NASA Contractor Report 189060

Transient Finite Element Computations on a Variable Transputer System

Patrick J. Smolinski and Ireneusz Lapczyk University of Pittsburgh Pittsburgh, Pennsylvania

January 1993

Prepared for Lewis Research Center Under Grant NAG3-1152

N92-11671

(NASA-CR-189060) TRANSIENT FINITE ELEMENT COMPUTATIONS ON A VARIABLE TRANSPUTER SYSTEM (Pittsburgh Univ.) 90 p CSCL 09B

Unclas G3/61 0048391

FOREWORD

Q,

Д

Ň

The author would like to thank D. Janetzke and L.J. Kiraly of the Structural Dynamics Branch of the NASA Lewis Research Center for their helpful discussion and assistance in the use of the Transputer system.

SUMMARY

ā

Ģ

1

In this study a parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two-dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors.

Į.

LIST OF FIGURES

:

#

ę

#. 1

ī

Figure No.	Page
l	Transputer network topologies 14
2	Flow chart of the parallel finite element program
3	Determination of output direction 20
4	Data distribution among transputers
5	Finite element model of the bar problem . 23
6	Problem statement for the three-dimensional bar
7	Displacements of the end of the bar as a function of time
8	Flow chart of the procedure assigning nodes to transputers
9	Dependence of the max. num.proc.elem on the order of element numbering 33
10	Total time as a function of number of processors
11	Dependence of the shape of a parallelepiped on the value of the coefficient r 35
12	Total time as a function of the shape of a parallelepiped, num.of.elem=const
13a	Processor efficiency as a function of num.of.elem per processor, num.time.step=1
13b	Processor efficiency as a function of num.of.elem per processor, num.time.step=100 40

Figure No.		ruge
13c	Processor efficiency as a function of num.of.elem per processor, num.time.step=1000	41
14	Minimum number of processors as a function of num.time.step	. 44
15	The turbine blade finite element model.	. 47

Q.

့ာ

1

۰.

Page

LIST OF TABLES

Table No.		Page
1	Numerical integration algorithms	7
2	Flow chart for the trapezoidal method	9
3	Flow chart for the central difference method	10
4	Constants for calculation of the execution time	28
5	Comparison of the sequential and parallel solutions for the turbine blade	48
6	Solution times for the turbine problem	49
7	Comparison of the ratio of the communication time per node to the computation time per element	52
A-1	Problem parameters for the three- dimensional case, num.of.proc=2	57
A-2	Problem parameters for the three- dimensional case, num.of.proc=3	58
A-3	Problem parameters for the three- dimensional case, num.of.proc=4	59
A-4	Solution times for the three-dimensional bar, num.of.proc=2, num.time.step=10	60
A-5	Solution times for the three-dimensional bar, num.of.proc=2, num.time.step=50	61
A-6	Solution times for the three-dimensional bar, num.of.proc=2, num.time.step=100	62
A-7	Solution times for the three-dimensional bar, num.of.proc=3, num.time.step=10	63
A-8	Solution times for the three-dimensional bar, num.of.proc=3, num.time.step=50	. 64
2-9	Solution times for the three-dimensional	

vi

Table No.

0

÷

jų į .

:	5	
	bar, num.of.proc=3, num.time.step=100	
A-10	Solution times for the three-dimensional bar, num.of.proc=4, num.time.step=10 66	
A-11	Solution times for the three-dimensional bar, num.of.proc=4, num.time.step=50 67	,
A-12	Solution times for the three-dimensional bar, num.of.proc=4, num.time.step=100 68	3
A-13	Problem parameters for the two-dimensional case	9
A-14	Solution times for the two-dimensional problem, (nnodex)x(nnodey)=10x10, num.of.proc=2	0
A-15	Solution times for the two-dimensional problem, (nnodex)x(nnodey)=20x10, num.of.proc=2	1
A-16	Solution times for the two-dimensional problem, (nnodex)x(nnodey)=40x10, num.of.proc=2	2
A-17	Solution times for the two-dimensional problem, (nnodex)x(nnodey)=10x10, num.of.proc=4	'3
A-18	Solution times for the two-dimensional problem, (nnodex)x(nnodey)=20x10, num.of.proc=4	74
A-19	Solution times for the two-dimensional problem, (nnodex)x(nnodey)=40x10, num.of.proc=4	75
A-20	Parallel solution time for two-dimensional problems using two processors, T800 transputer	76
A-21	Solution times for two-dimensional problems for various numbers of processors where the number of nodes per processor is fixed, T800 transputer.	77

NOMENCLATURE

ŧ.

acceleration vector <u>a</u> displacement vector d internal force vector f external force vector E structure stiffness matrix K mass matrix M a matrix containing numbers of the transputers to which each transputer has next.neigh to send data a matrix containing numbers of the transputers from which each transputer has next.neigh.rec to receive data num.of.elem, total number of elements in N a mesh number of nodes which have to be exchanged Nex between processors after each time step num.of.nodes, total number of nodes in a N_{nodes} mesh num.nodes.needed, the set of all nodes of N_{nd} the elements assigned to a transputer, this number is larger than N_{up} num.update.nodes, number of nodes assigned N to a transputer num.proc.elem, number of elements assigned N_{p.el} to a transputer num.time.step, number time steps Nstep num.neigh.rec number of transputers from which а transputer has to receive data number of transputers to which а num.neigh.send transputer has to send data

number	of	processors
--------	----	------------

 Δt time step

р

•)

signal.in the matrix containing information from which direction a transputer has to receive data

signal.out the matrix containing information in which direction a transputer has to send data

T_{cm} communication time, the time required to exchange appropriate displacements between transputers

T_{cp} computation time, the time required to assemble the stiffness matrix and update displacements

T_{prep} preparation time, the time required to receive and rearrange problem parameters by transputers

T_{tot} total execution time of a program

v nodal velocity vector

÷7

TABLE OF CONTENTS

:

ø

.

Ŧ

•____.

																									I	Page
TITLE	E PA	GE	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	i
FORE	VORE	>.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
SUMMA	ARY.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
LIST	OF	FIC	GUR	ES		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iv
LIST	OF	TAI	BLE	s		•	•	•	•	•	•	•	•.	•	•	•	•	•	•	•	•	•	•	•	•	vi
NOMEN	1CLA	\ TUI	RE			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	viii
1.0	INT	ROI	DUC	TI	ON			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.0	GOV	/ERI	NIN	G	EQ	UA	Tİ	ON	I	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
3.0	NUM	IER:	ICA	L	IN	TE	GF	ra3	IC	N	AI	LGC	ORI	ΓTF	Η		•	•	•	•	•	•	•	•	•	5
4.0	PAF	کAL:	LEL	, C	ом	PU	TA	TI	ON	IS	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	11
5.0	NUN	IER.	ICA	L	ΕX	AM	PI	ES	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22
	5.1		hre	e-	di	me	ns	ic	na	1	Ba	ar	Mo	ode	el	•	•	•		•	•	•	•	•	•	22
		!	5.1	1		An	al	.ys	is	; c	of	tł	ne	Re	esi	ılt	s	•	•	•	•	•	•	•	•	31
		!	5.1	2		Ēs of	ti	.ma Sys	iti ste	.01 2m	n c Pi	of cod	01 Ces	ot: ssc	ima ors	al 5.	Nı •	ımı •	eı •	:	•	•	•	•	•	38
	5.2	2 '	Tur	bi	ne	E	31a	ıde	2.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		46
	5.3	3 '	Two	o-d	im	en	si	lor	nal	. 1	Exa	aml	ple	₽.	•	•	•	•		•	•	•	•	•	•	50
6.0	CON	1CL	USI	ON	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	53
APPEI	NDI	κ.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	56
BIBL	IOGI	RAP	HY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	78
REFE	REN	CES	NC	T	CI	TE	D	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	80

1.0 INTRODUCTION

Today computers are widely used in the engineering field for the analysis of complex problems and to aid in the design of new components. Despite the impressive speed of the current generation of computers, there are many problems such as those involving three-dimensional analysis or multidisciplinary optimization for which even the speed of today's supercomputers is not sufficient. Also, the solution time for many large scale problems needs to be greatly reduced before they can be effectively incorporated into the engineering design process. In an attempt to achieve a major increase in speed of computers, attention has focused on the development of parallel processing computers.

With parallel computers several processing units are connected together with the idea of subdividing a given problem into separate tasks that can be performed independently on the different processors. Theoretically, this approach gives a decrease in computation time over a traditional sequential computer which performs all the tasks in a sequential fashion.

Here the application of parallel computations to the analysis of transient finite element problems will be investigated. Transient finite element problems are among the most computationally intensive because the time history of interest must be divided into small steps and the solution to

the problem must be computed progressively at each successive step in time. These types of problems arise in the modelling of automobile crashworthiness, nuclear accidents and fluidstructure interaction in liquid storage tanks and generally involve large three-dimensional meshes and nonlinear deformations and material behavior.

The purpose of this study was to implement a threedimensional transient finite element program on a system of transputer processors. A two-dimensional grid transputer processor configuration was chosen as the most appropriate for the finite element problems of interest in this study. In conjunction with the finite element program an interprocessor communication algorithm was developed that can accommodate any number of processors in an arbitrary grid configuration and can adapt the distance allowable communication to suit different problems. Some simple test problems of various sizes were evaluated on a four processor transputer system to study the effects of communication time on the efficiency of the parallel computation.

2.0 GOVERNING EQUATION

The governing finite element equations for structural dynamics problems can be written in the form

$$Ma + f = F \tag{2-1}$$

:

where

F - external force vector

<u>f</u> - internal force vector

<u>M</u> - mass matrix

a - nodal acceleration vector

For linear systems the internal force vector can be expressed by the following formula

$$f = K d$$
 (2-2)

here

<u>K</u> - structure stiffness matrix

<u>d</u> - nodal displacement vector

and consequently equation (2-1) can be rewritten as

 $\underline{M} \underline{a} + \underline{K} \underline{d} = \underline{F} \tag{2-3}$

The initial conditions for the above equation are given by

 $\underline{d}^0 = \underline{d}(t=0) \tag{2-4a}$

$$\underline{\mathbf{v}}^0 = \underline{\mathbf{v}}(\mathtt{t}=0) \tag{2-4b}$$

where \underline{v} is the vector of nodal velocity. Thus, the initial value problem consists of finding $\underline{d}(t)$ satisfying equations (2-3) and (2-4) for t>0.

Often it is necessary to analyze free vibrations of a structure in which case the vector of nodal displacement at

t=0 is assumed known and $\underline{F}=\underline{0}$ and $\underline{v}^0=\underline{0}$.

The derivation of these governing equations can be found in many books on the finite element $method^{(1,2)*}$.

^{*}Parenthetical references placed superior to the line of the text refer to the bibliography.

3.0 NUMERICAL INTEGRATION ALGORITHM

In this section the procedures used to solve the initial value problem will be presented. The most general method of solution is referred to as direct integration and involves dividing the time period of interest into steps and progressively computing the solution at each step in time.

Perhaps the most popular direct integration method is the Newmark-Beta method $^{(3,4)}$ and is given by

$$v^{n+1} = v^n + \Delta t \left[(1-\gamma) \underline{a}^n + \gamma \underline{a}^{n+1} \right]$$
(3-1)

$$\underline{a}^{n+1} = \underline{a}^n + \Delta t \, \underline{v}^n + (\Delta t)^2 \, \left[\left(\frac{1}{2} - \beta \right) \, \underline{a}^n + \beta \, \underline{a}^{n+1} \right] \qquad (3-2)$$

where Δt is the time step and gamma and beta are parameters that affect the stability and accuracy of the method and have the range $0 < \beta < 1/2$, $0 < \gamma < 1$. The superscript notation is used to indicate the time, for example <u>d</u>ⁿ stands for <u>d</u>($n\Delta t$). The most widely used variations of the Newmark-Beta formula corresponding to different combinations of γ and β are given in the Table 1. The various types of Newmark integration can be classified into two general categories: implicit and explicit depending on whether it is necessary to solve a system of linear equations to compute the updated values of the solution.

