Hypergrammar-based parallel multi-frontal solver for grids with point singularities

Abstract

This paper describes the application of hypergraph grammars to drive linear computationalcost solver for grids with point singularities. Such graph grammar productions are the rstmathematical formalism used to describe solver algorithm and each of them indicates thesmallest atomic task that can be executed in parallel, which is very useful in case of parallelexecution. In particular the partial order of execution of graph grammar productions can befound, and the sets of independent graph grammar productions can be localized. They canbe scheduled set by set into shared memory parallel machine. The graph grammar basedsolver has been implemented with NIVIDIA CUDA for GPU. Graph grammar productionsare accompanied by numerical results for 2D case. We show that our graph grammar basedsolver with GPU accelerator is order of magnitude faster than state of the art MUMPSsolver

    Similar works