Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 303024, 18 pages
http://dx.doi.org/10.1155/2015/303024

Research Article

Hindawi

Quasi-Optimal Elimination Trees for 2D Grids with Singularities

A. Paszyﬁska,l M. Paszyl’lski,2 K.]opek,2 M. Wozniak,? D. Goik,” P. Gul'gul,2 H. AbouEisha,’
M. Moshkov,’ V. M. Calo,>* A. Lenharth,’ D. Nguyen,5 and K. Pingali5

I Jagiellonian University, 31007 Krakow, Poland

AGH University of Science and Technology, 30059 Krakow, Poland

3 Applied Mathematics & Computational Science, King Abdullah University of Science and Technology (KAUST),
Thuwal 23955-6900, Saudi Arabia

*Earth Science & Engineering and Center for Numerical Porous Media, King Abdullah University of Science and Technology (KAUST),
Thuwal 23955-6900, Saudi Arabia

*Institute for Computational Engineering and Science, University of Texas, Austin, TX 787121229, USA

Correspondence should be addressed to M. Paszynski; maciej.paszynski@agh.edu.pl
Received 16 October 2013; Revised 28 April 2014; Accepted 25 November 2014
Academic Editor: Ron Perrott

Copyright © 2015 A. Paszynska et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We construct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity
of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the
multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all
possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming.
Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the
insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination
trees that has cost O(N, log(N,)), where N, is the number of elements in the mesh. We show that this heuristic ordering has similar
computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art

alternatives in our numerical experiments.

1. Introduction

We present a dynamic programming algorithm to find quasi-
optimal elimination tree for two-dimensional grids with
point and edge singularities. We consider two cost functions:
one models the sequential solver execution, while the other
models the execution cost of a parallel shared-memory solver.
The dynamic programming algorithm finds elimination trees
that minimize the appropriate cost function for a multifrontal
solver. These minimizers belong to a class of elimination trees
obtained by recursive partition of the computational mesh
along straight lines. These quasi-optimal trees are expressed
as graph-grammar productions which define our solver. To
optimize execution time, we use the GALOIS scheduler [1].
From the analysis of the quasi-optimal trees we propose a
heuristic algorithm that constructs in O(N,log(N,)) time
(where N, denotes the number of elements of the mesh)

the elimination trees with similar performance to the one
constructed with the dynamic programming algorithm. To
determine the efficiency of our algorithms, we compare our
elimination trees to popular alternatives. The comparison
is performed using MUMPS as an efficient interface to
commonly used elimination algorithms, such as approximate
minimum fill, approximate minimum degree, SCOTCH,
PORD, METIS, and AMD with quasi-row detection. In
particular, we estimate the number of FLOPs (floating-point
operations) in sequential execution of our graph-grammar
solver using elimination trees generated by our dynamic
programming and heuristic algorithms. We compare these
to the FLOPs resulting from execution of MUMPS using
execution time as a proxy for FLOPs. We also use numerical
experiments to compare the execution times of our sequential
and parallel solvers against those of sequential and parallel
MUMPS. Seeking to improve the parallel performance, we

consider the tree rotation algorithm to well balance the elim-
ination trees for parallel computations. We show that both
sequential and parallel graph-grammar-based solver with
GALOIS scheduler, using the elimination trees constructed
by the dynamic programming optimization as well as the
heuristic algorithm, outperform MUMPS with any ordering.

In this paper we present new contributions in the follow-
ing research areas.

Multifrontal Solvers. The computational cost of the mul-
tifrontal solver algorithm depends on the quality of the
elimination tree (which in sequential mode can be called an
ordering). The problem of finding of an optimal elimination
tree for a given mesh resulting in minimal computational cost
of either sequential or parallel multifrontal solver algorithm
is NP-complete [2]. However, for a fixed grid it is possible
to define a large class of elimination trees, estimate the
computational costs for the solver algorithm for each tree,
and select the best one in each class. We introduce a dynamic
programming algorithm to find elimination trees for a given
mesh that minimizes the computational cost of sequen-
tial multifrontal direct solver algorithm. The elimination
trees obtained by our dynamic programming algorithm are
obtained by considering recursive partitions of the compu-
tational mesh along straight lines. Thus we call the resulting
trees quasi-optimal, since we do not consider all possible
elimination trees. We also restrict our research to the case of
initially structured two-dimensional grids with rectangular
finite elements, where the partitions along straight lines are
possible to implement. From our experience deriving quasi-
optimal elimination trees for ordering of meshes, we devel-
oped insights and abstractions that allowed us to propose
a heuristic algorithm that constructs elimination trees with
similar properties to the trees constructed by dynamic pro-
gramming algorithm. The heuristic algorithm can construct
the trees in O(N, log(N,)) computational cost, where N, is
the number of elements in the mesh. We have executed the
multifrontal solver algorithm for some representative grids,
namely, for grids with a point singularity and grids with
an edge singularity. We estimated the number of FLOPs of
the multifrontal solver algorithm for the elimination trees
constructed by both the dynamic programming and heuris-
tic algorithms. We compare them to the FLOPs resulting
from execution of the state-of-the-art ordering algorithms.
These are approximate minimum fill, approximate minimum
degree, SCOTCH, PORD, METIS (nested-dissection), and
AMD with quasi-row detection. We show that our elimina-
tion trees resulting from both dynamic programming and
the heuristic algorithms outperform the alternative ordering
algorithms in terms of FLOPs for sequential solver execution.

Graph-Grammar-Based Solvers. We express our elimination
trees and the resulting multifrontal solver as a sequence of
graph-grammar productions. Namely, the graph-grammar
productions construct frontal matrices, merge Schur com-
plement matrices of children nodes of each node of the
binary elimination tree, eliminate fully assembled degrees
of freedom, and execute backward substitutions. The graph-
grammar productions are implemented in the GALOIS

Scientific Programming

11

l 2 3
Yy
[—
12 13

14 15

FIGURE 1: Sample computational domain for the frontal solver.

environment [1]. The dependency relation between graph-
grammar productions follows the structure of the elimina-
tion tree and can be expressed as a directed acyclic graph
(DAG). The graph-grammar productions are implemented
as GALOIS tasks working on the DAG obtained directly
from the elimination tree. We compare the execution time
of our graph-grammar-based GALOIS solver with the exe-
cution time of sequential MUMPS and show that our solver
outperforms this implementation.

Parallelism. We execute the dynamic programming algorithm
with a modified cost function that reflects the compu-
tational cost of the parallel shared-memory multifrontal
solver algorithm. The dynamic programming algorithm finds
elimination trees that minimize the computational cost for
the parallel shared-memory multifrontal solver, within the
class of elimination trees obtained by recursive partitions
of the computational mesh along the straight lines. We
use tree rotation to improve the balancing of the obtained
elimination trees. As before, we express the resulting solver as
asequence of graph-grammar productions which can be opti-
mally scheduled using the DAG analysis of GALOIS. These
optimally scheduled graph-grammar productions are run
on multithreaded execution on a shared-memory machine.
We use four different elimination trees: the quasi-optimal
dynamic programming using a multithreaded cost function
and its rotated tree as well as a heuristic elimination tree
and its rotated counterpart. We compare these four solvers
against parallel MUMPS on the same machine. All four
solvers outperform MUMPS.