The first two methods in the table, the trapezoidal

method and the central difference method, are the most frequently used. The trapezoidal rule has been shown to be unconditionally stable in that convergence can be achieved with any time step, however, the accuracy of the method can be poor if too large a time step is used. The disadvantage of this method is that it is implicit and a system of equations needs to be solved in order to compute the next value of displacement, d^{m1}. Consequently, this method is somewhat more difficult to implement in a parallel computation. A flow chart for this method is given in Table 2.

With $\gamma = 1/2$ and $\beta = 0$ the integration formula is called the central difference method and is an explicit method. This is because there is no need for any equation solving, provided that the mass matrix is lumped (diagonal). This method is particularly well suited for parallel computing because the displacements and velocities can be updated on different processors and only the displacements, used to compute the internal forces, need to be exchange after each time step. The disadvantage of this method is that it is only conditionally stable and the error grows exponentially in time and are meaningless if a certain critical time step is exceeded⁽⁵⁾.

The restriction on the time step is given by

$$\Delta t \le \frac{2}{\omega_{\max}} \tag{3-3}$$

where ω_{max} is the maximum frequency computed from the

Table 1.

- - - -

Numerical integration algorithms

METHOD	γ	β
Central difference	1/2	D
Trapezoidal rule	1/2	1/4
Linear acceleration	1/2	1/6
Two step backward difference	1/2	1/2

;

generalized eigenvalue problem

$$KX = \omega^2 MX \tag{3-4}$$

÷

However, it is more convenient to use more conservative condition

$$\Delta t \leq \frac{2}{\omega_{\max}^{e}}$$
(3-5)

where ω_{\max}^{e} is the maximum value of all the element frequencies. In this case the frequencies can be computed from the much smaller element eigenvalue problem

$$\underline{K}^{e}\underline{X} = \omega_{e}^{2} \underline{M}^{e}\underline{X}$$
(3-6)

and for many elements simple closed form solutions can be found for this problem. The flow chart for the central difference method is given in Table 3.

 $(\beta = \frac{1}{4}, \gamma = \frac{1}{2})$ Given initial conditions: \underline{d}^0 , \underline{v}^0 for t=0. 1] Compute <u>K</u>, <u>M</u> and <u>M</u>⁻¹. 2] Compute acceleration vector \underline{a}^0 $\underline{a}^{0} = \underline{M}^{-1} (\underline{F}^{0} - \underline{K} \underline{d}^{0})$ 3] LOOP n=0 FOR number time steps a] compute $\hat{\underline{K}}$ $\hat{\underline{K}} = \underline{M} + B \Delta t^2 \underline{K}$ b] compute \hat{f}^{n+1} $\hat{\underline{f}}^{n+1} = B \Delta t^2 \underline{F}^{n+1} + \underline{M} \left[\underline{d}^n + \Delta t \underline{v}^n + \Delta t^2 (\frac{1}{2} - B) \underline{a}^n \right]$ c] compute $\hat{\underline{K}}^{-1}$ d] compute dⁿ⁺¹ $\underline{\mathbf{d}}^{\mathsf{n}+1} = \underline{\hat{\mathbf{K}}}^{\mathsf{-1}} \underline{\hat{\mathbf{f}}}^{\mathsf{n}+1}$ e] compute <u>a</u>^{rr1} $\underline{a}^{n+1} = \underline{M}^{-1} (\underline{F}^{n+1} - \underline{K} \underline{d}^{n+1})$ f] compute \underline{v}^{n+1} $\underline{v}^{n+1} = \underline{v}^n + \Delta t [(1-\gamma) \underline{a}^n + \gamma \underline{a}^{n+1}]$ g] if n = number of time step then terminate, otherwise n=n+1 and GO TO a].

Table 2. : Flow chart for the trapezoidal method.

Table 3.

Flow chart for the central difference method

Given initial conditions: \underline{d}^0 , \underline{v}^0 for t=0.

- 1] Compute mass matrix <u>M</u> and its inverse <u>M</u>⁻¹, and stiffness matrix <u>K</u>
- 2] Compute acceleration

 $\underline{a}^0 = \underline{M}^{-1}(\underline{F}^0 - \underline{K} \underline{d}^0)$

- 3] LOOP n=0 FOR number of time steps
 - a] compute external force vector \underline{F}^n
 - b] update displacements

 $\underline{d}^{n+1} = \underline{d}^n + \Delta t \underline{v}^n + (\Delta t^2/2) \underline{a}^n$

- c] compute acceleration $\underline{a}^{n+1} = \underline{M}^{-1}(\underline{F}^{n+1} - \underline{K} \underline{d}^{n+1})$
- d] update velocities

 $\underline{\mathbf{v}}^{n+1} = \underline{\mathbf{v}}^n + (\Delta t/2) (\underline{\mathbf{a}}^n + \underline{\mathbf{a}}^{n+1})$

4.0 PARALLEL COMPUTATIONS

The development of finite element programs for parallel computers depends strongly on the type of machine that is to be used. Parallel processing computers are usually classified according to number of processors in the system or by the type of memory that is accessible to the processors. In the first case parallel computers are usually termed fine grained if there are many processors in the system, which may be as many as 64,000, or coarse grained if the system is composed of relatively few, approximately 5 to 20, large processors.

Also parallel computers can be differentiated by the With shared memory architecture of the system memory. architectures all processors have access to a common global memory while with distributed memory systems each processor has its own local memory and information exchange takes place of the through interprocessor communication. Because difficulties that arise when different processors try to access the same memory at the same time, it is usually the case that only coarse grained systems have shared memory and or distributed memory is used for fine grained local architectures.

On a shared memory system interprocessor communication is not necessary since once a processor writes data into a location in the global memory all other processors have access to this data. The advantage of this type of design is that

computer programming is simplified, however, accessing the common global memory can take longer, because contention problems can occur when several processors try to access the shared memory simultaneously.

On the other hand with distributed memory systems, memory contention problems do not exist, because each processor has its own local memory to store data. However, for problems where data must be shared between processors an interprocessor communication protocol must be developed by the programmer and excessive delays in communication can significantly degrade the performance of the system. It is because of these memory contention and communication problems that parallel processors usually do not approach their theoretical problem solving speed.

The purpose of this study was to develop a transient finite element program for parallel computation on a transputer system of processors. The transputer is a chip level processor with local memory and four communication links that can be used to connect transputers in a variety of configurations. Two different models of transputers are currently available. The INMOS T414 transputer has 2 MBytes of local memory and floating point performance of 0.1 MFLOPS while the INMOS T800 transputer has a floating point performance of 1.5 MFLOPS. The INMOS T414 transputer was used for the problems in this study. The four transputer links can simultaneously transmit data at a rate of 10 MBits per second.

The transputers are programmed using the OCCAM language⁽⁶⁾ which was specifically developed to facilitate parallel programming and inter-processor communication.

One transputer, known as the root transputer, can communicate with the host computer in this case an IBM PC. It is also used to edit and compile programs and in addition it distributes programs among the other transputers in the system which are referred to as the network.

As stated earlier, each transputer has four communication channels which allows it to be linked with other transputers. This flexibility allows a programmer the choice of different network configurations for instance: a torus, a hypercube, 2-D mesh, a pipeline and a binary tree topology. Some of these are sketched in Figure 1. Some of the configurations may be better than others for certain classes of problems. For the problems of interest here, a two-dimensional grid configuration was thought to be the most appropriate.

For this study, an explicit, finite-element program was written to analyze two and three dimensional transient problems. An explicit-integration algorithm was chosen since no equation solving is necessary and different nodes or nodal groups can be updated independently. To partition the problem for parallel computation, the nodes of the finite-element mesh are divided into groups and assigned to different processors. This partitioning, however, should be done in a way such that the amount of interprocessor communication is minimized.

:

Ŧ

ħ.

¥

a] pipeline

· · ·

b] 2 - D grid

c] binary tree

Figure 1. Transputer network topologies

The initial task of the root processor is to define the problem data, define the information needed for interprocessor communication, and transmit this data to the network processors. The task of each of the network processors is to update the accelerations, velocities and displacements of the nodes in its group over a time step. It should be noted that although the updates of the nodal groups are uncoupled, the displacements of the nodes in other subdomains at the preceding time must be known in order to compute the internal forces. Therefore, after the new displacements in a subdomain are calculated, they must be communicated to other processors before the next update can proceed. To solve a problem most efficiently and achieve the greatest speedup over a sequential computer, the time used for interprocessor communication should be minimized. A flow chart for this program is given in Figure 2.

:

The problem parameters which are specified on the root processor are the nodal coordinates, element connectivity, the initial conditions \underline{v}^0 and \underline{d}^0 , the time step, the number of time steps and the data defining the material properties. Because the program was written to be run on a 2-D grid processor configuration, the processor connectivity is defined by giving the number of rows and columns of processors. For example, the grid in Fig. 1b has 3 rows and 4 columns. Data specifying which nodes are assigned to which processors and the limit of interprocessor communication, the maximum

÷

Figure 2. Flow chart of the parallel finite element program

÷

Figure 2. Cont.

distance of neighbors that a processor can communicate with, is also defined. The limit describes the maximum number of steps which is required to perform the interprocessor communication. In each step only the transputers which are connected can exchange data; for example, in Figure 1b, transputers number 5 and 6 can exchange information in one step but transputers number 4 & 6 in two steps.

The first task of the root processor is to calculate the various matrices needed to describe the interprocessor communication. These matrices are determined by the structure of the finite element mesh, the grouping of the nodes and the size and shape of the processor grid. The matrix containing information on the number of processors with which each transputer has to exchange information is (num.neigh.send, num.neigh.rec) and the grid locations of these processors are in the matrices (next.neigh, next.neigh.rec). Two other matrices (signal.in and signal.out) contain information on when and from which direction each transputer must send and The root processor also calculates how many receive data. communication steps are needed for each processor to transmit data to its most remote neighbor (Figure 3). This gives an estimate how well the mesh has been partitioned. For instance, if one of the transputers needs many more steps than the others to reach its most remote neighbor, the partitioning of the mesh should be reconsidered.

As the root transputer transmits problem data, network

transputers receive this information, keep the needed data and send the information further to other transputers. Depending on the grid position of a transputer, it can receive information from west or north direction, see Fig. 3, and send it to east or south directions. The way in which data is initially distributed among transputers is shown in Figure 4.

÷

Before a network transputer starts the time integration loop, it has to rearrange the problem data. Nodal displacements which must be exchanged are grouped together in increasing order according to the identification number of the transputer that receives data. Grouping displacements in this fashion ensures that nodes in the sending and in the receiving transputers are rearranged in the same order.

After calculating mass matrices for each element the time stepping is performed. First, the internal force matrix is calculated then nodal accelerations, velocities and displacements, respectively are updated. After each time step, updated nodal displacements are exchanged between the network processors.

:

т

a] transputer output and input channels

b]dependence of the output direction on the position of the receiving data transputer

Figure 3. Determination of output direction

:

...

•

2

:

Figure 4. Data distribution among transputers

5.0 NUMERICAL EXAMPLES

Several numerical examples have been analyzed to evaluate the efficiency of the parallel algorithm. Unfortunately, since a large system of transputers was unavailable, the previously discussed communication algorithm was implemented on four T414 transputers connected in pipeline (Figure 1a) were used. In these examples, the size and geometry of the finite element mesh was varied to study the effects of different amounts of interprocessor communication. Currently the program uses linear triangular elements (Figure 5a) in two-dimensions and 8 node hexahedrals (Figure 5b) in threedimensions.

5.1 Three-dimensional Bar Model

The problem statement for this example is shown in Figure 6. One end of the bar was kept fixed while an initial displacement was applied to the opposite end of the bar. Figure 7 gives a plot of the displacement at the end of the bar as a function of time that was computed using the central difference algorithm.

To see how the amount of interprocessor communication affects the solution time, in this example, the number of nodes in the processor groups is varied while the number of nodal displacements that must be exchanged between processors is kept fixed. When the number of network transputers is

;

a] using linear triangular elements

b] using 8 node hexahedral elements

Figure 5. Finite element model of the bar problem

:

Ŧ

Figure 6. Problem statement for the three-dimensional bar

Figure 7. Displacements of the end of the bar as a function of time.

increased, a mesh of appropriate size is chosen to keep the number of processor elements and the number of nodes exchanged the same. The notation is used that nnodex, nnodey, nnodez indicate the number of nodes in x,y and z direction respectively and (nnodex) x (nnodey) x (nnodez) is the total number of nodes in the problem. The different cases that were considered for various number of processors are given in Tables A-1, A-2 and A-3. The solution times for these cases are given in Tables A-4 through A-12.

