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Abstract

Sensory signals are governed by statistical regularities and carry valuable information about the

unfolding of environmental events. The brain is thought to capitalize on the probabilistic nature of

sequential inputs to infer on the underlying (hidden) dynamics driving sensory stimulation. Mis-

match responses (MMRs) such as the mismatch negativity (MMN) and the P3 constitute prominent

neuronal signatures which are increasingly interpreted as reflecting a mismatch between the cur-

rent sensory input and the brain’s generative model of incoming stimuli. As such, MMRs might

be viewed as signatures of probabilistic inference in the brain and their response dynamics can

provide insights into the underlying computational principles. However, given the dominance of

the auditory modality in MMR research, the specifics of brain responses to probabilistic sequences

across sensory modalities and especially in the somatosensory domain are not well characterized.

The work presented here investigates MMRs across the auditory, visual and somatosensory

modality by means of electroencephalography (EEG) and functional magnetic resonance imaging

(fMRI). We designed probabilistic stimulus sequences to elicit and characterize MMRs and em-

ployed computational modeling of response dynamics to inspect different aspects of the brain’s

generative model of the sensory environment. In the first study, we used a volatile roving stimulus

paradigm to elicit somatosensory MMRs and performed single-trial modeling of EEG signals in

sensor and source space. Model comparison suggested that responses reflect Bayesian inference

based on the estimation of transition probability and limited information integration of the recent

past in order to adapt to a changing environment. The results indicated that somatosensory MMRs

reflect an initial mismatch between sensory input and model beliefs represented by confidence-

corrected surprise (CS) followed by model adjustment dynamics represented by Bayesian surprise

(BS). For the second and third study we designed a tri-modal roving stimulus paradigm to delineate

modality specific and modality general features of mismatch processing. Computational modeling

of EEG signals in study 2 suggested that single-trial dynamics reflect Bayesian inference based on

estimation of uni-modal transition probabilities as well as cross-modal conditional dependencies.

While early mismatch processing around the MMN tended to reflect CS, later MMRs around the

P3 rather reflect BS, in correspondence to the somatosensory study. Finally, the fMRI results of

study 3 showed that MMRs are generated by an interaction of modality specific regions in higher

order sensory cortices and a modality general fronto-parietal network. Inferior parietal regions in

particular were sensitive to expectation violations with respect to the cross-modal contingencies in

the stimulus sequences. Overall, our results indicate that MMRs across the senses reflect processes

of probabilistic inference in a complex and inherently multi-modal environment.
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Zusammenfassung

Sensorische Signale sind durch statistische Regularitäten bestimmt und beinhalten wertvolle Infor-

mationen über die Entwicklung von Umweltereignissen. Es wird angenommen, dass das Gehirn

die Wahrscheinlichkeitseigenschaften sequenzieller Reize nutzt um auf die zugrundeliegenden

(verborgenen) Dynamiken zu schließen, welche sensorische Stimulation verursachen. Diskrepanz-

Reaktionen ("Mismatch responses"; MMRs) wie die "mismatch negativity" (MMN) und die P3

sind bekannte neuronale Signaturen die vermehrt als Signale einer Diskrepanz zwischen der mo-

mentanen sensorischen Einspeisung und dem generativen Modell, welches das Gehirn von den

eingehenden Reizen erstellt angesehen werden. Als solche können MMRs als Signaturen von

wahrscheinlichkeitsbasierter Inferenz im Gehirn betrachtet werden und ihre Reaktionsdynamiken

können Einblicke in die zugrundeliegenden komputationalen Prinzipien geben. Angesichts der

Dominanz der auditorischen Modalität in der MMR-Forschung, sind allerdings die spezifischen

Eigenschaften von Hirn-Reaktionen auf Wahrscheinlichkeitssequenzen über sensorische Modal-

itäten hinweg und vor allem in der somatosensorischen Modalität nicht gut charakterisiert.

Die hier vorgestellte Arbeit untersucht MMRs über die auditorische, visuelle und somatosen-

sorische Modalität hinweg anhand von Elektroenzephalographie (EEG) und funktioneller Mag-

netresonanztomographie (fMRT). Wir gestalteten wahrscheinlichkeitsbasierte Reizsequenzen, um

MMRs auszulösen und zu charakterisieren und verwendeten komputationale Modellierung der

Reaktionsdynamiken, um verschiedene Aspekte des generativen Modells des Gehirns von der

sensorischen Umwelt zu untersuchen. In der ersten Studie verwendeten wir ein volatiles "Roving-

Stimulus"-Paradigma, um somatosensorische MMRs auszulösen und modellierten die Einzel-

Proben der EEG-Signale im sensorischen und Quell-Raum. Modellvergleiche legten nahe, dass

die Reaktionen Bayes’sche Inferenz abbilden, basierend auf der Schätzung von Transitionswahr-

scheinlichkeiten und limitierter Integration von Information der jüngsten Vergangenheit, welche

eine Anpassung an Umweltänderungen ermöglicht. Die Ergebnisse legen nahe, dass somatosen-

sorische MMRs eine initiale Diskrepanz zwischen sensorischer Einspeisung und Modellüberzeu-

gung reflektieren welche durch "confidence-corrected surprise" (CS) repräsentiert ist, gefolgt von

Modelanpassungsdynamiken repräsentiert von "Bayesian surprise" (BS). Für die zweite und dritte

Studie haben wir ein Tri-Modales "Roving-Stimulus"-Paradigma gestaltet, um modalitätsspez-

ifische und modalitätsübergreifende Eigenschaften von Diskrepanzprozessierung zu umreißen.

Komputationale Modellierung von EEG-Signalen in Studie 2 legte nahe, dass Einzel-Proben Dy-

namiken Bayes’sche Inferenz abbilden, basierend auf der Schätzung von unimodalen Transition-

swahrscheinlichkeiten sowie modalitätsübergreifenden bedingten Abhängigkeiten. Während frühe
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Diskrepanzprozessierung um die MMN dazu tendierten CS zu reflektieren, so reflektierten spätere

MMRs um die P3 eher BS, in Übereinstimmung mit der somatosensorischen Studie. Abschließend

zeigten die fMRT-Ergebnisse der Studie 3 dass MMRs durch eine Interaktion von modalitätsspez-

ifischen Regionen in sensorischen Kortizes höherer Ordnung mit einem modalitätsübergreifenden

fronto-parietalen Netzwerk generiert werden. Inferior parietale Regionen im Speziellen waren

sensitiv gegenüber Erwartungsverstoß in Bezug auf die modalitätsübergreifenden Wahrschein-

lichkeiten in den Reizsequenzen. Insgesamt weisen unsere Ergebnisse darauf hin, dass MMRs

über die Sinne hinweg Prozesse von wahrscheinlichkeitsbasierter Inferenz in einer komplexen

und inhärent multi-modalen Umwelt darstellen.
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CHAPTER 1

Introduction

Our brain is constantly subjected to a vast amount of inputs acquired simultaneously by the sen-

sory organs providing the interface to the world surrounding us. The sensory environment is highly

structured and governed by statistical regularities at various scales (Ruderman and Bialek, 1994;

Nelken et al., 1999; Bar, 2004; Bregman, 1994). Sequential sensory inputs thus contain valuable

information about the probabilistic nature of environmental events (Dehaene et al., 2015; Arm-

strong et al., 2017; Santolin and Saffran, 2018; Sherman et al., 2020) which, in turn, can provide

imperatives for the organism to successfully navigate the physical world (Lashley, 1951; Reber

and Lewis, 1977; Sherman et al., 2020). One might consider the sensation of a raindrop on the

skin before imminent rainfall or the sound of thunder seconds after observing a bright flash in

the sky. The unfolding of multi-modal sensory events over time can be predictive of upcoming

sensations within and across modalities, like looming clouds and increasing winds predicting the

audio-visuo-tactile experience of a thunderstorm. Our brain possesses the remarkable capacity

to capitalize on statistical regularities for behaviour and cognition (Sherman et al., 2020), a feat

which is shared across species (Santolin and Saffran, 2018; Fitch and Hauser, 2004), develops at

early infancy (Saffran et al., 1996; Perruchet and Pacton, 2006; Aslin and Newport, 2012) and

provides the basis for language learning in humans (Chomsky, 2002; Hauser et al., 2002; Dehaene

et al., 2015).

The extraction of regularities from the environment enables the brain to form expectations of

future events (Winkler et al., 2009) which can result in more efficient processing of sensory in-

put (Summerfield and de Lange, 2014; Ekman et al., 2017; Melloni et al., 2011; de Lange et al.,

2018) and correspondingly lead to faster and more accurate reactions (Bertels et al., 2012; Kim

et al., 2009). The brains of humans and other species have therefore been described as anticipa-

tory systems (Rosen and Rosen, 2012) primarily engaged in matching incoming sensory inputs

with top-down expectations (de Lange et al., 2018; Clark, 2013). Related hypotheses of general

brain function and perception, dating back to von Helmholtz (1867), cast perception as a form
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of hypothesis testing and (unconscious) inference (von Helmholtz, 1867; Gregory, 1980; Dayan

et al., 1995; Knill and Pouget, 2004; Friston, 2005, 2010). The basic assumption of perceptual

inference is that the brain infers on what is "out there" in the world by combining sense data with

an internal generative model, i.e., the assumptions about how sensory patterns are generated by

(hidden) states of the world. Given that the activation patterns at the sensory organs are its only

source of information, the brain makes a "best guess" about the most likely causes of sensory

inputs based on prior experience and assumptions of statistical regularities in the environment.

These ideas have been furnished in the mathematical framework of Bayesian probability theory

which provides a formalism to express this inferential process in terms of conditional probability

distributions (Knill and Pouget, 2004; Friston, 2005, 2010). However, in its most general sense,

perceptual probabilistic inference is cast as the assumption that the brain performs some form of

predictive processing (Clark, 2013), capturing that the brain continuously infers the hidden struc-

ture of the environment and predicts incoming sensory data based on its generative model, without

invoking assumptions of Bayesian computation or its neuronal implementation (Winkler et al.,

2009; Winkler and Czigler, 2012).

1.1 Mismatch responses: MMRs

The sensory system automatically registers regularities in the input stream (Zhao et al., 2013;

Chait, 2020) and detects corresponding changes rapidly (Sohoglu and Chait, 2016). Mismatch

responses (MMRs) constitute specific brain signatures following a change in a sensory regular-

ity. MMRs such as the mismatch negativity (MMN; Naatanen et al., 1978) and the P3 (Sutton

et al., 1965) are among the earliest established EEG signatures. The P3 was the first specific com-

ponent related to the detection of change in a sequential presentation of stimuli reported more

than 50 years ago by Sutton et al. (1965) when computational approaches increasingly influenced

neuroscientific and psychological research (Sutton, 1979). Thirteen years later, the mismatch neg-

ativity (MMN) was reported by Naatanen et al. (1978) and established as a second, earlier EEG

component related to change detection in the auditory system. Both evoked responses were clas-

sically studied in the auditory modality, elicited by presenting a rare deviant sound in a stream of

repeating standard sounds. In such an oddball paradigm, the frequent standard sound is occasion-

ally replaced by a deviant sound differing in some property (Näätänen, 1992; Sams et al., 1983;

Donchin, 1981). The rare presentation of deviants results in MMRs, typically recorded in the

EEG, where the early MMN around 100-200ms is distinguished from the later P3 MMR around

250-500ms post stimulus presentation. Both components have been highly influential in various
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branches of neuroscience such as perception, memory and disorders of the nervous system (Näätä-

nen et al., 2019; Duncan et al., 2009; Polich, 2007) and are increasingly studied to gain insights

into the brain’s assumptions on the statistical contingencies underlying sequential inputs (Squires

et al., 1975; Friston, 2005; Winkler et al., 2009; Winkler and Czigler, 2012; Heilbron and Chait,

2018). As such, MMRs provide a valuable tool to inspect probabilistic inference in the brain. In

the following, we will introduce MMRs in the auditory, visual and somatosensory modality and

highlight their equivalent reflection of the anticipatory nature of brain responses. Furthermore,

the operationalization of the study of MMRs via the creation of model environments and com-

putational modeling will be introduced before moving to a description of our empirical work on

utilizing MMRs to assess the brain’s generative model in the second section.

1.1.1 The Mismatch Negativity: MMN

The MMN was initially described by Naatanen et al. (1978) as reflecting a neuronal process of de-

tecting changes in the auditory input stream. Its specific EEG signature is obtained by subtraction

of the average standard response from the average deviant response, resulting in a difference wave

that shows a negative peak between around 100-200ms post-stimulus onset at fronto-central elec-

trodes with a corresponding polarity inversion at posterior electrodes around the mastoid bones

(Giard et al., 1990). However, the exact peak latency depends on the relative stimulus change,

shortening with increasing difference between stimuli (Sams et al., 1985; Tiitinen et al., 1994;

Naatanen et al., 2007). While stimulation with the standard sound results in the auditory evoked

potential corresponding to an ERP wave with a canonical sequence of peaks consisting of P1, N1

and P2 between 50 and 250ms, the presentation of a deviant sound results in stronger negativity

within the N1-P2 complex which becomes best apparent in the signature MMN difference wave

(Naatanen and Picton, 1987). The MMN can be elicited by small stimulus deviations in the ab-

sence of attention (Naatanen et al., 1978; Näätänen, 1992) and can be observed to almost any kind

of feature differences in sound sequences, including frequency, intensity, duration, location and

many others (Picton et al., 2000; Naatanen et al., 2007). Although the elicitation of the MMN

is attention independent and usually not affected by task-related top-down influences (Alain and

Woods, 1997; Naatanen et al., 1993; Ritter et al., 1999), its amplitude can be increased by at-

tentional focus to the stimulation and decreased by attentional demands of a distracting primary

task (Trejo et al., 1995; Woldorff et al., 1991, 1998). Inspite of its elicitation in the absence of

attention, the MMN was shown to reflect participants’ behavioral discrimination performance be-

tween stimuli (Brunia et al., 1993; Naatanen et al., 1993; Tiitinen et al., 1994) which makes it

3



an objective measure of perceptual stimulus discriminability and a highly valuable tool for clin-

ical investigations of non-verbal, non-attentive, or even non-conscious patients (Naatanen, 2000;

Naatanen et al., 2007; Atienza et al., 2001; Fischer et al., 1999; Wijnen et al., 2007).

The major neuronal generator of the auditory MMN is found in the auditory cortex where the

exact location depends on the eliciting sound features and their complexity (Alho, 1995; Giard

et al., 1990, 1995; Molholm et al., 2005; Sabri et al., 2004). Additionally, frontal cortex activation

is generally assumed to contribute to the MMN (Deouell, 2007; Garrido et al., 2009b) as demon-

strated by fMRI (Yucel et al., 2005; Opitz et al., 2002; Doeller et al., 2003; Molholm et al., 2005;

Rinne et al., 2005) and intracranial recordings (Liasis et al., 2001; Rosburg et al., 2005). Although

both generators are found independent of attentional focus, their activity can be modulated by

attention (Yucel et al., 2005). Overall, a fronto-temporal network comprised of primary and non-

primary auditory cortex and inferior frontal regions is canonically assumed to underlie the MMN

component in the EEG (Deouell, 2007; Garrido et al., 2009b).

The MMN as a response to regularity violation

Over many years of MMN research, it has become increasingly evident that the MMN is not a

response specific to the change in a stimulus feature but rather reflects a rule-based relationship

between stimulus features (Paavilainen et al., 1999, 2007; Paavilainen, 2013; Naatanen et al.,

2001, 2010). The interruption of repeating standard sounds with a deviant sound in the classic

oddball paradigm turned out to be the most simple case of a regularity violation and the MMN is

not restricted to stimulus change but can equivalently be found for rare repetitions. For instance,

if a basic regularity is established by sequential presentation of two alternating tone pitches, the

MMN is elicited if the continuous alternation is interrupted by occasional repetitions (Nordby

et al., 1988; Ritter et al., 1992; Alain et al., 1994; Horvath and Winkler, 2004; Macdonald and

Campbell, 2011). Similarly, the MMN was found in response to rare repetitions in an otherwise

descending sequence of tones (Tervaniemi et al., 1994), indicating a form of abstraction from a

detected rule or regularity underlying the sound presentation.

Saarinen et al. (1992) showed that the MMN can be elicted by rather complex patterns by pre-

senting sequences of tone pairs with randomly differing frequency features across the pairs, such

that no physically identical repeating standard stimulus was present in the sequence. A regularity

was established by the fact that the tones within the tone pairs were strictly ascending, i.e. the

second tone of the pairs was of higher frequency than the first, regardless of the (randomly set)

frequency of the first stimulus. This abstract regularity of the direction of frequency change within
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the tone pairs was occasionally violated by a presentation of tone pairs with descending frequency

changes, eliciting an MMN to the second tone. This effect was replicated by Paavilainen et al.

(1995) who additionally showed the MMN even if attention was drawn away to an entirely differ-

ent sequence presented to the other ear. Moreover, using similar paradigms, the abstract feature

MMN to two-tone patterns was also shown for infants (Carral et al., 2005; He et al., 2009) and rats

(Ruusuvirta et al., 2007a,b), which provides evidence for a primitive mechanism underlying such

auditory sensory pattern encoding (Naatanen et al., 2001).

More recently, highly abstract rules were shown to elicit MMN responses. In sequences used

by Paavilainen et al. (2007), one stimulus-feature (length of the tone) was predictive of another

stimulus-feature (frequency of the tone) such that long tones were followed by high tones and

short tones by low tones. Importantly, the four different possible stimuli (four combinations of

length and frequency) were presented an equal amount of times across the sequence (i.e. stim-

uli were overall equiprobable). An MMN was elicited when the transition rule was occasionally

violated by presentation of a high tone following a short tone. This MMN to violations of a tran-

sition rule was replicated by Bendixen et al. (2008) who included additional change-points in the

sequence at which the rule changed. Interestingly, only a few stimulus presentations following the

change-point were necessary to elicit an MMN response to violations of the new transition rule,

indicating a remarkable ability to quickly update the sensory rule representation. In addition to

such single-feature regularities, the MMN can be elicited by violations of rules regarding feature

combinations (e.g. intensity and frequency of a stimulus): In a study by Paavilainen et al. (2001),

nine equiprobable standards of different frequencies were presented following the combinatory

rule that tones of higher frequency have higher intensity. If such a feature combination was vio-

lated, e.g. by a high intensity tone of low frequency, the MMN was elicited. Such MMN responses

to feature combinations have been shown in adults (Paavilainen et al., 2001; Gomes et al., 1997;

Sussman et al., 1998), infants (Ruusuvirta et al., 2003, 2004) and rats (Astikainen et al., 2006),

providing evidence for a ubiquitous role for abstract pattern encoding across stimulus features in

basic auditory processing.

In studies showing the MMN to abstract rule violations, the regularities appear to be learned

unconsciously and without explicit knowledge of the participants (Paavilainen et al., 2007; Schroger

et al., 2007), even if participants were behaviourally able to detect the deviant (Paavilainen et al.,

2001). Although their violations can draw attention away from a primary task (Schroger et al.,

2007), abstract regularities can generally be picked up in the absence of attention (Bendixen and

Schroger, 2008). Nevertheless, attentional focus can influence which aspects of a sequence are
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considered to be the relevant reference patterns forming a standard stimulus trace. Experiments

have shown that a regularly placed deviant in an oddball sequence (e.g. every fifth stimulus is a

deviant; p = 0.2) only elicited the MMN if participants were asked to focus their attention on

the pitch change, thereby ignoring the repeating pattern. In contrast, if participants were asked

to attend to the repeating pattern, no MMN was observed (Sussman et al., 2002; Sussman, 2007,

2013). This demonstrated that standard formation can either be stimulus- or task-driven and at-

tention to sequence features on a local (pitch) or global scale (pattern) might influence the MMN

(Sussman, 2007).

The stimulus driven, automatic processing of the auditory input stream is studied in a closely

related field of research, concerned with auditory scene analysis (ASA; Bregman, 1994). This

line of research studies important basic properties of the sensory system such as the automatic

integration of stimulus features to perceptual elements. For instance, the repeating pattern of

four standard stimuli followed by a deviant might be integrated by the system to form a specific

sequence (Sussman, 2007). Additionally, ASA also concerns the segregation of sensory inputs ac-

cording to their sources of origin. In case of concurrent input streams, MMN responses have been

used to indicate prior basic auditory object binding by inspecting if the MMN is restricted to de-

viants of a specific input stream during simultaneous presentation of different standard regularities

in separate streams. Using the MMN, stream segregation was not only shown for simultaneous

input streams presented separately to the ears (Ritter et al., 2000; McKenzie and Barry, 2006),

but also for up to three streams from different positions in space (Nager et al., 2003), as well as

for two streams from a single source differing only in their frequency ranges (Shinozaki et al.,

2000; Winkler et al., 1992). Similarly, MMN can probe the properties of object formation in terms

of stimulus grouping. For instance, if chunks of four standards followed by a deviant are suc-

cessively presented, this elicits an MMN for the fifth stimulus (deviant) only as long as the inter

stimulus interval (ISI) is sufficiently long. If rapidly presented (<100ms), the deviant is grouped

with the standards without eliciting an MMN (Sussman et al., 1998). Moreover, Sussman (2005)

used MMN responses to show that the auditory input is first segregated into different streams and

that the stimuli are subsequently integrated to form single sound elements. Therefore, basic ASA,

including input stream segregation and integration, has been suggested to be a prerequisite for the

occurrence of the MMN (Winkler et al., 1992, 2003) and might provide the grounds on which a

regularity can be formed and their violation detected.
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Regularity violation as evidence for sensory expectation

Evidence for MMN in response to abstract regularity violations indicates a form of "primitive

intelligence" in the auditory system (Naatanen et al., 2001, 2010). In order to detect differences

between inputs, the system likely performs initial ASA (Bregman, 1994; Winkler et al., 1992,

2003; Sussman, 2005) and appears to have access to stimulus traces forming regularities over

certain periods of time, potentially stored in sensory memory (Naatanen et al., 1978; Naatanen and

Winkler, 1999; Tiitinen et al., 1994; Naatanen et al., 2005). Furthermore, MMN responses provide

indications for an extrapolation of stimulus patterns and basic rule abstraction which suggest the

formation of sensory anticipation of the upcoming stimulus (Tervaniemi et al., 1994; Naatanen,

2000; Winkler, 2007).

The examples presented above provide evidence for a role of stimulus expectancy and sensory

anticipation. These indications are substantiated by findings related to omission responses which

might be considered a special kind of MMR. Omission responses are responses to omitted stimuli

from a sequence or an expected pattern without any physical input and are particularly well suited

to isolate expectation related effects from other stimulus related processing (Yabe et al., 1997;

Tervaniemi et al., 1994; Hughes et al., 2001; Bendixen et al., 2009; Salisbury, 2012; Chennu et al.,

2016; SanMiguel et al., 2013a,b; Wacongne et al., 2011). The omission of an expected sound in

a sequence of regularly presented sounds can result in an omission response time-locked to the

expected occurrence of the regular stimulus which has been termed the omission MMN if it is

observed within the MMN time window (e.g., Yabe et al., 1997; Tervaniemi et al., 1994; Hughes

et al., 2001; Salisbury, 2012; Chennu et al., 2016; Prete et al., 2022). A recent study showed that

the omission MMN to unexpected omissions was larger than the omission MMN to regular (thus

rather expected) omissions (Prete et al., 2022). Moreover, using connectivity analyses, Chennu

et al. (2016) indicated that the MMN as well as the omission MMN are both accompanied by

increased forward and backward connectivity in a fronto-temporal network differing only in their

driving input strengths, which indicates that similar recurrent processing underlies both responses.

Additionally, the authors compared attended and unattended sequences and found that attentional

focus decreased both mismatch responses mediated by increased feedback connectivity within the

network, highlighting a top-down modulatory influence of attention. A slightly earlier omission

response between 50-100ms has been described by Bendixen et al. (2009) who aimed to isolate

the sensory expectation of specific tone features from an anticipation of upcoming input alone.

The authors compared three types of omissions of sequential tones within a large range of varying

frequencies, thus controlling for confounding effects of frequency differences. Strikingly, only in
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the condition in which the stimulus omission concerned a predictable tone, an omission response

was observed. Moreover, unlike the omission of an unpredictable tone, the omission of the pre-

dictable tone showed no signal difference in the first 50ms of the response compared to the actually

presented (regular) tone. This indicated highly comparable initial processing of the physically pre-

sented and the expected sound in the auditory system until a detection of the omission occurred

within 100ms (Bendixen et al., 2009). Taken together, the omission MMN demonstrates the an-

ticipatory nature of the auditory system and indicates that the MMN reflects regularity violation

with respect to expected stimuli.

The temporal specificity of the auditory system regarding the expectations of incoming sounds

was probed by Grimm and Schroger (2007). The authors tested if frequency changes at different

temporal positions within a single (short) tone sample were represented as separate events differ-

entiable by their MMN responses, or if the MMN was rather sensitive to the general frequency

deviance in the tone, regardless of the exact temporal position. In two basic oddball conditions,

the authors presented short standard tones occasionally interrupted by deviant tones which differed

from the standard in a frequency modulation within the tone at exactly 200ms of the tone sample

but were otherwise identical. In one condition the deviant was presented with probability p = 0.1

in the sequence and in the other condition with p = 0.3. In the third key experimental condition,

three different deviant tones were presented in the sequence, each with p = 0.1. The deviants each

differed from the standard by a frequency modulation at different time points within the tone (at

100, 200 and 300ms). In this third condition, even though the overall probability of deviance was

as high as in condition two (p = 0.1+0.1+0.1 = 0.3), the MMN actually resembled the response

in the first condition (p = 0.1). This indicated that the MMN reflects a spectro-temporally specific

expectation (exact point of modulation in the tone) rather than a feature specific one (any modu-

lation of the tone) and has been suggested by the authors to reflect the point-wise comparison of

current and upcoming inputs in the auditory system (Grimm and Schroger, 2007).

Temporally-specific stimulus expectancy often forms the basis of MMN responses to regular-

ity violations. Research in humans (Takegata and Morotomi, 1999; Yabe et al., 1997), as well

as rats (Jalewa et al., 2021) has shown that the MMN is dependent on the stability of stimulus

onsets, indicating that temporal predictability is an important modulatory property of the MMN

(Jalewa et al., 2021), comparable to the occurrence probability of a deviant and the magnitude

of relative stimulus changes. Already Naatanen and Picton (1987) differentiated between “tem-

poral” and “event” uncertainty, a notion which is similarly reflected in more recent distinctions

between sensory expectations with respect to “when” a stimulus occurs and “what” features might
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be perceived (Auksztulewicz et al., 2018). Specific omission responses, for instance, have been

indicated to be related to the expectation of specific stimulus characteristics, rather than temporal

expectancy (SanMiguel et al., 2013a,b). SanMiguel et al. (2013a) inspected omission responses

to self-generated sounds, presenting participants with a specific sound following a button press in

one condition, and a random sound following the button press in a second condition. In a few tri-

als, the sound following the button press was omitted. Although the omission of the stimulus was

unexpected and the stimulus was temporally predicted in both conditions, only the omission of the

sound with predictable stimulus characteristics (i.e., condition one) resulted in an omission re-

sponse. These results suggest that (at least some form of) omission responses reflect expectations

regarding the stimulus identity.

Summary

Overall, the auditory MMN has proven to provide invaluable insights into the principles of audi-

tory processing. Specifically, research has provided overwhelming evidence for a dependence of

MMN responses on stimulus expectancy and a remarkable ability of the auditory system to extract

sensory regularities from sequential input on different levels of complexity. The findings therefore

strongly suggest a specialized role of the auditory and likely the sensory system in general for the

processing of probabilistic contingencies in the sensory environment.

1.1.2 The visual MMN

The equivalent response to the MMN in the visual modality is commonly termed the vMMN. Al-

though the specific characteristics and underlying mechanisms are the subject of ongoing debates

(Czigler, 2007; Kimura et al., 2011; Stefanics et al., 2014; Male et al., 2020) the vMMN is a well

researched EEG component. It has been reported for changes in stimulus color (Czigler et al.,

2002, 2004; Kimura et al., 2006; Grimm et al., 2009; Czigler and Sulykos, 2010; Mo et al., 2011;

Stefanics et al., 2011), shape (Maekawa et al., 2005; Tales et al., 1999, 2002; Tales and Butler,

2006), spatial frequency (Heslenfeld, 2003; Kenemans et al., 2003, 2010; Maekawa et al., 2005,

2009; Sulykos and Czigler, 2011), orientation (Astikainen et al., 2004, 2008; Czigler and Pato,

2009; Kimura et al., 2009; Czigler and Sulykos, 2010), location (Berti and Schroger, 2004, 2006),

contrast (Stagg et al., 2004) and even motion (Kremlacek et al., 2006; Lorenzo-Lopez et al., 2004;

Pazo-Alvarez et al., 2004a,b), among others.

The vMMN is reported for a more variable latency range and scalp distribution than its au-

ditory counterpart, but can be characterized as a negative EEG component around 100-250ms at
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posterior electrode sites such as occipital and temporo-parietal electrodes (Pazo-Alvarez et al.,

2003; Czigler, 2007; Kimura et al., 2011). In correspondence to the auditory modality, the vMMN

has been elicited in absence of attention during a variety of primary attentional tasks (Czigler,

2007). Although it is generally considered more difficult to overcome visual sensory dominance

and to draw attention away from visual input compared to the auditory modality (Sinnett et al.,

2007; Neumann et al., 1986; Czigler, 2007), the vMMN has been shown in absence of attention

and can be considered an attention independent early mismatch response comparable to the au-

ditory MMN (Czigler, 2007; Kimura et al., 2011; Stefanics et al., 2014). This view is supported

by studies showing the vMMN during attentional focus on auditory stimulation (Astikainen et al.,

2004) or during demanding primary visual tasks with task-irrelevant deviants outside the focus of

attention (Czigler et al., 2002; Heslenfeld, 2003; Czigler et al., 2004; Winkler et al., 2005).

The neuronal generators underlying the vMMN are commonly found in the visual cortex

(Pazo-Alvarez et al., 2003; Czigler, 2007; Kimura et al., 2011), with some studies specifically

highlighting activation of hierarchically higher visual areas (Kimura et al., 2010a; Urakawa et al.,

2010; Yucel et al., 2007; Stefanics et al., 2019) as well as frontal contributions (Yucel et al., 2007;

Hedge et al., 2015; Pazo-Alvarez et al., 2003; Kimura et al., 2011). Using fMRI, Yucel et al.

(2007) report activation in primary and non-primary visual as well as parietal and pre-frontal areas

in response to unattended stimulus deviance. Although the activation of these regions was ob-

served in the absence of attention to the stimulation, activation of visual regions was significantly

reduced with increased attentional load during the primary task, equivalent to what the authors

had previously reported for the auditory MMN in auditory regions (Yucel et al., 2005). In parallel

to the auditory modality, inferior frontal cortex in particular has been suggested to contribute to

the vMMN and mismatch processing across sensory modalities (Hedge et al., 2015; Downar et al.,

2000; Iglesias et al., 2013; Kim, 2014).

vMMN reflects expectation violation in response to sequence regularities

As described above, it is commonly assumed that the auditory MMN depends on the expectancy of

a stimulus based on a previous sequence regularity, independent of stimulus properties. Similarly,

the vMMN is found to be independent of the direction of change (e.g., in luminance intensity

from low to high or v.v.) and to be particularly sensitive to the probability of stimulus deviance

(Stagg et al., 2004). Interestingly, based on its dependence on stimulus probability, the vMMN

was dissociated from an early posterior positivity around 100ms which reflected stimulus change

as such (Kimura et al., 2006, 2005b,a; Fu et al., 2003): In contrast to the earlier positivity which
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was elicited by stimulus changes even if they were equiprobable to repetitions, the vMMN around

100-200ms only followed low probability changes and was additionally shown to increase with

the amount of prior standard repetitions before the deviant (Kimura et al., 2006).

In parallel to the auditory modality, the vMMN has been shown in response to sequence reg-

ularities with different levels of complexity and abstraction. In fact, many of the above presented

experiments on the auditory MMN have been similarly used to probe the vMMN, indicating highly

comparable sensitivity to stimulus expectancy. For example, the vMMN can also be elicited by

unexpected repetitions interrupting sequences of regularly alternating visual features such as col-

ors (Czigler et al., 2006a) or emotional faces (Kimura et al., 2012). Moreover, the elicitation of

the vMMN depends on a certain level of unexpectedness of the deviant. In striking similarity

to the auditory response, the vMMN in response to predictable oddball sequences with regularly

placed deviants (e.g. every fifth stimulus, p = 0.2) was only elicited if participants were asked to

attend to the local properties of the stimulus sequence (e.g. the luminance of the stimuli) while

ignoring the global sequence regularity (repeating pattern) of the repeating deviant (Kimura et al.,

2010b). If the global regularity was attended, the vMMN response broke down, indicating that

standard pattern formation can be modulated by top-down demands, especially during global reg-

ularity violation, which had been previously indicated for the auditory MMN (Sussman et al.,

2002; Sussman, 2007, 2013).

Stefanics et al. (2011) tested the vMMN for a set of more complex regularities specifying

transition rules of stimulus pairs. Participants were shown red and green stimuli presented in

temporal pairs of different combinations, such that two stimuli were presented in rapid succession

(300ms ISI), followed by a slightly longer break (800ms ISI) before the next pair. Transition

rules of the form “if the first stimulus in a pair is red (green), then the second stimulus is likely

green (red)” were introduced to manipulate stimulus expectancy in three types of sequences. One

random sequence contained equiprobable stimulus pairs of the same (e.g. red followed by red)

or different colors (e.g. red followed by green). One sequence included 30% of different-color

pairs and one sequence included 10% different-color pairs, such that in both of these sequences the

second stimulus of a different-color pair was unexpected given the first stimulus of the pair (with

two levels of probability: p = 0.1 and p = 0.3). Although the colors within each sequence were

overall equiprobable, the observed EEG responses to the second stimulus of a pair were different

between the three sequences: In the random sequence without any regularity (or conditional rule),

the visual changes only elicited the posterior change positivity described above (Kimura et al.,

2006, 2005b,a; Fu et al., 2003). In both other conditions, the second stimulus of a different-color
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pair elicited the vMMN and the most pronounced vMMN was observed in the low probability

(p = 0.1) condition (although with later latency). These results demonstrated the sensitivity of

the vMMN to stimulus expectancy based on conditional rules in striking similarity to the auditory

MMN.

Visual expectation violation to sequence regularities has additionally been demonstrated with

an omission response comparable to the one found in the auditory modality. Occasional omissions

in a regular presentation of visual stimuli resulted in responses with the modality specific topog-

raphy of the vMMN between 150-200ms which was shown to be independent of attention and

task-relevance (Czigler et al., 2006b), indicating the existence of an omission vMMN. The authors

additionally observed a similar omission vMMN in response to the offset of rapid trains of visual

stimuli. In order to exclude influences of steady state responses to repeating stimuli, the trains

of stimuli were followed by longer breaks. Therefore this offset response indicated expectancy

related omission effects based on the sensory regularity built up by the stimulus trains.

Summary

Taken together, ample evidence suggests a comparable dependence of the vMMN on stimulus

expectancy and a sensitivity of the visual system to sequence regularities on different levels of

complexity. Although much less researched in this respect, the similarity of the key properties

of the vMMN to its auditory equivalent suggests similar specialization to probabilisitic sensory

inputs.

1.1.3 The somatosensory MMN

The corresponding response to the MMN in the somatosensory modality (sMMN) was first re-

ported by Kekoni et al. (1997). Although much less researched than its counterparts in audition

and vision, the sMMN has since been shown in response to stimulus deviance in a variety of

properties, including spatial location (Kekoni et al., 1997; Shinozaki et al., 1998; Akatsuka et al.,

2005; Restuccia et al., 2007, 2009; Chen et al., 2008; Hu et al., 2013; Strommer et al., 2014;

Naeije et al., 2016, 2018; Fardo et al., 2017; Shen et al., 2018b,a; Hautasaari et al., 2019; He et al.,

2020; Xu et al., 2021b), stimulus frequency (Kekoni et al., 1997; Spackman et al., 2007; Butler

et al., 2012), stimulus duration (Akatsuka et al., 2005, 2007a,b; Spackman et al., 2007, 2010) and

stimulus intensity (Ostwald et al., 2012; Zhang et al., 2019). In parallel to the other modalities,

the sMMN (and its equivalent response in MEG) is observed primarily between 100-250ms post

stimulus onset, although a considerable number of studies have reported an additional early com-
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ponent between 50-100ms (Shinozaki et al., 1998; Akatsuka et al., 2005, 2007a,b; Ostwald et al.,

2012; Naeije et al., 2016; Xu et al., 2021b).

In contrast to the MMN, the EEG scalp distribution of the sMMN is less consistent across

studies and conflicting evidence has been reported. Nevertheless, evidence clearly converges to a

negative deflection contralateral to the stimulation site, with some studies reporting more fronto-

central (Kekoni et al., 1997; Shinozaki et al., 1998; Akatsuka et al., 2005; Restuccia et al., 2009;

Fardo et al., 2017; He et al., 2020), more central (Spackman et al., 2010; Ostwald et al., 2012;

Shen et al., 2018b), more temporal (Hu et al., 2013; Strommer et al., 2014; Zhang et al., 2019;

Shen et al., 2018a), or more parietal (Restuccia et al., 2007) extension of the effect in EEG. Given

the (lateralized) central location of the somatosensory system in the brain it is likely that the exact

extension of a lateral activation (i.e., from frontal to parietal) of the scalp electrodes varies strongly

with the dipole orientation and location within the somatosensory system. Such an interpretation

is in line with the large variety of stimulus properties used to elicit the sMMN which possibly

activate different dipolar generators in the somatotopic organisation. Evidence from fMRI (Chen

et al., 2008), ECoG (Spackman et al., 2010; Butler et al., 2011) and dipole modeling (Spackman

et al., 2010; Ostwald et al., 2012; Naeije et al., 2016, 2018; Fardo et al., 2017; Andersen and

Lundqvist, 2019; Hautasaari et al., 2019; Xu et al., 2021b) indicate the somatosensory system

as the primary driver of the sMMN response. Moreover, in correspondence with the auditory

and visual modality, inferior frontal generators have been reported to contribute to the sMMN

(Chen et al., 2008; Spackman et al., 2010; Allen et al., 2016; Fardo et al., 2017). Spackman et al.

(2010) showed via intracranial recordings that the sMMN response over somatosensory cortex was

followed slightly delayed by activity over the pre-frontal cortex, indicating a comparable signal

cascade as suggested for auditory and visual modality. In an fMRI experiment Chen et al. (2008)

suggested that SII activity related to the sMMN response was entirely attention independent, while

activations in a fronto-parietal network were modulated by attention. On the other hand, Fardo

et al. (2017) additionally suggested a modulatory role for top-down attention on SI and SII network

activity during somatosensory mismatch processing.

Nevertheless, in correspondence with the pre-attentive auditory MMN, the somatosensory

equivalent response can be elicited in absence of attention, as shown by most sMMN studies

(Kekoni et al., 1997; Shinozaki et al., 1998; Akatsuka et al., 2005, 2007a,b; Spackman et al., 2007;

Restuccia et al., 2007, 2009; Chen et al., 2008; Spackman et al., 2010; Butler et al., 2012; Hu et al.,

2013; Strommer et al., 2014; Fardo et al., 2017; Shen et al., 2018b,a; Andersen and Lundqvist,

2019; Zhang et al., 2019; He et al., 2020; Xu et al., 2021b), although attentional focus has been
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shown to increase the sMMN (Hu et al., 2013; He et al., 2020) and to facilitate mismatch process-

ing in the somatosensory system (Fardo et al., 2017; He et al., 2020). The attention-independent

elicitation of the sMMN highlights its similarity to the auditory and visual modality and indicates

a comparable role of the sMMN in early automatic change detection in the somatosensory system.

Moreover, it also makes the response a useful tool for clinical investigations of sensory function

in unresponsive or non-verbal individuals (Naatanen, 2009), comparable to the auditory MMN

and potentially with additional sensory specific properties. The mature functioning of the sMMN

has been shown in healthy children (Restuccia et al., 2009; Spackman et al., 2010) and infants

(Shen et al., 2020). Therefore, as suggested by Naatanen (2009), an altered sMMN might serve

as a comparative measure for developmental disorders and potentially even for neurodegenerative

diseases and psychiatric conditions as these are all known to be accompanied by modulations of

the auditory MMN.

In an interesting line of research, Shen et al. (2018b,a, 2020) have recently highlighted the po-

tential of sMMN for insights specific to the somatosensory modality. Shen et al. (2018b) demon-

strated the use of the sMMN to study body part segmentation by showing a smaller sMMN for

location deviants when the stimuli were placed on the forearm within the wrist boundary (which

is thought to be a body-part segmentation boundary; e.g. de Vignemont et al., 2009), compared to

an sMMN for equidistant stimulation points separated by the wrist boundary. The authors argued

that the increased sensory mismatch for deviant stimulation across the wrist boundary suggests a

different representation of the hand as a separate body part. With the same study protocol, Shen

et al. (2020) indicated that infants have such a structured body representation already at a few

months of age. Moreover, Shen et al. (2018a) showed that the sMMN reflects the somatotopic

organization in the brain. The authors presented sMMN to location deviants of different distances

in somatotopic space compared to distances in physical space on the body. In a classic oddball

protocol, stimulation on the lip functioned as the standard stimulus and the sMMN to deviant

stimulation on the neck (which has comparably closer bodily distance and farther somatotopic

distance) was compared to sMMN to deviants on the hand (farther bodily distance, closer soma-

totopic distance). Despite being closer in physical space, the neck-deviant elicited larger sMMN

than the hand-deviant, suggesting that early somatosensory mismatch processing is influenced by

the somatotopic representation of body parts. As such, the sMMN might provide a unique tool for

the investigation of sensory expecations with regards to body representations.
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The sMMN as a reflection of expectation violation

While unequivocally seen as a key feature of MMRs such as the auditory and visual MMN (Näätä-

nen et al., 2019; Wacongne et al., 2012; Kimura et al., 2011), to date, only very few studies have

specifically investigated the relationship of the sMMN to sensory expectancy. Basic sensitivity

of the sMMN to stimulus probability has been shown by Akatsuka et al. (2007b), showing in-

creases in the early (50ms) and later (150-250ms) responses to deviants presented with probability

p = 0.1 compared to p = 0.3 and p = 0.5. Moreover, initial evidence for a somatosensory

omission response has been provided by Yamashiro et al. (2008) who showed a somatosensory

P100 and N140 response-complex time-locked to the offset of a train of repetitive stimuli. The

responses were identical for attended and unattended stimulus trains and, although not framed as

such by the authors, this offset-response provided first indications for a somatosensory equivalent

to an omission MMN as it corresponded to an expectation violation response to a physically absent

stimulus. More recently, direct evidence for an omission sMMN was indeed provided by Naeije

et al. (2018) and Andersen and Lundqvist (2019), combining MEG measurements with source

modeling. Both studies show an omission sMMN between 100-200ms, generated in SII. These

results strongly suggest a specific sensitivity of the sMMN to stimulus expectancy.

In additional analyses, Andersen and Lundqvist (2019) showed differential frequency modu-

lations for the omission sMMN and stimulus repetitions. While the omission response, reflecting

expectation violation, was accompanied by increases in gamma oscillations in the insular cortex,

stimulus repetitions showed increased power in the beta-band frequency localized to a parietal

cortex source. The authors interpreted stimulus repetitions as reflective of expectation increase

since no habituation tendencies were otherwise observed in the MEG signal. Strikingly, these ob-

servations are in line with previous suggestions for an asymmetric representation of expectations

and their violation by beta and gamma oscillations, respectively (Arnal and Giraud, 2012; Bastos

et al., 2015; Friston, 2019).

Apart from these initial findings, almost no work has been done in the somatosensory modal-

ity to explicitly investigate effects of stimulus expectancy. Xu et al. (2021b) recently presented

a study in which they placed double-deviants in an otherwise classic oddball paradigm, such that

the second deviant was rendered fully predictable. The authors showed early (30-100ms) and later

(130-230ms) MMRs in MEG for both deviants, with combined activation of SI and SII underlying

these components. Only the early response was significantly increased for the first (unpredictable)

compared to the second (predictable) deviant, whereas the later response did not show a differ-

ence. The authors interpreted their finding as evidence for a sensitivity of the earlier mismatch
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component to stimulus predictability. However, several issues with the experimental setup com-

plicate an interpretation of these results. The first deviant consisted of a physically stronger input

than the standard which can fully explain the increased early response, known to be strongly mod-

ulated by stimulus intensity. Moreover, the first deviant was a double stimulus (accompanied by

the standard) and the second deviant was presented alone (no standard). In addition to reducing

the physical input for the second deviant, this could even have introduced an additional underly-

ing omission response to the standard regularity (being only interrupted during the second deviant

presentation) which might counteract any attenuation of the later mismatch response by stimulus

predictability. Therefore, overall, the study by Xu et al. (2021b) can only provide initial indications

of expectancy effects on somatosensory mismatch responses

Summary

Studies in the auditory and to a lesser extend the visual modality have seen many replications

of the key findings corresponding to elicitation of mismatch signatures by complex regularity

violations and stimulus expectancy and their results are often supported with control experiments.

Although the sMMN has been established as a mismatch response comparable to its counterparts

in the auditory and visual modality, research on the sMMN only provides initial evidence for

its equivalence with respect to the role of stimulus expectancy. Nevertheless, particularly the

omission sMMN might be regarded as compelling evidence for an important role of expectation

during sMMN generation.

1.1.4 The P3

The P3 is another long known mismatch signature in response to deviations from stimulus regu-

larities at a later latency than the MMN (Sutton et al., 1965; Squires et al., 1975; Donchin, 1981;

Duncan-Johnson and Donchin, 1982; Picton, 1992). The large positive going component peaks

about 250-500ms after stimulus onset over central electrodes and can be further divided into two

sub-components, the earlier P3a with central to fronto-central scalp distribution and the later P3b

with centro-parietal extension (Polich, 2007). The P3 is generally considered to be an attention-

dependent response (Duncan-Johnson and Donchin, 1982; Näätänen and Gaillard, 1983; Polich,

2007; Duncan et al., 2009). However, while the earlier P3a is task-independent, drawing ob-

servers’ attention to rare or novel stimuli (Escera et al., 2000; Friedman et al., 2001; Knight and

Scabini, 1998), the later P3b is rather sensitive to task-related target stimuli (Polich, 2007; Duncan

et al., 2009).
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Although primarily researched in the auditory modality, this large central positivity with late

latency of around 300ms is also found for visual (Conill, 1998; Picton, 1992; Duncan et al., 2009)

and somatosensory deviance (Yamaguchi and Knight, 1991, 1992; Ostwald et al., 2012; Shen

et al., 2018b,a; Andersen and Lundqvist, 2019) and the P3 largely shows modality independent

characteristics (Polich, 2007). Correspondingly, the generating sources underlying the P3 are

found in a distributed network, involving inferior frontal, temporo-parietal and anterior cingulate

regions, while contributions from sensory regions such as superior temporal and occipital cortex

are thought to be sensory specific (Linden, 2005; Polich, 2007). While the task-independent P3a

is indicated to predominantly arise from activation in pre-frontal and inferior parietal regions,

activations in anterior cingulate and partly in parietal cortex are involved during task-related P3b

responses to target stimuli (Linden, 2005; Polich, 2007).

The P3 as a reflection of expectation violation

As elaborated in the previous sections, MMN responses across modalities signal violations of

regularities in the sensory environment, largely independent of attentional focus. As such, the

MMN is thought to reflect a first stage of novelty processing, registering unexpected sensory

input. It has been suggested that the P3a subsequently signals an involuntary attention switch to

the registered sensory event and thus corresponds to a second stage of novelty processing (Escera

et al., 2000; Friedman et al., 2001; Wetzel and Schroger, 2014). Although the P3a has been

associated with the process of attention switching, the exact role of the response within the second

stage of novelty processing is debated (Dien et al., 2004; Horvath et al., 2008; Schroger et al.,

2014; Wacongne et al., 2011). In particular, it has been shown that the P3a can either be elicited by

stimulus driven novelty chained to the MMN or by the assumed significance of an event, without

prior elicitation of MMN (Horvath et al., 2008; Rinne et al., 2006; Schroger et al., 2014). As such,

the response might relate to expectation specific processes and evaluation of stimulus significance

for the system rather than attention switching itself (Horvath et al., 2008; Schroger et al., 2014).