1.1. Finite Element Method (FEM), Multifrontal Solver, and
Elimination Trees. In this paper we focus on a class of
two dimensional structured meshes with rectangular finite
elements, subject to h refinement as it is described by
Demkowicz in [3]. Let us focus on a simple 2D finite element
mesh. The domain Q is described by two elements and fifteen
supernodes, that is, two interiors, seven edges, and six vertices
(see Figure 1). In the 2D adaptive FEM, described in [3], we
utilize basis functions related to abstract element supernodes.
In this example (see Figure 2), we have linear basis functions
associated with element vertices, namely, with supernodes
1, 3, 5, 11, 13, and 15, quadratic basis functions associated
with element edges, namely, with supernodes 2, 4, 6, 8, 10,
12, and 14, and quadratic basis functions associated with
element interiors, namely, with supernodes 7 and 9. This case
corresponds to the polynomial order of approximation p = 2.
In the general case of order p, we have p — 1 basis functions
related to each element edge and (p — 1)* basis functions

Scientific Programming

FIGURE 2: Exemplary basis functions spread over element supernodes: (a) basis function associated with vertex supernode 1 (black), vertex
supernode 3 (dark gray), and vertex supernode 5 (light gray); (b) basis function associated with edge supernode 6 (black), edge supernode
8 (dark gray), and edge supernode 10 (light gray); (c) basis function associated with interior supernode 7 (black) and interior supernode 9

(dark gray).

(0,1) (L,1) 2,1)

Element (1,1) Element (1,2)

(0,0) (1,0) (2,0)

Computational mesh

Element
(1,2)

Element

(L,1)

/\

(1,1

@1

Element
(1,2)

Element

(L1)

(0,0) (1,0)

Elimination tree

FIGURE 3: Computational domain expressed as an elimination tree.

related to each element interior. In 2D FEM [3], we construct
the algebraic system by computing inner products of these
basis functions or their derivatives over the analyzed domain.
Thus, each entry of the resulting matrix system corresponds
to the interaction between particular basis functions. The
numerical values of these interactions are determined by the
choice of weak form and the support of the basis functions.
The connectivity, which is the controlling characteristic of
the computational complexity, is only determined by the
supports and the weak form. Interior basis functions have
support over an element only, edge basis functions have
support over one or two elements, and vertex basis functions
have their support spread over one or many elements,
depending on the grid connectivity.

The multifrontal solver introduced by Duff and Reid [4, 5]
is a popular solver for systems of linear equations, which is a
generalization of the frontal solver algorithm described in [6].
In a multifrontal solver, connectivity analysis is performed
using an elimination tree. The elimination tree in classical
solvers is obtained from a planar graph analysis. The graph
is constructed based on the sparsity of the global matrix.
In our solver, however, we construct the elimination tree by
analyzing the mesh. A computational domain is decomposed
into a hierarchy of subdomains, which defines an elimination
tree (Figure 3). The construction of the elimination tree for
an arbitrary mesh is a complex task. The elimination tree is
constructed using the graph representing the connectivities
of the mesh. This graph is partitioned using algorithms such
as nested-dissection from the METIS library [7, 8] or min-
imum degree algorithms [9]. Usually, solvers like MUMPS
[10-12] are not aware of the structure of the mesh, and they
need to reconstruct the connectivity pattern by analyzing

126 711123 813

126 711123 813

FIGURE 4: Assembly and partial forward elimination on the left ele-
ment. These operations are expressed by two graph-grammar pro-
ductions. (A1) represents the process of generation and assembly
of the frontal matrix and (E1) represents the partial forward
eliminations.

the sparsity pattern of the matrix given to the solver. The
sparse representation of the mesh connectivity for linear
order FE method, finite differences, and particle methods
directly implies the mesh (or the topological structure of the
mesh). For the high-order FE methods, the sparse representa-
tion does not precisely reflect the mesh structure (it rep-
resents the discretization explicitly). In the multifrontal
approach, the solver generates a frontal matrix for each ele-
ment of the mesh. This is illustrated in Figures 4 and 5. Fully
assembled supernodes are eliminated within each frontal
matrix, and the resulting Schur complement matrices are
merged at the parent level of the tree. This is illustrated in
Figure 6. Finally, the solver computes the solution at the elim-
ination tree root node followed by backward substitutions at
child nodes. This process is presented in Figure 7.

4 5 9 10 14 15 3 8 13

4

(E2)

Scientific Programming

4 5 9 10 14 15 3 8 13

FIGURE 5: Partial forward elimination on the right element. This operation is expressed by two graph-grammar productions. (A2) represents
again the process of generation and assembly of the frontal matrix and (A2) represents the partial forward eliminations.

126711123 813 126711123 813

—_—

4591014153 813

3/

FIGURE 6: Assembly and full forward of the interface problem matrix. These operations are expressed by two graph-grammar productions.
(Aroot) represents the process of merging of the Schur complements from the son nodes and (Eroot) represents full elimination at the root
node.

4 591014153 8 13

O U1

13

1.2. Graph-Grammar-Based Solver. 'The topological structure
of the mesh [13-16] as well as the multifrontal solver algo-
rithm [17, 18] can be expressed by graph-grammar produc-
tions [19-22]. In this section we express the multifrontal
solver algorithm by graph-grammar productions that directly
follow the structure of the elimination tree. We present the
implementation of the multifrontal solver in the GALOIS
system for sequential and concurrent execution of graph-
grammar productions. The input for our solver is the elim-
ination tree, coded in the following way:

2 <- polynomial order of approximation
2 <- number of elements

110011 <- first element id (1, 1)
level 1, element 1,
(0,0), (1,1)
121021 <- first element id (1, 2)
level 1, element 2, and its coordinates
1, 0, (2, D

and its coordinates

3 <- number of nodes in elimination tree
1211122 3 <- tree node id =1,

2 elements, (1, 1) and (1, 2), pointers
to son nodes 1, 2

2111 <- tree node id = 2, 1 element
(1, 1) no son nodes

3112 <- tree node id = 3, 1 element
(1, 2) no son nodes.

This example tree corresponds to the case presented in
Figure 3.

Given the elimination tree, the operations performed
by the solver can be coded as graph-grammar productions,
working over the elimination tree. In particular, each merging
and elimination operation can be represented as a single

Scientific Programming

1 2 6 7 1112 3 8 13 1 2 6 7 1112 3 8 13

4 5 9101415 3 8 13

9
10 (BS2) 10
%
14 14
15 15

8
13

13

4 5 9 101415 3 8 13

)

3
3 8 13
3

(BSroot)

FIGURE 7: Backward substitution at root node followed by backward substitutions at child nodes. These operations are expressed by three
graph-grammar productions. (BSroot) represents the process of backward substitution at root node and (BS1), (BS2) represent backward

substitutions at child nodes.