From an analysis of the measured solution times and of the internal structure of the program it was possible to obtain an approximate formula to calculate the execution time. The total solution time is assumed to be composed of three parts: computation time, communication time and preparation time in the form

$$T_{tot} = T_{cp} + T_{cm} + T_{prep}$$
(5-1)

$$T_{tot} - \text{total time}$$

$$T_{cp} - \text{computation time}$$

$$T_{cm} - \text{communication time}$$

$$T_{prep} - \text{preparation time}$$

$$T_{prep} = N_{el}C_{0}^{*} + N_{el}N_{up}C_{1} + kC_{2} + kN_{nd}C_{3} + N_{p.el}C_{4} + N_{p.el}N_{nd}C_{5} + N_{p.el}((N_{up}+N_{nd})/2)C_{6} + N_{p.el}N_{nd}C_{5} + N_{p.el}((N_{up}+N_{nd})/2)C_{6} + N_{p.el}N_{nd}C_{5} + N_{p.el}(N_{up}+N_{nd})/2)C_{6} + N_{up}N_{$$

^{*}Values of constants $C_0...C_{11}$ are given in Table 4.

$$k (N_{pq} - N_{up}) C_7$$
 (5-2)

$$T_{cp} = (N_{p,el}C_8 + N_{up}C_9) * N_{step}$$
(5-3)

$$T_{cm} = (C_{10} + N_{ex}C_{11}) * N_{step}$$
 (5-4)

where

k

2

- is the integer of the ratio (N_{nodes}/length); data between transputers is sent in vectors of a fixed size, the time of sending & receiving data is proportional to k

length - the size of the vector sending data among

transputers

The constants in these formulas were obtained by using the least square fit of the data and are given in Table 4. In the cases of computation and communication, times the measured values from Tables A-4 through A-12 were used. A different approach was taken for the calculation of the preparation time. To avoid solving large system of equations, the procedure was divided into six parts and approximate formulas were obtained for each part. In this case the computation was greatly simplified since for each part only two constants have to be calculated. The theoretical times obtain from above formulas are compared to actual values in Tables A-4 through A-12.

Several conclusions can be drawn from analysis of the results. First, the communication time is very small compared to the computation time and virtually can be neglected. Because data has to be exchanged after each time step the

Table 4.

. •

Constants for calculation of the execution time

÷

Ŧ

Constant	Value[s]
C ₀	1.287×10 ⁻⁴
C,	1.366×10 ⁻⁵
C ₂	9.224x10 ⁻²
C3	1.462x10 ⁻²
C ₄	2.170x10 ⁻³
C ₅	1.749x10 ⁻⁵
C ₆	2.515x10 ⁻⁵
C ₇	6.623x10 ⁻³
C ₈	9.881x10 ⁻²
C,	8.735×10 ⁻⁴
C ₁₀	1.280x10 ⁻⁴
C ₁₁	4.640x10 ⁻⁵

computation time in each step is determined by the processor with the largest work load. Consequently, it is very important to distribute the work load uniformly among network transputers.

:

When assigning the work load to transputers it should be taken into account that number of processor elements rather than number of nodes to update determines the computation time. This conclusion can be drawn from comparison of the constants in equation (5-3). The constant corresponding to $N_{p,el}$ (C₈) is much larger that the one corresponding to N_{up} (C₉).

To minimize the number of elements that must be stored by more than one processor, the assigning of the nodes to the processors should be done along the cross-section plane of the mesh with the smallest number of nodes.

The preparation time can be significant and for a small mesh running only a small number of time steps can even surpass the advantage of shorter computation time. For a given mesh and network of transputers, there exists a minimum number of time steps for which running the program concurrently is more efficient than sequential computation.

The above analysis shows that the total time depends primarily, particularly for larger number of time steps, on the number of elements assigned to each processor. The computation time is determined by the transputer with the largest number of elements, so it is important to assign an equal number of elements to all transputers. A simple

Ξ

iterative algorithm was developed for nodal assignment that gives a relatively balanced processor work load.

For example, in the simplest case of 2 transputers we have the following relations

$$(N_{p,el})_{A} = A_{el} + C_{el}$$
(5-5a)

$$(N_{p,el})_{B} = B_{el} + C_{el}$$
(5-5b)

$$N_{el} = (N_{p,el})_{A} + (N_{p,el})_{B} - C_{el}$$
 (5-5c)

(N _{p.el}) _A	-	total	number	of	elemen	nts
		assigne	d to tr	ansput	er A	
(N _{p.ei}) _B	-	total	number	of	elemen	nts
		assigne	d to tr	ansput	er B	
A _{el}	-	element	s ass	igned	only	to
		transpu	ter A			
B _{el}	-	element	s assi	gned	only	to
		transpu	ter B			

The goal is to achieve $(N_{p,el})_A = (N_{p,el})_B$ or as close as possible, what occurs when $A_{el} = B_{el}$.

The algorithm assigning nodes in this way is presented in Figure 8. However, it should be noted that the results are influenced by the manner in which the numbering of elements was done. Figure 9 illustrates this for the case of 2-D grid.

5.1.1 Analysis of the Results

Figure 10 shows the plot of the total solution time as a function of the number of processors used in solving the cube problem; the points were obtained based on the formula (5-1). There are two reasons why the solution time does not decrease linearly as the number of processors increases. First, the data preparation time on the host computer depends on the size of the local processor matrices, which do not decrease proportianally to the number of processors, and also on the global problem parameters which are constant. So that the actual preparation time can increase with increasing numbers of processors. Second, the number of elements assigned to each transputer is not equal to the total number of elements divided by number of processors. It is increased by the number of elements which are shared by neighboring processors; this number has a constant value. This value depends on the shape of the structure being modelled. This dependence is illustrated by Figure 11; r represents the ratio A/A_{cube} where

- A_{cube} number of elements in the cross sectional area of the cube which has the given number of elements.
- A number of elements in the cross sectional area of a parallelepiped which has the same number elements.

The three possible shapes corresponding to different values of

٠,

Ť_-

5

4

Figure 8. Flow chart of the procedure assigning nodes to transputers

:

:

b] numbering along the longer side, $N_{p,el}=12$

Figure 9. Dependence of the maximum num.proc.elem on the order of element numbering

.'

:

;

Ē

Figure 10. Total time as a function of number of processors

÷

Figure 11. Dependence of the shape of a parallelepiped on the value of the coefficient r.

the coefficient r are sketched in Figure 11 and Figure 12 represents the dependence of the total time on the shape of a Theoretically, the larger the ratio the parallelepiped. longer the total solution time. However, if r > 1, then the nodes have not been assigned to transputers along the shortest side. Consequently, if decomposition and numbering of the mesh has been done correctly the cube is the worst case. In Figure 12 the total time is increasing almost linearly. This results from the fact that, in this example, the computation time plays the dominating role (relatively large $N_{step} = 100$). The computation time grows approximately linearly with N_{p.el} because the influence of N_{uv} is very small (see equation 5-3). Since number of elements assigned to each transputer grows linearly with r, the total time grows approximately linearly.

:

The results in Tables A-4 through A-12 also indicate that the communication time (T_{cm}) is very small and can be neglected. Then, the solution time can be divided into the preparation time (T_{prep}) and the computation time (T_{cp}) . Preparation time is used to set up the problem data for parallel computations and would be absent in a sequential computation. Here, the transputer efficiency will be defined as the ratio of $([T_{cp}]_{seq}/p)/T_{tot}$. Since the transputer time is composed of computation time and data manipulation time, this value indicates what parts of the overall time is devoted to calculations & data manipulation. The results obtained from formula (5-1) are presented in Figure 13. In order to obtain

;

Figure 12. Total time as a function of the shape of a parallelepiped', num.of.elem=const

r=A/A cube for further explanation see page 31

equal values for local parameters; N_{p.el}, N_{up}, N_{nd}, the shape of the cross sectional area was kept unchanged, (nnodex) x $(nnodez) = 5 \times 6$, while the value of nnodey was adjusted to give the required number of elements per processor. If T_{cm} is neglected, there are two additional times which occur in parallel computations and are absent in sequential. First is T_{prep} which does not depend on N_{step} . Second is the part of T_{cp} which requires duplicate computations over the elements belonging to the division border (these elements are assigned to two different transputers); this time is proportional to Three possible cases are illustrated by Figure 13. N_{step}. When T_{prep} is much larger than the additional computation time, that occurs for small N_{step} and large meshes (Figure 13a), processor efficiency decreases with num.of.elem per processor since T_{prep} grows faster than T_{cp}. The second extreme takes place when T_{nren} is small compared to additional computation time; this is true for large N_{step} (Figure 13c). Because the num.of.elem on the division border is kept constant, the processor efficiency increases with num.of.elem per processor. The third case occurs when both additional times have comparable influence (Figure 13b).

5.1.2 Estimation of Optimal Number of System Processors

Another problem of interest is to determine the number of transputers in the network that should be used to execute a given problem in the shortest time. It should be noted that

:

÷

Figure 13a. Processor efficiency as a function of num.of.elem per processor , num.time.step=1

Here num.of.elem per processor is defined to be (N_{el}/p) , which means that elements assigned to more than one transputer are counted only once. This insures that the efficiency is measured w.r.t. the sequential computation.

.

÷

Figure 13b. Processor efficiency as a function of num.of.elem per processor', num.time.step=100

In this case num.of.elem per processor is equal to $(N_{\rm el}/p)$, what means that elements assigned to more than one transputer are counted only once. This insures that the efficiency is measured w.r.t. the sequential computation.

÷

Figure 13c. Processor efficiency as a function of num.of.elem per processor', num.time.step=1000

.

In this case num.of.elem per processor is equal to $(N_{\rm el}/p)$, what means that elements assigned to more than one transputer are counted only once. This insures that the efficiency is measured w.r.t. the sequential computation.

-

depending on the problem size and the number of time steps, using the maximum number of processors may not yield the shortest time. To determine the shortest solution time, the following inequality needs to be analyzed

÷

$$(T_{tot})_{1 proc} > T_{prep} + T_{cp}$$
(5-6)

T_{tot})_{1 proc} - total time for sequential computation

For the bar 3-dimensional problem, the following equations can be used to calculate num.proc.elem, num.nodes.needed and num.update.nodes

$$h = N_{nodes} / (ab)$$
(5-7a)

$$N_{up} = (sab) \tag{5-7b}$$

$$N_{nd} = (s+1)(ab)$$
 (5-7c)

$$N_{p,el} = s[(a-1)(b-1)]$$
 (5-7d)

where

s = [((h-2)/p) +1] (5-7e)

p - number of processors

a, b, h - number of nodes along the sides of the parallelepiped

After substitution into equation (5-6), we can obtain the minimum number of processors which must be used to reduce the total time below the total time for one processor. Data for

few chosen cases are presented in Figure 14. There are two factors which influence the value of the minimum number of processors. First, the preparation time increases for smaller numbers of processors. Second, the computation time decreases inversely with the number of processors. The minimum number of processors is the smallest value for which the decrease of T_{co} compared to sequential computation is larger than T_{prep} . Of course, this value is smaller for problems where T_{cp} plays dominating role. This occurs in the case of problems with large number of time steps because T_{cp} increases linearly with N_{step} while T_{prep} remains unchanged, or when the assemble of the stiffness matrix requires a relatively long time. Figure 14 shows that even for a very small value of N_{step}, the minimum number of processors is the smallest possible, two, which means that two or more processors will give a faster solution than a sequential computation. The reason for this is because for 8 node hexahedrals time for the computation of the stiffness matrix is relatively large, so that even if only a few elements are involved this time is greater than the As was stated above, the minimum communication time. num.of.proc is the smallest value for which decrease of T_{cp} is larger than T_{prep}. Based on this, it can be explained why, for small N_{step}, its value is very large. If num.of.proc=2; T_{prep}, which does not depend on N_{step} and decreases with num.of.proc, can greatly exceed T_{cp} . When num.of.proc is increased, the gain in T_{cp} in absolute value is relatively small, so large

.