The idea that the P3a constitutes a response to unexpected stimuli is found already in its earli-

est descriptions (Sutton et al., 1967; Squires et al., 1975; Donchin, 1981), and Sutton et al. (1967)

even demonstrated its elicitation by the offset of expected stimulus presentation, similar to an

omission response. More recently, studies have again focused on the relation of the P3 to stimulus

expectancy. Novel sounds have been demonstrated to capture attention due to the violation of per-

ceptual expectations based on sensory regularities and implicit learning of conditional probabilities

rather than the rarity of the stimulus per se (Parmentier et al., 2011). Moreover, in experiments
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where stimulus sequences were self-generated, the P3a has been shown to be modulated by the pre-

dictability of the upcoming stimulus (von Carlowitz-Ghori et al., 2011; SanMiguel et al., 2013a,b).

In an experiment by von Carlowitz-Ghori et al. (2011), participants could either self-generate stan-

dards and deviants with button presses (fully predictable) or self-generate a stimulus which would

turn out to be either standard or deviant (timing predictable, content unpredictable). Compared to

normal oddball sequences, the authors found a reduced P3a for fully predictable deviants. In the

second case, although the timing of the self-generated stimulus was fully predictable, an increased

P3a was observed in response to the unpredictable content of the stimulus. This was interpreted as

highlighting its sensitivity to a mismatch between actual and anticipated effect of an action (button

press). In the experiments by SanMiguel et al. (2013a,b), already described in section 1.1.1, only

unpredictable omissions of self-generated sounds elicited MMN as well as P3 responses, while

predictable omissions did not. These effects are in line with recent findings of an omission P3a

during passive observation of classic oddball sequences (Prete et al., 2022). The authors provided

first evidence for a clear distinction between expected and unexpected omissions, showing an in-

creased P3a for unexpected stimulus omissions compared to omissions at regular (predictable)

intervals. Moreover, Chang et al. (2018) showed that in predictable oddball sequences (where the

deviant occured every fifth stimulus; p = 0.2), P3a amplitude reduction to predictable deviants

correlated with beta frequency modulation before the deviant presentation, while no beta modula-

tion was observed during the unpredictable sequences. Their results are in line with the suggested

role for beta-band frequency modulations during stimulus prediction (Bastos et al., 2015; Friston,

2019). Taken together, these results suggest that the P3a explicitly reflects novelty in terms of

expectation violation.

The P3 in response to global regularity violation

An important experimental paradigm in current MMR research is the local-global paradigm (Bekin-

schtein et al., 2009) which has been used to inspect expectation violation to stimulus regularities

on two levels of complexity within a single sequence. The paradigm is a variant of a predictable

oddball sequence, in which the deviant is presented regularly (e.g. every fifth stimulus; p = 0.2).

In such a sequence, on the local level the deviant interrupts a train of repeating standards while

simultaneously forming a regularly repeating pattern on a global level. Generally, such a sequence

is known to elicit an MMN (and often P3) in response to the local deviant, although it was shown

that the MMN can be suppressed by explicit attention to the global regularity (Sussman et al.,

2002; Sussman, 2007, 2013; Kimura et al., 2010b) and the P3 can be reduced if participants are
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given information of the regularity prior to the experiment (Max et al., 2015), indicating influ-

ences of top-down expectancy modulation of both the MMN and the P3. In their new variant of

the paradigm, Bekinschtein et al. (2009) created a global regularity by presenting sequences of

chunks consisting of five stimuli in which the last stimulus was a deviant. Therefore, locally, the

fifth stimulus was a deviant, and globally it was an expected stimulus (standard). They added a

violation of the global regularity by occasionally presenting chunks in which the fifth stimulus

was a standard (instead of a deviant). The authors show that the repetition of a standard sound at

the position where the deviant was (globally) expected elicited a P3 response, whereas no MMN

was observed. The finding of a P3 response to such a regularity violation indicated that the P3

reflects expectation violation on a more global scale of sequence perception, suggesting a hier-

archy of mismatch processing with increasing levels of information integration in line with an

interpretation of MMN and P3 reflecting two stages of novelty processing.

The effects of the local-global paradigm have been replicated in several studies providing

different insights into the putative mismatch processing hierarchy reflected by MMN and P3 (Wa-

congne et al., 2011; Chennu et al., 2013, 2016; El Karoui et al., 2015; Niedernhuber et al., 2022;

Chao et al., 2018; Uhrig et al., 2014). Importantly, Niedernhuber et al. (2022) have recently shown

that the P3 in response to global regularity violation can be equivalently observed across senses in

the auditory, visual and somatosensory modality in accordance with the suggested modality inde-

pendent role of the P3. Chennu et al. (2013) showed that the (auditory) MMN to local deviants was

only observed if the local sequence features were explicitly attended whereas the P3 in response

to global deviants was contingent on an attentional focus to the global regularity, as suggested

by earlier findings on the predictable oddball sequence described in previous sections (Sussman

et al., 2002; Sussman, 2007, 2013; Kimura et al., 2010b). Moreover, complementing source re-

construction with intracranial recordings, Chennu et al. (2013) localized the underlying generators

of the P3 to global deviants primarily in temporo-parietal and pre-frontal regions. These results

were confirmed by El Karoui et al. (2015) who additionally provided a systematic description of

the processes underlying auditory local and global responses with event-related, time-frequency

and connectivity analyses of intracranial recordings. Their findings suggest that local and global

MMRs represent a cascade of two distinct neural events. The response to local deviants was found

over the auditory cortex in superior temporal lobe around 135ms, reflecting an auditory MMN

which was accompanied by power increases in the high gamma frequency band comparable with

localized sensory processing (Edwards et al., 2005), and by early connectivity increases in tem-

poral cortex around 80ms. In contrast to the focalized early response to local deviants, the global
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deviants elicited a later response (around 360ms) distributed across temporal and frontal electrode

sites, reflective of a P3. Additionally, the late response was accompanied by modulations in beta

band synchronization over frontal cortex as well as increased fronto-temporal connectivity start-

ing from 160ms. Similarly, studies in monkeys have corroborated these findings (Chao et al.,

2018; Uhrig et al., 2014): Early mismatch responses to local deviants were found around auditory

cortex accompanied by oscillations in the gamma-band and later mismatch responses to global

deviants were found in temporal and frontal cortex accompanied by alpha/beta oscillations, along

with increased feedback connectivity from frontal cortex (Chao et al., 2018). Uhrig et al. (2014)

additionally report parietal involvement during global regularity violations. Taken together, these

findings are highly suggestive of a hierarchy of mismatch processing in which violations of lo-

cal sequence regularities are reflected in an early MMN generated primarily in sensory regions,

whereas violations of global sequence regularities are reflected in a later P3 response recruiting a

distributed network of sensory and modality independent frontal and parietal regions (Niedernhu-

ber et al., 2022).

The hypothesized central role for stimulus expectancy during mismatch processing in response

to local and global regularity violations was further supported by studies complementing the local-

global paradigm with unexpected omissions (Wacongne et al., 2011; Chennu et al., 2016). For

instance, Wacongne et al. (2011) tested the responses to different sequences of stimulus chunks

(as in the classic local-global paradigm). In one sequence, chunks of five standards were repeated

with occasional local deviants at the fifth position. If the fifth stimulus in a chunk was omitted, the

omission MMN was observed. In a second sequence, chunks of five stimuli with a local deviant

at the fifth position were repeated, forming a global regularity. As expected, the occasional pre-

sentation of a standard at the fifth position resulted in the global P3 MMR as it formed a globally

unexpected repetition. An omission of the fifth stimulus in these sequences, however, elicited an

increased and extended omission MMN. The authors reason that the omission violated two predic-

tions simultaneously: The local regularity predicted a standard repetition and the global regularity

predicted a deviant, none of which actually occurred (omission). The authors interpreted the in-

creased omission response as evidence for two overlapping top-down predictions in the absence

of any bottom-up sensory signals.

Summary

The P3 is a late MMR, reported across the senses and related to stimulus expectancy comparable

to the earlier MMN responses. In contrast to the MMN, the P3 has been shown to be sensitive
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global sequence regularities, potentially reflecting increasing information integration in a second

stage of mismatch processing.

1.2 Theories on MMR generation

Despite being among the most well-studied EEG components, the neuronal generation of MMRs,

and the MMN in particular, remain subject of ongoing debate (Naatanen et al., 2005; May and

Tiitinen, 2010; Garrido et al., 2009b; Heilbron and Chait, 2018). In its original description, the

MMN was hypothesized to result from a comparison of the sensory input against a memory trace

of the recent past within the sensory system, signaling a mismatch if the memory representation

is not matched by the input (Naatanen et al., 1978; Naatanen and Winkler, 1999; Tiitinen et al.,

1994).

The insights discussed in the previous sections regarding the dependence of mismatch re-

sponses on regularity violation at various scales have led to further developments of memory-

based accounts of MMN generation into model- and expectation-based interpretations (Winkler,

2007; Winkler et al., 2009; Winkler and Czigler, 2012). In contrast to previous formulations who

have sometimes hinted at a notion of predictability within the memory representation (Tervaniemi

et al., 1994), Winkler (2007) explicitly suggested that the expectation of an extracted sensory reg-

ularity lies at the core of MMN generation. The view assumes a perceptual model which abstracts

representations of sensory regularities from previous stimulus exposure and forms expectations

about incoming sensory inputs. Whenever inputs diverge from such model-based expectations, the

MMN is elicited and the representation requires updating (Winkler, 2007; Winkler et al., 2009).

In contrast, previous memory-based formulations suggested a comparison of current sensory input

with a stored memory trace of the recent past, rather than a model-based abstraction.

As described before, ASA (e.g., Bregman, 1994) underlies basic object formation, feature in-

tegration and stream segregation and is thought to precede the sensory registration of a mismatch.

Schroger et al. (2014) proposed that an auditory event representation system might encompass

ASA and deviance detection alike under the assumptions of a generative model of sensory input

which maintains an abstraction of the sensory regularity and assumptions of its generation and is

concerned with the anticipation of future events (prediction). As argued by Winkler and Czigler

(2012), many of the characteristics of ASA are similarly found in basic visual processing. As such,

auditory and visual MMN might rely on similar formations of basic perceptual object represen-

tations and a model-based interpretation of MMN generation might equivalently encompass the

visual MMN (Winkler and Czigler, 2012). As we have seen in the previous sections, increasing
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evidence supports the view that many of the key properties of the MMN in relation to sensory

regularities and stimulus expectancy are shared by visual and similarly, although less researched,

by somatosensory MMRs. Therefore, in line with the suggestions by Winkler and Czigler (2012),

comparable principles might underlie these responses across sensory modalities.

Expectation or adaptation?

The assumption that the MMN corresponds to a mismatch response resulting from a comparison

between an incoming sensory signal with some form of neuronal representation (e.g. representa-

tion of a memory trace or model-based expectation) is challenged by adaptation-based accounts of

MMN generation. Proponents of the view argue that any observed differences between standard

and deviant responses can be explained by neuronal attenuation (or fatigue) leading to stimulus

specific adaptation (May et al., 1999; Jaaskelainen et al., 2004; May and Tiitinen, 2010). Neuronal

populations tuned to the standard stimulus are thought to adapt to its repeated presentation. The

presentation of a deviant stimulus subsequently activates neighboring populations, not fatigued at

the synaptic level (sometimes called "fresh afferents"). These populations thus elicit a stronger

response which results in alterations of the sensory evoked potential (e.g. the N1 in audition)

ultimately underlying any deflections in the MMN difference wave.

In animals, stimulus specific adaptation has been shown to cause response patterns similar

to the MMN (e.g., Ulanovsky et al., 2003, 2004) and response reduction to repeated stimuli,

more broadly termed repetition suppression (RS), is a widely studied phenomenon in neuroscience

(Grill-Spector et al., 2006). However, no consensus exists regarding the exact mechanisms under-

lying RS (Grill-Spector et al., 2006; Auksztulewicz and Friston, 2016; Todorovic and de Lange,

2012; May and Tiitinen, 2010) while strong evidence speaks against its exhaustive explanatory

power for the MMN (Naatanen et al., 2005; Garrido et al., 2009b; Summerfield et al., 2008;

Wacongne et al., 2012; Auksztulewicz and Friston, 2016; Todorovic et al., 2011; Todorovic and

de Lange, 2012; Heilbron and Chait, 2018). Nevertheless, an increasing MMN with prior standard

repetition is a well known feature of the response (Sams et al., 1983; Näätänen, 1992; Imada et al.,

1993; Javitt et al., 1998) and RS of the standard trace likely plays a role during such modulations

(Baldeweg, 2006; Auksztulewicz and Friston, 2016). A theory of MMN generation ultimately

has to account for the empirical features of the response and repetition sensitivity is a prominent

example. Other features reviewed in the previous sections include mismatch effects in response

to stimulus omissions, violations of abstract feature rules and complex or global scale sequence

regularities as well as deviant responses to unexpected repetitions. These findings provide com-
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pelling evidence for a role of stimulus expectancy in MMR generation and potentially during

RS, although their interpretations remain disputed (May and Tiitinen, 2010). The elicitation of a

deviant response to unexpected repetitions, for instance, speaks against the basic assumption of

adaptation accounts that repeated stimuli induce response reduction. However, such mismatch ef-

fects in response to repetitions have been argued under adaptation assumptions to result from RS

by recruitment of (high level) neuronal populations tuned specifically to alternating stimulus pairs.

Sudden repetitions would thus activate a new population tuned to repetition pairs, resulting in a

stronger response to repetition than alternation. Given that Wacongne et al. (2012) have shown

an elicitation of the MMN to unexpected repetitions by using sequences of stimulus pairs which

were separated by long ISIs of 10s, however, any adaptation effects should have been eliminated

by long recovery times for the involved neuronal populations.

Strikingly, Todorovic et al. (2011) and Todorovic and de Lange (2012) showed differences

for RS under expected and unexpected conditions, showing stronger RS for expected repetitions.

Moreover, Todorovic and de Lange (2012) indicated a double dissociation between response sup-

pression by stimulus repetition and by expectation, coining the term expectation suppression in

contrast to RS: Early signals were attenuated by repetition (but not expectation), mid-latency sig-

nals (MMN window) were attenuated by expectation (but not repetition) and late signals (P3 win-

dow) were attenuated by both. Finally, Costa-Faidella et al. (2011a) showed that RS effects to

repetitions with randomly varying ISIs were reduced compared to those with regular ISI, indicat-

ing that RS to repeated stimuli was modulated by temporal expectancy. Overall, while studies

support a non-negligible influence of RS on evoked responses in general, and stimulus repetition

is a modulatory feature of MMRs, current research is predominantly in support of the view that

stimulus expectancy takes on the underlying modulatory role during MMR generation (Heilbron

and Chait, 2018).

Perception as inference

The above expectation- and model-based formulations of MMN generation (Winkler, 2007; Win-

kler et al., 2009; Winkler and Czigler, 2012; Schroger et al., 2014) draw heavily on the general

ideas of perceptual inference (von Helmholtz, 1867; Gregory, 1980; Dayan et al., 1995; Knill and

Pouget, 2004). More specific formulations of a Bayesian brain hypothesize that the brain per-

forms probability estimation corresponding to (approximate) Bayesian inference (Dayan et al.,

1995; Knill and Pouget, 2004; Friston, 2005, 2010). In accordance with Bayes’ rule, the brain

thus combines the conditional probability of an observation y given a hypothesis about a hidden
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state of the world θ, i.e., the likelihood p(y|θ), with the prior probability of the state p(θ) to

obtain a posterior probability estimate p(θ|y) reflecting how likely this state actually drives the

observations:

p(θ|y) = p(y|θ)p(θ)
p(y)

(1.1)

where p(y) corresponds to the probability of observing y across all possible (i.e., considered)

states of the world. The exact computation of the latter quickly results in a combinatorial explosion

depending on the number of considered states. Thus, as the exact Bayesian computation is often

intractable, the brain is generally assumed to approximate Bayesian inference (Friston, 2010).

Importantly, any iterative process of Bayesian inference uses the current posterior estimate of

p(θ|y) as the prior for the next computation and thus continuously updates the probability of

future observations.

An influential process theory for an implementation scheme of perceptual (Bayesian) infer-

ence in the brain is the theory of predictive coding (PC; Mumford, 1992; Rao and Ballard, 1999;

Lee and Mumford, 2003; Friston, 2005; Friston and Kiebel, 2009). According to PC, the brain’s

generative model is continuously updated by comparing incoming sensory information with model

predictions on all levels of hierarchical cortical organization. The brain is hypothesized to be fun-

damentally hierarchically organized (Felleman and Van Essen, 1991) such that neurons at each

processing level receive and integrate reciprocal feedforward and feedback inputs of adjacent lev-

els, resulting in increasing spatio-temporal scales of information representation along the cortical

hierarchy (Friston, 2005; Kiebel et al., 2008). At each hierarchical level, the higher level "abstrac-

tions" project predictions (priors) to lower levels where the difference between bottom-up input

and top-down predictions corresponds to a prediction error which is sent further up the hierar-

chy. This continuous and simultaneous procedure across all hierarchical processing stages ulti-

mately furnishes a most likely estimate of perceptual content. Canonically, in the laminar cortical

structure, feedforward connections originate in superficial layers and project to deep layers where

feedback connections originate and project to superficial layers (Felleman and Van Essen, 1991).

Under PC, the asymmetry between feedforward and feedback connection pathways is thought to

carry prediction errors and predictions in the layered structure of the cortex, respectively (Friston,

2005). Moreover, it has been suggested that this asymmetry is reflected in a specific oscillatory

profile (Arnal and Giraud, 2012; Bastos et al., 2015; Friston, 2019; van Kerkoerle et al., 2014):

Feedforward prediction errors are thought to be conveyed by higher frequencies (gamma band,

> 30 Hz) and top-down predictions by lower frequencies (alpha/beta band, 10− 30 Hz).
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PC can elegantly account for many phenomena in psychology and neuroscience (Knill and

Pouget, 2004; Rao and Ballard, 1999; Friston, 2005, 2010; Clark, 2013; Heilbron and Chait,

2018; Millidge et al., 2021), including mismatch responses (Friston, 2005; Garrido et al., 2009b;

Heilbron and Chait, 2018; Stefanics et al., 2014; Winkler and Czigler, 2012; Wacongne et al.,

2012). Under PC, neuronal responses correspond to prediction errors and the MMN reflects an

increased prediction error in response to the unexpected deviant stimulus in contrast to an attenu-

ated response to the expected standard stimulus. Therefore, PC provides a common framework for

adaptation-based views highlighting the importance of RS dynamics for MMN generation as well

as model-based views suggesting a comparator mechanism between the current sensory input and

the recent stimulus trace. As such, the theory has the potential to unify previously opposing theo-

ries of MMN generation (Garrido et al., 2009b) while accounting for the key empirical features of

the MMN discussed in the previous sections (Wacongne et al., 2012; Heilbron and Chait, 2018).

Moreover, PC provides a mechanistic explanation of processes such as attention and RS and

their corresponding influences on MMRs (Auksztulewicz and Friston, 2015; Garrido et al., 2009b;

Auksztulewicz and Friston, 2016). Attention corresponds to a top-down modulatory weighting

of bottom-up error signals by their estimated precision, i.e., the inverse variance of the estimated

distribution (Feldman and Friston, 2010). Generally, under PC, stimulus predictability of sen-

sory regularities is accompanied by top-down modulations of synaptic gain (Auksztulewicz et al.,

2017). Increased precision weighting (by means of synaptic gain modulation) has been shown to

correspond to the MMN increase during attentional focus (Auksztulewicz and Friston, 2015) as

well as RS responses to repeated stimuli (Auksztulewicz and Friston, 2016). Overall, although PC

is critically discussed (Egner and Summerfield, 2013) and its empirical evaluation has been ques-

tioned (Kogo and Trengove, 2015), the theory offers a principled framework under which many

different aspects of MMR dynamics can be accounted for, including their ubiquitous occurrence

across sensory modalities.

Summary

Taken together, it is generally concluded that MMRs are a reflection of the brain’s sensitivity to

the predictable structure of the sensory environment and that the brain capitalizes on stimulus

expectancy by efficient processing of redundant (expected) sensory inputs. While the neuronal

implementation and exact computation is subject of ongoing research and debate, the brain is

broadly hypothesized to perform some form of predictive processing and probabilistic inference

under which MMRs correspond to signatures of mismatch between sensory inputs and the brain’s
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generative model of the sensory environment.

1.3 Utilizing MMRs to assess the brain’s generative model

1.3.1 The roving stimulus paradigm - A probabilistic model environment

In order to probe brain responses to probabilistic input and assess the underlying expectations of

the system, sequential stimulation can be used to form sensory regularities. As we have seen,

MMRs elicited by sequential stimuli can carry information about the degree to which these inputs

were anticipated by the system.

The classic paradigm to study MMRs is the oddball paradigm in which the deviation from a

regularity is directly coupled with a specific stimulus property since the item frequencies of the

presented stimuli are unequal. In order to decouple the response to regularity violation from the

response to a specific stimulus feature many studies have switched the roles of the standard and

deviant features for each experimental block and average the deviants and the standards across

blocks to obtain the MMR signatures. However, although indeed reducing confounds of stimulus

features in the deviant response, it remains that the item frequencies within each sequence are

biased, potentially increasing influences of long term RS to the more frequent stimulus. The

roving stimulus paradigm makes use of this principle of switching roles of standard and deviant

features while additionally keeping the item frequency equal (Cowan et al., 1993; Baldeweg et al.,

2004; Garrido et al., 2008). In the standard version of the paradigm consisting of binary sequences,

stimuli alternate between two different features (e.g. low and high intensity with overall p = 0.5)

such that the deviant is defined as the first stimulus that breaks a train of repeating (standard)

stimuli. With repetition, the deviant subsequently becomes the new standard, defining a new train

of stimulus repetitions.

Roving stimulus sequences can be created by defining a generative process probabilistically

producing observations. In contrast to a generative model (e.g., of the brain), a generative process

describes the true states of the world governing observations1. A generative process might result

in observations o at time t which evolve according to a Markov chain, such that each observation

depends on the previous observation and the current state of the world s:

p(ot|ot−1, st) (1.2)

The resulting sequence of observations is thus goverened by transition probabilities specifying
1Therefore, a different notation will be used for the formulations of generative models and generative processes.
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the repetitions and alternations of observations. The dynamics of the hidden state s evolving over

time with p(st|st−1) might either be specified such that s remains constant over time (reflecting a

static hidden state, e.g. by a state transition matrix corresponding to the identity matrix), or such

that occasional changes in the probability distributions governing observations are introduced.

If s is static, sequences are fully described by the probability of observation transitions. If s

is dynamic, occasional change-points in the observation sequence might reflect changes in the

underlying probabilities.

Correspondingly, an observer of such sequences might infer on the probabilistic structure

underlying sequential observations. As such, the study of MMRs to probabilistic observations

embeds in the broader range of the neuroscience of probabilistic inference and decision making

under uncertainty (Behrens et al., 2007; Nassar et al., 2010, 2012; Yu and Dayan, 2005) and rov-

ing stimulus sequences become a special case of model environments employed in these fields

(Modirshanechi et al., 2022). Therefore, probabilistic sequences can be used to study the brain’s

generative model during exposure with the sensory (model) environment. For example, sequences

of observations can model volatile environments if a dynamic hidden state governs occasional

change points at which the generative process switches to a different set of probabilities speci-

fying the sequential observations. Similarly, a multi-modal environment might be specified by

defining a generative process that produces multiple observation sequences governed by cross-

modal interdependence to probe probabilistic inference across senses (see chapter 2).

Overall, the principle of probabilistic sequence generation provides an elegant way to create a)

suitable sequences for the roving stimulus paradigm by defining the probability of stimulus tran-

sitions independently from stimulus features and b) sensory environments governed by different

probabilistic regularities. Correspondingly, MMRs might be investigated as signatures of a pas-

sive observation of such probabilistic environments and can thus provide insights into the brain’s

generative model.

1.3.2 Computational modeling of brain responses

In the past decade, the investigation of MMRs and their underlying mechanisms has moved from

average-based analyses of mismatch signatures to modeling approaches capturing more nuanced

dynamics of brain responses. In their seminal work, Garrido et al. (2008, 2009b, 2007a,b, 2009a)

used dynamic causal modeling (DCM) to show that adaptation-based and model-based theories

alone are not sufficient to account for the dynamics of the MMN. DCM is concerned with the

comparison of different implementations of biologically informed network models in order to
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draw conclusions on the underlying connectivity dynamics. The authors were able to show that

influences of both MMN hypotheses underlie mismatch processing in the auditory system under

predictive coding implementations of a fronto-temporal network.

Other modeling approaches concern the comparison of model signatures corresponding to an

hypothesized underlying process, in order to evaluate their contribution to account for brain dy-

namics. As we have seen, MMRs such as the MMN and the P3 have been proposed to reflect

a neuronal expression of error or mismatch between the current and the expected (or predicted)

sensory input given the brain’s generative model. As such, the responses are thought to carry infor-

mation about the brain’s inference process on the statistical structure of the environment. A grow-

ing branch of MMR research employs computational models which perform iterative (Bayesian)

inference on sequential input to account for the dynamics of brain responses during sequence per-

ception. Bayesian modeling of EEG data has been used to inspect the single-trial dynamics of the

MMN in the auditory (Lieder et al., 2013; Weber et al., 2020; Maheu et al., 2019), visual (Stefanics

et al., 2018; Schlossmacher et al., 2022) and somatosensory modality (Ostwald et al., 2012) and

the P3 across different senses (Kolossa et al., 2012, 2015; Kopp et al., 2016; Wessel and Huber,

2019; Seer et al., 2016; Modirshanechi et al., 2019; Mars et al., 2008; Maheu et al., 2019; Ostwald

et al., 2012). In the following, the basic principles of Bayesian inference models will be briefly

introduced and different approaches to the inference on sequential input will be highlighted and

categorized.

Inference models

MMRs are classically investigated in paradigms using sequences with two different stimuli, such

as the oddball paradigm or the roving stimulus paradigm. If we consider a sequence with binary

observations Y = {0, 1}, the inference process about the hidden state governing the evolution of

observations from yt−1 to yt might be modeled with a Beta-Bernoulli (BB) model which estimates

probability θ ∈ [0, 1]. Given a sequence of samples y1, ..., yt the model combines the likelihood

p(yt|θ) with the prior belief p(θ) in order to refine a posterior estimate over the latent variable

p(θ|yt). The BB model corresponds to a conjugate Bayesian model, with conjugacy referring to

the fact that the posterior distribution is in the same probability distribution family as the prior dis-

tribution which allows iterative combination of prior and likelihood over time in accordance with

Bayes rule. In the Beta-Bernoulli case, the prior is modeled as a Beta distribution Beta(θ;α, β)

with α and β corresponding to concentration parameters keeping count of the occurrences of ob-

servation categories (y = 0; y = 1). The likelihood of observations is modeled as a Bernoulli
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distribution Bern(y; θ). With each new observation, the parameters of the belief distribution over

θ are updated and over time the iterative process converges to the true hidden state probability

distribution.

The Dirichlet-Categorical (DC) model is a conjugate extension of the BB model for se-

quences with more than two unique observations (Y = {1, ...,M}). It models the likelihood of

the observations with the Categorical distribution with {1, ...,M} different possible realizations

per sample yt such that y ∼ Cat(θ1, ..., θM ). The prior over hidden states is modeled by the

Dirichlet distribution with θ1, ..., θM ∼ Dir(α1, ..., αM ), where α corresponds to the concentra-

tion parameters keeping count of observation categories.

In models such as BB or DC, the representation of the latent variable θ is modeled as a dis-

crete distribution over categories (of unique samples) and usually remains static over time. As

such, with increasing amount of considered samples over sequence-time, the converging posterior

becomes inflexible. In case of volatile environments with sudden changes in the hidden state, these

models are not well adaptive. Therefore, such models might account for changing environments

by "forgetting" the recent past, without explicit representation of a volatile hidden state. A tempo-

ral integration parameter τ ∈ [0, 1] can implement a gradual discounting of observation-samples

the further in the past they occurred by means of exponential down-weighting (thereby functioning

as window of observation integration). Implementations of forgetting or "leaky integration" have

been widely used in the modeling of brain function (Farashahi et al., 2017; Glaze et al., 2015;

Ossmy et al., 2013) and the dynamics of MMRs (Ostwald et al., 2012; Maheu et al., 2019).

The Hidden Markov model (HMM) explicitly represents a hidden state θ as evolving accord-

ing to a Markov chain with p(θt|θt−1) described by a transition matrix A ∈ RN×N with N being

the number of modeled hidden states. In contrast to BB or DC models, the HMM provides an

explicit representation of environmental volatility by maintaining separate beliefs about discrete

hidden states governing the sequence statistics. At each time-point, observations are modeled as

being emitted from the hidden state with p(yt|θt). The parameters of the HMM are commonly

inferred using an Expectation-Maximisation algorithm (Dempster et al., 1977; Baum et al., 1970).

Representation of sequence statistics

Given a specific sequence of observations o1, ..., oT , a Bayesian model might consider different

statistics of the sequence for making inference:

Stimulus probability (SP) inference does not capture any Markov dependencies between

observations and models the observation identity as input samples with yt = ot for t = 1, ..., T . In
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case of the DC model, SP therefore corresponds to counting the observation frequency. Sensitivity

of MMRs to SP has been investigated in terms of the oddball paradigm in which the deviant is

defined by the rarity of a feature (Naatanen et al., 2007; Garrido et al., 2009b) as well as in terms

of computational models specifically implementing SP inference (Mars et al., 2008; Lieder et al.,

2013; Kolossa et al., 2012).

Alternation probability (AP) inference captures a limited form of first order Markov de-

pendency by modeling observation alternations and repetitions as input samples yt = at for t =

2, ..., T with at = 1ot ̸=ot−1 , where at indicates an alternation and takes on the value 1 if the current

observation ot differs from the previous observation ot−1. As discussed in section 1.1, MMRs are

known to be sensitive to unexpected stimulus repetitions (Tervaniemi et al., 1994; Czigler et al.,

2006a) which might be reflective of AP inference. Moreover, studies which manipulated AP in-

dependent of SP indicated some specificity of brain responses to unexpected stimulus alternations

in particular (Summerfield et al., 2008, 2011; de Gardelle et al., 2013).

Transition probability (TP) inference captures first order Markov dependencies by modeling

each possible transition of observations with a set of parameters θ(i) for each unique transition

from ot−1 = i where input samples correspond to yt = ot for t = 1, ..., T . The TP model can

be extended to capture second order Markov dependencies with a second set of parameters θ(j)

specifying transitions from ot−2 = j. Converging findings from modeling studies indicate that the

perceptual system specifically estimates the probability of transitions between observations in a

sequence rather than, e.g., SP or AP (Meyniel et al., 2016; Maheu et al., 2019). This is in line with

research showing that MMN and behavioural responses were suggestive of an estimation of TP

(Mittag et al., 2016; Koelsch et al., 2016) and that the processing of sensory sequences primarily

relies on their transitional structure (Dehaene et al., 2015; Meyer and Olson, 2011; Meyer et al.,

2014). However, only few studies directly compared the estimation of TP with other sequence

statistics, such as SP or AP which have similarly been shown to be relevant statistics (Mars et al.,

2008; Lieder et al., 2013; Wang et al., 2015) and can be subsumed under TP estimation.

Model read-out

As we have seen, Bayesian models can be utilized to implement different approaches to incor-

porate sequential information to infer the probability of new observations. The models provide a

read-out of estimated quantities as the sequence unfolds over time and the read-out can be used

to compare the model dynamics with brain data, e.g., by means of regression analyses. Different

read-out functions have been implemented by modeling studies highlighting different aspects of
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the inference process (Lieder et al., 2013):

Novelty detection formulations quantify the hypothesis that MMRs reflect the degree to

which a new observation is surprising or novel (Squires et al., 1975; Escera and Corral, 2007;

Tiitinen et al., 1994; Lieder et al., 2013) in contrast to basic change detection assumptions. In the

information theoretic concept of surprise introduced by Shannon (1948), an observation yt is sur-

prising and therefore informative if it is associated with low probability of occurrence. Shannon’s

surprise or predictive surprise (PS) is thus defined as the negative logarithm of the probability of

observing yt given the prior belief about observations:

PS(yt) = −ln p(yt|θt) = −ln p(yt|yt−1, ..., y1) (1.3)

Novelty detection in terms of surprise reflects a basic form of mismatch between sensory

input and internal model belief and, as such, is closely related to the concept of prediction error

(Friston, 2005). Previous modeling approaches have used the PS formulation of novelty to describe

MMRs primarily in terms of the P3 (Mars et al., 2008; Kolossa et al., 2015; Kopp et al., 2016).

In contrast to formulations of prediction error in predictive coding inference schemes, surprise

is an undirected quantity. Directed formulations of prediction errors scaled by the precision of

the model (inverse variance of the belief distribution) are implemented in modeling frameworks

such as the hierarchical Gaussian filter (Mathys et al., 2011, 2014) and have been shown to fit

the dynamics of visual MMN responses better than formulations of categorical change detection

(Stefanics et al., 2018) or adaptation (Schlossmacher et al., 2022).

Belief commitment formulations additionally introduce quantifications of confidence into

surprise formulations of novelty detection similar to precision weighting of prediction errors.

Confidence-corrected surprise (CS) quantifies the concept that a low-probability observation is

more surprising if the commitment to the belief is high (Faraji et al., 2018): CS has been shown to

be similar to PS as it corresponds to a surprise formulation of an initial mismatch between input

and model belief but additionally considers the commitment of the generative model to a belief

and scales with the negative entropy of the prior distribution (which corresponds to a quantification

of the variability or redundancy of the distribution). CS is defined as the Kullback-Leibler (KL)

divergence quantifying the difference between the (informed) prior distribution at the current time

step t and a flat (i.e., uninformed) prior distribution p̂(θt) which is updated only with the most

recent observation yt:

CS(yt) = KL(p(θt)||p̂(θt|yt)) (1.4)
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As a relatively new surprise formulation (Modirshanechi et al., 2022; Faraji et al., 2018), CS

has only seen little empirical evaluation (Modirshanechi et al., 2019). However, confidence has

been shown to be an important computational concept shaping probabilistic inference (Meyniel

et al., 2015; Meyniel and Dehaene, 2017; Heilbron and Meyniel, 2019).

Model update formulations quantify the hypothesis that MMRs reflect the degree to which

a new observations triggers an adjustment of the generative model (Winkler, 2007; Winkler et al.,

2009; Lieder et al., 2013). Bayesian surprise (BS) quantifies this update of the generative model

of a Bayesian observer to incorporate new observations (Itti and Baldi, 2009; Baldi and Itti, 2010)

and is defined as the KL divergence between the belief distribution prior and posterior to the model

update:

BS(yt) = KL(p(θt−1|yt−1, ..., y1)||p(θt|yt, ..., y1)) (1.5)

BS has been shown to account for single-trial dynamics of the P3 (Kolossa et al., 2015; Mars

et al., 2008; Seer et al., 2016; Ostwald et al., 2012) as well as the auditory (Lieder et al., 2013)

and somatosensory MMN (Ostwald et al., 2012), and provides a well-established quantification of

model-adjustment dynamics.

Descriptive formulations quantify the observed behaviours of MMRs at a phenomenological

level, as termed by Lieder et al. (2013), without the implementation of probabilistic inference pro-

cesses. These might include implementations of novelty detection or neuronal adaptation without

aspirations of biological plausibility. An adaptation model might be designed as the decay of re-

sponse to an input, thus capturing the well-known property of the MMN to increase in amplitude

as a function of the number of prior standard repetitions (train-lengths; Haenschel et al., 2005;

Cowan et al., 1993). Lieder et al. (2013) for instance showed that such an adaptation model was

outperformed by models performing Bayesian inference. Similarly, the authors used variants of

basic novelty-detection models to capture the occurrence of a stimulus change in a binary fashion

to test it against more dynamic Bayesian models of novelty detection. Alternatively, a descriptive

novelty-detection model might be designed such that the "prediction error" increases proportional

to the repeated standard stimulus trace (Lecaignard et al., 2022).

In our work, we designed a descriptive train-length (TL) model which directly reflected our

empirical observation that MMRs of all senses increase with train-lengths (see chapter 2) which

we showed to be driven by a reciprocity in the response to standards (becoming more positive)

and the response to deviants (becoming more negative). Therefore, the TL model was designed

to capture repetition suppression as decay of responses to repeated stimuli as well as the increase
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in prediction error proportional to the repeated standard train. As such, the TL model takes into

account these observed dynamics of MMRs without invoking any assumptions of underlying in-

ference processes. It tracks the stimulus train lengths c for a given sensory input by counting

observation repetitions: ct = rt(ct + rt), where rt = 1yt=yt−1 takes on the value 1 whenever the

current observation is a repetition of the previous observation yt−1 and rt = 0 resets the current

train length to zero. To form single-trial predictors of the EEG data, the model outputs values that

increase linearly with train length and have opposite signs for standards and deviants:

TL(yt) =


−ct if rt = 1

ct−1 if rt = 0

(1.6)

Empirical model selection

The computational models described above take sequences of observations (trials) as inputs and

provide trial-wise estimates which are read out, e.g., as surprise values. These model values over

trials correspond to the regressors which are ultimately fit to single-trial brain data obtained by,

e.g., EEG to draw inferences on the explanatory power of a specific model implementation for the

dynamics of brain responses. Model fitting can be implemented as variational inversion schemes

(Beal, 2003; Penny et al., 2003, 2005; Flandin and Penny, 2007) providing model evidences in

terms of Free Energy approximation to (log) model evidence for each participant and model (as

well as data samples). Free Energy quantifies a trade-off between model complexity and model

fit (Beal, 2003) and has been shown to outperform other approaches used for model comparison

(Penny, 2012). The comparison of different models across participants can subsequently be per-

formed in group level Bayesian model selection procedures (BMS; Stephan et al., 2009; Rigoux

et al., 2014):

Two approaches to BMS can be performed, depending on the underlying assumption of the

model distribution in the population. In fixed-effects BMS, it is assumed that a given model un-

derlies the data generation in all participants (and the general population), whereas random-effects

BMS treats the underlying models as random effects which can vary across the set of participants

and correspond to a sample of the fixed (unknown) set of models in the general population. As

suggested by Stephan et al. (2010), a fixed-effects BMS procedure might only be selected if the

model of interest concerns a basic physiological mechanism. Since it is unknown if the brain

relies on a fixed implementation of a specific generative model to infer the structure of sensory

regularities or if the model might vary between model environments or participants, an empirical
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approach of random-effects BMS is advisable to draw inferences on the model used by the brain.

The approach provides (protected) exceedance probabilities quantifying the frequency of a model

in the participant sample over all other considered models. Moreover, within the random-effects

BMS framework, model evidences can be grouped into families of models to compare families

against each other and draw inferences on specific features shared across the model family (Penny

et al., 2010).

Summary

Computational modeling provides a principled framework for the assessment of computational

strategies and inference processes underlying sequence perception. Different model implemen-

tations allow to test diverging hypotheses about (properties of) the generative model underlying

mismatch processing in the brain. Model comparison procedures can be employed to select the

most likely model in the tested population.

1.4 Aim of the thesis

The aim of the thesis was to inspect MMRs across sensory modalities in response to probabilistic

stimulus sequences to compare their response dynamics and probe the brain’s generative model of

its sensory environment. To this end, we used the roving stimulus paradigm to create model envi-

ronments and recorded MMRs by means of EEG and fMRI. Given that the somatosensory system

has received the least attention of the modalities reviewed here, in study 1, we first aimed for a

thorough investigation of somatosensory MMRs by use of computational modeling of single-trial

EEG data in sensor and source space. As investigations of the underlying computational principles

of somatosensory MMRs are rare, we employed a volatile roving stimulus sequence to compare

a variety of signatures of Bayesian inference and assess the brain’s generative model in response

to a changing sensory environment. In studies 2 and 3, for a comparative inspection of MMRs in

the auditory, visual and somatosensory modality, we developed a tri-modal version of the roving

stimulus paradigm to delineate modality specific and modality general features of mismatch pro-

cessing. The paradigm served to inspect effects of deviance detection and repetition suppression

as well as additional responses to sequence features with cross-modal predictive properties. In

study 2, we used EEG to compare the spatio-temporal dynamics of mismatch processing across

the senses. In addition to a dissection of the early MMN and the later P3 responses across modal-

ities, we employed computational modeling to inspect MMRs on a single-trial basis and compare

their dynamics to signatures of Bayesian inference models implementing different computational
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strategies of uni- and cross-modal sequence processing. In study 3, we used fMRI to differentiate

and locate MMRs of each sensory modality to the tri-modal sequences and investigate the neu-

ronal generators underlying modality-specific and -general processing as well as the processing of

expectation violations with respect to the cross-modal contingencies in the sequences. In the next

chapter, I will briefly introduce the specific paradigms and methodology employed for our study

of MMRs across the senses and summarize the empirical work and most important findings.
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CHAPTER 2

Summary of empricial studies

2.1 Methodology

For the empirical evaluation of brain responses to probabilistic input, we implemented two dif-

ferent roving stimulus paradigms, depicted in figure 2.1 and further described below. The corre-

sponding sequences reflect different sensory environments and enable the inspection of MMRs to

unexpected stimulus transitions independent of their equiprobable features. Study 1 makes used

of volatile roving stimulus sequences and for studies 2 and 3 we designed a tri-modal version of

the roving stimulus paradigm. Generally, these paradigms serve to investigate the probabilistic

representation of stimulus transitions which is hypothesized to underlie sequence perception and

statistical learning (Dehaene et al., 2015; Mittag et al., 2016; Meyniel et al., 2016; Maheu et al.,

2019). Moreover, the resulting stimulus sequences provide suitable discrete inputs for Bayesian

inference models which operate on sequential observations to iteratively infer their underlying

probability. Finally, on a higher level of description, the paradigm produces trains of repeating

stimuli of variable lengths (see fig. 2.1A) which are well suited to investigate repetition effects

on MMRs, deviant and standard responses and aid the comparison with the existing body of basic

MMR research (Baldeweg et al., 2004; Baldeweg, 2006; Haenschel et al., 2005; Costa-Faidella

et al., 2011a; Cooper et al., 2013).

Roving stimulus paradigms

Volatile roving stimulus sequences

In study 1 we designed a volatile roving stimulus paradigm to inspect MMRs in the somatosensory

modality. The generative process for the stimulus sequences (see fig.2.1A) corresponds to a state s

evolving according to a Markov chain with p(st|st−1). The state transition matrix A ∈ R2×2 was

set such that a switch in sequence statistics occurred with p = 0.01. Observations o ∈ O = {0, 1}

were emitted with p(ot|ot−1, ot−2, st) such that each observation depended on the previous two
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observations (second order Markov dependency; not shown in the graphical model of 2.1) as well

as the current hidden state. Observations were used for binary somatosensory stimulus sequences

with low and high intensity y ∈ Y = {0, 1}. This additional layer (Y ) simply represents the

fact that observations generated by the Markov process can be used for different forms of em-

pirical stimulus sequences (such as other modalities or other stimuli). The two possible latent

states1 corresponded to a fast switching regime which produced observations with relatively fre-

quent alternations and a slow switching regime which resulted in longer trains of repeated stimuli

in the sequence. In the slow switching regime, transition probabilities of observations associated

with repetitions were higher than transition probabilities specifying a change: Depending on the

previous two stimulus configurations, in the slow switching regime the repetition probabilities cor-

responded to p(repetition) = 0.65 and p(repetition) = 0.85, while in the fast switching regime

they corresponded to p(repetition) = 0.3 and p(repetition) = 0.75. The resulting volatile rov-

ing stimulus sequences were used to probe the sensitivity of the brain’s generative model to adapt

their estimated statistics to sudden changes in the environment. Overall, the stimulus probability

of low and high stimuli was balanced (p = 0.5) and at the start of each sequence the hidden states

had equal probability (p = 0.5).

Tri-modal roving stimulus sequences

For studies 2 and 3 we designed a novel tri-modal roving stimulus paradigm to inspect MMRs in

the auditory, visual and somatosensory modality. The generative process for the creation of our tri-

modal roving stimulus paradigm2 is depicted in fig.2.1B and corresponds to a single state s which

remained static over time (state transition matrix corresponding to the identity matrix A = I).

The observations o ∈ O = {0, ..., 7} were emitted with emission probability p(ot|ot−1, st) ex-

hibiting first order Markov dependency. For the tri-modal sequences, the set of possible obser-

vations was used to create N = 23 = 8 different stimulus combinations for binary sequences

{yA, yV , yS} ∈ Y = {0, 1}, corresponding to roving stimulus sequences with low and high in-

tensity stimuli for the auditory (A), visual (V ) and somatosensory (S) modality. The observation

transitions were governed by an transition matrix B ∈ RN×N . Therefore, although corresponding

to separate sensory input streams, stimulus changes and repetitions in each modality depended

on the preceding tri-modal observation. This embedding of cross-modal probabilitic dependen-

cies across the sequences enabled the inspection of mismatch processing with respect to global
1The specific implementation in the publication included a third hidden state deterministically emitting a catch trial

which is not described here.
2The description used here differs to the publication in order to enable the presentation of both roving stimulus

paradigms with the same notation.
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multi-modal sequence statistics. As each stimulus transition in each modality was conditional on

the previous tri-modal stimulus configuration, the uni-modal sequences exhibit a global property

in terms of the multi-modal context of stimulus transitions. The probabilistic model was defined

such that, in each modality, repetitions (p(repetition) = 0.825) were more likely than changes

(p(change) = 0.175) and at each time-step only one modality could change. Moreover, to bal-

ance the sequences in terms of stimulus transitions in each modality, identical probabilities were

specified across modalities and balancing of stimulus features across the sequence was ensured by

keeping the observation transition matrix symmetric (B = BT ). The global sequence property

was used to manipulate the cross-modal predictability of stimulus transitions in the sequences as

follows:

At each time-point, from the perspective of any one of the three modalities, the other two

modalities can be congruent (both of low or high intensity) or incongruent (one is low and the other

high). A transition is sampled according to p(yAt , y
V
t , y

S
t |yAt−1, y

V
t−1, y

S
t−1, st). For example, let a

transition expressed as [100|000] indicate a unimodal auditory change (yAt = 1, yAt−1 = 0) with

repeating visual and somatosensory modalities (yVt = yVt−1 = 0 and ySt = ySt−1 = 0). Three dif-

ferent types of stimulus sequences were generated with different settings specifying the transition

probabilities of each modality given the arrangement of the stimuli in the other two modalities (i.e.,

either congruent or incongruent). One setting defined lower change probability if the other two

modalities were congruent (e.g. for any auditory (yA) change from t−1 to t, yS and yV were con-

gruent with p(change|congruent) = p(100|000) = p(000|100) = p(111|011) = p(011|111) =

0.025 and yS and yV were incongruent with p(change|incongruent) = p(101|001) = p(001|101) =

p(110|010) = p(010|110) = 0.15)). Correspondingly, the second setting defined lower change

probability if the other two modalities were incongruent (p(change|congruent) = 0.15,

p(change|incongruent) = 0.025). The third setting defined equal change probabilities whether the

other two modalities were congruent or incongruent (p(change|congruent) = 0.0875,

p(change|incongruent) = 0.0875). Per definition, the repetition probability follows the same

principle with p(repetition) = 1 − p(change). With a terminology inspired by Arnal and Gi-

raud (2012), the resulting stimulus transitions for each modality within the different sequences

can therefore be defined as being either predicted (here: higher transition probability conditional

on congruency/incongruency of the other modalities), mispredicted (here: lower transition proba-

bility) or unpredictable (here: equal transition probability). Fig.2.1B shows the principle of trial

definition for an examplary sequence.
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Roving stimulus sequence with volatile hidden state s

Roving stimulus sequence with marked train-length modulated deviant

Tri-modal roving stimulus sequence 

B) Generative Markov process for tri-modal probabilistic sequences

A) Generative Markov process for probabilistic sequences

Predicted change

congruent modalities A & S in previous trial

Predicted repetition

incongruent modalities A & S in previous trial

Predictability of stimulus transitions by multi-modal configuration 

Described for visual modality

Mispredicted repetition

congruent modalities A & S in previous trial

Mispredicted change

incongruent modalities A & S in previous trial

change-point change-point

R1

R2

Regimes

Repetitions

Auditory

Somatos.

Visual.

