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This paper describes application of a hyper-graph grammar system for modeling a three-dimensional adaptive finite element
method. The hyper-graph grammar approach allows obtaining a linear computational cost of adaptive mesh transformations
and computations performed over refined meshes. The computations are done by a hyper-graph grammar driven algorithm
applicable to three-dimensional problems. For the case of typical refinements performed towards a point or an edge, the
algorithm yields linear computational cost with respect to the mesh nodes for its sequential execution and logarithmic
cost for its parallel execution. Such hyper-graph grammar productions are the mathematical formalism used to describe
the computational algorithm implementing the finite element method. Each production indicates the smallest atomic task
that can be executed concurrently. The mesh transformations and computations by using the hyper-graph grammar-based
approach have been tested in the GALOIS environment. We conclude the paper with some numerical results performed on
a shared-memory Linux cluster node, for the case of three-dimensional computational meshes refined towards a point, an
edge and a face.
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1. Introduction

There have been some previous attempts to prescribe
adaptive mesh-based transformations and computations
by a set of graph grammars. The first work
concerning this area was presented Flasiński and Schaefer
(1996). Graph grammar productions were used by
the authors to prescribe various transformations of
regular, triangular and two-dimensional adaptive meshes.
Using a quasi-context sensitive grammar turned out to
have limitations in terms of adaptive meshes. As an
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example, application of the so-called 1-irregularity rule
is contextual and cannot be modeled using context-free
grammars. The 1-irregularity rule says that a finite
element can be broken only once without breaking its
bigger, neighboring elements. It prevents unbroken
element edges from being adjacent to more than two finite
elements. When an unbroken edge is adjacent to one
large finite element on one side and two smaller finite
elements on the other side, the approximation over these
two smaller elements is constrained by the approximation
of the larger element. In case the 1-irregularity rule cannot
be enforced, only uniform refinements can be prescribed.
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Grabska (1993a; 1993b) introduced composite
programmable graphs (CP-graphs) as a new mathematical
formalism applicable to model various design processes.
CP-graph grammars describe transformations of the graph
representation of the domain object. Due to their
contextuality, they are suitable for a wide range of
problems.

The CP-graph grammar consists of a set of graph
transformations, called productions. A production
prescribes a replacement of a subgraph defined on
its left-hand side into a new subgraph defined on its
right-hand side. The CP-graphs are very convenient for
modeling the mesh transformations, since they allow for
a simple definition of the embedding transformation for
the replaced subgraph. This is because the transformation
embedding is encoded in the production by introducing
the so-called free bonds, denoting places where the
replaced graph is connected through edges with the
remaining parts of the graph. In the CP-graph grammar,
the same number of free bonds is assumed on both
sides of the production, and the free bonds numbering
is utilized to embed the replaced subgraph. CP-graph
grammars were used for modeling the adaptive finite
element method grids in two dimensions (Paszyński
and Paszyńska 2008; Paszyński and Schaefer, 2010;
Paszyński, 2009; Paszyńska et al., 2009; 2012a; 2012b),
as well as in the three-dimensional case (Ryszka et al.,
2015a; 2015b).

Results presented in this paper, however, were
obtained leveraging the different and promising
type of graph grammars called the hyper-graph
grammars. Employing the hyper-graph grammar
formalism instead of composite graph grammars to model
mesh transformations can decrease the computational
complexity of performed operations, because the number
of edges and nodes in the hypergraph representing a
computational mesh is much smaller than the number
of edges and nodes in the corresponding composite
graph. The topological structure of each quadratic
element is represented here using four hypergraph nodes
corresponding to four vertices and five hyperedges
corresponding to its edges and interior, whereas in
the CP-graph representation of a mesh element 18
graph nodes with 60 node bonds are needed. The most
important factor though is the order, in which elements
are browsed in the case of processing the solution
computed over the mesh. CP-graphs are very good in
representing hierarchies, which is exactly what is needed
for a multi-frontal solver. However, accessing a neighbor
element requires finding the lowest common ancestor
(LCA), which is not straightforward. In the case of the
solver presented in this paper, we browse elements level
by level (layer by layer), which requires easy access to
horizontal neighbors. This can easily be achieved by
using hyper-graphs as they have a flat structure.

