
 Procedia Computer Science 9 (2012) 1454 – 1463

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.04.160

Graph Grammar-Based Multi-Frontal Parallel Direct Solver

for Two-Dimensional Isogeometric Analysis

Krzysztof Kuźnika, Maciej Paszyńskia, Victor Calob

aAGH University of Science and Technology,
Krakow, Poland

bKing Abdullah University of Science and Technology,
Thuwal, Saudi Arabia

Abstract

This paper introduces the graph grammar based model for developing multi-thread multi-frontal parallel direct

solver for two dimensional isogeometric finite element method. Execution of the solver algorithm has been expressed

as the sequence of graph grammar productions. At the beginning productions construct the elimination tree with leaves

corresponding to finite elements. Following sequence of graph grammar productions generates element frontal matri-

ces at leaf nodes, merges matrices at parent nodes and eliminates rows corresponding to fully assembled degrees of

freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward

substitutions. Expressing the solver algorithm by graph grammar productions allows us to explore the concurrency

of the algorithm. The graph grammar productions are grouped into sets of independent tasks that can be executed

concurrently. The resulting concurrent multi-frontal solver algorithm is implemented and tested on NVIDIA GPU,

providing O(NlogN) execution time complexity where N is the number of degrees of freedom. We have confirmed

this complexity by solving up to 1 million of degrees of freedom with 448 cores GPU.

Keywords: parallel computing, isogeometric analysis, models of concurrency, graph grammar

1. Introduction

This paper presents the parallel multi-frontal direct solver for higher order finite element method (FEM). The

higher order FEM can be implemented with hp finite elements introduced by Demkowicz [3, 4] or with B-spline
based finite elements [1]. The advantage of the B-spline based FEM is that it provides higher global continuity of

order Ck while Demkowicz finite elements provide only C0 continuity.

The multi-frontal direct solver is the state of the art algorithm for solving sparse linear systems of equations

arising from finite element method computations. The sequential version of the algorithm was first proposed by [5, 6].

The input for the algorithm is the elimination tree, that in the leaves contains the frontal matrices corresponding to

particular finite elements. The solver algorithm browses the elimination tree from leaves up to the root. During this

operation it performs partial forward eliminations over the frontal matrices, to eliminate the fully assembled degrees

of freedom. Resulting Schur complement sub-matrices are merged at parent nodes of the elimination tree. The process

Email address: paszynsk@agh.edu.pl (Maciej Paszyński)
URL: http://home.agh.edu.pl/~paszynsk (Maciej Paszyński)

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

1455 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

Figure 1: Graph grammar for 2D mesh generation. The productions are cloned with different direction attributes

Figure 2: The ordering of 9 nodes in the system created by production (Mi,j).

is repeated up to the root of the elimination tree. The root problem is fully assembled, so it can be solved and followed

by recursive backward substitutions going down to the leaves. The parallel multi-frontal solver has been implemented

for C0 two dimensional hp-FEM [12].

The multi-frontal solver algorithm together with the process of generation of the elimination tree can be expressed

by graph grammar. The graph grammar generating the structure of the computational mesh was derived for two

dimensional rectangular, triangular and mixed finite elements mesh [10, 11, 9]. The graph grammar based solver

algorithm for two and three dimensional hp-FEM computations on Linux clusters was developed [14, 15, 13]. In

this paper we present the derivation of the graph grammar based multi-frontal direct solver for two dimensional

isogeometric finite element method for shared memory machines.

The algorithm of the multi-frontal solver has been expressed by graph grammar productions. This includes the

generation of the elimination tree, creation of the element matrices, partial forward eliminations and merging of

the local systems when browsing the elimination tree, solution of the root problem as well as recursive backward

substitutions. Expressing the solver algorithm by graph grammar productions allows us to identify basic undividable

tasks that must be executed in sequence. The partial order of execution between tasks (graph grammar productions)

is identified, and the tasks are grouped into sets of independent tasks that can be executed concurrently. In other

words the solver algorithm is transformed into a sequence of sets with basic undividable tasks called graph grammar

productions. These sets are executed concurrently, set by set. Thus the graph grammar approach allows us to transform

the sequential multi-frontal solver algorithm into highly parallelizable concurrent algorithm intended for the shared

memory machines. We claim the graph grammar can be effectively utilized as a model of concurrency.