:

÷

Figure 14. Minimum number of processors as a function of num.time.step

num.of.proc is required to reduce T_{prep} under this small value.

Equation (5-1) can be used to calculate the approximate execution time. However, the local data such as the number of update nodes, number of nodes needed, number of processor elements are not known before the program is executed since they are determined by the procedure performing the partition. Good accuracy can be achieved when the procedure calculating time is used along with the part of the program which performs the decomposition of the mesh and supplies the required data. In practice, however, the approximate execution time may be needed before input data is prepared. If we suppose that the structure has approximately parallelepiped shape, the local parameters mentioned above can be estimated.

For a given problem with N_{el} , number of elements, and N_{nodes} , number of nodes, T_{tot} can be estimated by one of the two methods presented below. First, as was shown previously, Figure 11, the longest total time for a constant N_{el} occurs in the case of a cube. We can assume that the structure is a cube composed of number of elements equal to N_{el} and then calculate components needed to compute T_{tot} from equations (5-7) and (5-1). In the second approach we can anticipate the shape of the parallelepiped using both N_{el} and N_{nodes} . The sides of the parallelepiped can be obtained from the following formulas

$$N_{nodes} = abh$$
 (5-8a)

$$N_{el} = (a-1) (b-1) (h-1)$$
 (5-8b)

or after eliminating h

 $(b^2-b)a^2 + \{N_{nodes} + b[1-(N_{nodes} - N_{el})] - b^2\}a + N_{nodes}(b-1) = 0$ (5-9) Since we have one equation and two unknowns, we have to assume the ratio a/b. For (a/b)=1 the above equation reduces to

 $a^4 - 2a^3 + [1 - (N_{nodes} - N_{el})]a^2 + 2N_{nodes}a - N_{nodes} = 0$ (5-10) Solving the equation and taking the root $\sqrt[3]{N_{nodes}} \ge a > 0$, the equations (5-7) and (5-1) can be used to estimate the total time.

5.2 Turbine Blade

A problem involving the analysis of a turbine blade was executed sequentially and on a two transputer network, with a mesh of 1575 nodes and 1025 elements (Figure 15). It was assumed that the bottom nodes of the blade are fixed while initial displacements are applied to the top nodes. The results together with the estimated times are grouped in the Tables 5 and 6.

In Table 5 the sequential and parallel solutions are compared. For num.time.step = 1, the sequential solution is faster than the concurrent one because the data manipulation time exceeds the gain in the computation time resulting from using two processors. It also should be noticed that with growing num.time.step the ratio $(T_{tot})_{2 proc}/(T_{tot})_{1 proc}$ becomes smaller but never reaches 50%. This is so because more than half of the elements are assigned to each processor and thus

:

ę,

.

47

ş

blade
turbine
the
for
solutions
parallel
and
e sequential
the
of
Comparison
5.
Table

steps T _{tot} ^[s] ¹ tot ¹ 1 10.1 10 105.11 160.7 20 2213.72 1433.	1 tot [s] 160.75	^{(T} tot ⁾ 1 proc (X) 152.94
1 105.11 160.7 10 1054.20 737.2 20 2213.72 1633.	160.75	152.94
10 1054.20 737.1 20 2213.72 1433.		
20 2213.72 1433.	737.70	69.98
	1433.20	64.74
50 5755.42 3519.	3519.79	61.16
100 11689.62 6996.	6996.75	59.85

;

Table 6. Solution times for the turbine problem.

2

Ŧ

Mm. Total time Comp. time Prep. time Total time Prep. time				MEASI	RED TIN	Е			0	OMPUTED	TIME	
Interface Comp. time Comp. time Total time Comp. time												
Total [51] <	i iii	Total time	Comp. ti	ar B	Prep.	time	Com.	t ine	Total time	Comp. time	Prep. time	time.
170.45 66.62 39.11 104.02 60.66 0.0110 0.0064 160.74 65.60 99.13 0.0064 1 160.75 59.65 37.11 101.09 62.69 0.0110 0.0066 136.16 53.6 99.13 0.0056 10 737.70 59.65 37.11 101.09 13.70 0.1101 0.0136 751.16 55.60 95.13 0.0050 10 737.70 636.50 86.20 87.16 0.0106 65.02 95.13 0.0050 10 737.70 1.467.14 93.45 101.09 13.70 0.1101 0.0149 622.66 536.15 84.32 0.0150 20 1591.36 1.467.14 93.45 101.09 13.70 0.1161 0.0149 627.66 536.15 84.32 0.0150 20 1431.20 1.311.69 92.91 101.09 7.05 0.2506 0.0164 656.02 95.13 0.0161 20 1431.20	de ja	[2]	[5]	(X)	[s]	(X)	[8]	[X]	[\$]	[s]	[2]	[S]
1 170.65 $\infty.612$ 37.11 101.09 62.89 0.0110 0.0068 138.16 53.6 84.12 0.0040 10.0.75 59.65 37.11 101.09 62.89 0.0110 0.0068 138.16 55.02 95.13 0.0440 10 737.70 536.50 86.28 101.09 13.70 0.1101 0.0149 622.68 538.35 84.32 0.0360 10 737.70 536.50 86.28 101.09 13.70 0.1101 0.0149 622.66 538.35 84.32 0.0360 20 1591.36 1.64.02 6.54 0.2202 0.0154 1407.1 1312.0 95.13 0.1261 20 1591.36 1.64.02 5.55 0.2202 0.0154 160.7 84.32 0.0716 20 1312.00 92.91 101.09 7.55 0.2202 0.0154 160.1 9.126 9.12 0.1016 20 1312.00 97.4 101.09				ļ	50, 201	W 97	0.0110	0.0064	160.74	65.60	95.13	0.0064
1 1.46.75 59.65 37.11 101.09 0.000 0.0136 751.16 656.02 95.13 0.0640 10 737.70 636.50 87.16 104.02 13.70 0.1101 0.0149 622.66 538.35 84.32 0.0040 20 737.70 636.50 86.26 101.09 13.70 0.1101 0.0149 622.66 538.35 84.32 0.0160 20 1337.72 104.02 6.54 0.2202 0.0154 1161.03 1076.7 84.32 0.0718 20 1433.20 92.93 101.09 7.05 0.2202 0.0154 1076.7 84.32 0.0718 20 1433.20 92.913 101.09 7.05 0.2202 0.0154 1076.7 84.32 0.0718 20 1433.20 92.913 101.09 2.265 0.2504 0.0156 2510.1 95.13 0.078 20 <td></td> <td>170.65</td> <td>66.82</td> <td>11.76</td> <td>30. 401</td> <td></td> <td>0110 0</td> <td>0.0068</td> <td>138.16</td> <td>53.8</td> <td>84.32</td> <td>0.0036</td>		170.65	66.82	11.76	30. 401		0110 0	0.0068	138.16	53.8	84.32	0.0036
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	160.75	59.65	37.11	40.101	40' 70					5	0770 0
10 737.70 636.50 86.28 101.00 13.70 0.1101 0.0149 622.66 538.35 84.32 0.0360 20 1591.36 1,487.14 93.45 104.02 6.54 0.2202 0.0138 1407.1 1312.0 95.13 0.1281 20 1433.20 1,331.89 92.93 101.09 7.05 0.2202 0.0154 1161.03 1076.7 84.32 0.0718 20 1433.20 1,331.89 92.93 101.09 7.05 0.2202 0.0154 1161.03 1076.7 84.32 0.0718 3929.37 3,824.80 97.34 104.02 2.65 0.5504 0.0140 3375.2 3280.1 95.13 0.1795 50 3519.79 3,418.15 97.11 101.09 2.87 0.0156 2776.09 2691.8 84.32 0.1795 50 3519.79 3,418.15 97.11 101.09 2.776.09 2691.8 84.32 0.1795 700.50.82	$\left[\right]$	A12 40	708.17	87.18	104.02	12.81	0.1101	0.0136	751.16	\$96.02	61.64	o
737.70 0.3030 0.1.00 1.487.14 93.45 104.02 6.54 0.2202 0.0136 1.407.1 1312.0 95.13 0.1281 20 1591.36 1,311.69 92.93 101.09 7.05 0.2202 0.0154 1161.03 1076.7 84.32 0.0718 20 1431.20 1,311.69 92.93 101.09 7.05 0.5504 0.0140 3375.2 3260.1 95.13 0.3702 50 3920.37 3,824.80 97.34 104.02 2.87 0.5504 0.0140 3375.2 3260.1 95.13 0.3702 50 3519.79 3,418.15 97.11 101.09 2.87 0.5504 0.0140 2691.6 84.32 0.1795 7825.94 7,720.82 98.46 104.02 2.87 0.5504 0.0141 6555.3 6560.2 95.13 0.6404 7825.94 7,720.82 98.54 101.09 1.40 1.1008 0.0157 5467.83 5363.5 84.32 </td <td>1</td> <td></td> <td>03 767</td> <td>AK 2A</td> <td>101_00</td> <td>13.70</td> <td>0.1101</td> <td>0.0149</td> <td>622.68</td> <td>538.35</td> <td>84.32</td> <td>0.0360</td>	1		03 767	AK 2A	101_00	13.70	0.1101	0.0149	622.68	538.35	84.32	0.0360
20 1591.36 1,487.14 93.45 104.02 6.54 0.2202 0.0136 1407.1 711.0 64.32 0.0716 20 1431.20 1,331.89 92.93 101.09 7.05 0.2202 0.0154 1161.03 1076.7 84.32 0.0716 3929.37 3,824.80 97.34 104.02 2.65 0.5504 0.0140 3375.2 3260.1 95.13 0.3202 50 3519.79 3,418.15 97.11 101.09 2.67 0.5504 0.0140 2375.09 2691.8 84.32 0.1795 50 3519.79 3,418.15 97.11 101.09 2.67 0.5504 0.0141 6550.2 94.32 0.1795 7825.94 7,720.82 98.64 104.02 1.33 1.1006 0.0141 6555.3 6560.2 95.13 0.6404 7825.94 7,720.82 98.54 101.09 1.44 1.1006 0.0157 5467.83 5383.5 84.32 0.6500.4 0.5504 </td <td>2</td> <td>N. 121</td> <td>nc.oco </td> <td>300</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 6131</td> <td>05 13</td> <td>0.1281</td>	2	N. 121	nc.oco	300						0 6131	05 13	0.1281
20 1433.20 1,331.89 92.93 101.09 7.05 0.2202 0.0154 1161.03 1076.7 84.32 0.0718 3029.37 3,824.80 97.34 104.02 2.65 0.5504 0.0140 3375.2 3260.1 95.13 0.3202 50 3519.79 3,418.15 97.11 101.09 2.67 0.5504 0.0156 2776.09 2691.8 84.32 0.1795 7825.94 7,720.82 98.64 104.02 1.33 1.1006 0.0141 6560.2 95.13 0.6604 7825.94 7,720.82 98.64 104.02 1.33 1.1006 0.0141 6550.2 95.13 0.6604 7825.94 7,720.85 98.54 101.09 1.44 1.1006 0.0157 5667.83 5383.5 84.32 0.6404		1591.36	1,487.14	93.45	104.02	6.54	0.2202	0.105	1.1041	1716.2		
100 1000 10100 10100 10100 0.0150 3375.2 3280.1 95.13 0.3202 100 3029.37 3,824.80 97.34 104.02 2.65 0.5504 0.0156 3375.2 3280.1 95.13 0.3202 50 3519.79 3,418.15 97.11 101.09 2.87 0.5504 0.0156 2776.09 2691.8 84.32 0.1795 100 3519.79 3,418.15 97.11 101.09 2.87 0.5504 0.0141 6655.3 6560.2 95.13 0.6404 7825.94 7,720.82 98.54 101.09 1.44 1.1008 0.0157 5467.83 5383.5 84.32 0.3590	ç		111 40	0 01	101.09	7.05	0.2202	0.0154	1161.03	1076.7	64.32	0.0718
3029.37 3,824.80 97.34 104.02 2.65 0.5504 0.0140 2176.09 2691.8 64.32 0.1795 50 3519.79 3,418.15 97.11 101.09 2.87 0.5504 0.0156 2776.09 2691.8 64.32 0.1795 100 7825.94 7,720.82 98.64 101.09 2.81 0.5504 0.0141 6655.3 6560.2 95.13 0.6404 100 6004.75 6.894.56 98.54 101.09 1.44 1.1008 0.0157 5467.83 5383.5 84.32 0.3590	:	N. (1)1	10.11c.1						2 2411	1 DACE	95.13	0.3202
50 3519.79 3,418.15 97.11 101.09 2.87 0.5504 0.0156 2776.09 2691.8 84.32 0.1705 7825.94 7,720.82 98.66 104.02 1.33 1.1006 0.0141 6655.3 6560.2 95.13 0.6404 100 6004.75 6.894.56 98.54 101.09 1.46 1.1006 0.0157 5467.83 5383.5 84.32 0.3500		3929.37	3,824.80	97.34	104.02	2.65	0.5504	0.0140				
7825.94 7,720.82 98.66 104.02 1.33 1.1008 0.0141 6655.3 6560.2 95.13 0.6404 100 x006.75 6.894.56 98.54 101.09 1.44 1.1008 0.0157 5467.83 5383.5 84.32 0.3590	9		1 11 15	07_11	101.09	2.87	0.5504	0.0156	2776.09	2691.8	B 4.32	0.1795
7825.94 7,720.82 98.66 104.02 1.35 1.1006 0.0157 5467.83 5383.5 84.32 0.3590 100 x006.75 6.894.56 98.54 101.09 1.44 1.1006 0.0157 5467.83 5383.5 84.32 0.3590	2	v.vice	<u>, , , , , , , , , , , , , , , , , , , </u>					0 0141	6655.3	6560.2	95.13	0.6404
100 000, 75 6,894,56 98.54 101.09 1.44 1.1008 0.0157 5467.83 5385.5 0.55		78.55.W	7,720.82	88.6	104.02	<u>.</u>					1	
	100	6006.75	6,894.56	98.54	101.09	1.44	1.1008	0.0157	5467.83	5385.5	26.40	n