Hypergraphs were introduced by Habel and
Kreowski (1987a; 1987b). The first application of the
hypergraph grammars for modeling mesh generation was
proposed by Ślusarczyk and Paszyńska (2013). In this
paper we extend this application to three-dimensional
generation, refinement and solution process. A hype-
rgraph is composed of a set of nodes and a set of
hyperedges to which sequences of source and target
nodes can be assigned. Both nodes and hyperedges
can be labeled with labels from a fixed alphabet. To
represent the properties of mesh elements, the attributed
hypergraphs are being used. This means that each node
and hyperedge can have some attributes, such as, e.g., the
polynomial order of approximation. However, since the
solvers presented in this paper leverage only the h version
of FEM (with p being fixed, yet arbitrary), labeling is not
necessary and will not be used to model the solver. The
hypergraphs are created from simpler hypergraphs by
replacing their subhypergraphs by new hypergraphs. This
operation is possible for a new hypergraph and for the
subhypergraph if a sequence of so-called external nodes
is specified. The hypergraph replacement is defined as
follows. The subhypergraph is removed from the original
hypergraph and the new hypergraph is embedded into
the original hypergraph. The new hypergraph is glued
to the remainder of the original hypergraph by fusing its
external nodes with the corresponding external nodes in
the remainder of the original hypergraph. The number of
external nodes should be the same in both hypergraphs.

The modeling of the solver algorithm for
two-dimensional grids was proposed by Paszyński
(2016). In this paper, however, we extend the idea for
adaptive three-dimensional grids.

The structure of the paper is the following. First,
we introduce the hypergraph grammar for generation
of three-dimensional mesh with a point singularity in
Section 2.1, as well as for expressing a multi-frontal solver
algorithm in Section 2.2. Next, we propose a hypergraph
grammar-based linear computational cost solver for grids
with point singularities in Section 3. Section 4 is devoted
to theoretical analysis of the computational cost of the
sequential solver. Section 5 concerns theoretical analysis
of the memory usage of the sequential solver. Next,
in Section 6 we present theoretical estimates of the
computational complexity of the parallel shared-memory
solver. Finally, Section 7 presents numerical results for
sequential and parallel solvers. The paper is concluded in
Section 8.

2. Three-dimensional grid with point
singularity

This section describes a derivation of an exemplary
projection problem where we project a tangent-like
function with a large gradient at one of the corners of
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the mesh. This results in a point singularity at that
corner. Point singularities are very common phenomena
in numerical simulations. They may result from:

• point sources on the right-hand-side of the partial
differential equation (PDE) (like point heat sources
in the heat transfer problem, or local point antennas
in electromagnetic waves simulation problems);

• local geometrical structure of the mesh;

• a non-uniform distribution of material data (point
singularities are present when three different material
data meet at a given point of the domain).

In order to deliver a better solution in each iteration, we
employ an h-refinement algorithm for this problem and
run the solver in a number of iterations until the desired
quality is achieved.

The h refinement is a popular technique for reducing
error (Bao et al., 2012; Belytschko and Tabbar, 1993).
It is utilized in a large class of computational problem
where the boundary layers, singularities, and/or high
local gradients are encountered. In other conditions,
p-refinement or hp-refinements may be preferred.

The h refinement approach to improving the quality
of the solution is to increase the number of elements by
dividing the domain into smaller pieces. The rationale is
that some sensitive regions require a lot of elements to
approximate the solution fairly, whereas for others, even
a relatively sparse mesh results in an acceptable error
rate. The key factor in achieving satisfactory results is
to find places that need fine grids. This can be done
manually by predicting solution features a priori (e.g., the
location of the singularity) or automatically, by refining
some elements dynamically and evaluating their relative
error rate drop. In the latter case, the mesh is recursively
subdivided until an acceptable resolution is obtained.