(A1) (E1)

®@—0O

(Aroot)

(BS1)

O

(Eroot) (BSroot)

(A2)

(E2)
®@—0O

(BS2)

FIGURE 8: Directed acyclic graph for the elimination tree for a two-finite-element mesh.

graph-grammar production. The above example contains the
following graph-grammar productions:

(A1)-(E1)-(A2)-(E2) - (Aroot) - (Eroot)

1)
- (BSroot) - (BS1) - (BS2).

The dependency relation between these graph-grammar
productions strictly follows the elimination tree and it is
represented as a directed acyclic graph (DAG). This represen-
tation is equivalent to the one obtained by the trace theory
(17, 23]. These graph-grammar productions are implemented
as GALOIS tasks working on the DAG representing the elim-
ination tree. The DAG for our simple example is presented in
Figure 8. We start from graph-grammar productions located
at the leaves of the elimination tree, then we go up to the root,
and finally we go back down to the leaves. The tasks are then
managed and scheduled by GALOIS [1]. That is, there is a
direct relation between the structure of the elimination tree,
the graph-grammar productions, the dependency relation
between them, and the scheduling based on DAG in GALOIS.
Thus, we present the elimination trees generated by our

algorithms and we refrain from listing the graph-grammar
productions.

2. Computational Cost Estimates for
Sequential and Parallel Multifrontal
Solver Algorithm

In order to estimate the number of floating-point operations
(FLOPs) executed by the multifrontal algorithm we start with
estimation of the FLOPs number during elimination of a rows
from square matrix M of size b x b (see Figure 9). The FLOPs
number as derived in [24] is equal to

a(6b® - 6ab+6b+2a> —3a+1)
- :

To estimate the sequential execution cost of the multi-
frontal solver we sum up the costs of all the nodes of the
elimination tree. To estimate the parallel shared-memory
execution cost of the multifrontal solver we sum the maxi-
mum cost of each level of the elimination tree. Additionally
we assume that we have enough cores to process all frontal

C(a,b) =)

gl

Scientific Programming

1) (2)

3

FIGURE 9: Elimination of a fully assembled rows from matrix M of size b x b. In this example a = 3 and b = 9, and the row subtraction is
performed in three steps, denoted on panels (1), (2), and (3). The dark gray squares denote rows to be eliminated, the red squares denote the
value checked by partial pivoting, and the white squares denote zeros generated during the row subtractions.

TaBLE 1: Estimation of computational cost on a two-element domain
for graph-grammar productions expressing the multifrontal solver

algorithm for p = 2, for sequential and parallel shared-memory

solver executions.

Graph-grammar

production N b OPS(a,b)
(PelimM1._1) 6 9 271
(PelimM1_2) 6 9 271
(PsolveM1_1,2) 3 3 27

Total sequential 271+ 271+ 27 =569

max(271,271) + 27 = 288

Total parallel

matrices from all levels of the elimination tree in parallel,
which is not always the case in practical computations. This
is illustrated in Table 1.

Our solver uses partial pivoting. The pivoting is per-
formed over the local frontal matrices at all the levels of the
elimination tree. Partial pivoting compares the values of all
the entries located below the diagonal within the rows that
are fully assembled, which can be eliminated at this level. We
do not pivot with nonfully assembled rows. From the point
of view of the FLOPs, pivoting does not require FLOPs; it
requires a few comparisons followed by a swift of the integers
in the vector representing rows order. Thus we do not include
the cost of pivoting in the cost function. The implementation
of the pivoting requires just one loop through diagonal
column, followed by swap of the two indexes in the row
indexes vector. The cost of pivoting is negligibly small in
comparison to the factorization itself. In our previous papers
(18, 25] we have developed one two-dimensional solver and
one three-dimensional solver using such partial pivoting
algorithm and we have solved a number of computational
problems with A, p, and hp adaptivity, including linear
elasticity [26], Poisson equation [27], Maxwell equations [28],
propagation of acoustics waves over the human head [29],
and the Stokes flow problem [30]. We have not encountered
convergence or round-off error problems.

3. Quasi-Optimal Elimination Trees by
Dynamic Programming

The search for the optimal elimination tree can be represented
by the directed acyclic graph (DAG) presented in Figure 10.
The DAG root node represents the entire computational
mesh, while child DAG nodes represent possible partitions
of the mesh. We consider partitions of the mesh along
straight lines which can be either horizontal or vertical. Thus,
child DAG nodes of a root DAG node represent all possible
partitions of the root along straight lines. We repeat this
partition process recursively, until we reach leaves represent-
ing single finite elements. Some subbranches of the DAG
are identical. For example, we identify identical branches in
Figure 10 by red or green. These subbranches do not need to
be regenerated, since we can use the pointer to an already
generated identical subbranch. The elimination trees are
represented as binary subtrees of this DAG. The optimization
procedure is executed twice, once for each cost function
defined recursively below. One cost function corresponds to
sequential solver cost; the other one corresponds to parallel
solver cost. The cost of processing the internal DAG node is
defined as

cost of processing internal DAG node
= cost of processing first child DAG node
3)
+ cost of processing second child DAG node

+ cost of elimination of common interface

for the optimization performed for the sequential solver
execution and

cost of processing internal DAG node
= max {cost of processing first child DAG node,

cost of processing second child DAG node}

+ cost of elimination of common interface

(4)

for the optimization performed for the parallel shared-
memory solver execution. Again, this is only true under

Scientific Programming

22 |23 |25 |26

[3.6}
3.1] 1371

22 [23 |25 |26

BEEN

3,l| | |3,7

1] J37]

12 13 1,5 1,2 13 1,5 1,6
22 23 25 26
11 — — 22 2,3 25 2,6
21 3,2{3,3]3,53.6] 27 1,1 T T 17
] | b7 21 PEEAIBOL, ;

23313534

3,1| | |3,

/N

23 |25 |26

PR X X X X P

3.1] 3.7}

FIGURE 10: Tree of partitions used by the dynamic programming algorithm.

the assumption that we have enough available threads to pro-
cess all frontal matrices from a given level of the elimination
tree at the same time, which is not always the case in practical
application. Each node of the elimination tree contains a
frontal matrix with size b having some number a of fully
assembled degrees of freedom. Leaf nodes contain element
frontal matrices with fully assembled internal supernodes
which can be eliminated. The cost C(a,b) of elimination of
a fully assembled supernodes from frontal matrix of size b
has been defined in (2). This is just the number of operations
for the partial forward elimination algorithm. Given a geo-
metric description of the finite element mesh, the dynamic
programming algorithm works in two steps. In the first
step, the DAG representing the subproblems and dependency
relations between them is constructed. Then, the DAG is
optimized in a bottom-up approach. The DAG is constructed
as follows. The algorithm adds a first DAG node to the DAG
corresponding to the initial mesh. At any subsequent step
t > 1, any unprocessed DAG node is processed and this DAG
node is marked as processed. The algorithm terminates once
all DAG nodes are processed. To process a DAG node we
list all possible bisections of the (sub)mesh the DAG node
represents, which we denote as a nodal mesh. The nodal
submesh bisections use straight vertical or horizontal lines
to split the mesh into two. These straight lines are called
separators. For each separator (bisection of the submesh)
two children DAG nodes are assigned to the parent DAG
node under analysis which are formed by an edge of the
graph. Once all possible separators are applied the DAG node
analysis is complete and is marked as processed.