Modality

Fig. 2.1 Probabilistic roving stimulus sequences. A) Generative Markov process for probabilistic se-
quences. Left: Graphical model. Arrows reflect to conditional dependence. First order Markov depen-
dence is depicted. Right: Corresponding roving stimulus sequences consisting of trains of repeating stim-
uli which alternate between two different features. Trains of different lengths can be used to categorize
stimuli depending on the number of prior repetitions (here, deviant colored in shades of red). If the Markov
process includes change-points, these can be used to introduce volatility in the sequence, here by phases of
faster stimulus alternations resulting in shorter train lengths (Regime 2; light pink). B) Generative Markov
process for tri-modal probabilistic sequences. Left: Graphical model. Arrows reflect to conditional de-
pendence. Right: Corresponding roving stimulus sequences in each modality (Auditory: green; Visual:
purple; Somatosensory: orange) consist of trains of repeating stimuli alternating between two different fea-
tures. Bottom: Specification of the probabilities governing the Markov process can be used to introduce
predictability of stimulus transitions by the multi-modal configuration. Exemplary shown for a sequence of
somatosensory modality (orange) with specific probability setting: Transition probabilities determine that
for each modality a change is less likely if the other two modalities are incongruent (and more likely if they
are congruent) and v.v. for repetitions (p(repetition) = 1− p(change)).
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Computational models

In a uni- (study 1) and a multi-modal (study 2) EEG study we employed computational modeling

and model comparison procedures in order to draw inferences on the computational principles

underlying single-trial response dynamics and ultimately the generation of MMRs. For any of the

Bayesian model implementations we utilized and compared three different surprise functions as

read-out for the model parameters capturing different hypotheses on MMR generation: Predic-

tive surprise (PS) reflecting (probabilistic) novelty detection, confidence-corrected surprise (CS)

reflecting novelty detection scaled by model commitment and Bayesian surprise (BS) reflecting

model updating.

Inference in a volatile environment

In study 1, utilizing the somatosensory roving stimulus paradigm with occasional change-points,

we aimed for a thorough investigation of different aspects of the generative model. First, we

compared different strategies to infer on observations in a volatile environment by comparing a

Dirichlet-Categorical (DC) model which implemented flexibility with regards to the estimated

probabilities by means of varying degrees of forgetting with a Hidden Markov model (HMM)

which directly represented the volatility of the hidden state. Additionally, we compared differ-

ent modes of inference on the sequence statistics: Stimulus probability (SP) inference reflecting

sensitivity to the occurrence frequency of stimulus features, alternation probability (AP) inference

reflecting sensitivity to stimulus changes and repetitions as well as transition probability (TP) in-

ference reflecting sensitivity to the transitional structure of input sequences.

Inference in a multi-modal environment

In study 2, utilizing the tri-modal roving stimulus paradigm, we first compared a descriptive train-

length (TL) model capturing the observed dynamics of MMRs with Bayesian DC models in a

family-wise model comparison. Further, we compared a generative model performing uni-modal

(UM) inference which was restricted to the binary sequential inputs of a single modality with a

model performing cross-modal (CM) inference which was informed by the multi-modal context.

The CM model corresponds a modified version of the DC model in order to capture the cross-

modal dependencies embedded in the tri-modal roving stimulus sequences, i.e., the alternation and

repetition probabilities conditional on the tri-modal stimulus configuration. The dependencies in

the sequences were balanced between stimulus identities but provided information about the prob-

ability of repetition or alternation conditional on the congruency of the other modalities. The CM
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model operates on sequence input from a specific modality while taking into account the configu-

ration on the other two modalities (i.e., the multi-modal context): The model estimates alternation

probabilities (as described in section 1.3.2) with separate sets of parameters θ(i) when the other

modalities are congruent and θ(j) when the other modalities are incongruent. Therefore, while the

uni-modal implementation estimates the probability of stimulus alternations within a modality, the

CM model estimates this probability within a modality conditional on the congruency of the other

modalities. As such, the CM model provides a minimal implementation of a Bayesian model that

captures the cross-modal dependencies in the tri-modal sequences.

2.2 Study 1

Gijsen*, S., Grundei*, M., Lange, R. T., Ostwald, D. and Blankenburg, F. (2021). Neural sur-

prise in somatosensory Bayesian learning. PLoS computational biology, 17(2), e1008068.

*equal contribution

With study 1 we aimed to dissect the computational dynamics reflected in somatosensory MMRs.

We employed volatile roving stimulus sequences representing a changing environment in order

to draw conclusions on the underlying generative model. To this end, we recorded EEG from 40

participants and investigated MMRs in terms of ERP analyses and single-trial modeling in sen-

sor and source space. We focused on the somatosensory domain as it is the least studied sensory

system with regards to MMRs in general and especially in terms of their relation to perceptual

inference. A previous study has shown that a Bayesian observer model estimating SP (observation

frequencies) can account for the dynamics of sMMN and P3 indicating that these responses reflect

signatures of model updating in terms of Bayesian surprise (Ostwald et al., 2012). However, as the

study did not compare different probabilistic models with respect to other read-out functions or

other estimation of sequence statistics such as AP or TP, the conclusions about the specific com-

putational principles underlying somatosensory MMRs were limited. Therefore, we employed a

comprehensive model comparison scheme to describe the cortical dynamics of the somatosensory

system using different implementations of a generative model capturing environmental volatility

(DC and HMM) as well as neural surprise signatures (PS, CS, BS).

By means of ERP analyses we identified three time windows of MMRs, an early positive MMR

peaking around 60ms, an sMMN response peaking around 120ms and a P3 MMR peaking around

360ms. The three responses showed differential modulation by stimulus repetition. While the

early MMR was not sensitive to the amount of prior stimulus repetition, the standard and deviant
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responses in the sMMN time-window both showed repetition modulation in opposite directions

and the late P3 MMR showed deviant increases with prior standard repetition. Dipole modeling

was used to further investigate responses in the somatosensory system during sMMN processing

(up to 200ms) in SI and bilateral SII, indicating SI as the primary driver for the earliest MMR and

a combined response of SI and SII for the sMMN.

Using Bayesian model selection, we compared observer models which explicitly represented

the environmental volatility by modeling a latent hidden state which governs the sequential ob-

servations (HMM) with a non-hierarchical observer model with a static hidden state (DC model).

Our results showed that single-trial dynamics were best described by the DC model using a re-

stricted window of integration over past observations (50% weighting within the last 25 to 100

observations). Thus, the system appeared to capture a changing environment, represented by the

volatile roving stimulus sequences, using a static latent state model that integrates evidence on

a restricted timescale. Moreover, within the model space, we compared differences in the esti-

mation of sequence statistics in terms of SP, AP and TP. The modeling results indicated that the

system performs TP inference (i.e., tracking transitions between observations) and likely does not

go beyond first-order TP estimation. Furthermore, we compared different signatures of surprise

computation in sensor and source space. We provided a dissociation of signatures corresponding

roughly to belief inadequacy as represented by CS and belief updating as represented by BS. At

the electrode level, from around 70ms on, early surprise effects represented by CS best explained

the EEG data on electrodes contralateral and subsequently ipsilateral to the stimulation site up to

around 200ms, corresponding to the sMMN response. Additionally, some weaker indications were

provided for BS around 140ms within the sMMN time-window and around 300ms corresponding

to the P3 MMR. The dipole responses at the source level indicated that bilateral SII represented

signatures of model-inadequacy as reflected by CS from 70ms on and SI showed weak indica-

tions for model updating signatures as reflected by BS from around 140ms. This dissociation is

compatible with the idea that early surprise signals may control subsequent model update rates.

In conclusion, we show that signals of early somatosensory processing can be accounted for by

(surprise) signatures of Bayesian perceptual inference. The system appears to capture a changing

environment using a static latent state model that integrates evidence on a relatively local timescale

and estimates transition probabilities of observations using first order dependencies. In turn, we

provide evidence that the estimated statistics are used to signal early model inadequacy scaled by

confidence (CS) in SII and weak indications for model updating (BS) in SI as well as a tendency

for the P3 MMR to reflect model updating.
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2.3 Study 2

Grundei, M., Schröder, P., Gijsen, S. and Blankenburg, F. (2023). EEG mismatch responses in

a multi-modal roving stimulus paradigm provide evidence for probabilistic inference across

audition, somatosensation and vision. Human Brain Mapping, 1– 25.

MMRs such as the MMN and P3 have provided valuable insights into the brain’s processing of

regularities and the generation of corresponding sensory predictions (Naatanen et al., 2001; Paav-

ilainen, 2013; Schroger et al., 2014; Yaron et al., 2012; Squires et al., 1975; Bekinschtein et al.,

2009; Wacongne et al., 2011; Dehaene et al., 2015; Heilbron and Chait, 2018). However, direct

comparisons of MMR between modalities are rarely provided and the extent to which the MMN

and P3 reflect uni- and multi-modal regularity violations are not well understood. Therefore, in

study 2, we recorded EEG from 34 participants undergoing the novel tri-modal roving stimulus

paradigm. We aimed to investigate the (spatio-)temporal response profiles of MMRs across the au-

ditory, visual and somatosensory modality during probabilistic multi-modal sequence processing

and compare how different computational models can account for single-trial EEG dynamics.

First, we were able to extract modality specific and modality independent aspects of mismatch

responses in all three modalities from the EEG recorded during simultaneous input streams of the

modality specific sequences. Using basic ERP analyses, we found comparable but modality spe-

cific MMN signatures between 100-200ms, corresponding to the fronto-central auditory MMN,

the occipito-temporal vMMN and the temporal sMMN. Although with variable latencies, across

sensory modalities a central P3 response was identfied between 200-600ms and a conjunction anal-

ysis revealed an overlap at central electrodes from around 300ms onward, reflecting a modality

general P3 response. Source reconstructions were employed to identify the underlying neuronal

generators of the MMRs: The modality specific MMN responses were source localized to the

respective sensory cortices of each modality and additional shared right lateralized (pre-)frontal

sources. The sources contributing to the modality general P3 MMR were found primarily in a

shared network with frontal dominance. With exception of the vMMN, all MMRs showed para-

metric modulation by stimulus repetition, indicating highly comparable dynamics of mismatch

processing across modalities. Specifically, longer stimulus repetitions led to increased MMN am-

plitudes. This effect was driven by a reciprocity in the response to standards (which became more

positive) and the response to deviants (which became more negative). In line with its polarity, re-

sponses around the P3 were found to show the opposite pattern. The evaluation of the cross-modal
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stimulus predictability revealed that standard and deviant responses within the modality-general

P3 cluster were sensitive to predictive information carried by the tri-modal stimulus configuration.

Across the senses, the modality-general P3 was increased to mispredicted stimulus transitions,

indicating sensitivity to the global multi-modal sequence context.

In addition to the ERP analysis, the study aimed to compare different computational strate-

gies of sequence processing potentially underlying neuronal generation of MMRs. To this end,

we generated regressors from different Bayesian observer models and a model reflecting the com-

bined dynamics of repetition suppression and change detection, all making different predictions

for the dynamics of single-trial EEG data. The latter TL model reflected the reciprocal dynam-

ics of standard and deviant responses to stimulus repetitions observed in the ERP analyses and

previously reported in the (auditory) MMN literature (Baldeweg, 2006; Haenschel et al., 2005;

Lieder et al., 2013), without invoking assumptions of probabilistic inference. Comparisons of

computational models indicated that Bayesian models, tracking transitions between observations

(i.e., estimating TP), captured the dynamics of single-trial responses to the roving stimulus se-

quences better than the static model reflecting the combined dynamics of repetition suppression

and change detection (TL model). Moreover, the cross-modal Bayesian model (CM) which ad-

ditionally captured cross-modal conditional dependence of stimulus alternation outperformed the

purely uni-modal Bayesian model (UM). The CM model outperformed the UM model at some

central electrodes during both the MMN (120ms) and the P3 (330) time windows. Notably, the

superiority of the CM model at central electrodes suggest a correspondence of the modeling results

with the cross-modal P3 modulation found in the average-based results and additionally suggest

some multi-modal contribution during earlier times, likely from similar regions underlying the P3.

Finally, the comparison of different read-out functions for the Bayesian models provided tentative

evidence that the early MMN may signal model inadequacy scaled by confidence as reflected by

CS, whereas the later P3 MMR seems to rather reflect model updating dynamics in terms of BS.

Overall, the results showed that highly comparable dynamics underlie MMRs in response

to stimulus transitions in all three modalities and suggest an interaction of sensory specific cor-

tices with modality-general (pre-frontal) areas as generators. Moreover, these dynamics were best

explained by Bayesian observer models tracking uni-modal stimulus transitions as well as cross-

modal conditional dependencies. Therefore, the results provided evidence for a role of the MMN

and P3 as markers of probabilistic sequence processing at increasing scales of complexity.
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2.4 Study 3

Grundei, M., Schmidt T. T., and Blankenburg, F. (2023). A multimodal cortical network of

sensory expectation violation revealed by fMRI. Human Brain Mapping, 44(17), 5871-5891.

Previous research has rarely investigated MMRs to multi-modal sequences and very few studies

allow direct comparisons of MMRs between modalities, particularly using fMRI. Nevertheless,

seminal work has provided indications for a multi-modal mismatch network of modality-specific

sensory cortices and modality-general fronto-parietal regions (Downar et al., 2000, 2001, 2002),

in line with converging evidence from the auditory modality (Chennu et al., 2016; El Karoui et al.,

2015; Uhrig et al., 2014; Phillips et al., 2015, 2016; Durschmid et al., 2016). Moreover, it has been

suggested that the abstract structure of auditory and visual sequence patterns might be encoded in

inferior frontal and intraparietal cortex (Wang et al., 2015, 2019; Dehaene et al., 2015; Planton and

Dehaene, 2021) and current research on statistical learning points to domain-general computations

underlying associative and probabilistic learning across different senses (Frost et al., 2015; Saffran

and Thiessen, 2007). Therefore, as previous research suggests a role for modality-general activa-

tions of fronto-parietal regions during mismatch processing and sequence perception, we aimed to

characterize the putative mismatch network in response to multi-modal sequence regularities with

fMRI in more detail. To this end, we presented participants (N=29) with our tri-modal version of

the roving stimulus paradigm in fMRI to elicit MMRs in the auditory, visual and somatosensory

modality.

With GLM analyses we showed that modality specific activation to the stimulus sequences

were found in hierarchically higher sensory cortices corresponding to STG for the auditory, IT

and LOC for the visual and SII and IC for the somatosensory modality. Modality general acti-

vation was found in a fronto-parietal network involving the IFJ, TPJ, IC and SMA/ACC. Using

PPI-connectivity analyses, we demonstrated connectivity increases during mismatch processing

from seed regions in each higher-order sensory cortex, based on the MMR effects, to the com-

mon multi-modal network hubs, including clusters in the extended TPJ area encompassing IPS.

Moreover, we showed that deviant responses within the network were modulated by local stim-

ulus repetition, increasing with the amount of prior standard presentations. These effects were

most pronounced in higher-order sensory cortices of each modality and indicate highly compa-

rable dynamics of expectation violation across the senses. Additionally, our novel experimental

manipulation of cross-modal stimulus predictability revealed that hierarchically higher (modality
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general) regions of the mismatch network were sensitive to cross-modal expectation violation: We

found increased activity for mispredicted stimulus transitions with lower cross-modal conditional

probability, compared to predicted transitions, which was most pronounced in the IPS, indicating

that the intraparietal cortex might keep track of global multi-modal sequence regularities. Taken

together, our findings shed light on mismatch responses to multi-modal probabilistic sequences in

a shared cortical network of expectation violation.

46



CHAPTER 3

Discussion

The aim of the thesis was to investigate neuronal mismatch responses and utilize their signatures to

probe processes of probabilistic inference in the brain. To this end, three empirical evaluations of

brain responses to roving stimulus sequences were performed. The sequences represented sensory

model environments, designed to inspect different aspects of mismatch processing. A somatosen-

sory roving stimulus paradigm was used to study somatosensory MMRs in response to a volatile

environment, allowing for a thorough investigation of the underlying computational principles by

means of single-trial EEG analyses. Furthermore, a novel tri-modal version of the roving stimulus

paradigm was designed to inspect MMRs to probabilistic multi-modal input sequences in EEG and

fMRI. Single-trial modeling of EEG data was complemented with conventional fMRI analyses to

specify the mismatch dynamics of the auditory, visual and somatosensory modality.

In order to provide the basis for an evaluation of MMRs as signatures of the brain’s underlying

generative model of the sensory environment, the discussion will commence with an overview

of the MMRs identified across the three empirical studies. The corresponding modality specific

and modality general aspects of mismatch processing will be highlighted, where modality general

refers to comparable response dynamics or a shared cortical network. Further, the different aspects

of the corresponding computational dynamics which have been dissected by means of model com-

parison in studies 1 and 2 will be jointly discussed. Finally, the results of the empirical evaluations

will be merged to conclude with a hypothesized processing hierarchy of probabilistic inference in

the brain as reflected by MMRs.

3.1 Domain specificity of MMRs

The auditory MMN

The auditory MMN, as the classic signature of mismatch processing was identified in our multi-

modal EEG study as a negativity at fronto-central electrodes and corresponding positivity at

temporo-parietal sites, ranging around 80-200ms in line with the MMN literature (Naatanen et al.,
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1978, 2007). Within the MMN cluster, deviants deflected from the standard ERP around the peak

of the auditory N1 component, reaching their maximum difference around the peak of the subse-

quent P2 component. Our source reconstruction analyses suggested activity in bilateral STG and

right lateralized pre-frontal cortex to underlie the MMN in correspondence with the large body of

prior MMN research (Doeller et al., 2003; Downar et al., 2000; Molholm et al., 2005; Opitz et al.,

2002; Rinne et al., 2005; Yucel et al., 2005; Deouell, 2007) as well as with our fMRI results which

showed auditory mismatch effects primiarly in bilateral STG and IFJ with right lateralization. In-

terestingly, the STG activation identified in our fMRI study corresponded to higher order auditory

processing areas with minimal overlap with primary auditory cortex, which is often specified in

EEG source modeling as a separate source in Heschl’s gyrus (e.g., Garrido et al., 2009b). In

contrast, we found sensory specific activations in secondary auditory areas across the STG (TE3)

and in the upper (STS1/TE4) and lower bank of the STS (STS2/TE5) which are considered high

level auditory processing regions (Zachlod et al., 2020). This result is in accordance with a recent

comparative fMRI study showing STG (TE3) activation for MMRs to intensity changes among

other stimulus features (Zvyagintsev et al., 2020). Therefore, while it is obvious that primary

auditory cortex contributes to the MMR as it receives sensory input signals, our fMRI results sug-

gest that the primary generator signaling sensory specific auditory mismatch lies in non-primary

auditory regions in STG. This indication is in line with DCM studies modeling the STG as the in-

termediate stage of mismatch processing, receiving feedforward input from primary auditory and

feedback input from pre-frontal cortex (Auksztulewicz and Friston, 2015; Chennu et al., 2016;

Garrido et al., 2008, 2007a, 2009b; Phillips et al., 2015, 2016). As such, our results are in support

of the interpretations put forward by such modeling studies of MMRs as reflections of prediction

error signals in response to violation of top-down predictions.

The visual MMN

The visual MMN (vMMN) identified in our multi-modal EEG study developed from occipital

to parieto-temporal electrodes between around 130-200ms in line with previous vMMN studies

(Pazo-Alvarez et al., 2003). We localized the vMMN to the visual cortex as well as right lateralized

pre-frontal areas in source reconstruction analyses as suggested by prior research (Kimura et al.,

2011; Czigler, 2007; Pazo-Alvarez et al., 2003; Hedge et al., 2015; Downar et al., 2000). With

the fMRI study, we localized the visual MMR more specifically to LOC and IT in hierarchically

higher brain areas of visual processing such as V4, V5 and the fusiform gyrus as well as the

IFJ region, thus confirming some indications of previous research for higher order visual areas
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underlying visual MMRs (Urakawa et al., 2010; Stefanics et al., 2019; Yucel et al., 2007; Egner

et al., 2010). Stefanics et al. (2019) identified highly similar higher order visual regions even

though they used vastly different roving stimulus features (faces as opposed to flashes). The

authors suggested corresponding vMMN responses to reflect precision-weighted prediction errors

in line with hierarchical predictive coding in the visual system (Stefanics et al., 2018, 2019, 2014).

Such interpretations would be supported by visual research indicating that top-down projections

from higher cortical processing stages modulate responses particularly in non-primary visual areas

(Buffalo et al., 2010; Johnson et al., 2007; Kastner et al., 1998; Mohr et al., 2009) and highlighting

the modulatory effects of sensory expectations in hierarchical visual processing (de Lange et al.,

2018; Ferrari et al., 2022; Summerfield and de Lange, 2014; Summerfield and Egner, 2009).

It should be noted that we observed a discrepancy between the EEG and fMRI result in terms

of the strength of the visual MMRs. The vMMN as recorded with EEG only showed relatively

small difference between standard and deviant responses. This observation might be reflective of

the variable reports in the literature indicating large variance in the reported topographies and time

windows for the vMMN in contrast to the auditory MMN, even failing to identify the response

entirely (Male et al., 2020). The sensory specific effects in the fMRI study, however, were found

to be comparable across the senses. While this divergence might be driven by the inability to

differentiate the contributions of MMN and P3 in fMRI, it might also be reflective of a different

placement of the visual stimuli in the fMRI study. The visual stimuli consisted of bilateral flashes

with different intensities. To my knowledge, no other study has used similar visual flash stimuli to

elicit vMMN and the results are therefore not directly comparable to previous research. However,

in the EEG study, the stimuli were placed further in the periphery than in the fMRI study where

they were presented much more central in the visual field. Due to the retinotopic organisation of

the visual cortex (Sereno et al., 1995; Horton and Hoyt, 1991), a “far peripheral” placement (i.e., >

60◦ in the EEG study; Strasburger et al., 2011) of the stimuli results in the activation of (primary)

visual areas folded deep inside the cortex, in the calcarine sulcus between the hemispheres. It is

therefore possible that the vMMN was not weaker per se but was merely harder to detect by means

of EEG.

The somatosensory MMN

The somatosensory MMN (sMMN) was investigated in two EEG studies and identified as a

(fronto-) temporal negativity, resulting primarily from increased N140 components, as previously

suggested by Kekoni et al. (1997). Most previous sMMN studies used oddball paradigms where
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some critical discussion revolves around the distinction of the sMMN from an N140 modulation

by stimulus properties alone. With our two studies we provide further evidence for an sMMN

around the N140 component which can be assumed to be independent of stimulus confounds due

to the reversed roles of standard and deviant stimuli in the roving paradigm. Given a comparatively

small amount of research as well as conflicting results regarding the exact components that may

constitute a somatosensory equivalent to the auditory MMN, our results constitute an important

contribution by providing evidence for a temporally centred negativity with corresponding central

positivity as the primary sMMN around 140ms in line with previous suggestions (Ostwald et al.,

2012). However, in both EEG studies, we identified an additional early somatosensory MMR at

around 60ms which was followed by the sMMN around 90-190ms with a corresponding positivity

reversal at central electrodes. We identified the somatosensory system as the primary driver of

these MMRs in both studies and a contribution of right lateralized pre-frontal cortex was high-

lighted in our multi-modal study. In the uni-modal somatosensory study, dipole modeling of the

MMRs suggested that the early MMR (∼60ms) originated in SI while the sMMN appeared to

be a combined response of SI and SII, supporting similar indications of previous research (Akat-

suka et al., 2007a,b; Andersen and Lundqvist, 2019; Butler et al., 2012; Naeije et al., 2016, 2018;

Ostwald et al., 2012; Spackman et al., 2010).

Our fMRI study confirmed the EEG source modeling results, showing mismatch related ac-

tivation in SI and SII specific to the somatosensory input sequences as well as activation in IC

and the IFJ region in line with prior fMRI research on somatosensory MMRs (Allen et al., 2016;

Chen et al., 2008; Downar et al., 2000). Most pronounced activation was found in SII and acti-

vation in SI was found in BA1 and BA2 which are considered non-primary input regions (Purves

et al., 2008). A similar network of SII, IC and fronto-parietal activations has been previously sug-

gested in an fMRI study by Chen et al. (2008) to underlie somatosensory MMRs to attended and

unattended uni-modal deviants during similar stimulation, showing that SII activation was inde-

pendent of the attentional focus, in contrast to the higher-level processing stages. This supports the

idea that SII is a primary driver for an early stage of mismatch processing reflected in the sMMN

response. The IC, on the other hand, has been suggested to be involved in the integration of as-

cending sensory information with descending signals from higher level regions in prefrontal cortex

during somatosensory processing (Cerliani et al., 2012; Lovero et al., 2009; Seth et al., 2011) and

might play a role in the interaction with higher level processing stages. Correspondingly, in a

DCM study using somatosensory roving stimulus sequences Allen et al. (2016) identified modula-

tions in a network comprised of SI, IC and MFG during somatosensory mismatch processing and
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provided evidence for a role of IC in the coordination of hierarchical predictive interactions. In

correspondence with the results of our connectivity analysis in the fMRI study, the authors showed

increasing feedforward connectivity from somatosensory cortex to insular and prefrontal cortices

for unexpected stimuli, while feedback projections were found between IC and somatosensory

cortex, suggesting that the IC mediates the reciprocal exchange with hierarchically higher areas

(Allen et al., 2016). Similarly, Fardo et al. (2017) demonstrated in a DCM study that expectation

violation reflected in somatosensory MMRs was accompanied by intrinsic modulations within

the somatosensory system in SI and SII as well as extrinsic recurrent connectivity modulations

between somatosensory, pre-frontal and parietal regions.

3.2 Domain generality of MMRs

The P3 - a reflection of the modality general mismatch network

P3 responses were identified in form of a large late MMR at central electrodes in response to

sequences of auditory, visual and somatosensory stimuli in our EEG studies. The exact latency of

the P3 differed between modalities with an early latency for the auditory modality from around

250ms, later latency for the visual modality from around 300ms and a continuous evolution was

observed in the somatosensory modality in both studies from the central positive sMMN reversal-

component to a P3 around 300ms. Despite these latency specifics, a common P3 mismatch cluster

was identified in the multi-modal study from 300-350ms, followed by a more posterior cluster

extending from 400-600ms, in line with a large body of research showing P3 responses in each

sensory modality (Duncan-Johnson and Donchin, 1982; Conill, 1998; Yamaguchi and Knight,

1991, 1992) and suggestive of an earlier P3a and a later P3b component (Polich, 2007).

Across studies we identified fronto-parietal activation to underlie MMRs in all three modal-

ities. Particularly our fMRI results provide compelling evidence for a shared mismatch network

involving IFJ, TPJ, IPS and pre-SMA/ACC. The fronto-sensory activation likely reflects primarily

the first stage of mismatch processing. This is supported by our EEG results showing pre-frontal

and sensory cortices to underlie MMN responses across the senses as well as by previous research

in the auditory (Deouell, 2007; Garrido et al., 2009b), and to a lesser extent the visual (Hedge

et al., 2015; Tse et al., 2021) and somatosensory modality (Allen et al., 2016; Fardo et al., 2017;

Huang et al., 2005). The parietal cortex, on the other hand, is likely involved at later stages of

mismatch processing and, in interaction with pre-frontal cortex, corresponds to modality general

processing reflected in the P3 (Linden, 2005; Bekinschtein et al., 2009; Phillips et al., 2016; Uhrig

et al., 2014). As recently highlighted by Doricchi et al. (2022), the larger TPJ area with its dorsal
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extension into IPS (Igelstrom and Graziano, 2017), is thought to code matches (left lateralized)

and mismatches (right lateralized) between expected and actual events across sensory, motor and

cognitive operations and keeps track of their statistical contingencies (Doricchi et al., 2022; Parr

et al., 2023). Our fMRI results provided further evidence for such wider TPJ activation as a

common signature of mismatch processing across the senses. Moreover, previous MMR studies

indicated connectivity modulations within and between the identified regions of the mismatch net-

work and highlighted their accordance with hierarchical predictive processing (Allen et al., 2016;

Fardo et al., 2017; Auksztulewicz and Friston, 2015; Chennu et al., 2016; El Karoui et al., 2015;

Phillips et al., 2015, 2016; Uhrig et al., 2014). We complemented these findings by additionally

showing connectivity modulations from sensory regions to the fronto-parietal mismatch network

during expectation violation, highlighting its domain generality.

Local expectation violation - a shared feature across modalities

An important feature of the MMN which theories of its generation have aimed to account for is

its sensitivity to stimulus repetition. The MMN is long-known to increase with prior repetition

of standards (Sams et al., 1983; Näätänen, 1992; Imada et al., 1993; Javitt et al., 1998). Corre-

spondingly, across all investigations we found modulations of MMRs by stimulus repetition. We

showed that the auditory and the somatosensory MMN increase with the length of the preced-

ing stimulus train and found indications for a comparable tendency in the visual MMN (although

non-significant in the EEG study). Moreover, we showed that these increases were driven by a

reciprocal negative modulation of deviant and positive modulation of standard responses, suggest-

ing a combined influence of a repetition-scaling of change detection (i.e., error signaling) as well

as repetition suppression of expected input. Strikingly, the same repetition effect was identified

for the sMMN in both EEG studies while only few previous studies have described similar modu-

lations outside the auditory modality. For the sMMN, Kekoni et al. (1997) reported an attenuated

standard response restricted to the first repetition of a stimulus after which it plateaued and Naeije

et al. (2018) showed an increased response for deviants which followed four standards compared

to one. We extended these indications by showing very robust modulation of somatosensory stan-

dards and deviants across a longer range of at least the first 8 stimulus repetitions.

For the auditory MMN, these repetition dynamics have been previously described under the

framework of predictive coding: Repetition positivity of the standard trace during MMN genera-

tion has been interpreted as a reflection of repetition suppression, resulting from fulfilled predic-

tion (Auksztulewicz and Friston, 2016; Baldeweg, 2006; Costa-Faidella et al., 2011a,b). A cor-
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responding negative modulation of deviant responses thus signals a failure to suppress prediction

error after violation of the local regularity established by the current stimulus train. Under such a

view, longer trains of repetitions lead to higher precision in the probability estimate which in turn

results in a scaling of the prediction error in response to prediction violation (Friston, 2005, 2010;

Auksztulewicz and Friston, 2016). In our fMRI study we showed that the deviant increase with

train length found for all three modalities was most pronounced in the modality-specific regions

of the mismatch network, in higher order sensory cortices. This finding of expectancy modulated

mismatch responses in higher order sensory cortices aligns well with research in rats showing that

prediction error responses to regularity violations increase along the auditory processing pathway

(Parras et al., 2017) with error responses predominantly found in hierarchically higher auditory

regions (Parras et al., 2021; Luo et al., 2023) and adaptation dominating in primary auditory cor-

tex (Parras et al., 2021). Additionally, although much less pronounced, we found some repetition

modulation in the fronto-parietal mismatch network which might indicate further projections of

remaining prediction errors, in line with the connectivity increases to these areas. Given that we

identified the same pattern of repetition modulation also for the P3 responses of each modality in

the EEG, these parametric activations might also correspond to repetition effects specific to the P3.

Overall, the observed repetitions effects indicate highly comparable dynamics of MMRs based on

stimulus expectancy across modalities and might reflect a sensitivity of MMRs to local stimulus

transitions (Dehaene et al., 2015).

Global expectation violation - sensitivity of the P3 to cross-modal dependencies

In both of our studies investigating MMRs in multi-modal sensory environments by means of EEG

and fMRI, we identified novel context sensitivity to global cross-modal predictive information in

the stimulus sequences. We used tri-modal probabilistic sequences to create cross-modal regu-

larities by defining the transitions in one modality conditional on the configuration of the other

two modalities. As such, stimulus transitions were more or less likely based on the multi-modal

context and thus were rather predicted or mispredicted.

In the multi-modal EEG study, we found increased P3 responses to such mispredicted stimulus

transitions, regardless of their role as standards or deviants. This indicates that the P3 partly reflects

the violation of global, cross-modal predictions extracted from multi-modal context information,

in addition to local regularity violations driven by repetitions. In recent MMR research, the local-

global paradigm has revealed that the early MMN and the later P3 reflect two hierarchical stages of

mismatch processing which signal regularity violation on increasing levels of sequence complexity
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(Bekinschtein et al., 2009; Chennu et al., 2013, 2016; Dehaene et al., 2015; Durschmid et al., 2016;

El Karoui et al., 2015; King et al., 2014; Wacongne et al., 2011). While the MMN is primarily

sensitive to local regularities, such as basic stimulus repetition, the P3 is additionally sensitive

to global regularities such as a repeating pattern over an extended period of time. Importantly,

this dichotomy for MMRs was recently shown to hold for the auditory, visual and somatosensory

modality (Niedernhuber et al., 2022). Our finding of a sensitivity of the P3 response of each

modality to cross-modal regularity violations additionally suggests that the P3 MMR might signal

violation of sequence contingencies on multiple spatio-temporal global scales as our manipulation

concerned the stimulus configuration in a tri-modal sensory space.

Evidence converges to the view that the MMN, induced by local deviants primarily activates

sensory regions, while the P3 MMR after global deviance is accompanied by frontal (Chao et al.,

2018; Chennu et al., 2013; El Karoui et al., 2015) and fronto-parietal activations (Bekinschtein

et al., 2009; Uhrig et al., 2014), in line with the neuronal sources generally thought to underlie the

P3 (Linden, 2005; Polich, 2007). In our fMRI study, across sensory modalities, we identified the

dorsal part of the larger TPJ area around IPS (Doricchi et al., 2022; Igelstrom and Graziano, 2017)

to be activated by cross-modal expectation violation. This suggests a correspondence between

the fMRI and EEG results, since the parietal cortex has been shown to accompany P3 activation

during global regularity violations in humans (Bekinschtein et al., 2009) and in macaque monkey

IPS (Uhrig et al., 2014). Moreover, the finding is directly in line with the well-characterized role

of the posterior parietal cortex as a major connection hub for different senses (Damasio, 1989;

Hagmann et al., 2008; Tomasi and Volkow, 2011), mapping multi-modal inputs in both human

and non-human primates (Avillac et al., 2007; Sereno and Huang, 2014). This convergence-zone

for multi-modal information integration (Damasio, 1989) has been proposed to provide a critical

gateway to transform sensory information into cognitively relevant functions (Mesulam, 1998).

Thus, the extended TPJ area (including the IPS) forms the major parietal network hub for multi-

modal integration and higher-order cognition (Igelstrom and Graziano, 2017) and is particularly

known for coding unexpected events across a variety of sensory and cognitive processes (Doricchi

et al., 2022).

It has been argued that Bayesian inference (in terms of a predictive coding implementation)

can account for and unify the large amount of different functions and sub-divisions of the pari-

etal convergence-zone (Seghier, 2013): The area provides an amodal interface between bottom-up

sensory inputs and hierarchically higher cortical processing levels and is ultimately engaged in

optimizing probabilistic representations of what caused sensory inputs. This suggests that the
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area forms an integrative processing hub in the mismatch network with IPS specifically signaling

expectation violation based on cross-modal contingencies. Such an interpretation is in line with

previous suggestions of IPS involvement in a modality-general representation of probabilistic se-

quences (Planton and Dehaene, 2021) which is based on findings of IPS activity during regularity

violations across different modalities and presentation formats (Planton and Dehaene, 2021; Wang

et al., 2015, 2019).

3.3 MMRs as signatures of Bayesian inference

To investigate the computational principles underlying MMRs, we employed single-trial model-

ing of the signal dynamics during mismatch processing in two EEG studies. While both studies

provided different comparisons of specific implementations of Bayesian inference models, in the

multi-modal study we additionally performed an overarching comparison of a descriptive train-

length (TL) model with a family of Bayesian models. The TL model captured the dynamics of

repetition suppression and error response scaled by the length of the preceding stimulus train,

derived from our empirical observations of these dynamics described above as well as the litera-

ture (e.g., Haenschel et al., 2005; Baldeweg, 2006; Lieder et al., 2013). We aimed to clarify if

the observed dynamics reflect signatures of Bayesian computation beyond the phenomenological

level. Using family-wise model comparison, we showed that models performing Bayesian infer-

ence based on stimulus transitions indeed outperformed the descriptive TL model supporting the

view that MMRs are markers of probabilistic sequence processing in the brain. In the following,

the specific insights we gained from the different implementations of Bayesian inference models

across the two EEG studies will be discussed.

MMRs reflect belief mismatch and model updating

A comparison which we investigated in both EEG studies concerns different surprise read-out

functions for the Bayesian models. The results provided insights into the dynamics specific to

MMN and P3 responses and allowed to draw some conclusions on their potential computational

roles. Interestingly, across both studies, the results showed the tendency to converge to a key

distinction: While early responses reflected signatures of probabilistic novelty detection scaled

by belief commitment as implemented by confidence-corrected surprise (CS), later responses re-

flected signatures of model-adjustment or belief updating as implemented by Bayesian surprise

(BS).

We found evidence for CS encoding from around 70ms in both EEG studies. Focusing on the
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the somatosensory system, in study 1 we localized CS to be encoded in bilateral SII until around

170ms which is broadly in line with our fMRI findings identifying most pronounced sensory spe-

cific mismatch processing in SII. Similarly, CS was generally dominant for MMN responses in the

multi-modal study until around 250ms. This reflection of CS in early mismatch processing is in

line with its computational role to signal an initial mismatch between the current belief of the gen-

erative model and a new observation, therefore corresponding to a probabilistic novelty detection

response (termed puzzlement surprise by Faraji et al. (2018)). We showed that CS outperformed

predictive surprise (PS) as another measure of probabilistic novelty detection which corresponds

to an unsigned prediction error (Lieder et al., 2013). In contrast to basic prediction error formula-

tions, CS is scaled by the negative entropy of the belief distribution serving as a quantification of

model commitment (Faraji et al., 2018; Modirshanechi et al., 2022): CS in response to an unex-

pected event is high if the precision of the belief distribution is high, thus reflecting the idea that

prediction errors are scaled by precision weighting to encode belief uncertainty (Friston, 2005;

Mathys et al., 2014; Iglesias et al., 2013; Stefanics et al., 2018). Previous studies have similarly

included confidence as a weighting factor on beliefs and have shown that it plays an important role

in probabilistic inference (Buchel et al., 2014; Meyniel et al., 2015; Meyniel and Dehaene, 2017;

Meyniel, 2020; Mulders et al., 2023). Therefore, our results are in line with previous research

and support interpretations of early MMRs as reflecting initial novelty detection as suggested by

Escera and Corral (2007) which, importantly, we show to be scaled by belief uncertainty. This

encoding of uncertainty supports the view that the signal indicating a mismatch between the cur-

rent observation and the model belief is a reflection of probabilistic inference processes (Friston,

2005).

It should be noted that the multi-modal study was not designed to differentiate response sig-

natures between the senses as the regressors of the different modalities were fit in a single model.

Nevertheless, we found clear evidence for surprise signatures across all relevant electrodes (in-

volved in each MMN of the three senses). Moreover, the beta maps of model regressors of each

modality were directly reflective of their respective sensory specific MMN topography suggesting

that the model regressors indeed captured modality specific signal behaviours. Given the similar-

ity of MMR dynamics discussed above, a comparison of different surprise signatures under the

assumption of the same generative model underlying the signals of all modalities can be assumed

to be warranted. Thus, although the primary aim of the model comparison of the multi-modal

study was to distill differences between uni- and multi-modal inference, it nevertheless provided

valuable indications for the computations underlying MMRs in general which are particularly
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suggestive given the direct correspondence between both independently performed EEG studies.

A second indication given by both EEG studies is that the initial signaling of belief inadequacy

is followed by signatures of model updating as reflected by BS (Lieder et al., 2013; Modirshanechi

et al., 2022). Both studies show a dominance of BS around 300ms, corresponding to P3 responses.

This finding is in line with previous studies suggesting that the P3 reflects BS dynamics (Ostwald

et al., 2012; Kolossa et al., 2015; Mars et al., 2008; Seer et al., 2016) and correspondingly indi-

cates that the P3 is reflective of model-adjustment at later stages of mismatch processing. Interest-

ingly, O’Reilly et al. (2013) showed in an fMRI study that belief updating represented by BS was

encoded in ACC activation during processing of unexpected visual events and was additionally

associated with modulations of IPS, although IPS was also generally reflective of error signaling

in terms of PS. Given that both of these areas are part of the mismatch network identified in our

fMRI study, this suggests a correspondence of our finding of model updating signatures in the P3

with these modality general hubs of mismatch processing. Moreover, in terms of our mutli-modal

study, these findings suggest a role for IPS in signaling mismatching beliefs about multi-modal

inputs to trigger updating processes coordinated by the ACC (O’Reilly et al., 2013; Debener et al.,

2005).

In the somatosensory study, we additionally found indications for BS at centro-posterior elec-

trodes at earlier times, between 140-190ms localized to SI in the somatosensory system. This find-

ing is in line with previous somatosensory research in humans (Ostwald et al., 2012) and rodents

(English et al., 2023), although these studies did not compare BS with other surprise signatures.

Given that we restricted our dipole model to the somatosensory system, the updating signature

in SI might also reflect feedback processes from other cortical regions (such as ACC), which we

did not explicitly model. However, these interpretations are rather speculative, especially since

the early involvement of BS was not replicated in the multi-modal work. Nevertheless, the fact

that CS is reflected in signals already from around 70ms onward in both of our modeling studies

indicates a cascade of an initial mismatch informing subsequent belief updating which potentially

already starts prior to 200ms.

On a broader scale, our results converge to the view that earlier MMRs may be considered

markers of prediction error scaled by confidence which inform subsequent updates of the pre-

dictive model reflected in the P3. As phrased by Meyniel (2020): confidence-weighting sets the

balance between predictions and new data to inform updating of the current belief and represents

a useful strategy whenever multiple sources of information must be integrated.
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MMRs reflect transition probability inference

A generative model hypothesized to underlie mismatch processing might implement different ap-

proaches to incorporate new observations such as the estimation of stimulus probability (SP) which

reflects the sensitivity of MMRs to the frequency of items (Naatanen et al., 2007; Mars et al., 2008;

Lieder et al., 2013; Kolossa et al., 2012), alternation probability (AP) which reflects sensitivity to

alternation and repetition (Tervaniemi et al., 1994; de Gardelle et al., 2013; Summerfield et al.,

2008; Todorovic and de Lange, 2012) as well as transition probability (TP) which explicitly tracks

all possible transitions between observations (Dehaene et al., 2015; Meyniel et al., 2016; Maheu

et al., 2019; Meyer and Olson, 2011; Meyer et al., 2014). In both modeling studies, we show that

TP inference, which subsumes SP and AP computation, is well suited to account for the single-trial

dynamics of EEG signatures during mismatch processing, in line with the suggestions by Meyniel

et al. (2016) who proposed TP as a likely core model of probabilistic inference in the brain.

In the somatosensory study, we directly compared TP with SP and AP inference approaches,

showing clear superiority of the TP model. Moreover, as we included second order Markov de-

pendency in the somatosensory roving sequences we aimed to test whether the brain additionally

tracks possible transitions from the previous two observations (TP2). However, we were not able to

conclusively differentiate between TP1 and TP2 models. Thus it is possible that the brain perfoms

TP inference during perception of sequences on a higher level than just the first order Markov

property. In any case, our modeling work provided further evidence for a sensitivity of MMRs

to transitional structure of sequences which has previously been indicated for the auditory MMN

(Mittag et al., 2016; Koelsch et al., 2016; Dehaene et al., 2015) as well as visual processing of

probabilistic sequences more generally (Meyer and Olson, 2011; Meyer et al., 2014). These latter

studies suggested that higher order visual processing stages such as area IT in monkeys might be

reflective of TP inference which would be in line with our fMRI finding of these regions during

visual mismatch processing. Other research has indicated a sensitivity to TP over SP inference in

the modality general areas ACC and IFJ (Wang et al., 2017).

While evidence generally seems to converge to TP inference underlying MMRs, an open ques-

tion concerns the different representations of local and global regularities reflected in MMN and

P3 responses. Maheu et al. (2019) showed that both mid-latency (MMN window) and late MMRs

(P3 window) were best explained by a model performing TP, whereas earliest responses (<100ms)

by a model performing SP inference. Although we similarly found MMRs prior to 100ms, we did

not confirm such a reflection of SP dynamics in earliest MMRs with our comparison of TP and

SP models for the somatosensory system, but rather found evidence for TP throughout the full
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post-stimulus time window. Maheu et al. (2019) additionally indicated that the different identified

processing phases might resort to diverging time-scales of information integration from the input

sequences. Earliest responses, which showed sensitivity to rarely occurring stimulus features (SP

model) also showed very long time-scales of integration and thus likely reflect sensory adapta-

tion dynamics. In contrast, later responses showed increasingly shorter time-scales of sequence

integration which might rather indicate preferred pattern processing: Mid-latency and late mis-

match signatures showed medium and short local integration windows, with observation half-lives

of (i.e., 50% observation weighting at) around 10 and 5 observations, respectively. Interestingly,

in our multi-modal study, we similarly found evidence for integration windows with half-lives of

around 10-20 observations for earlier MMN responses and around 5-10 observations for later P3

responses. While these findings appear to contradict the distinction of local pattern sensitivity re-

flected in MMN and global pattern sensitivity in P3 responses, Maheu et al. (2019) argue that this

difference might in fact relate to a relevance of basic transitional structure during earlier MMRs

and rather chunk-based pattern inference during later MMR processes potentially operating on

chunks of around 5 stimuli (e.g., Bekinschtein et al., 2009; Wacongne et al., 2011). Moreover,

chunks of stimuli (i.e. groups of stimulus combinations) have been previously proposed to be

an important quantity during sequence processing (Dehaene et al., 2015) and, by building on TP

learning, are thought to underlie the processing of more complex sequence structure which ulti-

mately gives rise to language learning (Saffran et al., 1996; Leonard et al., 2015).

Inference in a volatile environment

In the uni-modal EEG experiment we used somatosensory roving stimulus sequences to create

a volatile sensory environment and investigate different implementations of a generative model

performing inference on the probabilistic processes governing incoming observations. One com-

parison concerned the representation of environmental volatility. To adequately adapt one’s beliefs

in the face of changes to environmental statistics, hidden state dynamics may be explicitly repre-

sented by estimating different sets of statistics for a discretized latent state (HMM). Alternatively,

without modeling the hidden state, a Bayesian observer might account for changing statistics in

terms of leaky integration, favoring more recent observations over past ones (DC model). Both

approaches, hierarchical models with hidden state representations (Iglesias et al., 2013; Lawson

et al., 2017; Meyniel and Dehaene, 2017) and non-hierarchical (flat) models without representa-

tion of higher order change-points (Summerfield et al., 2011; Bell et al., 2016; Farashahi et al.,

2017) have been shown to be appropriate learning strategies in model comparison studies.
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Our comparison of these two approaches to draw inferences in a volatile environment provided

strong evidence in favor of the DC model class over the HMM for all electrodes and post-stimulus

time-points (which were found to be above the control null-model). As such, we showed that leaky

integration provided sufficient flexibility for the model to adapt to the changing sequence statistics.

The window of integration corresponded to a half-life of around 25 to 100 recent observations

corresponding to the past 20 to 70 seconds in our experiment. Generally, while a very short

time-scale promotes sensitivity to noise, a timescale that is too large prevents flexible adaptation

following a change-point. In the context of the specific experiment, the observed timescales are

local enough to adapt the estimated statistics to the occurence of change-points (occurring every

100 stimuli on average). Nevertheless, a wide range of integration windows have been reported

in previous studies and might even be variable depending on the employed model environment

(Ossmy et al., 2013). Overall, evidence appears to converge to local (such as a half-life of <20

observations) rather than global time-scales during mismatch processing (Ostwald et al., 2012;

Kolossa et al., 2012; Meyniel et al., 2016; Maheu et al., 2019; Rubin et al., 2016).

It is possible that the brain would resort to more complex inference processes with proba-

bilistic representations of hidden states if the state transitions would be more explicit and states

would produce more diverging observation sequences. This might similarly be the case if the en-

vironment would contain incentives to learn the hidden states in terms of reward based inference

(e.g., Behrens et al., 2007; Rouhani and Niv, 2021; Niv et al., 2015; Xu et al., 2021a). In our ex-

periment, participants were neither aware of the hidden states in the data generation process, nor

was their dissociation or any tracking of sequence statistics required to perform the behavioural

task. Therefore, EEG signatures most likely reflect a form of unconscious, implicit learning of

environmental statistics which has been previously suggested to underlie the MMN (van Zuijen

et al., 2006; Koelsch et al., 2016) and sequence processing more general (Atas et al., 2014). It

has been argued that explicitly modeling change-points in the environment is both difficult and

potentially unnecessary for efficient Bayesian inference (Ryali et al., 2018). Instead, a form of

restricted sensory evidence accumulation (or "leaky integration") might rather be performed by

the brain as it is suggested to be biologically plausible (Ryali et al., 2018; Yu and Cohen, 2008;

Farashahi et al., 2017; Glaze et al., 2015). Our results were in support of such a view by providing

evidence that the somatosensory system resorts to an inference strategy of leaky integration in a

volatile environment, as previously suggested for the somatosensory modality by Ostwald et al.

(2012).