The multi-frontal solver algorithm implemented on a single processor delivers O(N1.5) execution time [7]. It is

possible to improve its efficiency to the linear O(N) execution time using the concept of h-matrices [7]. However, the
price to pay is that hyper-matrices provide only approximate solution, and the cost of compressing the original matrix

into the h-matrix is large.

In this paper we provided the concurrent multi-frontal solver algorithm expressed by the graph grammar formal-

ism. The solver has been tested on NVIDIAGPU. The implementation providesO(NlogN) execution time complexity,
where N is the number of degrees of freedom. We have confirmed this complexity of the algorithm experimentally

with 448 cores GPU, up to 1 million degrees of freedom. We claim that this is the best possible time complexity one

can obtain when using the parallel direct solver algorithm [2].

1456 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

Figure 3: Graph grammar production for merging of four leaves matrices.

Figure 4: Ordering for nodes for merging of two horizontal blocks on the second level.

Figure 5: Ordering for nodes for merging of four blocks, and the resulting reordering for the next level.

1457 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

2. Finite Element Method for Two Dimensional Problems

We focus on two dimensional Laplace equation

Δu = 0 (1)

with boundary conditions

u (x1, 0) = 0 u (x1, 1) = 1 ∇u (0, x2) · n = ∇u (1, x2) · n = 0 (2)

for x1, x2 ∈ [0, 1]

The weak variational formulation is obtained by taking L2 scalar product with functions v ∈ H1 (Ω) and perform-

ing the shift u ∈ ũ + H1 (Ω) where ũ = x2.

Find u ∈ V = {u ∈ H1 (Ω) : tru = 0 for x1 ∈ [0, 1], x2 ∈ {0, 1}} such that b (v, u) = l (v) ,∀v ∈ V

b (u, v) =
∫
Ω

∇u · ∇vdx l (v) = −
∫
Ω

∂v
∂x2

dx (3)

The computational mesh is partitioned into finite elements. We utilize the B-spline functions for approximation of

the solution

u (ξ, η) ≈
∑
i, j

Bi, j;p (ξ, η)Ui, j =
∑
i, j

Ni,p (ξ)Nj,p (η)Ui, j (4)

where

Ni,0 (ξ) = I[ξi,ξi+1]

Ni,p (ξ) =
ξ − ξi

xi+p − ξi Ni,p−1 (ξ) +
ξi+p+1 − ξ

xi+p+1 − ξi+1 Ni+1,p−1 (ξ) (5)

We end up with the following discrete form of the weak equation

Find u ∈ V =
∑
i, j

Bi, j;pUi, j =
∑
i, j

Ni,pNj,pUi, j such that
∑
i, j

b
(
Bi, j, Bk,l

)
= l
(
Bk,l
)∀k, l (6)

3. Graph grammar for generation of the elimination tree

In this section we introduce the graph grammar productions responsible for generation of the elimination tree.

In Figure 1 we introduce graph grammar productions responsible for generation of the two dimensional mesh. The

exemplary sequence of graph grammar productions generating a 4x4 elements mesh is

(P1) − (P2)S W − (P2)NW − (P2)S E − (P2)NE − (P3)S W − (P3)S − (P3)W − (P3)11 −
(P3)S E − (P3)S − (P3)E − (P3)12 − (P3)NE − (P3)E − (P3)N − (P3)22 − (P3)NW − (P3)W − (P3)N − (P3)21 (7)

4. Graph grammar for generation of local matrices

The computational problem has been partitioned into finite elements. The matrix contributions are partitioned into

finite elements K and replaced by Gaussian quadrature with weights wm,n and Gaussian quadrature points (xm, xn):

b
(
Bi, j, Bk,l

)
=

∫
Ω

∇Bi, j · ∇Bk,ldx =
∑

K

∫
K
∇Bi, j · ∇Bk,ldx =

∑
K

∑
m,n

wm,n∇Bi, j (xm, xn) · ∇Bk,l (xm, xn) |K|

l
(
Bk,l
)
= −
∫
Ω

∂Bk,l

∂x2
= −
∑

K

∫
K

∂Bk,l

∂x2
dx = −

∑
m,n

wm,n
∂Bk,l (xm, xn)

∂x2
|K| (8)

1458 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

To illustrate the multi-frontal solver algorithm, we will perform some computations manually on a simple 4 × 4 finite
element method mesh, for linear B-splines p = 1. We name graph grammar production for generation of the element
local frontal matrices. We assume the following ordering of unknowns for each element: bottom left, bottom right,

top left, top right.