After completing the construction of the DAG, we start
the optimization stage based on a cost analysis that is built
as follows. First, we assign to each DAG node with zero out
degrees the cost of evaluating its Schur complement. These
DAG nodes are called sinks and correspond to individual

finite elements. All DAG nodes with descendants are called
parents. The cost assigned to each parent corresponds to the
child DAG nodes of partitions with minimal cost, that is, for
a DAG node with only sink children, the cost corresponding
to the sum of the children in serial execution or the cost of
the most expensive children in parallel as listed in Table 1.
For parent DAG nodes with children which have out-node
connections, the cost corresponds to the path to sinks with
minimal cost. The optimization began by assigning the
cost to each sink. Then, for each parent whose children’s
cost has been fully processed, each partition is assigned a
cost based on the separator used and the full cost of the
submeshes. The partitions with minimum cost are kept and
all other children DAG nodes are removed. The optimization
procedure continues this way until reaching the root of the
tree.

The dynamic programming algorithm itself for the case
of sequential solver optimization has been described in
conference proceedings paper [31]. We also refer to [32] for
examples on the usage of the GALOIS solver over these
trees. In this paper we focus on the trees constructed by the
heuristic algorithm presented in the next section, delivering a
computational cost similar to the one obtained by the quasi-
optimal trees obtained with dynamic programming. Below,
we provide a short summary of a quasi-optimal elimina-
tion tree found by our dynamic programming algorithm
for meshes with point and edge singularities with three
refinement levels.

3.1. Description of Quasi-Optimal Orderings
Based on Dynamic Programming

3.1.1. Point Singularity in Sequential Execution. The dynamic
programming optimization algorithm sequential execution
for a mesh with a point singularity results in the elimination

Scientific Programming

Sinks

= = [
NARNRY;
1 []

~

Mesh

FIGURE 11: Optimal elimination tree for point singularity for a sequential solver.

tree presented in Figure 11. The pattern of the elimination tree
is invariant with the number of refinement levels. The tree
follows level-by-level elimination pattern.

3.1.2. Point Singularity for a Parallel Solver. This time we have
executed the dynamic programming optimization algorithm
for the point singularity with the cost function designed for
a parallel shared-memory solver. The obtained elimination
tree is presented in Figure 12. The tree is no longer cutting
layers, one by one, but rather trying to balance the load over
each partition. However, the pattern is not invariant with
refinement level.

3.1.3. Edge Singularity in Sequential Execution. We switch
now to an edge singularity. For the dynamic optimization
algorithm optimizing for sequential solution on a mesh with
an edge singularity the optimization procedure resulted in the
elimination tree presented in Figure 13. The general elimina-
tion tree pattern is invariant with the level of refinements. The
optimizer cuts the largest two elements, and then it partitions
the remaining mesh into two parts. The optimizer does this
sequence recursively until the leaves.

3.1.4. Edge Singularity for a Parallel Solver. As before, switch-
ing the cost estimates for parallel execution leads to a tree

which is not invariant with the refinement level. The quasi-
optimal tree is presented in Figure14. This result of the
optimization on the bisection sequence scales to optimize
load balancing for the selected separators.

4. Heuristic Algorithm for Construction of
the Elimination Trees

The dynamic programming strategy algorithm described
above to check the computational cost of the multifrontal
solver resulting from elimination trees is obtained by recur-
sive partitioning of the computational mesh along straight
lines. There are many such elimination trees for a single mesh,
and the dynamic programming algorithm can only be used as
a learning tool, since the cost of finding the elimination tree
resulting in minimal cost for a large mesh is actually orders
of magnitude larger than the cost of the solution itself. The
dynamic programming algorithm allowed us to construct a
heuristic algorithm that provides similar elimination trees in
O(N, log(N,)) computational cost, where N, is the number of
elements of the mesh. Thus, we propose an area and neighbors
algorithm for construction elimination trees for multifrontal
solvers for h refined grids.

Scientific Programming 9

e = £
~ L]

O
‘|

Sinks

D<[

Mesh

FIGURE 12: Optimal elimination tree for point singularity for the solver working in parallel shared-memory mode.

DD DDDDDDDD DDDD DDDD DD

sinks - OOt
5.0 §_g o
Mesh
FIGURE 13: Optimal elimination tree for edge singularity for the solver working in sequential mode.
The heuristic algorithm can be utilized under the follow- refinements from initial structured regular mesh with
ing assumptions. rectangular elements.
(i) The computational mesh is two-dimensional, and it (ii) When constructing the 4 refined mesh, only isotropic

is obtained by performing a sequence of isotropic h refinement is allowed. In other words, selected

10

Sinks

Mesh

Scientific Programming

FIGURE 14: Optimal elimination tree for edge singularity for the solver working in parallel shared-memory mode.

1 2 1 2 1 2 1 2
5 6 5 6 5 6
4 3 4 4 4
8 7 8 210 8 4 1§(1)4
12|11 12 et

() (b)

() (d)

FIGURE 15: Generation of numbering of elements over the mesh & refined towards point singularity, refined in four steps denoted on panels

(a), (b), (c), and (d).

rectangular elements are always broken into four
smaller son elements.

(iii) The elements in the initial mesh are numbered, and
their numbers are topologically sorted, left to right,
row by row.

(iv) Each element of the initial mesh has assigned refine-
ment level equal to 1.

(v) When the adaptive algorithm breaks an element into
four son elements, the refinement level of all son
elements is equal to the refinement level of the parent
element plus one.

(vi) The area of each element is defined as

1 /22*reﬁnement level.

(vii) When the adaptive algorithm breaks an element into
four son elements, they get the new numbers in the
global numbering of elements, and their numbers
increase clockwise.

(viii) The mesh fulfills the l-irregularity rule, telling that an
element can be broken only once without breaking an
adjacent large element.

(ix) When there are one element on one side of an edge
and two elements on the other side of the mesh, we
call this common edge a constrained edge.

(x) When we compute the maximum number of common
edges between two adjacent patches of elements in the
mesh, we count each constrained edge as one.

The assumptions listed above correspond to the computa-
tional grids generated by two-dimensional /ip adaptive finite
element method called hp2d described in [3]. However in
this paper we consider only uniform polynomial order of
approximation p = 2 (only h refinement with uniform p = 2).
The exemplary process of generation of the numbering for
point and edge singularity is presented in Figures 15 and 16.
The corresponding numbering of refinement levels for par-
ticular elements is reported in Tables 2 and 3.