With respect to our multi-modal roving paradigm, although not explicitly designed as such,
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the different sequences used over experimental blocks can also be viewed as a volatile sensory

environment since the underlying statistics governing the observations changed over time during

the experiment (although not within each experimental block). In light of these changes, although

unnoticed by the participants, it can be argued that the generative model continuously required

updating to adequately predict future observations. As described above, the P3 showed sensitivity

to cross-modal prediction violation and tended to carry signatures of model updating, which sug-

gests that the P3 likely reflects model updates with respect to the multi-modal context. As such,

our results might be related to recent findings which suggest that later MMRs, such as the P3,

reflect belief updates about the volatility of the underlying (hidden) statistics governing sensory

observations (e.g., Weber et al., 2020, 2022). Additionally, other findings indicate that activation

of areas which we identified as part of the modality general mismatch network (particularly IFG

and IPS) might underlie the updating of expectations in changing sensory contexts (e.g., Ferrari

et al., 2022; Niv et al., 2015; Leong et al., 2017). Therefore, our results might similarly suggest

that later modality general MMRs are reflective of model updating processes in light of changing

global (e.g., multi-modal) sequence statistics.

Inference in a multi-modal environment

With our tri-modal probabilistic sequences we created sensory model environments to investigate

multi-modal Bayesian inference. We showed that a cross-modally informed model (CM), tracking

conditional dependencies between modalities in addition to uni-modal transitions, outperformed a

purely uni-modal transition probability model (UM) at central electrodes within an early (∼120-

250ms) and a late time-window (∼300-350ms).

The fact that the CM model accounted for EEG dynamics in a late time-window around 300ms

was directly reflective of the sensitivity of the P3 to cross-modal predictability and supports an

interpretation of the P3 as a signature of Bayesian inference with respect to global (multi-modal)

regularities. Given that cross-modal learning was not explicitly instructed or task-relevant, the

results are compatible with the view that the brain is sensitive to multi-modal information by

default (Ghazanfar and Schroeder, 2006; Driver and Noesselt, 2008) and that processing of such

information might be appropriately captured by Bayesian inference (Noppeney, 2021; Shams and

Beierholm, 2022; Kording et al., 2007). The earlier effects of the CM model prior to 300ms

were not reflected in the average-based results which suggests that potential modulations of MMN

signatures by cross-modal predictability manifested in single-trial dynamics but not in significant

mean differences between predictability conditions. Nevertheless, given that this earlier CM effect
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was primarily confined to central electrodes it may similarly be related to activity of the modality

general mismatch network underlying the central topography of the P3, albeit at earlier latency.

Given our fMRI results, the generators of these effects most likely include the parietal cortex

(Linden, 2005; Polich, 2007) which has been additionally shown in response to global regularity

violations, specifically (Bekinschtein et al., 2009; Uhrig et al., 2014).

Recent advances in research on Bayesian causal inference (BCI) suggest a central role for pos-

terior parietal cortex, and IPS in particular, during multi-modal inference. BCI concerns the as-

sumption that the generative model of the brain explicitly models the potential causal structure that

might have generated sensory signals (Noppeney, 2021; Kording et al., 2007; Shams and Beier-

holm, 2022). As highlighted in a review by Noppeney (2021), a series of studies has convincingly

demonstrated the spatio-temporal evolution of corresponding multi-modal inference processing in

the brain. Initial sensory segregation (<100ms) of input signals, concerned with the computation

of uni-modal estimates, was found in modality specific sensory cortices. Automatic ("forced")

sensory fusion, forming multi-modal estimates, was found encoded in (posterior) IPS around 100-

250ms and subsequent BCI computations were associated with (anterior) IPS around 350-450ms,

inferring the causal structure of the input signal based on these estimates. These studies indicate

that reliability-weighted sensory estimates are integrated in IPS prior to 300ms and used subse-

quently in interaction with frontal areas to infer the hidden causes of sensory inputs (Noppeney,

2021; Cao et al., 2019; Rohe and Noppeney, 2015). Our fMRI findings of activation of IPS (and

in part IFJ) by cross-modal prediction violation might be reflective of similar inference processes.

Taken together, our EEG and fMRI results of the multi-modal experiment might be suggestive of a

comparable inference hierarchy for mismatch processing in multi-modal environments. We found

that early processing (∼70-120ms) was concerned with uni-modal transition probability inference,

primarily driven by activation in (higher order) sensory regions. Multi-modal inference, tracking

(cross-modal) conditional dependency, was found to become relevant during mid-latency and late

mismatch processing (at central electrodes) and likely involved the IPS as a sensory convergence

zone in the modality general mismatch network which we found to be sensitive to cross-modal

conditional probability.

Overall, our results further indicate that the IPS keeps track of global cross-modal sequence

regularities in terms of Bayesian inference, likely by estimation of transition probabilities across

multi-modal observations or, potentially, by inference based on multi-modal stimulus chunks

(analogous to the suggestions by Dehaene et al., 2015; Maheu et al., 2019). Moreover, as part of

the network of executive control, the IPS has been suggested to coordinate the selection of sensory
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expectations in multi-dimensional environments with co-existing regularities (Niv et al., 2015;

Leong et al., 2017) as well as in volatile environments with changing regularities depending on

the sensory context as mentioned above (Ferrari et al., 2022). Thus, converging evidence suggests

a key role for the posterior parietal cortex, and IPS in particular, during probabilistic inference

in multi-modal environments and our results across empirical investigations provide compelling

evidence to substantiate this view.

3.4 General conclusion - A spatio-temporal hierarchy of mismatch processing

With our investigations of MMRs in audition, vision and somatosensation, we have provided fur-

ther evidence that mismatch signals are ubiquitous during perceptual processing in the brain with

highly similar response profiles across the senses. We identified an underlying network of modal-

ity specific (higher order) sensory cortices and modality general fronto-parietal regions. We have

shown that shared features of MMRs such as repetition sensitivity of standard and deviant re-

sponses are well accounted for by Bayesian models performing probabilistic inference. Our com-

parison of different implementations of such models have provided insights into the computations

involved in the inference processes most likely underlying MMRs. In the following conclusive

remarks, I will suggest a common framework of a hierarchy of mismatch processing based on

the main results and the current literature as discussed in the previous sections. Figure 3.1 pro-

vides an overview of the hypothesized evolution of cortical areas during mismatch processing post

stimulus presentation, informed by the temporal specificity of our EEG results and the identified

computational dynamics as well as the spatial specificity of fMRI results and dipole modeling.

Generally, our results indicated that MMN and P3 responses might be viewed as reflections

of continuous processing during which the classic MMR signatures are peak markers of roughly

differentiable phases. Early mismatch processing starts prior to 100ms and, around the time of the

MMN, primarily invovles interactions between sensory cortices and right lateralized prefrontal

regions around the IFJ. The early processing phase is concerned with modality specific sequence

features and the estimation of their transitional structure. Unexpected stimulus transitions trigger

a mismatch between the current sensory input and the model belief, scaled by confidence in the

belief (which is based on the previously observed evidence). This initial signal of model inade-

quacy is further projected to modality general processing stages which involve a fronto-parietal

network consisting of IFJ, TPJ, IPS as well as pre-SMA and ACC and underlie the generation of

the P3. Processing around the time of the P3 is concerned with model adjustment based on pre-

diction errors (signaling belief inadequacy) from earlier processing stages, most likely specifically
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Fig. 3.1 The spatio-temporal hierarchy of mismatch processing. Left: The involvement of areas of the
mismatch network from left to right over post-stimulus time. Early mismatch processing (inkl. the MMN)
is primarily based on interactions (depicted by bilateral grey arrows) between sensory cortices and IFJ and
reflects a mismatch between model beliefs and current sensory input, primarily concerning local sequence
properties (e.g., local stimulus transitions). Later mismatch processing additionally involves parietal areas
such as TPJ and IPS and ultimately gives rise to the P3 as a global mismatch response. The IPS in particular
is primarily concerned with sensory integration (triple-colored) and inference based on cross-modal infor-
mation. Later modality general mismatch processing involves interactions between SMA/ACC, TPJ/IPS
and IFJ which underlie model updating computation. Finally, attentional resources are recruited and de-
ployed for future evidence accumulation. Right: Modality specific areas primarily correspond to higher
order sensory cortices: Auditory (green) along the superior temporal gyrus (STG); Visual (orange) across
the lateral occipital cortex (LOC) and inferior temporal cortex (IT); Somatosensory (purple) in the opercular
cortex (OP). Modality general areas (yellow) involve a fronto-parietal network consisting of inferior frontal
junction (IFJ), the anterior portion of the supplementary motor area (SMA) and the anterior cingulate gyrus
(ACC), the temporo-parietal junction (TPJ) and intraparitetal sulcus (IPS).

involving anterior cingulate regions during belief updating. Moreover, at the level of the P3, infor-

mation from multiple sources is integrated and available for inference based on global sequence

properties. In case of multi-modal sequence processing, the parietal cortex becomes particularly

relevant as a major processing area for multi-modal statistical contingencies. While the TPJ (with

pronounced right lateralization) is signaling mismatches for each modality, the IPS integrates uni-

modal sequence information and specifically signals mismatching expectations with respect to

cross-modal relations, e.g., by estimation of transition probability conditional on multi-modal en-

vironmental properties. Although processes in IPS, and potentially fronto-parietal interactions,

likely already become relevant prior to 300ms to inform cross-modal inference, primarily later

mismatch processing around the P3 reflects modality general inference based on global sequence

properties. Finally, at later stages of mismatch processing, attentional resources are recruited based

on the estimated relevance of different features of the sensory environment and deployed for future

evidence accumulation. The hierarchical stages of mismatch processing are reflective of iterative
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incorporation of new observations in light of mismatching beliefs and according updating of the

generative model. In basic perceptual sequence processing without relevance for the system, as

reflected in the current work, the brain appears to limit the integration of sensory evidence for in-

ference in order to efficiently capture environmental volatility in terms of leaky integration. Over-

all, the computational processes identified by our empirical investigations of MMRs across the

senses are highly suggestive of signatures of probabilistic inference in a complex, ever-changing

and inherently multi-modal world.
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Abstract

Tracking statistical regularities of the environment is important for shaping human behavior

and perception. Evidence suggests that the brain learns environmental dependencies using

Bayesian principles. However, much remains unknown about the employed algorithms, for

somesthesis in particular. Here, we describe the cortical dynamics of the somatosensory

learning system to investigate both the form of the generative model as well as its neural sur-

prise signatures. Specifically, we recorded EEG data from 40 participants subjected to a

somatosensory roving-stimulus paradigm and performed single-trial modeling across peri-

stimulus time in both sensor and source space. Our Bayesian model selection procedure

indicates that evoked potentials are best described by a non-hierarchical learning model

that tracks transitions between observations using leaky integration. From around 70ms

post-stimulus onset, secondary somatosensory cortices are found to represent confidence-

corrected surprise as a measure of model inadequacy. Indications of Bayesian surprise

encoding, reflecting model updating, are found in primary somatosensory cortex from

around 140ms. This dissociation is compatible with the idea that early surprise signals may

control subsequent model update rates. In sum, our findings support the hypothesis that

early somatosensory processing reflects Bayesian perceptual learning and contribute to an

understanding of its underlying mechanisms.

Author summary

Our environment features statistical regularities, such as a drop of rain predicting immi-

nent rainfall. Despite the importance for behavior and survival, much remains unknown

about how these dependencies are learned, particularly for somatosensation. As surprise

signalling about novel observations indicates a mismatch between one’s beliefs and the

world, it has been hypothesized that surprise computation plays an important role in per-

ceptual learning. By analyzing EEG data from human participants receiving sequences of

tactile stimulation, we compare different formulations of surprise and investigate the
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employed underlying learning model. Our results indicate that the brain estimates transi-

tions between observations. Furthermore, we identified different signatures of surprise

computation and thereby provide a dissociation of the neural correlates of belief inade-

quacy and belief updating. Specifically, early surprise responses from around 70ms were

found to signal the need for changes to the model, with encoding of its subsequent updat-

ing occurring from around 140ms. These results provide insights into how somatosensory

surprise signals may contribute to the learning of environmental statistics.

Introduction

The world is governed by statistical regularities, such that a single drop of rain on the skin

might predict further tactile sensations through imminent rainfall. The learning of such proba-

bilistic dependencies facilitates adaptive behaviour and ultimately survival. Building on ideas

tracing back to Helmholtz [1], it has been suggested that the brain employs an internal genera-

tive model of the environment which generates predictions of future sensory input. More

recent accounts of perception and perceptual learning, including predictive coding [2, 3] and

the free energy principle [4], propose that these models are continuously updated in light of

new sensory evidence using Bayesian inference. Under such a view, the generative model is

composed of a likelihood function of sensory input given external causes and a prior probabil-

ity distribution over causes [4, 5]. Perception is interpreted as the computation of a posterior

distribution over causes of sensory input and model parameters, while perceptual learning is

seen as the updating of the prior distribution based on the computed posterior [6]. Such a

description of Bayesian perceptual learning has been successfully used to explain aspects of

learning in the auditory [7, 8, 9], visual [10, 11, 12], as well as somatosensory domain [13].

To investigate the underlying neuronal dynamics of perceptual inference, predictions

formed by the brain can be probed by violating statistical regularities. Widely researched

neurobiological markers of regularity violation include EEG components such as the auditory

mismatch negativity (aMMN) and the P300 in response to deviant stimuli following regularity

inducing standard stimuli. As an alternative to the oddball paradigm typically used to elicit

such mismatch responses (MMR’s) [14], the roving-stimulus paradigm features stimulus

sequences that alternate between different trains of repeated identical stimuli [15]. Expecta-

tions are built up across a train of stimuli of variable length and are subsequently violated by

alternating to a different stimulus train. The paradigm thereby allows for the study of MMR’s

based on the sequence history and independently of the physical stimulus properties. Ana-

logues to the aMMN have also been reported for vision [16] and somatosensation (sMMN).

The sMMN was first reported by Kekoni et al. [17] and has since been shown in response to

deviant stimuli with different properties, including spatial location [18, 19, 20, 21, 22, 23, 24,

25, 26], vibrotactile frequency [17, 27, 28, 29], and stimulus duration [30, 31]. Increasing evi-

dence has been reported for an account of the MMN as a reflection of Bayesian perceptual

learning processes for the auditory [8, 32, 33], visual [12, 16], and to a lesser extent the somato-

sensory domain [13]. However, the precise mechanisms remain unknown, as it is unclear

whether the MMN reflects the signaling of the inadequacy of the current beliefs or their adjust-

ment, due to the lack of direct comparisons between these competing accounts.

In the context of probabilistic inference, the signalling of a mismatch between predicted

and observed sensory input may be formally described using computational quantities of sur-

prise [6, 34]. By adopting the vocabulary introduced by Faraji et al. [35] surprise can be

grouped into two classes: puzzlement and enlightenment surprise. Puzzlement surprise refers
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to the initial realization of a mismatch between the world and an internal model. Predictive

surprise (PS) captures this concept based on the measure of information as introduced by

Shannon [36]. Specifically, PS considers the belief about the probability of an event such that

the occurrence of a rare event (i.e. an event estimated to have low probability of occurrence) is

more informative and results in greater surprise. Confidence-corrected surprise (CS), as intro-

duced by Faraji et al. [35] extends the concept of puzzlement surprise by additionally consider-

ing belief commitment. It quantifies the idea that surprise elicited by events depends on both

the estimated probability of occurrence as well as the confidence in this estimate, with greater

confidence leading to higher surprise. For example, in order for the percept of a drop of rain

on the skin to be surprising, commitment to a belief about a clear sky may be necessary. The

concept of enlightenment surprise, on the other hand, directly relates to the size of the update

of the world model that may follow initial puzzlement. Bayesian surprise (BS) captures this

notion by quantifying the degree to which an observer adapts their internal generative model

in order to accommodate novel observations [37, 38].

Both predictive surprise [9] and Bayesian surprise [13] have been successfully applied to the

full time-window of peri-stimulus EEG data to model neural surprise signals. However, the

majority of studies have focused on P300 amplitudes, with applications of both predictive sur-

prise [39, 40, 41, 42] and Bayesian surprise [40, 43, 44]. Earlier EEG signals have received less

attention, although the MMN was reported to reflect PS [42]. Furthermore, due to the close

relationship between model updating and prediction violation, only few studies have

attempted to dissociate their signals. Although the use of different surprise functions in princi-

ple allows for a direct comparison of the computations potentially underlying EEG mismatch

responses, such studies remain scarce. Previous research either focused on their spatial identi-

fication using fMRI [11, 45, 46, 47] or temporally specific, late EEG components [40]. Finally,

to the best of our knowledge, only one recent pre-print study compared all three prominent

surprise functions in a reanalysis of existing data, reporting PS to be better decoded across the

entire post stimulus time-window [48].

Despite the successful account of perceptual learning using Bayesian approaches, the frame-

work is broad and much remains unclear about the nature of MMR’s, their description as sur-

prise signals, and the underlying generative models that give rise to them. This is especially the

case for the somatosensory modality, though evidence has been reported for the encoding of

Bayesian surprise using the roving paradigm [13]. The current study expands on this work by

recording EEG responses to a roving paradigm formulated as a generative model with discrete

hidden states. We explore different mismatch responses, including the somatosensory ana-

logue to the MMN, independent of the physical properties of stimuli. Using single-trial model-

ing, we systematically investigate the structure of the generative model employed by the brain.

Having established the most likely probabilistic model, we provide a spatiotemporal descrip-

tion of its different surprise signatures in electrode and source space. As direct comparisons

are scarce, we thus contribute by dissecting the dynamics of multiple aspects of Bayesian com-

putation utilized for somatosensory learning across peri-stimulus time by incorporating them

into one hierarchical analysis.

Materials and methods

Ethics statement

The study was approved by the local ethics committee of the Freie Universität Berlin (internal

reference number: 51/2013) and written informed consent was obtained from all subjects

prior to the experiment.
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Experimental design

Participants. 44 healthy volunteers (18-38 years old, mean age: 26, 28 females, all right-

handed) participated for monetary compensation of 10 Euro per hour or an equivalent in

course credit.

Experimental procedure. In order to study somatosensory mismatch responses and

model them as single-trial surprise signals, we used a roving-stimulus paradigm [15]. Stimuli

were applied in consecutive trains of alternating stimuli based on a probabilistic model (see

below) with an inter-stimulus interval of 750ms (see Fig 1). Trains of stimuli consisted of two

possible stimulation intensities. The first and last stimulus in a train were labeled as a deviant

and standard, respectively. Thus, as opposed to a classic oddball design, the roving paradigm

allows for both stimulus types to function as a standard or deviant.

Adhesive electrodes (GVB-geliMED GmbH, Bad Segeberg, Germany) were attached to the

wrist through which the electrical stimuli with a 0.2ms duration were administered. In order

to account for interpersonal differences in sensory thresholds, the two intensity levels were

determined on a subject basis. The low intensity level (mean 5.05mA ± 1.88) was set in proxim-

ity to the detection threshold yet so that stimuli were clearly perceivable. The high intensity

level (mean 7.16mA ± 1.73) was determined for each subject to be easily distinguishable from

the low intensity level, yet remaining non-painful and below the motor threshold. The catch

stimulus (described below) featured a threefold repetition of the 0.2ms stimulus at an interval

of 50ms and was presented at either the low or high intensity level with equal probability.

Following familiarization with the electrical stimulation, 800 stimuli were administered in

each of 5 experimental runs à 10 minutes. To ensure the subjects maintained attention on the

electrical stimulation, they were instructed to count the number of catch trials (targets). In

order to make the task non-trivial, the probability of the occurrence of a catch stimulus was set

to either 0.01, 0.015, 0.02, 0.025, or 0.03, corresponding to a range of 3-32 trials per run. A sub-

ject received a stimulus sequence corresponding to each catch trial probability only once, with

the order randomized between subjects. Following an experimental run, subjects indicated

their counted number of catch trials and received feedback in the form of the correct amount.

EEG data collection and preprocessing. Data were collected using a 64-channel active

electrode system (ActiveTwo, BioSemi, Amsterdam, Netherlands) at a sampling rate of

2048Hz, with head electrodes placed in accordance to the extended 10-20 system. Individual

electrode positions were digitalized and recorded using an electrode positioning system (zebris

Medical GmbH, Isny, Germany) with respect to three fiducial markers placed on the subject’s

face; left and right preauricular points and the nasion. This approach aided subsequent source

reconstruction analyses.

Preprocessing was performed using SPM12 (Wellcome Trust Centre for Neuroimaging,

Institute for Neurology, University College London, London, UK) and in-house scripts. First,

the data were referenced against the average reference, high-pass filtered (0.01Hz), and down-

sampled to 512Hz. Consequently, eye-blinks were corrected using a topological confound

approach [49] and epoched using a peri-stimulus time interval of -100 to 600ms. All trials were

then visually inspected and removed in case any significant artefacts were deemed to be pres-

ent. The EEG data of four subjects were found to contain excessive noise due to hardware

issues, resulting in their omission from further analyses and leaving 40 subjects. Finally, a low-

pass filter was applied (45Hz). Grand mean somatosensory evoked potentials (SEPs) were cal-

culated for deviant stimuli (‘deviants’) and for the standard stimuli directly preceding a deviant

to balance the number of trials (‘standards’). The preproccesed EEG data was baseline cor-

rected with respect to the pre-stimulus interval of -100 to -5 ms. For the GLM analyses, each

trial of the electrode data was subsequently linearly interpolated into a 32x32 plane for each
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Fig 1. Experimental design and stimulus generation. A) Presentation of experimental stimuli using a roving-stimulus paradigm. Stimuli with two different

intensities are presented. Their role as standard or deviant depends on their respective position within the presentation sequence. B) Graphical model of data-

generating process. Upper row depicts the evolution of states st over time according to a Markov chain. The states emit observations ot (lower row), which themselves

feature second order dependencies on the observation level. C) Average proportion of resulting stimuli train lengths. Higher proportion of shorter trains for the fast

switching regime (R2; red) and more distributed proportion across higher train lengths for the slow switching regime (R1; blue).

https://doi.org/10.1371/journal.pcbi.1008068.g001
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timepoint, resulting in a 32x32x308 image per trial. To allow for the use of random field theory

to control for family-wise errors, the images were smoothed with a 12 by 12 mm full-width

half-maximum (FWHM) Gaussian kernel. Catch trials were omitted for both the ERP and sin-

gle-trial analyses.

Generation of stimuli sequences

A property of generative models that is highly relevant for learning in dynamic environments

is the manner by which they may adapt their estimated statistics in the face of environmental

changes. By incorporating occasional switches between sets of sequence statistics, we aimed to

compare generative models that embody different mechanisms of adapting to such change-

points. Specifically, the sequential presentation of the stimuli originated from a partially

observable probabilistic model for which the hidden state evolved according to a Markov

chain (Fig 1) with 3 states s. The state transition (p(st|st−1)) and emission probabilities p(ot|ot−1,

ot−2, st) of the observations o are listed in Table 1. One of the states was observable as it was

guaranteed to emit a catch trial, while the other two states were latent, resembling fast and

slow switching regimes. As the latter was specified with higher transition probabilities associ-

ated with repeating observations (p(0|00) and p(0|01)) it thus produced longer stimulus

trains on average. For every run, the sequence was initialized by starting either in the slow or

fast switching regime with equal probability (p(s1) = {0.5, 0.5, 0}, with catch probability

being 0) and likewise producing a high or low stimulus with equal probability (p(o1|s1) =

{0.5, 0.5}).

Event-related potentials

To investigate the event-related response to the experimental conditions on the EEG data, the

statistical design was implemented with the general linear model using SPM12. On the first

level, the single-trial data of each participant was subject to a multiple regression approach

with several regressors each coding for a level of an experimental variable: stimulus type (levels:

standard and deviant), train length (levels: 2, 3, 4, 5, >6 stimuli) and a factor of experimental

block as nuisance regressors (levels: block 1-5). An additional GLM with a balanced number of

standard and deviant trials for the regimes (levels: fast and slow switching regime) showed no

effect of regime or interaction of regime and stimulus type. The restricted maximum likeli-

hood estimation implemented in SPM12 yielded β-parameter estimates for each model regres-

sor over (scalp-)space and time which were further analysed at the group level. The second

level consisted of a mass-univariate multiple regression analysis of the individual β scalp-time

images with a design matrix specifying regressors for stimulus type and regime as well as

parametric regressors for train length and block and an additional subject factor. The

Table 1. Data-generating process.

State transition matrix Sampling distribution

R1 R2 R3 p(ot|ot−1, ot−2, st)

R1 0:99 � 1

2
pðcÞ 0:01 � 1

2
pðcÞ p(c) p(0|00) = 0.65, p(0|01) = 0.85, p(0|10) = 0.15, p(0|11) = 0.35

R2 0:01 � 1

2
pðcÞ 0:99 � 1

2
pðcÞ p(c) p(0|00) = 0.3, p(0|01) = 0.75, p(0|10) = 0.25, p(0|11) = 0.7

R3 0:5 � 1

2
pðcÞ 0:5 � 1

2
pðcÞ p(c) p(2) = 1

Left: The state transition matrix. Right: Sampling distribution of the slow switching (R1), fast switching (R2), and

catch-trial regime (R3), emitting low intensity (ot = 0), high intensity (ot = 1), and catch stimuli (ot = 2, with p(c) = p
(ot = 2)). Complementary probabilities are omitted (e.g. p(1|00) = 1 − p(0|00)).

https://doi.org/10.1371/journal.pcbi.1008068.t001
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condition contrasts were then computed by weighted summation of the group level regressors’

β estimates. To control for multiple comparisons, the scalp-time images were corrected with

SPM’s random field theory-based family wise error correction (FWE) [50]. The significant

peaks of the GLM were further inspected by looking at their effect of train length and the cor-

responding β-parameter estimates of each train length were subjected to a linear fit for visuali-

zation purposes.

Distributed source localization

In order to establish the somatosensory system as the driving dipolar generator of the EEG sig-

nals prior to 200ms, we followed a two-stage source reconstruction analysis consisting of a dis-

tributed and an equivalent current dipole (ECD) approach. While we report and model later

EEG components in sensor-space, we refrained from source localizing these, as they most

likely originate from a more distributed network of multiple sources [51, 52]. Furthermore,

the somatosensory system has been shown to be involved in mismatch processing in the time

window prior to 200ms [18, 19, 23, 26, 30, 53].

The distributed source reconstruction algorithm as implemented in SPM12 was used to

determine the sources of the ERP’s on a subject level. Specifically, subject-specific forward

models were created using a 8196 vertex template cortical mesh which was co-registered with

the electrode positions using the three aforementioned fiducial markers. SPM12’s BEM EEG

head model was used to construct the forward model’s lead field. The multiple sparse priors

under group constraints were implemented for the subject-specific source estimates [54, 55].

These were subsequently analyzed at the group level using one-sample t-tests. The yielded sta-

tistical parametric maps were thresholded at the peak level with p< 0.05 after FWE correction.

The anatomical correspondence of the MNI coordinates of the cluster peaks were verified via

cytoarchitectonic references using the SPM Anatomy toolbox. Details of the distributed source

reconstruction can be reviewed in the results section.

Equivalent current dipole fitting & source projection

The results of the distributed source reconstruction were subsequently used to fit ECDs to the

grand average ERP data using the variational Bayes ECD fitting algorithm implemented in

SPM12. The MNI coordinates resulting from the distributed source reconstruction served as

informed location priors with variance of 10mm2 to optimize the location and orientation of

the dipoles for a time-window around the peak of each component of interest (shown in the

results section). For the primary somatosensory cortex (S1), two individual dipoles were fit to

the time windows of the N20 and P50 components, respectively, to differentiate two sources of

early somatosensory processing. Furthermore, a symmetrical dipolar source was fit to the peak

of the N140 component of the evoked response with an informed prior around the secondary

somatosensory cortex. Subsequently, the single trial EEG data of each subject was projected

with the ECD lead fields onto the 4 sources using SPM12, which enabled model selection anal-

yses in source-space.

Trial-by-trial modeling of sensor- and source-space EEG data

Sequential Bayesian learner models for categorical data. To compare Bayesian learners

in terms of their generative models and surprise signals, we specified various probabilistic

models which generate the regressors ultimately fitted to the EEG data. Capitalizing on the

occasional changes to the sequence statistics included in the experimental stimulus generating

model, we assess two approaches to latent state inference. Specifically, a conjugate Dirichlet-

Categorical (DC) model as well as a Hidden Markov Model (HMM) [56] were used for
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modeling categorical data. The DC model is non-hierarchical and does not feature any explicit

detection of the regime-switches. However, it is able to adapt its estimated statistics to account

for sequence change-points by favoring recent observations over those in the past, akin to a

progressive “forgetting” or leaky integration. The model assumes a real-valued, static hidden

state st that is shared across time for each observation emission.

In contrast, the HMM is a hierarchical model for which st is a discrete variable and assumed

to follow a first order Markov Chain, mimicking the data generation process. As such, it con-

tains additional assumptions about the task structure, which allows for flexible adaptation

following a regime-switch by performing inference over a set of discrete hidden states

K (st 2 {1, . . ., K}). The transition dynamics are given by the row-stochastic matrix A 2 RK�K

with aij� 0 and
PK

j¼1
aij ¼ 1:

pðstjst� 1Þ ¼ A, pðsjtjsit� 1
Þ ¼ aij for t ¼ 1; . . . ;T: ð1Þ

Within our two model classes, we differentiate between four probabilistic models. Here, the

aim is to investigate which sequence statistics are estimated by the generative model. In the

case of Stimulus Probability (SP) inference, the model does not capture any Markov depen-

dence: ot solely depends on st. Alternation Probability (AP) inference captures a limited form

of first-order Markov dependency, by estimating the probability of the event of altering obser-

vations dt given the hidden state st and the previous observation ot−1, where dt ¼ 1ot 6¼ot� 1
takes

on the value 1 if the current observation ot differs from ot−1. With Transition Probability (TP1)

inference, the model accounts for full first-order Markov dependence and estimates separate

alternation probabilities depending on ot−1 and st, i.e. p(ot|ot−1, st). Finally, TP1 inference may

be extended (TP2) to also depend on ot−2, and by estimating p(ot|st, ot−1, ot−2) it most closely

resembles the structure underlying the data generation.

Dirichlet-Categorical model. The Dirichlet-Categorical model is a simple Bayesian

observer that counts the observations of each unique type to determine its best guess of their

probability (Eq 5). Its exponential forgetting parameter implements a gradual discounting of

observations the further in the past they occurred (Eq 8). It is part of the Bayesian conjugate

pairs and models the likelihood of the observations using the Categorical distribution with {1,

. . .,M} different possible realizations per sample yt. Given the probability vector s = {s1, . . .,

sM} defined on theM − 1 dimensional simplex SM� 1 with si> 0 and
PM

j¼1
sj ¼ 1, the probabil-

ity mass function of an event is given by

pðyt ¼ jjs1; . . . ; sMÞ ¼ sj ð2Þ

Furthermore, the prior distribution over the hidden state s is given by the Dirichlet distribu-

tion which is parametrized by the probability vector α = {α1, . . ., αM}:

pðs1; . . . ; sMja1; . . . aMÞ ¼
Gð
PM

j¼1
ajÞ

QM
j¼1
GðajÞ

YM

j¼1

saj � 1

j : ð3Þ

Hence, we have a Dirichlet prior with s1, . . ., sM* Dir(α1, . . ., αM) and a Categorical likeli-

hood with y* Cat(s1, . . ., sM). Given a sequence of observations y1, . . ., yt the model then

combines the likelihood evidence with prior beliefs in order to refine posterior estimates over

the latent variable space (derivations of enumerated formulas may be found in the
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supplementary material S1 Appendix):

pðs1; . . . ; sMjy1; . . . ; ytÞ / pðs1; . . . ; sMja1; . . . ; aMÞ
Yt

i¼1

pðyijs1; . . . ; sMÞ

¼
YM

j¼1

s
aj � 1þ

Pt

i¼1
1fyi¼jg

j

ð4Þ

Since the Dirichlet prior and Categorical likelihood pair follow the concept of conjugacy, given

an initial a0 ¼ fa0
1
; . . . ; a0

Mg (set as a hyperparameter) the filtering distribution can be com-

puted:

pðstjy1; . . . ; ytÞ ¼ pðs1; . . . ; sMjy1; . . . ; ytÞ ¼ DirðatÞ with atj ¼ a
0
j þ

Xt

i¼1

1fyi ¼ jg: ð5Þ

Likewise, one can easily obtain the posterior predictive distribution (needed to compute the

predictive surprise readout) by integrating over the space of latent states:

pðyt ¼ xjy1; . . . ; yt� 1Þ ¼

Z

pðyt ¼ xjs1; . . . ; sMÞpðs1; . . . ; sMjy1; . . . ; yt� 1ÞdSM

¼
atx

PM
j¼1
atj

ð6Þ

We can evaluate the likelihood of a specific sequence of events which can be used to iteratively

compute the posterior:

pðy1; . . . ; ytÞ ¼ pðy1Þ
Yt

i¼2

pðyijy1:iÞ ¼
1

M

Yt

i¼2

YM

j¼1

aij
PM

k¼1
aik

ð7Þ

For the evaluation of the posterior distributions, we differentiate between three inference types

which track different statistics of the incoming sequence as described above (for a graphical

model see Fig 2):

1. The stimulus probability (SP) model: yt = ot for t = 1, . . ., T

2. The alternation probability (AP) model: yt = dt for t = 2, . . ., T

3. The transition probability model (TP1 & TP2): yt = ot for t = 1, . . ., T with a set of hidden

parameters sðiÞ1 for each transition from ot−1 = i and sðjÞ2 for each transition from ot−2 = j
respectively

Despite a static latent state representation, the DC model may account for hidden dynamics

by incorporating an exponential memory-decay parameter τ 2 [0, 1] which discounts observa-

tions the further in the past they occurred. Functioning as an exponential forgetting mecha-

nism, it allows for the specification of different timescales of observation integration.

pðstjy1; . . . ; ytÞ ¼ pðs1; . . . ; sMjy1; . . . ; ytÞ ¼ DirðatÞ

with atj ¼ a
0
j þ

Xt

i¼1

e� tðt� iÞ1fyi ¼ jg:
ð8Þ

Hidden Markov model. While the Dirichlet-Categorical model provides a simple yet

expressive conjugate Bayesian model for which analytical posterior expressions exist, it is lim-

ited in the functionality of the latent state s due to its interpretation as the discrete distribution
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over categories. Hidden Markov Models (HMMs), on the other hand, are able to capture the

dynamics of the hidden state with the transition probabilities of a Markov Chain (MC). Given

the hidden state at time t, the categorical observation ot is sampled according to the stochastic

matrix B 2 RM�K , containing the emission probabilities, p(ot|st). The evolution of the discrete

hidden state according to a MC, p(st|st−1), is described by the stochastic matrix A 2 RK�K . The

initial hidden state p(s1) is sampled according to the distribution vector p 2 RK . A, B are both

row stochastic, hence Aij, Bij� 0,
PK

j¼1
Aij ¼ 1 and

PM
j¼1
Bij ¼ 1. The graphical model

described by the HMM setup is thereby specified as depicted in Fig 3.

Fig 2. Dirichlet-Categorical model as a graphical model. Left: The stimulus probability model which tracks the hidden state vector determining the sampling process

of the raw observations. Middle: The alternation probability model which infers the hidden state distribution based on alternations of the observations. Right: The

transition probability model which assumes a different data-generating process based on the previous observations. Hence, it infersM sets of probability vectors αi.

https://doi.org/10.1371/journal.pcbi.1008068.g002

Fig 3. Hidden Markov model as a graphical model. Upper row depicts the evolution of states st according to the transition matrix Aðst Þ. The states emit

observational data (dotted rectangle) according to the probabilities specified in stochastic matrix Bðst Þ which depends on the type of inference. The stimulus

probability model infers the emission probabilities associated with the raw observations ot. The alternation probability model tracks the alternations of

observations with dt ¼ 1ot 6¼ot� 1
. The transition probability model assumes a data-generating process based on previous observations, with et coding for the

transitions between observations.

https://doi.org/10.1371/journal.pcbi.1008068.g003

PLOS COMPUTATIONAL BIOLOGY Surprise in somesthesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008068 February 2, 2021 10 / 36



Classically, the parameters of this latent variable are inferred using the Expectation-Maxi-

misation (EM) algorithm. Therefore, and in order to derive the factorisation of the joint likeli-

hood p(o1:t, s1:t), the backward and forward probabilities are used in conjunction with the

Baum-Welch algorithm in order to perform the inference procedure (see S1 Appendix).

HMM Implementation. The aim of the HMM was to approximate the data generation

process more closely by using a model capable of learning the regimes over time and perform-

ing latent state inference at each timestep. To this end, prior knowledge was used in its specifi-

cation by fixing the state transition matrix close to its true values (p(st = st−1) = 0.99). The rare

catch trials were removed from the data prior to fitting the HMM and thus their accompa-

nying third regime was omitted, resulting in a two-state HMM. Given that an HMM estimates

emission probabilities of the form p(ot|st) and thus does not capture any additional explicit

dependency on previous observations, the input vector of observations was transformed prior

to fitting the models. For AP and TP inference this equated to re-coding the observation ot to

reflect the specific event that occurred. Specifically, for the AP model the input sequence was

dt ¼ 1ot 6¼ot� 1
, while for TP1 and TP2 a vector of events was used corresponding to the four pos-

sible transitions from ot−1 or eight transitions from ot−2 respectively. Thus, the HMM estimates

two sets (reflecting the two latent states) of emission probabilities which correspond to these

events (yt). Despite this deviation of the fitted models from the underlying data generation

process, the AP and TP models reliably captured R1 and R2 to their capability, with TP2 retriev-

ing the true, but unknown underlying emission probabilities (see S1 Fig). As expected, SP

inference was agnostic to the regimes, while AP and TP inference allowed for the tracking of

the latent state over time (S1 Fig). An example of the filtering posterior may be found in Fig 4.

Surprise readouts. For each of the probabilistic models described above, three different

surprise functions were implemented, forming the predictors for the EEG data: predictive sur-

prise PS(yt), Bayesian surprise BS(yt), and confidence-corrected surprise CS(yt). These may be

Fig 4. Posterior probabilities of the HMM. Comparison of the filtering posterior ĝ tðstÞ ¼ pðstjo1; . . . ; otÞ of the

different HMM inference models for an example sequence. The true, but unknown regimes of the data generation

process are plotted in red. Note that, as the regimes were balanced in terms of stimulus probabilities, SP inference is

not able to capture the underlying regimes and instead attempts to dissociate two states based on empirical differences

in observed stimulus probabilities.

https://doi.org/10.1371/journal.pcbi.1008068.g004
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interpreted as read-out functions of the generative model, signalling a mismatch between the

world and the internal model.

The predictive surprise is defined as the negative logarithm of the posterior predictive dis-

tribution p(yt|st):

PSðytÞ≔ � ln pðytjstÞ ¼ � ln pðytjy1; . . . ; yt� 1Þ: ð9Þ

A posterior that assigns little probability to an event yt will cause high (unit-less) predictive

surprise and as such is a measure of puzzlement surprise. The Bayesian surprise, on the other

hand, quantifies enlightenment surprise and is defined as the Kullback-Leibler (KL) diver-

gence between the posterior pre- and post-update:

BSðytÞ≔ KLðpðst� 1jyt� 1; . . . y1Þkpðstjyt; . . . ; y1ÞÞ ð10Þ

Confidence-corrected surprise is an extended definition of puzzlement surprise which addi-

tionally considers the commitment of the generative model as it is scaled by the negative

entropy of the prior distribution. It is defined as the KL divergence between the informed

prior and posterior distribution of a naive observer, corresponding to an agent with a flat prior

p̂ðstÞ (i.e. all outcomes are equally likely) which observed yt:

CSðytÞ≔ KLðpðstÞkp̂ðstjytÞÞ; ð11Þ

For the DC model, the flat prior p̂ðstÞ can be written as Dir(α1, . . ., αm) with αm = 1 form = 1,

. . .,M. The naive observer posterior p̂ðstjytÞ simply updates the flat prior based on only the

most recent observation yt. Hence, we have p̂ðstjytÞ ¼ Dirða01; . . . ; a0mÞ with âm ¼ 1þ 1yt¼m. A

detailed account of the readout definitions can be found in S1 Appendix.

For the HMM, the surprise readouts are obtained by iteratively computing the posterior

distribution via the Baum-Welch algorithm using the hmmlearn Python package [57]. For

timestep t this entails fitting the HMM for a stimulus sequence o1, . . ., ot which gives a set of

parameter estimates, p̂t; Ât; B̂t and the filtering posterior ĝtðstÞ ¼ pðstjo1; . . . ; otÞ. Predictive,

Bayesian, and confidence-corrected surprise may then be expressed as follows (see S1 Appen-

dix).

PSðotþ1Þ � � ln ðB̂Tt Â
T
t ĝtðstÞÞ ð12Þ

BSðotþ1Þ �
XK

k

ĝtðst ¼ kÞ ln
ĝtðst ¼ kÞ

ĝtþ1ðstþ1 ¼ kÞ
ð13Þ

Following Faraji et al. [35], confidence-corrected surprise may be expressed as a linear com-

bination of predictive surprise, Bayesian surprise, a model commitment term (negative

entropy) C(p(st)), and a data-dependent constant scaling the state space O(t). Here we make

use of this alternative expression of CS in order to facilitate the HMM implementation:

CSðotÞ ¼ BSðotÞ þ PSðotÞ þ CðpðstÞÞ þ lnOðtÞ ð14Þ

Fig 5 shows the regressors for an example sequence of the HMM TP1 and DC TP1 models with

an observation half-life of 95. The PS regressors of both models show greater variability in the

slow switching regime as compared to the fast-switching regime, where repetitions are more

common (and consequently elicit less predictive surprise) while alterations are less common

(and thus elicit greater surprise). As such, the PS regressors differ between regimes as a func-

tion of the estimated transition probabilities. The speed at which models adapt to the changed

statistics depends on the forgetting parameter for the DC model while for the HMM it is
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dependent on the degree to which the regimes have been learned. BS is markedly distinct for

the two models due to the differently modeled hidden state. DC BS features many small

updates during the fast-switching regime, with more irregular, larger updates during the slow-

switching regime, while HMM BS expresses the degree to which an observation produces

changes in the latent state posterior. Finally, HMM CS is scaled by the confidence in the latent

state posterior, tending to greater surprise the more committed the model is to one particular

latent state, and lower surprise otherwise, such as at the end of the example sequence. Mean-

while, due to its static latent state, confidence for DC CS results only from commitment to

beliefs about the estimated transition probabilities between observations themselves, with rare

events causing drops in confidence. Taken together, the HMM regressors ultimately depend

on its posterior over latent states, and while this is absent for the DC, its regressors display dif-

ferences between the two regimes as a function of its integration timescale which in turn allows

it to accommodate its probability estimates to the currently active regime.

In an exploratory analysis, the trial-definitions of the GLM analysis of the individual elec-

trode-time point data were applied to the surprise readout regressors. This allowed for the der-

ivation of model-based predictions for the observed beta-weight dynamics of the ERP GLM.

First, we generated an additional 25000 sequences of 800 observations using the same genera-

tive model used for the subject-specific sequences. The averaged surprise readouts of these

simulated sequences yielded model-derived predictions, which allowed for a visual verification

of the presence of these predictions in the (200) experimental sequences. As each study subject

was exposed to 5 sequences, these sequences were grouped into sets of 5 (yielding 5000 simu-

lated subjects) to mirror the EEG analysis. Besides the HMM, we used the Dirichlet-Categori-

cal models with different values for the forgetting-parameter (‘no forgetting’, long, medium-

length and very short stimulus half-lives) (S2 Fig). To reduce the model-space, only TP1 mod-

els were used for this analysis.

Fig 5. Surprise readouts. A) Example sequence with ot in red, st in black with st = 0 for the slow-switching regime and

st = 1 for the fast switching regime, and the HMM filtering posterior ĝ tðstÞ in between. The rare catch-trials are not

plotted to facilitate a direct comparison between the HMM and DC models. B) The normalized probability estimates

of the HMM TP1 and DC TP1 model with an observation half-life of 95, displaying differences in estimates arising

from different adaptations to regime switches. C,E,G) The z-scored surprise readouts of the HMM TP1 models:

predictive surprise (PS), Bayesian surprise (BS), and confidence-corrected surprise (CS). D,F,H) The z-scored surprise

readouts of the DC TP1 models.

https://doi.org/10.1371/journal.pcbi.1008068.g005
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Model fitting via free-form variational inference algorithm. Each combination of

model class (DC and HMM), inference type (SP, AP, TP1, TP2), and surprise readout function

(PS, BS, CS) yields a stimulus sequence-specific regressor. The same models were used across

subjects and as such the regressors did not include any subject specific parameters. These

regressors, as well as those of a constant null-model, were fitted to the single-trial, event-related

electrode and source activation data. Using a free-form variational inference algorithm for

multiple linear regression [58, 59, 60], we obtained the model evidences allowing for Bayesian

model selection procedures [61], which accounts for the accuracy-complexity trade-off in a

formal and well-established manner [62]. In short, the single-subject, single peri-stimulus time

bin data y 2 Rn�1
for n 2 N trials was modeled in the following form:

pðy; b;lÞ ¼ pðyjb; lÞpðbÞpðlÞ ð15Þ

with b 2 Rp and λ> 0 denoting regression weights and observation noise precisions, respec-

tively. The parameter-conditional distribution of y, p(y|β, λ), is specified in terms of a multi-

variate Gaussian density with expectation parameter Xβ and spherical covariance matrix. The

design matrix X consisted of a constant offset (null-model: X 2 Rn�1) and an additional sur-

prise-model specific regressor in case of the non-null models (X 2 Rn�2
). Both a detailed

description of the algorithm and the test procedure performed on simulated data used to select

the prior parameters for the variational distributions of β and λ may be found in the supple-

mentary material S2 Appendix.

Bayesian model selection. Before modeling single subject, single peri-stimulus time bin

data (y) as described above, the single-trial regressors of all non-null models as well as the data

underwent z-score normalization to allow for the use of the same model estimation procedure

for both sensor and source data. For single subjects, data and regressors corresponding to the

five experimental runs were concatenated prior to fitting. To allow for the possibility that the

brain estimates statistics computed across multiple timescales of integration [9, 63, 64], the for-

getting-parameter τ of the DC model was optimized for each subject, model, and peri-stimulus

time-bin. To this end, DC model regressors were fitted for a logarithmically spaced vector of

101 τ-values on the interval of 0 to 1 and the value of τ that resulted in the highest model evi-

dence was chosen. To penalize the DC model for having one of its parameters optimized, the

degree to which τ optimization on average inflated model evidences was subtracted prior to

the BMS procedure. Specifically, the difference in model evidence between its average for all

parameter-values and the optimized value was computed and subsequently averaged across

post-stimulus timebins, sensors, and subjects. It should be noted that the applied procedure

constitutes a heuristic for the penalization of model complexity while no explicit parameter fit-

ting procedure was implemented within model estimation.

The furnished model evidences were subsequently used for a random-effects analysis as

implemented in SPM12 [61] to determine the models’ relative performance in explaining the

EEG data. In order to combat the phenomenon of model-dilution [65], a hierarchical

approach to family model comparison was applied (for a graphical overview see S3 Fig). This

amounts to a step-wise procedure that leads to data-reduction at subsequent levels. Note that

this procedure is performed for each peri-stimulus time bin and electrode independently

(resulting in 22976 model comparisons per subject). In a first step, the two model classes DC

and HMM were compared against each other and the null-model in a family-wise BMS. A

threshold of exceedance probabilities φ> 0.99 in favour of either the DC or HMM was

applied, so that only whenever there was strong evidence in favour of one of the model classes

over both the alternative and the null-model the following analyses were applied. As the cur-

rent analyses are not statistical tests per se, the thresholding of the data by certain exceedance
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probabilities ultimately constituted an arbitrary choice to reduce data in order to visualize

(and draw conclusions on) effects with certain minimum probabilities within a large model

space. For timepoints with exceedance probabilities above this threshold, a family-wise com-

parison of TP1 and TP2 was performed in order to determine which order of transition proba-

bilities would be used for the second level. Subsequently, either the TP1 or TP2 models were

compared to the SP and AP models. Wherever φ> 0.95 for one of the inference type families,

the third analysis level was called upon. On this final level, surprise read-out functions were

compared for the winning model class and corresponding inference type. The direct compari-

son of read-out models within the winning family allows for the use of protected exceedance

probabilities (which are currently not available for family comparisons), which provide a

robust alternative to inflated exceedance probabilities [66]. The step-wise procedure allows for

spatio-temporal inference on particular read-out functions for which there is evidence for a

belonging model class and inference type, facilitating the interpretation of the results. The

hierarchical ordering thus moves from general to specific principles: the model class and infer-

ence type determine the probability estimates of the model, which are finally read out through

surprise computation. While this procedure provides a plausible and interpretable approach to

our model comparison, it should be noted that it constitutes an arbitrary choice in order to

reduce data and model space and must be interpreted with caution. As a supplementary analy-

sis, we performed non-hierarchical (factorial) family comparison analysis (S4 Fig) which

groups the entire model space into the respective families for each family comparison without

step-wise data reduction. The same procedure was used for the EEG sensor and source data.

