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SUMMARY

This research covers three topics: the development of numerical
techniques for the solution of partial differential and integral
equations; simulations of incompressiblel viscous flows using these
techniques; and their extension to parallel computation of the

incompressible N-S eQuations.

The differential quadrature (DQ) technique, presented by Bellman et al
(1972, 1986), was extended to a general case in this research, based on
the analysis of a high order polynomial approximation in the overall
domain and the analysis of a linear vector space. Generalized
differential quadrature (GDQ) has overcome the difficulty of DQ in
solving a set of algebraic equations to obfain the weighting
coefficients for the discretized derivatives. In the GDQ method, the
weighting coefficients for the first derivative can be easily calculated
by an algebraic formulation without any restriction on choice of grid
points. The weighting coefficients for the second or higher order

derivative can then be determined using a recurrence relationship.

The relationship between GDQ and other numerical techniques has been
investigated. It was found that the GDQ method can be considered as the
highest order finite difference scheme for a domain with a given mesh.
Application of both GDQ and Chebyshev pseudospectral methods providgs
the same weighting coefficients for the first derivative when the grid
points are chosen as the roots of the Nth order Chebyshev polynomial for

both methods.

Some basic features of the GDQ method such as error, stability

vii



analyses, and the influence of the distribution of grid points and the
types of boundary conditions on the eigenvalues of the GDQ spatial
discretization matrix have been studied. It was found that improvements
in stability were achieved when the grid was stretched near the
boundary. This was not the case when the grid was stretched near the
mid-point even for very small minimum step size. This behaviour differs
from conventional low order finite difference schemes in which the local
optimum time step size can be evaluated through the CFL condition. In
the GDQ method the time step size is evaluated by the eigenvalues. A
uniform grid gives a smaller value of the maximum eigenvélue compared
with the stretched grid, but it may cause stability problems. Hence a
uniform grid allows the use of a larger time step size, and hence needs
less computation time if the solution is stable. For
convection-diffusion problems such as the vorticity transport equation
in incompressible flows, a uniform grid may cause an instability problem
when the diffusive term becomes relatively small compared with the
convective term. For this case, the grid stretched near the boundary is
recommended to use for improving the stability. The Dirichlet boundary
conditions make the solution more stable than Neumann boundary
conditions, but give a larger value of the maximum eigenvalue, resulting

in more computation time.

A generalized integral quadrature (GIQ) method was also developed, based
on the same concept as GDQ. In the GIQ method, not only the integral of
a function over the whole domain but also the integral of a function
over a part of the whole domain can be approximated by the combination
of all the functional values in the whole domain. The weighting
coefficients for GIQ can be obtained by inverting the matrix which is

derived from the GDQ formulation. The estimation of the errors incurred
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by GIQ was also studied.

For the application of GDQ to CFD problems, the 2D, laminar,
incompressible N-S equations have been chosen to validate the approach.
Solutions include: driven cavity flow; flow past a circular cylinder;
flow past a backward facing step; and natural convection in a square
cavity. For direct comparison with other numerical techniques, driven
cavity flow was also simulated using the second order time split
MacCormack finite difference scheme for the vorticity equation and the
SIP (s'trongly implicit procedure) preconditioning technique for the
stream function equation. Numerical experiments showed that GDQ results
using appreciably fewer grid points are more accurate, and need much
vless computation time than conventional low order finite difference
results using a large number of grid points. Furthermore, to relieve the
time step size as the number of grid points increases, and towards the
treatment of complex problems, the multi-domain GDQ technique was
developed and presented. This was then applied to solve specific
complicated flow cases. Examples include the flow past a backward facing
step with 3 subdomains, and the flow past a square step with 5
subdomains. A GDQ-GIQ approach for the solution of the boundary layer
equations has also been developed in this research. The 1D, 2D, 3D
steady and 2D unsteady boundary layers have been simulated using this
approach, each illustrated by means of a specific test problem.
Numerical results are demonstrated to be very accurate compared with
exact or other numerical results, with the use of only a few grid

points.

To test parallel computation on the transputer-based Meiko Computing

Surface, the above mentioned multi-domain GDQ solutions of the flows
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past a backward facing step and a square step were simulated using 3 and
5 slave processors. The program on each processor was written in FORTRAN
and run from an Occam harness to control the blacement of, and the
communication between, processors. For the driven cavity flow problem,
two formulations of the N-S equations (vorticity-stream function and
vorticity-velocity) and three methods for dealing with the interfaces
between subdomains (i.e. patched by enforcing continuity to the function
and its normal derivative; patched using a Lagrange interpolation
scheme; and overlapped) were studied comparatively. Additiohally, an
idea for the development of a general code which can be run on any array
of transputers without modification to the program was discussed, and

was successfully applied to the driven cavity flow problem.



Chapter One Introduction

CHAPTER ONE
INTRODUCTION
1.1 The Current Numerical Techniques in CFD

It is well known that Newtonian fluid flow can be governed by the
Navier-Stokes (N-S) equations. If the appropriate initial and boundary
conditions are given, then the problem is well-posed. The ideal way to
find solutions of the N-S equations is through an énalytical method.
Unfortunately, it is impossible tovfind‘analytical solutions of the N-S
equations for a general case since the N-S equations are highly
nonlinear. Conclusions from linear analysis, such as the principle of
linear superposition, are not valid. In fact, only for flows past
idealized geometries, such as Poiseuille flow, can analytical solutions
be found with restrictive simplifying assumptions. To investigate fluid
dynamic systems for practical cases, other ways need to be found. One
way is the use of computational flgid dynamics (CFD) to solve the N-S
equations or their simplified forms such as the Euler equations, the
‘ potential equations, the boundary layer equations and the tfiple—deck
equations on modern digital computers. Compared with the analytical
approach, CFD requires relatively few restrictive assumptions and gives
a complete description of the flow field for all variables. Quite
complex configurations can be treated, and the methods are relatively
eésy to apply. Relative to the experiments, CFD has few Mach number and
scale limitations and is cost effective. During the last few decades, as
computers have developed, the cost of numerical simulations of the flows

had been greatly reduced by orders of magnitude while at the same time
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the cost of experimental measurements still remain at the same level.
Numerical simulation has an additional advantage over experiment in that
diagnostic ’probing’ of the computer simulation does not disturb the

flow and obscure the phenomena under investigation.
1.1.1 Time Discretization

The time-dependent N-S equations or their simplified forms are commonly
used for unsteady or even steady state resolutions. Then a time marching
scheme is employed. For the discretization of the time derivative, there

are two methods, namely explicit and implicit schemes.

The explicit approach discretizes the time derivative by forward
difference schemes, in which the solutions at one time step can be
determined explicitly from those at previous time steps. The major
advantage of this approach is that it is easy to apply and needs less
operational counts per time step. Among the methods used in this
category, the MacCormack two step explicit scheme (1969) and the Jameson
explicit multi-stage Runge-Kutta scheme (Jameson et al 1981, Swanson et
al 1985) were widely employed for solutions of the N-S equations or the
Euler equations. The shortcoming of the explicit approach is that the
stability condifion is often so restrictive because of the CFL condition
that the time interval becomes very small and a large number of time

steps need be taken before a steady state is reached.

To relax the time interval barrier in the time marching process, one can
turn to the implicit approach which discretizes the time derivative by

backward or central difference schemes. As compared with explicit
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schemes, implicit schemes greatly improve convergence to steady state by
taking much larger time intervals. The penalty, however is, that more
operational counts per time step and more coding work are required. The
Beam-Warming (1978) and the MacCormack (1982) implicit schemes are two

versions, which are extensively used for solutions of the N-S equations.

It is often difficult to Jjudge whether either the implicit or the
explicit approaches are more efficient for a particular application.
Some researchers prefer explicit schemes while others favour implicit

schemes.
1.1.2 Spatial Discretization

There are several ways to discretize the spatial derivatives in CFD

which will now be reviewed.
1.1.2.1 Finite Difference Methods

Finite difference methods are employed in all areas of CFD to solve both
inviscid and viscous flow equations. For solutions of the Euler or N-S
equations, central and upwind finite difference schemes are usually
used. The MacC§rmack explicit (1969) and implicit (1982) schemes, the
Beam—Warming implicit scheme (1978) and the Jameson explicit multi-stage
Runge-Kutta scheme (1981) are typical central difference schemes. These
schemes, in general, work well for problems with a smooth behaviour. But
if the flow field has a discontinuity such as a shock wave, thése
schemes always produce high frequency oscillation in the vicinity of

that discontinuity. In order to remove the oscillation, one can add some
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form of artificial dissipation (Rizzi and Eriksson, 1983) 1in the
discretized equations solved. The choice of the parameter in the
artificial dissipation term, which has a great influence on the results
and the convergence to the steady state, depends on personal experience,
and sometimes, is not straightforward. More recently, a variety of
upwind differencing schemes which produce dissipation automatically have
been presented, based on assumptions related to the method of
characteristics and wave propagation. These schemes difference the
convective term (derivative or the flux) along the direction of wave
propagation. The monotone, total variation diminishing (TVD), flux
splitting and flux difference schemes fall in this category. The work of
Steger and Warming (1981), Van Leer (1982), Chakravarthy and Osher
(1985), Roe (1981), Yee (1987) and Harten (1983) has shown that this
approach is very efficient in capturing the Shoqk wave. As compared to
the central difference scheme, Pulliam (1886) pointed out that the
upwind scheme is eqﬁivalent to a central difference scheme plus a
certain form of dissipation. To capture the shock wave with high
resolutions, some workers (Morton et al 1989) preferred to use the shock

fitting technique in which the Rankine-Hugoniot relations are applied.
For simulating the flow around a complex geometry, a coordinate
transformation is usually required. This can be done by the technique of
grid generation. For details, see, the work of Thompson (1978), Thompson
et al (1982), Steger et al (1980) and Eiseman (1982).

1.1.2.2 Finite Element Methods

Finite element methods are mostly used in solid mechanics and structural
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analysis. Thesz have however made a practical contribution to CFD since
the 1970s. For details, see, for example, the work of Chung (1978),
Hughes et al (1979), Morton (1982), Gresho et al (1984), Morgan et al
(1987), Hassan et al (1989). The mathematical foundation of the finite
element approach is based on either the> variational (or extremal)
principle or the principle of weighted residuals. The finite element
methods used in CFD are mostly based on the principle of weighted
residuals. Amongst them, the Galerkin method is extensively used in
which the weighting functions are taken as the same as the basis
functions (interpolation functions). For solutions of hyperbolic
problems, the Taylor-Galerkin method (Donea et al 1888) and the Petrov-

Galerkin method (Hughes et al 1982) are widely used.