^{*}The sdaded row - equal num.of.nodes assigned to each transputer, the unshaded row - equal num.of.elem assigned to transputers (see algorithm, figure B).

** The unshaded row - times estimated using the cube method, the shaded row - times estimated by assuming the shape of a parallelepiped (see section 5.1.2).

the total work load is larger than in the sequential computation. Also, the time is increased by the preparation time which is absent in sequential computation.

The measured times were compared with the calculated times in Table 6; the calculation was carried out using the two partitioning methods presented in the previous section. First, an equal number of nodes were sequentially assigned to each transputer, then the nodes were assigned in the manner such that each transputer handles an equal number of elements. As expected, in the second case the execution time is shorter; a reduction of about 10% was achieved.

In both cases, the calculated times are smaller than the measured times. This is because the shape of the turbine blade does not exactly correspond to the assumed parallelepiped model, and more nodes have to be exchanged between processors than it is predicted by the cube model. The element partition was made along the blade platform (see Figure 15).

5.3 Two-dimensional Example

The program was modified slightly in order to analyze two-dimensional problems more efficiently. The eight node solid element was replaced by a linear displacement triangular element which decreased the time of computation and assembly of the stiffness matrix. Also, where appropriate, three

x

dimensional vectors and matrices were replaced by two dimensional versions. The program was used to analyze several two-dimensional bar test problems (Table A-13) and the results were presented in Tables A-14 through A-19.

In comparison with the three-dimensional case, the ratio of communication time to computation time (T_{cm}/T_{cp}) for the two-dimensional problems is much larger, Table 7. Both times, T_{cm} and T_{cp} , are smaller for 2-D problems than for 3-D ones. However, the decrease of the computation time is much larger primarily because the calculation of the stiffness matrix is significantly faster than for the 3-dimensional element.

The 2-D problem was also examined by Patrick Smolinski⁽⁸⁾ on T800 transputer (see page 12). Some results of his study are presented in Tables A-20 and A-21.

Comparing these results with those for T414 transputer (Table A-13 through A-19), we see that the total computation time is smaller for the T800 transputer. This is due to the higher performances of the T800 transputer (see page 12). However, we cannot calculate the ratio of the communication to the calculation time, since the communication time has not been measured for these problems.

Table 7.

÷

Comparison of the ratio of the communication time per node to the computation time per element

:

CASE	(T _{cm}) _{per.node} (T _{cp}) _{per.elem}
3-D	1.2 %
2-D	4.13 %

6.0 CONCLUSIONS

The results of this study indicate that the execution time of a finite element program can be considerably reduced by parallel computation using a relatively inexpensive transputer system. However, a price is paid since a larger and more complex computer program is required. In addition to the part of the computer program performing the actual calculations, routines performing communication and decomposition of the mesh have to be written.

For cases examined here, two and three-dimensional problems, the communication time, the time of exchanging displacements after each time step, was very small. However, if communication between more remote transputers is required this time will increase. In addition, when the time for assembling the stiffness matrix is relatively small and the number of exchanged nodes is large, the communication time has to be taken into account. For the problems solved in this study, the preparation time, the time of receiving and rearranging data, is more important. This time depends on the size of the structure and number of transputers used but not on the number of time steps. Consequently, for large number of time steps it becomes small in comparison to the computation time.

The total execution time depends on the size of the mesh and local parameters such as number of nodes and elements

assigned to each transputer. The computation time depends mostly on number of elements and other local parameters that are related to this value. For problems that require a large number of time steps for the solution, the computation time is usually much larger than other components of the total time. Because this is usually the case when a transputer systems would be used, it means that partitioning of the mesh can be done considering only the number of elements. For this reason perhaps the most important factor in minimizing the solution time is to assign an equal work load to each transputer since the total time is primarily governed by the transputer with the largest work load.

In most cases the parallel computation proves to be faster than the sequential one. The only cases when the sequential computation is faster occur for small number of time steps and are of no practical importance since most engineering problems require a significant number of time steps.

In the future it would be desirable to write a program which checks the order of element numbering in the connectivity matrix and if necessary rearrange it. This would optimize the results of the program performing the decomposition of a mesh, see Figure 7.

In this study, the program was executed on the only available transputer configuration, the pipeline (Figure 1a). The correctness of the program was checked by using a special

feature of the OCCAM language which allows to simulate an arbitrary transputer network while a program is executed sequentially. It would be interesting to run this program on a large grid of T800 processors to study the efficiency of the algorithm and to determine the speed-up that could be obtained with these much faster processors.

APPENDIX

:

æ

APPENDIX

:

Table A-1.

Problem parameters for the three dimensional case, number of processors = 2

:

			2	m.of.proc = 2		
U ·	(modex)X	50			LOCAL	
< <> m	(mode2)	N nodes	Nel	22	du M	Np.el
		000	108	120	100	60
•	44 10×2	007	228	220	200	120
-	240247	009	348	320	300	180
~		007	252	240	200	071
~		008	532	740	007	280
۲ ا	8XCUX3	0061	812	940	009	420
~	6x3UX3	0021			90¥	022
\$	12×10×5	909	396	noc	227	
^	12x20x5	1200	836	660	600	055
	1243045	1800	127	960	006	999
•		000	567	480	100	315
•	ULX01x8	000	1107	880	800	630
₽	Bx20×10		1827	1280	1200	945
:	Bx30x10	2400	1061			

Table A-2.

Problem parameters for the three-dimensional case, number of processors = 3

ŀ

÷

			2	m.of.proc = 3		
ບ <	(rmodex)x (rmodey)x	610	BAL		LOCAL	
s m	(modez)	Nnodes	Nel	Nnd	du N	Np.el
0	5X11X5	280	156	120	100	80
•	4×29×5	580	336	220	200	120
2	4x44x5	880	516	320	300	180
3	8x14x5	560	364	540	200	140
4	B x29x5	1160	784	440	400	280
2	Bx44x5	1760	1204	940	600	420
6	12x14x5	840	572	360	300	220
7	12x29x5	1740	1232	660	600	077
8	12×44×5	2640	1892	960	006	660
6	Bx14x10	1120	819	480	400	315
10	8x29x10	2320	1764	880	800	630
11	8x44x10	3520	2709	1280	1200	945

Ŧ

:

Table A-3.

Problem parameters for the three-dimensional case, number of processors = 4

ï

÷

ą.

			2	m.of.proc = 4		
 ں	(modex) x				- Set	
<	(nnodey)x	610	BAL			
ι N M	(modez)	Nnodes	N el	Nnd	du N	Np.el
	LY LAYS	360	204	120	100	60
	4x38x5	760	777	220	200	120
~	4x58x5	1160	684	320	300	180
	8x18x5	720	476	240	200	140
, ,	Ar JRx5	1520	1036	440	700	280
	AKSAKS	2320	1596	940	009	420
	12-18-6	1080	872	360	300	220
• •	1243845	2280	1628	660	600	440
-	12×58×5	3480	2508	096	006	660
, c	R.18x10	0771	1071	480	400	315
5	Ax38x10	3040	2331	880	800	630
2 =	8x58x10	1640	3591	1280	1200	945
	<u> </u>					

Table A-4.

Solution times for the three-dimensional bar, number of processors=2, num.time.step=10

					MEASU	RED TIME		-			COMPUTED	TIME	
υ < 1		2		1 cp		Tpre	a a	1 Cm		Ttot	r _{cp}	Tprep	T cm
u m	or nodes	el en	tot	(s)	z	[s]	۶.	[s]	[X]	[8]	(s)	(s)	3
•	200	108	£2.33	64.28	96.26	2.49	3.73	0.0102	0.0153	62.72	60.16	2.55	0.0102
-	400	228	129.55	124.16	95.84	5.38	4.15	0.0102	0.0079	125.75	120.31	5.43	0.0102
~	009	348	193.89	179.97	92.82	13.91	7.17	0.0102	0.0053	194.51	180.47	14.03	0.0102
_	700	252	153.59	147.43	95.99	6.14	4.00	0.0195	0.0127	146.32	140.07	6.23	0.0195
-	800	532	309.47	287.43	92.88	22.02	7.12	0.0195	0.0063	302.38	280.15	22.21	0.0195
~	1200	812	465.59	417.97	89.77	47.60	10.22	0.0195	0.0042	468.16	420.22	47.92	0.0195
•	009	396	244.02	227.50	93.23	16.49	6.76	0.0288	0.0118	236.83	219.99	16.81	0.0288
^	1200	836	493.59	443.76	89.90	49.80	10.09	0.0288	0.0058	490.25	439.98	50.24	0.0286
•	1800	1276	765.37	650.10	84.94	115.24	15.06	0.0288	0.0038	776.08	659.97	116.08	0.0288
٥	800	567	350.21	325.32	92.89	24.85	7.10	0.0381	0.0109	339.96	314.73	25.19	0.0381
2	1600	197	87-622	638.91	87.58	90.53	12.41	0.0381	0.0052	720.81	629.46	11.10	0.0381
=	2400	1827	1130.76	933.73	82.58	196.99	17.42	0.0381	0.0034	1,142.5	944.19	198.33	0.0381

-.

٠.

*Further discription of the cases can be found in Table A-1.
Table A-5.