Production (Ai,j) generates an element frontal matrix. As an argument it takes a leaf node graph vertex with label
node. Here i, j denotes two dimensional index of element in our domain.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 2 1

1 4 1 2

2 1 4 1

1 2 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui−1, j−1
ui−1, j
ui, j−1
ui, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

−3
3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

4.1. Graph grammar for merging local matrices and eliminating fully assembled rows
Let us assume we have four local systems assigned to four adjacent finite elements having common ui, j node. The

first system has been generated by production (Ai,j), the second system has been generated by production (Ai+1,j)

(Ai,j)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 2 1

1 4 1 2

2 1 4 1

1 2 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui−1, j−1
ui−1, j
ui, j−1
ui, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

−3
3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (Ai+1,j)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 2 1

1 4 1 2

2 1 4 1

1 2 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui, j−1
ui, j+1

ui+1, j−1
ui+1, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

−3
3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

The third system has been generated by production (Ai,j+1), the fourth system has been generated by production
(Ai+1,j+1)

(Ai,j+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 2 1

1 4 1 2

2 1 4 1

1 2 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui−1, j
ui−1, j+1
ui, j

ui, j+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

−3
3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (Ai+1,j+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 2 1

1 4 1 2

2 1 4 1

1 2 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui, j

ui, j+1

ui+1, j

ui+1, j+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

−3
3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

All rows in all these four matrices are not fully assembled yet. We must merge these four matrices into new single

matrix, to get one row fully assembled. The row will be associated with the central variable Ui, j. The ordering in the

new system is illustrated in Figure 2. The merging results in the following system of linear equations expressed by

production (Mi,j)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 2 2 2 2 2 2 2 2

2 8 2 0 2 1 1 0 0

2 2 8 2 0 0 1 1 0

2 0 2 8 2 0 0 1 1

2 2 0 2 8 1 0 0 1

2 1 0 0 1 4 0 0 0

2 1 1 0 0 0 4 0 0

2 0 1 1 0 0 0 4 0

2 0 0 1 1 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui, j

ui−1, j
ui, j+1

ui+1, j

ui, j−1
ui−1, j−1
ui−1, j+1
ui+1, j+1

ui+1, j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9

0

3

6

6

3

−3
3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The Figure 3 presents the graph grammar production over the elimination tree.

The next step is to perform the elimination of the first fully assembled row. The first row must be subtracted from

all 8 following rows. Notice that we can distinguish particular subtractions so in the parallel version of the solver

algorithm they can be performed in concurrent. This is expressed in productions (S1-k)i,j for k = 2, ..., 8. The first
row is fully assembled, since it corresponds to the node Ui, j that has support over four elements neighboring the

node Ui, j. We have just assembled all four frontal matrices, so the contribution corresponding to the node are fully

assembled. We just subtract the first row from the following rows. Notice that the sparse matrix becomes rather dense

matrix after elimination of the first row.

In the next step, having two matrices at son level we merge them into a new matrix at parent level. The ordering

for the merging process is depicted in Figure 4. This is done by graph grammar production (M2i,j)

1459 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

Figure 6: Summary of the multi-frontal solver algorithm for linear B-splines.

Figure 7: Summary of the multi-frontal solver algorithm for quadratic B-splines.

The next step is to perform the elimination of the first fully assembled row. The first row must be subtracted

from all 12 following rows, and in the parallel version of the solver algorithm the subtractions can be performed

concurrently. This is expressed in productions (S1-k)i,j for k = 2, ..., 12.
The first row is fully assembled, since it corresponds to a node Ui+1, j that has support over four elements neighbor-

ing the nodeUi+1, j. We have just assembled two frontal matrices with contributions from all four elements neighboring

the node.