The finite element approach has been developed by mathematicians into a
very . elegant, rigorous, formal framework, with precise mathematical
conditions for existence and convergence criteria and exactly derived
error bounds. It can be used for structured and unstructured grid
topology, and treats the boundary conditions more accurately than the
finite difference approach. The shortcoming of this approach is the

requirement of more coding work and more computational operation.

1.1.2.3 Finite Volume Methods

The finite volume method was apparently introduced into CFD
independently by McDonald (1971) and MacCormack and Paullay (1972) for
the solution of the two-dimensional, time-dependent Euler equations, and

extended by Rizzi and Inouye (1973) to three-dimensional flows. This



Chapter One Introduction

approach integrates the conservation form of the governing equations (in
differential form) on a finite cell, where the primary variable is
normally defined at the cell centre. All the spatial integrals, in
finite volume methods, are approximated by the product of the spatial
quantity and the average value of fhe integral. Thus, for a general
problem where a coordinate transformation is needed, the finite volume
methods involve the treatment of geometric terms such as volumes, areas,
and normal velocity components rather than Jacobians, matrices, and

contravariant velocity components used in the finite difference methods.
1.1.2.4 Spectral Methods

Spectral methods may be viewed as an extreme development of the class of
discretization schemes known as the method of weighted residuals. The
key elements of this approach are the basis functions and the weighting
functions. The choice of the basis functions is one of the features
which distinguishes spectral methods from finite element methods. The
basis functions for spectral methods are infinitely differentiable
global functions. In the case of finite element methods, the domain is
subdivided into small elements, and a basis function is specified in
each element. The basis functions are thus local in character, and well
»suited. for handling complex geometries. The spectral methods may be
considered as an extension of the finite element methods, and can be
viewed as a whole space approximation technique. According to the choice
of the weighting functions, there are three most commonly used spectral
schemes, namely, the Galerkin schemé where the weighting functions are
taken as the same as the basis functions; the collocation scheme where

the weighting functions are the delta functions centered at collocation
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points; and the tau scheme which is similar to the Galerkin scheme in
the way that the differential equation is enforced, but the weighting
functions not needing to satisfy the boundary conditions. The spectral
methods have been successful in incompressible flow simulation. For
details, see, the books of Canuto et al (1987), Gottlieb and Orszag
(1977), and the work of Ku et al (1985), Orszag (1980), Hussaini and
Zang (1987), Streett (1987) and Kim and Moin (1985). For treating more
general geometries, the so-called spectral element methods have been
recently developed which can be considered as a cross between spectral
methods and finite element methods. The successful applications of this
scheme to fluid flow simulation were contributed by Patera (1984),

Korczak and Patera (1986), Phillips and Karageerghis (1988), etc.
1.1.2.5 Boundary Integral Methods

The boundary integral methods are also called the bouﬁdary element meth-
. ods. This approach is based on linear system analysis. For a given line-
ar system, its fundamental solutions can be found, and in terms of the
superposition theorem, the general solution of the system can be expre-
ssed as the linear combination of the fundamental solutions. Since all
the fundamental solutions satisfy the system equation exactly, so does
the general solution. Thus, for a particular problem, the determination
of the coefficients in the linear combination form.is only required.
This can be carried out by replacing the general solution with boundary
conditions. Thus, the boundary integral methods generally involve solu-
tion of unknowns on the boundary. The major advantage of this scheme is
that the dimension of the problem can be reduced by one, and therefore,

the computational complexity is reduced. Because this approach is based
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on linear analysis, it is difficult to apply to nonlinear problems. If
it was thus used, some approximations need be introduced. Successful
application of boundary integral methods to incompressible viscous flows

has been achieved by Wu et al (1978, 1984).
1.1.3 Numerical Methods of the Resultant Equation System

After spatial discretization, the resultant semi-discrete equation
system can be solved by available numerical techniques for the solution
of ordinary differential equations. Amongst them, the multi-stage Runge-
Kutta, Crank-Nicolson, Euler explicit, MacCormack explicit and

predictor-corrector schemes, are widely used.

If the time derivative is discretized implicitly, the resultant equation
system is a set of algebraic equations, which can be solved by two
methods, namely, the direct method and the iterative method. The most
frequently used direct methods are the Gaussian elimination method and
the LU decomposition method. If the order of the algebraic equaf.ion
system is very large, the direct method is less efficient because of
storage problems and round-off errors. For this case, iterative methods
are recommended. The basic iterative methods are the point Jacobi method
and the point Gauss-Seidel method. Usually, the convergence rate of
these methods are very slow. To increase the convergence rate, over-
relaxation methods can be introduced. In this category, there are the
Jacobi over-relaxation method, successive over-relaxation method (SOR)
and successive line over-relaxation method (SLOR). Some preconditioning
techniques such as the Richardson method, the strongly implicit

procedure (SIP) and conjugate gradient method, can also improve the
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convergence rate.

To accelerate the convergence rate for a general problem, the multi-grid
technique is a promising approach. The conventional iterative methods
show slow convergence rate because of the poor damping of low frequency
errors. In fact, high frequency errors are damped after a few
iterations, but low frequency errors are not. The multi-grid approach
can be considered as a smoother of errors in such a way that after one
or more iteration sweeps through the mesh, the error behaviour is
sufficiently smooth for it to be adequately represented on a coarser
grid. The application of the multi-grid technique to CFD has
demonstrated great success. For details, see the work of Ni (1982),

Johnson (1983), Stuben and Trottenberg (1982), etc.
1.2 Challenges in CFD

Although some steady three-dimensional problems and some unsteady two-
dimensional problems have been successfully simulated on modern
supercomputers, we are still far from the achievement of full simulation
of unsteady three-dimensional fluid flow problems because of lack of
computation speed and storage memory. The current attempts at unsteady
three-dimensional problems take tens or hundreds of hours on large
mainframe computers available and even then have generally only limited
spatial resolution. To tackle useful practical flow cases in CFD, fast
numerical algorithms, and supercomputers with fast floating point
operation speed and large virtual storage memory, need to be developed.
To develop fast numerical algorithms, novel, flexible, efficient

discretization schemes, which use few mesh points to achieve the same
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accuracy as conventional discretization schemes using a large number of
mesh points, and the development of fast methods for the solution of the
resulting algebraic equation system, are required. Since a fast
numerical algorithm can greatly reduce both computer operation time and
storage memory, practical unsteady three-dimensional flows can be

realised on available supercomputers.

If supercomputers are developed with sufficient speed and memory, real
flows may be realised. using current numerical algdrithms. But
unfortunately, the development of single computers is limited because
these computers rely on pipelines to obtain their speed, and the speed,
at which information is propagated, is limited by the speed of light.
Parallel supercomputers are being developed to overcome theée
difficulties. The architecture of the parallel supercomputer is quite
different from the single supercomputer. Thus, it 1is necessary to
explore flexible, robust parallel algorithms for use on these parallel

supercomputer facilities. This is a new challenge in CFD at present.
1.3 The Scope of This Research

Towards meeting the above challenges, exploration of numerical
algorithms and parallel‘computation was included in this research. It
involves three topics: the development of new numerical techniques; the
application of these to the simulation of incompressible viscous flows;

and the parallel computation of incompressible Navier-Stokes flows.

In the numerical algorithm development, it is assumed that a function in

the domain is sufficiently smooth that it can be approximated by a high
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order polynomial. The technique of generalized differential quadrature
(GDQ), was firstly developed, based on the concept of the high order
polynomial approximation in the overall domain, and the analysis of a
linear vector space. The GDQ approach approximates the derivative of a
function with respect to a coordinate direction as a weighted linear sum
of all the functional values in that direction. The key to GDQ is how to
determine the weighting coefficients for any order of derivatives. The
details for determining the weighting coefficients of the 1D case and
extension to the multi-dimensional case have been given. The
relationships between GDQ, finite difference schemes, and the Chebyshev
pseudospectral method were also demonstrated. The basic properties of
GDQ, such as error estimation, consistency, stability, influence of the
distribution of grid points and the types of boundary conditions on the
eigenvalues of the GDQ spatial discretization matrix, were also
analysed. Based on the same concept as GDQ, a generalized integral
quadrature (GIQ) technique was also presented. Using a linear' sum of
all the functional values in the whole domain to approximate an integral
of a function over a part of the whole domain was studied. The study qf

the two-dimensional and three-dimensional integrals was also included.

For the numerical simulation, the fluid flow is assumed to be laminar,
incompressible and Newtonian. Some standard examples of incompressible
Navier-Stokes flows such as the driven cavity flow, the flow past a
circular cylinder, the flow past a backward facing step and the natural
convection in a square cavity, have been chosen to validate the
numerical technique developed. Furthermore, the multi-domain GDQ
technique with application to the flow past a backward facing step, the

flow past a square step was also investigated. For the GIQ application,
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the 1D, 2D, 3D steady and 2D unsteady boundary layer equations were

simulated.