2.1. Hypergraph grammar model for genera-
tion and adaptation of three-dimensional mesh with
point singularities. The process of generation of the
three-dimensional computational mesh with hexahedral
elements starts with execution of the Pinit production,
presented in Fig. 1. It generates a hypergraph representing
a single three-dimensional finite element. In the case of
uniform mesh adaptations, we can prepare a sequence of
graph grammar productions replacing the single element
by a uniform cluster of elements. The model production
Pinit break presented in Fig. 2 generates a uniform mesh
of eight elements. In order to get non-uniform mesh
refinements, we need to enforce the afore-mentioned
1-irregularity rule by breaking element interiors first, as is
expressed by production Pbreak int presented in Fig. 3. An
example execution of the production over the eight finite
element mesh is presented in Fig. 4. In the case of faces,

Fig. 1. Initial production Pinit that generates a single cubic ele-
ment.

Fig. 2. Production breaking a single element into eight ele-
ments.

a face can be broken only if two adjacent interiors have
already been broken, or one adjacent interior has been
broken and the face is located on the boundary of the
mesh. The case is illustrated with production Pbreak face

presented in Fig. 5. Finally, edges can be broken only if
all adjacent faces have already been broken, or the edge is
located on the boundary (and in such a scenario we need
to check fewer adjacent faces). This is illustrated in Fig. 6
by production Pbreak edge.

2.2. Multi-frontal solver algorithm prescribed by hy-
pergraph grammars. In order to apply the concept to a
frontal solver algorithms, a simple 2D two finite element
example will be used. The domain Ω is described by two
elements and fifteen nodes—two interiors, seven edges
and six vertices (cf. Fig. 7). In the 2D FEM we utilize
basis functions related to element nodes. In this example,
as presented in Fig. 8, we have linear basis functions
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Fig. 3. Production breaking an interior of a single element.

Fig. 4. Eight-element mesh after breaking the interior of the
front element.

Fig. 5. Production Pface that breaks a face.

Fig. 6. Production Pedge that breaks an edge.

1 2 3 4 5

6 7 8

11 12 13 14 15

Fig. 7. Sample computational domain for the frontal solver.

related to element vertices, i.e., to nodes 1, 3, 5, 11,
13 and 15, quadratic basis functions related to element
edges, namely to nodes 2, 4, 6, 8, 10, 12 and 14, as well
as quadratic basis functions related to element interiors,
namely to nodes 7 and 9. We construct the matrix
by integrating multiplications of these basis functions or
their derivatives over a domain. Thus, matrix rows and
columns correspond to basis functions and matrix entries
correspond to multiplications of pairs of basis functions.
Interior basis functions have support over a given element
only, edge basis functions have support spread over one
or two elements, vertex basis functions also have support
spread over one or many elements.

The frontal solver introduced by Irons (1970)
browses finite elements in a user-determined, arbitrary
order. Due to its nature, it is sequential. Nodes (degrees of
freedom) are aggregated into so-called frontal matrices.

Instead of generating just one large FEM matrix, it
generates small matrices, called element frontal matrices.
These matrices are obtained by integrating basis functions

1      2      3       4     5
6      7     8      9    10

11    12     13     14    15

1      2      3       4     5
6      7     8      9    10

11    12     13     14    15
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Fig. 8. Example basis functions spread over element nodes: the
basis function associated with vertex node 1 (black), ver-
tex node 3 (dark gray) and vertex node 5 (light gray) (a),
the basis function associated with edge node 6 (black),
edge node 8 (dark gray) and edge node 10 (light gray)
(b), the basis function associated with interior node 7
(black) and interior node 9 (dark gray) (c) .
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Fig. 9. Processing of the right element by the frontal solver.