To inspect the values of the forgetting-parameter τ that best fit the dipole data, subject spe-

cific free energy values were averaged across the timebins with surprise readout effects of inter-

est for the corresponding dipoles. These were summed across subjects to yield the group log

model evidence for each tested value of τ, which were subsequently compared against each

other.

Model recovery study. A simulation model recovery study was performed to investigate

the ability to recover the models given the sequence data, model fitting procedure, and model

comparison scheme. To this end, data was generated for n = 4000 (corresponding to the five

concatenated experimental runs) by sampling from a GLM y* N(Xβ, σ2 In), after which

model selection was performed. For the null-model, the design-matrix only comprised a col-

umn of ones. For all non-null models, an additional column of the z-normalized regressor was

added. We set the true, but unknown β2 parameter to 1, while varying σ2, which function as

the signal and noise of the data respectively. Given the z-scoring of the data, the β1 parameter

responsible for the offset is largely inconsequential and thus not further discussed. The model

fitting procedure was identical to the procedure described in the supplementary material used

for the EEG analyses (S2 Appendix).

For each noise level, we generated 40 data sets (corresponding to the number of subjects) to

apply our random-effects analyses. This process was repeated 100 times for each of the differ-

ent comparisons: null model vs DC model vs HMM (C1), DC TP1 vs TP2 (C2), DC SP vs AP

vs TP1 (C3), and DC TP1 PS vs BS vs CS (C4). Family and model retrieval using exceedance

probabilities worked well across all levels (S5 Fig), with a bias to the null model as signal-to-

noise decreases. By inspecting the posterior expected values of β2 and λ−1 which resulted from

fitting the model regressors to the EEG data, an estimate of the signal-to-noise ratio that is rep-

resentative of the experimental work can be obtained. By applying the thresholds of φ> 0.99,

φ> 0.95, φ> 0.95, and ~φ > 0:95 across the four comparisons respectively and subsequently

inspecting the winning families and models at σ2 = 750 (i.e., an SNR of 1/750), no false posi-

tives were observed. For C1 and C4, recovery was successful for all true, but unknown models

in all of the 100 instances. While for C2 and to a lesser extent C3, concerning the families of
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estimated sequence statistics, false negatives were observed only when confidence-corrected

surprise was used to generate data. For C2, this led to false negatives in 67 (TP1 CS) and 55

(TP2 CS) percent of cases, while for C3 28 (SP CS), 0 (AP CS), and 33 (TP1 CS) percent false

negatives were observed. Each set of 40 data sets was generated with the same true, but

unknown model. Due to the limited cognitive flexibility afforded by the distractor task, we did

not expect large variability in the models used across subjects. Nevertheless, if this assumption

is incorrect these simulations potentially overestimate the recoverability of the different

models.

Results

Behavioural results and event-related potentials

Participants showed consistent performance in counting the amount of catch trials during

each experimental run, indicating their ability to maintain their attention on the stimuli

(robust linear regression of presented with reported targets: slope = 0.96, p< 0.001, R2 = 0.93).

Upon questioning during the debriefing, no subjects reported explicit awareness of switching

regimes during the experiment.

An initial analysis was performed to confirm our paradigm elicited the typical somatosen-

sory responses. Fig 6B shows the average SEP waveforms for contralateral (C4, C6, CP4, CP6)

somatosensory electrodes with the expected evoked potentials, i.e. N20, P50, N140 and P300

resulting from stimulation of the left wrist. The corresponding topographic maps (Fig 6C) con-

firm the right lateralized voltage distribution of the somatosensory EEG components on the

scalp. The EEG responses to stimulus mismatch were identified by subtracting the deviant

from the standard trials (deviants-standards), thereby obtaining a difference wave for each

electrode (see Fig 6D). The scalp topography of the peak differences between standards and

deviants within predefined windows of interest indicates mismatch responses over somatosen-

sory electrodes (Fig 6E).

To test for statistical differences in the EEG signatures of mismatch processing we con-

trasted standard and deviant trials with the general linear model. Three main clusters reached

significance after performing family-wise error correction for multiple comparisons. The

topographies of resulting F-values are depicted in Fig 7. The earliest significant difference

between standard and deviant trials can be observed around 60ms post-stimulus (peak at

57ms, closest electrode CP4, pFWE = 0.002, F = 27.21, Z = 5.07), followed by a stronger effect of

the hypothesized N140 component around 120ms which will be referred to as the N140 mis-

match response (N140 MMR, peak at 119ms, closest electrode: FC4, pFWE = 0.001, F = 29.56,

Z = 5.29). A third time window of a very strong and elongated difference effect starting around

250ms to 400ms post-stimulus which corresponds to the hypothesized P300 MMR (peak at

361ms, closest electrode: Cz, pFWE < 0.001, F = 72.25).

The inspection of the β-parameter estimates at the reported GLM cluster peaks (illustrated

in Fig 7) indicates that stimulus train length, i.e. the number of standard stimuli that precede a

deviant stimulus, has differentiable effects on the size of EEG responses to standard and devi-

ant stimuli. Both the N140 and P300 MMR effects are found to be parametrically modulated

by train length as indicated by a significant linear relationship between β-estimates and train

length. Specifically, the N140 MMR effect is reciprocally modulated by stimulus type, such that

responses to standards are more positive for higher train lengths (F-statistic vs. constant

model: 5.45, p = 0.021) while deviant responses become more negative (F-statistic vs. constant

model: 5.07, p = 0.026). The parametric effect on the P300 MMR is entirely driven by the effect

on deviant stimuli (F-statistic vs. constant model: 20.7, p< 0.001), with no effect of train
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Fig 6. Event-related potentials. (A) Grand average SEP of all 64 electrodes. (B) Average SEP across electrodes C4, C6, CP4, CP6 (contralateral to stimulation). Grey

bars indicate time windows around the standard somatosensory ERP components (13-23ms; 35-55ms; 110-150ms; 270-310ms). (C) ERP scalp topographies

corresponding to the time windows in B. (D) Grand average ERP of the mismatch response obtained by subtraction of standard from deviant trials of 64 electrodes.

Grey bars indicate windows around peaks which were identified within pre-specified time windows of interest around somatosensory ERP or expected mismatch

response components (13-18ms; 45-65ms; 107-147ms; 207-247ms 269-319ms; 337-377ms). (E) ERP scalp topographies corresponding to the time windows in D).

https://doi.org/10.1371/journal.pcbi.1008068.g006
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length on the response to standard stimuli (p> 0.05). For the early 60ms cluster no effect was

found on either standard or deviant stimuli.

Source reconstruction

The distributed source reconstruction resulted in significant clusters at the locations of pri-

mary and secondary somatosensory cortex (Fig 8A, with details specified in the corresponding

table). The resulting anatomical locations were subsequently used as priors to fit four equiva-

lent current dipoles (Fig 8B, with details specified in corresponding table). Two dipoles were

used to model S1 activity at time points around the N20 and the P50 components while an

additional symmetric pair captured bilateral S2 activity around the N140 component. The

moment posteriors of the S2 dipoles end up not strictly symmetric due to the soft symmetry

constraints used by the SPM procedure [67].

To establish the plausibility of the somatosensory dipole model the EEG data was projected

onto the four ECD’s and the grand average source ERP was computed across subjects for stan-

dard and deviant trials. The resulting waveforms, shown in Fig 9, show a neurobiologically

plausible spatiotemporal evolution: the two S1 dipoles reflect the early activity of the respective

N20 and P50 components while the S2 dipoles become subsequently active and show strongest

activity in right (i.e. contralateral) S2. The average response to standards and deviants within

time windows around the significant MMR’s in sensor space (around 57ms and 119ms; see

Fig 7) were compared with simple paired t-tests. The S1P50 dipole shows a significant differ-

ence at both time windows (at 57ms p = 0.006, t = 2.94; at 119ms p = 0.009, t = 2.75; bonferroni

corrected) and can be suspected to be the origin of the effect at 57ms as well as contribute to

Fig 7. Statistical parametric maps of mismatch responses. Top row: Topographical F maps resulting from contrasting standard and deviant conditions averaged

across the times of significant clusters: 57ms (A), 119ms (B) and 361ms (C). Bottom row: Corresponding beta parameter estimates of the significant peaks with

deviants in red and standards in blue. Asterisks indicate significant linear fits (p< 0.05). Head depiction on the bottom right shows the orientation of the

topographic maps.

https://doi.org/10.1371/journal.pcbi.1008068.g007
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the 119ms MMR while the right S2 dipole is mainly driving the strong 119ms effect (p = 0.001,

t = 3.44; bonferroni corrected).

Single trial modeling

We previously established the presence of mismatch responses in sensor space and confirmed

their origin in the somatosensory system by modeling the early EEG components in source

space. Subsequently, we investigated the temporal and spatial surprise signatures with trial-by-

trial modeling of electrode and source data.

Modeling in sensor space. For large time windows at almost all electrodes there is strong

evidence in favor of the DC model class (φ> 0.99), while the HMM model class does not

exceed thresholding anywhere, therefore excluding HMM models from further analyses

(Fig 10A). The corresponding threshold of expected posterior probabilities to arrive at compa-

rable results lies around hri> 0.75 (see S6 Fig). To verify that this result was not merely due to

an insufficient penalization of the DC models, the analysis was repeated with τ = 0. Thus,

Fig 8. EEG source model. (A) Statistical results of distributed source reconstruction. Red: 18-25ms, Green: 35-45ms, Blue: 110-160ms. Below: Table with

corresponding detailed data of the clusters. (B) Location and orientation of fitted equivalent current dipoles. Red: S1 (N20), Green: S1 (P50), Blue: bilateral S2. Below:

Table with their corresponding values.

https://doi.org/10.1371/journal.pcbi.1008068.g008
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under this setting, all instances of the DC model had perfect, global integration similar to the

HMM models. Likewise, no results above the threshold were found for the HMM model class

(S7 Fig). Next, to ensure that the superiority of the DC model did not solely result from the

additionally modeled catch trials, the HMM was compared with a DC model which did not

capture these trials. This DC model still consistently outperformed the HMM, though it should

be noted that the evidence for such a reduced DC model over the HMM is less pronounced

(S6B Fig). For the DC model, TP1 is found to outperform TP2 (φ> 0.95, roughly correspond-

ing to hri> 0.7), excluding TP2 for the second and third level analyses. In the following step,

TP1 clearly performed better than SP and AP at almost all electrodes and time points (see Fig

10B and 10C; φ> 0.95, roughly corresponding to hri> 0.7). Thus, the following section pres-

ents the random-effects Bayesian model selection results of the readout functions of the

Dirichlet-Categorical TP1 model (shown in Fig 10D).

Fig 9. Grand average waveforms of EEG dipole projections. Standards and deviants were contrasted within time windows of interest informed by the GLM in

the results section. �p< 0.05; ��p< 0.01; Bonferroni corrected.

https://doi.org/10.1371/journal.pcbi.1008068.g009

PLOS COMPUTATIONAL BIOLOGY Surprise in somesthesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008068 February 2, 2021 20 / 36



Fig 10. Modeling results. Exceedance probabilities (φ) resulting from the random-effects family-wise model comparison. (A) Dirichlet-

Categorical (DC) model, Hidden Markov Model (HMM) and null model family comparison, thresholded at φ> 0.99 and applied for

data reduction at all further levels. (B) Family comparison within the winning DC family, thresholded at φ> 0.95: first and second order

transition probability models (TP1, TP2). (C) Family comparison within the winning DC family, thresholded at φ> 0.95: first order

transition probability (TP1), alternation probability (AP) and stimulus probability (SP) models and applied at the final level. (D)

Unthresholded protected exceedance probabilities (~φ) resulting from model comparison of surprise models within the winning DC TP1

family: Large discrete topographies show the electrode clusters of predictive surprise (PS) in red, Bayesian surprise (BS) in green and

confidence-corrected surprise (CS) in blue. White asterisks indicate ~φ > 0:95 of single electrodes. Small continuous topographies

display the converged variational expectation parametermβ. This parameter may be interpreted as a β weight in regression, indicating

the strength and directionality of the weight on the model regressor that maximizes the regressor’s fit to the EEG data (see S2 Appendix).

https://doi.org/10.1371/journal.pcbi.1008068.g010
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The scalp topographies depict the winning readout functions of the DC TP1 model at differ-

ent time windows. Given the difference in temporal dynamics of faster, early (<200 ms) and

slower, late (e.g. P300) EEG components, different time windows were applied for averaging.

Early clusters were identified by averaging protected exceedance probabilities over 10ms win-

dows and using a minimum cluster size of two electrodes, while 50ms time windows were

applied for averaging across later time windows with a minimum cluster size of four. The

resulting clusters indicate that from around 70ms on, early surprise effects represented by con-

fidence corrected surprise (CS) best explain the EEG data on contralateral and subsequently

ipsilateral electrodes up to around 200ms. As demarcated in the plot, the early CS clusters

include electrodes with ~φ > 0:95, which is indicative of a strong effect. A weaker cluster of

Bayesian surprise (BS) is apparent at centro-posterior electrodes between 140-200ms of which

the peak electrodes around 150ms show ~φ between 0.8 and 0.95. As such, the mid-latency BS

effect is less strong than the earlier CS clusters and can only provide indications. At the time

windows of the P300 around 300 and 350ms, similar centro-posterior electrodes represent

weak Bayesian surprise (peak ~φ around 0.75) and predictive surprise (PS) clusters (peak ~φ
around 0.72), respectively. The mid-latency BS cluster is temporally in accordance with the

putative N140 MMR while the late two clusters of BS and PS might be interpreted as indicative

of a P300 MMR. However, especially the weak late clusters do not provide clear evidence in

favour of a specific surprise readout function.

We note that the DC TP1 vs TP2 comparison in Fig 10B has few results prior to 200ms. This

appears to fit with the model recovery study indicating that the least recoverable families are

DC TP1 and TP2 in case of CS and the observation that CS is a winning surprise model for

early time bins. In response, we conducted an additional family comparison between SP, AP,

and TP encompassing both TP1 and TP2 (see S7 Fig). Clearly, more electrodes and time points

with φ> 0.95 can be observed in the early time window, suggesting that early effects are driven

by TP inference but that for empirical data, we are unable to convincingly resolve TP1 and TP2

for CS computation. Furthermore, it should be noted that our step-wise model comparison

approach constitutes a reasonable, yet arbitrary choice to create summary statistics of our data

set and a large model space. In an additional analysis, we performed a non-hierarchical model

comparison which grouped the entire model space in the respective families of interest without

step-wise data reduction. These results (S4 Fig) broadly replicate the findings from the hierar-

chical approach across the levels and likewise indicate that the order of transition probability

(TP1 and TP2) can not be resolved in early time windows.

Modeling in source space. The topographic distribution of the effects of confidence-cor-

rected surprise seem to indicate an early contribution of secondary somatosensory cortex from

around 70ms on that starts contra- and extends ipsilaterally while the weaker BS cluster

emerges around the time of the N140 MMR. In order to further investigate this observation

and examine the spatial origins of the surprise clusters, we fit our models to the single trial

dipole data and used the same hierarchical Bayesian model selection approach as for the sen-

sor-space analysis described in the Materials and Methods section. Results for the source activ-

ity were highly similar, with clear results in favour of the DC and TP1 model families at

thresholds of φ> 0.99 and φ> 0.95, respectively. Consequently, the surprise readout functions

of the DC TP1 model were subjected to BMS. The results depicted in Fig 11 support the inter-

pretation of an early onset of CS in secondary somatosensory cortex (~φ > 0:95) and allocate

the later onset BS cluster in electrode space to primary somatosensory cortex (~φ ranging from

around 0.7 to 0.9). However, as is also apparent in electrode space, this mid-latency BS effect is

weak and can only provide an indication.

Leaky integration. We inspected the τ-parameter values that resulted in the highest group

log model evidence for the reported dipole effects (Fig 11). All three considered clusters
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indicate a local timescale of integration, with the best-fitting parameter values resulting in a

stimulus half-life of * 105 and * 87 for the confidence-corrected surprise effects at 75-120ms

and 75-166ms respectively, and a half-life of * 26 observations for the Bayesian surprise effect

at 143-157ms. Using the single-subject peaks, τ was found to significantly differ from 0 (i.e., no

Fig 11. Modeling results in source space with best fitting forgetting-parameter values. Red: Predictive surprise (PS), Green: Bayesian surprise (BS), Blue:

Confidence-corrected surprise (CS) A) Colored areas depict protected exceedance probabilities (~φ) of the surprise readout functions of the Dirichlet-Categorical TP1

model within the dipoles S1P50, right S2 (RS2) and left S2 (LS2) using alpha blending. In grey shaded areas the DC model family shows φ< 0.99 or the TP1 model

family φ< 0.95. The S1N20 dipole was omitted in the visualization as no model is observed above this threshold. Magenta horizontal lines indicate ~φ ¼ 0:95. Line

plots above each dipole plot show the respective mean percent variance explained of the models in dotted rectangles ± standard error. B) The group log model evidence

(GLME) values corresponding to the stimulus half-lives for forgetting-parameter τ, after averaging the timebins inside the dotted-rectangles (S1P50: 145-191ms; RS2:

68-143ms; LS2: 76-168ms). The grey lines indicate a difference of 20 GLME from the peak, indicating very strong evidence in favour of the peak half-life value

compared to values below this threshold.

https://doi.org/10.1371/journal.pcbi.1008068.g011
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forgetting) for the BS effect in S1 (p< 0.001) and CS in RS2 (p< 0.05), but not in LS2

(p = 0.06). Paired t-tests revealed no significant difference in τ underlying the three effects

(p> 0.05).

Discussion

In this study, we used a roving paradigm to identify EEG mismatch responses independent of

stimulus identity. The early MMR effects were source localized to the somatosensory system

and the N140 and P300 MMR’s show differential linear dependence on stimulus train lengths

for standard and deviant stimuli. Using computational modelling, EEG signals were best

described using a non-hierarchical Bayesian learner performing transition probability infer-

ence. Furthermore, we provide evidence for an early representation of confidence-corrected

surprise localized to bilateral S2 and weak indications for subsequent Bayesian surprise encod-

ing in S1. These computations were shown to use a local, rather than global, timescale of

integration.

We report a significant somatosensory mismatch response around three distinct post-stim-

ulus time-points: 57ms, 119ms, and 361ms. These will be referred to as sMMR’s as opposed to

MMN since the effects at 57ms and 361ms are not negativities and our experimental protocol

included an explicit attentional focus on the stimulation. The MMN was originally defined to

be a pre-attentive effect and while attention to the stimulus does not seem to influence the

MMN in the visual domain [68], we don’t address a potential independence of attention here.

Nevertheless, the reported sMMR effects integrate well with previous findings on the somato-

sensory MMN (sMMN). Our 119ms effect is in line with the timing of the most commonly

reported sMMN as a modulation of the N140 component between 100-250ms [17, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31]. However, some studies additionally describe a modulation of

multiple somatosensory components [17 18, 19, 24], similar to our three distinct sMMR

effects. The electrode positions reported in sMMN studies show a large variability of fronto-

central and parietal electrodes. These discrepancies might be driven by the differences in stim-

ulation sites (different fingers and hand) and deviant definitions (vibrotactile frequencies,

stimulation site, stimulation duration). Here, we present significant effects around C4 and FC4

electrodes for the 57 and 119ms time-points, respectively, indicating EEG generators within

the contralateral somatosensory system. This implication is in line with intracranial EEG

recordings of the somatosensory cortex during oddball tasks [24, 30]. In accordance with pre-

vious MEG studies using source localization [21, 22], our source space analysis suggests the

early MMR effects to originate from contralateral primary and secondary somatosensory cor-

tex (cS1 and cS2, respectively), with the earliest MMR (at 57ms) localized to cS1 followed by a

combined response of S1 and S2. While evidence exists for a role of S2 in the early phase of

mismatch processing [26], the evolution from an initial MMR generated by S1 to an additional

involvement of S2 in the mid-latency MMR, as indicated by our findings, is consistent with

the sequential activation of the somatosensory hierarchy in general tactile stimulus processing

[69, 70, 71]. Finally, the third sMMR effect at 361ms is in accordance with a large body of evi-

dence showing a modulation of the P300 component by mismatch processing [72, 73, 74]. The

P300 in response to oddball tasks likely reflects a modality unspecific effect, dependent on

task-related resource allocation [75, 76, 77, 78, 79] and contingent on attentional engagement

[29].

In addition to three spatiotemporally distinct sMMR effects, we further show their differen-

tial modulation by the length of standard stimulus trains preceding the deviant stimulus. This

finding supports the interpretation that distinct mechanisms underlie the generation of the

different sMMR’s. The earliest effect around 57ms is not affected by train length, possibly
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reflecting a basic change detection mechanism that signals a deviation from previous input

regardless of statistical regularities. The mid-latency MMR around 119ms, on the other hand,

shows a significant linear dependence on stimulus train length for both deviant and standard

stimuli. Longer train lengths result in parametrically stronger negative responses to deviant sti-

muli while responses to standard stimuli are increasingly reduced. This effect is in accordance

with repetition suppression effects reported for the MMN [80, 81] which have been shown to

be dependent on sequence statistics and are interpreted to reflect perceptual learning [82, 83].

While it has been indicated that the number of preceding standards can also enhance the

sMMN [26], no previous studies show comparable effects to our parametric modulation of the

mid-latency sMMR. The reciprocal effect of repetition for standard and deviant stimuli shown

here indicate early perceptual learning mechanics in the somatosensory system, likely originat-

ing from S2 in interaction with S1. In contrast, later mismatch processing reflected by the

sMMR at 361ms only shows a linear dependence of deviant stimuli on train length, while the

response to standards remains constant. This is in line with the interpretation that perceptual

learning in the P300 reflects a recruitment of attention in response to environmental changes,

possibly accompanied by updates to this attentional-control system [41].

In addition to average-based ERP analyses, single-trial brain potentials in response to

sequential input can provide a unique window into the mechanisms underlying probabilistic

inference in the brain. Here, we investigated the learning of statistical regularities using differ-

ent Bayesian learner models with single-trial surprise regressors. Partitioning the model space

allowed us to infer on distinguishing features between the model families using Bayesian

model selection (BMS). The first comparison concerned the form of hidden state representa-

tion: In order for a learner to adequately adapt one’s beliefs in the face of changes to environ-

mental statistics, more recent observations may be favored over past ones without modeling

hidden state dynamics (Dirichlet-Categorical model; DC), or different sets of statistics may be

estimated for a discretized latent state (Hidden Markov Model; HMM). Our comparison of

these two learning approaches provides strong evidence for the DC model class over the

HMM for the large majority of electrodes and post-stimulus time. The superiority of the DC

model was found to be irrespective of the inclusion of leaky integration to the DC model, indi-

cating the advantage of a non-hierarchical model in explaining the EEG data. It is noteworthy

that part of the strength of the DC model depended on the modelling of the catch trial,

although a reduced DC model still outperformed the HMM. Participants were neither aware

of the existence of the hidden states in the data generation process, nor was their dissociation

or any tracking of sequence statistics required to perform the behavioural task. As such, the

early EEG signals studied here are likely to reflect a form of non-conscious, implicit learning

of environmental statistics [84, 85, 86]. However, it is possible that the brain implements dif-

ferent learning algorithms in different environments, resorting to more complex ones only

when the situation demands it. As the discrete hidden states produced relatively similar obser-

vation sequences, more noticeable transitions between hidden states may provide an environ-

ment with greater incentive to implement a more complex model to track these states, which

might have yielded different results. Indeed, humans seem to assume different generative

models in different contexts, possibly depending on task instructions [87]. This may in part

explain why evidence has been provided for the use of both hierarchical [88, 89] and non-hier-

archical models [90, 91]. Nevertheless, it has been suggested that the brain displays a sensitivity

to latent causes in low-level learning contexts [92], which might indicate the relevance of other

factors. For example, it is possible the currently tested HMM may be too constrained and a

simpler, more general changepoint-detection model [89] may have performed better. By omit-

ting instructions to learn the task-irrelevant statistics, our study potentially avoids the issue of

invoking a certain generative model. We might therefore report on a ‘default’ model of the
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brain used to non-consciously infer environmental statistics. The sort of computations (relat-

ing to surprise and belief updating) and learning models we consider might be viewed in light

of theories such as predictive coding and the free energy principle for which preliminary work

suggests implementational plausibility (e.g. [93]). The computation models tested in the cur-

rent study do not provide a biophysically plausible manner by which the brain acquires the

estimated transition probabilities and subsequent surprise quantities. Rather, the models serve

to identify qualities that a future successful biophysically plausible algorithm should exhibit.

In order to investigate which statistics are estimated by the brain during the learning of cat-

egorical sequential inputs, we compared three models within the DC model family that use dif-

ferent sequence properties to perform inference on future observations: stimulus probability

(SP), alternation probability (AP), and transition probability (TP) inference. The TP model

subsumes SP and AP models and is thus more general by maintaining a larger hypothesis

space. Our results show that the TP model family clearly outperformed the SP and AP families,

suggesting that the brain captures sequence dependencies by tracking transitions between

types of observations for future inference. We thereby provide further evidence for an imple-

mentation of a minimal transition probability model in the brain as recently concluded from

the analysis of several perceptual learning studies [94], extending it to include somesthesis.

Additionally, we expand upon previous studies by comparing a first order TP model (TP1),

capturing transitions between stimuli conditional only on the previous observation, with a sec-

ond order TP model (TP2), which tracks transitions conditional on the past two observations.

Our results suggest that the additional complexity of the second order dependencies contained

in our stimulus sequence were not captured by the brain, although we were not able to con-

vincingly show this for early CS computation. Nevertheless, the brain may resort to alternative,

more compressed representations [95].

The BMS analyses of the partitioned model space suggests that the brain’s processing of the

stimulus sequences is best described by a Bayesian learner with a static hidden state (akin to

the DC model) which estimates first-order transition probabilities (TP1). Within the DC-TP1

model family, we compared the surprise quantifications themselves as the readout functions

for the estimated statistics of the Bayesian learner: predictive surprise (PS), Bayesian surprise

(BS), and confidence-corrected surprise (CS). The results indicate that the first surprise effect

is represented by CS from around 70ms over contralateral somatosensory electrodes which

extends bilaterally and dissipates around 200ms. BS is found as a second, weaker centro-poste-

rior electrode cluster of surprise between 140-180ms. As proposed by Faraji et al. [35], CS is a

fast-computable measure of surprise in the sense that it may be computed before model updat-

ing occurs. In contrast, as BS describes the degree of belief updating, which requires the poste-

rior belief distribution, it is expected to be represented only during the update step or later. As

such, the temporal evolution of the observed CS and BS effects is in accordance with the

computational implications of these surprise measures. Specifically, our study provides sup-

port for the hypothesis that the representation of CS, as a measure of puzzlement surprise, pre-

cedes model updating and may serve to control update rates. While PS is also a fast-

computable puzzlement surprise measure and (similarly to CS) is scaled by the subjective

probability of an observation, CS additionally depends on the confidence of the learner, read

out as the (negative) entropy of the model. Evidence for a sensitivity to confidence of prior

knowledge in humans has been reported in a variety of tasks and modalities [96, 97, 98]. This

further speaks to the possibility that CS informs belief updating, as confidence has been sug-

gested to modulate belief updating for other modalities in the literature [99, 100] and is explic-

itly captured in terms of belief precision by other promising Bayesian models [101, 102, 103].

We suspect that, similarly, confidence concerns the influence of new observations on current

beliefs in somatosensation. However, as this was not explicitly modelled and investigated in
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the current work we were not able to test it directly. Furthermore, as the state transition proba-

bility between regimes was fixed in the current study, it is not well suited to address the effects

of the volatility of the environment on belief updating. Future work might focus on the inter-

play of environmental volatility and confidence in their effects on the integration of novel

observations. It is important to note that one may also be confident about novel sensory evi-

dence (e.g. due to low noise) which may result in larger model updates [104]. This aspect of

confidence, however, lies outside the scope of the current work.

Our source reconstruction analyses attributed the early CS effects to the bilateral S2 dipoles,

which is in accordance with the timing of S2 activation reported in the literature [69, 70, 71].

This finding suggests that the secondary somatosensory cortex may be involved in represent-

ing confidence about the internal model. The BS effect around 140ms was less pronounced in

source space only peaking at ~φ of 0.89 and was localized to S1. Despite the weak evidence for

this BS representation around a 140ms somatosensory MMR, its timing matches prior work

using modeling of Bayesian surprise signals in the somatosensory system [13]. Generally, our

findings are in accordance with previous accounts of perceptual learning in the somatosensory

system [105]. In sum, these results suggest that the secondary somatosensory cortex may repre-

sent confidence about the internal model and compute early surprise responses, potentially

controlling the rate of model updating. Signatures of such belief updating, were found around

the time of the N140 somatosensory response and were localized to S1. Together, these effects

might be interpreted as a possible interaction between S1 and S2 that could be responsible for

both a signaling of the inadequacy of the current beliefs and their subsequent updating.

In an attempt to relate the surprise readouts to the mismatch responses, we averaged sur-

prise regressors to obtain model-based predictions for the standard-deviant contrasts. First, all

TP1 models except HMM CS predict the existence of an MMR, i.e., a difference in the averaged

response between standard and deviant trials. Second, for multiple models an increase in train

length leads to reduced surprise to standards and increased surprise to deviants. The CS read-

out is scaled by PS and BS, as well as by belief commitment, which increases for standards and

decreases for deviants. This counteracting effect of belief commitment and the surprise terms

can lead to independence of CS and train length when responses are averaged, manifesting in

the current sequences only for standard trials. As the early MMR was found to be independent

of train length, this indicates a possibility for a potential relation between these results. The

intermediate MMR roughly temporally co-occurs with a simultaneous representation of BS

and CS in S1 and S2. The dependence of the mid-latency MMR on train-length for both stan-

dards and deviants and the encoding of belief inadequacy and updating quantities is suggestive

of convergent support in favor of a perceptual learning response which involves both somato-

sensory cortices. DC BS is however not the only model which predicts this dependence,

highlighting the reduced ability to distinguish between models by averaging trials. At the P300

MMR it was found that only the response to deviants is dependent on train length. The aver-

aged response of DC CS is most compatible with this ERP, however, this is unlikely to be mean-

ingful as the model was not found to fit the single-trial EEG data well around this time. It is

noteworthy that belief updating as described by DC BS, which is best describing the EEG data

around that time, does not accurately predict the ERP dynamics of the P300, which matches

the relative weakness of the BS effect in the single-trial EEG analysis. While a role of the P300

response in Bayesian updating has previously been reported [13, 40], the currently presented

P300 dynamics may better be captured by alternate accounts, such as a reflection of an updat-

ing process of the attention allocating mechanism as suggested by Kopp and Lange [106].

Our implementation of the Dirichlet-Categorical model incorporates a memory-decay

parameter τ that exponentially discounts observations in the past. The τ-values for the win-

ning models of our BMS analyses that best fit the data for the surprise effects of interest
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indicate relatively short integration windows for both CS and BS with stimulus half-lives of

approximately 95 and 26 observations, respectively. This suggests that, within our experimen-

tal setup, the brain uses local sequence information to infer upcoming observations rather

than global integration, for which all previous observations are considered. For a sub-optimal

inference model with a static hidden state representation, the incorporation of leaky observa-

tion integration on a more local scale can serve as an approximation to optimal inference

resorting to dynamic latent state representation and can thereby capture a belief about a

changing environment [94].

Given a very large timescale, BS converges to zero as the divergence between prior and pos-

terior distributions decreases over time, imposing an upper bound on the timescale. Mean-

while, for PS and CS it tends to lead to more accurate estimates of p(yt|st) as more observations

are considered. However, given the regime switches in our data generation process, a trade-off

exists where a timescale that is too large prevents flexible adaptation following such a switch.

In the current context, the timescales are local enough where the estimated statistics are able to

be adapted in response to regime switches (with a switch occurring every 100 stimuli on aver-

age). Especially CS shows a large range of τ-values producing similarly high model evidence

due to the high correlation between regressors. In sum, it is possible that the same timescale is

used for the computation of both the CS and BS signals, as the differences in optimal τ-values

between clusters were not found to be significant. This interpretation is most intuitively com-

patible with the hypothesis that the early surprise signals may control later belief updating sig-

nals. Although the uncertainty regarding the exact half-lives is in line with the large variability

found in the literature, local over global integration is consistently reported [9, 13, 39, 48, 94,

95]. Given a fixed inter-stimulus interval of 750ms, a horizon of 95 and 26 observations may

be equated to a half-life timescale of approximately 71 to 20 seconds, with regime switches

expected to occur every 75 seconds.

Some considerations of the current study deserve mention. First, the behavioural task

required participants to make a decision about the identity of the stimulus so as to identify tar-

get (catch) trials. Thus, one may wonder to what extent the results contain conscious decision

making signals, rather than implicit, non-conscious learning activity. However, decision mak-

ing-related signals are described to occur relatively late in the trial [107, 108] and we assume to

largely avoid them here by focusing on early signals prior to 200ms. Secondly, a large model

space of both hierarchical as well as non-hierarchical Bayesian learners exists. As such, it is

possible that the brain resorts to some hierarchical representation different from the ones

tested here. We chose to use an HMM as it closely resembled the underlying data structure,

offers the optimal solution for a discrete state environment, and contributes to the field as it

has seen only limited application for probabilistic perceptual learning. Furthermore, some lim-

itations might concern the stepwise model comparison intended to yield interpretable results

by allowing inference on the generative model giving rise to surprise signatures. A reduction

of both data and model space is not a standard procedure in Bayesian model comparison and

we stress that we do not provide a methodological validation of this approach. Nevertheless,

we argue that this scheme capitalizes on the hierarchical structure of the model space, provide

model recoverability simulations, and present similar results using a standard factorial family

comparison to support that the main conclusions are not dependent on the exact model com-

parison approach. The analyses performed here include a large number of independent Bayes-

ian model comparisons (as is not uncommon in neuroimaging), yet no corrections are

applied. While the resulting exceedance probabilities are reported here only above a given

threshold, these model comparisons do not constitute statistical tests per se, as they do not pro-

vide a mapping from the data to binary outcomes. It follows that the analyses do not suffer

from a classical multiple testing problem, which can be addressed using the control of multiple
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testing error rates (e.g. the control of the family-wise error rate for fMRI inference based on

random field theory). Nevertheless, it would be valuable for methodological advances to con-

sider the possibility of randomly occurring high exceedance probabilities given a large number

of independent model comparisons. A multilevel scheme which adjusts priors over models,

rather than the current ubiquitous use of flat priors, may be developed as a satisfactory

approach [109, 110, 111]. As the current method is agnostic to the large number of model

comparisons we need to stress that we only report preliminary evidence.

In conclusion, we show that signals of early somatosensory processing can be accounted for

by (surprise) signatures of Bayesian perceptual learning. The system appears to capture a chang-

ing environment using a static latent state model that integrates evidence on a local, rather than

global, timescale and estimates transition probabilities of observations using first order depen-

dencies. In turn, we provide evidence that the estimated statistics are used to compute a variety

of surprise signatures in response to new observations, including both puzzlement surprise

scaled by confidence (CS) in secondary somatosensory cortex and weak indications for enlight-

enment surprise (i.e. model updating; BS) in primary somatosensory cortex.

Supporting information

S1 Appendix. Bayesian learner models. In this supplementary text we provide the derivations

for the presented equations of the compared Bayesian learner models.

(PDF)

S2 Appendix. A free-form variational inference algorithm for general linear models with

spherical error covariance matrix. In this supplementary text we present the algorithm used

to approximate log model evidence for subsequent Bayesian model comparison.

(PDF)

S1 Fig. Estimated emission probabilities and latent regime inference of the hidden Markov

model. (A) The average emission probabilities of the stimulus probability (SP), alternation

probability (AP), and transition probability (TP) hidden Markov model (HMM) for both

states (s) at the final timestep of each sequence. For TP2, a comparison is provided of the emis-

sion probabilities used for data generation and the average, normalized emission probabilities

estimated by the HMM. Error bars represent the standard error of the mean. (B) Correlating

the true regimes and filtering posterior over time confirms that AP and TP inference allow for

the tracking of the fast and slow-switching regimes, while SP inference does not capture the

necessary dependencies due to the regimes being balanced in terms of stimulus probabilities.

(TIF)

S2 Fig. Model-derived predictions for standard and deviant stimuli. Averaged surprise

readouts using either the (left) 25000 total sequences or (right) 200 sequences administered to

the participants elicited for standard and deviant stimuli following a certain amount of repeat-

ing stimuli (train length). The model-derived predictions are relatively well-preserved in the

smaller data-set. Only first-order transition probability models are plotted. Error bars indicate

standard deviations. The used stimulus half-lives of 95 and 26 are representative of the winning

models in the single-trial EEG analysis. DC: Dirichlet-Categorical model; HMM: Hidden Mar-

kov Model; PS: Predictive surprise; BS: Bayesian surprise; CS: Confidence-corrected surprise;

No F: model without forgetting (i.e. perfect integration); HL: stimulus half-life.

(TIF)

S3 Fig. Schematic of the hierarchical approach to family-wise Bayesian model selection.

First level (depicted in the top row): The 12 DC models and the 12 HMM models were
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grouped into their corresponding model class family and compared via BMS against each

other and an offset Null-Model. Second level (lower row, left rectangle): Within the DC model

class, the two transition probability models TP1 and TP2 were grouped into families and the

winner of the BMS was used for the comparison against the other two inference type models

(Stimulus Probability (SP) and Alternation Probability (AP)). Third Level (lower row, middle

rectangle): The surprise readouts of the DC TP1 model were subjected to BMS and the result-

ing exceedance probabilities are reported in the main results. Thresholding of the model class

families and inference types was again applied at successive levels leading to data reduction.

(TIF)

S4 Fig. Non-hierarchical family-wise Bayesian model selection. Exceedance probabilities (φ)

resulting from the RFX family model comparison by investigating the full model space in each

comparison. A) Family comparison of the first order transition probability (TP1), second

order transition probability (TP2), alternation probability (AP; no above-threshold results with

φ> 0.95) and stimulus probability (SP) models; thresholded at φ> 0.95. B) Unthresholded

family comparison of surprise models. Large discrete topographies show the electrode clusters

of predictive surprise (PS) in red, Bayesian surprise (BS) in green and confidence-corrected

surprise (CS) in blue. White asterisks indicate φ> 0.95. Small continuous topographies display

the converged variational expectation parameter (mβ).
(TIF)

S5 Fig. Model recovery study. A model recovery study was performed using simulated data.

Subplots (A-D) show the average exceedance probabilities (shading represents standard devia-

tions) of 100 random-effects Bayesian model selection analyses under different signal-to-noise

ratios. This was performed for (A) Null Model vs DC Model vs HMM families, (B) DC TP1 vs

TP2 families, (C) DC SP vs AP vs TP1 families, and (D) DC TP1 PS, BS, and CS models. Note-

worthy is that the instances of reduced differentiability for (B) and (C) occurred only when the

true, but unknown model was confidence-corrected surprise. (E) An estimate of the signal-to-

noise of the experimental single-trial EEG analyses by inspecting the ratio of the expected pos-

terior estimates of the model fitting procedure for β2 and λ−1.

(TIF)

S6 Fig. Expected posterior probabilities of hierarchical Bayesian model-selection. Expected

posterior probabilities (hri) resulting from family model comparisons. A) Dirichlet-Categori-

cal (DC) model, Hidden Markov Model (HMM) and Null model family comparison, thre-

sholded at hri> 0.75. B) Family comparison within the winning DC family, thresholded at hri
> 0.7: first and second order transition probability models (TP1, TP2). C) Family comparison

within the winning DC family, thresholded at hri> 0.7: first order transition probability

(TP1), alternation probability (AP) and stimulus probability (SP) models.

(TIF)

S7 Fig. Additional random effects family-wise comparisons. (A) Comparison of the model

families: Null model, Dirichlet-Categorical model (DC) with tau = 0 (i.e. no forgetting and no

penalization) and Hidden Markov Model (HMM). (B) Comparison of the model families: Null

model, DC without modelling the catch trials and HMM. (C) Comparison of the model fami-

lies: Null model, DC with and DC without modelling the catch trials. (D) Comparison of the

model families within the DC model: Stimulus probability model (SP), alternation probability

model (AP) and transition probability model family (TP) subsuming first and second order

TP models in one family. Exceedance probabilities (φ) are plotted for all comparisons.

(TIF)
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Abstract

The human brain is constantly subjected to a multimodal stream of probabilistic sen-

sory inputs. Electroencephalography (EEG) signatures, such as the mismatch negativ-

ity (MMN) and the P3, can give valuable insight into neuronal probabilistic inference.

Although reported for different modalities, mismatch responses have largely been

studied in isolation, with a strong focus on the auditory MMN. To investigate the

extent to which early and late mismatch responses across modalities represent com-

parable signatures of uni- and cross-modal probabilistic inference in the hierarchically

structured cortex, we recorded EEG from 32 participants undergoing a novel tri-

modal roving stimulus paradigm. The employed sequences consisted of high and low

intensity stimuli in the auditory, somatosensory and visual modalities and were gov-

erned by unimodal transition probabilities and cross-modal conditional dependencies.

We found modality specific signatures of MMN (�100–200 ms) in all three modali-

ties, which were source localized to the respective sensory cortices and shared right

lateralized prefrontal sources. Additionally, we identified a cross-modal signature of

mismatch processing in the P3a time range (�300–350 ms), for which a common net-

work with frontal dominance was found. Across modalities, the mismatch responses

showed highly comparable parametric effects of stimulus train length, which were

driven by standard and deviant response modulations in opposite directions. Strik-

ingly, P3a responses across modalities were increased for mispredicted stimuli with

low cross-modal conditional probability, suggesting sensitivity to multimodal (global)

predictive sequence properties. Finally, model comparisons indicated that the

observed single trial dynamics were best captured by Bayesian learning models track-

ing unimodal stimulus transitions as well as cross-modal conditional dependencies.
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1 | INTRODUCTION

Humans inhabit a highly structured environment governed by com-

plex regularities. The brain is subjected to such environmental regular-

ities by a multimodal stream of sensory inputs ultimately constructing

a perceptual representation of the world. The sensory system is

thought to capitalize on statistical regularities to efficiently guide

interaction with the world enabling anticipation and rapid detection of

sensory changes (Bregman, 1994; Dehaene et al., 2015;

Friston, 2005; Frost et al., 2015; Gregory, 1980; Winkler et al., 2009).

Neuronal responses to deviations from sensory regularities can

be valuable windows into the brain's processing of statistical proper-

ties of the environment and corresponding sensory predictions. The

presentation of rare deviant sounds within a sequence of repeating

standard sounds induces well known mismatch responses (MMRs)

that can be recorded with electroencephalography (EEG), such as the

mismatch negativity (MMN; Naatanen et al., 1978; Naatanen

et al., 2007) and the P3 (or P300; Polich, 2007; Squires et al., 1975;

Sutton et al., 1965). The MMN is defined as a negative EEG compo-

nent resulting from subtraction of standard from deviant trials

between �100 and 200 ms poststimulus. Although the MMN has pri-

marily been researched in the auditory modality, similar early mis-

match components have been reported for other sensory modalities,

including the visual (Kimura et al., 2011; Pazo-Alvarez et al., 2003;

Stefanics et al., 2014) and, to a lesser extent, the somatosensory

modality (Andersen & Lundqvist, 2019; Hu et al., 2013; Kekoni

et al., 1997). The P3 is a later positive going component in response

to novelty between 200 and 600 ms around central electrodes, which

has been described for the auditory, somatosensory, and visual modal-

ities and is known for its modality independent characteristics (Escera

et al., 2000; Friedman et al., 2001; Knight & Scabini, 1998;

Polich, 2007; Schroger, 1996).

Despite being one of the most well-studied EEG components, the

neuronal generation of the MMN remains subject of ongoing debate

(Garrido, Kilner, Stephan, & Friston, 2009; May & Tiitinen, 2010;

Naatanen et al., 2005). Two prominent but opposing accounts cast

the MMN as adaptation-based or memory-based, respectively.

Adaptation-based accounts argue that the observed differences

between standard and deviant responses primarily result from neuro-

nal attenuation leading to stimulus specific adaptation (SSA;

Jaaskelainen et al., 2004; May et al., 1999). In animals, SSA has been

shown to result in response patterns similar to the MMN (Ulanovsky

et al., 2003; Ulanovsky et al., 2004) and simulation work suggests that

different types of MMN-like responses can be reproduced by pure

adaptation models (May & Tiitinen, 2010). However, it remains

unclear if the full range of MMN characteristics can be explained by

adaptation alone (Fitzgerald & Todd, 2020; Garrido, Kilner, Stephan, &

Friston, 2009; Wacongne et al., 2012). The memory-based view, on

the other hand, suggests that the MMN is a marker of change detec-

tion based on sensory memory trace formation (Näätänen, 1990;

Naatanen et al., 2005; Naatanen & Näätänen, 1992). The memory

trace stores local information on stimulus regularity and compares it

to incoming sensory inputs that may signal changes in the current sen-

sory stream.

While largely neglected by previous interpretations of the MMN,

it is becoming increasingly clear that key empirical features of MMRs

concern stimulus predictability rather than stimulus change per

se. The MMN has been reported in response to abstract rule viola-

tions (Paavilainen, 2013), unexpected stimulus repetitions (Alain

et al., 1994; Horvath & Winkler, 2004; Macdonald & Campbell, 2011)

and unexpected stimulus omissions (Heilbron & Chait, 2018; Hughes

et al., 2001; Salisbury, 2012; Wacongne et al., 2011; Yabe

et al., 1997). Similar characteristics have been reported for P3 MMRs

(Duncan et al., 2009; Prete et al., 2022) and both MMN and P3

responses have been shown to increase for unexpected compared to

expected deviants (Schroger et al., 2015; Sussman, 2005; Sussman

et al., 1998). Insights concerning the predictive nature of MMRs have

led to further development of the memory-based account of MMN

generation into the model-adjustment hypothesis (Winkler, 2007).

This view assumes a perceptual model that is informed by previous

stimulus exposure and continually predicts incoming sensory inputs.

The model is updated whenever inputs diverge from current predic-

tions, and the MMN is hypothesized to constitute a marker of such

divergence.

The model-adjustment hypothesis is in line with the increasingly

influential view that the brain is engaging in perceptual inference to

anticipate future sensory inputs (Friston, 2005; Gregory, 1980; Von

Helmholtz, 1867). Related theories regard the brain as an inference

engine and come with neuronal implementation schemes that accom-

plish probabilistic (Bayesian) inference in a neurologically plausible

manner (Bastos et al., 2012; Friston, 2005, 2010). Process theories

such as predictive coding assume that the brain maintains a generative

model of its environment which is continuously updated by comparing

incoming sensory information with model predictions on different

levels of hierarchical cortical organization (Friston, 2005, 2010; Rao &

Ballard, 1999; Winkler & Czigler, 2012). Differential influences of SSA

and change detection on the MMN are proposed to result from the

same underlying process of prediction error minimization, mediated

by different post-synaptic changes to (predicted) sensory inputs

(Auksztulewicz & Friston, 2016; Garrido et al., 2008; Garrido, Kilner,

Kiebel, & Friston, 2009). As such, the theory has the potential to unify

previously opposing theories of MMN generation (Garrido

et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009; Garrido, Kilner,

Stephan, & Friston, 2009) while accounting for its key empirical fea-

tures (Heilbron & Chait, 2018; Wacongne et al., 2012).

With regard to the proposed universal nature of predictive

accounts of brain function, reports of comparable MMRs across dif-

ferent modalities are of particular interest. So far, mismatch signals

have been primarily studied in isolation, with a strong focus on the

auditory system. However, key properties of the auditory MMN, such

as omission responses and modulations by predictability, have also

been reported for the visual (Czigler et al., 2006; Kok et al., 2014) and

the somatosensory MMN (Andersen & Lundqvist, 2019; Naeije

et al., 2018), and modeling studies in all three modalities suggest that

2 GRUNDEI ET AL.
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MMRs may reflect signatures of Bayesian learning (BL; Gijsen

et al., 2021; Lieder et al., 2013; Maheu et al., 2019; Ostwald

et al., 2012; Stefanics et al., 2018). While studies directly investigating

mismatch signals in response to multimodal sensory inputs are rare,

previous research indicates a ubiquitous role for cross-modal probabi-

listic learning. The brain tends to automatically integrate auditory,

somatosensory, and visual stimuli during sequence processing

(Bresciani et al., 2006, 2008; Frost et al., 2015) and cross-modal per-

ceptual associations can influence statistical learning of sequence reg-

ularities (Andric et al., 2017; Parmentier et al., 2011), modulate MMRs

(Besle et al., 2005; Butler et al., 2012; Friedel et al., 2020; Kiat, 2018;

Zhao et al., 2015) and influence subsequent unimodal processing in

various ways (Shams et al., 2011). Recent advances in modeling

Bayesian causal inference suggest that the main computational stages

of multimodal inference evolve along a multisensory hierarchy involv-

ing early sensory segregation followed by mid-latency sensory fusion

and late Bayesian causal inference (Cao et al., 2019; Rohe et al., 2019;

Rohe & Noppeney, 2015). However, the extent to which the MMN

and P3 reflect these stages and should be considered sensory specific

signatures of regularity violation or the result of modality independent

computations in an underlying predictive network is not fully

understood.