Scientific Programming

1

13 14
5 6 5 6 6
16 |15
1 2 2 2 2
8 7 8 7 8 7
9 10 9 10
4 3 4 3 3 3
12 11 12 11
(a) (b) (c) (d)
13|14 13|14 13|14
6 6 6
16 |15 16|15 16 |15
2 2 2
17|18 17|18 17|18
7 7 7
20 (19 20|19 2019
21122 2122
9 10 10 10
3 24 (23 3 2423 3
25|26
12 11 12 11 11
2827

(e)

(g)

FIGURE 16: Generation of numbering of elements over the mesh & refined towards edge singularity, refined in seven steps denoted on panels

(@), (b), (¢), (d), (e), (f), and (g).

TABLE 2: Refinement levels for particular elements from mesh with
point singularity.

Refinement level Area Elements
1 1 1,2,4

2 1/4 56,8

3 1/16 9,10, 11,12
4 1/256 13,14, 15,16

TaBLE 3: Refinement levels for particular elements from mesh with
edge singularity.

Refinement level Area Elements

1 1 2,3

2 1/4 6, 710,11

3 116 13, 14, 15, 16, 17, 18, 19, 20, 21,

22,23, 24, 25, 26, 27, 28

The area and neighbors algorithm executed on the com-
putational mesh with N, elements can be summarized as
shown in Algorithm 1.

Notice the following remarks.

(i) Thanks to our definition of numbering of elements,
the initial forest sorted according to the numbering
of elements is also sorted according to elements area.

(ii) When we rotate the point or edge singularity by 90,
180, or 270 degrees our numbering algorithm fol-
lowed by the area and neighbors algorithm will gen-
erate similar quasi-optimal elimination trees resulting
in a similar number of FLOPs.

(iii) In the general case, the algorithm may not deliver
quasi-optimal elimination trees, since it is a heuristic
algorithm, and the problem of construction of an
optimal elimination tree is NP-complete.

Let us illustrate the heuristic algorithm on the mesh
examples with point and edge singularities. The meshes are
presented in Figures 15 and 16. Let us focus first on the mesh
with point singularity, as presented in Figure 17.

(1) The elements are sorted according to their number-
ing, in the reversed order, which is equivalent to
sorting according to their area, from smallest to the
largest.

(2) We select the subforest with smallest elements (16),
(15), (14), (13) with minimum area equal to 1/256 (cf.
Figure 17(a)).

(3) We find out that the maximum number of common
edges between elements (16), (15), (14), (13) is equal
to L.

(4) The two pairs of elements (16, 15) and (14, 13) with
minimum area and maximum number of common
edges are formed. The elements (16), (15), (14), (13)
are removed from the list; the newly created trees with
pairs of elements are put at the beginning of the list (cf.
Figure 17(b)).

(5) The subforest with trees built from smallest patches is
now (16, 15), (14, 13) and the minimum area is equal
to 2/256 (cf. Figure 17(b)).

(6) We find out that maximum number of common edges
between patches (16, 15), (14, 13) is equal to 2.

12

Scientific Programming

(1)
2)
(€)
(4)
(5)
(6)
(7)
(8)
)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

Create forest of N, one-element trees,
sorted according to the numbering of elements, from largest to smallest
Store list of neighbors for each tree
Compute area =]/2**rfinementlevel £ oach tree
repeat
Select sub-forest of elements with minimum area
Find maximum number of common edges between all pairs in the selected sub-forest
Loop through all pairs of trees (v,w) in the sub-forest with number of common edges
equal to the maximum number of common edges found
Create new root node r
Assign v and w as children nodes of r
Update area of r: area(r) = area(v) + area(w)
Update list of neighbors of r (merge the lists)
Add new tree r to the forest in such a way
that the forest is still sorted according to area of trees
end for
until forest has one element

ALGORITHM 1

A

16 1514 13]12 10 9 8 6 5 4 2 1
16 1514 1312110 9 8 6 5 4 21 161514131210@865421

Subforest, area = 1/256 Subforest, area = 2/256 Subforest, area = 1/16

(a) (b)
(91615141312]865421 916 15 14 13 12 3421 510916151413128421
Subforest, area = 2/16 Subforest, area = 1/4 Subforest, area = 2/4

(d) (e)

BB

510916151413128421 65109161514131284 ﬁ

Subforest, area = 1 Subforest, area = 2

6 51091615 14 13 12 8 4

(g) (h) (i)

FIGURE 17: Particular steps of construction of the heuristic elimination tree for mesh with point singularity.

Scientific Programming

(7) We form a new tree from a pair ((16, 15), (14, 13));
the pairs (16, 15), (14, 13) are removed from the list,
and the new tree ((16, 15), (14, 13)) is added at the
beginning of the list (cf. Figure 17(c)).

(8) The subforest with trees built from smallest patches
is now ((16,15),(14,13)), (12), (10), (9) and the
minimum area is equal to 1/16 (cf. Figure 17(c)).

(9) We find out that maximum number of common edges
between patches ((16, 15), (14, 13)), (12), (10), (9) is
equal to 1.

(10) We form a new tree from a patch and element
(((16,15),(14,13)),(12)) as well as a new tree out of
elements ((10), (9)). They are removed from the list,
and the new trees are added at the beginning of the
list (cf. Figure 17(d)).

(11) The subforest with smallest patches is now ((10), (9)),
(((16,15),(14,13)),(12)) and the minimum area is
2/16 (cf. Figure 17(d)).

(12) We find out that the maximum number of com-
mon edges between patches ((10),(9)), (((16,15),
(14,13)),(12)) is equal to 2.

(13) We form a new tree from patches (((10), (9)), (((16,
15), (14, 13)), (12))). They are removed from the list,
and the new tree is added at the beginning of the list
(cf. Figure 17(e)).

(14) The subforest with smallest patches is now (((10), (9)),
(((16,15), (14, 13)), (12))), (8), (6), (5) and the mini-
mum area is 1/4 (cf. Figure 17(e)).

(15) We find out that the maximum number of common
edges between patches is equal to 1.

(16) We form new trees ((6), (5)) and ((((10), (9)), (((16,
15), (14, 13)),(12))),(8)). The original patches are
removed from the list, and the new trees are added
at the beginning of the list (cf. Figure 17(f)).

(17) The subforest with smallest patches is now ((6), (5),
(((10),(9)), (((16,15),(14,13)),(12)))) and the mini-
mum area is 2/4 (cf. Figure 17(f)).

(18) We find out that the maximum number of common
edges between the patches is equal to 2.

(19) We form a new tree from patches ((6), (5), (((10), (9)),
(((16,15),(14,13)),(12)))). They are removed from
the list, and the new tree is added at the beginning
of the list (cf. Figure 17(g)).

(20) The scenario is repeated recursively until one tree is
formed.

Let us focus now on the case of the mesh with edge singularity,
as presented in Figure18. For the sake of simplicity, we
present only a short description for this case.

(1) The elements are sorted according to their area.

(2) The eight pairs of elements with minimum area and
maximum number of common edges are selected.