In the part of the thesis involving parallel simulation, the 2D
incompressible Navier-Stokes equations were chosen for study. The multi-
domain technique was used and the GDQ method was applied in each
subdomain. All the cases are run on the Meiko Computing Surface (a
transputer-based distributed memory multi-processor). The program on
each processor was written in FORTRAN and run from an Occam harness to
control the placement of and the communication between processors. The
flow past a backward facing step using 3 slave processors and the flow
past a square step using 5 slave processors were first investigated. For
the driven cavity problem, the comparative study was made. Two
formulations of the N-S equations (vorticity-stream function; vorticity-
velocity) and three types of interface treatment (different number of
grid points overlapped; patched with enforcing continuity condition of
the function and its normal derivative; and patched with using Lagrange
interpolation scheme), were studied. Finally, the development of a
general code which can run oﬁ any array of transputers without any

modification to the program was discussed.
1.4 Layout of This Thesis

The outline of this thesis is as follows: Chapter One consists of an
introduction to the study. The description of the governing equations
for the fluid flow is given in Chapter Two, and the details of the
generalized differential and integral quadrature (GDQ and GIQ)

techniques are given in Chapter Three. Chapter Four presents some
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analysis of the basic properties of the GDQ and GIQ, and application to
standard model problems. The application of GDQ to the incompressible
Navier-Stokes equations is given in Chapter Five, and the application of
GDQ and GIQ to the boundary layer equations is given in Chapter Six. The
parallel simulation of the incompressible Navier-Stokes equations is
presented in Chapter Seven. Finally, some conclusions and prospects for

future work are given in Chapter Eight.
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CHAPTER TWO

GOVERNING EQUATIONS
2.1 Introduction

The basic equations of fluid dynamics are based on the universal laws of
conservation, that is, the conservation of mass, momentum and energy.
The equation derived from applying the law of conservation of mass to a
fluid flow 1is wusually called the continuity equation. The law of
conservation of momentum is based on Newton’s second law, which yields a
vector equation known as the momentum equation. The law of conservation
of energy is equivalent to the first law of thermodynamics and the
resultant fluid dynamic equation is called the energy equation. In
addition, the equation vof state, which relates the thermodynamic
variables of pressure (p), density (p), temperature (T), is needed in
order to close the system of equations. For a general case if the
velocity V = (u,v,w), any two thermodynamic variables and an equation of
state are known, the complete description of a fluid is available. For
some special cases, the complete governing equations can be simplified.
In this chapter, we describe only the governing equation for

incompressiple viscous flows.
2.2 Incompressible Navier-Stokes Equations
2.2.1 Differential Form

The incompressible flow has a feature that
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Dp _
<5 =0 (2.1)
where gt is a differential operator
l=i+ua_+v a + W
Dt at ax dy 8z

Substituting condition (2.1) into the compressible Navier-Stokes

equations leads to

V-V=0 (2.2)
p N o p + uvV + pf (2.3)
Dt e
DT _ ., 2
pcv T =kVT+ & + qh (2-4)

where V° is the Laplacian operator, p is the dynamic viscosity of the
fluid, fe is the external volume force, q, is the external volume heat
source, c_ is the coefficient of specific heat under constant volume, k

is the coefficient of thermal conductivity and

_ du .2 av .2 aw 2 av du .2 aw av 2
Q—M[Z( W) + 2( aT) + 2( a?—) +(W+3T) +(a—y—+ az)
du ow .2 2 du av ow 2
+(a_z_+5§—)__3—(6x+ay+az)] (2.5)

The rate of dissipation of mechanical energy is usually small in
incompressible flows, thus & can be negligible in the equation (2.4).
And only the case in which there is no external volume heat source, i.e.

q, = 0, is studied. So the energy equation can be reduced to

pe, oL =k VT (2.6)
In most cases, the temperature appears only in the energy equation so
that we can uncouple this equation from the continuity and momentum
equations. For many applications, the temperature changes are either
insignificant or unimportant and it is not necessary to solve the energy
equation. But in the natural convection case, the energy equation should
be directly coupled with the momentum equations, because the buoyancy

force, caused by the temperature distribution, is the dominant motive

force of this system.
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In natural convection, the external volume force is the gravitational
force, that is
pfe = pg (2.7)

where g is the vector of acceleration due to gravity. It is common to
use the Boussinesq approximation for the study of natural convection.
The variation of density p 1is, according to the Boussinesq
approximation, included only in the calculation of the buoyancy terms
(i.e. pg), and proportional to the temperature. The buoyancy force is
written as |

PE = p, [1 - B(T - T))lg (2.8)

0
where po, To’ are the reference density and temperature and B is the
thermal expansion coefficient. Using (2.8) and the Boussinesq

approximation, (2.3) is now simplified to

DV
Dt

= —‘13— Vp + VUV + g[l - B(T - TO)] (2.9)
0

where v = u/po is the kinematic viscosity. In the Cartesian system, if
the coordinate axis y is chosen to be the opposite direction of the
gravity force, then

g = (0, -g, 0) (2.10)
For the natural convection in a square cavity, the scalar form of (2.9),

in the two-dimensional case, is

2 2
_g% +u gg + v gg =- 1 gg + UEZ—E + Q—; ] (2.11)
X ¥ PO X x dy
2 2
| X v P, Y 2 ay
‘8[1 ‘B(T’To)] (2.12)
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2.2.2 Non-Dimensional Form

For the case that only the continuity and momentum equations are solved,

the flow variables and coordinates can be non-dimensionalized by

* X * * z t# _ t
- L - L 2T T A
(2.13)
* u * v * W * p
u = —_— v = —_— w = —_— o =
\/ 2
© © © pme

where the nondimensional variables are denoted by an asterisk,
freestream conditions are denoted by o« and L is the reference length
used in the Reynolds number
Py Vco L

u
Substituting the above relations into (2.2), (2.3) with fe = 0 yields

Re =

the following nondimensional equations

continuity

L 3 * *
u | 8v , v =0 (2.14)
* * *

ax oy oz

X — momentum

* . #»* - * - * *
du +u du v du + du _ _ 9p
* * * - * *
ot ax dy 8z ox

2 * 2 * 2 *

+‘1[:u . 2u +a“] (2.15)
Re *2 *2 *2
X 8y dz

y - momentum

* * »* * *
av * v * v * gv ap
+u — + VvV — + —_— = - e
* * * * *
at ax ay dz dy

2 * 2 % 2 *

+1[‘:V s OV +6v] (2.16)
Re *2 *2 *2
X dy oz
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Zz - momentum

a* . * * * *
Wt raw | eaw _  dp
* * *
at ax dy dz 9z
2 * 2 * 2 *
+ -1 [j” s 2V +a"] (2.17)
Re *2 *2 *2
X ay oz

For two-dimensional problems, most researchers (de Vahl Davis, 1983;

Ghia et al, 1982; Ku et al, 1985) favour the use of vorticity w and

stream function Y as dependent variables

du av
= e - .18
a3y ax . (2 )
- oy - _ oy
u = 3y , v = I (2.19)

Thus for natural convection problems, equations (2.11) and (2.12) can be

combined to give

2 2
ow dw dw _ [0w dw |_ aT
Bt TUax*TV ay v[; 2 2 ] 88 7% (2.20)
X dy
2 2
a_.‘é’_+ﬂ=w (2.21)
ax 6y2
In (2.13), setting v, = k/(poch), P, = P, and defining
T*-— T—TO *_ W ﬂ'_ |l]
- TAT S 2 SN e e
00 [+4]

(2,20), (2.21), (2,6) can be nondimensionalized as

a * . a * . - * 62 * 62 #* aT*
_w* +u 2 4y ?ﬂ; =Pr[a‘:2 + fz]—RaPr — (2.22)
at 8x dy X Ay ax ’
3 * " * . * 2% 2_*
T + u £ + v aT = 9T + T (2.23)
* »* * *2 *2
at ax ay 15D 4 ay
2 * 2 *
oy L, 9v _ .t (2.24)
*2 *2
ox oy A
where Pr is Prandtl numbef, Ra is Rayleigh number
uc
Pr = kp
3
c p gBL AT
Ra= —P°
kv
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For simplicity, the asterisks will be dropped, hereafter.
2.3 Boundary Layer Equations

Although many numerical solutions of the Navier-Stokes equations have
been obtained on modern computers, the practical simulation of general
Navier—Stokés flows is still elusive. This 1is true, especially for
unsteady, three-dimensional flows at high Reynolds numbers since in this
case, the step size near the solid boundary should be very small in
order to capture the shear layer, and as a result, considerable computer
time is required. In contrast, the use of the boundary layer concept or
the principle of viscous-inviscid interaction can greatly reduce
computer time. The concept of the boundary layer was firstly presentéd
by Prandtl, deriving from his experimental observation in 1904.
Following this concept, the whole flow field can be split into two
regions: the viscous shear layer near the wall, which is governed by the
boundary layer equations, and the remaining inviscid region. which is
governed by the Euler or potential equations. The governing equations in
two regions can be solved separately or coupled in ‘the case of

viscous-inviscid interaction.

The boundary layer equations 'can be obtained from the Navier-Stokes
equations, by using order of magnitude analysis with two constraints.
These are: (1) the viscous layer must be thin relative to the
characteristic streamwise dimension of the object immersed in the flow;
(2) the largest viscous term must be of the same approximate magnitude
as any inertia term. For the three dimensional, incompressible flow past

a flat plate, let x and z denote the coordinates in the wall surface and
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y denote the coordinate which is perpendicular to the wall. The three

dimensional equation, for this case, can be written as

du av ow _
5% + 3y + 37 =0 (2.25)
2
du du du du 1 8p du
o a e - gy .26
at " Uax T VaytVaz p ax 'V 2 (2.26)
ay
2
aw ow aw ow _ 1 ap aw
ot *YmxtVeytVe- o &t 2 (227
ay
with
_ 1 a8p _ 3Ue dUe dUe
5 -t TV o T 5 (2.28)
1 ap AWe - OWe AWe
- = 2 - ZF ore — .29
P dz at *+ Ue ax *+ We oz (2.28)

where Ue, We are the components of the outer flow velocity in the x

and z direction.
2.4 Governing Equations in the General Coordinate System
2.4.1 2D Incompressible NS Equations in the General Coordinate System

For the two dimensional case, supposing the physical coordinates X, ¥y

are transformed into the general coordinates &, 7m by

€ =E&(x, y)
(2.30)
n = nlx, y)
we then obtain
J = - (2.31)
*e¥n T %pVe

| R

gx - J y,n s nx - J yg 1)
X . (2.32)

=-J , =J .