In the next step we merge two resulting blocks into a new block. This is done by production (M4i,j). The
ordering for this operation is depicted in top panels in Figure 5. The first three rows must be subtracted from all 16

following rows, and the subtractions can be performed concurrently. This is expressed in productions (Sl-k)i,j for
l = 1, 2, 3, k = l + 1, ..., 16.

The three rows are fully assembled since we have just merged two matrices with all contributions coming from all

elements neighboring the nodes Ui, j−1, Ui, j and Ui, j+1.

Finally, the boundary problem is constructed. This is done by production (Root). The size of the root problem
is 16 × 16, and we perform full forward elimination followed by backward substitution. For the root problem we

distinguish productions responsible for particular subtractions of rows. First, we define productions representing

subtractions of the first row from all the following rows: (S1-k) for k = 2, ..., 16. Then, we define tasks for subtractions
of the second row from all following rows, and so on. In general we have the following productions (Sl-k) for
l = 1, ..., 15, k = l + 1, ..., 16.

The root problem solution is followed by a sequence of backward substitutions, traveling from the root of the

elimination tree down to the leaves. These operations are denoted by (BS*) graph grammar productions.

5. Sequence of graph grammar productions for the solver algorithm

The entire algorithm is summarized in Figure 6 for linear B-splines and in Figure 7 for quadratic B-splines. For

quadratic and higher order B-splines the algorithm is similar. However, the support of p order B-splines spreads over
(p + 1)2 elements. In other words, in the first step we need to merge (p + 1)2 element frontal matrices, and we can
eliminate one fully assembled central B-spline denoted in Figure 7 by green dot. In the following steps we merge four

frontal matrices and we can eliminate central B-splines denoted in Figure 7 by green dots.

1460 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

At this point we have expressed the entire multi-frontal solver algorithm by the sequence of graph grammar

productions. There are graph grammar productions responsible for generation of the elimination tree, productions

responsible for constructing element frontal matrices, productions for concurrent row subtractions during partial for-

ward eliminations, productions for merging of the resulting Schur complement matrices, productions for the following

concurrent partial forward eliminations, merging, and finally the root concurrent problem solution followed by recur-

sive backward substitutions. We assume that graph grammar productions are basic undividable tasks that must be

executed sequentially. We can find the partial order for executions of these tasks (graph grammar productions), and

group them into sets that can be executed concurrently.

The graph grammar based solver has been implemented and tested on NVIDIA GPU. The sets of identical tasks

that can be executed concurrently have been scheduled on GPU cores. The necessary data have been transferred from

global memory into nodes shared memory. The following chapter introduces the implementation details.

6. NVIDIA CUDA implementation

Recent rapid development of GPUs had lead to the situation where not only are they used for purpose of graphics

but they can act as a multi core computer for extensive calculations. Almost every modern GPU supports thousands

of active threads which can process data much more efficiently than ordinary CPU. This is why we decided to use

NVIDIA CUDA (Compute Unified Device Architecture) and its SDK to implement graph grammar-based solver. This

architecture is perfectly suitable for our task as we are able to process grammar production nodes independently and

parallelly on different GPU multiprocessors.

Applications using GPU are heterogeneous - they consist of host (CPU) code executed sequentially and device

(GPU) code executed parallelly. In our case host code is mostly responsible for memory management and launching

GPU actions, while GPU code is responsible for all calculations. While GPU architecture allows to speed up the code

it also puts some serious restrictions on resources that can be used i.e. amount of shared memory or number of threads

run by multiprocessor. Those restrictions caused our time results to scale up slightly different than theory suggests.

Here is quick outline of CUDA architecture and programming model for reader to better understand the algorithm

implementation. GPU consists of several multiprocessors (usually 8-14). Each of those multiprocessors has tens of

CUDA cores (eg. 32 for NVIDIA Tesla C2070). There are 4 basic kinds of memory that program can use:

• global memory (up to 6GB) - this can be accessed by each thread on device but is pretty slow

• shared memory (up to 48KB per multiprocessor) - this is low latency memory which is shared among all threads
run by multiprocessor

• constant memory and texture memory which are not relevant for this paper

For an algorithm to be fast it is highly desirable to use shared memory as much as possible. However, it is often not

possible to fit data into 48 kilobytes. This forces use of global memory which is much slower. Moreover, access to

global memory should be coalesced because it is transactional. It means that data layout in global memory also has

great influence on algorithm performance.

Programming model assumes that software is independent of device to allow high scalability and compatibility

with different hardware. Hence the notion of a block. Block is a set of threads which run on a single multiprocessor
and which use common shared memory. Several blocks might be run on one multiprocessor but one block is never

split between multiprocessors. To make programming easier blocks as well as threads inside block can be organized

into 2D or 3D grids which simplifies processing of matrices or volumes.

Below we will describe briefly how graph grammar productions were implemented. Let us assume that n is the
number of elements in one dimension of a domain. Total number of elements in domain is n2 = N.

6.1. Generation of local matrices
Generation of local matrices is basically evaluation of function b(Bi j, Bkl) over each element. We run a grid of

n× n blocks with (p+ 1)2 × (p+ 1)2 threads each. Then we have to calculate right hand side of our equation - function
l(Bkl). To do it, we run a grid of n × n blocks with (p + 1)2 threads each. All necessary integration is implemented as
weighted summation over Gaussian quadrature points.

1461 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

6.2. Initial merge and eliminating fully assembled rows
First step of merging is slightly different from next ones. In initial merge we put together (p + 1)2 matrices to

fully assemble just one row. We run 2D grid of blocks where each block is responsible for merging one matrix from

(p + 1)2 matrices.

6.3. Merging matrices and eliminating fully assembled rows
This is the most time consuming part of the algorithm. Merging was divided into horizontal and vertical merge to

limit number of rows eliminated in one step and make better use of fast shared memory. At each level we run as many

blocks as many merged matrices we receive. Number of threads in a block depends on stage of the step. At first there

is as many threads as length of a row in contributing matrix. Then number of threads is equal to the number of rows

eliminated in current step. Then it is equal to the number of rows that are not eliminated. We merge matrices until we

reach the top of the elimination tree where we are left with wire frame problem.

6.4. Last merge and solution
Last step is a moment when we are left with a big dense system of linear equations. We decided to use external

library (MAGMA) [8] to solve it to achieve high performance.

6.5. Backward substitution
Having last system of equations solved we start a backward substitution using dependencies from rows that we

eliminated on each level. Process is analogically reversed to merging. For each block we run as many threads as there

were eliminated rows.

6.6. Result calculation
At the end we have coefficients for every basis function. With those we are easily able to calculate values of

function u in Gaussian quadrature points. We run grid of n × n blocks with number of threads equal to number of
quadrature points in one element.

7. Numerical results

We tested our implementation on NVIDIA Tesla C2070 device which has 14 multiprocessors with 32 CUDA cores

per multiprocessor which gives us 448 CUDA cores. Total amount of global memory is 5375 megabytes. We used

CUDA 4.0 version.

Included time results are for p = 1 (Figure 8), p = 2 (Figure 9) and p = 3 (Figure 10). The plots list all parts
of the concurrent solver algorithm, including the generation of matrices at leaf nodes, merging of son nodes matrices

into a parent node matrices (sum of the time over all levels of the tree), root problem solution (performed by the call

to the MAGMA solver [8], since it is a dense problem), backward substitutions and retrieving the solution. The most

expensive part is the merging of matrices. This is related to the fact that this process requires expensive transfers from

global to nodes shared memory. In these experiments we were limited to 1048576 elements for linear, 589824 for

quadratic and 262144 for cubic B-splines because of a global memory size.

We do not compare our solver with MAGMA [8] library designed for GPU since MAGMA provides dense solver,

while our problem is sparse and way too large for the MAGMA call. On the other hand we utilize MAGMA for the

root dense problem solution in two dimensions.

8. Conclusion

We introduced the graph grammar methodology for concurrent solution of linear systems encountered while work-

ing with B-spline based finite element method delivering higher order global continuity of the solution. The imple-

mentation provides O(NlogN) execution time complexity where N is the number of degrees of freedom. We have

confirmed the time complexity of the algorithm experimentally with 448 cores GPU, up to 1 million degrees of free-

dom for linear B-splines, up to 589824 for quadratic B-splines and up to 262144 for cubic B-splines. The developed

model was implemented and tested on NVIDIA GPU. The future work will include the extension of the methodology

for three dimensional problems where we predict to obtainO(N1.33) execution time complexity, where N is the number
of degrees of freedom.

1462 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

Figure 8: Results for p = 1

Figure 9: Results for p = 2

1463 Krzysztof Ku¥znik et al. / Procedia Computer Science 9 (2012) 1454 – 1463

0.0001

0.001

0.01

0.1

1

10

100

100 1000 10000 100000

e
x
e

c
u

ti
o

n
ti
m

e
[s

]

number of elements

Figure 10: Results for p = 3

Acknowledgment

The work was partially supported by the Polish MNiSW grant no. NN 519 447739. The support of this work by

the Polish National Science Center under grant no DEC-2011/01/B/ST6/00674 is gratefully acknowledged.

[1] J. A.Cottrel, T. J. R. Hughes, Y. Bazilevs Isogeometric Analysis. Toward Integration of CAD and FEA, Wiley, 2009.
[2] N. Collier, D. Pardo, L. Dalcin, M. Paszyński, V. M. Calo The cost of continuity: a study of the performance of isogeometric finite elements

using direct solvers. Computer Methods in Applied Mechanics and Engineering, in press, doi:10.1016/j.cma.2011.11.002, 2011.
[3] L. Demkowicz, Computing with hp-Adaptive Finite Element Method. Vol. I.One and Two Dimensional Elliptic and Maxwell Problems.

Chapmann & Hall / CRC Applied Mathematics & Nonlinear Science, 2006.

[4] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, A. Zdunek Computing with hp-Adaptive Finite Element Method. Vol. II.
Frontiers: Three Dimensional Elliptic and Maxwell Problems. Chapmann & Hall / CRC Applied Mathematics & Nonlinear Science, 2007.

[5] I. S. Duff, J. K. Reid The multifrontal solution of unsymmetric sets of linear systems, SIAM Journal on Scientific and Statistical Computing,

vol. 5, 1984; p.633–641.

[6] I.S. Duff, J.K. Reid; The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software, 9 (1973) p. 302-

325.

[7] Phillip G. Schmitz, Lexing Ying; A fast direct solver for elliptic problems on general meshes in 2D, J. Comput. Physics 231(4): p. 1314-1338
(2012)

[8] MAGMA Matrix Algebra on GPU and Multicore Architecture, http://icl.cs.utk.edu/magma/

[9] A. Paszyńska, M. Paszyński, E. Grabska Graph transformations for modeling hp-adaptive Finite Element Method with mixed triangular and
rectangular elements. Lecture Notes in Computer Science vol. 5545, 2009; 875-884.

[10] A. Paszyńska, M. Paszyński, E. Grabska Graph transformations for modeling hp-adaptive Finite Element Method with triangular elements.
Lecture Notes in Computer Science vol. 5103, 2008; 604–613.

[11] M. Paszyński, A. Paszyńska, Graph transformations for modeling parallel hp-adaptive Finite Element Method . Lecture Notes in Computer
Science vol. 4967, 2008; 1313–1322.

[12] M. Paszyński, D. Pardo, C. Torres-Verdin, L. Demkowicz, V. Calo A Parallel Direct Solver for Self-Adaptive hp Finite Element Method.
Journal of Parall and Distributed Computing vol.70, 2010; p. 270–281.

[13] M. Paszyński, D. Pardo, A. Paszyńska Parallel multi-frontal solver for p adaptive finite element modeling of multi-physics computational
problems. Journal of Computational Science vol.1, iss.1, 2010; p. 48–54.

[14] M. Paszyński, R. Schaefer Graph grammar driven partial differential eqautions solver. Concurrency and Computations: Practise and Expe-
rience vol.22 iss.9. 2010; p. 1063–1097.

[15] A. Szymczak, M. Paszyński Graph grammar based Petri net controlled direct sovler algorithm. Computer Science vol.11, 2010; p.65–79.