(3) The created eight patches of elements still have mini-
mal areas. They are selected to form four new patches.

13

TABLE 4: Comparison of FLOPs for area and neighbors algorithm
versus MUMPS with nested-dissection (METIS), approximate min-
imum fill (AMF), approximate minimum degree (AMD), quasi-
approximate minimum degree (QAMD), PORD, and SCOTCH
executed over the mesh with point singularity.

MUMPS + PORD, Area and
N AME AMD, QAMD, MUMPS + METIS .
SCOTCH neighbors
25 1120 1120 1145
37 2070 2070 1991
49 3020 3448 2837
61 3970 3970 3683
73 4920 5424 4529
85 5870 7282 5375
97 6820 8556 6221
109 7770 9830 7067
121 8720 10780 7913

(4) At this point, patches (5,6) and (17,18) have the
same minimal area as the four created multielement
patches. All these six patches are merged now into two
new patches.

(5) At this point patches ((5,6),(17,18)) and the two
multielement patches have minimal area and they are
merged.

(6) Now we have to merge two patches that have minimal
area.

(7) 'The situation is repeated again.

5. Tree Rotation Algorithm

We apply a tree rotation algorithm to improve the balance of
the elimination tree [33, 34]. The algorithm browses the tree
in breadth-first search order and performs a sequence of local
rotations every time a branch is much deeper than the other
one. For a detailed description of the tree rotation algorithm
please refer to [33, 34].

6. Numerical Results

6.1. Comparison of Computational Cost for Different Elimina-
tion Trees. In this section we compare the number of floating-
point operations (FLOPs) of our heuristic elimination trees
constructed for the meshes with point and edge singulari-
ties, with alternative ordering algorithms available through
MUMPS. In particular, we compare the number of FLOPs
of our GALOIS solver based on our heuristic elimination
trees with number of FLOPs required by MUMPS using
the ordering provided by approximate minimum fill (AMEF),
approximate minimum degree (AMD), SCOTCH, PORD,
METIS, and AMD with quasi-row detection. We utilize
sequential version of our GALOIS solver, with heuristic
elimination tree, without tree rotations. The results of the
comparison are presented in Tables 4 and 5 as well as in
Figures 19 and 20 using log-log scale. In all the cases, our

14

Scientific Programming

ARRA A A R A

28 2726 2524 2322 21 18 17 16 5 11 10 7 6 3 2

B A% %

28 2726 2524 2322 21 20 19 18 17 16 15 14 13 11 10 7 6 3 2

RA

28 2726 2524 2322 21 20 19 18 17 16 15 14 13 11 107 6 3 2
(c)

28 2726 2524 2322 21 20 19 18 17 16 15 14 13 11 107 6 3 2
(d)

28 2726 2524 2322 21 20 19 18 17 16 15 14 13 11 107 6 3 2
(e)

28 2726 2524 2322 21 20 19 18 17 16 15 14 13 11 107 6 3 2
)

FIGURE 18: Particular steps (a)-(f) for construction of the heuristic elimination tree for mesh with edge singularity.

Scientific Programming

TaBLE 5: Comparison of FLOPs for area and neighbors algorithm
versus MUMPS with nested-dissection (METIS), approximate min-
imum fill (AMF), approximate minimum degree (AMD), quasi-
approximate minimum degree (QAMD), PORD, and SCOTCH
executed over the mesh with edge singularity.

MUMPS + PORD, Area and

N AME AMD, QAMD, MUMPS + METIS .
SCOTCH neighbors
25 1120 1120 1145
51 3527 3831 3342
101 10100 10530 9827
199 28970 35710 26204
393 77740 81450 64827
779 197400 204100 153510
1549 486700 513400 348519
3087 1155000 1223000 765176
6161 2656000 2766000 1717203
10000

Exponent factor (MUMPS)
y = 19.694x 12502

MUMPS + PORD, AMFE, AMD,
QAMD, SCOTCH
MUMPS + METIS \

™

Exponent factor

™S

Area and neighbors

FLOPs

(area and neighbors)

y = 245372114

1000 T
25 100 121

Number of degrees of freedom

FIGURE 19: Comparison of the number of FLOPs for the point
singularity. No visible difference between MUMPS + METIS and
MUMPS + other orderings.

heuristic algorithms deliver a lower number of FLOPs. We
also estimated the exponent factors for both algorithms and
obtain G(N''*) for our algorithm and O(N 12802y for the
best alternative ordering for the point singularity, as well
as O(N*%) for our algorithm and O(N"122) for the best
alternative ordering for the edge singularity.

6.2. Comparison of Dynamic Programming and Heuristic
Algorithms. In this section we analyze the computational
performance of the quasi-optimal and heuristic elimination
trees in actual implementations. To compare the methods we
use the execution time. This allows us to account for FLOPs
and memory transfers in this comparison. We schedule the
resulting sequences of graph-grammar productions using
GALQIS to obtain an optimized performance both in serial

15

Exponent factor (MUMPS)
y = 19.694x 2802

10000 MUMPS + PORD, AME, AMD, 2
QAMD, SCOTCH \\ ==
g MUMPS + METIS) “Area and neighbors
= N Exponent factor
(area and neighbors)
-4 12114
1000 & y 537x
10 21 100121

Number of degrees of freedom

FIGURE 20: Comparison of the number of FLOPs for the edge
singularity.

10
BN - / Heuristic
2 1
£
| 0 k)
Number of threads 7 =
Dynamic programming sequential
Dynamic programming parallel
0.1

FIGURE 21: Comparison of the execution times between quasi-
optimal and heuristic elimination trees for a mesh with an edge
singularity.

and in parallel execution. We compare the solver execution
time over three elimination trees:

(i) the dynamic programming tree using the sequential
cost function, without tree rotations,

(ii) the dynamic programming tree using the parallel cost
function, without tree rotations,

(iii) the heuristic elimination tree, without tree rotations.

The tests are performed on a GILBERT machine with 64
cores. We focus on the mesh with point and edge singularity.
The solvers use an increasing number of threads, from 1, 2,
4, 8, 16 to 32. The results are presented in Figure 21. The
results indicate that the heuristic algorithms result in similar
execution times like the quasi-optimal trees generated by the
dynamic programming algorithm.

We can draw the following conclusions from the per-
formed numerical experiments.

(i) Both dynamic programming orderings provide sim-
ilar execution times; the parallel ordering becomes
slightly faster for a large number of threads.

(ii) Our heuristic ordering provides a similar execution
time to that of the dynamic programming orderings.

(iii) We conclude that we can safely use the elimination
trees generated by the heuristic ordering instead of

16
Number of degrees of freedom
1(}OOO 10000 100000 1000000
MUMPS 2 cores
1
MUMPS 1 core
) MUMPS 4 cores
§ 0.1 {MUMPS 8 cores \. . ’\
I P e
:»,,fjj/’/j e OIS 8 cares
0.01 I ke 7 ~ GALOIS 4 cores
’ GALOIS 2 cores
GALOIS 1 core
0

FIGURE 22: Log-log scale comparison of the execution times of the
MUMPS and GALOIS solvers for different numbers of threads,
for different numbers of refinement levels, for the mesh with edge
singularity.

expensive dynamic programming orderings; how-
ever, we will continue comparison of these two
approaches for other kinds of meshes and in 3D in our
future work.