The current study aimed to investigate the commonalities and dif-

ferences between MMRs in different modalities in a single experiment

and to elucidate in how far they reflect local, unimodal or global,

cross-modal computations. To this end, we employed a roving stimu-

lus paradigm, in which auditory, somatosensory, and visual stimuli

were simultaneously presented in a probabilistic tri-modal stimulus

stream.

Typically, MMRs are studied with the oddball paradigm, in which

rarely presented “oddball” stimuli deviate from frequently presented

standard stimuli in some physical feature, such as sound pitch or

stimulus intensity. The roving stimulus paradigm, on the other hand,

defines deviants and standards in terms of their local sequence posi-

tion, while the frequency of occurrence of their stimulus features

across the sequence is equal (Baldeweg et al., 2004; Cowan

et al., 1993). The deviant is defined as the first stimulus that breaks a

train of repeating (standard) stimuli. With repetition, the deviant sub-

sequently becomes the new standard, defining a train of stimulus

repetitions. Thus, the roving stimulus paradigm is an excellent tool to

experimentally induce MMRs, while controlling for differences in

physical stimulus features.

Based on a probabilistic model, we generated sequences of high

and low intensity stimuli that were governed by unimodal transition

probabilities as well as cross-modal conditional dependencies. This

allowed us to test to what extent early and late MMRs are sensitive

to local and global violations of statistical regularities and to draw con-

clusions regarding their potential role in cross-modal hierarchical

inference. Specifically, we extracted the MMN and P3 MMRs for each

modality and investigated their modality specific and modality general

response properties regarding stimulus repetition and change, as well

as their sensitivity to cross-modal predictive information. Further, we

used source localization to investigate modality specific and modality

general neuronal generators of MMRs. Finally, we complemented our

average-based analyses with single-trial modeling to investigate if sig-

natures of unimodal and cross-modal Bayesian inference can account

for trial-to-trial fluctuations in the MMN and P3 amplitudes.

2 | MATERIALS AND METHODS

Participants underwent a novel multimodal version of the roving stim-

ulus paradigm. Our paradigm, depicted in Figure 1, consisted of simul-

taneously presented auditory (A), somatosensory (S), and visual

(V) stimuli, which each alternated between two different intensity

levels (“low” and “high”). The tri-modal stimulus sequences originated

from a single probabilistic model (described in Section 2.3), resulting

in different combinations of low and high stimuli across the three

modalities in each trial.

2.1 | Participants

Thirty-four healthy volunteers (19–43 years old, mean age:

26, 22 females, all right-handed), recruited from the student body of

the Freie Universität Berlin and the general public, participated for

monetary compensation or an equivalent in course credit. The study

was approved by the local ethics committee of the Freie Universität

Berlin and written informed consent was obtained from all partici-

pants prior to the experiment.

2.2 | Experimental setup

Each trial consisted of three bilateral stimuli (A, S, and V) that were

presented simultaneously by triggering three instantaneous outputs

of a data acquisition card (National Instruments Corporation, Austin,

Texas, USA) every 1150 ms (inter-stimulus interval).

Auditory stimuli were presented via in-ear headphones (JBL, Los

Angeles, California, USA) to both ears and consisted of sinusoidal

waves of 500 Hz and 100 ms duration that were modulated by two

different amplitudes. The amplitudes were individually adjusted with

the participants to obtain two clearly distinguishable intensities (mean

of the low intensity stimulus: 81:43�1:22dB; mean of the high inten-

sity stimulus: 93:02�0:98dB).

Somatosensory stimuli were administered with two DS5 isolated

bipolar constant current stimulators (Digitimer Limited, Welwyn Gar-

den City, Hertfordshire, UK) via adhesive electrodes (GVB-geliMED

GmbH, Bad Segeberg, Germany) attached to the wrists of both arms.

The stimuli consisted of electrical rectangular pulses of 0.2 ms dura-

tion. To account for interpersonal differences in sensory thresholds,

the two intensity levels used in the experiment were determined on

an individual basis. The low intensity level (mean: 3:97�0:84mA) was

set in proximity to the detection threshold yet high enough to be

clearly perceivable (and judged to be the same intensity on both

sides). The high intensity level (mean: 6:47�1:33mA) was determined

GRUNDEI ET AL. 3
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for each participant to be easily distinguishable from the low intensity

level yet remaining non-painful and below the motor threshold.

Visual stimuli were presented via light emitting diodes (LEDs) and

transmitted through optical fiber cables mounted vertically centered

to both sides of a monitor. The visual flashes consisted of rectangular

waves of 100 ms duration that were modulated by two different

amplitudes (low intensity stimulus: 2:65V; high intensity stimulus:

10V) that were determined to be clearly perceivable and distinguish-

able prior to the experiment. Participants were seated at a distance of

about 60 cm to the screen such that the LED's were placed within the

visual field at a visual angle of about 67�.

In each of six experimental runs of 11.5 min, a sequence of

600 stimulus combinations was presented. To ensure that participants

maintained attention throughout the experiment and to encourage

monitoring of all three stimulation modalities, participants were

instructed to respond to occasional catch trials (target questions) via

foot pedals. In six trials randomly placed within each run the fixation

cross changed to one of the letters A, T, or V followed by a question

mark. This prompted participants to report if the most recent stimulus

(directly before appearance of the letter) in the auditory (letter A),

somatosensory (letter T for “tactile”), or visual (letter V) modality was

presented with low or high intensity. The right foot was used to press

either a left or a right pedal, and the pedal assignment (left = low/

right = high or left = high/right = low) was counterbalanced across

participants.

It should be noted that our MMR paradigm in form of an attended

roving stimulus sequence with relatively long ISI (1.15 s) differs from

the classic oddball protocol for MMN elicitation in which participants

are engaged in a primary task, often attending a separate modality.

Since this is not easily possible with our paradigm (containing audi-

tory, somatosensory, and visual stimuli), we used catch-trials in each

modality to ensure that attentional resources were distributed largely

equally across the simultaneous stimulus streams. The ISI at the upper

end of the range used for MMN elicitation was set during piloting

such that the perceptually demanding tri-modal bilateral stimulation

was deemed not to be overwhelming in terms of sensory overload.

2.3 | Probabilistic sequence generation

Each of the three sensory modalities (A, S, V) were presented as

binary (low/high) stimulus sequences originating from a common

probabilistic model. The model consists of a state s at time t

evolving according to a Markov chain p stjst�1ð Þð Þ with each state

deterministically emitting a combination of three binary observations

conditional on the preceding observation combination

p oA,t,oS,t,oV,tjoA,t�1,oS,t�1,oV,t�1ð Þð Þ. For example, a transition

expressed as [100j000] indicates a unimodal auditory change

oA,t ¼1,oA,t�1 ¼0ð Þ with repeating somatosensory and visual modali-

ties oS,t ¼ oS,t�1 ¼0ð and oV,t ¼ oV,t�1 ¼0Þ. For each stimulus modality,

in each state, the other two modalities form either congruent observa-

tions ([00] and [11]), or incongruent observations ([01] and [10]),

which was used to manipulate the predictability of transitions in the

sequences in different runs of the experiment.

Three types of stimulus sequences, depicted in Figure 2 were

generated with different probability settings. The settings determine

the transition probabilities within each modality given the arrange-

ment of the other two modalities (i.e., either congruent or

F IGURE 1 Experimental paradigm. Participants were seated in front of a screen and received sequences of simultaneously presented bilateral
auditory beep stimuli (green), somatosensory electrical pulse stimuli (purple) and visual flash stimuli (orange) each at either low or high intensity.
On consecutive trials, stimuli within each modality either repeated the previous stimulus intensity of that modality (standard) or alternated to the
other intensity (deviant). This created tri-modal roving stimulus sequences, where the repetition/alternation probability in each modality was
determined by a single probabilistic model (see Section 2.3). In 1% of trials (catch trials) the fixation cross changed to one of the three letters A, T,
or V, interrupting the stimulus sequence. The letter prompted participants to indicate whether the last auditory (letter A), somatosensory (letter T
for “tactile”) or visual (letter V) stimulus, respectively, was of high or low intensity. Responses were given with a left or right foot pedal press
using the right foot.
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incongruent). One setting defines lower change probability if the

other two modalities are congruent (e.g., for any change in modality A

from t�1 to t, S and V were congruent with p 100j000ð Þ¼
p 000j100ð Þ¼ p 111j011ð Þ¼ p 011j111ð Þ¼0:025 and S and V were

incongruent with p 101j001ð Þ¼ p 001j101ð Þ¼ p 110j010ð Þ¼ p 010jð
110Þ¼0:15). The second setting defines lower change probability if

the other two modalities are incongruent (e.g., for any change in

modality A from t�1 to t, S and V were incongruent with

p 101j001ð Þ¼ p 001j101ð Þ¼ p 110j010ð Þ¼ p 010j110ð Þ¼0:025 and S

and V were congruent with p 100j000ð Þ¼ p 000j100ð Þ¼ p 111ð
j011Þ¼ p 011j111ð Þ¼0:15). The third setting defines equal change

probability if the other two modalities are congruent or incongruent

(e.g., for any change in modality A from t�1 to t, S and V were con-

gruent with p 100j000ð Þ¼ p 000j100ð Þ¼ p 111j011ð Þ ¼ p 011j111ð Þ¼
0:0875 and S and V were incongruent with

p 101j001ð Þ¼ p 001j101ð Þ¼ p 110j010ð Þ¼ p 010jð 110Þ¼0:0875).

In each of six experimental runs, the stimulus sequence was

defined by one of the three different probability settings. Each

F IGURE 2 Probabilistic sequence generation. (a) Schematic of state transition matrix (left). Light color shading depicts transitions in the
respective modality which were assigned specific transition probabilities: Green = auditory change, purple = somatosensory change,
orange = visual change, gray diagonal = tri-modal repetition, white = multimodal change (set to zero). States 0–7 correspond to a specific
stimulus combination (right), that is, eight permutations of low (0) and high (1) stimuli across three modalities (A = auditory; S = somatosensory;
V = visual) as described in the main text. (b) Visualization of states (s) evolving according to a Markov chain emitting tri-modal binary outcomes.
(c) Probability settings of stimulus sequences. Left column: Sequences. Right column: Averaged empirical change probabilities across all
sequences. Top: Transition probabilities determine that for each modality a change is unlikely (p = .025) if the other two modalities are congruent
(and likely if they are incongruent; p = .15). Middle: Transition probabilities determine that for each modality a change is likely (p = .15) if the

other two modalities are congruent (and unlikely if they are incongruent; p = .025). Bottom: Transition probabilities determine that for each
modality a change is equally likely (p = .0875) if the other two modalities are congruent or incongruent. (d) Averaged empirical change
probabilities for predictability conditions.
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probability setting was used twice during the experiment and the

order of the six different sequences was randomized. Participants

were unaware of the sequence probabilities and any learning of

sequence probabilities was considered to be implicit and task

irrelevant.

Following the nomenclature suggested by Arnal and Giraud

(2012), the resulting stimulus transitions for each modality within the

different sequences can be defined as being either predicted (here

higher change probability conditional on congruency/incongruency),

mispredicted (here lower change probability conditional on congru-

ency/incongruency) or unpredictable (here equal change probability).

For each modality, repetitions are more likely p¼ :825ð Þ than changes

p¼ :175ð Þ regardless of the type of probability setting and stimulus,

resulting in classic roving standard sequences for each modality (mean

stimulus train length: 5, mean range of train length: 2–34 stimuli).

2.4 | EEG data collection and preprocessing

Data were collected using a 64-channel active electrode EEG system

(ActiveTwo, BioSemi, Amsterdam, Netherlands) at a sampling rate of

2048 Hz, with head electrodes placed in accordance with the extended

10–20 system. Individual electrode positions were recorded using an

electrode positioning system (zebris Medical GmbH, Isny, Germany).

Preprocessing of the EEG data was performed using SPM12

(Wellcome Trust Centre for Neuroimaging, Institute for Neurology,

University College London, London, UK) and in-house MATLAB

scripts (MathWorks, Natick, MA). First, the data were referenced

against the average reference, high-pass filtered (0.01 Hz), and down-

sampled to 512 Hz. Subsequently, eye-blinks were corrected using a

topographical confound approach (Berg & Scherg, 1994; Ille

et al., 2002). The Data were epoched using a peri-stimulus time inter-

val of �100 to 1050 ms and all trials were visually inspected and arti-

factual data removed. Likewise, catch trials were omitted for all

further analyses. Furthermore, the EEG data of two consecutive par-

ticipants were found to contain excessive noise due to hardware

issues, resulting in their exclusion from further analyses and leaving

data of 32 participants. Finally, a low-pass filter was applied (45 Hz)

and the preprocessed EEG data were baseline corrected with respect

to the pre-stimulus interval of �100 to �5 ms. To use the general lin-

ear model (GLM) implementation of SPM, the electrode data of each

participant were linearly interpolated into a 32 � 32 grid for each time

point, resulting in one three-dimensional image (with dimensions

32 � 32 � 590) per trial. These images were then spatially smoothed

with a 12 � 12mm full-width half-maximum Gaussian kernel to meet

the requirements of random field theory, which the SPM software

uses to control the family wise error rate.

2.5 | Event-related responses and statistical
analysis

First, to extract basic MMR signals of each modality from the EEG

data, we contrasted standard and deviant trials of each modality with

paired t-tests corrected for multiple comparisons by using cluster-

based permutation tests implemented in fieldtrip (Maris &

Oostenveld, 2007). Two time windows of interest were defined based

on the literature (Duncan et al., 2009) to search for earlier negative

clusters between 50 and 300 ms, corresponding to the MMN, and

later positive clusters between 200 and 600 ms, corresponding to the

P3. Clusters were defined as adjacent electrodes with a cluster defin-

ing threshold of pfwe < :05.

For further analyses, GLMs were set up as implemented in

SPM12, which allows defining conditions on the single trial level. To

test for effects of stimulus repetitions on standards, deviants, and

MMRs (deviants minus standards), a TrainLength model was defined

that consisted of 45 regressors: an intercept regressor, 36 regressors

coding for the repetition train length (trials binned into 1, 2, 3, 4–5, 6–

8, >8 repetitions) for standards (i.e., the position of the standard in the

current train) and deviants (i.e., the number of standards preceding

the deviant) in each modality, as well as four global standard and four

global deviant regressors. The binning was chosen such that trials

were roughly balanced across the bins, corresponding to, on average,

around 100 deviant trials and around 500 standard trials in each cate-

gory for each modality The global regressors captured the train length

(1, 2, 3, >3 repetitions) of standards and deviants regardless of their

modality, meaning that trials in which standards occurred in all three

modalities were coded as global standards, whereas trials in which a

deviant occurred in any of the three modalities were coded as global

deviants.

To test for the implicit effect of cross-modal predictability based

on the different conditional probability setting in the sequence, a Pre-

dictability model was defined that consisted of 37 regressors: an inter-

cept regressor and 18 regressors coding standards and deviants of

each modality for each of the three conditions described above:

unpredictable (trials originate from sequences with no conditional

dependence between modalities), predicted (trials originate from

sequences with conditional dependence; trials defined by change

being likely), mispredicted (trials originate from sequences with condi-

tional dependence; trials defined by change being unlikely). On the

single-participant level, these were coded for congruent and incongru-

ent trials separately resulting in 36 regressors. By definition, the num-

ber of trials in regressors with mispredicted trials was lowest, on

average corresponding to around 60 deviant trials and 800 standard

trials per modality.

Finally, a P3-Conjunction model was specified that consisted of

seven regressors: an intercept regressor and six regressors coding all

standards and deviants for each of the three modalities. This model

was used to apply SPM's second level conjunction analysis, contrast-

ing standards and deviants across modalities in search of common P3

effects across modalities.

Each GLM was estimated on the single-trial data of each partici-

pant using restricted maximum likelihood estimation. This yielded

β-parameter estimates for each model regressor over (scalp-) space

and time, which were subsequently analyzed at the group level. Sec-

ond level analyses consisted of a mass-univariate multiple regression

analysis of the individual β scalp-time images with a design matrix

specifying regressors for each condition of interest as well as a subject
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factor. Second level beta estimates were contrasted for statistical

inference and multiple comparison correction was achieved with

SPM's random field theory-based FWE correction (Kilner et al., 2005).

2.6 | Source localization

To investigate the most likely underlying neuronal sources for the

MMN and P3 MMR we applied distributed source reconstruction as

implemented in SPM12 to the ERP data. For each participant, the

MMN of each modality (auditory, somatosensory, visual) was source

localized within a time window of 100–200 ms. For the P3, the aver-

age MMR at 330 ms was chosen for source localization as this time

point showed the strongest overlap of P3 responses between modali-

ties (based on the results of the P3 conjunction contrast).

Participant-specific forward models were created using an

8196-vertex template cortical mesh co-registered with the individual

electrode positions via fiducial markers. An EEG head model based on

the boundary element method was used to construct the forward

model's lead field. For the participant-specific source estimates, multi-

ple sparse priors under group constraints were applied. The source

estimates were subsequently analyzed at the group level using the

GLM implemented in SPM12. Second-level contrasts consisted of

one-sample t tests for each modality as well as (global) conjunction

contrasts across modalities. The resulting statistical parametric maps

were thresholded at the peak level with p < .05 after FWE correction.

The anatomical correspondence of the MNI coordinates of the cluster

peaks were identified via cytoarchitectonic references using the SPM

Anatomy toolbox (Eickhoff et al., 2005).

2.7 | Single-trial modeling of EEG data

In addition to the analysis of event-related potentials, the study aimed

to compare different computational strategies of sequence processing

potentially underlying neuronal generation of MMRs. To this end, we

generated regressors from different BL models as well as a train

length dependent change detection (TLCD) model making different

predictions for the single-trial EEG data.

Theories on MMN generation hypothesize adaptation and

memory-trace dependent change detection to contribute to the

MMN. With prior repetition of stimuli, the response to standard stim-

uli tends to decrease while the response to deviant stimuli tends to

increase. We defined the TLCD model to reflect such reciprocal

dynamics of responses to stimulus repetition and change without

invoking assumptions of probabilistic inference. The model is defined

for each modality separately and tracks the stimulus train lengths c for

a given modality by counting stimulus repetitions: ct ¼ dt ct�1þdtð ),

where dt ¼1ot¼ot�1 takes on the value 1 whenever the current obser-

vation ot is a repetition of the previous observation ot�1 and dt ¼0

resets the current train length to zero. To form single-trial predictors

of the EEG data, the model outputs values that increase linearly with

train length and have opposite signs for standards and deviants:

TLCD otð Þ¼ �ct ifdt ¼1

ct�1 ifdt ¼0

�

In addition to the TLCD model, different BL models were created

to contrast the static train length based TLCD model with dynamic

generative models tracking transition probabilities. The BL models

consist of conjugate Dirichlet-Categorical models estimating probabili-

ties of observations read out by three different surprise functions:

Bayesian surprise (BS), predictive surprise (PS), and confidence-

corrected surprise (CS).

BS quantifies the degree to which an observer adapts their gener-

ative model to incorporate new observations (Baldi & Itti, 2010; Itti &

Baldi, 2009) and is defined as the Kullback–Leibler (KL) divergence

between the belief distribution prior and posterior to the update:

BS ytð Þ¼KL p st�1jyt�1,…,y1ð Þ
���p stjyt,…,y1ð Þ

� �
. PS is based on

(Shannon, 1948) definition of information and defined as the negative

logarithm of the posterior predictive distribution, assigning high sur-

prise to observed events yt with low estimated probability of occur-

rence: PS ytð Þ¼�lnp ytjstð Þ¼�ln p ytjyt�1,…,y1ð Þ. CS additionally

considers the commitment of the generative model and scales with

the negative entropy of the prior distribution (Faraji et al., 2018). It is

defined as the KL divergence between the (informed) prior distribu-

tion at the current time step and a flat prior distribution bp stð Þ updated
with the most recent event yt: CS ytð Þ¼KL p stð Þjbp stjytð Þð Þ.

Following Faraji et al. (2018) surprise quantifications can be

categorized as puzzlement or enlightenment surprise. While puzzle-

ment refers to the mismatch between sensory input and internal

model belief, closely related to the concept of prediction error,

enlightenment refers to the update of beliefs to incorporate new

sensory input. In the current study, we were interested in a quanti-

fication of the model inadequacy by means of an unsigned predic-

tion error as reflected by surprise. As such, throughout the

manuscript, with prediction error we do not refer to the specific

term of (signed) reward prediction error as used for example in

reinforcement learning but rather use it to refer to the signaling of

prediction mismatch. While both PS and CS are instances of puz-

zlement surprise, CS is additionally scaled by belief commitment

and quantifies the concept that a low-probability event is more sur-

prising if commitment to the belief (of this estimate) is high. BS, on

the other hand, is an instance of enlightenment surprise and is con-

sidered a measure of the update to the generative model resulting

from new incoming observations.

A detailed description of the Bayesian observer, its transition

probability version as well as the surprise read-out functions can be

found in our previous work on somatosensory MMRs (Gijsen

et al., 2021). Here, we will primarily provide a brief description of the

specifics of two implementations of Dirichlet-Categorical observer

models, a unimodal and a cross-modal model. Both observer models

receive stimulus sequences (of one respective modality) as input and

iteratively update a set of parameters with each new incoming obser-

vation. In each iteration, the estimated parameters are read out by the

surprise functions (BS, PS, and CS) to produce an output which is sub-

sequently used as a predictor for the EEG data.

GRUNDEI ET AL. 7
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For each modality, the unimodal Dirichlet-Categorical model con-

siders a binary sequence with two possible stimulus identities (low

and high) estimating transition probabilities with yt ¼ ot for t¼1,…,T

with a set of hidden parameters s ið Þ for each possible transition from

ot�1 ¼ i. This unimodal model does not capture any cross-modal

dependencies in the sequence (i.e., the alternation and repetition

probabilities conditional on the tri-modal stimulus configuration).

Therefore, we defined a cross-modal Dirichlet-Categorical model to

address the question whether the conditional dependencies were

used by the brain during sequence processing for prediction of stimu-

lus change. The dependencies in the sequence were independent of

stimulus identity but provide information about the probability of rep-

etition or alternation dtð ) conditional on the congruency of the other

modalities. The cross-modal model thus estimates alternation proba-

bilities yt ¼ dtð for t¼2,…,TÞ with a set of hidden parameters s ið Þ when

other modalities are incongruent and s cð Þ when other modalities are

congruent. Therefore, while the unimodal model learns the probability

of stimulus transitions within modality, the cross-modal model learns

the probability of stimulus alternations within modality conditional on

the congruency of the other modalities. As such, the cross-modal

model provides a minimal implementation of a Bayesian observer that

captures the cross-modal dependencies in the sequences.

2.7.1 | Model fitting procedure

The technical details of the model fitting and subsequent Bayesian

model selection (BMS) procedures are identical to Gijsen et al. (2021)

where the interested reader is kindly referred to for further informa-

tion. First, the stimulus sequence-specific regressor of each model

was obtained for each participant. After z-score normalization, the

regressors were fitted to the single-trial, event-related electrode data

using a free-form variational inference algorithm for multiple linear

regression (Flandin & Penny, 2007; Penny et al., 2003; Penny

et al., 2005). The obtained model-evidence maps were subsequently

subjected to the BMS procedure implemented in SPM12 (Stephan

et al., 2009) to draw inferences across participants with well-

established handling of the accuracy-complexity trade-off

(Woolrich, 2012).

In total, eight regression models were fit: A null model (offset

only), a TLCD regression model and, for each of the three surprise

read-out functions, one regression model including only the unimodal

regressors and one additionally including the cross-modal regressors.

The purely unimodal regression model will be called UM and the

regression model including unimodal and, additionally, cross-modal

regressors will be called UCM. The design matrix of the TLCD regres-

sion model consisted of four regressors, an offset and the predicted

parametric change responses for each of the three modality

sequences (auditory, somatosensory, visual). Similarly, the design

matrix of the UM regression model consisted of four regressors, an

offset and the surprise responses of the unimodal model for each of

the three modalities. The UCM regression model was identical to the

UM regression model but with an additional three regressors

containing the cross-modal surprise responses for each modality.

Therefore, the UCM regression model is more complex and gets

assigned higher model evidence than the reduced UM regression

model only if the additional regressors contribute significantly to a

better model fit (Stephan et al., 2009).

To allow for the possibility of different timescales of stimulus

integration (Maheu et al., 2019; Ossmy et al., 2013; Runyan

et al., 2017), the integration parameter τ of the Dirichlet-Categorical

model was optimised for each model, participant and peri-stimulus

time-bin before model selection. To this end, model regressors were

fit for a range of 11 tau parameter configurations ([0, 0.001, 0.0015,

0.002, 0.003, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2]) corresponding to inte-

gration windows with a 0.5 stimulus weighting at (half-life of) [600,

462, 346, 231, 138, 69, 34, 13, 6, 3] stimuli, of which the parameter

with the best model evidence was chosen.

2.7.2 | Bayesian model comparison

The estimated model-evidence maps were used to evaluate the

models' relative performance across participants via family-wise BMS

(Penny et al., 2010). The model space was partitioned into three types

of families to draw inference on different aspects of the involved

models. Given that the literature provides some evidence for each of

the three surprise read-out functions (BS, PS, CS) to capture some

aspect of EEG MMRs, we included all of them in the family wise com-

parisons to avoid biasing the comparison of different BL models.

The first model comparison considered the full space of BL

models as a single family (BL family) and compared it to the TLCD

model (TLCD family) and the null model (NULL family). Since the BL

models had their tau parameter optimized, which was not possible for

the TLCD model, we applied the same penalization method used in

our previous study (Gijsen et al., 2021). The degree to which the opti-

mization on average inflated model evidence was subtracted from the

BL models prior to BMS. Specifically, for all parameter values, the dif-

ference between the average model evidence and that of the opti-

mized parameter was computed and averaged across poststimulus

time bins, electrodes and participants.

Subsequent analyses grouped the different BL models into sepa-

rate families: The second comparison grouped the BL models into two

families of UM and UCM models, as well as the null model, to test

which electrodes and time points showed influences of unimodal ver-

sus cross-modal processing. The third comparison grouped the BL

models into three surprise families and the null model, to test whether

the observed MMRs were best captured by PS, BS, or CS.

3 | RESULTS

3.1 | Behavioral results

Participants showed consistent performance in responding to the

catch trials during each experimental run, indicating their ability to

8 GRUNDEI ET AL.
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globally maintain their attention to the tri-modal stimulus stream. Of

the 85.5% responses made in time, 75.3% were correct with an aver-

age reaction time of 1:4�0:25s.

3.2 | Event-related potentials

3.2.1 | Unimodal MMRs

Cluster-based permutation tests confirmed the presence of early

modality specific MMN components as well as later P3 MMRs for all

three modalities. Both early and late MMRs showed a modulation by

the number of stimulus repetitions, the details of which will be

described in the following sections.

3.2.2 | Auditory MMRs

The MMN, as the classic MMR, has originally been studied in the audi-

tory modality and is commonly described as the ERP difference wave

calculated by subtraction of standard trials from deviant trials (devi-

ants-standards). This difference wave typically shows a negative

deflection at fronto-central electrodes and corresponding positivity at

temporo-parietal sites, ranging from around 100 to 250 ms (Naatanen

et al., 1978; Naatanen et al., 2007). Correspondingly, we find a signifi-

cant negative fronto-central auditory MMN cluster between 80 and

200 ms (Figure 3a). Within the MMN cluster, deviants appear to

deflect from the standard ERP around the peak of the auditory N1

component and reach their maximum difference around the peak of

the subsequent P2 component. In the later time window, we observe

positive MMRs at central electrodes between 200 and 400 ms, corre-

sponding to a P3 modulation, as well as beyond 400 ms at progres-

sively more posterior electrodes.

Within early and late auditory MMR clusters, the response to

both standards and deviants was modulated by the number of stan-

dard repetitions. The auditory system is known to be sensitive to

stimulus repetitions, particularly within the roving standard paradigm

(Baldeweg et al., 2004; Cowan et al., 1993; Ulanovsky et al., 2003;

Ulanovsky et al., 2004). Therefore, we hypothesized a gradual

increase of the auditory response to standard stimuli around the time

of the MMN, known as repetition positivity (Baldeweg, 2006;

Baldeweg et al., 2004; Haenschel et al., 2005) as well as reciprocal

negative modulation of the corresponding deviant response (Bendixen

et al., 2007; Naatanen et al., 2007). Together, these effects should

result in a gradual increase of the MMN amplitude with stimulus repe-

tition. Indeed, linear contrasts applied to the GLM beta parameter

estimates of the TrainLength model revealed that the MMN increases

with the repetition of standards before a deviant was presented (94–

200 ms, cluster pfwe < :001). This effect was driven by a negative linear

modulation of the deviant response (98–200ms, cluster pfwe < :001) as

well as a repetition positivity effect on the standards (111–172ms,

cluster pfwe < :001). Similarly, the later P3MMR increased with stan-

dard repetitions (200–600ms, cluster pfwe < :001) and this effect was

driven by an increase of deviant responses (200–600ms, cluster

pfwe < :001) and a decrease of standard responses (205–359ms, clus-

ter pfwe < :001). Given the temporal difference between standard

(around 200–350ms) and deviant (200–600ms) train length effects,

the parametric modulation of the late MMR beyond 350ms seems to

be primarily driven by the increase in deviant responses.

3.2.3 | Somatosensory MMRs

We hypothesized somatosensory MMRs to consist of early bilateral

(fronto-) temporal negativities, resulting primarily from increased

N140 components (Kekoni et al., 1997), with a corresponding central

positivity extending into a later central P3 component.

After an early mismatch effect starting at �50 ms at fronto-

central electrodes, a more pronounced bilateral temporal cluster

emerged that extended from �90 to 190 ms and can be considered

the somatosensory equivalent of the auditory MMN (Figure 3b). A

reversed positive central component can be observed at the time of

the somatosensory MMN (sMMN) and throughout the entire later

time window (200–600 ms) at which point it can be considered a

putative P3 MMR.

Early and late somatosensory MMRs were significantly modulated

by stimulus repetition. Bilateral electrodes within the sMMN cluster

show an increase of the sMMN amplitude with repetition (123–

166 ms, cluster pfwe < :05). This effect was driven by an increase of

deviant negativity (135–188ms, cluster pfwe < :05) in combination with

a positivization of the standard (86–188ms, cluster pfwe < :05). Simi-

larly, the later P3MMR increases with repetition of standards (200–

600ms, cluster pfwe < :05), mutually driven by increasing deviant

responses (221–600ms, cluster pfwe < :05) and decreasing standard

responses (200–600ms, cluster pfwe < :05).

3.2.4 | Visual MMRs

We hypothesized visual MMRs to present as an early MMN at occipi-

tal to parieto-temporal electrodes and a later P3 component at central

electrodes. Although less pronounced than its auditory and somato-

sensory counterparts, we indeed observed a negative visual mismatch

component that developed from occipital to parieto-temporal elec-

trodes between �130 and 200 ms (Figure 3c). In the later time win-

dow, we found a central positive component between �300 and

600 ms, corresponding to a P3 MMR.

Within the significant visual MMN (vMMN) cluster, the linear

contrast testing for repetition effects did not reach significance when

correcting clusters for multiple comparisons (pfwe > :05). However, it is

worth noting that some electrodes in this cluster seemed to show a

similar pattern of response increases and decreases as in the auditory

and somatosensory modality, which became apparent at more lenient

thresholds. The vMMN tended to become more negative with repeti-

tion of standards (143–148ms, peak puncorr < :005), with opposite ten-

dencies of deviant negative increase (143–148ms, peak puncorr < :05)
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 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26303 by Freie U
niversitaet B

erlin, W
iley O

nline L
ibrary on [17/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F IGURE 3 Mismatch responses. Panels (a–c) show mismatch responses (MMRs) of auditory (a), somatosensory (b), and visual (c) modalities.
Within panels: Left: mismatch negativity (MMN). Right: P3 MMR. Gray dots (top) and gray boxes (bottom) indicate significant MMR electrodes
and time points with pfwe < :05. Top row: MMR scalp topographies (deviants-standards). Bottom row: Grand average ERPs (left panels) and beta
parameter estimates of significant linear contrast clusters (right panels). Colored bars depict six beta parameter estimates of the TrainLength GLM
(1, 2, 3, 4–5, 6–8, >8 repetitions) averaged across electrodes within linear contrast clusters. Asterisks indicate significance of the linear
contrast (pfwe < :05).
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and standard decrease (193–215ms, peak pfwe < :05). Thus, although

we cannot conclude a modulation by standard repetition of the

vMMN with any certainty, the observed beta parameters are in princi-

ple compatible with the effects observed in the auditory and somato-

sensory modalities (please see the discussion for potential reasons for

the reduced vMMN in our data).

Within the P3 MMR cluster, on the other hand, we find signifi-

cant clusters of linear increase of the MMR (375–600 ms, cluster

pfwe < :05), again constituted by an increase in deviant responses

(410–549ms, cluster pfwe < :05) and concomitant decrease in standard

responses (316–600ms, cluster pfwe < :05).

3.2.5 | Cross-modal P3 effects

In search of a common P3 effect to deviant stimuli, we created con-

junctions of the deviants > standards contrasts across the auditory,

somatosensory, and visual modalities. The conjunction revealed a

common significant cluster starting at �300 ms (cluster pfwe < :05) that

comprised anterior central effects around 300–350ms followed by

more posterior effects from 400 to 600ms (Figure 4a).

To investigate the modulation of the P3 MMR by predictability,

we used two-way ANOVAs with the three-level factor modality

(auditory, somatosensory, visual) and the three-level factor predictabil-

ity condition (predicted, mispredicted, unpredictable). Separate ANO-

VAs were applied to deviants and standards. We hypothesized that

the cross-modal P3 MMR might be sensitive to multisensory predic-

tive information in the sequence, as the P3 has been shown to be

sensitive to global sequence statistics (Bekinschtein et al., 2009;

Wacongne et al., 2011) and to be modulated by stimulus predict-

ability (Horvath et al., 2008; Horvath & Bendixen, 2012; Max

et al., 2015; Prete et al., 2022; Ritter et al., 1999; Sussman

et al., 2003). Indeed, within the common P3 cluster, both deviants

(299–313 ms, peak pfwe < :05) and standards (316–332ms, peak

pfwe < :05) show significant differences between predictability condi-

tions. No significant interaction of predictability condition with modal-

ity was observed.

Post hoc t tests were applied to the peak beta estimates to inves-

tigate the differences between the three pairs of conditions. For the

ANOVA concerning the deviant trials, post hoc t tests show a signifi-

cant difference for mispredicted > predicted (t = 14.667; p < .001,

Bonferroni corrected), mispredicted > unpredictable (t = 14.76;

p < .001, Bonferroni corrected) and no significant difference between

unpredictable > predicted conditions (t = 0.01; p > .05). Similarly, for

the ANOVA concerning the standard trials, post hoc t tests show that

there is a significant difference for mispredicted > predicted (t = 10.67;

F IGURE 4 Cross-modal P3
effects. (a) T-Maps of the
conjunction of
deviant > standard contrasts
across the auditory,
somatosensory, and visual
modalities. (b) Beta estimates
averaged across electrodes
within significant clusters with

peak pfwe<0.05, resulting from
two-way ANOVAs testing for
differences between
unpredictable, predicted, and
mispredicted deviants (red) and
standards (blue).
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p < .001, Bonferroni corrected), mispredicted > unpredictable (t = 6.87;

p < .001, Bonferroni corrected) and unpredictable > predicted condi-

tions (t = 3.83; p < .001, Bonferroni corrected).

Taken together, this result suggests that stimuli which were mis-

predicted based on the predictive multisensory configuration resulted

in increased responses within the common P3 cluster compared to

predicted or unpredictable stimuli, regardless of their role as standards

or deviants in the current stimulus train.

For completeness, we also tested the effect of predictability in

the earlier MMN cluster, but we did not observe any significant mod-

ulations here (results not shown).

3.3 | Source localization

The source reconstruction analysis resulted in significant clusters of

activation for each modality's MMN as well as the P3 MMR. The

results are depicted in Figure 5 and cytoarchitectonic references are

described in Table 1.

For each modality, the MMN was localized to source activations

in the respective modality's sensory cortex and frontal cortex. Source

localization of the auditory MMN shows the strongest activation in

bilateral superior temporal areas (pfwe < :05; left cluster: peak t=6.20;

right cluster: peak t=7.64) corresponding to auditory cortex and in

inferior temporal areas (pfwe < :05; left cluster: peak t=5.63; right

cluster: peak t=5.60). The somatosensory MMN shows highest

source activation in postcentral gyrus (pfwe < :05; left cluster: peak

t=5.22; right cluster: peak t=4.92) corresponding to primary

somatosensory cortex. Similarly, the vMMN shows highest source

activation in the occipital cortex (pfwe < :05; left cluster: peak t=6.18;

right cluster: peak t=5.17), around the occipital pole, corresponding

to visual areas (V1–V4). Lowering the threshold to puncorr < :001 (only

shown in Table 1) suggests additional activation of hierarchically

higher sensory areas such as secondary somatosensory cortex for the

sMMN (puncorr < :001; left cluster: peak t=4.21; right cluster: peak

t=5.01) and lateral occipital cortex (fusiform gyrus) for vMMN (part

of the primary visual cluster). In addition to the sensory regions, com-

mon frontal sources with dominance on the right hemisphere were

identified using a conjunction analysis for the MMN of all three

modalities. In particular, significant common source activations were

found in the right inferior frontal gyrus (IFG; pfwe < :05; cluster: peak

t=3.15) and right middle frontal gyrus (MFG; pfwe < :05; cluster: peak

t=2.89). Additional significant common sources include frontal pole

(pfwe < :05; left cluster: peak t=2.56; right cluster: peak t=2.28), left

inferior temporal gyrus (pfwe < :05; cluster: peak t=2.52) and right

inferior parietal lobe (pfwe < :05; cluster: peak t=2.85).

F IGURE 5 Source
localization. Top row: significant
sources (pfwe < :05) for the
auditory (green), somatosensory
(purple), and visual (orange)
mismatch negativity (MMN) as
well as their conjunction (yellow).
Bottom row: significant sources
(pfwe < :05) for the conjunction

(yellow) of the P3 mismatch
response (MMR) in the auditory,
somatosensory, and visual
modalities.
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TABLE 1 Source localization and cytoarchitectonic reference

Contrast Hemisphere Cytoarchitecture (probability) MNI coord. at cytoarch. t-Statistics at cytoarch. (p-value)

aMMN Left Auditory areas:

TE 4 (67.3%) �52 �26 0 6.2 (pfwe < :05)

TE 3 (15.1%) �59.8 �17.6 5.4 4.81 (pfwe < :05)

TE 1 (50.7%) �50.3 �19.2 5.8 4.05 (puncorr < :001)

aMMN Right Auditory areas:

TE 4 (54.1%) �56 �26 0 7.64 (pfwe < :05)

TE 3 (33.6%) �64.2 �16.4 5 5.85 (pfwe < :05)

TE 1 (61.9%) 53 �10.1 3.8 3.53 (puncorr < :001)

sMMN Left Somatosensory areas:

3b [S1] (31.4%) �15.7 �33.7 68.6 4.8 (pfwe < :05)

OP4 [S2] (38.6%) �65 �14.8 20.1 3.72 (puncorr < :001)

OP1 [S2] (16%)

sMMN Right Somatosensory areas:

3b [S1] (40.3%) 13.3 �33.7 68.2 4.76 (pfwe < :05)

OP4 [S2] (prob. 46.9%) 66.5 �10.6 20.9 3.51 (puncorr < :001)

OP1 [S2] (prob. 9.1%)

vMMN Left Visual areas:

hOc1 [V1] (84.6%) �10 �100 0 6.18 (pfwe < :05)

hOc2 [V2] (11.1%)

hOc4v [V4] (51%) �30 �87.9 -11.7 5.51 (pfwe < :05)

hOc3v [V3] (24.6%)

FG4 (89.5%) �43.5 �49.4 �13.3 3.83 (puncorr < :001)

vMMN Right Visual areas:

hOc1 [V1] (86.4%) 20 �100 �4 5.17 (pfwe < :05)

hOc2 [V2] (11%)

hOc3 [V3] (43.7%) 34.4 �88.7 �7.7 4.7 (pfwe < :05)

hOc4 [V4] (23.8%)

FG4 (59.8%) 50.3 �42.5 �18.8 3.82 (puncorr < :001)

MMN conjunction Left Frontal pole (28%) �14 62 8 2.56 (pfwe < :05)

Inferior temporal gyrus (49%) �50 �24 �28 2.52 (pfwe < :05)

MMN conjunction Right Middle frontal gyrus (36%) 42 28 30 2.89 (pfwe < :05)

Inferior frontal gyrus (53%) 53 27.6 17.3 2.96 (pfwe < :05)

Frontal pole (65%) 30 42 32 2.28 (pfwe < :05)

Inferior parietal lobe (46.8%) 62 �14 24 2.85 (pfwe < :05)

P3 con-junction (Left) Anterior cingulate gyrus (51%) �6 14 36 4.34 (pfwe < :05)

P3 conjunction Left Frontal pole (74%) �34 44 20 3.31 (pfwe < :05)

Inferior frontal gyrus (35%) 52 26 18 2.74 (pfwe < :05)

Middle frontal gyrus (78%) �44 30 32 2.87 (pfwe < :05)

Superior frontal gyrus (43%) �22 12 60 3.13 (pfwe < :05)

Inferior temporal gyrus (34%) �48 �44 �24 3.21 (pfwe < :05)

Lateral occipital [hOc4la] (81%) �46 �80 �8 2.99 (pfwe < :05)

P3 conjunction Right Frontal pole (86%) 45 42 10 3.57 (pfwe < :05)

Inferior frontal gyrus (39.5%) 52 26 18 3.45 (pfwe < :05)

Middle frontal gyrus (38%) 36 2 54 3.0 (pfwe < :05)

Precentral gyrus [4a] (19%) 6 �32 64 2.64 (pfwe < :05)

Lateral occipital cortex [hOc5] (55%) 56 �62 0 3.45 (pfwe < :05)
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For the late P3 MMR, a wide range of sources was expected to

contribute to the EEG signal (Linden, 2005; Sabeti et al., 2016). To

identify those that underlie the P3 MMR common to all modalities,

we used a conjunction analysis. Significant clusters were found pri-

marily in anterior cingulate cortex (pfwe < :05; cluster: peak t=4.34)

and bilateral (pre-)frontal cortex (pfwe < :05; left IFG cluster: peak

t=3.57; left superior frontal gyrus cluster: peak t=3.13; left MFG

cluster: peak t=2.87; left frontal pole cluster: peak t=3.31; right IFG

cluster: peak t=3.45; right MFG cluster: peak t=3.0; right frontal

pole cluster: peak t=3.57). Additional significant sources were found

in left inferior temporal gyrus (pfwe < :05; cluster: peak t=3.21), left

and right lateral occipital cortex (pfwe < :05; left cluster: peak t=2.99;

right cluster: peak t=3.45) and right precentral gyrus (pfwe < :05; clus-

ter: peak t=2.64).

3.4 | Single-trial modeling

As described in the previous sections, the responses of standards and

deviants show specific sensitivity to (1) stimulus repetition and

(2) cross-modal conditional probability. To investigate the computa-

tional principles underlying these response profiles, eight different

models capturing various learning strategies were fit to the single-trial

EEG data and compared via family-wise BMS. A summary of the

modeling results is depicted in Figure 6.

The first model comparison aimed to further investigate observa-

tion (1) and the question whether the observed parametric modula-

tion of standard and deviant EEG responses merely reflects a

combination of neuronal adaptation and change detection dynamics

or if the observed response patterns are indicative of an underlying

generative model engaged in probabilistic inference. To this end, we

ran family wise BMS which is schematically depicted in Figure 6a. The

first comparison concerned the TLCD model, a model family contain-

ing all BL models, and a null model. In the fronto-central, temporal,

occipital, and central electrodes showing MMN and P3 effects, the

model comparison shows strong evidence in favor of the BL model

family with an exceedance probability φ>0:95 (corresponding to

expected posterior probability rh i> :7) from �70ms onward. On the

other hand, the TLCD model did not exceed φ>0:95 for any electrode

or time point. Therefore, the TLCD model was disregarded at this

F IGURE 6 Modeling results. (a) Schematic overview of models. Model comparison 1 (light-gray box, dashed contour): Null model family
(NULL), train length-dependent change detection model family (TLCD), and Bayesian learning model family (BL). Comparison 2 (gray box, dotted
contour): Unimodal regression model family (UM), cross-modal regression model family (UCM). Comparison 3 (dark-gray box, line contour): Read-
out model family comparison of predictive surprise family (PS), Bayesian surprise family (BS), and confidence-corrected surprise family (CS).
(b) Results of comparison 1 and 2 shown for all electrodes and poststimulus time points. Color depicts exceedance probability (EP) φ>0:95. Light-
blue=BL>TLCD, pink=UCM>UM. (c) Topography of modeling results at time windows of MMN (top row) and P3 (bottom row). Left column:
Results of comparison 1 (same colors as (B), depicting φ>0:95). Middle column: Results of comparison 3. EPs between 0.33 and 1 of the three
surprise functions are represented by a continuous three-dimensional RGB scale (red=predictive surprise [PS]; green=Bayesian surprise [BS];
blue= confidence-corrected surprise [CS]). Right column: Beta estimates of the model regressors of the UCM model (regressors: A= auditory;
S= somatosensory; V= visual; CM= cross-modal; UM=unimodal) for CS read-out models (top) and BS read-out models (bottom).

14 GRUNDEI ET AL.
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point, and we focused further investigation on the different BL

models.

The second comparison set out to investigate observation (2) and

evaluate the contribution of stimulus alternation tracking conditional

on multimodal configurations beyond unimodal transition probability

inference. Within the electrodes and time-points with sufficient evi-

dence for BL signatures (as established by the first model comparison),

a comparison of a purely unimodal model family with a cross-modally

informed model family (UCM) was performed. Those electrodes and

time-points where the additional inclusion of cross-modal regressors

(UCM models) provided better model fits than purely unimodal

models are highlighted in Figure 6b,c. The UCM family outperforms

the UM family at central and fronto-central electrodes at �100–

400 ms (with φ>0:95, corresponding to rh i> :7).
Inspection of the beta estimates of auditory, somatosensory, and

visual regressors of the UCM regression models shows that the beta

maps of the unimodal predictors of the model resemble the ERP mis-

match topographies of the respective modalities (depicted in

Figure 6c). The cross-modal predictor, on the other hand, rather

shows (fronto-) central activations which appear to resemble frontal

aspects of the respective auditory, somatosensory, and visual MMRs.

The third comparison concerned the three surprise measures

used as read-out functions for the probabilistic models. Overall, the

family comparison does not show overwhelming evidence for any

specific surprise function as only few electrodes reach exceedance

probabilities of φ>0:95. Nevertheless, a tendency of the MMN and

the P3 to reflect different surprise dynamics can be observed.

Although around the time of the MMN, only some electrodes show

φ>0:95 in favour of CS, inspection of the topographies without φ

thresholding (as depicted in Figure 6c) shows CS to be dominant

throughout the spatio-temporal range of the MMN (as suggested by

higher EPs compared to BS and PS). On the other hand, at the time of

the P3, BS appears to be the dominant surprise computation with

multiple (fronto-) central electrodes showing φ> 0:95. Overall, the sur-

prise comparison provides some evidence for a reflection of CS

dynamics in the earlier mismatch signals around the time of the

MMNs and suggests a tendency of the P3 to reflect BS dynamics.

In a final analysis, the optimal observation integration parameter τ

was inspected. For each modality, the significant MMN clusters of the

ERP analyses were used to inspect the optimal integration window of

the regression models. For the UM regression model, highly similar opti-

mal integration parameters were found within the electrodes and time-

points of the different MMN clusters with no significant difference

between the modalities. The optimal integration parameters were found

to correspond to windows of stimulus integration with a half-life of (50%

weighting at) around 5 to 25 stimuli (mean�SD τ across participants

within the MMN clusters: UM-CS¼0:0608�0:0189 [8–16 stimuli],

UM-BS¼0:0887�0:0184 [6–9 stimuli], UCM-CS¼0:0550� 0:0179

[9–18 stimuli], UCM-BS¼0:0954�0:0194 [6–9 stimuli]; mean�SD τ

across participants within the P3 clusters: UM-CS¼0:0536�0:0214

[9–21 stimuli], UM-BS¼0:0811� 0:0191 [6–11 stimuli], UCM-CS ¼
0:0469�0:0196 [10–25 stimuli], UCM-BS¼0:0862�0:0215 [6–10

stimuli]). Overall, the same range of stimulus integration was found

for the UM and UCM regression models and CS models tended to

have higher integration windows (�10–20 stimuli) compared to

Bayesian surprise models (�5–10 stimuli).