1 2 3 4 5

6

11 12 13 14 15

Fig. 10. Processing of the left element by the frontal solver.

over a given element. Thus, some entries in the element
frontal matrix are fully assembled, and some are not. The
row of the frontal matrix is called fully assembled, if
all of its entries (integrals of products of pairs of basis
functions) have been fully computed. This happens if both
basis functions have support over a given element only, or
the first of the basis functions has support over a given
element only (since even the second basis functions also
has support over some other element, its product with the
first basis function is also zero). The fully assembled rows
are self-contained and can be eliminated by the solver
algorithm at any time. If a basis function has support
defined only over a single element, we say that the node is
reduced to the element only, and it has all its contributions
already present in the element frontal matrix.

The aim of the frontal solver is to keep the frontal
matrix as small as possible. To this end, it analyses the
connectivity of the nodes and performs partial forward
elimination of the fully assembled nodes. Fully assembled
nodes have all of their contributions already present in
the matrix, so no additional knowledge is necessary
to eliminate corresponding rows. Its mechanisms are
presented using an example of a two-element mesh. Since
the order is arbitrary, we decided to add the nodes of the
right element to the matrix first. Nodes 4, 5, 9, 10, 14
and 15 are proprietary to the right element and thus, we
can call them fully assembled. Nodes 3, 8 and 13 are
shared with the left element, and hence, will not be fully
assembled until the frontal matrix associated with the left
element is not merged with the frontal matrix associated
with the right element.

The frontal solver browses elements one by one.
It starts with generating a frontal matrix for the right
element, for all the nodes (4, 5, 9, 10, 14, 15, 3, 8, 13).
We put the fully assembled nodes (4, 5, 9, 10, 14, 15) in
the upper part of the matrix. We perform partial forward
elimination, eliminating all fully assembled nodes (4, 5,

9, 10, 14, 15). This is shown in Fig. 9. The upper
triangular part of the frontal matrix has to be stored for
future backward substitution. What is left is the reduced
frontal matrix associated with nodes (3, 8, 13), which are
not yet fully assembled. Such a reduced matrix is called
the Schur complement matrix. The solver now moves to
the left element (Fig. 10) and generates its frontal matrix
(3, 8, 13, 1, 2, 6, 7, 11, 12), which is followed by adding
the contribution that remained after processing the right
element. This is illustrated in Fig. 11. Now, all nodes
are fully assembled in a single matrix, so it is possible to
perform full forward elimination.

The process is followed by backward substitution,
browsing elements in reverse order. The solver takes
advantage of the upper triangular form of the frontal
matrix and computes the solution at each node, one by
one. Such an approach allows us to keep the size of the
matrix as small as possible by eliminating unknowns as
soon as possible. Unfortunately, as mentioned before, in
this case only the matrix operations can be parallelized
due to the nature of the algorithm.

The multi-frontal solver introduced by Duff and
Reid (1983; 1984) is the state-of-the-art direct solver
algorithm for solving systems of linear equations, which
is a generalization of the frontal solver algorithm (Irons,
1970). However, in the case of a multi-frontal solver,
connectivity analysis is performed using a so-called
elimination tree. A computational domain is decomposed
into hierarchical subdomains, which account for the
elimination tree (Fig. 12). The construction of the
elimination tree for an arbitrary mesh is a complex task
per se. It is done by constructing the graph representing
the connectivities in the mesh, which is followed by
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Fig. 11. Upper triangular form of the frontal matrix after pro-
cessing the second element.
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Fig. 12. Domain decomposed into an elimination tree.
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running graph partitioning algorithms such as nested dis-
sections from METIS library (Karypis and Kumar, 2009).

Usually, commercial solvers like the MUMPS (Duff
and Reid, 1983; 1984) solver are not aware of the structure
of the mesh, and they need to reconstruct the connectivity
pattern by analysing the sparsity pattern of the matrix
submitted to the solver. Note that such a matrix is already
in its the global form, after the assembly of all element
frontal matrices. Another method for construction of
elimination trees is presented by Aboueisha et al. (2017).