6.3. Comparison with MUMPS. In this example we compare
our GALOIS solver with heuristic trees without the rotation
algorithm against MUMPS with AMD ordering provided
by METIS, since AMD results in a minimum number of
FLOPs. We compile our GALOIS based solver with the
gcc-4.8.0 compiler. Our solver does not use any optimized
numerical libraries and is a pure C code. We compare against
MUMPS solver version 4.10.0 compiled with gfortran-4.8.0
and linked with metis-4.0.3, atlas-3.10.1, LAPACK-3.4.2, and
ScaLAPACK-2.0.2. In MUMPS we utilize Cholesky factor-
ization (the problem is symmetric, positive definite). We use
a simple model problem, the heat transfer equation. In our
solver we utilize LU factorization. We compare execution
times as well as parallel efficiency and speedup. The tests are
performed on a single node of ATARI Linux cluster with 16-
core Intel Xeon CPU, with 2.4 GHz, total 16 GB RAM. The
point singularity results in very small computational meshes,
and the comparison of parallel solvers makes no sense there.
In the following experiments we focus on the mesh with an
edge singularity. The comparison of the execution times for
an edge singularity is presented in Figure 22. The comparison
of the parallel efficiency for an edge singularity is presented
in Figure 23. The comparison of the parallel speedup for an
edge singularity is presented in Figure 24.

We can draw the following conclusions from the per-
formed numerical experiments.

(i) For small problem sizes (less than 10000 degrees of
freedom) MUMPS and GALOIS solvers behave like
for point singularity case.

(ii) For larger problem sizes both MUMPS and GALOIS
speed up when we increase the number of cores.

(iii) For larger problem sizes GALOIS scales well up to 8
cores; however MUMPS scales well up to 4 cores only.

Scientific Programming

Number of degrees of freedom
GALOIS 1 core MUMPS 1 core

10 100 1000 10000 100000 1000000
1.00E + 02 b ~ —
GALOIS 2 cores
. 1.00E + 01 GALOIS 4 corg
o
=]
g
€
S L00E+00{ . . T/ © . MUMPS 2 cores
GALOIS 8 cores MUMPS 4 cores
'\ MUMPS 8 cores
1.00E - 01

FIGURE 23: Comparison of the efficiency of the MUMPS and
GALOIS solvers for different numbers of threads, for different
numbers of refinement levels, for the mesh with edge singularity. The
log-log scale is utilized.

Number of degrees of freedom

10 100 1000 10000 100000 1000000
1.00E + 01
ALOIS 1
g MUMPS 1 core LOTS co%
2 1.00E+00 | ., N \Y
gg- GALOIS 2 cores
GALOIS 4c\0res GALOIS 2 cores
GALOIS GALOIS 4 cores
S § cores < GALOIS 8 cores
1.00E - 01

F1GURE 24: Comparison of the speedup of the MUMPS and GALOIS
solvers for different numbers of threads, for different numbers of
refinement levels, for the mesh with edge singularity. The log-log
scale is utilized.

(iv) For larger problems the GALOIS solver with any
thread number outperforms multithreaded MUMPS.

6.4. Tests Using Tree Rotation Algorithm. In this section we
compare execution times for the meshes with point and edge
singularities, using our heuristic elimination trees, before
and after execution of the rotation algorithm. The tests are
performed on a GILBERT machine with 64 cores. From these
experiments we do not observe a significant improvement on
the performance of the proposed heuristic elimination trees.
That is, for some instances rotation improves performance
while in others it does not. In all cases the performance is
comparable.

7. Conclusions

In this paper we discussed a dynamic programming algo-
rithm for finding quasi-optimal elimination trees for two-
dimensional grids with singularities. We performed the
optimization for the cost function reflecting sequential and
parallel execution. We introduce a heuristic algorithm to con-
struct the elimination trees. These heuristic elimination trees
have similar performance to that of the quasi-optimal trees
obtained with dynamic programming. The quasi-optimal

Scientific Programming

and heuristic elimination trees are compared against state-
of-the-art solvers implemented in popular libraries such as
MUMPS. We compare number of FLOPs for each solver
(using execution times as proxies for MUMPS) and show that
our elimination trees deliver better computational costs in
terms of the exponent factors. We also executed the algorithm
for rotation of our elimination trees to check if they are
well balanced and well suited to parallel computations. We
verified experimentally that the tree rotation may improve
the execution time of the multifrontal solver working with
our elimination trees, but this is not always the case. Finally
our elimination trees were expressed as graph-grammar
productions and implemented in our graph-grammar-based
solver using GALOIS scheduler. The solver is compared
with MUMPS. We show that the graph-grammar-based
solver outperforms MUMPS for large problems and provides
comparable execution times for small ones.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The work of Anna Paszynska, Maciej Paszynski, Konrad
Jopek, Maciej Wozniak, Damian Goik, and Piotr Gurgul
was supported by the Polish National Science Center Grants
nos. DEC-2012/07/B/ST6/01229, DEC-2011/03/B/ST6/01393,
and DEC-2012/06/M/ST1/00363. The work of Keshav Pingali
and Andrew Lenerth was supported by NSF Grants CCF
1337281, CCF 1218568, ACI 1216701, and CNS 1064956. Don-
ald Nguyen was supported by a DOE Sandia Fellowship. The
work of Hassan AbouEisha, Mikhail Moskkov, and Victor
Manuel Calo and visits of Anna Paszynska, Maciej Paszynski,
and Maciej Wozniak at KAUST were supported by the Center
for Numerical Porous Media at KAUST. The visits of Maciej
Paszynski at ICES were supported by J. T. Oden Research
Faculty Fellowship.

References

[1] K.Pingali, D. Nguyen, M. Kulkarni et al., “The tao of parallelism
in algorithms,” in Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(PLDI ’11), pp. 12-25, June 2011.

[2] M. Yannakakis, “Computing the minimum fill-in is NP-
complete,” SIAM Journal on Algebraic Discrete Methods, vol. 2,
no. 1, pp. 77-79, 1981.

[3] L. Demkowicz, Computing with hp-Adaptive Finite Elements,
Volume I: One and Two Dimensional Elliptic and Maxwell Prob-
lems, Applied Mathematics and Nonlinear Science, Chapman &
Hall/CRC Press, 2006.

[4] 1. S. Duftfand J. K. Reid, “The multifrontal solution of indefinite
sparse symmetric linear equations, ACM Transactions on
Mathematical Software, vol. 9, no. 3, pp. 302-325, 1983.

[5] 1. S. Duff and J. K. Reid, “The multifrontal solution of unsym-
metric sets of linear equations,” SIAM Journal on Scientific and
Statistical Computing, vol. 5, no. 3, pp. 633-641, 1984.

17

[6] B.M.Irons, “A frontal solution program for finite element analy-
sis,” International Journal for Numerical Methods in Engineering,
vol. 2, no. 1, pp. 5-32, 1970.

[7] G. Karypis and V. Kumar, “METIS—unstructured graph parti-
tioning and sparse matrix ordering system, version 2.0,” Tech.
Rep., 1995.

[8] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
Scientific Computing, vol. 20, no. 1, pp. 359-392, 1998.

[9] P. R. Amestoy, T. A. Davis, and 1. S. Duff, “An approximate
minimum degree ordering algorithm,” SIAM Journal on Matrix
Analysis & Applications, vol. 17, no. 4, pp. 886-905, 1996.

[10] P. R. Amestoy, I. S. Duff, and J.-Y. UExcellent, “Multifrontal
parallel distributed symmetric and unsymmetric solvers,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 184,
no. 2-4, pp. 501-520, 2000.

[11] P.R. Amestoy, L. S. Duff,].-Y. LExcellent, and J. Koster, “A fully
asynchronous multifrontal solver using distributed dynamic
scheduling,” STAM Journal on Matrix Analysis and Applications,
vol. 23, no. 1, pp. 15-41, 2001.

[12] P. R. Amestoy, A. Guermouche, J.-Y. LExcellent, and S. Pralet,
“Hybrid scheduling for the parallel solution of linear systems,”
Computer Methods in Applied Mechanics and Engineering, vol.
2, no. 32, pp. 136-156, 2001.

A. Paszynska, M. Paszynski, and E. Grabska, “Graph transfor-
mations for modeling hp-adaptive finite element method with
mixed triangular and rectangular elements,” in Computational
Science—ICCS 2009, vol. 5545 of Lecture Notes in Computer
Science, pp. 875-884, Springer, Berlin, Germany, 2009.

(13

(14

A. Paszynska, M. Paszynski, and A. Grabska, “Graph transfor-
mations for modeling hp-adaptive finite element method with
triangular elements,” in Computational Science—ICCS 2008,
vol. 5103 of Lecture Notes in Computer Science, pp. 604-613,
2008.

[15] M. Paszynski, “On the parallelization of self-adaptive hp-
finite element methods part I. Composite programmable graph
grammar model,” Fundamenta Informaticae, vol. 93, no. 4, pp.
411-434, 2009.

[16] M. Paszynski, “On the parallelization of self-adaptive hp-finite
element methods. II. Partitioning communication agglomera-
tion mapping (PCAM) analysis,” Fundamenta Informaticae, vol.
93, no. 4, pp. 435-457, 2009.

P. Obrok, P. Pierzchala, A. Szymczak, and M. Paszynski, “Graph
grammar-based multi-thread multi-frontal parallel solver with
trace theory-based scheduler;” Procedia Computer Science, vol.
1, no. 1, pp. 1993-2001, 2010.

[18] M. Paszynski and R. Schaefer, “Graph grammar-driven parallel
partial differential equation solver;” Concurrency and Computa-
tion: Practice and Experience, vol. 22, no. 9, pp. 1063-1097, 2010.

E. Grabska, “Theoretical concepts of graphical modeling. Part
two: CP-graph grammars and languages,” Machine Graphics and
Vision, vol. 2, no. 2, pp. 149-178, 1993.

[20] A.Habel and H.-J. Kreowski, “May we introduce to you: hyper-
edge replacement,” in Graph-Grammars and Their Application to
Computer Science, vol. 291 of Lecture Notes in Computer Science,
pp. 15-26, Springer, Berlin, Germany, 1987.

[21] A. Habel and H.-J. Kreowski, “Some structural aspects of
hypergraph languages generated by hyperedge replacement,” in
STACS 87, vol. 247 of Lecture Notes in Computer Science, pp.
207-219, Springer, 1987.

=
-

[19

18

(22]

(23]

[24

[25

(26]

[27

[28

(30]

(31]

(32

(34]

G. Slusarczyk and A. Paszynska, “Hypergraph grammars in hp-
adaptive finite element method,” Procedia Computer Science,
vol. 18, pp. 1545-1554, 2012.

V. Diekert and G. Rozenberg, The Book of Traces, World
Scientific, River Edge, NJ, USA, 1995.

P. Gurgul, “A linear complexity direct solver for h-adaptive grids
with point singularities;” Procedia Computer Science, vol. 29, pp.
1090-1099, 2014.

M. Paszynski, D. Pardo, and A. Paszynska, “Parallel multi-
frontal solver for p adaptive finite element modeling of multi-
physics computational problems,” Journal of Computational
Science, vol. 1, no. 1, pp. 48-54, 2010.

B. Barabasz, E. Gajda-Zagorska, S. Migorski, M. Paszynski,
R. Schaefer, and M. Smotka, “A hybrid algorithm for solving
inverse problems in elasticity,” International Journal of Applied
Mathematics and Computer Science, vol. 24, no. 4, pp. 865-886,
2014.

E. Gajda-Zagorska, R. Schaefer, M. Smotka, M. Paszynski, and
D. Pardo, “A hybrid method for inversion of 3D DC resistivity
logging measurements,” Natural Computing, 2014.

D. Pardo, L. Demkowicz, C. Torres-Verdinn, and M. Paszyn-
ski, “Two-dimensional high-accuracy simulation of resistiv-
ity logging-while-drilling (LWD) measurements using a self-
adaptive goal-oriented hp finite element method,” SIAM Journal
on Applied Mathematics, vol. 66, no. 6, pp. 2085-2106, 2006.

L. Demkowicz, P. Gatto,]. Kurtz et al., “Modeling of bone con-
duction of sound in the human head using hp-finite elements:
code design and verification,” Computer Methods in Applied
Mechanics and Engineering, vol. 200, no. 21-22, pp. 1757-1773,
2011.

P. Matuszyk and M. Paszynski, “Fully automatic hp adaptive
finite element method for the Stokes problem in two dimen-
sions,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 197, no. 51-52, pp. 4549-4558, 2008.

H. AbouEisha, M. Moshkov, V. Calo, M. Paszynski, D. Goik, and
K. Jopek, “Dynamic programming algorithm for generation of
optimal elimination trees for multi-frontal direct solver over h-
refined grids,” Procedia Computer Science, vol. 29, pp. 947-959,
2014.

D. Goik, K. Jopek, M. Paszynski, A. Lenharth, D. Nguyen, and
K. Pingali, “Graph grammar based multi-thread multi-frontal
direct solver with galois scheduler,” Procedia Computer Science,
vol. 29, pp. 960-969, 2014.

M. Fredrik, “An algorithm for computing an elimination tree of
minimum height for a tree,” in Proceedings of the 2nd Meeting of
the International Linear Algebra Society, Lisbon, Portugal, 1992.
M. Fredrik, “An algorithm for computing an elimination tree of
minimum height for a tree,” Tech. Rep. CS-91-59, University of
Bergen, Bergen, Norway, 1991.

Scientific Programming

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