4 | DISCUSSION

The present study set out to compare mismatch signals in response

to tri-modal sequence processing in the auditory, somatosensory,

and visual modalities and to investigate influences of predictive

cross-modal information. We found comparable but modality spe-

cific signatures of MMN-like early mismatch processing between

100 and 200 ms in all three modalities, which were source localized

to their respective sensory specific cortices and shared right latera-

lized frontal sources. An additional cross-modal signature of mis-

match processing was found in the P3 MMR for which a common

network with frontal dominance was identified. With exception of

the vMMN, both mismatch signals (MMN and P3) show parametric

modulation by stimulus train length driven by reciprocal tendencies

of standards and deviants across modalities. Strikingly, standard and

deviant responses within the cross-modal P3 cluster were sensitive

to predictive information carried by the tri-modal stimulus configu-

ration. Comparisons of computational models indicated that BL

models, tracking transitions between observations, captured the

observed dynamics of single-trial responses to the roving stimulus

sequences better than a static model reflecting TLCD. Moreover, a

BL model which additionally captured cross-modal conditional

dependence of stimulus alternation outperformed a purely unimodal

BL model primarily at central electrodes. The comparison of differ-

ent read-out functions for the BL models provides tentative evi-

dence that the early MMN may reflect dynamics of CS whereas

later P3 MMRs seem to reflect dynamics of BS.

4.1 | Modality specific mismatch signatures in
response to tri-modal roving stimuli

By using a novel tri-modal roving stimulus sequence originating from

an underlying Markov process of state transitions, we were able to

elicit and extract unique EEG signatures in each of the three sensory

modalities (auditory, somatosensory, and visual).

Of the EEG mismatch signatures, the auditory MMN is one of the

most widely researched responses to deviation from an established

stimulus regularity (Naatanen et al., 1978; Winkler et al., 2009). Con-

trasting responses to standard and deviant stimuli of the auditory

sequence in the current study resulted in the expected fronto-central

MMN signature with more negative responses to deviants compared

to standards. The extent of the MMN might suggest an underlying

negative mismatch component as proposed by Naatanen et al. (2005),

which drives a more negative going ERP around the N1, extending

beyond the P2 component. Such post-N1 effects of the MMN have

been suggested as markers of a “genuine” mismatch component in

contrast to confounds by stimulus properties modulating auditory

GRUNDEI ET AL. 15
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ERP components (Naatanen et al., 2007) and might speak against pure

N1 adaptation (as suggested by Jaaskelainen et al., 2004; May

et al., 1999).

The somatosensory equivalent to the auditory MMN (sMMN)

reported in the current study shows negative polarity at bilateral tem-

poral electrodes and corresponding central positivity. The sMMN

likely reflects an enhanced N140 component, as suggested by Kekoni

et al. (1997). However, most previous sMMN studies used oddball

paradigms where some critical discussion revolves around the distinc-

tion of the sMMN from an N140 modulation by stimulus properties

alone. Here, we report an sMMN around the N140 which can be

assumed to be independent of stimulus confounds due to the

reversed roles of standard and deviant stimuli in the roving paradigm.

Although several previous studies have reported somatosensory mis-

match responses, conflicting evidence exists regarding the exact com-

ponents that may constitute an equivalent to the auditory MMN.

Some studies report a more fronto-centrally oriented negativity

(Kekoni et al., 1997; Shen et al., 2018; Spackman et al., 2007;

Spackman et al., 2010) or observed such pronounced central positivity

that they were led to conclude that it is in fact the central positivity

that should be considered the somatosensory equivalent of the

aMMN (Akatsuka et al., 2005; Shinozaki et al., 1998). However, some

evidence appears to converge on a temporally centered negativity

with corresponding central positivity as the primary sMMN around

140 ms (Gijsen et al., 2021; Ostwald et al., 2012).

While the auditory and somatosensory MMN's in the current

study were found to be highly comparable in their signal strength,

their hypothesized counterpart in the visual modality showed a com-

paratively weaker response. Nevertheless, we found a significant

vMMN at occipital electrodes extending to temporal electrodes within

a time window of 100–200 ms poststimulus, with corresponding

(fronto-) central positivity. This observation is in line with previous

research reporting posterior (Cleary et al., 2013; Kimura et al., 2010;

Urakawa et al., 2010) and temporal (Heslenfeld, 2003; Kuldkepp

et al., 2013) patterns of vMMN with corresponding central positivity

(Cleary et al., 2013; Czigler et al., 2006; File et al., 2017).

4.2 | Neuronal generators of MMN signatures

Source reconstruction analyses were used to identify underlying neu-

ronal generators of the modality specific MMN signatures. Interest-

ingly, for each sensory modality, we found generators in the primary

and higher order sensory cortices as well as additional frontal genera-

tors in IFG and MFG.

The sensory specific neuronal sources underlying the auditory

MMN were identified as bilateral auditory cortex with a dominance in

hierarchically higher auditory areas. With an additional modality inde-

pendent contribution of right lateralized frontal sources, this set of

neuronal generators identified for the aMMN is in line with previous

research suggesting primary auditory cortex and higher auditory areas

in superior temporal sulcus as well as right IFG as underlying the

aMMN (Garrido et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009;

Molholm et al., 2005; Naatanen et al., 2005; Opitz et al., 2002) with

consideration of an additional frontal generator in MFG

(Deouell, 2007).

The sources underlying the sMMN were identified in the current

study as primary (S1) and secondary (S2) somatosensory cortices with

additional frontal generators in right IFG and MFG. This finding is in

accordance with previous research showing a combined response of

S1 and S2 to underlie the sMMN (Akatsuka, Wasaka, Nakata, Kida,

Hoshiyama, et al., 2007; Akatsuka, Wasaka, Nakata, Kida, &

Kakigi, 2007; Andersen & Lundqvist, 2019; Butler et al., 2012; Gijsen

et al., 2021; Naeije et al., 2016, 2018; Ostwald et al., 2012; Spackman

et al., 2010) in combination with involvement of (inferior) frontal

regions (Allen et al., 2016; Downar et al., 2000; Fardo et al., 2017;

Huang et al., 2005; Ostwald et al., 2012).

For the visual modality, we identified sources in visual areas (V1–

V4) and additional frontal activations in IFG and MFG as the neuronal

generators underlying the vMMN. Previous studies have shown simi-

lar combinations of visual and prefrontal areas (Kimura et al., 2010;

Kimura et al., 2011; Kimura et al., 2012; Urakawa et al., 2010; Yucel

et al., 2007) and have particularly highlighted the IFG as a frontal gen-

erator of the vMMN (Downar et al., 2000; Hedge et al., 2015). Simi-

larly, an fMRI study of perceptual sequence learning in the visual

system has shown right lateralized prefrontal activation in addition to

activations in visual cortex in response to regularity violations

(Huettel et al., 2002). Yet another study has suggested a role for right

prefrontal areas in interaction with hierarchically lower visual areas

for the prediction of visual events (Kimura et al., 2012), all in line with

our results.

Overall, our finding of inferior and middle frontal sources for the

MMN in all three modalities provides further evidence for a modality

independent role for these generators as previously suggested by

Downar et al. (2000). As such, these modality-independent frontal

generators might reflect higher stages of a predictive hierarchy work-

ing across modalities in interaction with lower modality specific

regions, as previously suggested primarily for the auditory modality

(Garrido, Kilner, Stephan, & Friston, 2009).

4.3 | Modulation of the MMN by stimulus
repetition

An important feature of the MMN which theories of its generation

have aimed to account for is its sensitivity to stimulus repetition. The

MMN is known to increase with prior repetition of standards (Imada

et al., 1993; Javitt et al., 1998; Naatanen & Näätänen, 1992; Sams

et al., 1983). Correspondingly, in the current study, we find a signifi-

cant increase of auditory and somatosensory MMN with the length of

the preceding stimulus train as well as a comparable tendency for the

vMMN. Moreover, we show that this increase was driven by a recip-

rocal negative modulation of deviant and positive modulation of stan-

dard responses, suggesting a combined influence of repetition

dependent change detection and dynamics akin to stimulus

adaptation.
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The observed positive modulation of standard responses, particu-

larly in the auditory modality, is in line with the repetition positivity

account of Baldeweg and colleagues (Baldeweg, 2006;

Baldeweg, 2007; Baldeweg et al., 2004; Haenschel et al., 2005). In the

auditory modality, repetition positivity has been isolated as a positive

slow wave that accounts for repetition-dependent increases of audi-

tory ERPs up to the P2 component (Haenschel et al., 2005). With

regard to its functional role, it has been argued to reflect auditory sen-

sory memory trace formation (Baldeweg et al., 2004; Costa-Faidella,

Baldeweg, et al., 2011; Costa-Faidella, Grimm, et al., 2011). Interest-

ingly, MMN studies using the oddball paradigm often report an

increasing MMN with standard repetition without further dissecting

the contributions from standard and deviant dynamics. A contribution

of the standard repetition positivity appears to be particularly domi-

nant in roving stimulus paradigms (Cooper et al., 2013), potentially

because a memory trace of the standard stimulus identity must be

reestablished after each change of roles for standard and deviant

stimuli. It has even been suggested that the memory trace dynamics

of the standard observed in response to roving oddball sequences

might in fact be the primary driver of train length effects on MMN

amplitudes (Baldeweg et al., 2004; Costa-Faidella, Baldeweg,

et al., 2011; Costa-Faidella, Grimm, et al., 2011; Haenschel

et al., 2005). Importantly, although some evidence exists to suggest an

additional role for train length dependent deviant modulation also in

roving paradigms (Cowan et al., 1993; Haenschel et al., 2005), a dis-

section of combined standard and deviant contributions as performed

here is rarely described.

Similar to the aMMN, we found the sMMN to be modulated by

stimulus repetition. An early repetition positivity effect in the

responses to standards was observed prior to 100 ms indicating com-

parable sensory adaptation dynamics as described for the aMMN.

Subsequently, the negative deviant and sMMN responses increase

with repetition around the N140 (i.e., around the sMMN peak). While

somatosensory deviant responses have previously been shown to

decrease with increasing stimulus probability (Akatsuka, Wasaka,

Nakata, Kida, & Kakigi, 2007), only few other studies have reported

sensitivity of the sMMN to stimulus repetition. Interestingly, in our

previous study on somatosensory MMRs (Gijsen et al., 2021) we

report the same reciprocal pattern found here: Negative modulation

of the deviant and positive modulation of the standard response

which result in an increase of the sMMN amplitude with stimulus train

length.

In the visual modality, a comparable train length effect to auditory

and somatosensory modalities was observed but did not reach statis-

tical significance in the vMMN time window. Given the overall weaker

response in the current study for vMMN this might not be surprising.

Moreover, discussions about the repetition modulation of vMMN

responses are often based on findings concerning the auditory system

rather than direct findings in the visual modality. While sensory adap-

tation to stimulus repetition is generally found throughout the visual

system (e.g., Clifford et al., 2007; Grill-Spector et al., 2006) it is rarely

directly reported in vMMN studies (but see Kremlacek et al., 2016).

Overall, the vMMN literature seems to suggest that the vMMN may

be a rather unstable phenomenon. In fact, by controlling for con-

founding effects, one study has called the existence of the vMMN for

low level features such as the ones used here into question entirely

(Male et al., 2020). The vMMN appears to show a much less pro-

nounced spatiotemporal pattern than auditory and somatosensory

equivalents, which is reflected in larger variance in the reported

topographies and time windows in studies investigating vMMN (but

see Section 11 for a discussion of alternative explanations regarding

the current study).

4.4 | MMN as a signature of predictive processing

Recent research supports the view that Bayesian perceptual learning

mechanisms underlie the generation of mismatch responses such as

the MMN (Friston, 2005, 2010; Garrido, Kilner, Stephan, &

Friston, 2009). Given the proposal of Bayesian inference and predic-

tive processing as universal principles of perception and perceptual

learning in the brain (Friston, 2005, 2010), comparable mismatch

responses are expected to be found across sensory modalities. Evi-

dence for the predictive nature of mismatch responses, akin to key

findings from the auditory modality, is for instance given by studies

showing somatosensory (Andersen & Lundqvist, 2019; Naeije

et al., 2018) and visual (Czigler et al., 2006; Kok et al., 2014) MMN in

response to predicted but omitted stimuli. Moreover, Ostwald et al.

(2012) and Gijsen et al. (2021) have shown that single trial somatosen-

sory MMN and P3 MMRs can be accounted for in terms of surprise

signatures of Bayesian inference models tracking stimulus transitions.

Similarly, the vMMN has been described as a signature of predictive

processing (Kimura et al., 2011; Stefanics et al., 2014), signaling pre-

diction error instead of basic change detection (Stefanics et al., 2018).

Correspondingly, we found comparable mismatch signatures in

auditory, somatosensory, and visual modalities. The train length

effects observed in our study across modalities have previously been

related to predictive processing. Repetition positivity in the auditory

modality has been interpreted as a reflection of repetition suppres-

sion, resulting from fulfilled prediction (Auksztulewicz &

Friston, 2016; Baldeweg, 2007; Costa-Faidella, Baldeweg, et al., 2011;

Costa-Faidella, Grimm, et al., 2011). A corresponding negative modu-

lation of deviant responses on the other hand, would signal a failure

to suppress prediction error after violation of the regularity estab-

lished by the current stimulus train. Under such a view, longer trains

of repetitions lead to higher precision in the probability estimate

which in turn results in a scaling of the prediction error in response to

prediction violation (Auksztulewicz & Friston, 2016; Friston, 2005;

Friston & Kiebel, 2009). In line with these hypotheses, Garrido and

colleagues (Garrido et al., 2008; Garrido, Kilner, Kiebel, &

Friston, 2009) used dynamic causal modeling (DCM) to show that the

MMN elicited in a roving stimulus paradigm is best explained by the

combined dynamics of auditory adaptation and model adjustment.

Their network, proposed to underlie MMN generation, was set up as

an implementation of hierarchical predictive processing involving

bottom-up signals from auditory cortex and top-down modulations by
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inferior frontal cortex. Similarly, another DCM study proposed a pre-

dictive coding model of pain processing in response to somatosensory

oddball sequences, highlighting the role of inferior frontal cortex in

top-down modulations of somatosensory potentials (Fardo

et al., 2017). As we find involvement of such modality specific sensory

and modality independent frontal areas for MMN responses across

modalities, our results suggest comparable roles for these sources in a

predictive hierarchy.

4.5 | P3 Mismatch responses reflect cross-modal
processing

In addition to the modality specific MMN responses, deviants in all

three modalities elicited a late positive mismatch component in the P3

time window. Despite differences in the exact latency and extent of

this response between modalities, we identified a common mismatch

cluster from 300 to 350 ms in central electrodes, followed by a

slightly more posterior cluster extending from 400 to 600 ms. Particu-

larly the earlier cluster may correspond to the well-known P3a

response, which peaks at around 300 ms after change-onset at

(fronto-) central electrodes and is thought to be elicited regardless of

sensory modality (Escera et al., 2000; Friedman et al., 2001; Knight &

Scabini, 1998; Polich, 2007; Schroger, 1996).

The P3a is closely related to the MMN as they are both elicited

during active and passive perception of repeated stimuli interrupted

by infrequent stimulus deviations (Polich, 2007; Schroger et al., 2015).

While the P3a has been initially related to attentional switches to

task-irrelevant but salient stimulus features (Escera et al., 2000;

Friedman et al., 2001; Polich, 2007), more recent accounts suggest

that the MMN and P3a might reflect two stages of a predictive hierar-

chy, each representing (potentially differentiable) prediction error

responses (Schroger et al., 2015; Wacongne et al., 2011). Similar to

the MMN, P3 responses are known to be modulated by stimulus

probability (Duncan-Johnson & Donchin, 1977) and can be elicited by

unexpected stimulus repetitions (Duncan et al., 2009; Squires

et al., 1975) and omissions of predicted sound stimuli (Prete et al.;

Sutton et al., 1967), which provides compelling evidence for a role of

the P3 in predictive processing. Similar to the MMN responses

described above, we found the individual P3 MMR responses in all

three modalities to show reciprocal modulations of standards and

deviants by stimulus repetition, which has previously only been

reported for the auditory modality (Bendixen et al., 2007). This sensi-

tivity to stimulus repetition of mismatch responses in early and late

time-windows has been interpreted in terms of regularity and rule

extraction in the auditory modality (Bendixen et al., 2007) and is in

line with an account of repetition suppression over and above early

sensory adaptation.

The MMN and P3 MMR have been shown to be differentially

modulated by higher order predictability. The P3 is reduced by the

presentation of visual cues preceding an auditory deviant, while the

MMN is not affected by the same top-down predictability (Horvath &

Bendixen, 2012; Ritter et al., 1999; Sussman et al., 2003). Similarly,

explicit top-down knowledge of sequence regularities has been shown

to reduce the P3, while leaving the MMN unaffected (Max

et al., 2015). It has thus been suggested that the P3 reflects a higher-

level deviance detection system concerned with the significance of

the stimulus in providing new information for the system (Horvath

et al., 2008). Interestingly, a recent study investigating mismatch

responses to different auditory features showed that while the MMN

response in an earlier (classical) time window was generally affected

by regularity violations, only the later response (P3 range) contained

information about the specific features that were violated (An

et al., 2021). Furthermore, computational studies indicate that P3

responses reflect specific quantities of unexpectedness as well as

updates to a prior belief (Jepma et al., 2016; Kolossa et al., 2015).

Overall, current research provides evidence for the view that the

MMN reflects prediction errors at earlier hierarchical stages, primarily

concerned with more local regularity extraction, whereas P3

responses reflect more global rule violations which require a certain

level of abstraction and information integration (Bekinschtein

et al., 2009; Wacongne et al., 2011; Winkler et al., 2005). Our findings

of a sensitivity of the P3 response to cross-modal predictive informa-

tion carried by the multimodal configuration of the stimulus sequence

further supports such a view. Across modalities, we found an

increased P3 response to mispredicted compared to predicted or

unpredictable stimuli, regardless of their role as standards or deviants.

Generally, the P3 deviant response in the current study likely reflects

a (unsigned) prediction error to a local regularity established by stimu-

lus repetition. However, increased P3 responses to mispredicted stim-

uli indicate additional violations of global, cross-modal predictions

which are extracted from multimodal context information.

The observed pattern suggests influences of precision weighting

on prediction errors (Friston & Kiebel, 2009). In case of both predicted

and mispredicted stimuli, the cross-modal predictive context allows

for more precise predictions (i.e., high prior precision) than in case of

the unpredictable stimuli (low prior precision). Under such an interpre-

tation, the precision for mispredicted deviants is high, resulting in a

pronounced prediction error response. Since the precision for pre-

dicted deviants is also high, the resulting prediction error response is

low because the stimulus was suppressed. Even though the size of

prediction error to unpredictable deviants could generally be expected

in between those of predicted and mispredicted deviants, the

observed response is low (similar to that of a predicted deviant),

because the prior precision in this context is low. This interpretation is

in line with the fact that no significant difference was found between

predicted and unpredictable deviants. A similar modulation of multi-

modal predictability is found for the P3 response to standards. How-

ever, interestingly, in case of the standards, the response to predicted

stimuli is significantly lower than to unpredictable stimuli. This differ-

ence between standards and deviants could be due to the fact that

deviants are generally surprising, even if they are more predictable in

terms of their cross-modal configuration. Standards, on the other

hand, are generally predicted to occur (high precision) which might

result in a pronounced suppression of prediction error in case they are

additionally cross-modally predicted.
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The interpretation of the common P3 cluster as a cross-modal

P3a response sensitive to multimodal predictive information is further

supported by our source localization results, which particularly indi-

cate prefrontal regions such as the medial frontal, inferior frontal and

anterior cingulate cortex as sources of the P3 MMR. Although notori-

ously diverse, previous research on P3 sources has identified a fronto-

parietal network of generators, particularly highlighting the role of

prefrontal and anterior cingulate regions in generating the P3 novelty

response (P3a; Linden, 2005; Polich, 2007), whereas parietal regions

are presumed to be more involved in task-related P3b responses. The

identified sources have been shown to be involved in a fronto-parietal

network relevant for the supramodal processing of stimulus transi-

tions and deviance detection (Downar et al., 2000; Huang

et al., 2005). Similarly, a fronto-parietal attention network (Corbetta &

Shulman, 2002) has been shown to be involved in oddball processing

in the auditory and visual modalities (Kim, 2014). The network con-

sists of two functionally and anatomically distinct parts which closely

interact (Vossel et al., 2014). While the dorsal part of the network is

believed to be involved in the allocation of top-down, endogenous

attention (e.g., triggered by predictive information), the ventral part is

involved in bottom-up, exogenous attention allocation and thus, pro-

cessing of unexpected stimuli. Importantly, it has been shown that this

network operates supramodally to facilitate processing of information

from multimodal events (Macaluso, 2010; Macaluso & Driver, 2005).

Thus, the predictive information in the multimodal sequences pre-

sented in the current study may be processed in such a fronto-parietal

network to aid the perception of multimodal stimulus streams. Future

research would benefit from studies further investigating such multi-

modal probabilistic sequences with higher spatial resolution to inform

these proposed interpretations.

4.6 | Modeling single-trial EEG responses as
signatures of bayesian inference

Given the results of the average- and GLM-based EEG analyses, we

aimed to test if the observed modulations of standards, deviants and

MMRs by local (train length) and global (cross-modal predictability)

sequence properties could be captured by signatures of Bayesian

inference. To this end, we compared a simple TLCD model to families

of BL models capturing different aspects of the sequence statistics. In

light of the literature discussed above, we hypothesized that BL

models would outperform the TLCD model in explaining the recorded

mismatch responses.

Overall, the BL models outperformed the static TLCD model in all

electrodes in the MMN and P3 clusters indicating that these

responses reflect dynamics beyond the basic repetition effects

observed in the ERP analyses. This result provides evidence to sug-

gest that the MMN and P3 MMR capture the trial-to-trial dynamics of

Bayesian inference and are thus markers of probabilistic sequence

processing in the brain.

Within the family of BL models, we found that a cross-modally

informed model (UCM), tracking cross-modal conditional

dependencies between modalities in addition to unimodal transitions,

outperformed a purely unimodal transition probability model (UM) at

central electrodes within an early and a late time-window. The cross-

modal effects in the late time-window are directly in line with the sen-

sitivity of the P3 cluster to cross-modal predictability discussed above

and support an interpretation of P3 mismatch responses to reflect sig-

natures of cross-modal Bayesian inference. Given that cross-modal

learning was not explicitly instructed or task-relevant, the results are

compatible with the view that the brain is sensitive to cross-modal

information by default (Driver & Noesselt, 2008; Ghazanfar &

Schroeder, 2006) and that processing multimodal information might

be appropriately captured by Bayesian inference (Kording et al., 2007;

Shams & Beierholm, 2022). Interestingly, however, an earlier cross-

modal effect was found prior to 300 ms which was not reflected in

the GLM results, suggesting that potential modulations of MMN sig-

natures by predictability manifest in the dynamics of single trial sur-

prise signals but not in significant mean differences between

predictability conditions. Since the earlier cross-modal effect observed

in the modeling results was primarily confined to central and fronto-

central electrodes it may be related to activity of the frontal genera-

tors of the MMN. As discussed above, the frontal cortex is assumed

to be involved in MMN generation (Deouell, 2007) in interaction with

hierarchically lower sensory sources and has been hypothesized to

form top-down predictions about incoming sensory stimuli (Garrido

et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009; Garrido, Kilner,

Stephan, & Friston, 2009). This assumption is further supported by

our source reconstruction results which show modality independent

frontal generators in addition to sensory specific regions to underlie

the MMN in auditory, somatosensory, and visual modalities.

Regarding the surprise read-out functions of the BL models, we

find a slight dominance of CS in earlier mismatch signatures prior to

200 ms, while the late clusters tend to reflect BS. This is well in line

with our previous study performed in the somatosensory modality

(Gijsen et al., 2021) and other studies have similarly reported a reflec-

tion of BS in P3 mismatch responses (Kolossa et al., 2015; Mars

et al., 2008; Ostwald et al., 2012; Seer et al., 2016). Given their differ-

ences in reading out the probability estimates of the Bayesian

observer, the different surprise signatures in the MMN and P3 MMR

might provide some insight into their respective computational roles.

CS has been categorized as an instantiation of puzzlement surprise

(Faraji et al., 2018) reflecting a mismatch between sensory input and

internal model belief which is additionally scaled by belief commit-

ment. Low-probability events are thus more surprising if commitment

to the belief (of this estimate) is high. BS reflects incorporation of new

information, quantifying an update to the generative model and has

been categorized as enlightenment surprise (Faraji et al., 2018).

Accordingly, the MMN may be considered a marker of prediction

error scaled by belief commitment, whereas the P3 may reflect the

subsequent update of the predictive model.

Given that the P3 shows sensitivity to cross-modal prediction vio-

lation (GLM results) and tends to carry signatures of multimodal infer-

ence and model updating (Bayesian modeling results), we suggest that

the P3 likely reflects model updates with respect to the multimodal
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context. Although unnoticed by participants, given that the statistical

regularities changed across experimental runs, the generative model

continuously required updating. As such, our results might be reflec-

tive of a volatile sensory environment and relate to previous findings

which indicate that later MMRs, such as the P3, reflect belief updates

about the volatility of the underlying (hidden) statistics governing sen-

sory observations (e.g., Weber et al., 2020; Weber et al., 2022). We

leave it for future research to design experiments which are better

suited to evaluate these speculations more specifically and more

thoroughly.

4.7 | Limitations

Although we gained valuable insights into the commonalities and dif-

ferences between mismatch responses in different modalities, our

study faces certain limitations in its implementation and scope. First,

although reports of weak vMMN responses can be found in the litera-

ture, an alternative explanation may lie in the stimulation protocol

used in the current study. Our visual stimuli consisted of bilateral flash

stimuli with two different intensities, which were presented in the

periphery of the visual field. Since, to our knowledge, no other study

has used visual flash stimuli to elicit vMMN, our results are not

directly comparable to previous research. Moreover, due to the reti-

notopic organization of the visual cortex (Horton & Hoyt, 1991;

Sereno et al., 1995), a “far peripheral” placement (i.e., >60�;

Strasburger et al., 2011) of the LED's results in the activation of (pri-

mary) visual areas folded deep inside the cortex, in the calcarine sulcus

between the hemispheres. It is therefore possible that the visual mis-

match responses were not weaker per se but were merely harder to

detect by means of EEG.

Further, our results concerning the comparison of the surprise

read-out functions provide some indications of the computational

roles for early and late MMRs, which are in line with previous

research. However, it should be noted that the current study was

not specifically designed to investigate their (nuanced) differences.

The inclusion of three read-out functions primarily served the pur-

pose of avoiding bias in the comparison of the BL models by prior

choice of the read-out. To this end, the most prominent surprise

read-out functions used in the literature were included. Research

would benefit from future studies specifically designed to compare

different surprise measures without the manipulation of other

aspects of the underlying models. A valuable overview and sug-

gested experiments for that purpose have been recently provided by

Modirshanechi et al. (2022).

5 | CONCLUSION

With the current study, we provide evidence for modality spe-

cific and modality independent aspects of mismatch responses

in audition, somatosensation, and vision resulting from a simul-

taneous stream of tri-modal roving stimulus sequences. Our

results suggest that responses to stimulus transitions in all three

modalities are based on an interaction of hierarchically lower,

modality specific areas with hierarchically higher, modality inde-

pendent frontal areas. We show that similar dynamics underlie

these mismatch responses which likely reflect predictive proces-

sing and Bayesian inference on unimodal and multimodal sen-

sory input streams.
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Abstract

The brain is subjected to multi-modal sensory information in an environment gov-

erned by statistical dependencies. Mismatch responses (MMRs), classically recorded

with EEG, have provided valuable insights into the brain's processing of regularities

and the generation of corresponding sensory predictions. Only few studies allow for

comparisons of MMRs across multiple modalities in a simultaneous sensory stream

and their corresponding cross-modal context sensitivity remains unknown. Here, we

used a tri-modal version of the roving stimulus paradigm in fMRI to elicit MMRs in

the auditory, somatosensory and visual modality. Participants (N = 29) were simulta-

neously presented with sequences of low and high intensity stimuli in each of the

three senses while actively observing the tri-modal input stream and occasionally

reporting the intensity of the previous stimulus in a prompted modality. The

sequences were based on a probabilistic model, defining transition probabilities such

that, for each modality, stimuli were more likely to repeat (p = .825) than change

(p = .175) and stimulus intensities were equiprobable (p = .5). Moreover, each transi-

tion was conditional on the configuration of the other two modalities comprising

global (cross-modal) predictive properties of the sequences. We identified a shared

mismatch network of modality general inferior frontal and temporo-parietal areas as

well as sensory areas, where the connectivity (psychophysiological interaction)

between these regions was modulated during mismatch processing. Further, we

found deviant responses within the network to be modulated by local stimulus repe-

tition, which suggests highly comparable processing of expectation violation across

modalities. Moreover, hierarchically higher regions of the mismatch network in the

temporo-parietal area around the intraparietal sulcus were identified to signal cross-

modal expectation violation. With the consistency of MMRs across audition, somato-

sensation and vision, our study provides insights into a shared cortical network of

uni- and multi-modal expectation violation in response to sequence regularities.
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1 | INTRODUCTION

The brain is constantly subjected to a multi-modal stream of sensory

inputs. As humans are encountering sensory information in an envi-

ronment governed by statistical dependencies, the brain is engaging in

probabilistic inference within and across sensory modalities (Barascud

et al., 2016; Friston, 2005; Frost et al., 2015; Geisler, 2008;

Gregory, 1980; Perruchet & Pacton, 2006; Summerfield & de

Lange, 2014; Winkler et al., 2009). Neuronal mismatch responses

(MMRs) to regularity violations such as the mismatch negativity

(MMN; Näätänen et al., 1978, 2007) and the P3 (or P300;

Polich, 2007; Squires et al., 1975; Sutton et al., 1965) have proven to

provide valuable insights into the processing of probabilistic sensory

input at various scales (Bekinschtein et al., 2009; Dehaene

et al., 2015; Heilbron & Chait, 2018; Näätänen et al., 2001;

Paavilainen, 2013; Schröger et al., 2014; Squires et al., 1975;

Wacongne et al., 2011; Yaron et al., 2012). Although MMRs are

among the most researched neural signatures (Näätänen et al., 2019;

Polich, 2007), only few studies allow their direct comparison across

sensory modalities and the mechanisms of modality specific and

modality general MMRs to probabilistic multi-modal inputs are largely

unknown.

If sensory regularities, for example, repeating (standard) stimuli or

stimulus patterns, are occasionally violated by rare (deviant) stimuli,

brain signals typically recorded with EEG in form of MMRs can be

observed. The most well-known MMR is the auditory MMN, an early

EEG component between �100 and 200 ms post-stimulus onset

which results from contrasting responses to deviant and standard

stimuli. The MMN is elicited independent of attentional focus and

task-related top-down processes (Alain & Woods, 1997; Näätänen

et al., 1993; Ritter et al., 1999), even though attention can increase its

amplitude (Trejo et al., 1995; Woldorff et al., 1991). Although primar-

ily researched in the auditory modality, similar early MMN responses

have been reported for other sensory modalities, including somato-

sensation (Andersen & Lundqvist, 2019; Gijsen et al., 2021; Hu

et al., 2013; Kekoni et al., 1997; Ostwald et al., 2012; Shinozaki

et al., 1998) and vision (Czigler, 2007; Kimura et al., 2011; Pazo-

Alvarez et al., 2003; Stefanics et al., 2014). The major neuronal gener-

ator of the auditory MMN is found in the auditory cortex where the

exact location depends on the eliciting sound features and their com-

plexity (Alho, 1995; Giard et al., 1990; Molholm et al., 2005; Sabri

et al., 2004), with additional contributions from inferior frontal cortex

(Deouell, 2007; Doeller et al., 2003; Molholm et al., 2005; Opitz

et al., 2002; Rinne et al., 2005; Shalgi & Deouell, 2007). Similarly, the

neuronal sources underlying the somatosensory MMN are found in

primary and secondary somatosensory cortices (Akatsuka, Wasaka,

Nakata, Kida, Hoshiyama, et al., 2007; Akatsuka, Wasaka, Nakata,

Kida, & Kakigi, 2007; Andersen & Lundqvist, 2019; Butler et al., 2012;

Gijsen et al., 2021; Grundei et al., 2023; Naeije et al., 2016; Ostwald

et al., 2012; Spackman et al., 2010), in combination with inferior fron-

tal cortex (Allen et al., 2016; Chen et al., 2008; Fardo et al., 2017;

Grundei et al., 2023; Ostwald et al., 2012). The combination of sen-

sory and frontal sources is also indicated to underlie the visual MMN

(Hedge et al., 2015; Iglesias et al., 2013; Kimura et al., 2011; Pazo-

Alvarez et al., 2003; Yucel et al., 2007). Overall, ample evidence is

pointing to modality-specific MMN generators in sensory regions and

more modality-general contributions from (right inferior) prefrontal

cortex.

A second well researched MMR is the P3, a later positive signal in

response to stimulus deviance between 250 and 500 ms. The P3 is

generally considered to be an attention-dependent response (Duncan

et al., 2009; Duncan-Johnson & Donchin, 1982; Näätänen &

Gaillard, 1983; Polich, 2007). While the earlier P3a sub-component is

task-independent, drawing observers' attention to novel or unex-

pected stimuli (Escera et al., 2000; Friedman et al., 2001; Knight &

Scabini, 1998), the later P3b response is more sensitive to task-related

target stimuli (Duncan et al., 2009; Polich, 2007). Although extensively

researched in the auditory domain, the P3 is known for its modality

independent characteristics (Linden, 2005; Polich, 2007) and has been

equivalently reported for somatosensation (Andersen &

Lundqvist, 2019; Gijsen et al., 2021; Ostwald et al., 2012; Shen

et al., 2018a, 2018b; Yamaguchi & Knight, 1991, 1992) and vision

(Conill, 1998; Duncan et al., 2009; Picton, 1992; Zhang et al., 2022),

and has been described across senses in response to multi-modal

sequences (Grundei et al., 2023). The generating sources underlying

the P3 are thought to be distributed in a fronto-parietal network,

involving inferior frontal, anterior cingulate and temporo-parietal

regions, with some indications for pronounced frontal contributions

for the P3a and parietal dominance for the P3b (Linden, 2005;

Polich, 2007). Thus, research on the P3 supports a modality-general

role for fronto-parietal network activations in the processing of

expectation violation and novelty alerting (Linden, 2005; Polich, 2007;

Squires et al., 1975; Sutton et al., 1965).

Brain connectivity analyses based on fMRI and electrophysiologi-

cal recordings support comparable network mechanisms underlying

MMRs across modalities. Studies using dynamic causal models (DCM)

indicate modulations in bidirectional connectivity in a fronto-sensory

network hierarchy underlying MMRs in the auditory (Chennu

et al., 2016; Garrido et al., 2007; Garrido et al., 2008; Garrido, Kilner,

Kiebel, & Friston, 2009; Hughes et al., 2013; Phillips et al., 2015;

Phillips et al., 2016) and somatosensory modality (Allen et al., 2016;

Fardo et al., 2017), and propose that feedforward and feedback con-

nections carry sensory errors and top-down expectations respectively.

Similar mechanisms are hypothesized for visual MMRs (Stefanics

et al., 2014). Moreover, parietal contributions to this network have

been indicated for MMRs in somatosensation via DCM (Fardo

et al., 2017) as well as to auditory MMRs via psychophysiological

interaction (PPI) analyses in fMRI (Uhrig et al., 2014). Beyond the

auditory modality only few studies have investigated MMR-related

connectivity modulations (Allen et al., 2016; Fardo et al., 2017;

Kellermann et al., 2017; Sherman et al., 2016), and findings for multi-

modal inputs are largely lacking.

In a series of seminal articles, Downar and colleagues have inves-

tigated MMRs to multi-modal stimulus sequences (Downar

et al., 2000, 2001, 2002). These studies provided first indications for a

multi-modal mismatch network of sensory specific activation in
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hierarchically higher sensory cortices and shared activations in inferior

frontal and temporo-parietal regions in line with converging evidence

from the auditory modality (Chennu et al., 2016; Dürschmid

et al., 2016; El Karoui et al., 2015; Phillips et al., 2015; Phillips

et al., 2016; Uhrig et al., 2014). A meta-analysis of neuroimaging stud-

ies corroborated these reports, revealing similar fronto-parietal MMR-

related activation for the auditory and visual modality (Kim, 2014).

Furthermore, current research on statistical learning points to

domain-general computations underlying associative and probabilistic

learning across different senses (Frost et al., 2015; Saffran &

Thiessen, 2007). It has been shown that intraparietal and inferior fron-

tal cortex encode the abstract structure of auditory and visual

sequence patterns (Dehaene et al., 2015; Planton & Dehaene, 2021;

Wang et al., 2015; Wang et al., 2019), highlighting their modality inde-

pendent role during the extraction of regularities. Moreover, multi-

modal integration has been indicated during sequence processing

(Bresciani et al., 2006, 2008), in terms of modulatory influences on

the MMN (Besle et al., 2005; Butler et al., 2012; Friedel et al., 2020;

Kiat, 2018; Zhao et al., 2015) and during multi-modal causal inference

in a fronto-parietal network (Cao et al., 2019; Noppeney, 2021).

Therefore, current research suggests a role for modality general

fronto-parietal activation during probabilistic sensory inference and it

is of great interest to characterize the processing of multi-modal sta-

tistical regularities and the underlying network in more detail.

An early finding, which has become a focus of the research on

statistical sensory learning, is the modulation of the auditory MMN by

standard repetition, that is, its amplitude increase with the number of

prior standard presentations (Cowan et al., 1993; Haenschel

et al., 2005; Imada et al., 1993; Sams et al., 1983). More recently, such

modulation was shown beyond the auditory modality for both, MMN

and P3 (Gijsen et al., 2021; Grundei et al., 2023). Although discussion

persists about the contribution of stimulus specific adaptation in early

sensory regions to these effects (Jääskelainen et al., 2004; May &

Tiitinen, 2010), evidence converges to the view that increasing top-

down modulations in response to the repeating stimulus accounts

best for this observation (Auksztulewicz et al., 2017; Auksztulewicz &

Friston, 2016; Baldeweg, 2006; Ewbank et al., 2011; Garrido, Kilner,

Stephan, & Friston, 2009; Langner et al., 2011; Summerfield

et al., 2008; Todorovic & de Lange, 2012), particularly as studies have

highlighted the dependence of MMRs on stimulus expectation based

on statistical regularities as opposed to mere changes in stimulus

properties (Bendixen et al., 2012; Heilbron & Chait, 2018; Wacongne

et al., 2011). Computational modeling of EEG dynamics has indicated

that probabilistic learning of environmental statistics underlies MMRs

in the auditory (Lecaignard et al., 2022; Lieder, Daunizeau,

et al., 2013; Weber et al., 2020), somatosensory (Gijsen et al., 2021;

Grundei et al., 2023; Ostwald et al., 2012) and visual modality

(Stefanics et al., 2018). This view is supported by studies showing

deviant responses to abstract rule violations (Näätänen et al., 2010;

Paavilainen, 2013; Schröger et al., 2007), unexpected stimulus repeti-

tions (Alain et al., 1999; Horvath & Winkler, 2004; Macdonald &

Campbell, 2011; Nordby et al., 1988) and unexpected stimulus omis-

sions (Bendixen et al., 2009; Chennu et al., 2016; SanMiguel

et al., 2013; Suda et al., 2022; Yabe et al., 1997). Such key properties

of the auditory MMN (Wacongne et al., 2012) have similarly been

reported for the somatosensory (Andersen & Lundqvist, 2019; Naeije

et al., 2018) and the visual MMN (Czigler, 2007; Czigler et al., 2006)

as well as for the (auditory) P3 (Duncan et al., 2009; Prete

et al., 2022). Furthermore, it has been proposed that the deviance

detection system of MMN and P3 differentially responds to expecta-

tion violation to sequence regularities on different levels of complexity.

Studies employing the “local–global” paradigm (Bekinschtein

et al., 2009) in which stimulus sequences are defined by local regulari-

ties (e.g., the tendency of a stimulus to repeat) and additional global

regularities (e.g., every fifth stimulus in a repeated sequence is a devi-

ant) show that the MMN is only elicited by the local regularity viola-

tions whereas the later P3 is additionally sensitive to violations of the

global deviant regularity (Bekinschtein et al., 2009; Chennu et al., 2013;

Chennu et al., 2016; Dürschmid et al., 2016; El Karoui et al., 2015; King

et al., 2014; Niedernhuber et al., 2022; Shirazibeheshti et al., 2018;

Wacongne et al., 2011). Strikingly, this dichotomy for MMRs was

recently shown to hold for the auditory, somatosensory and visual

modality alike (Niedernhuber et al., 2022). Evidence converges to the

view that the MMN, induced by local deviants primarily activates sen-

sory regions, while the P3 MMR after global deviance is accompanied

by frontal (Chao et al., 2018; Chennu et al., 2013; El Karoui et al., 2015)

and fronto-parietal activations (Bekinschtein et al., 2009; Uhrig

et al., 2014), in line with the neuronal sources thought to underlie the

P3 (Linden, 2005; Polich, 2007). These results suggest that the P3

reflects expectation violation on a more global scale of sequence pro-

cessing, indicating increasing levels of information integration in the

hierarchy of a putative mismatch network.

Mechanistic accounts of universal principles of perception and

perceptual learning in the brain, such as predictive processing

(Clark, 2013; Friston, 2005, 2010), imply a modality independent role

for MMRs reflecting error signals during expectation violation. Under

such a view, the brain maintains a generative model of its environ-

ment which is continuously updated by comparing incoming sensory

information with model predictions on different levels of hierarchical

cortical organization (Friston, 2005; Kiebel et al., 2008;

Mumford, 1992; Rao & Ballard, 1999). MMRs are interpreted as signa-

tures of sensory prediction error in response to violations of top-

down predictions (Friston, 2005; Garrido, Kilner, Stephan, &

Friston, 2009; Winkler & Czigler, 2012). Predictive coding models can

account for key features of MMRs (Heilbron & Chait, 2018; Lieder,

Stephan, et al., 2013; Wacongne et al., 2012) and the dichotomy of

MMN and P3 identified by the local–global paradigm is thought to

reflect differential processing stages in a predictive hierarchy operat-

ing on different levels of complexity and information integration

(Bekinschtein et al., 2009; Chennu et al., 2016; Dürschmid

et al., 2016; Uhrig et al., 2014; Wacongne et al., 2011). Similarly, the

repetition modulation of MMRs reflect prediction error responses

scaled by an increasing sensory expectation to repeat the current

stimulus train (Auksztulewicz & Friston, 2016; Baldeweg, 2006). The

results of prior empirical work, showing interactions in the

fronto-parietal and fronto-sensory hierarchy of the cortex during
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mismatch processing across different modalities, are well in line with

such mechanistic predictive processing accounts of MMR generation

(Garrido, Kilner, Stephan, & Friston, 2009; Heilbron & Chait, 2018;

Wacongne et al., 2012).

Overall, comparable dynamics of brain responses reflecting

expectation violation within and across sensory modalities at different

scales of complexity are of great interest for a mechanistic under-

standing of MMRs and fMRI investigations complementing the large

body of work done in EEG remain rare. In the current study, we use a

tri-modal version of the roving stimulus paradigm (Grundei

et al., 2023) to elicit MMRs in fMRI. The paradigm allows to study

responses to rare stimulus transitions independent of their equiproba-

ble features (Baldeweg et al., 2004; Cowan et al., 1993; Garrido

et al., 2008). As such, we take into account the consensus that MMRs

reflect mismatching sensory expectations rather than stimulus proper-

ties as well as a suggested fundamental role for probabilistic represen-

tations of stimulus transitions in sequence perception and statistical

learning (Dehaene et al., 2015; Maheu et al., 2019; Meyniel

et al., 2016; Mittag et al., 2016). Based on a probabilistic model, we

generated multi-modal sequences of low and high intensity stimuli for

the auditory, somatosensory and visual modality which were gov-

erned by transition probabilities specifying cross-modal conditional

dependencies. As each stimulus transition was conditional on the prior

tri-modal stimulus configuration, the sequences exhibit global predic-

tive properties in form of the multi-modal context. The aim of the

study was to identify a mismatch network of modality specific sensory

cortices and modality independent hubs of mismatch processing in

frontal and parietal cortices, as suggested by previous research

(e.g., Downar et al., 2000). Moreover, we intended to show equiva-

lences of MMRs across the senses, particularly in terms of the modu-

lation of deviant responses with increasing expectation established by

a local stimulus train (Baldeweg, 2006; Haenschel et al., 2005). Finally,

our manipulation of the global stimulus predictability based on the

other senses was expected to reveal potential higher-level loci within

the mismatch network sensitive cross-modal expectation violation.

2 | MATERIALS AND METHODS

Twenty-nine participants with no history of psychiatric or neurological

disorders completed the experiment (14 female; 15 male; age range

18–43, M = 28, SD = 5.9). Prior to the experiment, written informed

consent was obtained from each participant. The study was approved

by the ethics committee at the Freie Universität Berlin (003/2021).

Participants underwent a multi-modal version of the roving stimu-

lus paradigm. Our paradigm, depicted in Figure 1a, consisted of simul-

taneously presented bilateral auditory (A), somatosensory (S) and

visual (V) stimuli, which each alternated between two different inten-

sity levels (‘low’ and ‘high’). The tri-modal stimulus sequences origi-

nated from a single probabilistic model resulting in different

combinations of low and high stimuli across the three modalities in

each trial. The sequence generation process is described in detail for

an EEG study in Grundei et al. (2023). In short, it consists of a state s

at time t evolving according to a Markov chain (p stjst�1ð Þ). Each state s

represents 1 of 8 possible patterns as shown in Figure 1a with each

state corresponding to a combination of three binary observations o.

Therefore, each observation combination is conditional on the preced-

ing observation combination (p oA,t,oS,t,oV,tjoA,t�1,oS,t�1,oV,t�1ð Þ). For

each modality, the binary observations have equal probability of

occurrence p¼ :5ð Þ and stimulus transition probabilities were defined

such that repetitions are more likely p¼ :825ð Þ than changes

p¼ :175ð Þ. For each modality, the overall configuration of change

probabilities results in classic roving stimulus sequences, where trains

of stimulus repetitions with different lengths alternate between the

two stimulus intensities (depicted in Figure 1b). The range of train

lengths was between 1 and 51 repetitions with an equal distribution

across modalities (right skewed with expected value of 5 repetitions).

In each trial, for each of the three stimulus modalities, the other

two modalities can be either both in low or high intensity (congruent)

or one of them is low and the other high (incongruent). This property

of the configuration of stimuli across the modalities was used to

manipulate the predictability of stimulus transitions in the sequences.

