125 research outputs found

    Numerical simulation of non-Newtonian fluid flow in mixing geometries

    Get PDF
    In this thesis, a theoretical investigation is undertaken into fluid and mixing flows generated by various geometries for Newtonian and non-Newtonian fluids, on both sequential and parallel computer systems. The thesis begins by giving the necessary background to the mixing process and a summary of the fundamental characteristics of parallel architecture machines. This is followed by a literature review which covers accomplished work in mixing flows, numerical methods employed to simulate fluid mechanics problems and also a review of relevant parallel algorithms. Next, an overview is given of the numerical methods that have been reviewed, discussing the advantages and disadvantages of the different methods. In the first section of the work the implementation of the primitive variable finite element method to solve a simple two dimensional fluid flow problem is studied. For the same geometry colour band mixing is also investigated. Further investigational work is undertaken into the flows generated by various rotors for both Newtonian and non-Newtonian fluids. An extended version of the primitive variable formulation is employed, colour band mixing is also carried out on two of these geometries. The latter work is carried out on a parallel architecture machine. The design specifications of a parallel algorithm for a MIMD system are discussed, with particular emphasis placed on frontal and multifrontal methods. This is followed by an explanation of the implementation of the proposed parallel algorithm, applied to the same fluid flow problems as considered earlier and a discussion of the efficiency of the system is given. Finally, a discussion of the conclusions of the entire accomplished work is presented. A number of suggestions for future work are also given. Three published papers relating to the work carried out on the transputer networks are included in the appendices

    Distributed Finite Element Analysis Using a Transputer Network

    Get PDF
    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the 80,000transputernetworkdemonstratedacost−performanceratioabout60timesbetterthanthe80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the 15,000,000 Cray X-MP24 system

    Transient Finite Element Computations on a Variable Transputer System

    Get PDF
    A parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving, making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors

    Parallel algorithms for the solution of elliptic and parabolic problems on transputer networks

    Get PDF
    This thesis is a study of the implementation of parallel algorithms for solving elliptic and parabolic partial differential equations on a network of transputers. The thesis commences with a general introduction to parallel processing. Here a discussion of the various ways of introducing parallelism in computer systems and the classification of parallel architectures is presented. In chapter 2, the transputer architecture and the associated language OCCAM are described. The transputer development system (TDS) is also described as well as a short account of other transputer programming languages. Also, a brief description of the methodologies for programming transputer networks is given. The chapter is concluded by a detailed description of the hardware used for the research. [Continues.

    Parallel algorithms for three dimensional electrical impedance tomography

    Get PDF
    This thesis is concerned with Electrical Impedance Tomography (EIT), an imaging technique in which pictures of the electrical impedance within a volume are formed from current and voltage measurements made on the surface of the volume. The focus of the thesis is the mathematical and numerical aspects of reconstructing the impedance image from the measured data (the reconstruction problem). The reconstruction problem is mathematically difficult and most reconstruction algorithms are computationally intensive. Many of the potential applications of EIT in medical diagnosis and industrial process control depend upon rapid reconstruction of images. The aim of this investigation is to find algorithms and numerical techniques that lead to fast reconstruction while respecting the real mathematical difficulties involved. A general framework for Newton based reconstruction algorithms is developed which describes a large number of the reconstruction algorithms used by other investigators. Optimal experiments are defined in terms of current drive and voltage measurement patterns and it is shown that adaptive current reconstruction algorithms are a special case of their use. This leads to a new reconstruction algorithm using optimal experiments which is considerably faster than other methods of the Newton type. A tomograph is tested to measure the magnitude of the major sources of error in the data used for image reconstruction. An investigation into the numerical stability of reconstruction algorithms identifies the resulting uncertainty in the impedance image. A new data collection strategy and a numerical forward model are developed which minimise the effects of, previously, major sources of error. A reconstruction program is written for a range of Multiple Instruction Multiple Data, (MIMD), distributed memory, parallel computers. These machines promise high computational power for low cost and so look promising as components in medical tomographs. The performance of several reconstruction algorithms on these computers is analysed in detail

    A design method for parallel programs

    Get PDF

    Computer algebra and transputers applied to the finite element method

    Get PDF
    Recent developments in computing technology have opened new prospects for computationally intensive numerical methods such as the finite element method. More complex and refined problems can be solved, for example increased number and order of the elements improving accuracy. The power of Computer Algebra systems and parallel processing techniques is expected to bring significant improvement in such methods. The main objective of this work has been to assess the use of these techniques in the finite element method. The generation of interpolation functions and element matrices has been investigated using Computer Algebra. Symbolic expressions were obtained automatically and efficiently converted into FORTRAN routines. Shape functions based on Lagrange polynomials and mapping functions for infinite elements were considered. One and two dimensional element matrices for bending problems based on Hermite polynomials were also derived. Parallel solvers for systems of linear equations have been developed since such systems often arise in numerical methods. Both symmetric and asymmetric solvers have been considered. The implementation was on Transputer-based machines. The speed-ups obtained are good. An analysis by finite element method of a free surface flow over a spillway has been carried out. Computer Algebra was used to derive the integrand of the element matrices and their numerical evaluation was done in parallel on a Transputer-based machine. A graphical interface was developed to enable the visualisation of the free surface and the influence of the parameters. The speed- ups obtained were good. Convergence of the iterative solution method used was good for gated spillways. Some problems experienced with the non-gated spillways have lead to a discussion and tests of the potential factors of instability

    Generalized Differential-Integral Quadrature and Application to the Simulation of Incompressible Viscous Flows Including Parallel Computation

    Get PDF
    This research covers three topics: the development of numerical techniques for the solution of partial differential and integral equations; simulations of incompressible viscous flows using these techniques; and their extension to parallel computation of the incompressible N-S equations
    • …
    corecore