In the multi-frontal approach, the solver generates
a frontal matrix for each element of the mesh. This is
illustrated in Figs. 13 and 14. It eliminates fully assembled
nodes within each frontal matrix, and merges the resulting
Schur complement matrices at the parent level of the tree.
This is illustrated in Fig. 15. The key difference with
respect to the frontal matrix is that at the parent level the
solver works with a smaller matrix, which is a 3×3 matrix
obtained from the two Schur complements computed at its
son nodes. In other words, the frontal matrix assembles
element frontal matrices to a single frontal matrix and
eliminates what is possible from the single matrix, while
the multi-frontal solver utilizes multiple frontal matrices
and thus allows us to reduce the size of the matrices at the
parent nodes of the tree.

The first graph grammar productions are responsible
for generation of the frontal element matrices. This is
done by productions Pagreg int responsible for generation
of the matrix entries associated with interior nodes,
Pagreg boundary and Pagreg face responsible for generation
of matrix entries associated with boundary and interior
faces, Pagreg edge and Pagreg vertex responsible for generation
of matrix entries associated with element edges and
vertices. These graph grammar productions are illustrated
in Fig. 16.

Having assembled the frontal matrix, it is now
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Fig. 13. Partial forward elimination on the left element.

Fig. 14. Partial forward elimination on the right element.
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Fig. 15. Full forward elimination of the interface problem ma-
trix.

Fig. 16. Productions for assembly of an element frontal matrix.

possible to start elimination of the fully assembled nodes.
We can eliminate the interior node, which is denoted
by production Pelim int presented in Fig. 17, we can also
eliminate boundary faces, which is denoted by production
Pelim face as well as boundary edges and vertices, compare
productions Pelim edge and Pelim vertex in Fig. 17.

Having adjacent elements with frontal matrices and
eliminated interior and boundary nodes, we can now
merge the frontal matrices into one matrix and eliminate
fully assembled nodes from the common face. It
is expressed by productions Pmerge eliminate illustrated in
Fig. 18. This procedure of merging frontal matrices and
eliminating fully assembled nodes located on common
faces is repeated until all the nodes in the mesh are
eliminated.

3. Linear computational cost solver for
three-dimensional meshes with point
singularities

In the case of a mesh with point singularities, as the
one presented in Fig. 19, we can take advantage of the
multi-level structure of the computational grid in the
following way: We start with the grid presented in the
right panel in Fig. 2. The first step is to execute the
multi-frontal solver algorithm for all elements, except the
elements located closest to the point singularity.

In order to create element frontal matrices for all
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Fig. 17. Squashed productions Pelim int, Pelim boundary, Pelim edge

and Pelim vertex that execute elimination of the interior,
boundary nodes, edges and an internal vertex.

Fig. 18. Production Pmerge eliminate for merging two frontal ma-
trices and elimination of fully assembled nodes from a
common face.

Fig. 19. Three-dimensional mesh with a single point singularity.

elements on the top level we execute the following
chain of productions: Pagreg init �→ Pagreg boundary �→
Pagreg face �→ Pagreg edge �→ Pagreg vertex. The
next step is to eliminate entries that resulted from
the previously aggregated element contributions, which
can be achieved by executing the following chain
of productions: Pelim boundary �→ Pelim edge �→
Pelim vertex.

Finally, we merge the frontal matrices, by executing
productions Pmerge eliminate as many times as necessary to
end up with the interface of the top level with respect to
the next level, as presented in Fig. 20. We store the Schur
complement matrix associated with the interface.

At this point, we can aggregate the frontal
matrix associated with the element nearest to the point
singularity, by executing productions Pagreg init �→
Pagreg boundary �→ Pagreg face �→ Pagreg edge �→
Pagreg vertex.

As the next step, we can merge the element frontal
matrix with the Schur complement matrix, by executing
production Pmerge with Schur. This results in a fully
assembled matrix and we can solve the problem close to
the singularity.

If a more accurate solution is desirable, we can break
the element neighboring the singularity by executing the
production Pbreak singularity presented in Fig. 21, preserving
the Schur complement adjacent to the broken element.

At this point, we continue solving the problem over
the newly refined elements by executing the following
chain of productions: Pagreg init �→ Pagreg boundary �→
Pagreg face �→ Pagreg edge �→ Pagreg vertex that generate
the element frontal matrices, followed by productions
Pelim boundary �→ Pelim edge �→ Pelim vertex, together
with Pmerge with Schur reutilizing the Schur complement
matrix for the interface with the other part of the mesh.

4. Computational complexity of a
sequential hypergraph grammar-based
solver for three-dimensional meshes with
point singularities

As a diligent estimation of the exact computational cost
for the three-dimensional version of the solver would
be a very strenuous task, we limit ourselves to a rough
approximation of the computational complexity, ignoring
the constants. Note that p is assumed to be constant over
the entire domain. In fact, due to numerical unstability,
p very rarely exceeds 10 and hence this assumption is
fair. In case of the hp version of the FEM algorithm,
where both h and p are variable, we can assume that
p = pmax = const to approximate the upper boundary
of the cost.

Lemma 1. The computational complexity of the sequen-
tial solver with respect to the number of the degrees of
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Fig. 20. Interface between layers.

Fig. 21. Hypergraph grammar derivation of a grid with a point
singularity.

freedom N and the polynomial order of approximation p
for the three-dimensional grid with a point singularity is
equal to T (p,N) = O(Np6).

Proof. A three-dimensional element has O(p) degrees of
freedom over an element edge, O(p2) degrees of freedom
over an element face and O(p3) degrees of freedom
over an element interior. The number of base functions
spanned over the element vertices is constant and hence
independent of p. The computational complexity of the
elimination of the interior-related degrees of freedom is
of the order of O((p + p2 + p3)2p3) = O(p9). The
computational complexity of the static condensation is of
the order of O(Nep

9), where Ne denotes the number of
elements.

The remaining degrees of freedom over the faces and

edges are eliminated level by level (layer by layer), and the
computational complexity of elimination of a single level
is of the order of O((p2 + p)3) = O(p6). The number
of elements Ne is of the order of O(Ne) = O(N/p3),
and the number of levels k is of the order of O(k) =
O(N/p3). Thus the total computational complexity is
of the order of O(Nep

9 + kp6) = O(Np6 + Np3) =
O(Np6), which completes the proof. �

The proven complexity depends on p that in theory
is variable. However, as mentioned above, in practice
it very rarely exceeds 10 due to severe numerical
problems caused by high order polynomials. For the
case of hp-refinements, where the polynomial orders of
approximations vary, we can use the above estimate as
the upper bound for the computational cost, assuming the
uniform distribution of the maximum utilized polynomial
order of approximation.

5. Memory usage of a hypergraph
grammar-based solver for
three-dimensional meshes with point
singularities

Memory usage in case of the hypergraph grammar
driven solver for three-dimensional meshes with point
singularities remains linear with respect to the number of
the degrees of freedom N . The order of memory usage is
roughly estimated in the lemma below.

Lemma 2. Memory usage M of the solver with respect to
the number of degrees of freedom N and polynomial order
of approximation p for the three-dimensional grid with a
point singularity is of the order of M(N, p) = O(Np3).

Proof. A three-dimensional element contains O(p)
degrees of freedom over element edges, O(p2) degrees of
freedom over element faces andO(p3) degrees of freedom
over element interiors. The memory usage complexity
of storing an element frontal matrix is of the order of
O((p + p2 + p3)2) = O(p6). The total memory usage
complexity of storing element frontal matrices is of the
order of O(Nep

6). The matrices at higher levels contain
contributions from faces and edges and the memory usage
complexity of storing such a matrix is of the order of
O((p2 + p)2) = O(p4). The number of elements Ne

is of the order of O(Ne) = O(N/p3), and the number
of levels k is of the order of O(k) = O(N/p3). Thus
the total memory usage complexity is of the order of
O(Nep

6 + kp3) = O(Np3 +N) = O(Np3). �
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6. Theoretical estimates of computational
complexity for parallel shared memory
machine solver execution

In this section we roughly estimate a theoretical
computational complexity of the fastest version of the
solvers presented in this paper which is the parallel
hypergraph grammar solver for three-dimensional meshes
with point singularities.

We assume that execution takes place on a shared
memory machine. For a message passing parallelism
model, the cost of communication needs to be included.
Another important assumption is the infinite number of
cores, so that the scalability is unrestricted. While it is an
idealized scenario, in reality it would be enough to find a
right balance between the problem size and the amount of
cores available to optimize the performance. In the worst
case of severe misconfiguration, the complexity of this
algorithm will be reduced to linear. A good analogy would
be a comparison to a binary search tree which on the
average offers logarithmic time for all basic operations,
but in its extreme, imbalanced version, the complexity
deteriorates to linear.

Lemma 3. The computational complexity of the parallel
solver with respect to the number of degrees of freedom
N and polynomial order of approximation p for the three-
dimensional grid with a point singularity is of the order of
O(p6 log(N/p3)).

Proof. A three-dimensional element (see Fig. 1) contains
O(p) degrees of freedom over element edges, O(p2)
degrees of freedom over element faces and O(p3) degrees
of freedom over element interiors. The number of the
degrees of freedom over vertices is obviously constant and
it does not depend on p.

The computational complexity of elimination of in-
terior degrees of freedom is of the order of O(p3(p +
p2 + p3)2) = O(p9), since we eliminate p3 interior
nodes from the element matrix with all element degrees
of freedom of order of p + p2 + p3 (subtract p3 rows
from an element matrix). The degrees of freedom over
the remaining faces and edges are eliminated level by
level (layer by layer), and the computational complexity
of their elimination over a single level is of the order
of O((p2 + p)3) = O(p6). This is because we have
the order of p2 + p degrees of freedom on the interface
and the same order of degrees of freedom in the entire
layer. In parallel, we construct an elimination tree
with O(log(k)) levels, where k is the previously defined
number of the refinement levels. In particular, the number
of levels k is of the order of O(k) = O(N/p3) and
thus O(log(k)) = O(log(N/p3)). This is why the
computational complexity of the parallel solver is O(p9 +
p6 log(N/p3)) = O(p6 log(N/p3)). This is because
we perform parallel elimination of elements interior,

followed by the elimination of the refinement levels on
particular layers of the tree with depth O(log(N/p3)).
This completes the proof. �

7. Numerical results for a multi-thread
shared memory GALOIS solver

To conclude the considerations above, we present a series
of numerical results illustrating the performance of the
described solver. We used the GALOIS environment
(Goik et al., 2014; Paszyńska et al., 2015; Pingali et al.,
2011) for solver implementation. We first illustrate the
linear scalability of the sequential solver when executed
on the sequence of grids refined towards point 19, edge
22, and face 23. The scalability of the sequential code
is illustrated in Figs. 24–27 for the point singularity, in
Figs. 28–31 for the edge singularity, and in Figs. 32–35
for the face singularity.

The mesh with a point singularity yields linear
computational cost, which can be read from Figs. 24–27,
for the grids with uniform polynomial order of
approximations p = 2, 3, 4, 5. The linear computational
cost of the sequential solver is also obtained for the
mesh with an edge singularity, which can be read from
Figs. 28–31, for the polynomial orders of approximations
p = 2, 3, 4, 5. Finally, the mesh with face singularity

Fig. 22. Mesh refined towards an edge.

Fig. 23. Mesh refined towards a face.
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also delivers a linear cost, for different polynomial orders,
which can be read from Figs. 32–35. For very small
grids, and for quadratic basis functions, the computational
problem is very small, and there are some oscillations in
the time measurements.

From these plots we can observe, that if the
problem size becomes large enough, we recover linear
computational cost not only for the point singularity, but
also for the edge and the face.

Second, we illustrate the scalability of the parallel
solver when executed on the fixed mesh refined
towards points 36–39, edges 40–43, and faces 44–47.
The experiments were performed on a GILBERT
shared-memory Linux cluster node using up to 16 cores.

We can observe the logarithmic decrease in the
computation time for the grid with a point singularity,
when increasing the number of cores, as presented
in Figs. 36–39, for different polynomial orders of
approximation. A similar logarithmic decrease can be
observed for the grids with edge singularities, as presented
in Figs. 40–43, and for the grids with face singularities, as
presented in Figs. 44–47.

We would like to point out that horizontal lines in
Figs. 24–35 presenting the sequential results contain the
problem size, while the horizontal lines in Figs. 36–47
presenting the parallel results contain the number of
utilized cores. Each parallel experiment has been
executed on a single mesh with fixed size. The
size of the mesh can be obtained by looking at the
sequential computations, where the sequential execution
time matches the parallel execution time with a single
core. Notice that the theoretical result concerning the
logarithmic computational cost of the parallel algorithm
assumes an infinite number of cores, and we are restricted
here to the case of 16 cores only, so producing an
ideal logarithmic estimate is rather impossible in practice.
From these plots we can observe that if the problem size
becomes large enough (if we increase the polynomial
order over the mesh nodes), the parallel code scales very
well. For low computational cost grids (low polynomial
order over the mesh nodes) the tasks are not heavy and the
scheduling is more expensive than execution.

8. Conclusions

The main and most significant achievement of this work is
creation of models applicable to a wide class of adaptive
algorithms. The formal methodology used to achieve this
goal was the hypergraph grammar formalism. All the
graph grammar productions presented in this work can
also be applied to three-dimensional grids with arbitrary
refinements. However, for the sake of simplicity, we
restricted ourselves here to the subset of hypergraph
grammar productions expressing the grids with single
point singularities. Nevertheless, in the numerical sections
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Fig. 28. Scalability of sequential hypergraph grammar-based
execution over the sequence of meshes refined toward
the edge singularity, with uniform p = 2.
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execution over the sequence of meshes refined toward
the edge singularity, with uniform p = 3.
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execution over the sequence of meshes refined toward
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Fig. 33. Scalability of sequential hypergraph grammar-based
execution over the sequence of meshes refined toward
the face singularity, with uniform p = 3.
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Fig. 34. Scalability of sequential hypergraph grammar-based
execution over the sequence of meshes refined toward
the face singularity, with uniform p = 4.
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cution over the mesh refined toward the face singular-
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we analyzed three-dimensional meshes refined towards
a point, an edge and a face. We proved theoretically
and experimentally the linear computational cost of the
algorithm. We also showed the theoretical logarithmic
computational cost of the parallel execution, especially
for polynomial orders of approximation p > 2, and we
have verified the parallel scalability on a shared-memory
Linux cluster node with 16 cores. The scalability of
the hypergraph-grammar-based solvers does not depend
on the PDE being solved, but rather on the structure
of the computational mesh generated by the h adaptive
procedure.
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A., Paszyński, M. and Skotniczny, M. (2017). Element
partition trees for h-refined meshes to optimize direct
solver performance. Part I: Dynamic programming, Inter-
national Journal of Applied Mathematics and Computer
Science 27(2): 351–365, DOI: 10.1515/amcs-2017-0025.

Bao, G., Hu, G. and Liu, D. (2012). An h-adaptive finite element
solver for the calculations of the electronic structures, Jour-
nal of Computational Physics 231(14): 4967–4979.

Belytschko, T. and Tabbar, M. (1993). h-adaptive finite
element methods for dynamic problems, with emphasis on
localization, International Journal for Numerical Methods
in Engineering 36(24): 4245–4625.

Duff, I.S. and Reid, J.K. (1983). The multifrontal solution of
indefinite sparse symmetric linear, ACM Transactions on
Mathematical Software 9(3): 302–325.

Duff, I.S. and Reid, J.K. (1984). The multifrontal solution of
unsymmetric sets of linear equations, SIAM Journal on Sci-
entific and Statistical Computing 5(3): 633–641.
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and Anna Paszyńska.
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