Ey *n n, 3

Using the chain rule of partial differentiation and the following

divergence formulation
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oF, 9, 1 [ﬁ(ynpl %) 80xgF, - ) ], (2.33)

VES &t ey T I 3E * an

the form of the two-dimensional, incompressible Navier-Stokes equations,

in the general coordinate system, is written as

continuity
1 du du av av
= s - ° 4 — - - (2.34)
J [Vn € “Yean T¥eam " T as]
X-momentum
du 1 fa(Uu) 3(Vu) 1 dp _ ap
at * 3[ag T Tam ]* j[ynag Ye am
1 /3 du du d du du
== {5 __ bl el .35
3 {;E [A 3% + B 5n ]+ 77 [C Tn +D o€ ]} (2.35)
y-momentum
av 1 [8(Uv) a(vv) 1 [ ap ap
at * 3[65 T ] 3[ *n 3 " Ye o
1 |8 av av 3 av v
= = {2 __ A - 2.36
3 {;5 [A 38 + B n ]+ m [C 3m +D 3 ]} ( )
where
U=u - VX, \'/ VX u
Yn g~ Mg
= « - _—B = .4 . _—B
A= %7 B R %% g0 Re-J
2 2 2 2
= -+ , = + . =X +
®E Xy Ty s ‘e T VoY 4 g Ve

If the vorticity-stream function formulation or the vorticity-velocity
formulation is used, their expressions, in the general coordinate
system, are

vorticity equation

dw . 1 4 (Uw) . 8(Vw)
at © J | 8¢ an

_1]je aw dw é dw ow

stream function equation
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8 oy ay a ay aw 1 _
W[Ai 3 * Bian ]+ an [C1 an t D f] = Ju (2.38)

u-equation

3 [A du B du ]+ 6n [C du_ D QE_]

8€ 1 8& 1 87 a 1 97 1 8€
_ v aw :
= Xs a—n— X_n BT (2.39)

v-equation

8 av av ls} ov av
56_[A1 € * P am ]+ an [Cl a Dl-'a_s_]
aw dw
= - ow_ - o (2.40)
[yn 9 "~ Ve o ]
where
A = Re-A, B = Re'B, C = Re‘C, D = Re-D,
1 1 1 1

Similarly, the governing equations for natural convection problems with
vorticity-stream function formulation, in the general coordinate system,

can be written as

dw , 1 [6(Uw) . 8(Vw)] _ _ Ra-Pr 8T _ . 8T
axt J|@E m T Yn 3 " Yeam
Pr [0 w ow a dw dw
* 5 {é—_[Al 3 + B1 7 ]+ 7 [C1 7 + D1 gg—]} (2.41)
aT , 1 falur) . a(VT)
at " J | 8¢ an
1 8 aT aT a oT aT
3 {35 [A1 3% + B1 7 ]+ 77 I:C1 a0 + D1 ?9&_]} (2.42)

The stream function equation is the same as (2.38).

2.4.2 Incompressible Boundary Layer Equations for a General Case

If the boundary layer for the flow past a general geometry is
investigated, the study is always based on the streamwise coordinate
system. This system is usually not a Cartesian coordinate system, but an
orthogonal coordinate system. Equations (2.25)-(2.27) can be written, in

this system, as
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a(uhs) a(vhlhs) a(whl)
2 _— -_— = .43
3€ + 70 + T 0 (2.43)
du u du du w Jdu 2
_6t +Hl ﬁl'-v_a—ﬁ.’-ﬁs §§+qu1—w K2
2
1 dp du
= - —_ 224, 2= (2.44)
p-h1 CIS 61;2
ow u ow aw W aw 2
3t +H1 a—€+v5;+}—13 EE+UWK2—U K1
2
1 dp 8w
= — 9L L p 2 (2.45)
e h3 8¢ an2
where
SR T WO B
1 hh & 2 h -h 3%
2 2 2 2
(h)® = (x.)° + )T+ (zL)
A g+ g £
2 2 2 2
(h)” = (x,.)° + ( + (z,)
5 < 3 c

and £ is directed in the primary flow direction, ¢ is in the crossflow

direction, and 1 is orthogonal to the body surface.

In order to remove the singularity for solving (2.25)-(2.27), the

coordinate transformation is always required. Using the following

transformation
T=Uet/x, £=x =2z 1= Us/vx)?y
F = uwle , G = w/We
equations (2.25)-(2.27) can be transformed to
8F 8V . F £-We 3G f ’ _
£ 6_§-+ﬁ+_2 [l +K3]+ Ue 3—E+G ~K5 0.5K4] =0 (2.48)
R 2
aF oF oF We 8F 2 _ 48F
6_'f+€F¥+va_n+€G LI:E‘“KS [F',—1J+K4 [FG 1]— é? (2.47)
R 2
oG aG aG We 4G 2 _ d6G
ﬁ+€F5§+vﬁ+EG ﬁ:5_§—+K5 [G 1J+K6 [FG 1]— 51? (2.48)
where .
U)oy 5w O 4 . Me. BN
V = (x/v-Ue) v + xF &+xGmaz
g = X. 0 g - X. Ve 0l
3~ Ue 8x ° 2 Ue Ue 0z
_ % 3We _ X QWe
K= & 3z - Ks = W ax
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CHAPTER THREE
GENERALIZED DIFFERENTIAL AND INTEGRAL QUADRATURE
3.1 Introduction

The numerical techniques for the solution of a partial differential
equation can be classified into two categories. One is based on the
direct discretization of the derivatives and integrals. Another is based
on the variational principles or the principles of weighted residuals.
The conventional finite difference methods lie in the first category
while the finite element and the spectral methods are in the second.
Usually, low order methods such as finite differences and finite
elements can provide accurate results by using a large number of grid
points. However, in some practical applications the numerical solution
of a governing equation is required at only a few specified points in a
domain. But for acceptable accuracy, conventional finite difference and
finite element methods also require the use of a large number of grid
pointé to obtain the solution at those specified points. In seeking a
more efficient method using just a few grid points to get an accurate
result, Bellman et al (1972) introduced a method of differential
quadrature, where a partial derivative of a function with respect to a
coordinate direction is expressed as a linear weighted sum of all the
functional variables at all mesh points along that direction. It is
clear that this method is based on the direct discretization of the
derivative, and therefore, is in the first category indicated above.

Preliminary computational results (Bellman et al 1984, Civan et al 1983,
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1984, Mingle 1977, Jang et al 1989) showed that differential quadrature
has potential as an attractive approximation technique. The Kkey
technique tp differential quadrature is how to determine the weighting
coefficients for the discretization of any order partial derivative. To
determine the weighting coefficients of the first order derivative,
Bellman et al suggested two methods to carry this out. One method solves
a set of algebraic equations which is obtained by satisfying the linear
constrained relation for all polynomials of degree less than or equal to
N-1, where N is the total number of grid points in a domain. This
equation system has a unique solution because the matrix elements are
composed of a Vandermonde matrix. Unfortunately, when N is large the
inversion of this matrix becomes difficult. This is probably bne of the
reasons that applications of this scheme so far only use the number of
grid points less than or equal to 13. The second method is to compute
the weighting coefficient aij by an algebraié formulation with
coordinates of grid points chosen as the roots of an Nth order shifted
Legendre polynomial. This means that if N 1is specified, the
distributions of grid points (very close to the boundary) are the same
for different physical problems. This can provide a major drawback and
restrict the application of differential quadrature. In order to
overcome this drawback, the generalized differential quadrature
technique was developed in this work, based on the analysis of the high

order polynomial approximation in the overall domain.
3.2 Differential Quadrature
For the one dimensional unsteady problem, Bellman et al (1972) assume a
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function u(x,t) to be sufficiently smooth to allow the following linear

constrained relation to be satisfied
N .
, t) = culx, t (3.1)
) j§1aij u(xj )

for i=1, 2, +--, N

ux(xi
where ux(xi, t) indicates the first order derivative of u(x,t) with
respect to x at X, . Substituting (3.1) into a time-dependent partial
differential equation yields a set of ordinary differential equations
which can be integrated by the well-developed schemes such as Runge-

Kutta and Adams-Moulton.

The key technique to this procedure is to determine the weighting
coefficients aij. Bellman et al suggested two ways to carry this out.
The first way is to let (3.1) be exact for all polynomials of degree
less than or equal to N-1 test functions g(x)=xk, k=0, 1, ~--+, N-1,
which leads to a set of linear algebraic equations

N
Y aL“-x,k = k-x (3.2)
joq 3

for k=0, 1, -+-, N-1
i=1,2, -+, N
This equation system has a unique solution since its matrix is of
Vandermonde form. Unfortunately, when N is large, this matrix is ill-

conditioned and its inversion is difficult.

Another method is similar to the first one with an exception that the

different test function
LN(X)

5 (3.3)
(x - xk)'LN(xk)

glx)=

is chosen, where LN(x) is the Nth order Legendre polynomial and L;q(X)
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the first order derivative of LN(X). By choosing X to be the roots of
the shifted Legendre polynomial, Bellman et al obtained a simple

algebraic formulation for a

1j
'LN(xi)

a = — —— , i#J (3.4a)
ij (xi xj) LN(xj)
1-2xi
e Th 2x1-(xi- 1) (3.4b)

3.3 Generalized Differential Quadrature

In order to overcome the drawback described above for differential
quadrature and to obtain a similar simple formulation for aij, a method
of generalized differential quadrature has been introduced in this work,

based on the analysis of the polynomial vector space.
3.3.1 High Order Polynomial Approximation in the Overall Domain

Since any finite range can be transformed into the range of [0, 1] by a
simple transformation, we will consider only the range [0, 1] hereafter;
It is well known that a continuous function f(x) in the interval [0, 1]
can be approximated by an infinite polynomial accurately in accordance
with the Weierstrass polynomial approximation theorem. In practice, a
truncated finite polynomial may be used. Some methods, an example being
ﬁhe spectral method, have successfully applied the concept of high order
polynomial approximation to the solution of the partial differential
equation. Following this approach, it is supposed that any smooth
function in the interval [0, 1] can be approximated by the (N-1)th

order polynomial.
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It is easy to show that the polynomial of degree less than or equal to
N-1 constitutes an N-dimensional vector space V“ with respect to the
operation of addition and multiplication. From the concept of linear
independence, the bases of a vector space can be considered as a
linearly independent subset which spans the entire space. Here if rk(x),
k=1, 2, +++, N, which are in the space Vn’ are the base polynomials, any
polynomial in Vh can be expressed as a linear combination of rk(x), k=1,

2, ***, N, i.e

f(x) = th =
Kk

Il ™M =

1ck-rk(x) (3.5)

where PN is a projection operator of smooth function onto VN, c, is a
coefficient, and f(x), rk(x) are in space VN. The spectral method uses a
high order polynomial similar to (3.5) to approximate the function f(x)
in the overall domain. But the procedures for the solution of the
partial differential equation are quite different. The spectral method,
which is based on the principle of the weighted residuals, involves the
determination of the coefficients of the base polynomials, namely, C.
while generalized differential quadrature (to be described), which uses
this formulation only to determine the weighting coefficients for

discretization of any order (less than N) partial derivative, involves

the determination of the functional values at grid points.
3.3.2 Determination of Weighting Coefficients for First Derivative

Equation (3.1) is a linear constrained relationship. If the base
polynomials rk(x), k=1, 2, ---, N, satisfy (3.1), so does polynomial

f(x). And if the base polynomial rk(x) is chosen to be xhd, the same
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equation system as (3.2), given by Bellman’s first method, can be
obtained. For generality, here the base polynomial r'k(x) is chosen to be
the Lagrange interpolation polynomial

r (%) = M(x) (3.6)

k (1)
(x - xk)-M (xk)

where M(x) = (x—xl)-(x-xa)---(x—xn)

(1) X
M (xk) = j=11,-[j¢k(xk - xj)

For simplicity, we set

M(x) = N(x, xj)-(x - xj), j=1, -+, N
with N(xi, xj) = M(l)(xi)-sij, where Sij is the Kronecker operator.

