increasing center
frequency.

Several parameters of the HMMs had to be optimized for classifica-
tion. These parameters were the number of filters in the filter bank, F, the
number of coefficients of the cepstrum that were retained, C, whether or
not the first and second derivative of the observable variable were in-
cluded as an observable, D, and the number of hidden states for each
class, H. The number of hidden states was optimized by first splitting the
dataset for each class of calls in half, with half of the calls forming an
estimate set and half a test set. The HMM was then fit repeatedly to the
estimate data with 2–30 hidden states. Because the model-fitting proce-
dure is subject to local minima, every model was fit 10 times on the
estimate data with random initial conditions, and the fit resulting in the
maximum log likelihood on the estimate data was used. The HMMs with
the largest log likelihood were then applied to the test data, which had not
been used to fit the model. A plot of the log likelihood of the test data
versus the number of hidden states was produced. Either the maximum
of this curve or the point at which the change in likelihood was �0.1%
was selected as the appropriate number of hidden states for the model.
Thus, a different number of hidden states was used for each class.

The remaining parameters, F, C, and D, were optimized by selecting
the parameter values that maximized classification performance, again
using cross-validation. For classification, a separate HMM is fit to each
class of calls. Thus, we can calculate the probability of the observation
sequence for an individual call, for each separate HMM, as p(O1,T � Vj),
where j refers to the model parameters for class j. Individual calls were
classified by running them through the 10 HMMs, one for each class, and
calculating which HMM most probably gave rise to the call. Formally, we
can represent this as follows:

ĉ � arg max
j

p�O1,T�Vj�, (4)

where ĉ is the class estimate for the call with the sequence of observations
O1,T and j � (1,. . . ,10) indexes the HMM fit to each call class. When
classification was performed, the dataset was split in half, and the models
were estimated on the first half of the data using the number of hidden

Table 1. Classification table for best temporal and frequency entropy

Predicted category

Call category AG CO CS GK GY GT HA SB SC WB

AG 22 4 1 3 11 9 0 1 5 2
CO 1 18 1 0 3 0 3 2 3 0
CS 3 0 29 15 1 10 5 9 11 0
GK 0 0 3 7 4 5 0 3 2 1
GY 5 2 2 3 6 3 0 2 2 3
GT 3 0 1 3 2 30 2 2 4 1
HA 0 0 3 0 1 0 7 2 5 2
SB 2 0 2 2 1 4 1 4 5 0
SC 3 0 8 5 7 3 7 1 12 2
WB 4 0 0 0 0 0 0 0 0 1

Correct, 0.42. WB, Warble; CO, coo; GK, gekker; GY, girney; SB, shrill bark; CS, copulation scream; SC, submissive scream; AG, aggressive call; GT, grunts; HA,
harmonic arches.

Averbeck and Romanski • HMMs and Vocalization Encoding J. Neurosci., October 25, 2006 • 26(43):11023–11033 • 11025



states determined as described above. Classification was then done on the
other half of the data. The test and estimate halves were then switched
and the process repeated. In this way, the percent correct classification
performance could be calculated.

The number of filters, F, used in the filter bank controlled the dimen-
sionality of the observable vector. The number of filters was varied first
between 8 and 32 in steps of eight. In each case, the number of hidden
states was optimized as described above, and the classification perfor-
mance was computed. In all cases, eight filters was optimal. To refine this
estimate, we redid the analysis using 6 –12 filters. In this case, 10 filters
proved to be optimal, although similar performance was obtained with
6 –10 filters. We also found, similar to the results for speech recognition
(Huang et al., 2001), that if we retained only the first C � F/2 � 1
components of the cepstrum, classification was as good as when we retained
all of the components. Thus, in the case of F � 10 filter outputs, the first 10/2

� 1 � 6 cepstral coefficients were used, a fairly compact representation.
Although the HMM analyses were performed on this reduced cepstral rep-
resentation, predictions of the time-varying neural responses were per-
formed using the full 10 cepstral components (see Fig. 6).

The final optimization that was performed was a determination of
whether or not including the first and second derivatives of the observ-
able variables would improve classification performance. These deriva-
tives are a way to get around the Markov assumption of the model with-
out building in higher-order transition probabilities explicitly. Because
of the Markov assumption, the transition to the next hidden state is only
dependent on the previous hidden state. By including the derivatives,
temporal information beyond the previous time step was included in the
observable variables. We found that this improved classification perfor-
mance slightly. Thus, when we included the first and second deriva-
tives and used 10 filters in our filter bank, our final observable vector was
(10/2 � 1) � 3 � 18 for each time slice.

Cluster and multidimensional scaling (MDS) analyses were performed
on the confusion matrix (Table 2), using the cluster and mdscale func-
tions in the Matlab statistics toolbox.

Decoding analysis using neural responses. LDA was also used to classify
the single-trial responses of individual neurons with respect to the stim-
uli that generated them. We showed in previous work (Averbeck et al.,
2003; Romanski et al., 2005) that LDA is an effective means of character-
izing the information in neural responses. All classification was done on
a 300 ms window of neural responses, starting 75 ms after stimulus onset.
We divided this interval into a variable number of bins, and performed
the classification analysis separately for each binwidth. As the bin width
became smaller, the number of bins increased. If the information in the
neural response is present at a coarse time scale, dividing the response
into a smaller number of bins would not increase the amount of infor-
mation extracted. Classification performance was estimated using two-
fold cross-validation. The number of stimuli correctly classified divided
by the total number of stimuli was used as our estimate of percent correct
classification performance.

Predicting the firing rate in 60 ms bins. We used a linear model to
predict the firing rate in 60 ms bins as a function of either the output of
the HMM or the cepstrum coefficients. The following model was fit
across all calls, for each neuron:

r̂�t� � �
k�0

K�1 �
j�1

J

h�k, j�G�t � k � �, j�, (5)

where r̂(t) is the estimated response of the neuron in time bin t, K is the
number of lagged time bins, J (� 10) is the number of stimulus classes or
cepstral coefficients, and � is the response latency of the neuron (always
50 ms, although the results are not sensitive to small changes in this
value). G is either the log-likelihood output by the set of HMMs as a
function of time or the cepstrum coefficients, depending on the analysis.
Because the cepstrum is a linear function of the log transform of the
smoothed spectrogram, fitting a linear model to the cepstrum coeffi-
cients is equivalent to fitting a linear model to the log of the smoothed
spectrogram, and as such, our model is equivalent to previous spectral-
temporal receptive field (STRF) models, except that we used log-scaling
for the width of our frequency filters, whereas absolute difference scaling
was used previously (Theunissen et al., 2000). We varied the number of
lagged time bins K between 1 and 6, and the number of bins that resulted
in the best prediction was used.

Because each stimulus was presented multiple (usually 10) times, we
were able to compute a poststimulus time histogram for each call for each
neuron. Although the model was fit using raw neural responses on indi-
vidual trials, the results reported are the fraction of the variance ac-
counted for, normalized by the fraction of the variance accounted for by
the poststimulus time histogram (PSTH). Specifically,

� �
��r�t� � �r�

2	 � ��r�t� � r̂�t��2	

��r�t� � �r�
2	 � ��r�t� � rPSTH�t��2	

. (6)

Where rpsth is the response estimated as the average across all trials,
without cross-validation, and r̂(t) was estimated using Eq. 5, with cross-

Figure1. HiddenMarkovmodel.a,Probabilityofobservationgivenhiddenstate.Bargraphsshow
the hidden state probabilities that correspond to each time slice in the spectrogram. Asterisks at the
bottom of spectrogram indicate points in the up sweep and down sweep that are similar spectrally. b,
Transition probability matrix. This matrix shows the probability of transitioning from one state to
another. c, Schematic of model. Circles correspond to hidden (s) or observed ( O) variables. Lines
indicate statistical dependencies. Hidden states depend only on previous hidden states, and observed
variables depend only on hidden states at the same point in time. d, Log filter output and cepstral
coefficients for two example calls. HMM was fit to the first half of the DCT coefficients.
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validation. Thus, the variance in the second term of the numerator was
always estimated on the half of the dataset not used to estimate the model,
whereas the variance in the denominator was estimated using all of the
data. The normalization in the denominator does not affect our compar-
ison between models, it simply allows us to compare the performance of
our model to the best possible performance, which would be obtained
using the PSTH. There is currently no data suggesting that noise, corre-
lated or uncorrelated, unrelated to the average response is carrying infor-
mation (Averbeck and Lee, 2006). The significance of the fit was calcu-
lated using a permutation test. The test was performed by generating 100
bootstrap datasets in which the relation between the responses, r(t), and
the cepstrum or the log-likelihood output by the HMM, G(t,j), were
shuffled. We then computed � in each of the bootstrap datasets, and
estimated where the � in our original, unshuffled dataset fell in this
distribution. If the original � was beyond the 99th percentile of the �s in
the random distribution, we considered it a significant fit.

Finally, there is an important difference between our model fits and
those of most previous researchers (except Machens et al., 2004). We did
not optimize our model to get accurate estimates of the receptive field
itself, we optimized our model to predict the response of the neuron.

With limited data and complex models, these
two goals will not arrive at the same solution.

Results
Classification of calls with static
estimates of spectral and
temporal contrast
We performed analyses on a set of 367
macaque vocalizations, which had been
previously assigned to one of 10 categories
based on the behavioral context in which
they were produced as well as their acous-
tic features (see Materials and Methods).
We began our analyses by examining fea-
tures of these vocalizations that might be
useful for classifying them to one of the 10
categories. The first features considered
were the average spectral and temporal
contrast of the calls. To perform this anal-
ysis, we measured the average spectral and
temporal contrast of each call (Fig. 2) and
used these features to classify the individ-
ual calls to one of the 10 categories. Al-
though these are average measures of the
spectral-temporal features of the calls, the
temporal contrast characterizes the dy-
namics of the spectra, and therefore it
could potentially capture the relevant fea-
tures of the calls. We found that, based on
measures of the spectral and temporal
contrast, we could classify the calls into
their correct categories only 37% of the
time (Fig. 3a). This was because of the
overlap in the distributions of the calls
corresponding to each category (Fig. 3c)
rather than a limitation of the linear de-
coding algorithm we used for classifica-
tion. Thus, the average spectral and tem-
poral contrasts alone do not provide a
good basis for classifying calls to their cor-
rect class. This is not to say that there is not
more information in the modulation
spectra about the calls than what we ex-
tracted using the average spectral and tem-

poral contrast, it is just not straightforward to extract this
information.

The average spectral and temporal contrast measures were
extracted from the modulation spectra of individual calls. These
measures reflect only averages across the individual spectral and
temporal dimensions of the modulation spectra and, thus, ignore
much of the information that is present in the modulation spec-
tra. To extend the analysis, we factored the modulation spectra
matrices using non-negative matrix factorization (Lee and
Seung, 2001) (Fig. 3d). This allowed us to extract much more
information from the modulation spectra. We found that using
additional dimensions of the modulation spectra improved our
ability to classify the calls into their correct categories (Fig. 3a,b).
However, we were still only able to achieve 
42% correct classi-
fication (Table 1). Interestingly, we did find that there was more
information in the temporal features of the vocalizations than in
the spectral features (Fig. 3b). This is consistent with studies of
human speech recognition (Drullman et al., 1994a,b; Drullman,

Table 2. Classification table for HMM

Predicted category

Call category AG CO CS GK GY GT HA SB SC WB

AG 44 3 0 1 2 8 0 0 0 0
CO 2 26 0 0 2 0 1 0 0 0
CS 0 0 52 4 12 2 1 0 11 1
GK 0 0 0 24 0 0 0 0 1 0
GY 3 4 0 0 18 1 0 1 0 1
GT 2 1 0 1 1 41 0 2 0 0
HA 0 2 1 0 0 0 14 1 2 0
SB 1 1 0 0 1 1 0 17 0 0
SC 0 0 6 4 2 0 2 0 31 3
WB 0 3 0 0 0 0 0 0 0 2

Correct, 0.74. WB, Warble; CO, coo; GK, gekker; GY, girney; SB, shrill bark; CS, copulation scream; SC, submissive scream; AG, aggressive call; GT, grunts; HA,
harmonic arches.

Figure 2. Characterization of spectral and temporal contrast. a, Spectrograms showing time frequency representation of the
sounds. b, Modulation spectra computed by taking 2D Fourier transform of spectrograms. c, Average frequency modulation for
each call in a. These are the average across the time axis of the spectrograms. d, Average temporal modulation for each call in a.
These are the average across the frequency axis.

Averbeck and Romanski • HMMs and Vocalization Encoding J. Neurosci., October 25, 2006 • 26(43):11023–11033 • 11027



1995; Shannon et al., 1995) as well as monkey call recognition
(Ghazanfar et al., 2002).

Classification of calls with the HMM
Having determined that static estimates of the spectral and tem-
poral contrasts of calls were not highly effective features for clas-
sification, we turned to a hidden Markov model (Rabiner, 1989),
which allowed us to model the dynamics of the spectral features
of the calls more explicitly. HMMs are general purpose tools for
modeling the statistics of time-varying stimuli, and they have
been shown to be effective in modern speech recognition algo-
rithms (Huang et al., 2001). As we show below, they are also
useful for discriminating among macaque vocalizations. The
HMM characterizes the time-varying statistics of the vocaliza-
tions using a set of hidden states and a transition probability
matrix (see Materials and Methods). The hidden states corre-
spond, in a probabilistic manner, to the spectral features of the
calls in a single time slice, and the transition probability matrix
models the transition from one hidden state to the next. One can
think, approximately, of the different hidden states as the typical
spectral patterns that occur within a class of calls. Classification
was performed by first fitting a separate HMM to each of the 10
classes of calls. Each individual HMM attempts to capture the
relevant spectral and temporal features of a single class of calls.
Thus, the HMM works with the spectral and temporal features of
the calls, as does the spectral and temporal contrast, but it does so
using a much more powerful statistical characterization of the
features. Individual calls were classified by passing them through
each of the 10 HMMs and calculating the probability that each
individual HMM gave rise to the call in question. The more
closely the time-varying statistics of an individual call was pre-

dicted by the HMM from a particular class, the more probable the
call was produced by that HMM, and correspondingly, the more
probable that the call came from that class. Ultimately, the call is
classed to the category that corresponds to the HMM that most
probably generated the call, or more specifically, the HMM which
gives the highest log likelihood for the call.

Before classification with the HMM was performed, the vo-
calizations were prefiltered into a small number of frequency
channels using a filter bank (see Materials and Methods). We
found that the classification performance of the HMM was rela-
tively constant with four to 10 frequency channels, and decreased
when we used only two or �10 channels (Fig. 4a). The rest of the
results are based on the HMM with 10 frequency channels, as this
was the band with the best performance. Furthermore, using 10
frequency channels allowed us to predict the neural responses
using a representation with the same dimensionality as the input
of the HMM, thus facilitating comparison (see below). We found
that the HMM was able to classify the calls at just under 75%
correct (Table 2), which is better than the classification perfor-
mance achieved by static estimates of the spectral and temporal
contrast. Furthermore, information on the call category was
available very early during the call, with the initial performance,
based on only 60 ms of the call, exceeding 50% correct (Fig. 4b).
Investigation of the classification matrix (Table 2) and the MDS
and cluster characterizations of the stimuli (Fig. 4c,d) show that
the HMM was capturing the spectral-temporal features of the
vocalizations obvious in the spectrograms. The cluster and MDS
analyses are both derived from the confusion matrix, and they
show which call categories tend to be more similar to the HMM.
Thus, warbles and coos were often confused by the model, as
these calls are both harmonic calls with relatively little temporal
modulation. This leads to warbles and coos clustering together in

Figure 3. Classification with time and frequency contrast. a, Classification with average time
and frequency contrast is shown by a red line. Performance as a function of the number of
factors extracted by NNMF is shown by the blue and green lines. Classification performance was
assessed as factors were added to the model. Time factors were added first, followed by fre-
quency factors. The first point in both curves is the average. b, Individual performance of time
and frequency factors, as a function of the number of factors. Again, the first point in both curves
is the average. Subsequent points were derived by computing entropy on the NNMF factors
extracted from the modulation spectra matrix. c, Distribution of samples from each of the 10
categories in the average spectral and temporal contrast space. The large overlap in the distri-
butions indicates that these features do not separate the groups well. d, Example factors for two
call types [grunts (GT) and harmonic arches (HA)] extracted by NNMF. The first factor was
generally similar to the average. WB, Warble; CO, coo; GK, gekker; GY, girney; SB, shrill bark; CS,
copulation scream; SC submissive scream; AG, aggressive call.

Figure 4. Classification characteristics of HMM. a, Performance of HMM as a function of
number of frequency channels (F; see Materials and Methods) used to prefilter vocalization. b,
Performance of HMM as a function of time; the fraction correct of calls as a function of time. This
shows that as time evolves, calls are more easily discriminated, and most of the information has
been extracted by a few hundred milliseconds. Also shown is the number of calls at least as long
as the time indicated. c, Clusters derived from the classification matrix. This plot shows that coos
(COs) and warbles (WBs) were often confused, as well as submissive screams (SCs) and copula-
tion screams (CSs). d, Multidimensional scaling representation of the same data. This plot
shows the categorical relationships in a continuous space. Abbreviations are the same as in
Figure 3.

11028 • J. Neurosci., October 25, 2006 • 26(43):11023–11033 Averbeck and Romanski • HMMs and Vocalization Encoding



the cluster analysis (Fig. 4c) and locating adjacent to each other in
the MDS analysis (Fig. 4d). Gekkers and harmonic arches, how-
ever, inhabit very different clusters and locate far apart in the
MDS space and, as such, they were rarely confused by the HMM
algorithm. The classification matrix was relatively sparse, such
that when particular call classes were confused, the confusions
were often caused by heterogeneity in the call classes. For exam-
ple, submissive screams have been subdivided into as many as five
call classes on the basis of particular acoustic features (Gouzoules
et al., 1984), with each of the five subclasses bearing some resem-
blance to calls of other classes that also contain these acoustic
features. This shows up in the classification matrix by the fact that
submissive screams are often misclassified as copulation screams
or gekkers. Examinations of individual misclassified calls showed
that submissive screams that were misclassified as gekkers had the
staccato noisy structure characteristic of gekkers (data not
shown). Some of these limitations in the classification accuracy of
the HMM could be overcome by subdividing the categories into
smaller subcategories, or using hierarchical HMMs, but the per-
formance of the HMM was better than the performance of the
spectral and temporal contrast, and as such, the HMM more
effectively models the probabilistic features of the call classes.

HMM and the Encoding of Vocalizations in PFC
Neural Responses
Having established the HMM as a useful basis for classifying the
macaque vocalizations into their appropriate categories, we
wanted to test the hypothesis that the output of the HMM was,
for the prefrontal cortex, similar to the output of the cochlea for
brain areas early in the auditory processing stream. Specifically,
we wanted to see whether linear functions of the probabilistic
output of the HMM were better able to predict the responses of
prefrontal auditory neurons than linear functions of the time-
frequency representation, which are effective in early auditory
areas. As a preliminary step in this analysis, however, we first
examined the time scale on which the spike trains of PFC neurons
were carrying information about the vocalizations. To do this, we
used the responses of single neurons to predict which call had
been played on individual trials using linear discriminant analysis
(Romanski et al., 2005). Because vocalizations vary in length, we
used a fixed 300 ms response window. To assess the relevant time
scale, we divided this window into smaller bins which were 15–
100 ms in width, and performed the decoding analysis using all of
the bins simultaneously. Thus, if we used 60 ms bins, five indi-
vidual bins were used for prediction. If classification improved
when the 300 ms window was divided into three 100 ms bins,
there was information at the 100 ms time scale that was lost when
the response was averaged over the entire bin. We found that the
maximum amount of information was extracted at a bin width of
60 ms (Fig. 5a). Thus, in the analyses that follow, we will predict
the responses of the neurons using 60 ms bins. We also found
that, on average, most of the information in the 300 ms window
began to accumulate toward the end of the window (Fig. 5b).

When an individual call was processed with the set of HMMs,
each HMM produced the probability as a function of time that
the call came from the corresponding class. Thus, much like the
spectrogram, which is a time-frequency representation of the call,
processing with the set of HMMs produces a time-probability
representation of the call, with one probability corresponding to
each of the call classes. Furthermore, similar to an STRF, a linear
probabilistic receptive field (LPRF) can be used to predict the
time-varying firing rate of the neuron as a function of the output
of the HMM (Fig. 6). In this case, we are predicting the response

of the neuron using the HMM output or the cepstral representa-
tion based on the specific set of calls that was presented to the
neuron, not the entire set of calls that were used in the call clas-
sification analyses given above. We fit LPRFs and STRFs to the
responses of 122 neurons that had been shown previously to
have a significant response to the vocalizations in an ANOVA
(Romanski et al., 2005) ( p � 0.05), and assessed their ability to
predict the neural response in 60 ms time bins using twofold
cross-validation. Thus, we had already confirmed that these neu-
rons were carrying information about the calls in their average
firing rate, and we wanted to see whether we could predict their
time-varying responses.

In all cases, a single STRF and LPRF was fit across all calls. The
STRF was fit using a time-frequency representation with 10 fre-
quency channels, and the LPRF was fit to the 10 classes of calls.
Thus, at each point in time, both predictors had the same degrees
of freedom. We found that in 66% (50%) of the neurons the
LPRF (STRF) better predicted the time-varying response than
expected by chance ( p � 0.01, permutation test), showing that
these models were statistically significantly predicting the tempo-
ral profile of the response in these cases. Additionally, in 48% of
the neurons the responses were significantly predicted by both
the LPRF and the STRF. Thus, there was considerable overlap in
the population of neurons whose responses were well predicted
by the two models, and an additional 34% of neurons could not
be well predicted by either model. Subsequent analyses were
based on the population of 81 neurons that were significant for
one of the models. The average number of bins that was best for
the LPRF was 2.72 (77%, three lags or less), and the average
number that was best for the STRF was 1.72 (89%, three lags or
less). The number of significant lags was small because of the
relatively small number of trials available for estimating the mod-
els, but at a bin width of 60 ms, three lags represent a window of
integration of 180 ms.

In a few cases the LPRF provided a highly accurate prediction
of the average time-varying response of individual neurons to
individual calls (Fig. 7a). In many cases, both the LPRF and the
STRF were able to provide reasonable predictions of the re-
sponses (Fig. 7b). The quality of fit for these example neurons is
indicated in Figure 8. At the population level, the LPRF outper-
formed the STRF in 72% of the significant neurons (Fig. 8). A t
test on the distribution of differences in � between the LPRF and
the STRF (mean �lprf � �strf � 0.06) showed that it was signifi-
cantly different from zero ( p � 0.05). Thus, the time courses of

Figure 5. Classification performance of neurons as a function of bin width. a, Average and
SEM (n � 122 neurons) classification performance as a function of the bin width. All analyses
were performed in the same 300 ms window. SRATE indicates classification performance
achieved by computing the spike rate across a response window equal to the length of the call.
b, Classification performance as a function of time, at a bin width of 60 ms. Classification starts
out relatively low, just above chance. As bins are accumulated in the analysis, the performance
increases, as expected.
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the responses of more of the neurons were
better predicted by the LPRF. We also ex-
amined the difference in the model per-
formance (�lprf � �strf) as a function of
call category (Fig. 9a). We found that 7/10
of the categories were better predicted by
the LPRF. Furthermore, the response of
the neurons to the harmonic arches and
the shrill barks were predicted much bet-
ter by the LPRF than by the STRF. Because
the lengths of the calls differ, we were also
interested in whether neurons which were
better fit by one model or the other tended
to have their strongest responses to partic-
ular classes of calls. We found that there
was heterogeneity in the call class to which
the neurons responded most strongly, and
neurons that responded most strongly to
different classes of calls were better fit by
either the LPRF or the STRF (Fig. 9b).
However, this heterogeneity was only
marginally significantly different between
the two models (� 2 � 16.72; df � 9; p �
0.053). Thus, neurons that responded
strongly to particular classes of calls did
not robustly tend to be fit better by one
model or the other.

Discussion
There were three main findings from our
study. First, static estimates of the spectral
and temporal contrasts were not highly ef-
fective features for discriminating among
the call classes, and as such, if the auditory
system was encoding only these features, it
would not be able to discriminate well among the calls. This is not
to say that these features are not important for other auditory
perceptual tasks. Second, we found that the HMM was more
effective at discriminating among the call classes, reaching a per-
formance of almost 75% correct. Finally, we found that the re-
sponses of prefrontal auditory neurons could be predicted more
effectively as linear functions of the probabilistic output of the
HMM than as linear functions of the spectral features of the calls.

This work is complementary to other ongoing approaches we
are using to identify specific features of the vocalizations that are
being encoded in the responses of prefrontal auditory neurons
(Averbeck and Romonski, 2004). In the present work, we have
dealt only with the second-order statistics of the calls, because we
computed only spectrograms and not bispectra. Using the
higher-order statistics of the calls such as the bispectra, which we
have analyzed in a previous study (Averbeck and Romanski,
2004), would allow us to improve our classification performance
above the 74% we achieved with the HMM. However, using
higher-order statistics for classification can be difficult because of
the explosion in the number of dimensions that must be ana-
lyzed. A more important feature of the higher-order statistics not
explored here is their ability to separate ecologically relevant
stimuli, such as vocalizations, from background noise, which
tends to be Gaussian (Nelken et al., 1999). Furthermore, HMMs
could be fit to calls that have been filtered with only a few inde-
pendent components, and the classification performance could
be compared with the performance of the HMMs fit to the unfil-
tered calls. In this way, we could examine the hypothesis that the

independent components represented features that were useful
for discriminating among the classes of calls (Bartlett et al., 2002).

A number of studies have used behavioral assays and statistical
analyses of the calls to examine which features of primate vocal-
izations the animals use to discriminate among the calls from
various classes (Zoloth et al., 1979; May et al., 1988; Hauser, 1991;
Hauser and Marler, 1993; Hauser et al., 1998; Le Prell and
Moody, 2000; Ghazanfar et al., 2001a,b; Le Prell et al., 2002).
These studies have demonstrated that, for example, the interpulse
interval in noisy calls as well as the temporal direction of the calls
can be relevant for call discrimination (Hauser et al., 1998;
Ghazanfar et al., 2001a). Such features are well modeled by the
HMMs because the duration of the interpulse interval can be
modeled by how long the HMM would remain in a state related
to the interpulse interval, and as such, if this interval was short-
ened, the HMM could detect the call as no longer coming from
the appropriate class. It would be interesting to compare the
performance of the HMM to the performance of animals in either
laboratory or natural situations, because it is likely that animals
occasionally misperceive calls. Another important question is
whether or not calls that differ in meaning along important di-
mensions are more dissimilar. For example, it would be unfortu-
nate and maladaptive if an animal of higher ranking confused a
submissive call, for example a scream, with an aggressive call.
Indeed, our analyses (Table 2) showed that none of the aggressive
calls were confused with screams, and vice-versa.

In this study we have not endeavored to find a minimal set of
features that allow us to discriminate among categories (Hauser,

Figure 6. Processing steps in analysis. a, Spectrogram and log-filter representation of example CSc. b, Cepstral representation
of example call and STRF estimated across all calls for this neuron. c, Time-probability representation generated by processing with
the 10 HMMs and LPRF for this neuron. d, Estimate of response based on STRF (cepstrum) and LPRF (log-likelihood) shown along
with average response (PSTH). Abbreviations are the same as in Figure 3.
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1991; Hauser and Marler, 1993), although our analyses suggest
that the average spectral and temporal contrast are not highly
useful features. We also found that the performance of the HMM
was reasonable with between four and 10 spectral channels, but
using only two or �10 channels led to a decrease in performance.
These results are consistent with studies of speech perception that
have demonstrated relatively high quality speech recognition
with only a few spectral channels (Drullman et al., 1994a,b;
Drullman, 1995; Shannon et al., 1995). In principal, we could also
filter the temporal dimension in the spectrogram, before fitting
the HMM, to determine how much temporal resolution is nec-
essary for discriminating among the calls.

Other work has examined the representation of call categories
in the responses of prefrontal cortex neurons (Gifford et al.,
2005). However, there are significant differences between their
work and ours. First, they showed that the summed population

response of the VLPFC neurons did not differentiate between
harmonic arches and warbles, which are semantically similar, but
that the responses did differentiate between these calls and
grunts, which are semantically different. In the current study, we
did not group calls from different categories together based on
whether or not they had similar semantic meaning. We retained
the original call category information in all cases and, thus, har-
monic arches and warbles were treated distinctly. Our study does
not explicitly address the question of whether or not the re-
sponses to harmonic arches and warbles are different, although
implicitly, we assume that the responses are different because we
are trying to predict the time-varying responses of the neurons
using the time-varying cepstral (STRF) or HMM (LPRF) outputs,
which would be different for the two call classes. Second, we took
a probabilistic approach and assumed that the responses of pre-
frontal neurons represented the likelihood that a particular call
came from each of the classes, again maintaining the distinction

Figure 7. Predicted responses of two example neurons across all call categories. Abbrevia-
tions are the same as in Figure 3.

Figure 8. Fraction of variance accounted for by linear models, normalized by variance ac-
counted for by PSTH. All analyses were done with twofold cross-validation. Only neurons whose
response was significantly predicted by one of the models are shown. Arrows indicate example
neurons in Figure 7, a and b.

Figure 9. Relation of best model to neuron response properties. a, Performance difference
as a function of call category. b, Histogram shows the difference in the proportion of neurons
better modeled by the LPRF than the STRF as a function of call category to which the neuron
responded most strongly. Neurons which responded strongly to coos, girneys, shrill barks, and
warbles were better modeled by the STRF, although the effect was only marginally statistically
significant ( p � 0.053). Abbreviations are the same as in Figure 3.
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between calls from different categories that have similar semantic
meaning. In additional studies, Cohen et al. (2006) have shown
that there is more information in the responses of single neurons
about different calls within the category nonfood than within the
category food, but they did not indicate the amount of informa-
tion about stimuli across categories. Another important point is
that categorical representations are nonlinear functions of the
acoustics (Nearey, 1997), as we have shown here with the HMM
model, so that distinctions between categorical and acoustic rep-
resentations come down to distinctions between linear and non-
linear representations of acoustic information, which are difficult
distinctions to make in the brain, because most representations
are nonlinear.

We found that the responses of a large proportion of prefron-
tal auditory neurons could be better predicted as linear functions
of the time-varying probabilities (LPRF) produced by the HMM
than by STRFs. Although we were able to well predict the re-
sponses of some of the neurons using either STRFs or LPRFs, we
did not build our models using, for example, white noise stimuli,
and then try to predict the responses to vocalizations. If we had
done this, which is not even possible for the HMM, our predic-
tion performance would likely have been much lower. Our anal-
yses were motivated by theoretical work which has examined
ways in which probabilistic information can be encoded in neural
responses (Zemel et al., 1998; Barber et al., 2003a,b; Sahani and
Dayan, 2003). The STRF is commonly used at earlier levels of
sensory processing (STRF) (Aertsen and Johannesma, 1981). Be-
cause the STRF predicts the responses of neurons as a linear
function of the spectrogram, it is an appropriate model for neu-
rons that are only a few synapses removed from the auditory
nerve, because the auditory nerve represents sounds spectrotem-
porally (Galambos, 1943). However, neural representations fur-
ther from the periphery will likely be further removed from the
spectral representation, and their responses will be highly non-
linear functions of the spectrotemporal representation (Nelken et
al., 2003). The main question is, what sort of nonlinear transfor-
mations should we be looking at?

Perception is, in general, a probabilistic process, and there is
considerable evidence that perceptual processing is closely re-
lated to optimal inference (Knill and Richards, 1996; Knill, 1998;
Kersten, 1999; Ernst and Banks, 2002; Jacobs, 2002; Pouget et al.,
2003; Knill and Pouget, 2004). What this means is that, because of
noise and variability in the environment, sensory stimuli cannot
be unambiguously mapped to a sensory percept, they can only be
mapped to a probability distribution over possible percepts. In
the case of vocalization perception by macaques, the calls would
map to a probability distribution over the possible call classes.
Thus, at some stage of the neuronal processing hierarchy, a prob-
abilistic representation of stimuli or actions should be generated,
as has been shown in the visual-motor (Shadlen and Newsome,
2001), and cognitive-motor (Averbeck et al., 2006) systems. The
HMM can approximate the transformation from the acoustic
features to the probabilistic representation. As such, the re-
sponses of neurons which were involved in representing proba-
bilistic information about the vocalization categories should be
described as relatively simple functions of the probabilistic rep-
resentation produced by the HMM, just like the responses of
neurons in the auditory nerve can be reasonably well described as
linear functions of the spectral-temporal representation of the
sound produced by the cochlea. This is, in fact, what we found for
the auditory responses of the prefrontal neurons we studied.
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