1,955 research outputs found

    A summary of my twenty years of research according to Google Scholars

    Get PDF
    I am David Pardo, a researcher from Spain working mainly on numerical analysis applied to geophysics. I am 40 years old, and over a decade ago, I realized that my performance as a researcher was mainly evaluated based on a number called \h-index". This single number contains simultaneously information about the number of publications and received citations. However, dif- ferent h-indices associated to my name appeared in di erent webpages. A quick search allowed me to nd the most convenient (largest) h-index in my case. It corresponded to Google Scholars. In this work, I naively analyze a few curious facts I found about my Google Scholars and, at the same time, this manuscript serves as an experiment to see if it may serve to increase my Google Scholars h-index

    A summary of my twenty years of research according to Google Scholars

    Get PDF
    I am David Pardo, a researcher from Spain working mainly on numerical analysis applied to geophysics. I am 40 years old, and over a decade ago, I realized that my performance as a researcher was mainly evaluated based on a number called \h-index". This single number contains simultaneously information about the number of publications and received citations. However, dif- ferent h-indices associated to my name appeared in di erent webpages. A quick search allowed me to nd the most convenient (largest) h-index in my case. It corresponded to Google Scholars. In this work, I naively analyze a few curious facts I found about my Google Scholars and, at the same time, this manuscript serves as an experiment to see if it may serve to increase my Google Scholars h-index

    Applications of a hyper-graph grammar system in adaptive finite-element computations

    Get PDF
    This paper describes application of a hyper-graph grammar system for modeling a three-dimensional adaptive finite element method. The hyper-graph grammar approach allows obtaining a linear computational cost of adaptive mesh transformations and computations performed over refined meshes. The computations are done by a hyper-graph grammar driven algorithm applicable to three-dimensional problems. For the case of typical refinements performed towards a point or an edge, the algorithm yields linear computational cost with respect to the mesh nodes for its sequential execution and logarithmic cost for its parallel execution. Such hyper-graph grammar productions are the mathematical formalism used to describe the computational algorithm implementing the finite element method. Each production indicates the smallest atomic task that can be executed concurrently. The mesh transformations and computations by using the hyper-graph grammar-based approach have been tested in the GALOIS environment. We conclude the paper with some numerical results performed on a shared-memory Linux cluster node, for the case of three-dimensional computational meshes refined towards a point, an edge and a face

    An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling

    Full text link
    We present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination, and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factorization leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite. The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK -- STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices

    Hypergrammar-based parallel multi-frontal solver for grids with point singularities

    Get PDF
    This paper describes the application of hypergraph grammars to drive linear computationalcost solver for grids with point singularities. Such graph grammar productions are the rstmathematical formalism used to describe solver algorithm and each of them indicates thesmallest atomic task that can be executed in parallel, which is very useful in case of parallelexecution. In particular the partial order of execution of graph grammar productions can befound, and the sets of independent graph grammar productions can be localized. They canbe scheduled set by set into shared memory parallel machine. The graph grammar basedsolver has been implemented with NIVIDIA CUDA for GPU. Graph grammar productionsare accompanied by numerical results for 2D case. We show that our graph grammar basedsolver with GPU accelerator is order of magnitude faster than state of the art MUMPSsolver

    Graph grammar-based multi-frontal parallel direct solver for two-dimensional isogeometric analysis

    Get PDF
    This paper introduces the graph grammar based model for developing multi-thread multi-frontal parallel direct solver for two dimensional isogeometric finite element method. Execution of the solver algorithm has been expressed as the sequence of graph grammar productions. At the beginning productions construct the elimination tree with leaves corresponding to finite elements. Following sequence of graph grammar productions generates element frontal matrices at leaf nodes, merges matrices at parent nodes and eliminates rows corresponding to fully assembled degrees of freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward substitutions. Expressing the solver algorithm by graph grammar productions allows us to explore the concurrency of the algorithm. The graph grammar productions are grouped into sets of independent tasks that can be executed concurrently. The resulting concurrent multi-frontal solver algorithm is implemented and tested on NVIDIA GPU, providing O(NlogN) execution time complexity where N is the number of degrees of freedom. We have confirmed this complexity by solving up to 1 million of degrees of freedom with 448 cores GPU. © 2012 Published by Elsevier Ltd

    Parallel Fast Isogeometric Solvers for Explicit Dynamics

    Get PDF
    This paper presents a parallel implementation of the fast isogeometric solvers for explicit dynamics for solving non-stationary time-dependent problems. The algorithm is described in pseudo-code. We present theoretical estimates of the computational and communication complexities for a single time step of the parallel algorithm. The computational complexity is O(p^6 N/c t_comp) and communication complexity is O(N/(c^(2/3)t_comm) where p denotes the polynomial order of B-spline basis with Cp-1 global continuity, N denotes the number of elements and c is number of processors forming a cube, t_comp refers to the execution time of a single operation, and t_comm refers to the time of sending a single datum. We compare theoretical estimates with numerical experiments performed on the LONESTAR Linux cluster from Texas Advanced Computing Center, using 1 000 processors. We apply the method to solve nonlinear flows in highly heterogeneous porous media

    Direct solvers performance on h-adapted grids

    Get PDF
    We analyse the performance of direct solvers when applied to a system of linear equations arising from an h-adapted, <sup>C0</sup> finite element space. Theoretical estimates are derived for typical h-refinement patterns arising as a result of a point, edge, or face singularity as well as boundary layers. They are based on the elimination trees constructed specifically for the considered grids. Theoretical estimates are compared with experiments performed with MUMPS using the nested-dissection algorithm for construction of the elimination tree from METIS library. The numerical experiments provide the same performance for the cases where our trees are identical with those constructed by the nested-dissection algorithm, and worse performance for some cases where our trees are different. We also present numerical experiments for the cases with mixed singularities, where how to construct optimal elimination trees is unknown. In all analysed cases, the use of h-adaptive grids significantly reduces the cost of the direct solver algorithm per unknown as compared to uniform grids. The theoretical estimates predict and the experimental data confirm that the computational complexity is linear for various refinement patterns. In most cases, the cost of the direct solver per unknown is lower when employing anisotropic refinements as opposed to isotropic ones

    Quasi-optimal elimination trees for 2D grids with singularities

    Get PDF
    We construct quasi-optimal elimination trees for 2D finite element meshes with singularities.These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal.We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O(log(Ne log(Ne)), where N e is the number of elements in the mesh.We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments
    corecore