Thus we have

M(k)(x) = N(k)

(x, xj)-(x - xj) + k-N(k_l)(x, xj) (3.7)
for k=1, 2, -+-, N-1
where M(k)(x), N(k)(x, xj) indicate the kth order derivative of M(x)

and N(x, x ). Substituting (3.8) into (3.1) yields
(1)

N (Xi, x.)
a . = = J (3.8)
. MY (x)
h]
From (3.7), we get
. M“)(xi)
N (x, x) = , for i%j
i 7 X - X
i J
M(Z)(x )
(1) i
N (xi, xi) = —
2
So, (3.8) can be written as
M(l)(xi)
2, = D , for i#j (3.92)
(xi—xj)~M (xj)
M(Z)(xi)
a, = (10 (3.9b)
2'M (%)

1
fori, j=1,2, ---, N
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Equation (3.8) is a simple formulation for computing aij without any
restricﬁion on choice of the coordinates of the grid points X .
Actually, if xi is given, it is easy to compute M“)(xl), thus aij for
i#j. The calculation of . is based oh the computation of the second

(2)

order derivative M (xi)’which is not easy to be obtained. Next, it

will be shown that aii can be calculated from aij (i=j).

According to the theory of a linear vector space, one set of base
polynomials can be expressed uniquely by another set ‘of base
polynomials. Thus if one set of base polynomials.satisfies a linear
constrained relationship, say (3.1), so does another set of base
polynomials. And since the weighting coefficients are only dependent on
the coordinates of grid points if the number of grid points is given,
the equation system for determination of aij derived from one set of
base polynomials should be equivalent to that derived from other sets of
base polynomials. Thus aij satisfies the following equation which is
obtained by the base polynomial x* when k=0

N

Eai =0, (3.10)

3=t M

where a  can be easily determined from a, . (j#i) using (3.10). Equation
. j

(3.9) is a general form for calculating aij.f It follows that if the
coordinates of the grid points are chosen as the roots of a shifted
Legendre polynomial, (3.9) is exactly the same as that given by

Bellman’s second method.
3.3.3 Determination of Weighting Coefficients for Higher Derivatives

For discretization of the second order derivative, we introduce the

-30-



Chapter Three "GDQ_and GIQ

following linear constrained relation
N
= . 11
uxx(xl, t) jgibij u(xj, t) (3.11)

for i=1, 2, -+, N
where ka(x, t) is the second order derivative of u(x, t) with respect
to %, and Lagrange interpolated polynomials are chosen as the base
polynomials (see 3.6). Using the same approach as for the first order
derivaﬁive, the weighting coefficients bij become

N(Z)(Xi, x.)

= = J ' (3.12)
1] M )(xj)

From (3.7), we obtain

(1)

. M (x)-2:N(x, x)
NP (x, x) = 1 J i2j (3.13a)
i j X - X,
i j
- M (x)
N (x, x) = —_— (3.13b)
i i
3
Substituting (3.13), (3.9) into (3.12) yields
=2-a -(a - ——;L——-), for j#i (3. 142)
ij ij ii X:'l - Xj
M(S)(x )
= v (3.14b)
ii 3'M(1)(Xi)

fori, j=1, 2, «--, N
For i#j, b1j can be calculated from aij without a double summation. In a
similar analysis to the case of the first order derivative, the equation
system for bij derived from the above Lagrange interpolated polynomials
is equivalent to that derived from the base polynomials xk, k =0, 1,
-+, N-1. Thus b1j should also satisfy the following formulatiqn derived
from the base polynomial xk when k=0

N
Lb =0 ' (3.15)
s=1 Y

from which bii can be easily determined.
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Furthermore, in the case of the discretization of the higher order

derivative, the linear constrained relations are applied as follows

N
Wik, ) =y W™ Piux, t) (3. 16)
x i ij J
j=1
(m) X (m)
w™(x, t) =% w ulx, t) (3.17)
X i j=1 ij j

fori=1,2, -+, N

where u:{m-l)(xl,t), uim)(xi,t) indicate the (m-1)th and mth order

W™ 4™ the weighting

derivative of u(x,t) with respect to x at X s

(m)
x

coefficients related to u:(m-“

into (3.16), (3.17) and using (3.7), (3.9), a recurrence formulation is

(xi,t) and u (xi,t). Substituting (3.6)

obtained as follows

=) 1, g#i (3.18)

where aij is the weighting coefficients of the first order derivative

described above. Again, in terms of the analysis of the N-dimensional

(m)

linear vector space, the equation system for wij derived from Lagrange

interpolated polynomials should be equivalent to that derived from the

base polynomials xk, k=0, 1, -+-, N-1. Thus w::') should satisfy the
following equation obtained from the base polynomial xk when k=0
N
¥ w:'f" =0 (3.19)
3=t 7

From this formulation, w;'in) can be easily calculated from wi';'), i=j.

3.3.4 Extention to the Multi-Dimensional Case
For the two-dimensional approximation of a function f(x,y) in the
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domain x € [0, 1], y € [0, 1], it is supposed that the value of f(x,b),
where b is a constant, b € [0, 1], can be approximated by an (N-1)th
order polynomial PN(X) which constitutes an N~dimensional vector space
VN with N base polynomials ri(x), i=1,2,--+,N, and the value of f(a,y),
where a is a constant, a € [0, 1], can be approximated by an (M-1)th
order polynomial P“(y) which constitutes an M-dimensional vector space
Vn with M base polynomials sj(y), j=1,2,+++,M. The value of function

f(x,y) can be approximated by the polynomial QNX“(x,y) with the form
Quu*:¥) = & I ¢ Tyt (3.20)

where Eij is a coefficient
It is clear that anu(x;y) constitutes a NxM dimensional polynomial
vector space ann with respect to the operation of addition and scalar
multiplication. It will now be shown that <I>ij = r‘i(x)°sj(y) constitutes
the base polynomials in the vector space ann' Since r'i(x), sj(y) are
the base polynomials of PN(x) and PM(y), they must be linearly
independent, that is

N
X ci-ri(x) =0 only if c, = o, i=1,2,-*-,N (3.21)
i=1

H -
Z d"S.(y) 0 : Only if d. = 0, j=1,2, -..,M (3.22)
j=g ) 3
Now we see that if

N X | N M

LI L c,® (xy =0, ie. .E( Y cij.sj(y))'ri(x) =0

i=1 j=1 i=1 j=1

From (3.21) the following equation is obtained
M

Y c..'s(y)=0
jo W
Finally from (3.22) we obtain ¢, = 0. Then, <I>ij(x,y) constitutes the

base polynom;als in Vuxn'
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Now it is assumed that the following constrained relations are satisfied
for function u(x,y,t) and its first order spatial derivative

N
. X -
ux(xi,yj,t) = k)—:1aik u(xk,yj,t) (3.23)

|
I

- y .
uy(xi,yj,t) & u(xi,yk,t) (3.24)

k=1
for i=1,2,:--,N; j=1,2,+--,M

X
where a’ , a¥

e are the weighting coefficients related to ux(xi,yj,t) and

uy(xi,yj,t) respectively. If all the base polynomials @ij(x,y) satisfy
(3.23), (3.24), then so does any polynomial in Vo Substituting

Qij(x,y) into (3.23), (3.24) leads to

N

kE:lail“-rj(xk) = r-j’(xi) (3.25)
. y

kE]laik-sj(yk) = sj (yi) (3.26)

where r'j’(xi) represents the first order derivative of r'J(x) at X, and

sj’(yi) represents the first order derivative of sj(y) at y,. From
(3.25), (3.26), it is obvious that a’ick or a;'k is only related to r‘i(x)

or sj(y). Hence the formulation of the one dimensional case can be

directly extended to the two dimensional case, that is
M“)(xi)

X = , for i#] (3.27a)
S RV P ,
i 3 B
N
a’i‘1 =- Y a’i‘j (3.27b)
j=1, j*1
for i,j=1,2,---,N
P(l)(yl)
a.’i'j = TE) , for i#j (3.28a)
- P
(y, yj) (yj)
M
a =- ¥ a2 (3.28b)
i 1)
j=1,J3%i
for i,j=1,2,---,M

-34-



Chapter Three GDQ_and GIQ

where
N
(1) _ _
M (xl) = j=1I’Ij;#i(xi xj)
M
(1)
P (yi) = j=1I,Ij#i(yi yj)

Similarly, for the second or higher order derivative the recurrence

relationship of the weighting coefficients can be obtained as follows

) (n-1)
O P L kD PN N J#i (3.29a)
1] 1j ii X -X
i J
) N (
w™ = - Yy w n) (3.29Db)
i1 ij
3=1, J#1

for n=2,3,+++,N-1; i,j=1,2,+--,N

G(m-l)
W =@ . My, J#i (3.30a)
ij ij it y. - V.
i J
— M —
o (3.30Db)
ii ij
j:],,jti

for m=2,3,++,M-1; i,j=12,--+,M
where w:;') are the weighting coefficients of the nth order derivative of
=(m)
u(x,y,t) with respect to x at X yj, namely, u;n)(xi,yj,t), and wi';

the weighting coefficients of the mth order derivative of u(x,y,t) with

respect to y at X, yj, namely, u:lm)(xi,yj,t). They satisfy

N
u:cn)(xi,y,,t) = wan)-u(x ,y.,t) (3.31)
Jj k=1 ik k " j
u™ (x ,Y..t) = E;J(m)-u(x Y., t) (3.32)
y i’ oy Ik i’k

for i=1,2,:+-,N; Jj=1,2,:-+,M .

Similar formulations can be obtained for the three dimensional case.

If the functional values at all grid points are obtained, it is easy to
determine the functional values in the overall domain in terms of the

polynomial approximation, i.e.

_35_



Chapter Three GDQ and GIQ

N
u(X,yj) = ):u(xi,yj)-r'i(x), j=1,2,+--,M (3.332)
1=1
M
U(Xi.y) = Zu(xi,yj)-sj(y), i=1,2,---,N (3.33b)
j=1
N M
ulx,y) = ¥ Yulx,y)r (x)-s (y) (3.33c¢)
j=1 §=1 1 1 J

where r‘i(x), sj(y) are the Lagrange interpolated polynomials along the Xx

and y direction respectively.

3.3.5 Comparison witﬁ the Finite Difference Scheme

As stated above, the equation system for the determination of aLij
derived from one set of base polynomialé is equivalent to that derived
from another set of base polynomials. Wé will choose only one equation
system obtained by the base polynomials xk, k =0,1,-+--, N-1 and prove
that this equation system is the same as that given by the finite

difference approach.

For the one dimensional case, supposing the whole domain has N grid
points, X» Xy ttt, X The (N-1)th order finite difference scheme for
the first order spatial derivative can be written as a linea;" sum of the
functional values at N grid points, which has the same form as (3.1)
where the weighting coefficients are determined by the Taylor series
expansion which is usually used in the design of the low order finite
difference schemes. Using a Taylor series expansion, u(xj,t) can be
expressed as

ulx,t) = ulx,t) + 'V

’ . - PR (k) . i k []
(Xi,t) (xJ xi)+ +u (xi,t) (xj xi) /k!
+oeee 4 u‘“‘”(xi,t)-(xj-xi)“'l/(n—m + R/ (3.34)

where u(k)(xi,t) is the kth order derivative of u with respect to x at
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X RN’ is the truncated error, and can be written as

’ E— (N) . -— N '
R, u (€i,t) (xj xi) /N! , §i € [xi, xj]

Substituting (3.34) into (3.1) yields

N
u(x,t) = Ya -dulx,t) + uPix,t)(x-x) + -0 +
x i j=1 ij i i j i

u‘“‘“(xi,t)-(xj—xi)“'l/(N-l)! + RN’}- (3.35)
In order to keep the right side of (3.35) consistent with the left side

of (3.35) with (N-1)th order accuracy, we set
[ N

xr a, = 0
j=1

N
1 Eaij'(xj—xi) =1 (3.36)

N
Ya -(xj-xi)k=0 ) k=2 3, +--, N-1

fori=1,2, --+, N.
Equation set (3.36) is another equation system for the determination of
the weighting coefficients aij which are derived from the Taylor series
expansion. It will now be proved that equation system (3.36) is the same
as (3.2) which is derived from the high order polynomial approximation

in the overall domain.

It is obvious that the first equation of (3.2) and (3.36) are the same,

N
Eai =0 (3.37)
j:l .

Furthermore, it can be shown that the second equation of“the two systems

are the same, i.e.

N N N N
Ya *(x-x)= Ya 'x-(}Ya )'x = Ya -x =1 (3.38)
y=1 i J o1 =1 ij =1 i) i j=1 ij j

Now, assuming that the first p+1 equations of the two systems are the
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same, that is

N N

La -(x —xi)k = La X - k-xl:-1 =0 (3.39)
Pt AR

for k=0, 1, -+, p; i=1,2, ---, N

then using the binary formulation
(a-b)? = ap—c;-ap_l-b+- . -+(—1)k-c:;-a.p-k-bk +eo0+ (-1)P-bP (3.40)
here c: is the combination of p terms taken k at a time,
and setting a = b = 1, the following expression will be obtained.
-t s (—1),k+1c: + e+ (-1)P = 1 (3.41)

P P
Using (3.40), the (p+2)th equation of (3.36) can be written as

N N
1 p+l 1 P
Ya (x-x )" = Ya ¥ -c x-[ Ta -(x-
j=1 ij j o1 j=1 ij 3j p+1 i =1 ij J
1 cl.gPt. cee 4 (=1)P.xPl 42
R + (-1) X, /{p+1))] (3.42)

Substituting (3.41), (3.39) into (3.42) leads to

N N
1 p+l 1 p-1
Ea,-(x—x)p+ = Ya -x -c X lpx; " -
j=1 ij j i j=1 ij j p+1 i i
1 . ‘1| o— . p—1 LI 4 — p_li p-1
Tcp(pl)xi + + (-1) X, 1
N
= Ya X - (pr1)xPlel-c® + coe + (DMK 4 oo 1 (-1)PT]
j=1 ij i P P P
N "
= Ya x5 - (p+1)-x° (3.43)
jo U i

Equation set (3.43) demonstrates that the (p+2)th equation of the two
systems are the same. Since p is an arbitrary integer only if p = N-2,
it has been proved that the two systems (3.36) and (3.2) are exactly the

same.

Similarly, for the case of higher order derivatives, it is easy to show

that the weighting coefficients w;';) satisfy the following equation

system, derived from the finite difference scheme for the mth order

derivative in the overall domain
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;:w(m) =0
3=1 M
N (m)
{ Tw™(x-x)"=m! (3.44)
o 13 j i
N K ‘
ZWJ '(Xj x) =0 R k=1, 2, -+-+, N-1, but k#m
[ J=1

fori=1,2, -, N; m=2, 3, ---, N-1 .

It is clear that the first equation of (3.44) is exactly the same as

(3.19) for m = 2, ---, N-1. To prove that wi';), for 2 = m = N-1,
-1
satisfies other equations of (3.44), it 1is supposed that w::' )

satisfies those equations firstly, that is

(1) . (m-1)! when k = m-1
i“,‘ (x-x )< = ) (3.45)
p M i 0 others

™M=
L

Using (3.18), now we have, for 1 = k = N-1

N
me Y™ (x —x ) (3.46)

Substituting (3.45), (3.36), (3.19) into (3.46) leads to

(m) K m! when k = m
we(x —xi) = (3.47)

1 1 3 0 others

™M=

J
Since m is an arbitrary integer only if 2 = m = N-1, it has been pr‘ove&
that w:'jn) satisfies (3.44) exactly. Thus it can be concluded that GDQ is
an extension of finite difference methods, and is a highest order finite
difference scheme. It also provides a new way to develop high order
finite difference schemes. It has been shown in Appendix B that the
formulation of the first order derivative discretization obtained by GDQ

in the interval [xi_ le] is exactly the same as that given from the

1’
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second order finite difference scheme.
3.3.6 Specific Results for Typical Distributions of Grid Points

In this section, three specific formulations of the weighting
coefficients will be given for three typical distributions of the grid
points: uniform grid; the coordinates chosen as the roots of Tu(n) or
|TN(n)| - 1, where Tn(n) is an Nth order Chebyshev polynomial. Since the
complete weighting coefficients of the second and higher order
derivatives can be calculated from those of the first order derivative,
and that for the multi-dimensional cases, each direction can be treated
as in the 1D case, then only the weighting coefficients of the first

order derivative in the 1D case are considered.
Case I: Uniform Grid

By a uniform grid it is meant that the grid has the same step sizes.
Thus setting
Ax = x - x =x - X =x -x , etc.,
2 1 i i-1 N N-1

one can obtain

L (j-i)ax
M“)(xi) = DY M G- re(N-i)r , i=1,2, -0, N
Thus
i+] (i-1)!-(N-i)!
= (- . 3.48

2, = D e G (0 (3.482)
for i, j=1, 2, ---, N, except j#i

N
a_=- ¥ a ., i=1,2, -+, N (3.48b)
i1 1]

j=1’j¢1
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Case II: Coordinates Chosen As the Roots of IT&(n)I -1

An Nth order Chebyshev polynomial can be written as
TN(n) = cos(Ne) (3.49)
withn=cos 8 , -1=79=1

Setting |T“(n)| = 1 yields
Ne=Ggnr , jg=0,1, -, N

i.e. nj = cos(jn/N) , J=0,1, ---, N

where nj is the coordinate of the grid point in the domain [1, -1].

In this case, the Lagrange interpolated polynomial can be written as
-1 (10*) - T ()
r (n) = , J=0,1, ---, N (3.50)
] - 2
cj'N -(n-nj)

where TN’(n) is the first derivative of TN(n), and

2 when j =0, N
j 1 others

Thus (3.9) can be reduced to
(-1)3*.c
= — - i, =0, 1, ---, N, but j#i (3.51a)
cj-(ni- nj)

a
i]

N
- L a , i=o0,1, -+, N (3.51b)

.
j=1,5%1 7

a
ii

It can be seen that (3.51) is the same as that deduced from the pseudo-
spectral Chebyshev method (Ehrenstein et al, 1989). To analyse this
behaviour, it is well known that both spectral methods and finite
element methods are based on the principle of the weighted residuals.
Spectral collocation methods can be considered as an extension of finite
element methods. The difference is that the spectral collocation methods

include only one element while finite element methods include many
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elements. As shown in Appendix B, finite difference methods can also be
considered as "finite element" methods which are different from the
standard approach in that the elements in a finite difference method are
overlapped while the elements in a standard finite element method are
patched. But if the whole computational domain is composed of only one
element, both finite difference methods, and finite element methods in
which the weighting function is taken as the delta function, should give
the same results. This is because in this case, one overlapped element
and one patched element are the same. From this analysis, it is shown
that the GDQ approach should give the same results as the spectral
collocation methods if the same distribution of grid points is used,
since they can be considered as an extension of the finite difference
and finite element methods with only one element. This phenomenon is

confirmed in this research shown above.

If the physical domain is not [1, -1], but [a, b], then we need to use
the following transformation

x = 0.5:(b-a)-(1-m) + a , where x is the physical coordinate
The weighting coefficients aij inlthe physical coordinate system can be
written as
a = —2-a1j/(b—a) , i, j=0, 1, ---, N. (3.52)

ij

Case II1: Coordinates Chosen As the Roots of Tk(n)

Setting Tn(n) = 0 yields
Ne = 0.5:(2§-1)m  , i.e. 0, = cos[0.5:-(2j-1)u/N]l , j=1,---,N

It should be noted that nj is in the domain [ni, nN], where n, =
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cos(0.5n/N), nN = -nl, and nl # 1. In this case, the Lagrange

interpolated polynomial can be written as

2,172

(—1)’”-(1—nj) *T (n)
= j =1, -+, N. 3.53)
r (m) HOEER , J=1, (
Then (3.8) can be reduced to
(~1)3*1 . (1-92) 12
a = 2’1/2 , i, j=1, ++-, N, but j#i (3.54a)
H (n.-n)-(1-0°)
i j i
N
a, =- Y a , i=1,2, «--, N. (3.54b)
il ij
j=1,j3#i

Similarly, if the physical domain is [a, bl, using the following
transformation

n = d2~(x—a)/(b—a) + d1 , where d1 = cos[0.5n/N], 42 = - 2-d1 ,
the weighting coefficients aij in the physical coordinate system can be
written as

éij = d,'a, /(b-a) = - 2:cos[0.5n/Nl-a, /(b-a) (3.55)
fori, j=1, 2, -, N.

3.4 Generalized Integral Quadrature (GIQ)
3.4.1 Introduction

In practice, for some problems such as the area of a surface and the
volume of a body, it is necessary to know the integration of a function
over some domain. In most cases, it is difficult to obtain the.value of
the integration analytically. As a result, numerical integration
techniques are of interest in engineering. The numerical integration of

function f(x) over domain [a, b] can usually be written in the form
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b

N
J f(x)-dx = ¥ c, flx ) (3.56)
i=1

a
where c, is the weighted coefficient. There are a lot of conventional
rules to determine c,- The low order Simpson’s rule is the most
frequently used in obtaining approximate integrals. To obtain accurate
results, high order methods are preferrable. Amongst them, the
integration rules of Gaussian quadrature are extensively used, where
both the weighting coefficients and the coordinates of the grid points
are taken as unknowns which are determined by the 2N powers 1, x, ---,
xzwd. The major advantage of Gaussian quadrature is its high accuracy.
But for the general case, it has a disadvantage that the coordinates
obtained may be outside the interest region. Thus it is necessary to
check for the correct coordinates before numerical integration. Some
specific Gaussian quadrature techniques such as the Gauss-Legendre can
remove this drawback. Another drawback of Gaussian quadrature is that,
since the coordinates are detérmined by the roots of some functions,
they cannot be arbitrarily given. This may provide a difficulty in use
for some problems where the functional values are only known at some
specific grid points which may not coincide with the coordinates
obtained, e.g. the experimental data are given at some selected points.
In the case of the solution of a differential-integral equation, the
grid points, where the unknowns are set, are usually generated in
advance, and may not be the same as the coordinates of Gaussian
quadrature. If this method was used for these cases, an interpolation

approach needs to be employed. This may introduce additional errors in

numerical computations.

If the grid points are given in advance, the weighted coefficients can
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be determined by the integration rule of interpolatory type. cj can be

written as
b

. ={ M(x) - dx 5 =1,2, -, N (3.57)
J (x-x )M (x)
a j J

The exact expression of (3.57) is very complicated. Thus it is not easy
to calculaté c, accurately on the computer using (3.57). As a special
example, when the uniform grid is used, (3.57) is reduced to the Newton-
Cotes integration formula which has some asymptotic expressions for c,-

For details, see, for example, the book of Davis et al (1975).

In some cases, the function f(x) is continuous in a whole domain
containing sufficient grid points, and the integral over a part of the
whole domain involving only a few grid points is of interest. When the
conventional numerical integral schemes are used to approximate this
integral, the results will be of low accuracy since these schemes use a
linear combination of the functional values only in the integral domain
to approximate the integral, thus only few functional values can be
used. In order to improve the accuracy for this special integral, one
may raise the question: is it possible to have a method which uses the
functional values of the overall domain to approximate the integral over
a part of the overall domain? The answer is positive, and will be shown
in this section. The weighting coefficients of the integral for the case
of given grid points are determined by the inversion of an matrix which

is easily obtained on the computer.
3.4.2 One Dimensional Integrals with Specified Grid Points

It is supposed that a function f(x) is continuous in the overall domain
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[a, b], which can be decomposed into N-1 intervals with grid points as
X, (=a), T . (=b). Since f(x) is continuous in the whole

domain, it can be approximated by an (N-1)th order polynomial. In
particular, when the functional values at N grid points are known, f(x)
can be approximated by the Lagrange interpolated polynomial which are
related to the functional values at all mesh points. As a result, the
integral of this approximated polynomial over [xi, xj] may involve the
functional values outside the integral domain. As a general case, it is
assumed that the integral of f(x) over a part of the whole domain can be

approximated by a linear combination of the functional values in the

overall domain with the form

j N N
£(x)-dx = Lo Y Fx) (3.58)

X, k=1
1

where X xj are numbers that can be altered. When X =a, xj=b, (3.58)

is a traditional integral. In a similar fashion to the analysis in the
previous section, the (N-1)th order polynomial, which is an
approximation to f(x), constitutes an N-dimensional linear vector space.
Thus if all the base polynomials satisfy (3.58), so does any polynomial

in the space. If the Lagrange interpolated polynomials, rn(x), n =1,

+++, N, are chosen as the base polynomials, C;J can be determined by
X
ci‘j = jr (x)-dx (3.59)
k < K )

i
The expression of C;J is very complicated. Therefore, it is difficult to

calculate c;J accurately using (3.59). We will turn to another way to

. iJ
determine ckJ.

The GDQ formulation (3.1) can be written as a vector form

-46-



Chapter Three GDQ _and GIQ

U =AU (3.60)

X

where
b= . o 0 T
v =utx), ute), -, ute)]
U =fu(x), u(x), -+, ulx)|
X x 177 Tx 27’ > Tx N
and A is a matrix composed by 2 Equation (3.60) is exact when u(x) is

a polynomial of degree less than or equal to N-1. Now, if we set

_ du(x)
f(X) = —d—)z— (3.61)
or u(x) = J:f(x)-dx + ul(c) (3.62)

where ¢ is a constant,

X X
£! =[J' (%) -dx, Jxaf(x)-dx, INf(x)'dX]T (3.63)
I=(1,1, ===, 17 (3.64)

£f=0 (3.65)

X

then (3.60) can be written as

£ = A (£ + ulc)-I). (3.66)
Setting

W= At | (3.87)
Qe obtain
P Wef - u(e) I (3.68)

The scalar form of (3.68) can be written as

N
inf(x)'dx =3 wik-f(xk) - u(c) (3.89)
c k=1
fori=1,2, ---, N
Thus
3 N I
Ix f(x)-dx = ¥, (wjk - wik)-f(xk) (3.70)
X k=1
i
c=yt - (3.71)
k 3k ik

It is found that the weighting coefficients w:k determined by (3.67) are
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not accurate when u(x) is an (N-1)th order polynomial. From (3.61), it
is clear that when u(x) is an (N-1)th order polynomial, f(x) is an
(N-2)th order polynomial. Particularly, when the base polynomials for

u(x) are taken as 1, x, ---, x" !, then the base polynomials for f(x)

xR-2 Obviously, u(x) = 1 and f(x) = O does not always

become 0, 1, ---,
satisfy (3.62). In other words, to hold (3.62) for all cases, u(x) # 1.
But, since the determination of A involves the use of u(x) = 1, it can

be concluded that (3.67) is not accurate for WI. For the purpose of

future comparison, we write

W= ATl (3.72)

In order to keep f(x) being a (N-1)th order po}ynomial and (3.62) held
for all cases, u(x) should be an Nth order polynomial without constant
term. Thus u(x) has N terms with the form |

u(x) = x-(a\,0 tacx e 4 ah_l-xn-l) (3.73)
It is clear, from (3.73), that u(x) constitutes an N dimensional linear
vector space. One set of its base polynomials can be chosen as

gk(x) = x-rk(x) , k'= 1, 2, *++, N (3.74)
where rk(x) is the Lagrange interpolated polynomial. Combarihg with

equation (3.1), we can set

N
= x . 3.75
ux(xi) jziaij u(xj). ( )

Using the same analysis as above, we obtain
W= (D)7 (3.76)
where A is a matrix composed of éij. We will discuss how to determine A

through two cases.
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Case I: The Integral Domain not Including the Origin

It is supposed that the integral domain does not include the origin,

i.e. a > 0 or b < 0. Substituting (3.74) into (3.75) yields

S = i . .
T when i # j (3.77a)
J
a =a + 1/x (3.77b)
i1 i1 i
for i, j=1, 2, +--, N

(3.77) requires X, # 0, for i =1, +---, N. This is guaranteed by the

condition of a > 0 or b < O.
Case II: The Integral Domain Including the Origin

In this case, if all the grid points do not include the origin, then
(3.77) can still be used, but if one grid point coincides with the
origin, (3.77) is singular. This problem can be removed by the following

transformation

x=x+d (3.78)
where x is the transformed coordinate, and d is a constant which
guarantees that the transformed integral domain does not include the

origin, that is, a=a +d >0 or b=b +d < 0. (3.77) is held in the

domain [a, bl. Using (3.78), we get éij, in this case, as

5 xi+ d

a.iJ = _§;I_a -aij , when i # j (3.79a)

a_ =a  + 1/(x +d) (3.79Db)
ii ii i

fori, j=1, 2, ---, N.
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3.4.3 Multi-Dimensional Integrals With Specified Grid Points

Firstly, we consider the two-dimensional case. The whole domain is x €
[a, bl, y elc, d]l which can be decomposed into (N-1)x(M-1) intervals
with N grid points in the x direction X, (=a), X s X (=b), and M
grid points in the y direction Y, {(=c), Yy Tt Yy {=d). We will study

the integral over a part of the whole domain. The shaded area as shown

in Fig. 3.1 is taken as the integral domain.

If the function f(x,y) is continuous in

the overall domain, using the same technique

|
\
\\\}\\

as in the 1D case and in the GDQ analysis,

we can use the functional values in the
overall domain to approximate the integral Fig. 3.1

over a part of the whole domain. As a result,

the formulation of the 2D integral of f(x,y) over the domain

X € [xl, xj], y € [yl, y#] can be written as

N M
i (m v du = ) S SN SN I
IX IY f(x,y)-dx-dy =} ¥ (wjn win) (wmk wlk) f(xn,yk) (3.80)
X Y n=1 k=1
i 1
where w;j, a;j are the weighting coefficients of the one-dimensional
ihtegral
I 1 3 . .
W —-wW = JX r (x).dx , i,j,n=1,2,:+-,N (3.81)
jn in n
X
i
w- W o= ij s (y)-dy i,4,k=1,2,---,M (3.82)
jk ik y k ’ ’ ’ ’ » ’ ?

i

which can be determined by the inversion of the matrix as stated pre-
viously. Here rn(x), sk(y) are the Lagrange interpolated polynomials

respectively. For the three-dimensional integral, it is supposed that
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the function f(x,y,z) is continuous in the overall domain x € [a, bl, ¥y
€ [c, d], z € [g, h] which can be divided into (N-1)x(M-1)x(L-1) inter-
vals with N grid points in the x direction X (=a), X Tt Xy (=b), M

grid points in the y direction Y, (=c), Ypr "t Yy (=d) and L grid

points in the z direction z, (=g), z, 2 (=h). It is shown that

the integral of f(x,y,z) over any interval in the domain can be
approximated by the combination of all the functional values in the
whole domain. The GIQ formulation of this case can be written as

z
Ixj Jym I 1 f(x,y,z) dx-dy-dz =
X, 'y, "z

e

™M=

M L )
W -wy) Gl -w )@ -y fx,y,z (3.83)
n=1 k§1 p§1 jn in) ( mk lk) ( qp ep) ( n yk p)

where aip is the weighting coefficient of the 1D integral in the z

direction, which can be obtained by the inversion of a matrix.

Z
V- = I 9% (2)-dz , e,q,p=1,2,--,L (3.84)
qp ep z P
e

where tp(z) is the Lagrange interpolated polynomial in the =z

direction.

In all cases discussed in this subsection, if the domain in a particular
direction includes a point of origin, the weighting coefficients of the
integral in that direction can be obtained using the same way as in the

1D case.
3.5 Concluding Remarks

Based on the analysis of the high order polynomial approximation in the

overall domain, and the analysis of a linear vector space, the
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generalized differential and integral quadrature techniques, which are
global methods, were developed. For the case of GDQ, the weighting
coefficients of the first order derivative were determined by a simple
algebraic formulation without any restriction on choice of grid points.
Furthermore, a recurrence relationship for the determination of the
weighting coefficients of the second and higher order derivatives was
developed. For the multi-dimensional case, each direction can be treated
using the same approach as in the 1D case. It has been shown that GDQ
can be considered as the highest order finite difference scheme, and
when the coordinates of grid points are chosen as the roots of a
Chebyshev polynomial, the formulation of the first order derivative
discretization obtained by GDQ is exactly the same as that given by the
Chebyshev Pseudospectral method. For the case of GIQ, if the function is
continuous in the whole domain, then the integral of the function over a
part of the whole domain (including the case of a whole domain) can be
approximated by a linear combination of all the functional values in the
overall domain. The weighting coefficients of the integral can be
determined from those of the first order derivative discretization. The
multi-dimensional integrals can be approximated in the same way as in

the 1D case.
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CHAPTER FOUR
ERROR, STABiLITY ANALYSIS AND MODEL PROBLEMS
4.1 Introduction

The theory and details of GDQ and GIQ have been described in the pre-
vious chapter. In this chapter, the basic properties of these schemes
will be analysed. The errors of the approximations for the derivatives
and integrals will be estimated in section 4.2. For the stability analy-
sis, it is desirable to take into account the influence of the types and
numerical treatments of the boundary conditions on the overall stability
of the scheme. This can be done by matrix methods. This approach has an
advantage over the Von Neumann method, which can only consider the
influence of the periodic boundary conditions, in that the influence of
the different types of the boundary conditions can be easily taken into
account. In section 4.3, we study the stability condition using matrix
methods, firstly for the‘semi—discrete equations obtained by the spatial
discretizations, then for the time discretized equations. Since all the
stability conditions are related to the eigenvalues of the spatial
discretization matrix, it is valuable to know the properties of these
eigenvalues. The eigenvalues of the specific matrices given from GDQ are
given in section 4.5, where the influence of the different types of the
boundary conditions and the distributions of the grid points are
discussed. Section 4.6 shows the application of GDQ and GIQ to model
problems. Some comparisons with exact solutions and numerical solutions

given from finite difference schemes are also included in this section.
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Finally, some concluding remarks are given in section 4.7.
4.2 Error Estimations
4.2.1 The Function Approximation

It is interesting to analyse the errors resulting from the approximation
of the function, derivatives and integrals. For the sake of simplicity,
the cases of derivatives with respect to x and from one-dimensional

integrals are only considered.

Firstly, we will discuss the approximation error when f(x) is
approximated by an (N-1)th order polynomial, particularly by the
Lagrange interpolation polynomial.

N
Pkf =i§if(xi)-ri(x) | (4.1)

We define the approximation error of f(x) as
E(f) = f(x) - Pkf . (4.2)
If it is supposed that the Nth order derivative of function f(x) is a

constant, say K, then using a Taylor expansion, we can obtain

D eyix-c) + -+ + £%(c)  (x-c)/k! + -

f(x) = f(c) + f

+ £V ey (k-0 )V /(-1 + £ () - (x-c)N
=m +mx+mx A+ cer +m X+ KX /N (4.3)
) 1 2 N-1
where c is a constant, and € € [x, c]. Since (4.1) is exactly satisfied
for a polynomial of degree less than or equal to N-1, we have
E(x*) =0, whenk=0, 1, ---, N-1. (4.4)
-Substituting (4.3) into (4.2) and using (4.4), we obtain

E(f) = K-E(xXV)/N! (4.5)
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where
N N YN
E(x) =x - ¥} x or (x) . (4.8)
i=1

N
On the other hand, substituting the (N-1)th order polynomial g(x) = x -

(x—xl)-(x-xz)---(x-xn) = xN - M(x) into (4.1), we obtain

N
Ex:{-r‘i(x) = x" - M(x) | (4.7)
i=1

Finally, we get

CE(f) = K-M(x)/N! (4.8)

In most cases, the Nth order derivative of f(x) is not a constant, but
may be bounded. In this case, we can turn to another way to analyse

E(f). For simplicity, we set ¢(x) = PNf, and define the function F(z) as

F(z) = f(z) - ¢(z) - a-M(z) (4.9)
Clearly, when z = Xs X v, Xy F(z) = 0. If we set F(x) = 0, we get
E(f) = f(x) - Pkf = f(x) - ¢(x) = a-M(x) (4.10)

Since F(z) has N+1 roots in the domain, by repeated application of
Rolle’s theorem, the Nth order derivative of F(z), FJF)(Z), is found to
have at least one root lying between X, and Xy Let &€ denote this point.
We have

F¥V&) =0 . (4.11)
From (4.9), we obtain

a=rYem , (4.12)
so, E(£) = £ (&) -MxI/N! | (4.13)

Generally, &£ is a function of x.
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4.2.2 The Derivative Approximation

We define the error for the mth order derivative approximation as
m
m 8 (P.f) m m
- X of _ 8¢ (4.14)
ax ax ax" ax"
(m)

where m = 1, 2, ---, N-1. Generally, ED (f) can be written as

E™(r) = 2a"e™ (8) Me0 1/0x" | (4.15)

2

Since £ is an unknown function of x, it is difficult to estimate Esm(f)
using (4.15). As a special case, if we assume that the Nth order deri-

vative of f(x) is a constant, namely K, then from (4.8), we get
(m) (m)
ED (f) = K-M " (x)/N! (4.18)

Although (4.16) is satisfied for the condition of £™(£) = K, it is
useful in the error analysis. Firstly, (4.16) has no restriction on x,
in other words, x can be any coordinate in the domain. Secondly, similar
to the analysis of the order of the truncated error in a low order
finite difference scheme, when the order of the truncated error caused
by GDQ is studied, we can only consider the (N+1)th term in the Taylor
series expansion though this term is not the exact error. The (N+1)th
term of the Taylor series expansion is £™ () (x—c)"/N!, where c is a
constant. So, f(m(c) can be treated as a constant in this case. Thus
the analysis of the function and the derivative approximations ié the
same as that shown above. For a more general case, we can use a similar
method as in the analysis of the function approximation to do it. Since
g(z) = f(z) - ¢(z) has N roots in the domain, according to Rolle’s
theorem, its mth order derivative g“m(z) has at least N-m roots in the
domain, namely, §1, X RN X_ . Thus the function

2 N-m
F™(z) = g™ (2) - a-M(z) = £ (2) - '™ (2) - a-M(z) (4.17)
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where

M(z) = (z-§1)'(z—§2)"-(z—§h_m) ,

vanishes at §1, §2, cee, in . Now, if we set F™(X) = 0, where x is
—m

different from §1, §2, e, §N , then F(m)(z) has N-m+1 roots, and

ED(m)(f(;()) = ™ (%) - "™ (%) = a-M(X) (4.18)

Using Rolle’s theorem repeatedly (N-m times), the (N-m)th order

derivative of F“m(z) is found to have at least one root &, i.e.

(0
(

f €) - a:(N-m)! =0,

so, a=f™(&)/(N-m)!

and

E™#G)) = £ (&) M)/ (N-m)! (4.19)
Equation (4.18) is satisfied for x # X, X, ---, % . This is
guaranteed if X is outsidekthe domain of X1’ xz, LRI xN.

If it is assumed that all the xi and x are in the interval h, and the
Nth order derivative of function f is bounded, then
|fJN)(€)| = C, where C is a positive constant

[M™ (x) |= N-(N-1)- - - (N-m#1) -B""

MG |= BT
so
N-m
(m) < C-:h
[E, ()] = Gy (4.20)

for 1 = m = N-1

4.2.3 The Integral Approximation

The error of the numerical integral of f(x) in the domain [Xi’ xj] is

defined as
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E(f, x, x) = r’ £(x)-dx - r’ $(x) -dx
X

X
i i

N
_ ] . - I _ I .
—r f(x)-dx g:(wjk wik) f(xk) (4.21)

b k=1
i

where w:j is the weighting coefficient of the integral described in the
previous chapter. For a general case, using (4.13), we get

E(f, x, x) = % b e™Mig) M(x)-dx . (4.22)
) X
i

If the integral domain is [xi, xi+1], then M(x) does not change its sign

in [xi, Xuql' By using the second mean-value theorem, (4.22) can be

reduced to

E(f, x, x )= £ -ri+1-M(x)-dx (4.23)
17 T Tier’ T N! . :
i

Generally, M(x) may change its sign in the domain [xi, xj], but |M(x)]
is always positive in the domain. If it is assumed that lfJN)(é)l = C,

then (4.22), (4.23) can be rewritten as

, xj)l = —9—-ij |M(x) | -dx (4.24)

|E (£, x NI

i
X
i

]El(f, X X,

i+1

C ([i+1
i ) = e | M0 ax] (4.25)

1

4.3 Stability Analysis

Time~dependent problens are usually well-posed by the equation

du

3t L(u) (4.26)

with proper initial and boundary conditions, where L is an operator
which contains the spatial part of the partial differential equations. L
is generally a non-linear operator. After discretization by GDQ and

linearization of the non-linear terms, (4.26) can be transformed into a
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set of ordinary differential equations in time

duv _

i = AU+ Q (4.27)
where U is the vector of the functional values at interior grid points,
Q contains non-homogeneous and boundary values and A is a matrix. The
stability condition of (4.27) is the same as that for the spatial

discretization, which will be discussed in the following subsection,

since there is no time discretization in (4.27).
4.3.1 Spatial Discretization

The stability analysis of (4.27) is based on the eigenvalue structure of
the matrix A, since the exact solution of (4.27) is directly determined
by the eigenvalues and eigenvectors of A. