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Abstract 

State-of-the-art cognitive-neuroscience mainly uses hypothesis-driven statistical 

testing to characterize and model neural disorders and diseases. While such techniques have 

proven to be powerful in understanding diseases and disorders, they are inadequate in 

explaining causal relationships as well as individuality and variations. In this study, we 

proposed multivariate data-driven approaches for predictive modeling of cognitive events and 

disorders. We developed network descriptions of both structural and functional connectivities 

that are critical in multivariate modeling of cognitive performance (i.e., fluency, attention, 

and working memory) and categorical perceptions (i.e., emotion, speech perception). We also 

performed dynamic network analysis on brain connectivity measures to determine the role of 

different functional areas in relation to categorical perceptions and cognitive events.  

Our empirical studies of structural connectivity were performed using Diffusion 

Tensor Imaging (DTI). The main objective was to discover the role of structural connectivity 

in selecting clinically interpretable features that are consistent over a large range of model 

parameters in classifying cognitive performances in relation to Acute Lymphoblastic 

Leukemia (ALL). The proposed approach substantially improved accuracy (13% - 26%) over 

existing models and also selected a relevant, small subset of features that were verified by 

domain experts. In summary, the proposed approach produced interpretable models with 

better generalization. 

Functional connectivity is related to similar patterns of activation in different brain 

regions regardless of the apparent physical connectedness of the regions. The proposed data-

driven approach to the source localized electroencephalogram (EEG) data includes an array 

of tools such as graph mining, feature selection, and multivariate analysis to determine the 

functional connectivity in categorical perceptions. We used the network description to 
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correctly classify listeners behavioral responses with an accuracy over 92% on 35 

participants.  

State-of-the-art network description of human brain assumes static connectivities. 

However, brain networks in relation to perception and cognition are complex and dynamic. 

Analysis of transient functional networks with spatiotemporal variations to understand 

cognitive functions remains challenging. One of the critical missing links is the lack of 

sophisticated methodologies in understanding dynamics neural activity patterns. We proposed 

a clustering-based complex dynamic network analysis on source localized EEG data to 

understand the commonality and differences in gender-specific emotion processing. Besides, 

we also adopted Bayesian nonparametric framework for segmentation neural activity with a 

finite number of microstates. This approach enabled us to find the default network and 

transient pattern of the underlying neural mechanism in relation to categorical perception.   

In summary, multivariate and dynamic network analysis methods developed in this 

dissertation to analyze structural and functional connectivities will have a far-reaching impact 

on computational neuroscience to identify meaningful changes in spatiotemporal brain 

activities. 
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Chapter 1 -  Introduction 

A major aspect of the complexity of the nervous system relates to their sophisticated 

morphology, especially the interconnectivity of their neuronal processing elements. In more 

highly evolved nervous systems, brain connectivity can be described at several levels of scale. 

These levels include individual axon-dendritic connections at microscale. Millions of neurons 

make local networks that are interconnected with short range connectivity. Some neurons 

have long connections, projecting information from one side of the brain to the other. Those 

micro and macro scale connections make the brain a fully connected, always active, highly 

segregated, and densely integrated, complex neural network [1]–[3]. Brain connectivity 

patterns provide the basis for explaining neural information processing and also neurological 

diseases and disorders.  

There are different levels of brain connectivity. For example, structural (anatomical) 

connectivity refers to axon-dendritic connections or linking sets of neurons or neuronal 

populations. Unlike structural connectivity, functional connectivity is related to similar 

patterns of activation in different brain regions regardless of the apparent physical 

connectedness of the regions. Fundamentally, functional connectivity is a statistical concept 

that captures deviations from statistical independence between distributed and often spatially 

remote neuronal units. Statistical dependence may be estimated by measuring correlation, 

coherence, or phase-locking. Effective connectivity provides a directional (causal) network 

description of cognitive events among different functional areas of the brain. 

The network descriptions of brain connectivity can detect functional integration and 

segregation, quantify centrality of individual brain regions or pathways, and characterize 

patterns of local anatomical circuitry [4]. In this dissertation, our main goal is to develop 

network descriptions of both structural and functional connectivity and multivariate models 

for classifying cognitive capacity (i.e., fluency, attention, and working memory) and 

categorical perceptions (i.e., emotion, speech perception). In addition, we also perform 
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dynamic network analysis on brain connectivity measures to determine the role of different 

functional areas in relation to categorical perceptions and cognitive events.   

Specific aims 

Aim 1: Determine structural connectivity to identify deficits in cognitive performance 

in relation to therapy for Acute Lymphoblastic Leukemia (ALL) 

Neurotoxicity associated with cancer, radiation therapy, or chemotherapy plays a 

significant role in neurocognitive impairments among survivors due to a disruption of 

developing neural circuitry. Data from the broader research literature suggest that ALL 

survivors have reduced white matter volumes that correspond to decreased structural and 

functional connectivity within regions of the central executive and salience networks. This 

decreased connectivity may be associated with deficits in cognitive performance in the 

domains of fluency, attention, and working memory [5]. A plethora of studies used Diffusion 

Tensor Imaging (DTI) tractography data and graph-theoretic approaches to construct 

structural networks and compare the topological parameters of the networks between ALL 

patients and healthy controls. These properties are used to evaluate cognitive abilities based 

on statistical testing (e.g., p-value). The statistical testing methods provide concurrence of a 

fixed hypothesis with the available data points but fail to identify the best possible hypothesis 

among all alternatives. Significance testing does not describe how strongly two variables 

were related. 

On the contrary, multivariate analysis offers a unified framework to select relevant 

and interpretable features and also a model to explain the data. Widely used feature selection 

methods (filter-based and wrapper class) use weighted schemes to select features. However, 

the selection of features is inconsistent and changes with the type of model as well as a range 

of model parameters such as regularization, threshold selection, and hyperparameter tuning. 

Besides the conventional and graph mining approaches, we adopted stability selection and 

control [6] to select relevant and interpretable features in measuring cognitive deficits. This 



 

 3 

feature selection process effectively reduces dimensions and reveals affected anatomical 

pathways that were verified by domain experts.  

Aim 2: Discover functional connectivity to explain individual response time (RT) 

variation in speech perception  

Categorical perception (CP) is an inherent property of speech perception. The 

response time (RT) of listeners’ perceptual speech identification is highly sensitive to 

individual differences. While the neural correlates of CP have been well studied in terms of 

the regional contributions of the brain to behavior, functional connectivity patterns that 

signify individual differences in listeners’ speed (RT) for speech categorization is less clear. 

To address these questions, we applied several computational approaches to EEG data, 

including graph mining, machine learning (i.e., support vector machine), and stability 

selection to investigate the unique brain states (functional neural connectivity) that predict the 

speed of listeners’ behavioral decisions.  

Aim 3: Study dynamic network of brain activities to discover temporal patterns in 

categoric perception (i.e. emotion and speech perception) 

The human brain is a dynamic system, and its networks must dynamically self-

(re)organize and coordinate to allow mental processes. Dynamic Functional Connectivity 

(dFC) is a recent expansion on conventional functional connectivity analysis, which assumes 

functional connectivity is static in time. dFC captures the spatiotemporal pattern of brain 

connectivity and has been suggested to be a more accurate representation of functional brain 

networks. Hence, dFC is widely used in resting-state fMRI analysis to find the default mode 

network as well as discover the dynamic network patterns of neurological diseases and 

disorders. Tracking the spatiotemporal fast transient networks remains challenging due to a 

limited understanding of neural activity dynamics as well as a lack of relevant sophisticated 

methodologies.  
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EEG microstate is a metrics-based approach that allows a dynamic view of coupling 

[7], [8]. This coupling refers to time-varying levels of correlated or mutually informed 

activity between brain regions. Conventional microstate based methods for investigating dFC 

mainly follow K-means clustering-based methods (e.g. [9]–[13]). Despite the usefulness of 

the K-means clustering-based method, it has several drawbacks. The method requires 

selection of an appropriate number of clusters (K). Choosing a proper number of clusters can 

be challenging, particularly if the data is dynamic, and prior knowledge is unknown. Besides, 

K-means clustering is a hard-clustering algorithm, cannot handle infinite number of clusters, 

sensitive to noise and outlier, and shows poor generalization over studies. In addition, this 

approach firmly relies on the window size, and the strategy for selecting a reasonable window 

size remains unsolved. To avoid these limitations, we adapted a sticky Hierarchical Dirichlet 

Process Hidden Markov Model (HDP-HMM) with memorized variational inference [14], 

which provides an elegant Bayesian Nonparametric framework for multivariate sequential 

data segmentation with finite numbers of microstates. Unlike conventional HDP-HMM, this 

approach is computationally feasible, scalable, reliable, and converges quickly.  

Main results  

Our structural connectivity analysis discovered many of the brain regions and 

connectivities that are known to be associated with executive functioning, including working 

memory, fluency, and attention. We also discovered the following results. 

1. Patients with below-average working memory are less likely to have a complex, 

highly segregated, and densely integrated structural network as well as being unable 

to use brain connectivity effectively or adequately. 

2. Fluency and working memory-related distinct structural brain networks are more 

intra-hemisphere centric, but intelligence is more inter-hemisphere centric. 

3. It was observed that sex, race, and ethnicity were important demographic variables in 

modeling cognitive capacity. 
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Our functional connectivity analysis investigated the unique brain states that predict the 

speed of listeners’ behavioral decisions. The results corroborate previous studies by 

supporting the engagement of similar temporal (STG), parietal, motor, and prefrontal regions 

in categorical perception using an entirely data-driven approach. Additionally, we also 

infered the following. 

1. Listeners’ perceptual speed is directly related to dynamic variations in their brain 

connectomics.  

2. Global network assortativity and efficiency distinguished fast, medium, and slow RT,  

3. Functional networks underlying rapid decisions increased in negative assortativity 

(i.e., became disassortative) for slower RTs.  

4. Slower categorical speech decisions caused excessive use of neural resources and 

more aberrant information flow within the CP circuitry.  

5. Slower responders tended to utilize functional brain networks excessively (or 

inappropriately), whereas fast responders (with lower global efficiency) utilized the 

same neural pathways but with more restricted organization. 

Human emotions change over time. The state-of-the-art data-driven emotion model 

ignored the inherent dynamic nature of emotions. We proposed K-means clustering and 

microstate based complex dynamic network analysis on cortical surface data to understand 

the connectives in modeling elicited emotion. Specifically, we focus on processing arousal in 

identifying the differences and similarities between males and females. Empirical analysis 

using the DEAP dataset revealed the following. 

1. Males and females have mostly complimentary micro-states with some 

commonalities. 

2. Males are more likely to stay in specific stable microstates, and females are more 

likely to stay in transient states.  
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3. Both groups utilize highly segregated and densely integrated network structure among 

brain regions in processing arousal. 

Response time (RT) of listeners’ perceptual speech identification is highly sensitive to 

individual differences. Dwell time patterns revealed from HDP-HMM analysis can easily 

explain individual differences in listeners’ speed (RT) for speech categorization. This 

microstate-based analysis revealed the following. 

1. Categorical speech perception with slower RT requires changing microstates more 

frequently than faster RT (higher uncertainty is involved in the decision-making 

process). Therefore, RT in categorical speech perception is inversely proportional to 

state transition frequency. 

2. Stimulus coding, linguistic processing, response selection, and resting-state are the 

main components of the categorical speech perception related decision network (DN). 

Specifically, stimulus coding, response selection, and resting-state are strongly 

interconnected in this DN. 

3. Besides transition frequency, listeners’ perceptual speed depends on the duration they 

stay in DN. Perception with slower RT involved staying in DN longer than faster RT.   

Broader impacts and novelty 

The studies described here reflect an interdisciplinary blend of engineering and 

neuroscience. From structural to functional connectivity analysis, we developed a systematic 

data-driven computational framework for predictive modeling of cognitive events. In 

particular, we develop network descriptions of cognitive events such as executive function 

(working memory, fluency, and attention), speech perception, and emotion. Our proposed 

approach substantially improved model accuracy over existing models and improved our 

understanding of how neural activity processes cognitive events. Taken together, our novel 

approach to neuroimaging data demonstrates the derivation of small, yet highly meaningful 

patterns of brain connectivity that dictate speech behaviors using solely EEG. More broadly, 
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the functional connectivity and machine learning techniques used here could be deployed in 

future studies to identify the most meaningful changes in spatiotemporal brain activity that 

are modulated by development, normal learning, or those which decline in neuropathological 

states. 
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Chapter 2 -  Research Context 

Neural activities are not only determined by a single neuron or a single brain region 

independently. The human brain contains about 100 billion neurons connected by about 100 

trillion synapses, which are structurally and functionally organized over multiple scales [15], 

[16]. Recent studies [14]–[16] indicate important individual differences in structural and 

functional connectivity patterns even among persons with no diagnosable neurological or 

psychiatric disorders,  and there is increasing evidence that this variability is associated with 

alterations in cognitive and behavioral variables that constrain real-world function. The 

variation or alteration in human structural and functional brain connectivity play a role in 

adult and pediatric neurological and psychiatric disorders that collectively incur a huge 

economic cost to the United States [19].  

Revealing brain networks and different functional areas in relation to categorical 

perceptions and cognitive events has been a challenging scientific problem. Modern 

neuroimaging techniques such as diffusion MRI, functional MRI, PET, EEG or MEG produce 

increasingly large datasets of anatomical or functional connection patterns (e.g., Connectome 

Programs [20], [21], BRAIN Initiative[22]). Over the last decade, a new multidisciplinary 

approach is immerging into the study of complex systems. In this dissertation, our main goal 

is to develop network descriptions of both structural and functional connectivity and 

multivariate models for classifying cognitive capacity (i.e., fluency, attention, and working 

memory) and categorical perceptions (i.e., emotion, speech perception). 

Structural connectivity in classifying cognitive capacity 

Commonly affected neuro-biological substrates impacted by therapy for  Acute 

Lymphoblastic Leukemia (ALL) include atrophy of grey matter (GM) and/or demyelination 

of the white matter (WM), suppression of neural progenitor proliferation, microvascular 

damage, dysregulation of proinflammatory cytokine cascades, oxidative stress, and general 

vulnerabilities [23]–[26]. A study of ALL survivors and controls revealed reduced gray 
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matter volumes in cortical regions associated with central executive and salience networks, as 

well as bilateral reductions in the periventricular and subcortical white matter volumes [27]. 

The most relevant study conducted, analyzed 31 ALL survivors and 39 matched healthy 

controls with a graph metric analysis of the diffusion-based structural connectome to 

demonstrate that ALL survivors had significantly lower small-worldness and network cluster 

coefficient [28]. Reductions in WM volume in the frontal lobes and significant bilateral 

reduction in prefrontal cortices have been shown to correspond with lower performances on 

tests of attention and short-term memory [29]. Diffusion Tensor Imaging (DTI) studies have 

shown that fractional anisotropy (FA) in right frontal, fronto-parietal, and temporal areas are 

associated with processing speed [30], [31]  and working memory [32]. The differential in FA 

between patients and controls was proportional to both IQ and processing speed. Another 

study of ALL survivors 15 years off therapy and controls, demonstrated higher FA on the left 

but not the right and worse performance in processing speed and academics [33]. Taken 

together, data from the broader research literature and our studies suggest that ALL survivors 

have reduced WM volumes that correspond to decreased structural and functional 

connectivity within regions of the central executive and salience networks; this decreased 

connectivity may be associated with deficits in cognitive performance in the domains of 

processing speed, attention, and working memory.  

In this dissertation, one of our goal was to develop a multivariate data-driven model of 

“cognitive abilities” of ALL patients from MRI-based volumetric measures, morphometry 

statistics (e.g., surface area and cortical thickness) from diffusion tensor imaging (DTI), and 

behavioral as well as demographic variables. We used  

1. Wechsler Intelligence Scale: Digit Span Backwards (DSB), 

2.  Woodcock-Johnson Tests of Cognitive Abilities: Processing Speed (PS), and 

3.  The Behavior Rating Inventory of Executive Function (BRIEF-Working Memory) 
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to measure cognitive abilities (executive functions and processing speed) and categorized 

them into two categories: below-average and average. Performance below one standard 

deviation of the mean was considered to be below-average. The DSB and PS scores are 

performance measures completed by the patients, whereas the BRIEF-Working Memory 

scores are based on parent reports and were inversely coded relative to the DSB and PS 

scores such that higher scores indicated more difficulties. All scores were normalized for 

patient age. For a patient to participate in the neurocognitive testing, the patient must be 

English speaking or English language dominant. 

A plethora of studies (e.g.,  [28], [34], [35] ) used DTI tractography data and graph-

theoretic approach to construct structural networks and compare the topological parameters 

of the network between ALL patients and healthy controls. Commonly used network 

properties (features) are clustering coefficient, small-worldness index, characteristic path 

length, modularity, and nodal clustering. These properties are used to evaluate cognitive 

abilities based upon the p-value or correlation. For example, Zou et al. [34] reported 

significantly lower small-worldness and network clustering coefficient, in addition to greater 

cognitive impairments in the ALL subjects. 

To understand the non-linear embedding of the data, we performed t-SNE 

visualization (t-distributed Stochastic Neighbor Embedding [36] ) with the LDA projection of 

high-dimensional DTI connectome data (i.e., cortical thickness, average length of all fibers 

that interconnect Region of Interests (ROIs), and demographic measurements). It is easy to 

note that data exhibit complex and linearly separable distributions. However, Popular 

machine learning algorithm shows poor performance. Presence of noise, high correlation 

among variables, reparation, small number of positive samples, and unbalanced distribution 

in ALL connectome data prevent further improvements. It was also observed that even the 

structural connectivity based network features are less informative, discriminative, and 

unable to describe the variability and structures inherent in connectome data.  
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To overcome such limitations, we adopted a multivariate, wrapper-based feature 

selection method called stability selection [6]. It not only works efficiently in the high-

dimensional data but also provides finite sample control for some error rates of false 

discoveries in structure estimation. Besides the error control approach, we also applied 

Randomized Lasso for feature selection. The stability selection not only significantly 

improved the model performances. it effectively reduces the feature dimension and selected 

features that were verified by the domain expert. It was observed that few demographic 

variables, morphometry statistics, and structural connectivity among ROIs are consistent and 

relevant features that are invariant and stable over range of model parameters. Besides, 

stability section ranks the importance of features, hence helps us to interpret the relation 

between structural brain connectivity and cognitive abilities. 

Functional connectivity in classifying categorical speech perception  

When identifying speech, listeners naturally group sounds into smaller sets of discrete 

(phonetic) categories through the process of categorical perception (CP) [37]–[40]. 

Presumably, this type of behavioral “downsampling” promotes speech comprehension by 

generating perceptual constancy in the face of enormous physical variation in multiple 

acoustic dimensions, e.g., talker variability in tempo, pitch, or timbre [41]. CP is often 

characterized by sharp (stair-stepped) identification and peaked (better) discrimination 

functions near the categorical boundary when classifying an otherwise equidistant acoustic 

continuum.  

Germane to the present study, response time (RT) data also reveal differences in the 

speed of listeners’ categorical decisions [42], [43]. In perceptual labeling tasks, for example, 

listeners categorize prototypical speech sounds (e.g., exemplars from their native language) 

much faster than their ambiguous or less familiar counterparts (e.g., nonnative speech 

sounds) [44]. RTs also slow near perceptual speech boundaries, where listeners shift from 

hearing one linguistic class to another (e.g., /u/ vs. /a/ vowel) and presumably require more 
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time to access the “correct” speech template [42], [43], [45], [46]. Relatedly, RTs vary with 

task manipulations and individual differences in speech perception in different populations. 

Studies demonstrate listeners’ speed in speech identification is highly sensitive to stimulus 

familiarity [45], [47], [48], auditory plasticity of short- [37] and long-term [44], [49], [50] 

experience, and neuropathologies and language-learning disorders (e.g., [51]–[54]). Given its 

fundamental role in the perceptual organization of speech, understanding individual 

differences in CP and its underlying neurobiology is among the broad interests to understand 

how sensory features are mapped to higher-order perception [40], [43], [55]. 

The neuronal elements of the brain organize in complicated structural networks [56]. 

Increasingly, it is appreciated that anatomical substrates constrain the dynamic emergence of 

coherent physiological activity that can span multiple spatially distinct brain regions [57]–

[59]. Such densely intra-connected, sparsely inter-connected, dynamic connected networks 

are thought to provide the functional basis for information processing, mental representations, 

and complex behaviors [1]–[3], [60]. In this regard, neuroimaging studies have identified 

several functional brain regions that are important to CP including primary auditory cortex, 

left inferior frontal areas (i.e., Broca’s area), and middle temporal gyri (e.g., [44], [45], [61]–

[67]. Previous studies also suggest that more neurons are preferentially activated by the 

prototypes of the speech categories compared to those at category boundaries [68]. Similarly, 

improved discriminability at category boundaries could reflect an increased number of 

neurons encoding sensory cues at these perceptual transitions [69], [70]. Such neuronal 

overrepresentations warp the sensory space and may account for the aforementioned RT 

effects in speech categorization. Still, while the neural correlates of CP have been well 

studied in terms of the regional contributions to behavior, we are aware of no studies that 

have investigated the mechanisms of speech CP from a full-brain (functional connectivity) 

perspective. Here, we focus on the speed (RT) of the listener's perceptual speech 



 

 13 

identification as RTs are highly sensitive to individual differences in CP [48]–[51] and reflect 

an objective, continuous measure of perceptual categorization skill.  

Functional connectivity matrices derived from neuroimaging data are highly sparse 

and reflect high dimensional data. Hence, finding RT-related network edges is challenging. 

To solve that problem, we used stability selection with randomized lasso. Besides, we 

propose a systematic approach to determine and rank RT-related functional connectivity 

among brain regions that are consistent across model parameters. In doing so, we identify, 

objectively, the most important properties (i.e., features) of the functional EEG connectome 

that describe perceptual categorization.  

Our recent EEG studies have characterized the neural underpinnings and plasticity in 

speech categorization using hypothesis-based approaches (e.g., Bidelman and Walker, 2019; 

N. Price et al., 2019 (in press)). Here, we take an entirely different, comprehensive data-

driven approach to test whether individual differences in speed for speech categorization can 

be decoded from network-level descriptions of brain activity. Based on prior work, we 

expected machine learning to minimally decode brain regions previously identified in rapid 

categorical decisions (e.g., inferior frontal gyrus; Binder et al., 2004), thereby corroborating 

hypothesis-driven accounts of CP using an entirely data-driven, machine learning approach. 

Our goal was to focus on graph theoretical approaches to analyze the complex 

networks that could provide a powerful new way of quantifying individual differences in 

speech perception. Another goal was to discover which aspects of those functional 

connectivity networks best explained the variation and diversity in listeners’ perceptual 

responses during speech sound categorization. We recoded high-density 

electroencephalograms (EEGs) while listeners rapidly classified speech in a rapid vowel 

identification task [43], [48]. We then applied graph analyses to source-localized EEG 

responses to derive the underlying functional brain networks related to speech categorization. 

Using Bayesian non-parametric modeling, we then show that speed for categorical decisions 
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unfold in three RT clusters that distinguish subgroups of listeners based on their behavioral 

performance (i.e., slow, medium, and fast responders). Applying state-of-the-art machine 

learning and stability selection analyses to neural data, we further show that local and global 

network properties of brain connectomics can decode group differences in behavioral CP 

performance with 92% accuracy (AUC=0.9). Our findings demonstrate that slow RT 

decisions related to categorical speech perception involve improper (or excessive) utilization 

of functional brain networks underlying speech. In contrast, fast and medium responders 

show less utilization.  

Dynamic network analysis in discovering temporal patterns in categoric perception 

Functional connectivity (FC) is assumed to have a stationary nature for a long period of 

time. But, assuming stationarity over entire measurements may be too simplistic to reveal the 

full extent of neuronal activity. However, human brain is a dynamic system, and its networks 

must dynamically self-(re) organize and coordinate to allow mental processes [72]. 

Therefore, neuronal dFC has recently been hypothesized to show fast fluctuations of FCs. 

Emotions change over time [73]. Disturbances in emotion dynamics are key features of 

various mental health disorders, including post-traumatic stress disorder, depression, 

personality disorder [74]. Though, a state-of-the-art data-driven emotion model (e.g.[75]–[77] 

) ignored the inherent dynamic nature of emotions. Recently, EEG and neuroimaging-based 

tools were widely used to identify the neural regions or networks that underlie these 

dynamics. EEG microstate is a metrics-based approach that allows a dynamic view of a 

coupling [7], [8]. This coupling refers to possibly time-varying levels of correlated or 

mutually informed activity between brain regions. Microstates are a global topography but 

occur on such small time scales and change rapidly. Van et al. [78] hypothesized that these 

“atoms of thoughts” are fractal-like in the temporal dimension and characterized by scale-

invariant dynamics hence have a wide range of applications. (E.g. detect schizophrenia [7], 

panic disorders [79], and sleep disorders [80]). Arousal is important in regulating 
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consciousness, information processing, and attention. It is an essential element in many 

influential theories of emotion, such as the “James- Lange theory of emotion” [81] or the 

“Circumplex model of affect” [82]. Emotional stimuli are thought to gain rapid and 

privileged access to processing resources in the brain. In this dissertation, we introduce a 

data-driven approach to discover how and where brain connectivity changes dynamically. 

Here, cortical surface data (using EEG source localization) is used to overcome the limitation 

of skull surface EEG data and answer neuroscience questions. We adopted the microstates-

based approach, popular clustering algorithm, and complex-network analysis to discover a 

distinct dynamic brain connectivity pattern.  

However, conventional methods for investigating dFC in EEG recordings mainly follows 

two common strategies: (i). Temporal sliding windows approach (e.g [10], [11], [72], [83]–

[85]) and (ii). Adaptive segmentation using clustering approach (e.g. [9]–[13]). The main 

drawback of the first approach is connectivity analysis firmly relies on the window size, and 

the strategy for selecting the reasonable window size remains unsolved. The latter is based on 

clustering the time-varying FC graphs, FC matrices, or topological features across time and 

subjects with an assumption that the network is in one state at a specific time, and the states 

vary across times and subjects. State of the art practices use overlapping windows and K-

means clustering [86]. Despite the usefulness of the K-means based method, it has several 

drawbacks. First, the method requires appropriate number of clusters (K). Choosing a proper 

number of clusters can be difficult, particularly in case the data is dynamic, and prior 

knowledge is unknown. Second, K-means clustering starts with random initialization of the 

centroid, which leads to unrepeatable and inconsistent results. Third, K-means clustering is 

sensitive to noise and outliers, hence showing poor generalization over studies. Fourth, K-

means is a hard-clustering algorithm. It cannot handle infinite number of clusters. Centroids 

may be influenced by noisy data when used with small number of trials. Lastly, some K-
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means algorithms first employ sliding windows to construct dFC networks. Consequently, 

they also have the limitation of selecting the reasonable window size. 

Some recent advanced approaches are taken to avoid these limitations. For example, 

combination of synchronization likelihood analysis (measure for detecting non-linear, 

dynamical coupling between pairs of recording series) and evolutionary clustering of the FC 

edge time series have been used to analyze resting-state EEG functional connectivity 

networks FCNs [87]. Tensor decomposition-based approaches [88], [89] and principal 

component analysis (PCA)-based approaches [90] have also been used. Nguyen et al. [91] 

introduced a stochastic multivariate Gaussian hidden Markov model (MGHMM) to unveil the 

multi-subject Event-Related Potential (ERP) into distinct EEG microstates (ERP 

components). Microstate functional Phase-locked Value (PLV) based connectivity are 

analyzed to reveal cognitive tasks. 

The Hierarchical Dirichlet process HMM (HDP-HMM) [92]–[94] provides an elegant 

Bayesian nonparametric framework for sequential data segmentation with different numbers 

of states. State-of-the-art inference algorithms for HMMs and HDP-HMMs have enormous 

drawbacks. They cannot efficiently learn from large datasets, often trapped at local optima, 

and cannot effectively explore segmentations with varying finite numbers of states [14]. 

However, stochastic optimization methods [95], [96] cannot change the number of states 

during execution, therefore they are limited in large datasets and often converge to poor local 

optima. To overcome these limitations, Monte Carlo proposals [97]–[99] use the entire 

dataset, but require all sequences to fit in memory. Hence this process is not scalable and 

computationally inefficient. To overcome this limitation, generalizing memoized variational 

inference has been used for dirichlet process mixture models [100] and HDP topic models 

[101]. Michael et al. proposed an inference algorithm for the sticky HDP-HMM that scales to 

big datasets by processing a few sequences at a time [14]. Hence this algorithm is scalable, 
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reliable, and converges fast. In this dissertation, we adopted sticky HDP-HMM with 

memoized variational inference to discover temporal patterns in speech perception. 
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Chapter 3 -  Structural Connectivity Analysis 

In the United States, Acute Lymphoblastic Leukemia (ALL), the most common child and 

adolescent malignancy, accounts for roughly 25% of childhood cancers diagnosed annually 

with a 5-year survival rate as high as 94% [102]. This improved survival rate comes with an 

increased risk for delayed neurocognitive effects in attention, working memory, and 

processing speed [33]. Predictive modeling and characterization of neurocognitive effects are 

critical to inform the family and also to identify patients for interventions targeting. Current 

state-of-the-art methods mainly use hypothesis-driven statistical testing methods to 

characterize and model such cognitive events. While these techniques have proven to be 

useful in understanding cognitive abilities, they are inadequate in explaining causal 

relationships, as well as individuality and variations. We developed multivariate data-driven 

models to predict the late neurocognitive effects of ALL patients using behavioral 

phenotypes, Diffusion Tensor Magnetic Resonance Imaging (DTI) based tractography data, 

morphometry statistics, tractography measures, behavioral, and demographic variables. 

Alongside conventional machine learning and graph mining, we adopted “Stability Selection'' 

to select the most relevant features and choose models that are consistent over a range of 

parameters. The proposed approach demonstrated substantially improved accuracy (13% - 

26%) over existing models and also yielded relevant features that were verified by domain 

experts. 

Data collection 

Survivors of childhood ALL treated on a chemotherapy-only protocol (Total 

XVI([NCT00549848]), were prospectively evaluated (N=200; age on protocol 7.2±4.4 years; 

61% male; 96 low-risk, 104 standard/high-risk). Subjects underwent MRI within six months 

after beginning treatment and neurocognitive testing two years later at the end of all protocol 

directed therapy. Working memory and decision speed were assessed using: 

1. Wechsler Intelligence Scale: Digit Span Backwards (DSB), 
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2. Woodcock-Johnson Tests of Cognitive Abilities: Processing Speed (PS),  

3. The Behavior Rating Inventory of Executive Function (BRIEF-Working Memory). 

All MR examinations were performed on a Siemens 3T scanner. A T1-weighted imaging 

set was acquired with a 3D MPRAGE sequence, which provides excellent tissue contrasts 

among white matter, gray matter, and CSF as well as high spatial resolution (1x1x1 mm). 

Diffusion tensor imaging was acquired with 1.8*1.8*3.0 mm resolution with 12 directions, a, 

b=700, and 4 averages to increase signal-to-noise. For each scan, the anatomic imaging set 

was processed using FreeSurfer [103] obtain the 82 cortical and sub-cortical regions. Cortical 

thickness measures were evaluated for each of these regions. DTI processing was performed 

using the FSL FMRIB Toolbox[104]. To establish a reproducible network graph for each 

exam, probabilistic fiber tracking was then performed using FSL with 500 permutations from 

each voxel of the anatomic structures. The connection pathway between two nodes, which 

was the volume in image space that the connection fibers passed through, was extracted for 

each valid connection using a previously developed adaptation of the probabilistic fiber 

tracing technique [104]. The mean fractional anisotropy (FA) values of the connection 

pathway served as the quantitative measure for each edge. All processing was performed in 

the patient's native space. Overall, the following three types of features were used for model 

development: 

1.  Thickness of cortical regions (e.g., thickness of Left Cuneus), 

2.  DTI measures (undirected, weighted ROI connectivity), 

3. Demographic and clinical variables (e.g., Sex, race, ethnicity). 

Data visualization 

The dataset we used was 61% male, 94% non-Hispanic, with the racial categories white, 

black, Asian, and multiple being 81%, 13%, 1%, and 5%, respectively. The feature matrix 

has 186, 126, and 182 samples for PS, DSB, and BRIEF-Working Memory measures. The 

number of samples in the below-average group is relatively low in our dataset (24 to 36%). 
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Hence, it is relatively unbalanced. Pie plots in Figure 1 show the data distribution for the 

different demographic variables and cognitive measures. It should also be noted that while 

the prevalence of below-average performance is relatively low for this application, it is 

substantially greater than normative expectation (16%). 

Our dataset has 1019 variables overall. Before applying any machine learning algorithm, 

it is expected to check the assumptions required for model fitting and hypothesis testing. The 

t-distributed stochastic neighbor embedding or t-SNE [36] is a widely used unsupervised 

learning algorithm used to visualize high-dimensional data. It converts similarities between 

higher dimensional data points to joint probabilities. Thus, provides a faithful representation 

of those data points in a lower-dimensional human interpretable 2D or 3D plane. Such a 

projection brings insight on whether the data is separable, the data lies in multiple different 

clusters or inspecting the nature of those clusters. We applied LDA on our two-class dataset 

and considered 50 dimensions for t-SNE visualization. The LDA based t-SNE approach 

shows two distinct clusters for normal and below-normal groups in cognitive measurements. 

Figure 2 shows the t-SNE embedded scatter and kernel density estimation (KDE) plot of our 

data distribution. KDE plot is a non-parametric way to represent the probability density 

function. Besides, the scatter plot, the KDE plot is used here to visualize the trend of data 

distribution. The green dot and red ‘+’ sign represent data points for normal and below-

normal groups respectively. It is evident that the distribution of PS and DSB is complex and 

linearly non-separable. This necessitates the use of stability selection and control to choose 

features that are relevant and stable. 
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Graph mining 

Cognitive function is supported by distributed neural networks with highly segregated 

and integrated “small-world” organizations or clusters [1]–[3], [60]. More specifically, those 

organizations of neurons are densely intra-connected and sparsely interconnected. We applied 

graph theory to construct and analyze the brain connectome from DTI data. The 82*82 

undirected and weighted adjacency connectivity matrix from DTI FA data is used to calculate 

 

Figure 1: Pie plot shows diversity in the dataset. The dataset has demographic measures of different sex, ethnicity, race, 

and age group. The sample size of the average and below-average group of DSB, PS, and BRIEF-Working Memory 

measures are relatively unbalanced. Here, ethnicity Group1 represents Non-Hispanic, and Group 2 represents not 

otherwise specified Spanish, Hispanic, Latino group, respectively. 

 

Figure 2: The t-SNE embedded higher dimensional features are represented by 2-dimensional scatter and kernel density 

estimation (KDE) plot. The green lines with dots and red lines with ‘+’ sign represent average and below-average group 

data, respectively. 
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seven basic global network features using BCT tools [4]. See Appendix section for 

mathematical definitions and interpretation of these network features. Those features are: 

1. Characteristics path, 

2. Global efficiency,  

3. Average clustering coefficient, 

4. Transitivity, 

5. Small-worldness, 

6. Assortativity coefficient, and 

7. Modularity. 

We computed the Wilcoxon rank-sum statistic on network features to evaluate 

significance differences across groups for DSB, BRIEF-Working Memory, and PS. Summary 

results are listed in Table 1. It was observed that, there is no significant difference in 

measurement across groups (except DSB: Transitivity (p<0.048), Global efficiency 

(p<0.030), Characteristics path (p<0.046)). Those global measurements are based on 

normalized or averaged versions of clustering and community structure. Therefore, we found 

a strong correlation between the measurements except for modularity. Correlation measures 

among features are shown on Figure 3. 

 

Table 1: Two-sided p-value of Wilcoxon rank-sum statistic for different network features across groups. 

Feature DSB BRIEF Working Memory PS 

Characteristics path 0.75 0.16 0.97 

Average clustering coefficient 0.81 0.17 0.83 

Small-worldness 0.5 0.51 0.07 

Assortativity 0.32 0.2 0.11 

Global efficiency 0.78 0.13 0.97 

Transitivity 0.75 0.2 0.88 

Modularity 0.63 0.36 0.62 
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In the next step, we concatenated network features, applied different classifiers, and 

observed their performance (details of parameter tuning and model fitting are explained in the 

appendix). We also evaluated the performance of the combination of network features and 

demographic variables (named as ND). The combination of network features and 

demographic variables with cortical thickness (named as NDI) were also similarly assessed. 

The summary results of overall empirical analysis are listed in Table 2. It was observed that 

the best classification accuracy among ND and NDI features are 74%, 69%, and 62% for PS, 

DSB, and BRIEF-Working Memory, respectively. However, AUC scores (0.5~0.62) of this 

model indicate that performances are not better than random guess. The mathematical 

definition of network features, p-values, high correlation among features, and poor model 

performances indicate overfitting, the presence of noise, and repetition. Overall, the model's 

performances differ from previous studies [28] because of : 

1. Less number of trials for average group rather than below-average, 

2. Connectivity matrix is highly sparse, 

 

Figure 3: Correlation matrix among features. Most of the features are highly correlated with each other (CP: 

Characteristics path, AC: Average clustering coefficient, SW: Small-worldness, AS: Assortativity, GE: Global efficiency, 

TR: Transitivity, Modularity: MD) 
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3. Network measurements are in average form. Average value over space matrix with 

lots of outliers making the features less discriminative, 

4. Network features represent global properties rather than local, and  

5. Few numbers of highly correlated features are used for modeling.  

Hence there is scope for improvement using multimodal features, feature fusion, or decision 

fusion. Therefore, we applied conventional machine learning on weighted connectivity matrix 

with a stability selection. The details of this approach are discussed below.  

Feature selection 

Feature selection is used to reduce the dimensionality, improve the estimator's accuracy, 

and enhance generalizations by reducing overfitting in high-dimensional datasets [76], [105], 

[106]. Widely used filter-based methods identify consistent set of variables outside of the 

predictive model based on filtering criteria. Highly-correlated or redundant features may be 

selected, and significant interactions and relationships between variables may not be able to 

be quantified in those methods. However, one of the downsides of the multivariate 

approaches is that outcomes often depend on model parameters (e.g., regularization factor, 

hyperparameters) and needs massive computational resources, time, and there is a risk of 

over-fitting. Stability selection is a combination of subsampling and high-dimensional feature 

selection algorithms. Despite its simplicity, it is consistent for variable selection. The main 

advantages of this algorithm are: 

1. It works efficiently in the high-dimensional data with less number of samples, 

2. Stability selection provides finite sample control for some error rates of false 

discoveries and hence a transparent principle to choose a proper amount of 

regularization for structure estimation, 

3. The method is extremely general and has an extensive range of applicability. 
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Stability selection with error control 

The concept of ‘stability path’ comes from the regularization path of regression 

analysis. A regularization path is defined as the coefficient value (!!
"
) of each features of a 

feature matrix over a range of regularization parameters (" ∈ Λ) [6]. Let I be a random 

subsample of n*p feature matrix (n= number of samples and p is the dimension of features) of 

size n/2 is drown without replacement. The random sample size of n/2 resembles most closely 

the bootstrap [107], [108], which is not worse than random guessing [6].  For every set K⸦ 

(1,…, p), the probability of being in the selected set S
λ(I) is  

With stability selection, data are perturbed many times, and features are selected that 

occur in a large fraction of the resulting selection sets. Those variables are called the set of 

stable variables. Figure 4 shows the stability path of the feature matrix for the DSB class. L1 

penalized logistic regression was used to discard the feature with zero coefficient and to 

consider the non-zero coefficient over a range of regularization parameters. This process is 

iterated over 10,000 times. Each of the black dotted lines represents a stability path of one 

Π! = '∗()$(*)). 1 

 

Figure 4: Stability path of features matrix (for DSB) with a range of regularization parameter (α =0.01~100) as a function 

of (α/αmax)1/3. The power 1/3 scales the path and enables to visualize the progression along the path. 



 

 26 

feature out of 1,019 features, and each dot represents the percentage of times it was selected 

out of all iterations. A red broken vertical line was drawn for the regularization parameter α=7.  

For a range of regularization parameter Λ	and a cutoff threshold #"#$ 	with 0<#"#$ < 1, 

the set of stable variables is defined as 

)%&'()* = {max
"∈,

Π!
" ≥ 1&-.}. 2 

In Figure 4, the star (*) point indicates the best stable feature (proportion of times 

selected =~57%). For stability selection, we keep variables with a high selection probability. 

Stability selection with error control ([24], Theorem-1) provides an upper bound to the 

expected number of falsely selected variables E(V). The boundary equation can be defined as: 

3(4) ≤
/

01!"#2/
3$		%

5
 . 3 

Where E(V) is the expected number of falsely selected variables, 6, is the average 

number of selected variables of a range of regularization parameter Λ. The threshold value 1&-. 

in the equation 3 is a tuning parameter. In this study, we named this stability selection approach 

as Stability Selection with Error Control (EC). 

How to select 3(4), 1&-. and 66: 

The influence of 1&-. parameter in equation 3 is negligible [6], [109]. For a value, ranges 

from 0.6 to 0.9 results tend to be very similar. The value of 3(4) is a design specification and 

can be controlled at the desired level. For a specific value of 3(4), 1&-. 	and regularization 

parameter Λ, the amount of stable features 9 can be calculated from the equation 3. The stable 

features are those which enter the regularization path first.  For 3(4) = 10, 1&-. = 0.70	 the 

average selected feature is = 63. The solid red lines of Figure 5(b) are the 63 features that 

come first in the regularization path; therefore, they can be considered as the most relevant 

features. The rest of the black dotted lines are irrelevant features. We can see some black 

dotted lines are mixed with red solid lines, but those can be treated as false positives for error 

tolerance 3(4).  
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To find the effect of the average number of selected variables (and size of feature matrix) 

in modeling, we tuned different combination of 3(4) and 1&-. and observed the model 

performance (The modeling and performance evaluation process is briefly described in 

modeling section). The points indicated by * in Figure 5(a) are accuracy and AUC for 

different values of q. It is apparent that for a fixed value of 3(4) the impact of 1&-. is 

similar. On the other hand, variations of 3(4) does not change model performance 

significantly. Though 3(4) gives stability selection more freedom or error tolerance; after a 

certain level, the stability selection starts selecting more noise features, hence degrading the 

model performance. Though this algorithm allows freedom for error control, the bound has 

some drawbacks. First, it applies to the population version of the subsampling process. For a 

data set with small sample size, it is unrealistic to use it in practice. Second, the bound is 

derived under a very strong exchangeability assumption on the selection of noise variables 

and a weak assumption upon the quality of the original selection procedure. Shah et al. [109] 

claimed that this process is worse than random guessing. 

 

 

  

a b 

Figure 5: Expected number of falsely selected variable !(#) VS  %! graph and stability path for DSB class. Left side of 

the plot (a) shows the variation of !(#) and &"#$ on model accuracy. Red solid lines of plot (b) show the relevant 

features (63) for best !(#) and &"#$. The black dotted lines represent stability path for irrelevant features (956) over a 

range of regularization parameters. 
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Stability selection with Randomized Lasso  

Randomized Lasso (RL) [6] is a straightforward two-step approach. Instead of 

applying a specific algorithm to the whole data set to determine the selected set of variables 

based on the weight of coefficient, RL applied randomized lasso several times to random 

subsamples of the data of size n/2 (n = number of samples) and chose those variables that are 

selected consistently across subsamples. By performing this double randomization several 

times, the method assigns high scores to features that are repeatedly selected across 

randomizations. In short, features selected more often are considered good features even 

though the “irrepresentable condition” [110] is violated. This approach is similar to the 

concept of bagging [111] and sub-bagging [108] algorithm. 

We know, Lasso has sparse solutions. For higher-dimensional data, many estimated 

coefficients of variables become zero. Removing the variables can be used to reduce the 

dimensionality of the data. Therree are some limitations of Lasso-based feature selection are:  

1. Lasso has a tendency to select an individual variable out of a group of highly 

correlated features.  

2. When the correlation between features is low, the performance of Lasso is restrictive. 

Lasso penalizes the absolute value of coefficients |!|! of every component with a penalty 

term proportional to the regularization parameter	" ∈ ℝ. On the other hand, Randomized 

Lasso penalizes using randomly chosen values in a range [", "/B] where, B ∈ (0,1)	is the 

weakness parameter. The concept of weakness parameter is closely related to weak greedy 

algorithms [112]. Let Wk be i.i.d. random variable in a range from (B, 1) for k = 1, …., p. The 

estimator of Randomized Lasso can be written as [6]: 

!D",8 = argmin9∈ℝ&	 ∥ J − L! ∥0
0+ "N

|!!|
O!

5

!;/

  4 
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Here, Y and X are the class label and feature matrix, respectively. Implementation of 

equation: 4 is a straightforward two-stage process:  

1. Re-scaling of the feature variables (with scale factor Wk for the k-th variable),  

2. LARS algorithm is applied on re-scaled variables [113]. 

In this approach, the reweighting is simply chosen at random. It is not sensible to expect 

improvement from randomization with one random perturbation. However, applying 

Randomized Lasso with many iterations (e.g., 1000 times) and looking for variables that are 

chosen frequently is a useful tool to identify stable features [6].  

RL assigns feature scores between 0 and 1 based on the frequency of selection over 10,000 

iterations. We need to specify the score above which features should be selected to find out 

the best representative stable features. Threshold selection is a design parameter. We varied 

the selection threshold (i.e., the number of selected features) and observed the effect on 

model performance.  

Figure 6 shows the effect of different selection threshold on modeling. The histogram 

illustrates the distribution of the score. The first line of x label shows the bin ranges of scores 

(0 to 1), second and third line shows the amount and percent of features that have a nearly 

same score for a specific bin. It was observed that 53% of features have the score of 0 to 0.1. 

That means, out of 10,000 iterations, they were selected between 0 to 10% of the time. For a 

specific selection threshold, e.g., 0.46, this algorithm selected 29 features. We built a model 

using those 29 features, which then gave us 89% accuracy (best model performance) with 

AUC=0.87 for BRIEF-Working Memory class. The bell-shaped solid black and red dotted 

lines shows the accuracy and AUC curves for different selection thresholds. It was observed 

that the selection threshold was higher than the optimal value (0.46), which allowed the 

model to consider more noise variables and thus degrading the model performance 

significantly.  
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Modeling 

Modeling from selected features has several steps including  

1. Use mean imputation to remove missing or NaN values, 

2. Apply z-score normalization (center to the mean and component-wise scale to unit 

variance) to normalize the data, 

3. Test train splitting (80% for training and validation, 20% for testing), 

4. SVM, Random Forest (RF) and Bagging (BAG) classifiers were used as estimators, 

5.  Hyperparameter tuning and model fitting using best estimator, and 

6.  Performance evaluation. 

More about modeling is explained in the appendix. 

Empirical analysis 

In this section, we will discuss the processing pipeline and results from the different 

experiments. The first step was data preprocessing. Missing values (NaN) of the feature 

matrix were replaced using the mean imputation along the column, and z-score normalization 

was used for data standardization. Preprocessed and standardized features matrix are then 

randomly shuffled and split into 80% training and 20% test examples. This testing data was 

kept unseen and used only for the final model evaluation.  

 

Figure 6: Effect on section threshold over model performance for BRIEF-Working Memory prediction. Three lines of x-

label represent the range of each bin of features score (range: 0 to 1), number and percent of feature fall in each bin.   
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The condition number of a matrix X is defined as the norm of X times the norm of the inverse 

of X [114]such that Condition	Number = 	 |L||L2/|. The condition number was computed 

using singular value decomposition and X2 normalization. If the condition number is less than 

infinity, the matrix is invertible. There is no hardbound; the higher the condition number (ill-

condition matrix), the greater the error in the calculation. The condition number of our feature 

matrix is moderately higher for PS and BRIEF-Working Memory than the DSB class (PS: 

61.17, DSB: 22.63, BRIEF-Working Memory: 56.11). However, stability selection can work 

perfectly on the ill-conditioned feature matrix, so we applied it with EC and RL on this 

training data. For EC, X1 penalized logistic regression with 10,000 iterations with 22 

regularization parameters (ranges from 1020	~	100) was used to get the stability path for 

each class label.  

In this study, we did not specify the tolerance of error. Hence, we let the empirical 

analysis find optimality. Different combinations of E(V) and π<=> of equation 3 were 

evaluated to get the best accuracy and AUC. Our search grid approach indicated, the optimal 

E(V) = 10 and π<=> = 0.8, 0.7, 0.8  produced an accuracy of 87%, 81% and 86% for PS, 

DSB and BRIEF-Working Memory, respectively. Overall, 78, 63, and 78 features can be 

considered stable. Besides EC, RL approach was also evaluated on training data using the 

same range of regularizations parameter (22 continuous values) over 10,000 iterations. It was 

observed that RL selected a small subset of features (except PS class) compared to EC. 

Overall 32, 136, and 29 features were the optimal number of features for PS, DSB, and 

BRIEF-Working Memory class, respectively. 
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Though accuracy and AUC vary for the two-selection method, there is a significant 

commonality between selection. The Venn diagram of  Figure 7 shows the set of selected and 

common features among methods. The cyan, brown, and blue circles represent ES, RL, and 

common features among two methods. As we allowed some errors in selection (E(V)= 10), 

the EC method selected more features (except for PS) than RL method. This method selected 

nearly 8% of features from the feature matrix as stable features. However, RL method 

selected nearly 4%. Those selected variables were then used to train estimators. Estimator 

learning has three steps:  

1. Reshape the feature matrix with stability selection (reduce the dimension), 

2.  Random shuffle and split the selected feature matrix into 80-20% tainting and 

validation set and 

3.  Iterative grid search approach was used to find the model with the best accuracy. 

   

a b c 

Figure 7: Vin diagram of EC and RL selected features for (a): DSB, (b): BRIEF-Working Memory, (c): PS class. Cyan, 

Brown and blue colored circle represent the number of stable features selected by EC, RL and common features among 

methods. Prediction accuracy and number of selected features are relatively better for RL method. Here ACC represents 

accuracy. 
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The same steps were applied for ensemble methods (RF and BAG). The best tuned 

model was then evaluated on test data. Data processing and modeling pipelines are shown in 

Figure 8. Table 2 shows the performance of different methods. It was observed that the 

performance of RL method is not only better than EC but also selected less number of stable 

and robust features. On the other hand, SVM shows better performance than the ensemble 

methods.  

The best F1 score for the average category is greater than or equal to 0.90 for all three 

estimators, which means SVM with RL has fewer false negatives. On the other hand, the best 

F1 score for the below-average category was 0.71, 0.86, and 0.87 for PS, DSB, and BRIEF-

Working Memory, respectively. Though this score for DSB and BRIEF-Working Memory 

class was at a satisfactory level (less than false positive), as well as the score for the PS class 

 

Figure 8: Schematic diagram of the processing pipeline. The feature matrix is randomly shuffled and split into 80% and 

20% as training and testing data. Feature selection methods (EC and RL) are applied to training data to find the stable 

features. Those selected features were used to tune and estimator learning using shuffle-split grid search approach, and 

finally, models are evaluated on test data.     
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(0.71) with an accuracy 87% has scope for further improvement. The main reason for this 

poor performance is a fewer number of negative examples. The PS class has only 24% 

negative examples. The estimators got very few (only 35) training examples after 80-20% 

split. Therefore, we need more negative instances for further improvement. 

Besides directionality redaction and model improvement, Stability selection can be 

used for interpreting important features and their rank. Class label correlated shadow features 

get a high score even though necessary conditions (regularization parameter or estimator) 

change. This illustrates their strong and stable relationship with the response (class label). 

Figure 9 shows the circular visualization of anatomical connectivity between different 

ROIs that are closely related to class labels. Those connectivities are selected by RL method. 

Left and right sides represent left and right hemisphere accordingly. The width of connection 

varies with the rank of importance. Similarly, the outer green square represents the related 

cortical thickness. The width of those squares varies with their rank as well. It was observed 

that among the 311 possible connections among ROIs, 29.90% 7.3%, 7.71% anatomical 

connectivity is important in modeling PS, DSB, and BRIEF-Working Memory, respectively. 

Table 2: Overall result of empirical analysis, here All: whole dataset without feature extraction and selection, Net: 

Network features, ND: Network features and demographic variables and NDI: Network features, demographic variables, 

and cortical thickness, EC: Stability selection with Error Control, RL: Stability selection with Randomized Lasso, AUC: 

Area Under the Curve, ACC: Accuracy, PS: Processing Speed Cognitive Abilities, DSB: Digit Span Backwards, BRIEF-

Working Memory: Behavior Rating Inventory Executive Function class. 

 

ACC AUC ACC AUC ACC AUC
AverageBelow-Average Average Below-Average Average Below-Average

All 1019 74% 0.50 0.85 0.00 71% 0.48 0.83 0.00 66% 0.45 0.79 0.00

Net 7 74% 0.50 0.85 0.00 74% 0.50 0.85 0.00 74% 0.60 0.83 0.37

ND 12 74% 0.50 0.85 0.00 74% 0.50 0.85 0.00 71% 0.71 0.83 0.15

NDI 93 74% 0.50 0.85 0.00 59% 0.49 0.74 0.12 71% 0.48 0.83 0.00

EC 78 87% 0.78 0.92 0.71 66% 0.45 0.79 0.00 71% 0.50 0.83 0.00
RL 32 87% 0.78 0.92 0.71 74% 0.50 0.85 0.00 74% 0.50 0.85 0.00
All 1019 62% 0.50 0.76 0.00 65% 0.57 0.77 0.31 58% 0.49 0.72 0.15

Net 7 62% 0.50 0.76 0.00 62% 0.54 0.74 0.29 69% 0.62 0.79 0.43

ND 12 62% 0.50 0.76 0.00 65% 0.59 0.76 0.40 65% 0.55 0.78 0.18

NDI 93 62% 0.50 0.76 0.00 65% 0.57 0.77 0.31 65% 0.65 0.76 0.40

EC 63 81% 0.79 0.85 0.74 62% 0.52 0.75 0.17 62% 0.54 0.74 0.29
RL 136 88% 0.89 0.90 0.86 65% 0.59 0.76 0.40 62% 0.59 0.69 0.50
All 1019 62% 0.50 0.77 0.00 62% 0.53 0.75 0.22 57% 0.48 0.70 0.20

Net 7 57% 0.46 0.72 0.00 57% 0.46 0.72 0.00 51% 0.43 0.67 0.10

ND 12 62% 0.50 0.77 0.00 35% 0.31 0.48 0.14 35% 0.31 0.48 0.14

NDI 93 62% 0.50 0.77 0.00 59% 0.49 0.74 0.12 57% 0.47 0.71 0.11

EC 78 86% 0.82 0.90 0.78 68% 0.59 0.79 0.33 70% 0.64 0.79 0.48
RL 29 89% 0.87 0.92 0.85 68% 0.59 0.79 0.33 65% 0.55 0.77 0.24

Number of 
Variables

SVM RF BAG
F1 F1 F1

PS

DSB

BRIEF_WM

Class
Selection 
Method
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a b c 

Figure 9: Circular brain connectivity graph for a):  BRIEF-Working Memory, (b): DSB,  and (c): PS class using RL 

method. Left and right side of the circle represents left and right hemisphere. The inner squares, outer squires, and green 

connected lined indicate selected ROIs, cortical thickness of ROIs, and connectivity among ROIs, respectively. Shape and 

the size of the outer square vary with rank (importance) in predicting impairment. 

Discussion 

The hippocampus serves a critical function in long-term memory (LTM), navigation, 

cognition, and working memory maintenance. An increasing amount of evidence shows that 

the hippocampus is involved during the processing of spatial and spatiotemporal 

discontinuity, and relational memory [115], [116]. Specifically, CA1 neurons in the 

hippocampus are critical for autobiographical memory, autonoetic consciousness, and mental 

time travel [117]. The medial orbitofrontal cortex is necessary for the coordination of 

working memory, manipulation, maintenance, and monitoring processes [118]. Stability 

selection ranked the volume of left and right CA1, left CA2 of the hippocampus, right Medial 

Orbitofrontal (RMO), and right hippocampus as a very important feature for working 

memory classification. Significant differences (p < 0.0001) in these areas were detected in the 

below-average BRIEF-Working Memory group. 

 On the other hand, memory span is the longest list of items that a person can repeat back 

in correct order immediately after the presentation. It is a standard measure of short-term 

memory. Once a digit sequence is presented, the participant is asked to recall the sequence in 
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reverse order in DSB related task (to assess working memory). The Posterior Cingulate 

Cortex (PCC) has a central role in supporting internally directed cognition [119]. The PCC 

shows increased activity when individuals retrieve autobiographical memories, plan for the 

future, and regulate the focus of attention[120], [121]. We found the volume of left PCC is a 

highly ranked feature in DSB classification and was significantly smaller (p<0.02) for the 

below-average group. Hence, working memory is strongly related to the volume of the left 

PCC. 

However, CA4 neurons of the hippocampus in the perikaryon area and dendritic 

branching of both CA4 and CA1 neurons are less in autistic children [122]. We observed that 

right CA4 and dentate gyrus of the hippocampus (CA4-DG) is an essential, highly ranked, 

significantly distinguishable feature to predict PS and BRIEF-Working Memory. The 

decreased volume in CA4-DG volume is observed in the below-average group (PS, DSB, and 

BRIEF-Working Memory).  

Global efficiency is used to find how cost-efficient and fault-tolerant a particular network 

construction is. We found Global efficiency of DSB related network is significantly (p<0.03) 

lower in the below-average group. This indicates that patients with below-average working 

memory are unable to use brain connectivity effectively or adequately. Besides Global 

efficiency, below-average performing groups exhibited significantly (p<0.04) reduced 

transitivity. Lower transitivity indicates loose connectivity and less potential for integration 

among nodes to create a clique or complete graph. Hence, the group with the below-average 

working memory is less likely to have a complex, highly segregated, and densely integrated 

structural network. 

Selected network edges presented in Figure 9 showed remarkable connectivity patterns. 

Highly distinguishable inter-hemispheric connectivity is evident among patients with below-

average working memory (DSB network). However, cognitive abilities and working 

memory-related distinct structural brain networks are more intra-hemisphere centric. 
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 Networks presented in Figure 9(a) and Figure 9(b) contain many of the brain regions 

known to be associated with executive functioning, including working memory, fluency, and 

attention. Involvement of the superior and middle frontal regions, the ventrolateral frontal 

regions of parstriangularis and parsopercularis, anterior cingulate, insula, and superior 

parietal are critical components of the central executive and salience networks. While these 

networks form the most reproducible basis for these functions in both fMRI and cognitive 

neuroscience, the involvement of the temporal lobe regions is also consistent with short-term 

storage of information for manipulation in the frontal lobes during the working memory 

tasks.  

On the other hand, networks presented in Figure 9 contain many brain regions, which 

would be associated with processing speed. Involvement of the superior and middle frontal 

regions, the orbital frontal regions, anterior cingulate, insula, and superior parietal regions are 

consistent with regions, which would potentially be engaged during the processing speed 

tasks. Some of the regions, such as the insula and anterior cingulate, would be engaged in 

active switching between tasks such as surveillance and response. While these networks form 

the most reproducible basis for these functions in both fMRI and cognitive neuroscience, the 

involvement of the temporal lobe regions is also consistent with short-term storage of 

information for manipulation during the evaluation process. Besides cortical thickness and 

structural connectivity, it was observed that sex, race, and ethnicity were also important 

demographic variables in modeling those cognitive functions. 

Conclusion 

The aim of this study was to develop a data-driven multivariate approach to accurately 

classify cognitive abilities in ALL patients at the end of therapy. The state-of-the-art 

cognitive neuroscience mainly uses hypothesis-driven statistical testing to characterize and 

model neural disorders and diseases, and while these methods provide concurrence of a fixed 

hypothesis with the available data points, they fail to evaluate all possible hypotheses. In this 
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study, we developed models with stability selection using MRI-based volumetric measures, 

morphometry statistics, and behavioral as well as demographic variables. Stability selection 

not only reduced feature dimension and improved model accuracy, but it selected consistent 

and relevant connectome features that were invariant and stable over a range of model 

parameters. This approach also discovered brain regions and structural connectivity, which 

were strongly associated with processing speed and executive functions, including working 

memory, fluency, and attention. The findings of this study suggest that the performance and 

generalization capability of stability selection-based models are superior compared to the 

classical machine learning and graph mining approach.  Since this study was limited to DTI 

based structural connectivity, it is inadequate in explaining causal relationships among brain 

regions as well as individuality and variations. Furthermore, a number of possible fMRI 

based future studies using the same experimental set up with a larger population are 

necessary for further improvement. 

 Appendix 

Mathematical definitions and interpretation of network features are given below:  

Characteristics path 

A fundamental property of brain networks is functional integration, which indicates 

how integrated a network is and, thus, how easily information flows [4] among nodes. A 

widely used approach to estimate properties of functional integration between nodes is based 

on the concept of characteristic path length. The characteristic path length is defined as the 

average shortest path length in the network [123]. Hence, small characteristic path values 

imply dense connectivity and stronger potential for integration among nodes. Let, _% is the 

average distance between node ` and all other nodes of a network, Average Characteristic 

path is defined as: 

L =
/

?
∑ _@@∈A =

/

?
 ∑

∑ C'((∈*,(,'
?2/@∈A 	 5 
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Where, c@D is the shortest distance between node `, d (shortest path can be calculated 

using any popular shortest path algorithm), e is the set of all nodes, and f is the total number 

of nodes.  

Global efficiency 

Global efficiency (E) is used to find how cost-efficient a particular network 

construction and how fault tolerant the network is. Hence, high global efficiency, implying 

the excellent use of resources. In brain connectivity analysis, structural and effective 

networks are similarly organized and share high global efficiency. On the other hand, 

functional networks have weaker connections and consequently share lower global efficiency 

[3]. Global efficiency is the average of inverse shortest path length hence inversely related to 

the average characteristic path length. E is defined as: 

E =
/

?
∑ 3@@∈A =

/

?
∑

∑ C',(
-.(∈*,(,'

?2/@∈A  . 6 

Average clustering coefficient 

The average clustering coefficient for the network reflects,  how close 

its neighbors are to being a clique or complete graph. The average clustering coefficient of a 

node is defined as the fraction of triangles around a node [123] and defined as: 

C =
/

?
∑ g@@∈A  . 7 

Here, Ci is the clustering coefficient of i
th

 node. Let ki is the number of neighborhood 

nodes, and ti is the number of triangles created around i
th

 node. If a node has k neighbors, 

there are h(h − 1) 2⁄  edges could exist among the nodes within the neighborhood. Hence, C 

can be defined as:  

C =
/

E
∑ 0</

F/(F/2/)I∈J  . 8 

Transitivity  

Transitivity is a classical variant of average clustering coefficient and defied as:  
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T =
∑ 0&''∈*

∑ !'(!'2/)'∈*
 . 9 

The value of average clustering coefficient can be influenced by nodes with a low 

degree. But transitivity is normalized collectively and, consequently hence, does not have 

such problem [60].  

Small-worldness  

Small-world network (S) is formally defined as networks that are significantly 

densely clustered and have larger characteristic path length than random networks [123].  

Mathematically S can be expressed as:  

) =
K
K#01234L

M
M#01234L

 . 10 

Where g and grand are the clustering coefficients, and _ and _rand are the characteristic 

path lengths of the test network and an equivalent random network with the same degree on 

average respectively. For a small world network S > 1, C >> Crandom and L >> Lrandom. Such 

network tends to contain more densely connected cliques/near-cliques/sub-networks than 

random network. Those sub-networks are interconnected by one or more edge.  

Assortativity coefficient 

Despite the importance of local and community structure, it is essential to study 

global diversity in networks. Hence the tendency to connect nodes with similar numbers of 

edges. This tendency, called assortativity, described crucial dynamic and structural properties 

of real-world networks, such as epidemic spreading or error tolerance [124]. A positive 

assortativity coefficient indicates that nodes tend to link to other nodes with the same or 

similar degree; on the other hand, negative values indicate relationships between nodes of 

different degree. Biological networks typically show negative assortativity coefficient as high 

degree nodes tend to attach to low degree nodes [125]. Mathematically, the assortativity 

coefficient is the Pearson correlation coefficient of degree between pairs of linked nodes 

[126]. Consider an undirected graph of N vertices and M edges with degree distribution 	9D. 
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That is 	9D is the probability that a randomly chosen node on the graph will have degree k and 

6! is the distribution of the remaining degree. This 6! captures the number of edges leaving 

the node, other than the one that connects the pair. The assortativity coefficient (r) is defined 

as: 

r =
∑ D!(*(525(35)(5

N6%
 . 11 

Where, kO2 is the variance of distribution 	9! and lQR refers to the joint probability 

distribution of the remaining degrees of the two nodes. 

Modularity index 

Modularity refers to the ability of subdivision the network into non-overlapping 

groups of nodes (known as modules or community) in a way that maximizes the number of 

within-group edges. Networks with high modularity have dense connections between the 

nodes within the modules but sparse connections between nodes in different modules. Hence, 

modularity quantifies the community strength of a test network by comparing the fraction of 

edges within the community with respect to random network [127]. It is widely used to 

discover anatomical modules correspond to groups of specialized functional area which is 

previously determined by physiological recordings. Usually, anatomical, effective, and 

functional modules in brain connectivity show extensive overlap [4]. The modularity index of 

a given network is the fraction of the edges that fall within the given groups minus the 

expected fraction if edges were distributed at random. Finding optimal modular structure is 

an optimization problem. Any optimization approach generally sacrifices some degree of 

accuracy for computational speed. Widely used algorithm to find optimal modular structure 

are proposed by Newman et al. [128], and Blondel et al. [129].  
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Chapter 4 -  Functional Connectivity Analysis 

Categorical perception (CP) is an inherent property of speech perception. The 

response time (RT) of listeners’ perceptual speech identification is highly sensitive to 

individual differences. While the neural correlates of CP have been well studied in terms of 

the regional contributions of the brain to behavior, functional connectivity patterns that 

signify individual differences in listeners’ speed (RT) for speech categorization is less clear. 

To address these questions, we applied several computational approaches to the EEG, 

including graph mining, machine learning (i.e., support vector machine), and stability 

selection to investigate the unique brain states (functional neural connectivity) that predict the 

speed of listeners’ behavioral decisions. We infer that (i) the listeners’ perceptual speed is 

directly related to dynamic variations in their brain connectomics, (ii) global network 

assortativity and efficiency distinguished fast, medium, and slow RT, (iii) the functional 

network underlying speeded decisions increases in negative assortativity (i.e., became 

disassortative) for slower RTs, (iv) slower categorical speech decisions cause excessive use 

of neural resources and more aberrant information flow within the CP circuitry, (v) slower 

responders tended to utilize functional brain networks excessively (or inappropriately) 

whereas fast responders (with lower global efficiency) utilized the same neural pathways but 

with more restricted organization. Our results showed that neural classifiers (SVM) coupled 

with stability selection correctly classify behavioral RTs from functional connectivity alone 

with over 92% accuracy (AUC=0.9). Our results corroborate previous studies by supporting 

the engagement of similar temporal (STG), parietal, motor, and prefrontal regions in CP 

using an entirely data-driven approach. 

Dataset 

Participants 

Thirty-five adults (12 males, 23 females) were recruited from the University of 

Memphis student body and Greater Memphis Area to participate in the experiment. All but 
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one participant was between the age of 18 and 35 years (M = 24.5, SD = 6.9 years). All 

exhibited normal hearing sensitivity confirmed via audiometric screening (i.e., < 20 dB HL, 

octave frequencies 250 - 8000 Hz), were strongly right-handed (77.1± 36.4 laterality index 

[130]), and had obtained a collegiate level of education (17.2 ± 2.9 years). None had any 

history of neuropsychiatric illness. On average, participants had a median of 1.0 year 

(SD=7.5 years) of formal music training. All were paid for their time and gave informed 

consent in compliance with a protocol approved by the Institutional Review Board at the 

University of Memphis. Figure 10 (A, B) shows the distribution of demographic measures 

(gender and age) of participants.   

 

Figure 10: (A, B) Demographic gender and age distributions. (C) Acoustic spectrograms of the speech stimuli: The 

stimulus continuum was created by parametrically changing vowel first formant frequency over five equal steps from 430 to 

730 Hz (►), resulting in a perceptual-phonetic continuum from /u/ to /a/. (D) Token wise response times for auditory 

classification. Listeners are slower to label sounds near the categorical boundary (i.e., Token 3).  Females (F) have 

significantly slower response times than males (M). 
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Speech stimulus continuum and behavioral task 

We used a synthetic five-step vowel continuum previously used to investigate the 

neural correlates of CP [130] (Figure 10C). Each token of the continuum was separated by 

equidistant steps acoustically based on first formant frequency (F1) yet was perceived 

categorically from /u/ to /a/. Tokens were 100 ms, including 10 ms of rise/fall time to reduce 

spectral splatter in the stimuli. Each contained an identical voice fundamental (F0), second 

(F2), and third formant (F3) frequencies (F0: 150, F2: 1090, and F3: 2350 Hz). The F1 was 

parameterized over five equal steps between 430 and 730 Hz such that the resultant stimulus 

set spanned a perceptual phonetic continuum from /u/ to /a/ [43]. Speech stimuli were 

delivered binaurally at 83 dB SPL through shielded insert earphones (ER-2; Etymotic 

Research) coupled to a TDT RP2 processor (Tucker Davis Technologies). 

 During EEG recording, listeners heard 150-200 trials of each individual speech token. 

On each trial, they were asked to label the sound with a binary response (“u” or “a”) as 

quickly and accurately as possible (speeded classification task). Reaction times (RTs) were 

logged, calculated as the timing difference between stimulus onset and listeners’ behavioral 

response. Following their keypress, the inter-stimulus interval (ISI) was jittered randomly 

between 800 and 1000 ms (20 ms steps, uniform distribution), and the next trial was 

commenced. 

Our speech categorization task requires listeners to make a binary judgment on what they 

hear. As such, it is a subjective task that does not have true accuracy, per se. Consequently, 

we chose to decode RTs since they are a continuous, more objective measure that provides 

much richer decoding of listeners’ behavioral decision. 

Behavioral data analysis 

We adopted classical Gaussian mixture model (GMM) with expectation-maximization 

(EM) to identify an optimal number of clusters (i.e., subgroups of listeners) from the 



 

 45 

distribution of their RT speeds (see Figure 10D). GMMs are probabilistic models that assume 

the data are generated from a mixture of a finite number of Gaussian distributions 

(components) with unknown parameters. Mixture models generalize k-means clustering to 

incorporate information about the covariance structure of the data as well as the centers of the 

latent Gaussians. Unlike Bayesian procedures, such inferences are prior-free. However, 

finding an optimal number of components is challenging. The Bayesian Information Criterion 

(BIC) can be used to select the number of components in a GMM if data is generated from an 

independent and identically distributed mixture of Gaussian distributions. In this study, we 

used brute-force and BIC based approaches as an alternative solution to the Variational 

Bayesian Gaussian mixture model. In this exhaustive parameter search, the hyperparameters 

were (1) Number of components (clusters), (ranges from 1 to 14); (2) Type of covariance 

parameters (‘full’: each component has its own general covariance matrix; ‘tied’: all 

components share the same general covariance matrix; ‘diag’: each component has its own 

diagonal covariance matrix; or ‘spherical’: each component has its own single variance). This 

identified an optimal combination of four components with the unique covariance matrix. 

Figure 11A shows the BIC scores while tuning parameters. The ‘*’ indicates the optimal 

combination of components. The probability of each component (see Figure 11B) shows that 

most trials fall into components 1- 3 ranging from 17% - 47% of the total trials in the speech 

identification task. Component 4 has the fewest number of trials (1.6%). Based on the 

interpretation of RTs, we categorized these components as Fast RT (Cluster 2, 120 - 476 ms), 

Medium RT (Cluster 3, 478 - 722 ms), Slow RT (Cluster 1, 724 -1430 ms), and Outliers 

(Cluster 4, 1432 - 2500 ms). The outliers (Cluster 4) were discarded for further analysis, 

given the low trial counts loading into this cluster. The boxplot in Figure 11C shows token 

wise response times. Each speech token can be broken down into a combination of the three 

RT clusters, meaning that speech categorization speeds could be objectively clustered into 
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fast, medium, slow (and outliers) responses via the GMM. These cluster divisions were then 

used in subsequent EEG analyses to determine if functional brain connectomics differentiated 

these subgroups of CP performers.  

EEG recording and preprocessing 

Recording and preprocessing: EEG recording procedures were identical to our previous 

neuroimaging studies on CP (e.g., Bidelman et al., 2013; Bidelman and Alain, 2015; 

Bidelman and Walker, 2017). Briefly, neuroelectric activity was recorded from 64 sintered 

Ag/AgCl electrodes at standard 10-10 locations around the scalp [131]. Continuous data were 

digitized using a sampling rate of 500 Hz (SynAmps RT amplifiers; Compumedics 

Neuroscan) and an online passband of DC-200 Hz. Electrodes placed on the outer canthi of 

the eyes and the superior and inferior orbit monitored ocular movements. Contact impedances 

were maintained < 10 kΩ during data collection. During acquisition, electrodes were 

referenced to an additional sensor placed ~ 1 cm posterior to the Cz channel.  

Subsequent pre-processing was performed in BESA® Research (v7) (BESA, GmbH). 

Ocular artifacts (saccades and blinks) were first corrected in the continuous EEG using a 

principal component analysis (PCA) [132]. Cleaned EEGs were then filtered (bandpass: 1-

100 Hz; notch filter: 60 Hz), epoched (-200-800 ms)
1
 into single trials, baseline corrected to 

 

1 To measure functional connectivity, the epoch window was set wide enough (-200 to 800 ms) to include 

all sensory (auditory), post-perceptual (linguistic), and response (motor) ERP components relevant to our speech 

identification task. Therefore, the late endpoint of the analysis window included task-relevant responses, which 

is likely why we see parietal, motor, and even prefrontal regions that define the CP network (see Figure 15).  We 

did not limit our search analysis window because we explicitly wanted to maintain the richness of the data and 

decode any and all task-relevant nodes of the brain without a priori biases to isolate auditory, language, or 

motor components, per se. 
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the pre-stimulus interval and re-referenced to the common average of the scalp. This resulted 

in between 750 and 1000 single trials of EEG data per subject (i.e., 150-200 trials per speech 

token).  

Source analysis: Following our previous neuroimaging studies on speech processing 

[133], [134], we performed a distributed source analysis to more directly assess the neural 

generators underlying behavioral decisions related to CP. Source reconstruction was 

implemented in the MATLAB package Brainstorm [135]. We used a realistic, boundary 

element model (BEM) volume conductor [136], [137] standardized to the MNI template brain 

[138]
2
. The BEM head model was created using the OpenMEEG [141] as implemented in 

Brainstorm on the MNI template brain [135]. A BEM is less prone to spatial errors than other 

head models (e.g., concentric spherical conductor) [137]. The sLORETA allowed us to 

estimate the distributed neuronal current density underlying the measured sensor data. The 

resulting activation maps (akin to fMRI) represent the transcranial current source density 

underlying the scalp-recorded potentials as seen from the cortical surface. We used the 

default settings in Brainstorm’s implementation of sLORETA [135]. The sLORETA provides 

a smoothness constraint that ensures the estimated current changes little between neighboring 

neural populations [132], [142]. This method is better than other inverse solutions because of 

its smaller average localization error. While higher channel counts improve source 

 

2 Spatial accuracy of inverse source modeling from EEG can be improved by incoprating MRIs and 

electrode digitization at the single subject level. Our source reconsruction pipeline was applied uniformly across 

listeners so our use of template brain anatomies is thus a source of noise in our data. While a template brain was 

expected to reduce the absolute precision of localization by ~5 mm [139] this error was uniform across 

individuals and critically, much smaller than the distance between the broad ROIs of the DK atlas which we 

aimed to localize. Indeed, source localization from macroscopic brain structures is not necessarily improved by 

individual anatomical constraints [140].     
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localization, for a 64-ch electrode array as used here, best-case estimates of localization error 

for sLORETA are as low ~1 mm [143]. 

From each single-trial sLORETA map, we extracted the time-course of source activity 

within 68 regions of interest (ROI) defined by the Desikan-Killany Atlas parcellation [144] as 

implemented in Brainstorm. Single-trial source waveforms (derived per subject and speech 

token) were then submitted to functional connectivity analyses. We have recently used a 

similar approach to successfully decode single-trial EEG and predict individual differences in 

other cognitive domains (e.g., working memory capacity [145]), motivating its use here.  

EEG functional connectivity and graph analyses  

Bootstrapping: Functional connectivity measures are more accurate when calculated 

using source localized compared to scalp-recorded (sensor-level) EEG [146]. Still, to ensure 

the robustness of our connectivity measures, we used bootstrapping to reduce the uncertainty 

of our connectivity estimates [147]. This method involved repeatedly taking small samples 

with replacement, calculating the statistics, and averaging over the calculated statistics. We 

applied a mean based bootstrap approach on 35106 trials. For each RT class, 100 random 

trials from each individual participant were chosen as a bootstrap sample (with replacement). 

We calculated the mean source amplitude in each of the 68 ROIs for each bootstrap sample. 

This process was then iterated 30 times to derive the final estimate of the mean source signal 

in each ROI. Overall, 3150 trials were generated (1050 trials of each RT class) in this process 

for further analysis.  

Functional connectivity: A graph network is defined by a collection of nodes (vertices) 

and links (edges) between pairs of nodes. Nodes in large-scale brain networks usually 

represent brain regions (ROIs), while links represent anatomical, functional, or effective 

connections [148]. Anatomical connections typically correspond to white matter tracts 
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between pairs of brain regions. However, functional connections correspond to the strength of 

temporal correlations between pairs of anatomically connected/unconnected regions. 

Depending on the measure, functional connectivity may reflect linear or nonlinear 

interactions, as well as interactions at different time scales [149]. Popular approaches to 

quantify functional connectivity are Correlation, Coherence (CH), imaginary part of 

coherency (iCH), Phase Locked Value (PLV), Phase Slope Index (PSI) [150]–[152]. A 

comprehensive comparison of these methods showed that correlation-based connectivity out-

performed the others in classifing behavioral RTs (see appendix for details).  

We measured pair-wise Pearson product-moment correlation coefficients among the 68 

brain regions (ROIs). This resulted in connectivity matrix describing the weighted strength 

(undirected network) between all pairwise nodes (
68

C2 = 2278 edges) for each trial. Diagonal 

and upper diagonal elements of the connectivity matrices were discarded to avoid spurious 

self and repeated connectivity. Matrices were then concatenated to a vector to describe the 

connectivity across all brain nodes and trials (e.g., 3150*2278) for each participant.   

Seven global network connectivity features were estimated from each network graph 

using the BCT toolbox [4]: (i) Characteristics path, (ii) Global efficiency, (iii) Average 

clustering coefficient, (iv) Transitivity, (vi) Small-worldness, (vi) Assortativity coefficient, 

and (vii) Maximized modularity (see Appendix for mathematical definitions and 

interpretation of these network features). 

Identifying behaviorally relevant aspects of functional connectivity 

To visualize the data, we used the t-distributed stochastic neighbor embedding (t-

SNE) [36] similar to the previous chapter. The hyperparameters of t-SNE were tuned with a 

grid search approach. Figure 12 shows the t-SNE embedded scatter and kernel density 

estimation (KDE) plot of our data distribution. The t-SNE visualization confirms three nearly 

distinct clusters of functional connectivity for the different RT groups in speech 

categorization. Unrelated or noisy edges may exist in the higher dimensional functional 
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connectivity matrices. This undesired contamination necessitates the use of feature selection 

methods to choose functional connectivity metrics that are relevant and can be modeled 

robustly over a range of model parameters. 

 

 

Figure 11: Clustering RT data using GMM and BIC criteria. Model selection concerns both the covariance type and number 

of components in the model. Brute-force based empirical analysis shows that n=4 components with unique covariance matrix 

is optimal. The ‘*’ marked position of (A) shows the optimal combination. (B):  Probability of trials loading into each 

component. (C): Token wise RT broken down by component.  Based on behavioral RTs, four clusters are evident that 

distinguish subgroups of listeners based on their speech identification speeds: Fast (Cluster 1): 120~476 ms, Medium 

(Cluster 2): 478~722 ms, Slow (Cluster 0): 724~1430 ms, and Outliers (Cluster 3): 1432~2500 ms. 
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Feature selection 

For feature selection, we used Randomized Logistic Regression for stability selection 

with randomized lasso. We considered sample fraction = 0.75, number of resampling =1000 

with tolerance=0.001. This algorithm assigns feature scores between 0 and 1 based on 

frequency of selection over 1000 iterations. We needed to specify a threshold score to 

identify the best representative set of stable features. Hence, a threshold selection is an 

essiential design parameter. We varied different selection thresholds (i.e., the number of 

selected features) and observed the effect on model performance. Modeling involved four 

steps: 

1. Randomly shuffle and split the dataset into training and test set (80% and 20%), 

2. Consider Support Vector Machine with “RBF” kernel as a base estimator, 

3. Tune hyperparameter (i.e., C and Gamma) on training data using grid search approach 

and 10-fold cross-validation, and 

4. Select best models evaluated on unseen test data. Accuracy (ACC) and Area Under 

Curve (AUC) were considered for performance measures, 

 

Figure 12: The t-SNE embedded higher dimensional functional connectivity data are represented by a 2-dimensional 

scatter and kernel density estimation (KDE) plot. The green lines with ‘.’, blue lines with ‘*’, and red lines with ‘+’ sign 

represents data points for slow, medium, and fast RT participants, respectively. 
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Figure 13: Effect of selection threshold on model performance prediction. The three x-labels represent (top) the range of 

each bin of features score (range: 0~1), (middle) the number of features falling in each bin, and (bottom) the corresponding 

percentage. 

Figure 13 shows the effect of different selection thresholds on modeling. The 

histogram illustrates the distribution of the feature score. The first line of the x-axis shows the 

bin ranges of scores (0 to 1). The second and third lines show the amount and percent of 

features that had nearly the same score for a specific bin. We found that 73% of the features 

had scores of 0-0.1, meaning the majority of connectivity measures were not selected even 

once (i.e., the coefficient was zero) among 1000 model iterations. That is, 73% of functional 

connectivity metrics explored in our search space were not related to speed ofspeech 

categorization (i.e., behavioral RTs).  

For a specific selection threshold of 0.26, the algorithm selected 227 edge features 

that collectively achieved 92% accuracy (best model performance) with an AUC=0.9. The 

bell-shaped solid black and red dotted lines of Figure 13 show the accuracy and AUC curves 

for different selection thresholds. Note that selection thresholds higher than the optimal value 

(0.26) allowed the model to consider more noise variables, degrading model performance 
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significantly. On the other hand, selection thresholds higher than the optimal value discard 

behaviorally relevant features and reduce model performance. Table 5 details the effect of the 

selection threshold on model performance. Here, the number of unique edges represents 

correlation-based connectivity between two brain nodes (features), and the number of unique 

nodes represents brain regions associated with those selected edges. Overall, we leveraged 

different machine learning techniques to address different steps in the data pipeline (i.e., data 

preprocessing, visualization, feature selection, modeling). The LDA based t-SNE was only 

used for data visualization. Randomized lasso (Stability selection with L1-penalized logistic 

regression) was used for feature selection. Moreover, a SVM was used for classification and 

evaluating the performance of stability selection. Our process, leveraging different techniques 

for each respective stage data analysis, follows widely used conventions in the EEG related 

machine learning field [5], [153], [154]. A schematic diagram of the method pipeline is 

shown in Figure 14. 

 

 

 

 

Figure 14: Schematic diagram of the processing pipeline. The 64-ch EEG data is first preprocessed, and then source 

localization is adapted to convert skull surface data to cortical surface time series data (68 ROIs defined by the Desikan-

Killany Atlas parcellation). Pairwise correlations were calculated to derive the connectivity matrix for each trial of the 

speech CP task. Behavioral response times (RTs) were clustered with Bayesian non-parametric (GMM) clustering. These 

clusters were labeled as Fast, Medium, and Slow RT.  ANOVA analysis of Graph measures w adopted to test significance 

among RT groups. Stability selection and machine learning approaches were then used to find significant properties of 

the brain’s functional connectivity related to behavioral speeds (RTs) in speech CP.  



 

 54 

Results 

Figure 10D shows behavioral results in the speech categorization task. Generally 

speaking, listeners were slower to label sounds near the categorical boundary (token 3), 

consistent with the higher ambiguity of the mid-continuum stimuli [42], [43], [45], [46]. On 

average, females also showed slower RTs than males across the continuum (Welch’s t-test; 

p<0.0001). Bayesian nonparametric clustering revealed four distinct clusters in the speed 

(RTs) of listeners’ CP (Fast: 120~476 ms, Medium: 478~722 ms, Slow: 724~1430 ms, and 

Outliers: 1432~2500 ms) (Figure 11C). These clusters were even present at the individual 

token level.  

Having established that listeners could be distinguished based on their speed in speech 

categorization, our next goal was to determine whether network properties of the brain 

accounted for these behavioral differences. We applied graph theory techniques to construct 

and analyze the functional brain connectome underlying CP. We considered both individual 

trials- as well as group-based analyses. For group-based analysis, data were averaged across 

subjects within each RT cluster. Group means were computed by concatenating group-wise 

trials and calculating their mean. We then calculated seven global network connectivity 

features using the BCT toolbox [4] similar to the previous chapter.  

We used non-parametric ANOVAs (Kruskal-Wallis H-test) to determine if individual 

trial-based global graph measures varied across RTs (Table 3). This non-parametric test was 

used given the unequal sample size per group [155]. These analyses revealed that 

Assortativity and Global Efficiency were modulated depending on behavior speed. Table 4 

shows a comparison of the graph measures across three RT groups. Global efficiency 

measures were relatively small, and assortativity had a negative tendency. All other network 

features were not discriminatory among the RT groups. Therefore, modeling with those 

features (using SVM with ‘RBF’ kernel) showed expectedly poor accuracy (38%).  
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Besides analyzing global network properties, we next aimed to identify the most 

significant properties of functional brain connectivity that were related to behavioral RTs. 

Functional connectivity for each trial is a high dimensional sparse matrix. Some studies have 

suggested that properties of functional brain networks are most consistent with the actual 

brain anatomy when network density is 8% to 16% [156]–[158].  To determine the most 

behaviorally relevant arrangement of sparse connectivity, we used stability selection with 

Randomized Lasso to detect and rank the most important, consistent, and relevant functional 

connectivity measures that were invariant (stable) over a range of model parameters. Stability 

selection discarded 88% (total 273) of network edges that were not related to behavioral RTs, 

but still achieved 92% classification accuracy with AUC=0.9. From Table 5, It was observed 

Table 3: Significant (bold) global network measures (Kruskal-Wallis H-test tests) (trial-level). 

Measures p-value 

Characteristics Path 0.1359 

Average Clustering Coefficient 0.8286 

Small Worldness 0.0815 

Assortativity 0.0052 

Global Efficiency 0.0290 

Transitivity 0.8424 

Maximized Modularity 0.6617 
 

Table 4: Group comparison of graph measures of functional connectivity between RT groups. 

Measures Fast RT Medium RT Slow RT 

Characteristics Path 0.1473 0.1507 0.1504 

Average Clustering Coefficient 0.1327 0.1358 0.1352 

Small Worldness 1.1516 1.1522 1.1497 

Assortativity -0.0086 -0.0128 -0.0118 

Global Efficiency 0.1909 0.1934 0.1944 

Transitivity 0.1329 0.1362 0.1354 

Maximized Modularity 0.1872 0.1845 0.1875 
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that 7% error tolerance from the optimal value (accuracy from 92% to 85%) allowed 80% 

fewer edges and 22% fewer associated nodes. Hence, the selection threshold 0.51 with 

reasonable performance (Accuracy=85%, AUC=0.9) were chosen for network visualization 

as performance declined precipitously above this threshold (as shown in Figure 13). 

Figure 15 shows a visualization of the 54 nodes among 53 ROIs identified via stability 

selection using BrainNet [159]. The resulting network revealed a highly dense connectome 

reflective of listeners’ behavioral RTs in speech categorization. Connectivity was particularly 

strong between the occipital, parietal, and bilateral frontal lobes. As an additional means of 

data reduction, we further thresholded (=0.68) the stability-selected connectome. This 

resulted in eight highly ranked connectivity edges among 13 nodes across the brain (shown in 

Figure 16). Even with this sparse network of only eight edges, model classification was still 

57%, meaning this small set of features accurately predicted RTs. We then ranked the 

 

Figure 15: BrainNet visualization (top to bottom: lateral, medial, and dorsal view) of the brain network (54 edges) 

identified via stability selection. Color map 1-6 indicates, 1:  Frontal (22 ROI), 2: Parietal (10 ROI), 3: Temporal (18 

ROI), 4: Occipital (8 ROI), 5: Cingulate (8 ROI), 6: Insula (2 ROI) regions. Node size varies with its degree of 

connectivity. Connectivity among the same lobe are colored with similar node color. Edge widths represent the weight of 

absolute correlation (connectivity strength).  
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contribution of these stable nodes in Table 6. We found that three edges (rank: 3, 4, and 6) 

were in left hemisphere, two edges were in the right hemisphere (rank: 2, and 5), and three 

edges were inter-hemispheric (rank: 1, 7 and 8). Notably, these edges included connections 

between motor (paracentral), visual (lateral occipital/ lingual), linguistic (left IFG, pars 

triangularis), auditory (superior temporal gyrus), and parietal areas both within and between 

hemispheres. 

 

Discussion 

The present study evaluated whether individual differences in a core operation of 

speech and language function (i.e., categorization) could be explained in terms of network-

level descriptions of brain activity. By applying machine learning classification techniques to 

functional connectivity data derived from EEG, our data show that the speed of listeners’ 

ability to categorize and properly label speech sounds is directly related to dynamic variations 

in their brain connectomics. 

Table 5: Effect of selection threshold of stability selection (Threshold) on model performance. The pairwise correlation 

between two brain regions (functional connectivity edge) were considered as features. The number of unique nodes are 

the brain regions associated with selected features.  ACC, accuracy; AUC, area under curve. 

Threshold ACC AUC Number of  

Unique Edges 

Number of  

Unique Nodes 
  

0 46% 0.6 2278 68 

0.08 88% 0.9 613 68 

0.17 91% 0.9 408 68 

0.26 92% 0.9 273 68 

0.34 90% 0.9 183 68 

0.42 89% 0.9 109 64 

0.51 85% 0.9 54 53 

0.59 71% 0.8 16 24 

0.68 57% 0.7 8 13 

0.76 47% 0.6 4 8 
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It has been suggested that important cognitive functions are supported by distributed 

neural networks with highly segregated and integrated “small-world” organizations or 

clusters [1]–[3], [60]. However, in relation to distinguishing listeners’ perceptual speed for 

categorized speech, we did not find differences in network properties of Characteristics Path, 

Average Clustering Coefficient, Small Worldness, Transitivity, and Maximized Modularity 

clearly indicates (Table 3). Instead, global network assortativity and efficiency distinguished 

fast, medium, and slow RT individuals. In network science, assortativity refers to the 

tendency of “like to connect with like.” That is, at the macroscopic level, high degree nodes 

attach to other high degree nodes and similarly, low to low [152]. In our study, functional 

brain networks were defined via task-based co-activations. Hence, they were expected to 

exhibit some assortativity as co-activation means that regions of the network were engaged 

by the same task. Previous studies have shown that the property of assortative tendency 

changes with task demands [160]. The resting state brain functional network is largely 

assortative. Higher order association areas exhibit non-assortative organization tendency and 

form periphery-core topologies. However, assortative structures break down during tasks and 

is supplanted by periphery, core, and disassortative communities. 

In addition, we found that the functional CP network underlying speed of decisions 

increased in negative assortativity (i.e., became disassortative) for slower RTs. This indicates 

that brain nodes were more likely to connect with nodes having different degree during 

slower RTs, implying that important hubs of the CP network communicated with 

insignificant hubs during states of slower decisions. Based on the interpretation of these 

graph metrics (see Appendix), we infer that slower, more taxing categorical speech decisions 

cause excessive use of neural resources and more aberrant information flow within the CP 

circuitry. Supporting this interpterion, we found that network utilization (Global efficiency) 

also differentiated RT groups. Higher Global efficiency indicates that the routing of 

information among nodes with different degrees was significantly higher for slow RT trials. 
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In short, we find that slower responders tended to utilize functional brain networks 

excessively (or inappropriately) whereas fast responders (with lower global efficiency) 

utilized the same neural pathways but with more restricted organization. Presumably, these 

dynamic changes in brain connectivity account for the variations in RTs we find during 

speech categorization at the behavioral level (Figure 10D).  

 

Figure 16: A sparse brain network (8 edges) predicts listeners’ speed (RTs) of speech categorization (57% model 

accuracy). Red numbers are the ranked importance of the edges describing behavior. Otherwise, as in Figure 15. 

Our data show that global graph measures fail to fully explain the behavioral 

relevance of important connectivity edges. We observed that the functional connectivity 

matrix underlying speech CP is highly sparse and dynamic. Indeed, only ~12% of all possible 

edges in the Desikan-Killany Atlas was needed to explain variation in behavioral RTs. In this 

vein, we adopted stability selection to find edges that were most consistent in distinguishing 

different network states related to perception. By performing this two-stage randomization 

iteratively (e.g., 1000 bootstraps), stability selection with randomized lasso assigned high 
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scores to features that were repeatedly selected across randomizations, yielding the most 

meaningful connections within the CP connectome that describes behavior. 

Table 6: Eight most important edges that govern speeded speech classification. Collectively, these edges achieve a model 

accuracy of 57% in segregating listeners’ speeded decisions (RTs) in the perceptual task. Here, a score of 0.85 means that 

out of 1000 iterations, the edge was selected by stability selection 850 times. 

Edge Score Rank 

Paracentral R-Middletemporal L 0.85 1 

Lingual R-Caudalmiddlefrontal R 0.845 2 

Parstriangularis L-Inferiorparietal L 0.785 3 

Superiorparietal L-Rostralmiddlefrontal L 0.785 4 

Precuneus R-Parahippocampal R 0.725 5 

Parstriangularis L-Lateraloccipital L 0.705 6 

Precuneus R-Lingual L 0.705 7 

Superiortemporal R-Inferiorparietal L 0.695 8 
 

 

Collectively, our results showed that neural classifiers (SVM) coupled with stability 

selection could correctly classify behavioral RTs related to CP from functional connectivity 

alone with over 90% accuracy (AUC=0.9). The resulting edges composing the RT-related 

networks were distributed in both hemispheres, and both intra- and inter-hemispheric edges 

were evident. More interestingly, we found that only eight edges among 13 ROIs were 

needed to distinguish RTs well above chance. ROIs composing this sparse but behaviorally-

relevant network included (1) Caudalmiddlefrontal R, (2) Inferiorparietal L, (3) 

Lateraloccipital L, (4) Lingual L, (5) Lingual R, (6) Middletemporal L, (7) Paracentral R, (8) 

Parahippocampal R, (9) Parstriangularis L, (10) Precuneus R, (11) Rostralmiddlefrontal L, 

(12) Superiorparietal L, (13) and Superiortemporal R. Previous neuroimaging studies have 

demonstrated a distributed fronto-temporo-parietal neural network supporting auditory 

categorization (e.g., [44], [45], [61], [63], [64], [66], [161]–[165]). Our data corroborate these 

previous studies by confirming engagement of similar temporal (STG), parietal, motor, and 
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prefrontal regions in CP using an entirely data-driven approach (machine learning with 

stability selection).  

Notably, we found functional connectivity between right paracentral and left 

middletemporal gyrus (MTG) was the most important connection describing the speed of 

behavioral CP (Table 6). MTG has been associated with accessing word meaning while 

reading [166] and has been described as an early lexical interface that is heavily involved in 

sound-to-meaning inference [167], [168]. Some studies indicate that lesions of the posterior 

region of the middle temporal gyrus, in the left cerebral hemisphere, may result in certain 

forms of alexia and agraphia [169], indicating its role in the language production network 

[170]. The strong link between MTG and paracentral gyrus implies a direct pathway between 

the neural substrates that map sounds to meaning and sensorimotor regions that execute the 

motor command and therefore govern response speeds (indexed by RTs). The leftward 

laterality of the MTG node is consistent with the left lateralized nature of language 

processing in the brain. Still, why left MTG so strongly interfaces with right motor areas in 

our data is unclear, especially given the right-handedness of our participants and expected left 

(contralateral) motor involvement. Differences in brain connectivity have been observed 

between sexes [171], and females may have a more diffuse, bilateral neural system for 

language processing than males [172]. Speculatively, the strong communication between left 

linguistic (MTG) and right motor brain areas we find may reflect the higher preponderance of 

females in our sample.  

 Relatedly, stability selection identified the second-ranked edge between lingual and 

caudal-middlefrontal gyrus. While the functional role of lingual (occipital) gyrus in speech 

processing is not apparent prima facie, this region is involved in visual word processing, 

especially letters [173]. It has also implicated in stimulus naming [174], [175], an operation at 

the core of our speech categorization (i.e., sound labeling) task. We also found a third ranked 

edge predictive of behavioral CP between parstriangularis and inferior parietal cortex. 
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Previous functional neuroimaging and connectivity studies have shown strong engagement of 

frontal-parietal networks during CP [45], [164], [165]. Our results corroborate these findings 

by similarly implicating a prominent interface between linguistic (IFG) and parietal (IPL) 

brain regions in modulating the speed of listeners’ categorical decisions. Indeed, decision 

loads IFG during effortful speech listening [63], [176], [177] and the IFG-IPL pathway is 

upregulated when speech material is perceptually confusable [164]. Therefore, the network 

organization of brain connectivity observed for slow RTs and importance of IFG-IPL in 

describing behavior may reflect a similar state of perceptual confusion during rapid 

categorical speech labeling.  

One limitation of our study was that our sample contained more females than males 

(2:1 ratio). This is relevant since RTs were differed among genders (Figure 10D). Thus, a 

natural question that emerges from our data is the degree to which our machine learning 

techniques segregated data based on gender rather than different RTs (i.e., fast vs. slow 

responders), per se. Still, this is probably not the case. Conventional filter-based group 

analysis can bias classification and feature selection results, whereas with our Lasso-based 

bootstrapped analysis, this becomes less likely [178]. Moreover, stability selection with 

randomized lasso is a similar but more robust approach that produces consistent variable 

selection with minimal bias. Hence, the impact of our unbalanced sample size on feature 

selection is probably negligible.  

Taken together, our novel approach to neuroimaging data demonstrates the derivation 

of small, yet highly meaningful patterns of brain connectivity that dictate speech behaviors 

using solely EEG. More broadly, the functional connectivity and machine learning techniques 

used here could be deployed in future studies to identify the most meaningful changes in 

spatiotemporal brain activity that are modulated by development, normal learning, or those 

which decline in neuropathological states. 
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Conclusion 

We developed an efficient computational framework to investigate whether individual 

differences in speed of speech categorization can be decoded from network-level descriptions 

of brain activity. We adopted appropriate best practices in machine learning and data analysis 

to visualize very noisy high dimensional data using a combination of supervised and 

unsupervised techniques to understand the embedding and linear separability of the data. We 

further used stability selection to determine the set of features over a range of model 

parameters. This is critical for interpretation and validation and identifying unique states of 

functional brain connectivity. Our EEG data-driven approach reveals that the speed of 

listeners’ ability to categorize and properly label speech sounds is directly related to dynamic 

variations in their brain connectomics. These findings contribute in several ways to our 

understanding of how the brain works in categorical perception and provide a basis for 

further research. In future iterations of the work, we plan to improve our approach by 

including directional and dynamic connectivity analysis to better delineate the temporal 

emergence of the phenomena observed here.  

Appendix 

Connectivity matrix 

We calculated Correlation, Coherence (CH), Imaginary coherence (iCH), phase locked value 

(PLV) to construct undirected graph matrices. Phase Slope Index (PSI) worked better than 

conventional directed graph matrix measure (e.g., Granger causality) [179]. Therefore, PSI is 

considered as directed graph matrix for directed graph analysis. Here, the spectral densities 

were estimated using a “multitaper” method with digital prolate spheroidal sequence (DPSS) 

windows and a discrete Fourier transform with Hanning windows. 
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We considered average connectivity scores for each frequency band. Let, )ST	is cross-

spectral densities and )SS, )TT	is the auto spectral density of x and y respectively. Coherence 

is calculated using this equation: 

gm =
3()ST)

n3()SS) ∗ 3()TT)
 12 

The equation of Imaginary coherence [151] is given by:  

`gm =
*U(3p)STq)

n3()SS) ∗ 3()TT)
 13 

The equation of Phase-Locking Value [150] is given by: 

'_4 = 	 r3s)ST/r)STrtr 14 

Each line in Figure 17 represents the effect of the selection threshold over 

classification accuracy. A higher threshold value selects a fewer number of features. For a 

specific selection threshold, we found that correlation-based connectivity out-performed CH, 

iCH, PLV, and PSI in segregating speech RTs. Why correlation works better in classifying 

 

Figure 17: Accuracy curves of stability selection (as in Figure 13). Stability selection was applied to Correlation, CH, 

iCH, PLV PSI based-edge matrix, as well as combinations of CH and iCH, combination of correlation, CH, iCH, and PSI 

based-edge matrix. Here ‘mul’ and ‘fou’ represents multitaper and Fourier transform methods. The dot point of each 

accuracy curve indicates maximum accuracy of the optimal combination of features. Correlation-based connectivity 

outperforms all other measures. 
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behavioral RTs is an empirical question that needs to be further evaluated in future signal 

processing studies. Based on results from our empirical comparisons, we adopted correlation-

based connectivity throughout the remainder of the study. 

Figure                                                                                                                                                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 18: Brain network underlying Slow RT listeners (left), Medium RT listeners (middle), and Fast RT listeners. 

Shown here are the most highly correlated (absolute correlation ≥0.5) network edges. Otherwise as in Figs. 6-7. INS, 

insula; IST, isthmus of cingulate; TRANS, transverse temporal gyrus (auditory cortex); POB, pars orbitalis; PRC, 

precentral gyrus (motor cortex); PHIP, parahippocampal gyrus; PREC, precunus; l/r, left/right hemisphere. 
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Chapter 5 -  Dynamic Network Analysis 

In this chapter, we perform dynamic network analysis to discover temporal patterns in 

categoric perception. Specifically, DEAP [180]  and CP dataset (used in the previous chapter) 

is used here to analyze affect and speech perception. 

Dataset 

DEAP dataset 

 In DEAP (A Database for Emotion Analysis using Physiological Signals) dataset [3], 

thirty-two healthy participants participated in experiment where male-female ratio was 50% 

and aged between 19 and 37 (mean age=26.9). Forty selected music video clips were used as 

the visual stimuli to elicit participant’s emotions. Participants EEG and peripheral 

physiological signals were recorded using Biosemi Active System. They rated video stimuli 

on a discrete 9-point likert scale (Valence, Arousal, Dominance, and Like rating) using Self- 

Assessment Manikins during the experiment. The data was recorded in two separate 

geographical locations. Twenty-two participants were recorded in Twente, Netherlands, and 

rest of the participants in Geneva, Switzerland. We considered only the 22 Dutch participant's 

data to keep consistency. 

 

Figure 19: Diversity in the DEAP dataset with different phenotypes. 

Overall, 880 (22*40) trials were taken for further analysis. The 32 Channel EEG data was 

first preprocessed, and the source estimation was adopted to convert skull surface time-series 

data to cortical (68 ROI, Desikan-Killiany template) surface time series data. An optimal 4 
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Sec, 25% overlapping rolling window was used to chunk each trial. The pairwise correlation 

matrix, clustering-based approach was applied to find micro-states. Exploratory data analysis 

was used for further interpretation. The schematic diagram of the processing pipeline is 

shown in Figure 22. The 32 Channel EEG data were preprocessed with several steps by 

applying: 

1. Notch filter (60, 120, and 180 Hz): Notch filters were used for removing well-

identified contaminations from systems oscillating, 

2. Band-pass: (0.5-60 Hz), 

3. Detect and remove eye blinks using EOG channels and SSP (Signal-Space Projection)  

4. Import EEG stimulus events, and  

5. DC offset correction (-3 to -0.002 sec.). 

Reconstructing the activity of the brain from EEG recordings involves several 

sophisticated steps. The Brainstorm [135] simplifies the procedures. We need to consider two 

distinct modeling problems to estimated cerebral currents from the EEG recordings:  

1. Modeling of the electromagnetic properties of the head and the sensor array (head 

model or forward model), and  

2.  The estimation of the brain sources which produced the data, according to a specific 

head model. That second step is known as source modeling or solving an inverse 

problem.  

Overall, we followed four steps: 

a. Sensors/MRI registration, 

b. Compute covariance (noise or data), 

c. Compute source (using sLORETA), 

d. Recording ROI (Desikan-Killiany template with 68 regions) based mean time series. 

The cortical template and its corresponding EEG electrode location are shown in 

Figure 20. 
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CP dataset 

A description of this dataset was given in the previous chapter. In this chapter, instead of 

applying bootstrap based approach, we averaged individual RT wise data. Therefore, from 35 

participants, we got (35*3) 105 trails for further analysis. 

 

Adaptive segmentation based dynamic network analysis in understanding affect 

In this dissertation, the DEAP dataset and adaptive segmentation based dynamic network 

is used to understand dynamic properties of affect. Here, time-varying change among brain 

node time courses was captured by calculating cross-correlations between brain networks 

over time using a tapered windowing. Here, the cortical based time series data was z-score 

normalized, and a sliding window with 25% overlap was used. The pairwise correlation for 

leach time window was then calculated. Correlation-based connectivity is a non-directional 

measure; hence 
68

C2 = 2278 data points were calculated from each time window. Then k-

means clustering was applied to those data to find the micro-states. We perform an empirical 

analysis to find an optimal window size using the elbow method. We varied window size (2, 

4, 6, 8, 10 seconds) as well as the number of the cluster (2 to 60) and measured the distortion 

score (the sum of squared distances from each point to its assigned center).  

 

 
Figure 20: EEG electrode locations and cortical view of Desikan-Killiany ROI template. 
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Figure 21 shows that the effect of window size is very negligible for 4 and 10 seconds. In 

this study, we consider 4-second as the optimal window size for further analysis. 

 

 
Figure 21: Estimating optimal window size for micro-states. The X and Y axis represents number of clusters and 
distortion score, respectively. The distortion score does not differ much for the different window size. However, optimal 
“elbow” point is not evident due to the noisy nature of cortical surface data. 
 

 
 
K-means clustering 

Mainly K-means clustering with the “elbow” method was used to identify the optimal 

number of clusters. The centroids of each cluster (micro-states) can be thought of as average 

patterns that subjects tend to return to during the experiment. The Gaussian mixture model 

(GMM) is a probabilistic model that assumes all the data points are generated from a mixture 

of a finite number of Gaussian distributions with unknown parameters. GMM is generalizing 

K-means clustering to incorporate information about the covariance structure of the data as 

well as the centers of the latent Gaussians. Besides the K-means approach, we also used 

GMM with the expectation-maximization (EM) algorithm for clustering. Hidden Markov 

Model with Gaussian emissions was adopted to find the transition probability among the 

micro-states. 
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Graph mining 

The undirected and weighted correlation-based adjacency connectivity matrix is then used 

to calculate seven basic global network features as before. The features are: (i) Characteristic 

path, (ii) Global efficiency, (iii) Average clustering coefficient, (iv) Transitivity, (v) Small-

worldness, (vi) Assortativity coefficient, and (vii) Modularity  

Empirical analysis on DEAP dataset 

Figure 23 shows the t-SNE embedded scatter and kernel density estimation (KDE) plot of 

our 4-sec connectivity data distribution. KDE plot is a non-parametric way to represent the 

probability density function. Besides scatter plot, KDE plot is used here to visualize the trend 

of data distribution for each different class. In Figure 23a, the green and red dots represent 

data points for male and female connectivity. Similarly, Figure 23b shows the connectivity 

pattern for high and low arousal. The t-SNE with PCA and LDA approach shows two distinct 

state clusters among groups. 

 

Figure 22: Schematic diagram of the processing pipeline for DEAP dataset. The 32 Channel EEG data is first 
preprocessed, and the source localization is adopted to convert skull surface data to cortical surface time series data. An 
optimal 4 Sec, 25% overlapping rolling window is used to chunk each trial. Pair-wise correlation matrix, clustering-based 
approach is used to find micro-states. Exploratory data analysis is used for further interpretation. 
 

  

a b 

Figure 23: The t-SNE embedded higher dimensional features are represented by 2-dimensional scatter and kernel density 
estimation (KDE) plot. The green and red lines with dots (figure a) represent normal male and female connectivity data 
points. Similarly, blue and orange data points (figure b) represent high and low arousal. Both figures show a distinct 
clustered pattern. 
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Our next goal was to identify connectivity states. We applied K-means clustering. From  

Figure 21, it was observed that there was no specific ’elbow’ point present in any time 

window data. Figure 24 shows more details about how we select the optimal number of 

clusters (23) by fitting the model with a range of values for K. The elbow method runs K-

means clustering on the dataset for a range of values for K (say from 2-30) and then for each 

value of K computes an average score for all clusters. Here, the distortion score is the sum of 

squared distances from each point to its assigned center. The dashed green line of Figure 24a 

displays the amount of time needed to train the clustering model, and blue lines indicate the 

distortion score per K. It was observed that with the increase of ‘K’, the distortion score 

tended to increase, hence we were not able to find specific ’elbow’ point. Based on the 

visualization from  Figure 24, we considered K=23. 

Figure 24b, Figure 24c, and Figure 24d shows: (i) Inter-cluster distance maps (ii) 

Silhouette analysis, and (iii) Cluster probability visualization, respectively. Inter-cluster 

distance maps display an embedding of the cluster centers in 2-dimensions with the distance 

to other centers preserved. E.g., the closer to centers are in the visualization, the closer they 

are in the original feature space. The clusters are sized according to a scoring metric. By 

default, they are sized by the membership, e.g., the number of instances that belong to each 

center. This gives a sense of the relative importance of clusters. However, because two 

clusters overlap in the 2D space, it does not imply that they overlap in the original feature 

space. We used Multi-Dimensional Scaling (MDS) to reduce the feature dimension for 

visualization purposes. 

On the other hand, silhouette analysis can be used to study the separation distance 

between the resulting clusters. The silhouette plot displays the measure of how close each 

point in one cluster is to points in the neighboring clusters and thus provides a way to assess 

parameters like the number of clusters visually. This measure has a range of [-1; +1]. Also, 

from the thickness of the silhouette plot the cluster size can be visualized. The negative 
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silhouette coefficients indicate clusters are not well balanced. The cluster probability of 

Figure 24d show the probability of each cluster. For a sanity check and as a comparative 

study of clustering, we adopted GMM based method. The information-theoretic criteria (BIC) 

criterion was used to select the number of components in a classical Gaussian Mixture Model 

(unlike Bayesian procedures, such inferences are prior-free). In theory, GMM recovers the 

actual number of components only in the asymptotic regime (i.e., if much data is available 

and assuming that the data was generated from a mixture of Gaussian distributions). Here, we 

estimated model parameters with the EM algorithm for different covariance types (spherical, 

tied, diag, full). It was observed that for the best number of components = 27 and different 

covariance types, the measures are ’tied’ (the winner is indicated with red ‘*’ in Figure 25). 

The result from GMM approach indicated K-means approach is near-optimal. Cluster 

labels were predicted from K-means clustering for each time window. Dwell time (how long 

an individual spends in a given state [9] ) was then calculated. Figure 26 shows the dwell 

time pattern for male and female groups. Each of the bars represents the probability that a 

participant was more likely to stay in a specific state. The state labels are given on the X-axis. 

A significant distinguishable pattern of microstates occupancy was evident in both male and 

female groups. That indicates dynamic brain connectivities are different among groups. For 

each trial, those dwell time series (e.g., for each trial, we get 19 cluster labels) can be used as 

feature vector. We applied an SVM with an ’RBF’ kernel. Hyperparameters of the classifier 

were tuned on a random shuffle of 80% training data with a grid search-based approach using 

10-fold cross-validation. The test accuracy is 84% with ROC = 0:83. Therefore those patterns 

are significantly different among groups. 
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a. Elbow Method b. Inter-cluster Distance Maps 

  

c. Silhouette Visualization d. Cluster Probability 

Figure 24: Approaches in finding optimal number of clusters (k). 

 

Figure 25: Model selection with Gaussian Mixture Models using Bayesian information-theoretic criteria (BIC). Model 

selection concerns both the covariance type and the number of components in the model. In this case, BIC is adopted to 

determine the right model. 
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Next, we computed transition probabilities for each state with high arousal stimuli, 

which tells us whether a subject with a certain spatial pattern at a certain time is more or less 

likely to transition to another spatial pattern at a future time. Results indicated that males 

have the less probability of transition between states and more likely to stay in specific stable 

state (specifically state 0, 2, 5 had a higher probability (greater than 80%)) than switch among 

states. However, for females, it is entirely the opposite. The transition probability is highly 

transient. This pattern is significantly distinguishable with some commonality. If we apply 

popular graph mining measures to observe the characteristics of those microstates, we did not 

find any significant results for cortical surface data. Though, we observed, maximum 

modularity and small-worldness are significantly different between groups for skull surface 

data (EEG data). Hence, males and females use significantly distinguishable, highly 

 

 

Figure 26: KNN based micro-states shows distinguishable pattern of micro-states. 

  

a b 

Figure 27: Transition matrix visualization for male (figure a) and female (figure b) group. The heat maps show 

a significantly distinct pattern of transition in processing high arousal stimuli. 
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segregated, and densely integrated network structures among brain regions in affect 

processing. 

Table 7: Two-sided p-value of Wilcoxon rank-sum statistic for different network measures among groups. No significant 

measure is evident from cortical surface data, but maximum modularity and small-worldness are significantly different 

among groups for skull surface EEG data in processing stimuli with high arousal value. 

 
Measures Cortical Surface Skull Surface 

Characteristics path 0.522 0.352 

Average clustering coefficient 0.841 0.317 

Small worldness 0.446 0.036 

Assortativity 0.432 0.702 

Global efficiency 0.407 0.277 

Transitivity 0.832 0.328 

Maximized modularity 0.406 0.03 
 

 
Table 7 shows the p-values among groups (male/female) for different network 

measures for the skull and cortical surface micro-states. We computed the mean of all 

centroids and Wilcoxon rank-sum statistics to find out significant connectivity (correlation) 

among brain regions among groups (male/female). The top ten highly significant connections 

are given in Table 8. Here, ‘Node A’ and ‘Node B’ indicates two nodes (ROI) of an edge, and 

“Correlation” is the connectivity weight of the edge. 

Table 8: Top 10 network edges (with node A and node B) and their weight (correlation values). 

Node A Node B Correlation 

Rostral Anterior Cingulate Right Medial Orbitofrontal Right 0.88 

Rostral Anterior Cingulate Left Medial Orbitofrontal Right 0.82 

Pericalcarine Left Lingual Left 0.81 

Isthmus Cingulate Left Precuneus Right 0.77 

Pars Triangularis Left Lateral Orbitofrontal Left 0.76 

Inferior Temporal Right Entorhinal Right 0.76 

Superior Frontal Left Superior Frontal Right 0.74 

Cuneus Left Cuneus Right 0.74 

Paracentral Left Posterior Cingulate Right 0.73 

Pericalcarine Left Lateral Occipital Left 0.72 

Precuneus Left Isthmus Cingulate Left 0.71 
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We developed an efficient micro-state based computational framework to study the 

dynamic brain network in processing emotion. We found a significantly distinct network 

pattern among male and female groups in processing arousal. However, the number of states 

and their strength of coupling may change with population size as well as the diversity of data 

due to the limitation of hard clustering. In the next step, we applied Hierarchical Dirichlet 

Process Hidden Markov Models (HDP-HMM) on CP data set as an alternative solution to 

address this issue and further improvement models. 

HDP-HMM based dynamic network analysis in understanding rapid speech categorization 
decisions 

In this dissertation, Sticky HDP-HMM with memoized variational inference based 

dynamic network analysis is used to understand rapid speech categorization decision from CP 

dataset. The schematic diagram of data processing pipeline ate given in Figure 28.   

Hierarchical Dirichlet Process Hidden Markov Models 

We used bnpy [181] for spatiotemporal EEG data segmentation. The bnpy inference 

engine is an opensource Python library for unsupervised learning from big data. This 

framework supports Bayesian nonparametric clustering that captures multidimensional, 

sequential, spatial, and hierarchical structures. To run inference on a dataset, bnpy requires an 

allocation model, a data-generation method, and the inference algorithm. The allocation 

model describes the generative process that allocates cluster assignments to individual data 

 

Figure 28: Schematic diagram of the processing pipeline for CP dataset. The 64 Channel EEG data is first 

preprocessed, and indivisual trialwise averaged. Sticky HPD-HMM with Memoized Variational inferance 

(MoVI) is applied for data segenetation. Exploratory data analysis on dwell time pattern is used for further 

analysis and interpretation. 
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points. Here we used HDP-HMM (Markov sequence models with an infinite number of 

states).  

Observation models define a likelihood for producing data from a cluster-specific density. 

We used Diagonal-Covariance Gaussian as observation models. However, the inference 

algorithm optimizes a variational-bound objective function. To achieve scalability, we focus 

on modern optimization-based approaches that can process batched data, particularly 

memoized variational inference. Mathematical definition and interpretation part of Sticky 

HDP-HMM with Memoized Variational Inference (MoVI) are described in the appendix.    

Calculation of dwell time statistics. 

Dwell time counts the time the brain spends in a microstate before it transitions to another 

brain state. It reflects the characteristics of neural activity [182], [183] . Widely used dwell 

time statistics are (i) Duration: average duration that a given microstate remains stable. It 

reflects the stability of potential neural assembly.  (ii) Occurrence: the frequency of 

occurrence for each microstate independent of its individual duration which reflects the 

activation trend of a potential neural source. (iii) Time coverage: the fraction of total 

recording time for which a given microstate is dominant. It reflects the occurrence percentage 

of potential neural source and amplitude reflects the intensity of a potential nerve source. (iv) 

Global variance: the global variance explained by each microstate (v) Transition 

probabilities: the transition probabilities of a given microstate to any other microstate. [7], 

[182]. 

Empirical analysis on CP dataset 

The HDP-HMM consider infinite number of states. The Birth, Merge, and delete 

proposals are widely used to remove ineffective states [14]. To get interpretable less number 

of states, we varied the number of cluster from 5 to 30 with a step of 5 and observed the 

cluster probability. Figure 29 shows the number of clusters (K) vs. cluster probability graph. 

Each bar show number of data point loads in that specific cluster of a specific model (out of 5 
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models). The first cluster (0) has most of the data points. It was observed that up to 10 

clusters can accommodate an average of 93% of data. Cluster numbers more than 10 had few 

numbers of data points. The K=10 is enough to explain 93% variability on average. The rest 

of the cluster is unnecessary or useless. Hence, we select a finite model with K=10 for further 

analysis. 

HDP-HMM segments each EEG time series data using these 10 states. EEG time 

series data of a sample trial (Slow-RT of Subject #1) and dwell time (tile and time-series) 

patterns are shown in Figure 30. Each color of the tile represents the amount of time a state 

remains stable. Those colors are also marked with state number text. Dwell time series 

showed the pattern of state transition.  

We calculated trial wise individual dwell time statistics described in section 0. Figure 31 

shows the summary statistics of state-wise dwell time pattern analysis. It was observed that 

the frequency of occurrence of state 0, 2, 6, 7, 8, 9 and duration to stay in state 4, 5, 6, 7, 8 are 

significantly different among RTs. Figure 33 shows the topomap of the states. Though it is 

possible to see the pattern of activation from topomap, we need more understandable 

visualization of brain activation. We applied a Classical Low Resolution Electromagnetic 

Tomography Analysis Recursively Applied (CLARA) [BESA Research (v7); BESA, GmbH] 

[184]–[186] to provide a qualitative description of the underlying brain sources that generate 

each state-specific scalp topography. CLARA renders more focal source reconstructions by 

iteratively reducing the source space during repeated estimations of the inverse solution. On 

 

Figure 29: Probability of data points loading into each component. 
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each step, a spatially smoothed LORETA solution was recomputed, and voxels below a 1% 

max amplitude threshold were removed. This process provided a spatial weighting term for 

each voxel of the LORETA image on the subsequent step. Two iterations were used with a 

voxel size of 7 mm in Talairach space and regularization (parameter accounting for noise) set 

at 0.01% singular value decomposition. CLARA activation maps were overlaid onto the 

BESA adult MRI template for visualization with respect to the brain anatomy. Figure 34 

shows the CLARA visualization of the 4 main states. Here, STG = superior temporal gyrus 

(home of auditory cortex; stimulus coding), IFG = inferior frontal gyrus (home of important 

language regions like Broca's area), and SMG = supramarginal gyrus (implicated in 

lexical/semantic decisions including making phonological word choices).  

 

 

Figure 30. Top: A smple trial of 64 channel EEG Data  (Subject#1, slow RT), middle: tile visualization of dwell pattern, 

bottom: time serise visualization of dwell pattern.  
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Figure 31: Dwell time statistics. 

 

Figure 32: Frequency of changing states among trails. Entropy in slower RTs are higher than faster RT (Slow 

RT: 2.26, Medium RT: 2.11, Fast RT: 2.03).  
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We can easily identify states 6, 3, 4, and 9 are related to resting-state, stimulus coding, 

response selection, and linguistic processing. However, State 6 and State 1 showed a similar 

pattern. Hence, we can also consider state-1 as a state for stimulus decoding. To find the 

properties of those state we calculated the average band power of those states. State-wise 

average band power visualization are shown in Figure 31. Here q, a, b, Low g, and High g  

are in ranges from 4 to 7 Hz, from 8 to 15 Hz, from 16 to 31 Hz, from 31 to 60 Hz and from 

60 to 200 Hz, respectively [187]. It was observed that states 5, 7, and 8 have significantly 

high g band activity. However, q and a band activity was dominant in stimulus encoding, 

response selection, linguistic processing, and resting state. Slightly high g activity was also 

evident in those states.  

In a task-related experiment, significantly higher theta band activity was shown during 

the encoding, which could be remembered in the later recall task [188]. Frontal theta is a 

compelling candidate mechanism by which emergent processes such as ‘cognitive 

control’(novelty, conflict, punishment, and error) may be biophysically realized [189]. 

Cognitive control is the broader construct of information prioritization for goal-driven 

decision-making [190]. On the other hand, a is a relevant aspect of visual scene processing, 

integral to spatial attention. The a waves are used to predict mistakes too. A recent study 

showed that both q and a band was active in resting state. But, high g represents conscious 

attention, which easily validates our claims.  
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Besides, dwell time pattern also shows that: 

1. Trials with faster RTs spend significanty less time in stimulus encoding (state 3), 

response selection (state 4), and resting-state (state 6), 

2. RT wise, stimulus encoding, and response selection occurrence is similar, 

3. Combining 1,2 we found: it is not as important how frequently people stay in stimulus 

encoding and response selection states, but rather how long they stay in those states, 

4. Trials with faster RT spend significantly more time on resting state, 

5. In RT wise group analysis (considering all trials), we found that transition frequency was 

significantly higher in slower RTs (shown in Figure 32). Therefore, entropy in slower 

 

Figure 33: State topomap. 

 

Figure 34: Visualization CLARA activation maps. 
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RTs is higher than faster RT (Slow RT: 2.26, Medium RT: 2.11, Fast RT: 2.03). Hence, 

decisions making process in slower RT is more uncertain than usual.  

It is possible to get a transition matrix from Sticky HDP-HMM analysis. From the 

transition matrix (shown in Figure 35), it can be observed that states are more likely to stay 

consistent rather than transition. Besides the heat map visualization of the transition matrix 

(shown in Figure 35), we also graphed RT differences(shown in Figure 36). Here each node 

represents one state. The self-loop of nodes represents the average time a state remains stable 

in condition-specific (RTs) trials. Edges represent state transition probabilities. Probability 

<0.03 were discarded for better visualization with a smaller number of nodes. This graph 

visualization gives us a more clear view of how dynamically brain changes states and explain 

the reasons behind variations in RT. 

There is a common delta (triangular) graph pattern that consists of resting-state (state 6), 

stimulus encoding (state 3), and resting-state (state 4) present in all RT related graphs. To 

make a speech perception related decision, these three functions are very important. Beside 

that delta connection, the response selection nodes are also connected with stimulus 

encoding_2 (state 1) node, which is slightly different than state 4. It was also observed that 

the stimulus coding node is strongly connected with linguistic processing states. Overall, we 

observed that  

1. stimulus coding, linguistic processing, resting state, and response selection state 

comprise a CP related decision-making network (DN),  

 
Figure 35: Transition matrix. 
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2. From Figure 36, it was observed that slower RTs are more likely to stay in this DN. 

Hence the speed of rapid speech categorization decisions is inversely proportional to 

the time listeners stay in the DN.     

 

 

Slow RT 

 

Medium RT 

 

Fast RT 

 

Figure 36: Graph visualization of transition matrix meta-analysis. Each node represents one state. The Self-loop of nodes 

represents average time a state remains stable in condition-specific (RTs) trials. Edges represent state transition 

probabilities. Probability <0.03 are discarded for better visualization with a smaller number of nodes. 
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Conclusion    

Brain networks in relation to perception and cognition, are complex and dynamic in 

nature. Here, we developed an efficient micro-state based computational framework to study 

the dynamic brain network in processing emotion and speech perception. We found a 

significantly distinct network pattern among male and female groups in processing arousal. 

However, the number of states and their strength of coupling may change with population 

size as well as the diversity of data due to the limitation of hard clustering. To overcome this 

limitation, we adopted a Bayesian nonparametric framework for segmentation neural activity 

with a finite number of microstates. This approach enabled us to find default network and 

transient pattern of the underlying neural mechanism in relation to categorical perception.   

Appendix 

Hierarchical Dirichlet Process Hidden Markov Models 

Let EEG has n number of trials and data is represented as u? = [u?/, u?0, u?V…u?W]. 

Observation u?& is a vector representing at time t and u?& ∈ 	ℝX
. For 64 channel EEG data 

D=64. The HDP-HMM explains this data by assigning each observation u?& to a single 

hidden state w?&. The chosen state comes from a countably infinite set of cluster K ∈ {1, 2, . . 

.}, generated via Markovian dynamics with initial state distributions 1Y  and transition 

distributions {1!}!;/
Z

. 

Hierarchies of Dirichlet Processes.   

The number of states is unbounded under the HDP-HMM prior and posterior. The 

hierarchical Dirichlet process (HDP) shares states over time via a latent root probability 

vector ! over the infinite set of states. The stick-breaking representation of the prior on ! 

first draws independent variables x! = ylz{	(1, |) for each state h and then set !! =

}(w?/ = k) = 	1Y! 	 15 

}pw?& = ℓ	|	w?,&2/ = k	q = 	1!) 	 16 
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		x!∏ (1 −!2/
);/ x)). The x! can be interpreted as conditional probability of choosing h th state 

among states. The HDP-HMM generates transition distributions x! for each state h from a 

Dirichlet with mean equal to ! and variance governed by concentration parameter B.  

[1!/, 1!0, 1!V…1!!] = Å`Ç(B!/, B!0, B!0…B!!) 17 

The 1!Y is the starting probability vector with 1!Y~Å`Ç(B[!/). Where B[ ≫ 	B. 

Variational Inference: 

The inferential goal of HDP-HMM is to get posterior knowledge of top-level conditional 

probabilities x!, HMM parameters: cluster probability	1, cluster shape Ñ and cluster 

assignments Ö after observing data x. Parameter x , 1 ,Ñ are considered as global parameter 

parameters because they generalize to new data sequences. The cluster assignments Ö? is a 

local parameter specific to data sequence u?.  

Variational methods frame posterior inference as an optimization problem [191]. Here, 

we seek a distribution q(x , 1 ,Ñ) over the unobserved variables that is close to the true 

posterior i.e. q(x , 1 ,Ñ,	Ö) ~ p (x , 1 ,Ñ, Ö	|u	). We can re-present q(x , 1 ,Ñ,	Ö) as simpler 

factorized family q(x , 1 ,Ñ,	Ö) ≅ q(x) q(1) q(Ñ) q(Ö). Inference algorithms update these 

parameters to minimize the Kullback-Leibler (KL) divergence. Equation for KL divergence is 

given by: 

á_p	q(x	, 1	, Ñ, Ö)||p(x	, 1	, Ñ, Ö	|u	)q = ℒ(. ) = 	33 ãXåç
q(x	, 1	, Ñ, Ö)	
p(x	, 1	, Ñ, Ö	|u	)

é 18 

To get best q(*) distribution, we need to optimize this objective function ℒ(. ). This 

equation can be simplified with four components. 

ℒ(. ) = ℒ\]<] + ℒ^E<>_`a + ℒ=\`2b_c]b + ℒ=\`2db_e]b 19 
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Here 

ℒ\]<](u, Ç̂, ê̂) ≅ 33 ëlog p (	u|Ö, Ñ	) + log
9(Ñ)
6(Ñ)

ì 20 

ℒ^E<>_`a(î̂) ≅ 33[log q (Ö)] 21 

ℒ=\`2b_c]b(î̂, ï,ñ óò, ôö) ≅ 33 ëlog p (	Ö|1	) + log
9(1)
6(1)

ì 22 

ℒ=\`2db_e]b ≅ 33 ëlog
9(õ)
6(õ)

ì 23 

 

Memoized and Stochastic Variational Inference: 

Common variational inference algorithms maximize ℒ(. )	using coordinate ascent 

optimization. Here optimal value of each parameter is keep fixed while optimizing other 

parameters. For the sticky HDP-HMM variational objective, each sequence is randomly 

assigned to one of y batches initially. The algorithm repeatedly and random visits batches 

one at a time. Each full pass through the complete set of y batches a is considered as a lap. At 

each visit to batch ú, sticky HDP-HMM perform a local step for all sequences f in batch ú 

and then a global step. The batch optimization of ℒ(. )	is possible by exploiting the additivity 

of statistics ù, ). For each statistic, this algorithm track batch-specific quantity ù(
, and a 

summary of whole-dataset ù = ∑ ù(f
(;/ . After a local step at batch ú, yields  î(û, Ç(û  and 

update ù((	î(û)  and )((	Ç(û), increment each whole-dataset statistic by adding the new batch 

summary and subtracting the summary stored in memory from the previous visit and store (or 

memoize) the new statistics for future iterations. It is possible to evaluate ℒ(. ) at any point 

during memoized execution except ℒ^E<>_`a(. ) term.  To compute it, a (K + 1) × K 

dimensional matrix m(
 is tracked at each batch ú. Where: 
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mg)
( = −N Ç?/)ü log Ç?/)ü

?
 24 

m!)
( = −N N î?&!)†log

î?&!)†
Ç?&!ü

W12/

&;/
?

 25 

For whole dataset entropy matrix:  m = ∑ m(f
(;/  

ℒ^E<>_`a =NNm!)

h

);Y

h

!;/

 

26 
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