ą

Solution times for the three-dimensional bar, number of processors=2, num.time.step=50

Clock 1 ResulteD THE Convolution Trans Convolution Trans Convolution Trans Convolution Trans Convolution Trans Convolution Trans 0 0 0 1	ſ													
α num num rum lot lot <thlot< th=""> <thlot< th=""> <thlo< th=""></thlo<></thlot<></thlot<>		61 OBA	•			MEASUR	ED TIME			Ī				
5 nodes etem tot [s] [x] [s] [x] [s] [x] [s] [s] <th>ບ <</th> <th>E L</th> <th>Ę</th> <th>•</th> <th>fcp</th> <th></th> <th>Ipre</th> <th>ę.</th> <th>Tca</th> <th>~</th> <th>Ttot</th> <th>1_{cp}</th> <th>¹prep</th> <th>T cm</th>	ບ <	E L	Ę	•	fcp		Ipre	ę.	Tca	~	Ttot	1 _{cp}	¹ prep	T cm
0 200 108 306.62 304.09 99.17 2.48 0.81 0.6112 0.0157 503.38 300.78 2.53 1 400 228 610.37 604.94 99.11 5.39 0.0812 0.0056 916.43 902.35 14.03 2 600 348 913.46 9.14 13.91 1.52 0.0976 0.0137 706.70 700.31 6.23 4 000 532 713.55 707.31 99.13 6.14 086 0.0976 0.0137 706.70 703.31 6.23 4 800 532 713.55 707.31 99.13 6.140 0.966 1.56 0.0056 1.423.05 1400.76 22.21 6 800 396 11.269.90 98.46 27.78 17.66 2.20.37 217.7 2.097.47 27.71 2.140.13 2101.11 47.92 6 600 396 1.56 0.777 0.776 0.740 <td< th=""><th>ωш</th><th>of nodes</th><th>el em</th><th>tot</th><th>(s)</th><th>R</th><th>[3]</th><th>(X)</th><th>[s]</th><th>Ŕ</th><th>[8]</th><th>[s]</th><th>[8]</th><th>[S]</th></td<>	ωш	of nodes	el em	tot	(s)	R	[3]	(X)	[s]	Ŕ	[8]	[s]	[8]	[S]
1 400 228 610.37 604.94 99.11 5.38 0.88 0.0512 0.0084 607.05 601.57 5.43 2 600 348 913.36 899.40 98.47 13.91 1.52 0.0976 0.0137 706.70 70.37 6.23 4 00 532 14.355 707.31 99.13 6.14 0.86 0.0976 0.0137 706.70 700.37 6.23 4 800 532 14.35.17 2.097.47 97.78 47.60 2.22 0.0976 0.0056 1.423.05 14.00.74 22.21 5 1200 812 2145.17 2.097.47 97.78 47.60 2.22 0.0976 0.0128 1.429.13 101.11 47.92 5 600 396 1124.58 1,107.95 98.52 16.49 0.1440 0.0128 1.400.74 27.91 7 1200 815 0.1440 0.0128 1.416.91 1099.92 50.24<	•	200	108	306.62	304.09	99.17	2.48	0.81	0.0512	0.0167	303.38	300.78	2.55	0.0512
2 600 34.8 913.36 899.40 98.47 13.91 1.52 0.0512 0.0056 916.43 902.35 14.03 3 400 252 713.55 707.31 99.13 6.14 0.86 0.0976 0.0137 706.70 700.37 6.23 4 800 532 1432.01 1,409.90 98.46 22.01 1.54 0.0976 0.0056 1,423.05 1400.74 22.21 5 1200 812 2145.17 2,097.47 97.78 47.60 2.22 0.0976 0.0045 2,149.13 2101.11 47.92 7 1200 812 2145.17 2,097.47 97.78 47.60 2.22 0.0976 0.0045 2,149.13 2101.11 47.92 7 1200 8136 2259.50 2,209.51 1,007.95 98.61 2,406 0.0046 2,250.30 2199.47 47.60 7 1200 83.45 16.49 1.440 0.0042	-	007	228	610.37	\$6.96	11.66	5.38	0.88	0.0512	0.0084	607.05	601.57	5.43	0.0512
2 0.00 522 713.55 707.31 99.15 6.14 0.86 0.0976 0.0137 706.70 700.37 6.23 4 800 532 1432.01 1,409.90 98.46 22.01 1.54 0.0976 0.0058 1,423.05 1400.74 22.21 5 1200 812 2145.17 2,097.47 97.78 47.60 2.22 0.0976 0.0045 2,149.13 2101.11 47.92 6 600 396 1124.58 1,107.95 98.52 16.49 1.47 0.1440 0.0128 1,116.91 1099.96 16.81 7 1200 836 2,299.50 2,209.57 97.79 49.76 2.20 2.1440 10.0264 2,250.30 2199.92 50.24 7 1200 836 2,299.50 2,299.50 3,299.80 219.50 2,496.50 2,496.50 26.26 29.26 2199.92 50.24 8 18600 1276 3,291.30 96	- -	9	34.8	013.36	899.40	72.89	13.91	1.52	0.0512	0.0056	916.43	902.35	14.03	0.0512
4 600 532 1432.01 1,409.90 98.46 22.01 1.54 0.0976 0.0068 1,423.05 1400.74 22.21 5 1200 812 2145.17 2,097.47 97.78 47.60 2.22 0.0076 0.0045 2,149.13 2101.11 47.92 6 600 396 1124.58 1,107.95 98.52 16.49 1.47 0.1440 0.0128 1,116.91 1099.96 16.81 7 1200 836 2259.50 2,209.57 97.79 49.79 2.20 0.1440 0.0128 1,116.91 1099.96 16.81 7 1200 836 2,299.50 2,209.57 97.79 49.79 2.20 0.1440 0.0128 1,116.01 16.01 8 1800 1276 3,291.30 96.61 115.23 3.38 0.1440 0.0042 3,416.09 16.09 16.00 9 800 567 1,584.93 98.45 24.84 1.54	~	007	252	713.55	16.707	90.13	6.14	0.86	0.0976	0.0137	706.70	700.37	6.23	0.0976
x x		S	532	1432.01	1,409.90	98.46	22.01	1.54	0.0976	0.0068	1,423.05	1400.74	22.21	0.0976
5 1200 012 2730.1 2.000 396 1124.58 1,107.95 98.52 16.49 1.47 0.1440 0.0128 1,116.91 1099.96 16.81 7 1200 836 2259.50 2,209.57 97.79 49.79 2.20 0.1440 0.0064 2,250.30 2199.92 50.24 8 1800 1276 3,201.30 96.61 115.23 3.38 0.1440 0.0042 3,416.09 3299.87 116.08 9 800 567 1,584.93 98.45 24.84 1.54 0.1904 0.0118 1,599.03 1573.65 25.19 10 1600 1197 3,746.00 97.21 90.52 2.78 0.1904 0.0118 1,599.03 147.30 91.31 10 1600 1107 3,746.00 97.21 90.52 2.78 0.1904 0.0104 0.0118 1,599.03 146.09 134.73 91.31 11 2400 1827 4,007.5				31/5 17	2 007 27	07 78	47.60	2.22	0.0976	0.0045	2,149.13	2101.11	47.92	0.0976
0 000 570 5259.50 2,209.57 97.79 49.79 2.20 0.1440 0.0064 2,250.30 2199.92 50.24 7 1200 836 2,209.57 97.79 49.79 2.20 0.1440 0.0064 2,250.30 2199.92 50.24 8 1800 1276 3,406.67 3,291.30 96.61 115.23 3.38 0.1440 0.0042 3,416.09 3299.67 116.06 9 800 567 1609.06 1,584.93 98.45 24.84 1.54 0.1904 0.0118 1,599.03 1573.65 25.19 10 1600 1197 3254.71 3,164.00 97.21 90.52 2.78 0.1904 0.0058 3,477.30 3147.30 91.31 11 2400 1827 4907.59 4,710.41 95.96 196.09 4,01 0.1904 0.0039 4,919.47 4720.95 198.3	<u>_</u>		202	A2 7211	1 107 95	98.52	16.49	1.47	0771.0	0.0128	1,116.91	1099.96	16.81	0.1440
1 12.00 1276 3.00.67 3.291.30 96.61 115.23 3.38 0.1440 0.0042 3.416.09 3299.87 116.08 8 1800 1276 3.00.67 3.291.30 96.61 115.23 3.38 0.1440 0.0042 3.416.09 3299.87 116.08 9 800 567 1609.96 1.584.93 98.45 24.84 1.54 0.1904 0.0118 1.599.03 1573.65 25.19 10 1600 1197 3754.71 3.164.00 97.21 90.52 2.78 0.1904 0.0058 3.238.80 3147.30 91.31 11 2400 1827 4907.59 4.710.41 95.98 196.99 4.01 0.1904 0.0039 4.919.47 4720.95 198.3	•		245 ¥18	2250.50	2.209.57	97.79	62.67	2.20	0.1440	0.0064	2,250.30	2199.92	50.24	0.1440
0 1.500 1.510 1.584.93 98.45 24.84 1.54 0.1904 1.599.03 1573.65 25.19 9 800 567 1600.96 1,584.93 98.45 24.84 1.54 0.1904 0.0118 1,599.03 1573.65 25.19 10 1600 1197 3254.71 3,164.00 97.21 90.52 2.78 0.1904 0.0058 3,238.80 3147.30 91.31 10 1600 1197 3,764.00 97.21 90.52 2.78 0.1904 0.0058 3,238.80 3147.30 91.31 11 2400 1827 4,907.59 4,710.41 95.98 196.39 4,01 0.1904 0.0039 4,919.47 4720.95 198.3	- •		×7.1	74.67	3.291.30	96.61	115.23	3.38	0.1440	0.0042	3,416.09	3299.87	116.08	0.1440
10 1600 1197 3254.71 3,164.00 97.21 90.52 2.78 0.1904 0.0058 3,238.80 3147.30 91.31 11 2400 1827 4907.59 4,710.41 95.98 196.99 4.01 0.1904 0.0039 4,919.47 4720.95 198.31		000	567	1609.96	1,584.93	98.45	24.84	1.54	0.1904	0.0118	1,599.03	1573.65	25.19	0.1904
11 2400 1827 4907.59 4,710.41 95.98 196.99 4.01 0.1904 0.0039 4.919.47 4720.95 198.3	2	1600	1197	3254.71	3, 164.00	97.21	90.52	2.78	0.1904	0.0058	3,238.80	3147.30	91.31	0.1904
	=	5400	1827	4907.59	4,710.41	95.98	196.99	4.01	0.1904	0.0039	4,919.47	4720.95	198.33	0.1904

:

^{*}Further discription of the case can be found in Table A-1.

Table A-6.

Solution times for the three-dimensional bar, number of processors=2, num.time.step=100

	108/				MEASUF	LED TIME					COMPUTE	D TIME	
U < M	ۍ م	E jo	1	1 cp		Tpre	ę	Tcr	ſ	ftot	1 cp	Tprep	T C≣
) LLL	nodes	e i em	101	[s]	R	[s]	۶.	[[3]	[X]	[s]	[s]	(s)	(8)
•	200	108	605.11	602.53	99.57	2.48	0.41	0.1024	0.0169	604.22	601.57	2.55	0.1024
-	400	228	1211.33	1,205.85	99.55	5.38	0.44	0.1024	0.0085	1,208.66	1203.13	5.43	0.1024
2	600	348	1813.48	1, 799.47	99.23	13.91	0.77	0.1024	0.0056	1,818.83	1804.70	14.03	0.1024
~	400	252	1410.22	1,403.88	99.55	6.14	77-0	0.1952	0.0138	1,407.17	1400.74	6.23	0.1952
4	800	532	2834.81	2,812.60	99.22	22.01	0.78	0.1952	0.0069	2,823.89	2801.48	22.21	0.1952
~	1200	812	4246.47	4,198.67	98.87	47.60	1.12	0.1952	0.0046	4,250.34	4202.22	47.92	0.1952
•	600	396	2219.92	2,203.14	99.24	16.49	0.74	0.2880	0.0130	2,217.02	2199.92	16.81	0.2880
~	1200	836	4465.07	4,414.99	98.88	49.79	1.12	0.2880	0.0065	4,450.36	4399.83	50.24	0.2880
80	1800	1276	6710.76	6,595.24	98.28	115.23	1.72	0.2880	0.0043	6,716.12	6599.75	116.08	0.2880
٩	800	567	3176.70	3, 151.48	99.21	24.84	0.78	0.3808	0.0120	3,172.87	3147.30	25.19	0.3808
9	1600	1197	6408.81	6,317.91	98.58	90.52	1.41	0.3808	0.0059	6,386.28	6294.59	15.19	0.3808
=	5400	1827	9632.30	9,434.93	97.95	196.99	2.05	0.3808	0.0040	9,640.60	9441.89	198.33	0.3808

:

*Further discription of the cases can be found in Table A-1.

• :

¥

Table A-7.

Solution times for the three-dimensional bar, number of processors=3, num.time.step=10

:

Ŧ

Ę

:

÷

		+			MEASUR	ED TIME					CONPUTED		
ບ <		Enc.		_0		Tpre		T CM		Ttot	1 cp	Tprep	C.B
: vi w	of nodes	of elem	Ttot	[3]	E	[S]	ĸ	[3]	8	(s)	[s]	[s]	(s)
		1	67.53	64.88	96.08	2.63	3.89	0.0205	0.0304	62.80	60.16	2.62	0.0205
	007		× 01	123.07	93.06	9.16	6.93	0.0205	0.0155	129.49	120.31	9.16	0.0205
-	080	0(1	13. 3Cl	07 871	01	10.62	9.89	0.0205	0.0103	200.11	180.47	19.62	0.0205
~	880	516	150 24	148.80	93.44	10.40	6.53	0.0390	0.0245	150.50	140.07	10.40	0.0390
-			17 212	285, 15	90.35	30.42	9.64	0.0390	0.0124	310.56	280.15	30.38	0.0390
•	nalt	50			06 /7	75 02	14 52	0.0390	0.0080	490.78	420.22	70.53	0.0390
~	1760	1204	485.76	81.014	10.00							00 20	0 0576
•	840	572	23.13	229.80	90.78	23.27	9.19	0.0576	0.0228	243.35	219.4	8.6	2100.0
	1720	122	514.96	441.15	85.67	73.75	14.32	0.0576	0.0112	513.75	439.98	73.72	0.0576
<u> </u>			XX NOX	646.11	80.88	152.69	19.11	0.0576	0.0072	812.68	659.97	152.66	0.0576
	0,0/ /		8	12.847	8.53	34.29	9.45	0.0762	0.0210	349.00	314.73	34.21	0.0762
•				125 07	VY 18	124.54	16.39	0.0762	0.0100	753.95	629.46	124.43	0.0762
2	2320	8)1	10.461			70	22 58	CATO 0	0_0064	1.214.89	944.19	270.64	0.0762
=	3520	2709	1198.7	927.92	5.2	510.10	n	1 4.414					

:

.

[&]quot;Further discription of the cases can be found in Table A-2.

Table A-8.

:

:

4

Solution times for the three-dimensional bar, number of processors=3, num.time.step=50

	010	•			MEASU§	RED TIME					COMPUTE	D TIME	
v < v	Jo Jo	E Jo	T tot	I cp		Ipre	å	L G	E	Ttot	Tcp	Tprep	Tcm
ш	nodes	e l em	5	[8]	R	(s)	(X)	[(s]	(X)	[s]	[3]	[s]	[s]
•	280	156	310.04	307.31	99.12	2.63	0.85	0.1024	0.0330	303.49	300.78	2.62	0.1024
-	580	336	613.05	603.88	98.50	9.16	1.49	0.1024	0.0167	610.82	601.57	9.16	0.1024
2	880	516	917.40	897.77	97.86	19.62	2.14	0.1024	0.0112	922.06	902.35	19.62	0.1024
~	260	364	725.28	714.68	98.54	10.40	1.43	0.1952	0.0269	710.93	700.37	10.40	0.1952
7	1160	784	1437.86	1,407.24	97.87	30.42	2.12	0.1952	0.0136	1,431.28	1400.74	30.38	0.1952
2	1760	1204	2164.39	2,093.65	96.73	70.54	3.26	0.1952	0.0090	2,171.80	2101.11	70.53	0.1952
Ŷ	840	572	1143.38	1, 119.82	97.94	23.27	2.04	0.2880	0.0252	1, 123.49	1099.96	23.29	0.2860
~	1740	1232	2279.65	2,205.61	96.75	73.75	3.24	0.2880	0.0126	2,273.88	2199.92	73.72	0.2880
8	2640	1892	3438.17	3, 285.19	95.55	152.69	4.44	0.2880	0.0084	3,452.77	3299.87	152.66	0.2880
٥	1120	819	1636.37	1,601.70	97.88	34.29	2.10	0.3808	0.0233	1,608.18	1573.65	34.21	0.3808
10	2320	1764	3283.37	3, 158.45	96.20	124.54	3.79	0.3808	0.0116	3, 272.05	3147.30	124.43	0.3808
1	3520	2709	4973.70	4,702.62	94.55	270.70	5.44	0.3808	0.0077	4,991.91	4720.95	270.64	0.3808

:

٠.

*Further discription of the cases can be found in Table A-2.

-

Table A-9.

ŕ

₹.

Solution times for the three-dimensional bar, number of processors=3, num.time.step=100

		[•			MEASUR	ED TIME					COMPUTED	TIME	
υ «	Line of the	MUN I	F	1 cp		Tpre	g.	1 Cu		I tot	1 cp	1 prep	T _{cm}
ν m	or nodes	elen	tot	[S]	ß	[s]	æ	[s]	R	[s]	(s)	[5]	[s]
0	280	156	612.63	609.80	99.54	2.63	0.43	0.2048	0.0334	604.36	601.57	2.62	0.2048
-	580 ÷	336	1214.06	1,204.70	99.23	9.16	0.75	0.2048	0.0169	1,212.46	1203.13	9.16	0.2048
~	880	516	1817.99	1,798.17	98.91	19.62	1.08	0.2048	0.0113	1,824.49	1804.70	19.62	0.2048
]	560	364	1431.38	1,420.59	9.25	10.40	0.73	0.3904	0.0273	1,411.47	1400.74	10.40	0.3904
4	1160	784	2840.69	2,809.88	98.92	30.42	1.07	0.3904	0.0137	2,832.19	2801.48	30.38	0.3904
~	1760	1204	4266.82	4,195.89	98.34	70.54	1.65	0.3904	0.0091	4,273.08	4202.22	70.53	0.3904
•	840	572	2253.58	2,229.73	98.94	23.27	1.03	0.5760	0.0256	2,223.69	2199.92	23.29	0.5760
~	1740	1232	4485.30	4,410.97	98.34	73.75	1.64	0.5760	0.0128	4,474.03	4399.83	73.72	0.5760
•	5640	1892	6743.84	6,590.57	97.73	152.69	2.26	0.5760	0.0085	6, 752.89	6599.75	152.66	0.5760
<u> </u>	1120	819	3224.17	3,189.12	98.91	34.29	1.06	0.7616	0.0236	3, 182.14	3147.30	34.21	0.7616
2	2320	1764	6437.72	6,312.42	98.05	124.54	1.93	0.7616	0.0118	6,419.65	6294.59	124.43	0.7616
=	3520	2709	9701.57	9,430.11	97.20	270.70	2.79	0.7616	0.0079	9,713.16	9441.89	270.64	0.7616

:

^{*}further discription of the cases can be found in Table A-2.

Table A-10.

Solution times for the three-dimensional bar, number of processors=4, num.time.step=10

					MEASUR	LED TIME					COMPUTED	D TIME	
U < V	La de	L L L L L L L L L L L L L L L L L L L		L cp		bu 1	ę	Tci		Ttot	t cp	Tprep	T cm
שי	nodes	elem	101	[s]	נא	[s]	[X]	(s)	[X]	[s]	[s]	[s]	[s]
•	360	204	67.13	17.79	95.95	2.70	4.02	0.0205	0.0305	62.88	60.16	2.70	0.0205
-	760	777	131.93	122.41	92.78	9.50	7.20	0.0205	0.0155	129.81	120.31	9,48	0.0205
2	1160	684	196.20	177.82	89.72	20.36	10.27	0.0205	0.0103	200.82	180.47	20.33	0.0205
<u> </u>	720	476	158.60	147.82	93.20	10.74	6.77	0.0390	0.0246	150.84	140.07	10.73	0.0390
4	1520	1036	322.28	283.64	88.01	38.60	11.98	0.0390	0.0121	318.74	280.15	38.55	0.0390
~	2320	1596	496.67	413.10	83.17	83.53	16.82	0.0390	0.0079	503.72	420.22	83.46	0.0390
۰ ا	1080	872	252.36	228.23	90.44	24.07	9.54	0.0576	0.0228	244.08	219.99	24.03	0.0576
~	2280	1628	526.36	439.10	83.42	87.20	16.57	0.0576	0.0109	527.15	439.98	87.11	0.0576
8	3480	2508	832.59	643.23	77.26	189.30	22.74	0.0576	0.0069	849.25	659.97	189.22	0.0576
¢	1440	1071	369.91	326.53	88.27	43.30	11.71	0.0762	0.0206	358.03	314.73	43.22	0.0762
10	3040	2331	115-092	631.65	80.01	157.71	19.98	0.0762	0.0097	787.09	629.46	157.55	0.0762
:	1640	3591	1266.49	923.24	72.90	343.17	27.10	0.0762	0.0060	1,287.22	944.19	342.95	0.0762

:

^{*} Further discription of the cases can be found in Table A-3.

Ē

Ŧ

Table A-11.

Ē

۲

÷

Solution times for the three-dimensional bar, number of processors=4, num.time.step=50

	CI OR	•			MEASU	RED TIME			Ī		COMPUTET		
υ <		Ę		1 cp		b.	e e	T CI		T tot	Tcp	1 prep	t cm
u v	of nodes		tot	[s]	[X]	[3]	[X]	(s)	[X]	[s]	[s]	[s]	[s]
	360	204	308.36	305.56	<u>90.09</u>	2.70	0.88	0.1024	0.0332	303.57	300.78	2.70	0.1024
, .	072	777	612.56	602.96	98.43	9.50	1.55	0.1024	0.0167	611.14	601.57	9.48	0.1024
- •	001		017 10	R06.64	77.79	20.36	2.22	0.1024	0.0112	922.77	902.35	20.33	0.1024
~	0011	•00 7/7	721.65	710.71	98.48	10.74	1.49	0.1952	0.0270	711.26	700.37	10.73	0.1952
	1530	¥101	97 7771	1.405.66	97.31	38.60	2.67	0.1952	0.0135	1,439.45	1400.74	38.55	0.1952
3	0301			3 001 25	- St	83.53	3.84	0.1952	0.0090	2, 184.73	2101.11	83.46	0.1952
~	2320	9VC1	0	111 34	07 86	24.07	2.12	0.2880	0.0253	1, 124.23	1099.96	24.03	0.2880
•	1080	07/	07.7CH	YR EUC C	0X 18	87.20	3.81	0.2680	0.0126	2,287.27	2199.92	87.11	0.2880
~	2280	9701	01 02 02 02	1 281 BU	75 70	189.30	5.45	0.2880	0.0083	3,489.33	3299.87	189.22	0.2880
	0875	107	1636.14	1,592.46	97.33	43.30	2.65	0.3808	0.0233	1,617.19	1573.65	43.22	0.3808
	1070	2331	3312.56	3, 154.47	\$5.23	157.71	4.76	0.3808	0.0115	3,305.17	3147.30	157.55	0.3808
2 =	4640	3591	5040.18	4,696.63	93.18	343.17	6.81	0.3808	0.0076	5,064.22	4720.95	342.95	0.3808

:

*further discription of the cases can be found in Table A-3.

•

Table A-12.

Solution times for the three-dimensional bar, number of processors=4, num.time.step=100

	61084	•			MEASURE	D TIME					COMPUTED	TIME	
U < V	ور م	J.		1 cp		Ipre	đ	1,	E	Ttot	1 cp	Tprep	Tcm
υ W	nodes	elem		[s]	[X]	[s]	ĸ	 [s]	(X)	[s]	[s]	(s)	[5]
0	360	204	609.85	606.95	99.52	2.70	0.44	0.2048	0.0336	604.47	601.57	2.70	0.2048
-	760	777	1213.40	1,203.70	99.20	9.50	0.78	0.2048	0.0169	1,212.81	1203.13	9.48	0.2048
~	1160	684	1819.54	1,798.98	98.87	20.36	1.12	0.2048	0.0113	1,825.23	1804.70	20.33	0.2048
~	720	476	16.2541	1,414.18	99.22	10.74	0.75	0.3904	0.0274	1,411.86	1400.74	10.73	0.3904
4	1520	1036	2847.32	2,808.33	98.63	38.60	1.36	0.3904	0.0137	2,840.42	2801.48	38.55	0.3904
~	2320	1596	4281.63	4, 197.71	98.04	83.53	1.95	0.3904	0.0091	4,286.07	4202.22	83.46	0.3904
•	1080	872	2244.10	2,219.45	98.90	24.07	1.07	0.5760	0.0257	2,224.53	2199.92	24.03	0.5760
~	2280	1628	4496.71	4,408.93	98.05	87.20	1.94	0.5760	0.0128	4,487.52	4399.83	87.11	0.5760
8	3480	2508	6783.74	6,593.86	97.20	189.30	2.79	0.5760	0.0085	6,789.55	6599.75	189.22	0.5760
ہ	1440	1201	3218.30	3,174.24	98.63	43.30	1.35	0.7616	0.0237	3,191.28	3147.30	43.22	0.7616
0	3040	2331	6466.78	6,308.31	97.55	157.71	2.44	0.7616	0.0118	6,452.90	6294.59	157.55	0.7616
=	1640	3591	9776.68	9,432.75	96.48	343.17	3.51	0.7616	0.0078	9,785.60	9441.89	342.95	0.7616

:

"Further discription of the cases can be found in Table A-3.

Ę

Table A-13.

•

Problem parameters for the two-dimensional case

.

ŕ

2

						1001	
Ę	Ų		6108	VI VI			
p of		(nnodex)x (nnodey)	N nodes	Rel	Nnd	ц.	Np.el
		10-10	100	162	60	50	06
	5						
، م	-	20×10	200	342	110	100	180
4		01707	400	702	210	200	360
	,						
	-	10×10	100	162	79	25	64
	,				ş	Ċ	108
-	-	20×10	200	342	2	2	
•		20410	007	702	120	100	198
	2	10110					

•

Table A-14. - Solution times for the two-dimensional problem', (nnodex) x (nnodey) = 10x10, number of processors = 2

.

			Ĭ	EASURED TIM			
time step	T	1 Cp		1 Lpr	ç	F	CM
	101	[8]	R	{s}	[%]	[8]	(X)
-	0.99	0.12	12.12	0.865	87.37	0.0004	0.0404
10	2.19	1.32	60.27	0.865	39.50	0.0043	0.1963
20	3.61	2.74	75.90	0.865	23.96	0.0086	0.2382
100	14.92	14.01	93.90	0.865	5.80	0.0432	0.2895
1000	142.45	141.15	90.69	0.865	0.61	0.4320	0.3033

:

:

further discription of the problem can be found in Table A-13, CASE=0 , $\mathsf{num}.\mathsf{of}.\mathsf{proc}=2$

Table A-15. - Solution times for the two-dimensional problem^{*}, (nnodex) x (nnodey) = 20x10, number of processors = 2

			¥	ASURED TIM			
rum time	-	1 Cp		1 pre	ç.	1	Ē
step	tot	[3]	[X]	[s]	8	[s]	(X)
•	2.06	0.24	11.65	1.817	88.20	0.0007	0.0340
10	4.41	2.59	58.73	1.817	41.20	0.0074	0.1678
20	7.25	5.42	74.76	1.817	25.06	0.0147	0.2028
100	29.97	28.08	93.69	1.817	6.06	0.0736	0.2456
1000	285.00	282.45	90.11	1.817	0.64	0.7360	0.2582

.

:

.

^{*} further discription of the problem can be found in Table A-13, CASE=1 , num.of.proc=2

Table A-16. - Solution times for the two-dimensional problem^{*}, (nnodex) x (nnodey) = 40x10, number of processors = 2

ø

			Ŧ	ASURED TIM	L.		
rum time step	1	T _{cp}		Tpre	đ	F	Ē
•	101	[s]	R	[s]	(%)	[s]	(X)
•	5.01	0.24	11.65	4.525	88.20	0.0013	0.0340
10	9.54	2.59	58.73	4.525	41.20	0.0134	0.1678
20	15.03	5.42	74.76	4.525	25.06	0.0269	0.2028
100	60.52	28.08	93.69	4.525	6.06	0.1344	0.2456
1000	572.30	282.45	99.11	4.525	0.64	1.3440	0.2582

:

.

further discription of the problem can be found in Table A-13, CASE=2 , num.of.proc=2

.

ħ

Ŧ

Table A-17. - Solution times for the two-dimensional problem', (nnodex) x (nnodey) = 10x10, number of processors = 4

ſ				ACHOGA TIM	u		
				LI ANNOL			
t ime	Þ	1 cp		1 bu		-	E
step	tot	[3]	[X]	[s]	[%]	(s)	[X]
-	0.77	0.08	10.39	0.686	89.09	0.0006	0.0779
10	1.55	98.0	55.48	0.686	44.26	0.0058	0.3742
20	2.40	1.70	70.83	0.686	28.58	0.0115	0.4792
001	9.23	8.49	91.98	0.686	7.43	0.0576	0.6241
1000	86.13	84.87	98.54	0.686	0.80	0.5760	0.6688

:

Further discription of the problem can be found in Table A-13, CASE=0 , num.of.proc=4

 Solution times for the two-dimensional problem^{*}, (nnodex) x (nnodey) = 20x10, number of processors = 4 Table A-18.

			¥	ASURED TIM	ш		
time step	1.00	1 cp		Ipre	b	F	E
		[s]	נצו	[s]	R	[s]	[X]
-	1.26	0.15	11.90	1.114	88.41	0.0010	0.0794
10	2.56	1.44	56.25	1.114	43.52	0.0102	0.3984
20	4.01	2.88	71.82	1.114	27.78	0.0205	0.5112
100	15.58	14.36	92.17	1.114	7.15	0.1024	0.6573
1000	145.73	143.59	98.53	1.114	0.76	1.0240	0.7027

:

Further discription of the problem can be found in Table A-13, CASE=1 , $\mathsf{num}.of.\mathsf{proc}^{=4}$

١

T

Table A-19. - Solution times for the two-dimensional problem^{*}, (nnodex) x (nnodey) = 40x10, number of processors = 4

÷

3

÷

..

			Ĭ	ASURED TIM	u		
time .		Tcp		1 pri	8	,	E
Sich	tot	[8]	(X)	(s)	(X)	[s]	ĸ
-	2.55	0.27	10.59	2.283	89.53	0.0019	0.0745
10	\$6.4	2.65	53.54	2.283	46.12	0.0192	0.3879
20	7.79	5.47	70.22	2.283	29.31	0.0384	0.4929
8	30.51	28.04	61.90	2.283	7.48	0.1920	0.6293
1000	286.16	281.96	98.53	2.283	0.80	1.9200	0.6710

ł

Further discription of the problem can be found in Table A-13, CASE=2 , num.of.proc=4

-parallel solution times for two-dimensional problems using two Table A-20.

÷

÷

processors, T800 transputer⁽⁰⁾

	Ttot	[s]	
number of		(nnodex) x (nnodey)	
time steps	10 × 10	20 × 10	40 × 10
1	0.3	1.0	1.8
10	0.6	1.7	5.0
100	4.0	8.4	18.5
1000	37.4	75.2	153.5

:

;

ŧ,

7

7

Ŧ

-Solution times for two-dimensional problems for various numbers of processors where the number of nodes per processor is fixed, Table A-21.

,

T800 transputer⁽⁸⁾

÷	Ttot	[s]	
	đ	roblem discriptio	Ľ
number of time steps	10 x 10 rum.of.proc=2	20 x 10 rum.of.proc=4	40 x 10 rum.of.proc=8
	0.30	0.58	1.02
101	0.64	66.0	1.43
100	3.98	5.06	5.50
1000	37.44	45.78	46.29

·

:

BIBLIOGRAPHY

·. ·

ι

T

BIBLIOGRAPHY

- 1. Zienkiewicz, O.C., <u>The Finite Element Method</u>. (Fourth Edition, New York: McGraw-Hill Company, 1981).
- Cook, Robert D., Malkus, David S., and Plesha, Michael
 E., <u>Concepts and Applications of Finite Element Analysis</u>, (Third Edition, New York: John Wiley & Sons).
- 3. Zienkiewicz, Op. Cit., pp. 464-465.
- Burnett, David S., <u>Finite Element Analysis</u>, (Reading, Massachusetts: Addison-Wesley Publishing Company, 1987), pp.526-531.
- 5. Burnett, Op. Cit., pp. 467-482.
- 6. Pountain, Dick, and May, David, <u>A Tutorial</u> <u>Introduction to OCCAM Programming</u>, (London: BSP Professional Books, 1987).
- 7. Moss, Larry A., Smith, Todd E., <u>SSME Single Crystal</u> <u>Turbine Blade Dynamics</u>, NASA CR-179644, (Cleveland, Ohio: Lewis Research Center), p.16.
- Smolinski, Patrick, <u>Transient Finite Element</u> <u>Computations on the Transputers System</u>, NASA CR-185199, (Pittsburgh, Pennsylvania: University of Pittsburgh, February, 1990).

REFRENCES NOT CITED

- Belytschko, Ted, Hughes, Thomas, <u>Computational Methods</u> <u>for Transient Analysis</u>, Vol. 1, (Elsevier Science Publishers B.V., 1983).
- 2. Hughes, Thomas, <u>Linear Static & Dynamic Finite Element</u> <u>Analysis</u>. (Englewood Cliff, New Jersey: Prentice- Hall).
- 3. Janetzke, David C., <u>Efficient Computation of</u> <u>Aerodynamic Influence Coefficients for Analysis on a</u> <u>Transputer Network</u>, NASA TM-103671, (Cleveland, Ohio: Lewis Research Center, February, 1991).
- 4. Nour-Omid, B., and Park, K.C., "Solving Structural Mechanics Problems on the CalTech Hypercube Machine", <u>Computer Methods in Applied Mechanics</u>, Vol.61, (1987), pp.161-176.
- 5. Malone, James G., <u>"Automated Mesh Decomposition and</u> <u>Concurrent Finite Element Analysis for Hypercube</u> <u>Multiprocessor Computers", Computer Methods in Applied</u> <u>Mechanics and Engineering</u>, Vol.70, (1988), pp.27-58.
- 6. Timoshenko, Stephen P., Weaver, William, and Young, Donovan P., <u>Vibration Problems in Engineering</u>. (Fifth Edition, New York: Wiley-Interscience, 1990).

. • . . ÷ •

.

		GE	Form Approved
REPORT D	OCOMENTATION	anama including the time for revie	OMB NO. 0704-0186
Public reporting burden for this collection of infor gathering and maintaining the data needed, and collection of information, including suggestions fo Davis Highway, Suite 1204, Arlington, VA 2220.	mation is estimated to average 1 hour per re completing and reviewing the collection of inf treducing this burden, to Washington Heado 2-4302, and to the Office of Management and	sponse, including the time to rever formation. Send comments regard juarters Services, Directorate for in d Budget, Paperwork Reduction Pro	instructions, searching example and the aspect of this formation Operations and Reports, 1215 Jefferson spect (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED
	January 1993	Fin	al Contractor Report
4 TITLE AND SUBTITLE		,	5. FUNDING NUMBERS
Transient Finite Element Con	putations on a Variable Transpu	ter System	
Hansient Finne Element Con		·	
			WU-505-63-1B
			G-NAG3-1152
6. AUTHOR(S)	t		
Patrick J. Smolinski and Iren	eusz Lapczyk		
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		REPORT NUMBER
			E-7534
9. SPONSORING/MONITORING AGEN	CY NAMES(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
National Aeronautics and Sp	ace Administration		
Lewis Research Center			NASA CR-189060
Cleveland, Ohio 44135-31	91		
			······································
11. SUPPLEMENTARY NOTES			(216) 422 6041
Project Manager, David C. J	anetzke, Structures Division, N	ASA Lewis Research U	enter, (210) 435–0041.
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
Unclassified - Unlimited			
Subject Category 39			
•			
13. ABSTRACT (Maximum 200 words) 1)	ement problems was wri	tten and implemented on a system
In this study a parallel progr	am to analyze transient linte en	ntegration algorithm whi	ch eliminates the need for equation
of transputer processors. The	program uses the explicit time i		nication scheme was developed for
solving making it more suita	ble for parallel computations. A	in microfocessor commu	analyzed on a system with a small
arbitrary two-dimensional g	rid processor configurations. Sev	veral 3-D problems were	anaryzed on a system with a smith
number of processors.			
			•
14 SUBJECT TERMS			15. NUMBER OF PAGES
Einite alament: Structural d	vnamics: Parallel computation:	Transputers	82
rinne element, Structural d	ynamics, i araner comparation,	· ····	16. PRICE CODE
			A05
17 SECURITY OF ASSIEICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	ATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassified	
			Standard Form 298 (Rev. 2-89)
NSN 7540-01-280-5500			Prescribed by ANSI Std. Z39-18 298-102

١.,

7

٠

٢

.