Three different types of stimulus sequences were generated with dif-

ferent settings (conditions C1, C2 and C3) determining the transition

probabilities of each modality given the arrangement of the stimuli in

the other two modalities (i.e., either congruent or incongruent;

depicted in Figure 1c exemplified by a visual sequence for condition

C1). Setting C1 defines higher change probability if the other two

modalities are congruent (p(changejcongruent) = 0.15,

p(changejincongruent) = 0.025). Setting C2 defines lower change

probability if the other two modalities are congruent (p

(changejcongruent) = 0.025, p(changejincongruent) = 0.15). Setting

C3 defines equal change probability if the other two modalities are

congruent or incongruent (p(changejcongruent) = p

(changejincongruent) = 0.0875). Per definition, the repetition proba-

bility follows the same principle such that for C1,

p(repetitionjcongruent) = 0.85 and p(repetitionjincongruent) = 0.975,

for C2, p(repetitionjcongruent) = 0.975 and p(repetitionjincongruent)
= 0.85 and for C3, p(repetitionjcongruent) = p(repetitionjincongru-
ent) 0.925. Thus, in addition to the basic roving rule (i.e., repetitions

are more likely than changes), for each modality, the settings C1 and

C2 result in a tendency for stimuli to be more or less predicted in con-

text of the two other modalities: In setting C1 a sequential stimulus

tends to change more often (shows higher volatility) if accompanied

by two congruent stimuli and tends to repeat more often (i.e., is more

stable) if accompanied by two incongruent stimuli, and v.v. for C2. In

other words, the multi-modal context predicts the tendency for vola-

tile and stable phases of the stimulus sequence. Using a terminology

along the lines of Arnal and Giraud (2012), the resulting stimulus tran-

sitions for each modality within the different sequences can therefore

be defined as being rather predicted (here: higher transition probability

conditional on congruency/incongruency of the other modalities),

rather mispredicted (here: lower transition probability) or unpredictable

(here: equal transition probability) in context of the tri-modal stimulus

presentation. During each of 6 experimental runs, a sequence of stim-

uli with one of the three different probability settings (C1, C2, C3)
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was presented. For each participant unique sequences were sampled

with randomly assigned conditions. The conditions were randomized

across participants and a comparable number was presented overall,

although condition C1 was presented more often (C1 = 63, C2 = 56,

C3 = 55). In an alternative GLM setup presented in the Supplemen-

tary Materials which indicated highly comparable results (see

Figure S1), the number of trials was balanced more rigorously, indicat-

ing that this slight imbalance in conditions is unlikely to have affected

F IGURE 1 Experimental design. (a) Participants were presented with sequences of simultaneously presented bilateral auditory (A; green)
“beep” stimuli, somatosensory (S; purple) electrical pulse stimuli and visual (V; orange) flash stimuli each at either low or high intensity. On
consecutive trials, stimuli within each modality either repeated the previous stimulus intensity of that modality (standard) or alternated to the

other intensity (deviant), corresponding to roving stimulus sequences for each modality (middle). Sequences were sampled according to a state
transition matrix specifying the probabilities for states 0–7 at time t + 1 given the previous state st. Three different transition probability settings
were used to define sequences for conditions C1, C2 and C3 (see Methods). Transition matrix here shown for probability setting C1. Light color
shading depicts changes in a respective modality (A, S, V); light-gray diagonal defines the probability of tri-modal repetitions; white entries define
the probability of multi-modal changes which are set to zero. Each state maps to a specific tri-modal observation (o) combination of low and high
intensity stimuli (right table). (b) Deviant modulation by train length. Within the sequence of each modality stimulus repetitions form trains of
standards of different lengths. The deviant following a specific standard train is labeled as falling in one of six categories depicted by color shading
of the deviant (categories: 1, 2, 3, 4–5, 6–8, >8 repetitions). In our analyses we were interested in the modulation of the deviant response as a
function of the standard train length preceding it. (c) Predictability of stimulus transitions by multi-modal configuration. Left: Exemplary shown for
a visual sequence with probability setting C1. Right: Empirical change probabilities for sequences of conditions C1, C2 and C3. Bars depict the
mean percentage of occurrence �standard error for the three modalities. In C1, if two modalities are congruent (both low or both high) a change
in the third modality is more likely than when the other modalities are incongruent with each other (one low and one high, or v.v.). In C2, if two
modalities are congruent a change in the third modality is less likely. In C3, changes are equally likely if the other two modalities are congruent or
incongruent.
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our main findings. The empirical change probabilities present in the

applied sequences were ensured to be representative of the true

underlying probabilities (see Figure 1c). Sequences were resampled if

deviations were deemed too large. The range of deviations was set to

�0:005 for the probability differences in congruent/incongruent con-

ditions. For the overall change probability as well as the probability of

low and high intensity stimuli this range was set to �0:025. Finally, a

minimum number of one repetition was ensured by discarding trials

during the sampling process which corresponded to changes following

changes. Participants were uninformed about the sequence probabili-

ties and they were task irrelevant. Upon completion of the experi-

ment, participants were debriefed and asked if they noticed any

regularities in the sequences.

2.1 | Experimental setup

Each trial consisted of bilateral stimuli in three modalities (A, S, and V)

that were presented simultaneously by triggering three instantaneous

outputs of a data acquisition card (NI-USB 6343; National Instruments

Corporation, Austin, Texas, USA) with an inter-stimulus interval (ISI)

of 1750 ms. At each trial the device received and stored the corre-

sponding stimulus waveform of each modality and released these to

the stimulation devices upon a trigger signal, ensuring simultaneous

stimulation.

Auditory stimuli were presented via in-ear MRI compatible head-

phones (Siemens Healthcare GmbH, Erlangen, Germany) to both ears.

The MRI internal auditory system was set to maximum and received

auditory inputs from the data acquisition card consisting of sinusoidal

waves of 500 Hz and 100 ms duration modulated in their amplitudes

by two different voltage factors. These were individually adjusted

with the participants prior to the experiment to obtain two clearly

perceivable and distinguishable intensities (mean intensity across par-

ticipants � SD: low=0.29�0.3V, high=1.58�1.28V). As a differ-

ent set of headphones was used for the first four participants, these

were not included in the average intensity calculation.

Somatosensory stimuli were administered with two DS5 isolated

bipolar constant current stimulators (Digitimer Limited, Welwyn Gar-

den City, Hertfordshire, UK) via adhesive electrodes (GVB-geliMED

GmbH, Bad Segeberg, Germany) attached to the wrists of both arms

to stimulate the median nerve. The stimuli consisted of electrical rect-

angular pulses of 0.2 ms duration, modulated by two different ampli-

tudes. The two intensity levels were determined on an individual basis

to obtain two clearly perceivable and distinguishable intensities (mean

intensity across participants � SD: low=4.47�0.99mA,

high=7.47�1.56mA).

Visual stimuli were presented via light emitting diodes (LEDs) and

transmitted through optical fiber cables (Loptec GmbH, Berlin,

Germany). The LEDs were mounted 10 cm to the left and to the right

of a fixation cross along the horizontal meridian (10�, eccentricity) pre-

sented on a display board at the base of the magnet bore at approxi-

mately 110 cm. The visual flashes consisted of rectangular waves of

100 ms duration which were modulated by two different voltage

amplitudes (low intensity stimulus: 2.65 V, corresponding to approxi-

mately 0.4 lux; high intensity stimulus: 10 V, corresponding

to approximately 91.5 lux). The visual stimuli were determined to be

clearly perceivable and distinguishable by all participants so that no

individual intensity adjustments were applied.

In each of 6 experimental runs, a sequence of 400 trials was pre-

sented. To ensure that participants maintained attention throughout

the experiment and to encourage monitoring of all three stimulation

modalities, participants were instructed to respond to occasional tar-

get questions (catch trials) via button presses with the foot. In six trials

(<1%), randomly placed within each run, the fixation cross changed to

one of the letters A, T or V followed by a question mark. This

prompted participants to report if the most recent stimulus (before

the appearance of the letter) in the auditory (letter A), somatosensory

(letter T for “tactile”) or visual (letter V) modality was presented with

low or high intensity. To minimize motion during responses, the hallux

of the right foot was used by participants to press either a left or a

right button on an MRI compatible button-box, and the button assign-

ment (left = low/right = high or left = high/right = low) was counter-

balanced across participants.

2.2 | fMRI data acquisition and preprocessing

Functional MRI data was acquired in 6 runs of 11.9 min on a 3 T Mag-

netom Prisma Fit Scanner (Siemens Healthcare GmbH, Erlangen,

Germany) at the Center for Cognitive Neuroscience Berlin (CCNB),

using a 64 channel head coil. Four hundred and seventy-five func-

tional volumes were acquired per run using a T2*-weighted gradient-

echo EPI multiband 1 sequence (SMS factor = 3), with interleaved

acquisition order and whole brain coverage (TR = 1.5 s; TE = 33 ms;

2.5 � 2.5 � 2.5 mm3 voxel; matrix size = 80 � 80, FOV = 200 mm,

flip angle = 70�; 48 slices; gap = 10%). Additionally, a T1-weighted

MPRAGE with 208 sagittal slices, TR = 1930 ms, TE = 3.52 ms, 0.8

� 0.8 � 0.8 mm3 voxel size was acquired.

FMRI data were pre-processed with SPM12 (Wellcome Trust

Centre for Neuroimaging, Institute for Neurology, University College

London, UK). Functional data were realigned to the mean image, nor-

malized to MNI space using unified segmentation, interpolated to

2 � 2 � 2 mm3 voxel size, spatially smoothed with an 8 mm FWHM

Gaussian kernel, and temporally detrended (Macey et al., 2004).

2.3 | GLM analyses

Statistical analysis was performed according to a standard general lin-

ear model (GLM) approach with SPM12. For the experimental condi-

tions, two separate first-level GLMs were computed for each

participant. Each analysis was applied on the full data set and all com-

puted first level GLMs contained regressors of no interest for the

motion parameters.

One first-level GLM comprised a regressor modeling the onsets

of all trials complemented with parametric regressors for each
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modality coding the trials with 1 and �1 for intensity (High > Low),

mismatch responses (Deviants > Standards) and cross-modal predict-

ability (Mispredicted > Predicted). Correspondingly, three first-level

contrasts for each modality were computed. Please note that, con-

trary to conventional MMN analyses in EEG which only consider the

pre-deviant standard stimulus, in our analysis all standards were mod-

eled in the GLM to avoid collinearity in the contrasts.

An additional subject-level GLM was computed to test for para-

metric effects of deviant responses, dependent on the number of rep-

etitions of standards before the deviant (train length; Figure 1b). We

binned the deviant trials into six categories of train length (repetitions

before the deviant: 1, 2, 3, 4–5, 6–8, >8) and created a model with a

separate regressor for each of the train length categories for each

modality. Computing separate contrast estimates for each corre-

sponding train length allowed us to compute a linear contrast on the

second level and plot the respective contrast estimates (shown in

Results Figure 3).

The second level GLM analyses were performed as ANOVA

models in terms of the flexible factorial design specification imple-

mented in SPM. First-level contrast images for each modality with

one factor coding for modality, one factor coding for experimental

condition were included supplemented with a subject factor. All sec-

ond level conjunction analyses were computed as a conjunction

against the global null hypothesis as implemented in SPM (Friston

et al., 1999; Friston et al., 2005). Activation clusters were labeled

according to anatomical and functional assignments provided by the

cytoarchitectonic maps of the SPM Anatomy (Eickhoff et al., 2005).

2.4 | Psychophysiological-interaction analyses

To model changes in connectivity, we used PPI analyses as imple-

mented in SPM (Friston et al., 1997). PPIs indicate if the contribu-

tion of one brain area to another changes significantly with an

experimental factor and, as such, can be viewed as an event-related

connectivity measure. We tested for PPI-connectivity changes dur-

ing mismatch responses from seed regions in sensory cortices to

the remaining brain voxels. The seed regions were based on the

analysis of mismatch responses described above. From the seed

regions we extracted time-series data from volumes of interest

defined as 8 mm radius spheres around peak voxels identified in

the GLM analysis (somatosens: left x = �62, y = �16, z = 16; right:

x = 58, y = �18, z = 22; auditory: left x = �60, y = �42, z = 12;

right: x = 62, y = �38, z = 8; visual: left x = �44, y = �68, z = 2;

right: x = 46, y = �58, z = 14). Following SPM's implementation of

PPI analyses, for each modality, the interaction of the extracted

source signal with the respective Deviants > Standards regressor of

that modality was formed and included in a first level GLM analysis

together with the source region's signal and all remaining experi-

mental regressors. Subsequently, first level contrasts were com-

puted for the interaction regressors and included in a second level

GLM which included all PPI estimates (left and right of all modali-

ties) and a subject factor.

3 | RESULTS

3.1 | Behavioral results

Participants performances in the “catch-trials” indicates their ability to

globally maintain their attention to the tri-modal stimulus stream. Of

the 70.9 �21% (M� SD) responses that were given within the short

response window (of 2.3 s), 73.5�15.6% were correct with an aver-

age reaction time of 1.49�0.21 s. One-way repeated measures ANO-

VAs indicated no difference between modalities for response

evaluation (F(2,50)=0.02, p= .98) or reaction time (F(2,50)=0.75,

p= .48). Exclusion of a sample of participants (n=5) showing bad

response performance (who responded to ≤50% of questions in

≥50% of experimental runs) resulted in virtually identical fMRI results

as presented below and no participants were removed from the analy-

sis. Upon completion of the experiment, participants were debriefed

and none of the participants identified the cross-modal regularities in

the sequences.

3.2 | Mismatch responses across modalities

To reveal activation related to MMRs for each modality we computed

the contrast Deviants > Standards against the same contrasts in the

other two modalities, to delineate sensory specific activations.

The results are presented in Figure 2, thresholded with p < .05 FWE

corrected on the peak level and unthresholded SPMs of all results are

available at https://www.neurovault.org/collections/LECDZXPI.

The auditory cluster spans bilaterally across the superior temporal

gyrus (STG). Strongest activity was found in STG regions identified as

auditory association areas in temporal cortex TE3 (right peak: x = 66,

y = �32, z = 4, t-value = 15.4; left peak: x = �64, y = �38, z = 12,

t-value = 13.5), temporal area TE4 in the upper bank of the superior

temporal sulcus STS1 (right peak: x = 60, y = �20, z = 0, t-

value = 13.8; left peak: x = �62, y = �22, z = 2, t-value = 10.1) and

temporal area TE5 in the lower bank of the superior temporal sulcus

STS2 (right peak: x = 54, y = 2, z = �12, t-value = 10.7; left peak:

x = �50, y = �12, z = �8, t-value = 5.4). Moreover, some extensions

into planum temporale and Heschl's gyrus were found on the left,

encompassing primary auditory cortex in temporal area TE1 (left peak:

x = �36, y = �32, z = 8, t-value = 8.6).

The somatosensory cluster extends bilaterally across the postcen-

tral gyrus and the operculum. Strongest activity was found in opercu-

lar cortex OP1, functionally identified as the secondary

somatosensory cortex (SII; right peak: x = 48, y = �18, z = 18, t-

value = 10.2; left peak: x = �58, y = �18, z = 16, t-value = 9.2), as

well as the insular cortex (IC/Id4; right peak: x = 38, y = 0, z = 10, t-

value = 9.5; left peak: x = �40, y = �6, z = 10, t-value = 7.9). The

functional regions in postcentral gyrus were attributed to the primary

somatosensory cortex (SI) in Brodmann areas BA2 (right peak: x = 26,

y = �40, z = 68, t-value = 7.4; left peak: x = �24, y = �42, z = 66,

t-value = 6.7) and BA3b (right peak: x = 48, y = �16, z = 36, t-

value = 6.2; left peak: x = �50, y = �16, z = 32, t-value = 5.5).
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The visual cluster extends bilaterally across the lateral occipital

cortex (LOC) and inferior temporal cortex (IT) around the fusiform

gyrus (FG). Strongest activity was found in FG (FG2; right peak:

x = 46, y = �58, z = �14, t-value = 11.9; left peak: x = �44,

y = �64, z = �12, t-value = 12.2) as well as LOC containing func-

tional regions identified as higher order visual areas V4 (hOc4; right

peak: x = 44, y = �74, z = 14, t-value = 10.6) and V5 (hOc5; left

peak: x = �44, y = �68, z = 2, t-value = 7.5). Additional activation

was found around the calcarine sulcus identified as visual areas V1

(hOc1; right peak: x = 6, y = �80, z = 6, t-value = 5) and V2 (hOc2;

right peak: x = 8, y = �84, z = 12, t-value = 5.1).

The conjunction contrast across modalities shows bilateral clusters

around the inferior frontal junction (IFJ) in the inferior frontal gyrus

(IFG; right peak: x = 50, y = 12, z = 24, t-value = 6.7; left peak:

x = �50, y = �8, z = 26, t-value = 5.3) and middle frontal gyrus (MFG;

right peak: x = 42, y = 0, z = 52, t-value = 5.8; left peak: x = �40,

y = �4, z = 52, t-value = 6.9), and is most pronounced on the right

side where it extends into frontal operculum and IC (Id7; right peak:

x = 32, y = 26, z = 2, t-value = 2.7). Additional pronounced conjunc-

tion effects were found across the anterior portion of the supplemen-

tary motor area, extending into the anterior cingulate gyrus (SMA/ACC;

left peak: x = �6, y = 10, z = 50, t-value = 7.1), as well as bilaterally at

the intersection of supramarginal gyrus (SMG), angular gyrus (AG) and

superior and middle temporal gyrus (MTG) around the temporo-parietal

junction (TPJ; right peak: x = 54, y = �40, z = 22, t-value = 5.2; left

peak: x = �54, y = �44, z = 10, t-value = 6.9).

3.3 | Mismatch modulated connectivity

Results of seed-based PPI-connectivity analyses are presented in

Figure 3, thresholded with p < .05 FWE corrected on the cluster level,

showing connectivity increases from the three respective bilateral

sensory seed regions to the rest of the brain, modulated by the mis-

match contrast Deviants > Standards. Seed-regions were in modality-

specific higher order sensory cortices of both hemispheres based on

the strongest effects of the Deviants > Standards contrast presented

above (see Figure 2), consisting of STG (auditory; left: x = �60,

y = �42, z = 12; right: x = 62, y = �38, z = 8), OP/SII (somatosen-

sory; left: x = �58, y = �18, z = 22; right: x = 58, y = �18, z = 22)

and IT cortex (visual; left: x = �44, y = �68, z = 2; right: x = 46,

y = �58, z = �14).

The conjunction contrast revealed a common increase in connec-

tivity with brain areas found in the extended mismatch network com-

prised of bilateral frontal and temporo-parietal regions with

pronounced clusters on the right hemisphere. The frontal clusters are

located bilaterally across the IFJ, including MFG (right peak: x = 44,

y = 28, z = 22, t-value = 3.6; left peak: x = �42, y = 4, z = 36, t-

value = 3.6) and IFG (right peak: x = 50, y = 12, z = 30, t-value = 3.9;

left peak: x = �40, y = 28, z = 20, t-value = 3.4), with extensions

into IC (Id6; right peak: x = 34, y = 20, z = 0, t-value = 3.7; left peak:

x = �34, y = 14, z = �2, t-value = 3) and right frontal pole

(FP) (peak: x = 42, y = 42, z = 22, t-value = 4.1). The parietal clusters

locate around the intraparietal sulcus (IPS; right peak: x = 36,

y = �52, z = 50, t-value = 4.6; left peak: x = �32, y = �56, z = 46,

t-value = 3.6), the TPJ (right peak: x = 54, y = 38, z = 18, t-

value = 3.2; left peak: x = �56, y = �42, z = 14, t-value = 2.5) as

well as precuneus (right peak: x = 8, y = �64, z = 44, t-value = 3.4;

left peak: x = �4, y = �62, z = 50, t-value = 1.8).

3.4 | Modulation of deviant response by train
length

The contrast of a parametric deviant increase with train length

(defined by the number of standards presented prior to the deviant)

F IGURE 2 Mismatch
responses. Contrasts of
Deviants > Standards are shown
for the auditory (green),
somatosensory (purple) and visual
(orange) modality as well as their
conjunction (yellow), p < .05 FWE
corrected on the peak level.
Unthresholded SPMs are

available at https://www.
neurovault.org/collections/
LECDZXPI. Abbreviations of
region labels: IFJ: inferior frontal
junction; IT: inferior temporal
cortex; LOC: lateral occipital
cortex; OP: Opercular cortex;
SMA/ACC: (anterior)
supplementary motor area/
anterior cingulate gyrus; STG:
superior temporal gyrus.
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for each modality is shown in Figure 4, thresholded with p < .05 FWE

corrected on the cluster level. Significant clusters largely overlap with

the effects in the mismatch network described above (Figure 2).

The auditory clusters are found bilaterally in STG with strongest

activity in regions identified as auditory association areas TE3 (right

peak: x = 66, y = �30, z = 6, t-value = 12.5; left peak: x = �62,

y = �36, z = 10, t-value = 8.8) and TE4 (right peak: x = 52, y = �22,

z = �2, t-value = 7; left peak: x = �60, y = �16, z = 0, t-value = 6.7)

as well as the precuneus (right peak: x = 10, y = �74, z = �40, t-

value = 4.6; left peak: x = �6, y = �72, z = 46, t-value = 4.9).

The somatosensory clusters primarily extend across the OP cor-

tex including OP1, functionally corresponding to SII (right peak:

x = 56, y = �16, z = 20, t-value = 8.2; left peak: x = �58, y = �16,

z = 20, t-value = 7.1), and the IC (Id4; right peak: x = 40, y = �2,

z = 10, t-value = 7.6; left peak: x = �38, y = �6, z = 10, t-

value = 5.2). Additional activation was found in left postcentral sulcus

identified as BA 2, containing SI (left peak: x = �48, y = �26, z = 42,

t-value = 4.3) and around the SMA/ACC (left peak: x = �2, y = 6,

z = 36, t-value = 4.3).

The visual clusters were found bilaterally in IT and FG (FG3; right

peak: x = 32, y = �54, z = �14, t-value = 5.2; left peak: x = �36,

y = �56, z = �8, t-value = 4.4), and most pronounced in LOC regions

functionally corresponding to higher order visual areas V4 (hOc4; right

peak: x = 48, y = �74, z = 8, t-value = 5.8; left peak: x = �36,

y = �80, z = 14, t-value = 4.2) and V5 (hOc5; right peak: x = 42,

y = �64, z = �2, t-value = 5.8; left peak: x = �48, y = �70, z = 4, t-

value = 5.5). Additional clusters are observed in the calcarine sulcus

identified as early visual areas V1/V2 (hOc1/hOc2; right peak: x = 4,

y = �78, z = �12, t-value = 4.6; left peak: x = �4, y = �86, z = 10,

t-value = 4.2) as well as round the right IFJ (right peak: x = 40, y = 8,

z = 26, t-value = 4.7).

The conjunction contrast across modalities shows most pro-

nounced activation bilaterally around the IFJ, that is, IFG (right peak:

x = 42, y = 4, z = 22, t-value = 2.7; left peak: x = �46, y = 4, z = 30,

t-value = 2.3) and MFG (right peak: x = 48, y = 4, z = 42, t-

value = 2.1; left peak: x = �46, y = 2, z = 34, t-value = 2.2), as well as

the TPJ (right peak: x = 60, y = �42, z = 18, t-value = 2.4; left peak:

x = �54, y = �38, z = 18, t-value = 2.9). Additional clusters are found

around the SMA/ACC (right peak: x = 4, y = 4, z = 56, t-value = 2).

Since the train lengths of a given modality are longer if accompa-

nied by congruent other modalities in condition C1, and v.v. in C2, we

performed an additional train length analysis using only trials of the

unpredictable condition C3 (corresponding to around 1/3 of trials)

with identical distributions of train lengths across congruent and

incongruent trials. Although less significant (p < .001 uncorrected;

likely due to the reduced number of trials), the results for trials of C3

(not shown) revealed the same main clusters sensitive to parametric

increase in deviant responses as presented in Figure 4.

3.5 | Cross-modal predictability

Activations in response to mispredicted stimuli (with respect to the

multi-modal stimulus configuration) were identified by contrasting

F IGURE 3 Mismatch modulated connectivity. Seed-based psychophysiological interaction (PPI) connectivity analyses show connectivity
modulations by the Deviants > Standards contrast from the three respective sensory seed regions to the rest of the brain. Clusters are shown for
the auditory (green), somatosensory (purple) and visual (orange) modality and their conjunction (yellow). p < .05 FWE corrected on the cluster
level. Unthresholded SPMs are available at https://www.neurovault.org/collections/LECDZXPI. Abbreviations of region labels: IFJ: inferior frontal
junction; IPS: intraparietal sulcus; IT: inferior temporal cortex; OP: opercular cortex; STG: superior temporal cortex; TPJ: temporo-parietal
junction.
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Mispredicted > Predicted trials for each modality. The contrast

revealed increased activity in frontal and parietal clusters which are

shown in Figure 5, thresholded with p < .05 FWE corrected on the

cluster level. The clusters show overlap with clusters of the extended

mismatch network described above. The auditory, somatosensory and

visual modality showed the most pronounced clusters around the IPS,

identified as a dorsal extension of the TPJ: The conjunction contrast

across modalities shows bilateral clusters at the intersection of AG

(right peak: x = 42, y = �50, z = 54, t-value = 3.4; left peak:

x = �30, y = �54, z = 34, t-value = 2.6) and SMG (right peak:

x = 50, y = �42, z = 52, t-value = 2.9; left peak: x = �52, y = �44,

z = 38, t-value = 2.3) with extension into precuneus on the right

(peak: x = 16, y = �64, z = 48, t-value = 2.5). Additional clusters

were found in the SMA/ACC (left peak: x = �2, y = 12, z = 50, t-

F IGURE 5 Cross-modal
expectation violation. Significant
clusters of activation for the
predictability regressor
(contrasting
Mispredicted > Predicted trials)
for the auditory (green),
somatosensory (purple) and visual
(orange) modality and their
conjunction (yellow). p < .05 FWE
corrected on the cluster level.
Unthresholded SPMs are
available at https://www.
neurovault.org/collections/
LECDZXPI. Abbreviations of
region labels: IFJ: inferior frontal

junction; IPS: intraparietal sulcus;
SMA/ACC: (anterior)
supplementary motor area/
anterior cingulate cortex.

F IGURE 4 Modulation of deviant responses by prior repetition of standards. Parametric modulation of BOLD activity across six levels of
stimulus train length (number of standards before the deviant; binned repetitions: 1, 2, 3, 4–5, 6–8, >8) for the auditory (green) somatosensory
(purple) and visual (orange) modality and their conjunction (yellow). p < .05 FWE corrected on the cluster level. Unthresholded SPMs are available
at https://www.neurovault.org/collections/LECDZXPI. Bottom row: The respective contrast estimates of the train length contrasts at the peak
voxel of the main cluster of each modality (right and left). Abbreviations of region labels: IFJ: inferior frontal junction; IT: inferior temporal cortex;
LOC: Lateral occipital cortex; OP: opercular cortex; SMA/ACC: (anterior) supplementary motor area/anterior cingulate cortex; STG: superior
temporal cortex; TPJ: Temporo-parietal junction.
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value = 2.8) and bilaterally around the IFJ, primarily in MFG (right

peak: x = 40, y = 0, z = 54, t-value = 1.9; left peak: x = �48, y = 26,

z = 30, t-value = 2.9).

4 | DISCUSSION

Using a tri-modal version of the roving stimulus paradigm in combina-

tion with fMRI, we induced MMRs in the auditory, somatosensory

and visual modality corresponding to modality specific activation in

sensory cortices and modality independent clusters of activation

in inferior frontal and temporo-parietal cortex. In addition to confirm-

ing initial fMRI work on multi-modal MMRs (Downar et al., 2000), our

results expand the previous description by showing deviance related

modulation of PPI-connectivity from each sensory region to the

modality independent hubs of the putative cortical mismatch network.

Moreover, across modalities, we showed increasing deviant responses

within the identified network with prior standard repetition, most pro-

nounced in higher order sensory regions. Strikingly, our novel experi-

mental manipulation of cross-modal stimulus predictability revealed a

parietal contribution to mismatch processing selectively sensitive to

cross-modal regularity violation.

4.1 | Modality specific activations in sensory
cortices

In accordance with prior research, mismatch effects specific to the

auditory input sequence were found in the STG (Doeller et al., 2003;

Downar et al., 2000; Garrido, Kilner, Stephan, & Friston, 2009;

Molholm et al., 2005; Näätänen et al., 2005; Opitz et al., 2002; Rinne

et al., 2005; Yucel et al., 2005). Interestingly, the most pronounced

activation was observed bilaterally in higher order auditory processing

areas with only little overlap with primary auditory cortex, which is

often specified in EEG source modeling as a separate source in

Heschl's gyrus (e.g., Garrido, Kilner, Stephan, & Friston, 2009). In con-

trast, here we find sensory specific activations in secondary auditory

areas across the STG (TE3) and in the upper (STS1/TE4) and lower

bank of the superior temporal sulcus (STS2/TE5) which are considered

high level auditory processing regions (Zachlod et al., 2020). Our

results are in accordance with a recent comparative fMRI study show-

ing STG (TE3) activation for MMR to intensity changes among other

stimulus features (Zvyagintsev et al., 2020). Of the few studies, which

have used the roving stimulus paradigm in fMRI, one showed activa-

tions of higher order auditory regions in STG for pattern (“what”) and
location (“where”) changes (Altmann et al., 2007). Similarly, another

study differentially located responses to duration and frequency devi-

ants in STG as well as within inferior frontal and posterior parietal

regions (Molholm et al., 2005). The authors find a tendency for left lat-

eralization of duration deviants (temporal information) and right later-

alization for frequency deviants (tonal information). Here, we

supplement these findings with intensity changes in roving stimulus

sequences resulting in sensory specific activations in higher order

auditory and parietal regions with right hemispheric dominance. While

it is obvious that primary auditory cortex contributes to the MMR as

it receives sensory input signals, our results suggest that the primary

generator signaling sensory specific mismatch lies in non-primary

auditory regions in STG. These results are in line with DCM studies

modeling the STG as the intermediate stage of MMR processing,

receiving feedforward input from primary auditory and feedback input

from pre-frontal cortex (Auksztulewicz & Friston, 2015; Chennu

et al., 2016; Garrido et al., 2007; Garrido et al., 2008; Garrido, Kilner,

Kiebel, & Friston, 2009; Phillips et al., 2015; Phillips et al., 2016) and

support their interpretations of auditory MMRs reflecting prediction

error signals in response to violation of top-down predictions.

Mismatch effects specific to the somatosensory sequence were

observed in SI and SII extending into IC. Most pronounced activation

was found in SII and activation in SI was primarily found in BA1 and

BA2 which are not major input regions (Purves et al., 2008). Previous

research on somatosensory MMRs was primarily done with EEG and

MEG, where source modeling suggests underlying neuronal genera-

tors in SI and SII (Akatsuka, Wasaka, Nakata, Kida, Hoshiyama,

et al., 2007; Akatsuka, Wasaka, Nakata, Kida, & Kakigi, 2007;

Andersen & Lundqvist, 2019; Butler et al., 2012; Gijsen et al., 2021;

Grundei et al., 2023; Naeije et al., 2016, 2018; Ostwald et al., 2012;

Spackman et al., 2010) and only very few studies investigated somato-

sensory MMRs with fMRI (Allen et al., 2016; Chen et al., 2008;

Downar et al., 2000). Although the findings of Downar et al. (2000) in

their tri-modal fMRI study overlap largely with our mismatch network,

their somatosensory specific activation was restricted to SII. Our

results, on the other hand, showed additional activation in IC which

was distinct from its multi-modal activation in anterior portions (Id7)

close to the IFJ cluster. Similarly, Chen et al. (2008) identified a com-

parable network of SII, IC and fronto-parietal activations for somato-

sensory MMRs in fMRI to attended and unattended uni-modal

deviants during electrical median nerve stimulation (as used here),

showing that SII activation was unmodulated by the attentional focus,

in contrast to the higher-level processing stages, indicating SII as a pri-

mary driver for the first stage of mismatch processing reflected in the

MMN response. Moreover, the (right) IC has been suggested to be

involved in the integration of ascending sensory information with des-

cending signals from higher level regions in prefrontal cortex during

somatosensory processing (Cerliani et al., 2012; Lovero et al., 2009;

Seth et al., 2011), in line with our finding. Correspondingly, in a DCM

study using somatosensory roving stimulus sequences, Allen et al.

(2016) identified modulations in a network comprised of S1, IC and

MFG during somatosensory mismatch processing, providing evidence

for a role of IC in the coordination of hierarchical predictive interac-

tions. In correspondence with the results of our PPI-connectivity anal-

ysis, the authors showed increasing feedforward connectivity from

somatosensory cortex to insular and prefrontal cortices for unex-

pected stimuli, while feedback projections were found between IC

and somatosensory cortex, suggesting that the IC mediates the recip-

rocal exchange with hierarchically higher areas (Allen et al., 2016).

Similarly, in another DCM study, Fardo et al. (2017) demonstrated

that expectation violation reflected in somatosensory MMRs was
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accompanied by intrinsic modulations within the somatosensory sys-

tem in SI and SII as well as extrinsic recurrent connectivity modula-

tions between somatosensory, pre-frontal and parietal regions. Taken

together, our results are in support of interactions between SII and IC

to underlie the sensory specific aspects of somatosensory mismatch

processing.

Mismatch effects specific to the visual sequence were found in

LOC and IT in hierarchically higher brain areas of visual processing

such as V4, V5 and the fusiform gyrus. In parallel to the somatosen-

sory modality, most previous research on visual MMRs was done

using M/EEG recordings, generally indicating activation of the visual

cortices (Czigler, 2007; Kimura et al., 2011; Pazo-Alvarez et al., 2003).

Nevertheless, some more direct evidence has been provided for hier-

archically higher visual regions in occipito-temporal cortex (Egner

et al., 2010; Kimura et al., 2010; Stefanics et al., 2019; Urakawa

et al., 2010; Yucel et al., 2007). A recent fMRI study identified MMRs

to roving face stimuli (with emotion and color changes) in lateral

occipital and posterior parietal cortex (Stefanics et al., 2019). Interest-

ingly, although we used vastly different stimulus types (flashes as

opposed to faces), we characterized highly similar higher order visual

regions coding for the stimulus transitions. The authors identified a

perceptual model reflecting precision weighted prediction errors as

best explaining their results (Stefanics et al., 2018; Stefanics

et al., 2019). Top-down projections from higher cortical processing

stages are thought to modulate responses in non-primary visual areas

in particular (Buffalo et al., 2010; Johnson et al., 2007; Kastner

et al., 1998; Mohr et al., 2009) and visual research highlights the mod-

ulatory effects of sensory expectations in hierarchical visual proces-

sing (de Lange et al., 2018; Ferrari et al., 2022; Summerfield & de

Lange, 2014; Summerfield & Egner, 2009). Given that activation in

monkey IT cortex has shown to be reflective of expectation violation

based on probabilistic information (Bell et al., 2016) with respect to

the learning of transition probabilities (Meyer et al., 2014; Meyer &

Olson, 2011), our results are well in line with current visual research

on probabilistic sequence processing and in support of the notion that

sensory specific visual MMRs reflect prediction error in higher visual

areas violating top-down predictions (Stefanics et al., 2014; Stefanics

et al., 2018).

4.2 | A modality general fronto-parietal mismatch
network

In addition to the sensory specific clusters, we identified a shared net-

work of mismatch processing across modalities with activations

around the IFJ, TPJ and around the SMA/ACC. Most pronounced acti-

vation was found in the right hemisphere, especially around the IFJ.

The involvement of frontal cortex in deviance detection integrates

well with evidence from MMN research where source modeling sug-

gests a combined activation of sensory and (right) inferior frontal

regions. Primarily researched in the auditory modality, this combina-

tion of neuronal generators has been repeatedly demonstrated using

a large variety of electrophysiological methods such as EEG (Garrido

et al., 2008; Garrido, Kilner, Stephan, & Friston, 2009; Giard

et al., 1990; Giard et al., 1995; Rinne et al., 2000; Shalgi &

Deouell, 2007), MEG (Rinne et al., 2000), intracranial EEG (Dürschmid

et al., 2016; Phillips et al., 2016) as well as optical imaging (Tse

et al., 2006; Tse et al., 2013). Comparable evidence is increasingly pro-

vided across modalities (Grundei et al., 2023), for example, in somato-

sensation (Allen et al., 2016; Fardo et al., 2017; Huang et al., 2005)

and vision (Hedge et al., 2015; Tse et al., 2021).

Using fMRI, to our knowledge, only Downar et al. (2000) have

investigated MMRs to similar multi-modal sequences used here. The

authors applied naturalistic stimuli, such as sounds of frogs and run-

ning water, visual shapes and tactile unilaterally applied brush strokes.

Therefore, it is noteworthy that we replicated their neuroimaging

results, showing the same uni- and multi-modal activation patterns

using a larger sample (N = 29 compared to N = 10) in response to

stimulus sequences more commonly used in current MMR research.

With a heavy focus on the auditory modality, a considerable number

of studies have identified a similar fronto-parietal mismatch network

in uni-modal fMRI experiments (Diekhof et al., 2009; Doeller

et al., 2003; Molholm et al., 2005; Opitz et al., 2002; Rinne

et al., 2005; Shalgi & Deouell, 2007). Particularly the IFJ and, as

opposed to most implications from the EEG literature, additionally the

TPJ have appeared as consistent findings in fMRI oddball-studies

across different modalities (Doricchi et al., 2022; Downar et al., 2000,

2001, 2002; Huang et al., 2005; Kim, 2014).

Given the temporal resolution of fMRI, it is impossible to isolate

the MMN response from the effects of the later P3 MMR, although it

is likely that fronto-sensory activation primarily reflects the first stage

of mismatch processing underlying the MMN, while parietal genera-

tors are involved at later stages (Bekinschtein et al., 2009; Phillips

et al., 2016; Uhrig et al., 2014). Both prominent EEG mismatch signa-

tures have been described as involuntary attention orienting

responses to unexpected sensory input (Escera et al., 2000;

Näätänen, 1992; Schröger et al., 2015; Wetzel & Schröger, 2014). The

identified fronto-parietal activations might therefore be reflective of

the attention network identified by Corbetta and Shulman (2002)

which has been suggested to orient attention to salient exogenous

events and might represent a modality independent system for nov-

elty alerting (Corbetta et al., 2008; Kim, 2014; Macaluso, 2010). The

ventral part of the network includes IFJ, TPJ, IC and SMA/ACC

(Corbetta & Shulman, 2002; Eckert et al., 2009; Yeo et al., 2011) and

has been specifically associated with expectation violation (Vossel

et al., 2014). As such, prior research highlights a central role for stimu-

lus expectancy for an involvement of the identified network and sug-

gests an interplay of expectation violation and attentional recruitment

at later stages of mismatch processing.

Our PPI results indicate that increased projections from sensory

regions to the modality general mismatch network contribute to the

processing of regularity violation. Strikingly, we found that the left

and the right seed regions similarly converged to clusters with right

hemispheric dominance, in line with prior research on the auditory

mismatch network (Dietz et al., 2014, 2021). As highlighted by a

recent review, the larger TPJ area, including its dorsal extension
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around SMG into AG and IPS (Igelstrom & Graziano, 2017), is thought

to code matches (left lateralized) and mismatches (right lateralized)

between expected and actual events across sensory, motor and cogni-

tive operations and keeps track of their statistical contingencies

(Doricchi et al., 2022; Parr et al., 2023). With the current study, we

provide further evidence for such wider TPJ activation as a common

signature of mismatch effects across the senses in addition to the

classically demonstrated involvement of the (right) pre-frontal cortex

in MMN generation. Previous MMR studies have indicated connectiv-

ity modulations within and between the identified regions in accor-

dance with hierarchical predictive processing (Allen et al., 2016;

Auksztulewicz & Friston, 2015; Chennu et al., 2016; El Karoui

et al., 2015; Fardo et al., 2017; Garrido, Kilner, Stephan, &

Friston, 2009; Phillips et al., 2015; Phillips et al., 2016; Uhrig

et al., 2014). Our results complement these findings by showing the

domain generality of connectivity modulations in the fronto-parietal

mismatch network underlying expectation violation. While PPI-

connectivity provides the advantage of an assumption-free explora-

tion of functional correlation within the brain with the seed regions,

future studies would benefit from DCM analyses to provide further

insights into the directed modulations between the nodes identified

here across modalities.

4.3 | Modulation of deviant responses by stimulus
expectancy

Our parametric contrasts revealed that deviant responses within the

identified mismatch network were increasing as a function of

the length of the preceding standard stimulus train. The underlying

sources of such deviance modulation during auditory, somatosensory

and visual sequence processing have not been rendered by fMRI up

to today, although indicated by similar EEG responses in different

modalities (Baldeweg, 2006; Cowan et al., 1993; Gijsen et al., 2021;

Grundei et al., 2023; Haenschel et al., 2005; Imada et al., 1993; Sams

et al., 1983). While previous fMRI studies have shown that deviant

responses increase with the relative mismatch magnitude in terms of

deviant properties (Doeller et al., 2003; Opitz et al., 2002; Rinne

et al., 2005), we provide additional evidence for a stimulus-

independent mismatch increase with prior stimulus repetitions which

is comparable across the senses. Moreover, our results show that

higher order sensory regions were most reflective of the parametric

modulation, largely overlapping with the sensory clusters of the iden-

tified mismatch network. Although less pronounced, additional train

length effects were found in the identified modality general regions

such as IFJ, TPJ and SMA/ACC, which suggests that the fronto-

parietal recruitment during mismatch processing is not a binary pro-

cess (e.g., attention switch or not), but rather related to the degree of

expectancy induced by the prior stimulus train. Under predictive pro-

cessing accounts of MMN generation (Friston, 2005; Garrido, Kilner,

Stephan, & Friston, 2009; Stefanics et al., 2014), this modulation of

the deviant response reflects an increasing prediction error to an

established sensory regularity and increasing precision of the top-

down prediction to repeat the current stimulus train (Auksztulewicz

et al., 2017; Auksztulewicz & Friston, 2016). Our finding of expec-

tancy modulated mismatch responses in higher order sensory cortices

aligns well with research in rats showing that prediction error

responses to regularity violations increase along the auditory proces-

sing pathway (Parras et al., 2017) with error responses predominantly

found in hierarchically higher auditory regions (Luo et al., 2023; Parras

et al., 2021) and adaptation dominating in primary auditory cortex

(Parras et al., 2021). The additional (reduced) modulation of frontal

and parietal mismatch clusters might indicate projections of remaining

prediction errors to the modality independent hubs of the mismatch

network, as suggested by the results of our PPI analysis. Overall, our

results provide evidence for highly comparable dynamics of deviant

responses based on stimulus expectancy across modalities most pro-

nounced in sensory specific regions of the mismatch network.

4.4 | The parietal hub of the mismatch network
reflects cross-modal expectation violation

We used tri-modal probabilistic sequences to create cross-modal reg-

ularities by defining the transitions in one modality conditional on the

configuration of the other two modalities. As such, stimulus transi-

tions were more or less likely based on the multi-modal context and

thus rather predicted or mispredicted. With the cross-modal predict-

ability implicit in the sequences we go beyond any previous attempts

to locate MMRs to multi-modal sequences. Across sensory modalities,

we identified a dorsal part of the larger TPJ area around IPS (Doricchi

et al., 2022; Igelstrom & Graziano, 2017) to be particularly sensitive to

cross-modal expectation violation. This is striking given that the area

is well known as a major connection hub for different senses

(Damasio, 1989; Hagmann et al., 2008; Tomasi & Volkow, 2011), map-

ping multi-modal inputs in both human and non-human primates

(Avillac et al., 2007; Sereno & Huang, 2014). This convergence zone for

multi-modal information integration (Damasio, 1989) has been pro-

posed to provide a critical gateway to transform sensory information

into cognitively relevant functions (Mesulam, 1998). Specifically, the

extended TPJ area, including the IPS, forms the major parietal network

hub for multi-modal integration and higher-order cognition

(Igelstrom & Graziano, 2017) and is particularly known for coding

unexpected events across a variety of sensory and cognitive pro-

cesses (Doricchi et al., 2022). In line with these indications, our seed-

based PPI-connectivity results show connectivity modulations from

the sensory region of each modality to TPJ and IPS during mismatch

processing. Therefore, our results suggest that the extended TPJ area

forms an integrative processing hub in the mismatch network with IPS

specifically signaling expectation violation based on cross-modal

contingencies.

In the hierarchical structure of the cortex, the parietal conver-

gence zone is proposed to provide an amodal interface between

bottom-up sensory inputs and hierarchically higher levels

(Seghier, 2013), such as the frontal cortex which is considered to

transform accumulated context dependent sensory evidence from
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parietal cortex into choice (Erlich et al., 2015; Hanks et al., 2015). The

IPS activation found here might indicate accumulation and integration

of multi-modal sensory evidence which is further projected to frontal

cortex forming predictions about multi-modal regularities and ulti-

mately informing decision making. Support for such a role of the IPS

in a hierarchy of multi-modal perceptual inference comes from recent

advances in research on Bayesian causal inference showing that reli-

ability weighted sensory estimates are integrated in IPS and used in

interaction with frontal areas to infer the hidden causes of sensory

inputs (Cao et al., 2019; Noppeney, 2021; Rohe & Noppeney, 2015).

Moreover, it has been suggested that the IPS is involved in a

modality-general representation of sequences (Planton &

Dehaene, 2021) as it is found during regularity violations across differ-

ent modalities and presentation formats (Planton & Dehaene, 2021;

Wang et al., 2015; Wang et al., 2019) which is in line with our results.

In a previous study, using the same paradigm in EEG (Grundei

et al., 2023), we reported an increase of the P3 to mispredicted trials,

indicating sensitivity of the response to the predictive multi-modal

stimulus configuration. We showed that early and late MMRs in our

EEG data were best explained by a Bayesian observer tracking stim-

ulus transition probabilities and that more central and later

responses around the P3 appeared to specifically track stimulus tran-

sitions across multiple modalities. In recent MMR research, the

local–global paradigm has revealed that the early MMN and the later

P3 reflect two hierarchical stages of mismatch processing signaling

regularity violation on increasing levels of sequence complexity

(Bekinschtein et al., 2009; Chennu et al., 2013; Chennu et al., 2016;

Dehaene et al., 2015; Dürschmid et al., 2016; El Karoui et al., 2015;

King et al., 2014; Niedernhuber et al., 2022; Shirazibeheshti

et al., 2018; Wacongne et al., 2011): While the MMN is primarily

sensitive to local regularities, such as basic stimulus repetition, the

P3 is additionally sensitive to global regularities such as a repeating

pattern over an extended period of time. In addition to global

sequence monitoring with respect to temporal regularities, the P3

appears to additionally be sensitive to global sequence regularities in

terms of the multi-modal stimulus configuration (Grundei

et al., 2023). Therefore, we suggest that the late P3 MMR might sig-

nal violation of global sequence contingencies on multiple spatio-

temporal scales. Given that the P3 has fronto-parietal generators,

including the TPJ around SMG and IPL (Linden, 2005; Polich, 2007),

the fMRI results of the current study indicate a correspondence of

the intraparietal cluster sensitive to cross-modal expectation viola-

tion with our previous EEG results. Such an interpretation is sup-

ported by fMRI studies using the local–global paradigm which show

parietal activations during the global MMR in humans (Bekinschtein

et al., 2009) and in macaque monkey IPS (Uhrig et al., 2014). Taken

together, the IPS appears to keep track of global cross-modal

sequence regularities, potentially by estimation of transition proba-

bilities across modalities.

The current work provides evidence that the activation of

fronto-parietal network nodes to stimulus changes is rather indepen-

dent of the input modality. In particular activation of the IPS shows

sensitivity to multi-modal probabilistic stimulus combinations, as we

found it modulated by cross-modal regularities. However, an alterna-

tive interpretation to cross-modal learning cannot be ruled out,

namely that the three synchronously presented stimuli are bound

together to a tri-modal object or triplet. If this was the case, the

brain might extract the transition probabilities of tri-modal states

specified in the transition matrix (see Figure 1) rather than tracking

each uni-modal input stream and learning the cross-modal regulari-

ties on top. While most previous MMN literature is focused on uni-

modal inputs, such different approaches of multi-modal mismatch

processing have by now not been broadly explored and our work

motivates further research in this direction. Therefore, future model-

ing studies should directly compare observer models tracking differ-

ent sequence properties to evaluate if and at which stage

probabilistic uni-modal inputs are integrated to, and represented as,

combinations of multi-modal objects.

The IPS is also integral part of the (dorsal) network of attentional

control where it is found to be a marker of memory related expecta-

tion violation (O'Connor et al., 2010) provoking attention allocation

related to uncertainty in information retrieval (Hutchinson & Turk-

Browne, 2012). In addition to the general activation of the attention

network by unexpected events (Vossel et al., 2014), the IPS in particu-

lar might reflect expectations related to stored memory traces which

further supports the idea that the area might operate on a global scale

of sequence processing. Moreover, in the fronto-parietal attention

network the IPS is involved in the selection of sensory expectations in

a multi-dimensional environment with co-existing contingencies

(Ferrari et al., 2022; Leong et al., 2017; Niv et al., 2015), directly in line

with our results.

Overall, our finding of an involvement of the dorsal TPJ around

the IPS in cross-modal expectation violation integrates well with cur-

rent research converging to a modality-general role for the extended

TPJ region in signaling a divergence between expected and actual

events at various scales (Doricchi et al., 2022). Moreover, we provide

evidence for a novel parietal contribution to the multi-modal mis-

match network and suggest that the IPS tracks cross-modal probabi-

listic associations during global sequence monitoring.

4.5 | Conclusion

With the current study we substantiate previous evidence for a

shared mismatch network across modalities, involving modality spe-

cific sensory cortices as well as modality independent inferior frontal

and temporo-parietal areas. Additionally, we demonstrated

PPI-connectivity modulations from sensory regions to common multi-

modal network hubs during mismatch processing and show that devi-

ant responses within the network were modulated by local stimulus

repetition, suggesting highly comparable organization of the computa-

tion of expectation violation across the senses. Moreover, hierarchi-

cally higher regions of the mismatch network in the extended TPJ

area around IPS were identified to signal cross-modal expectation vio-

lation and might keep track of global multi-modal sequence regulari-

ties. Overall, these findings shed light on mismatch responses to
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multi-modal probabilistic inputs in a shared cortical network of expec-

tation violation.
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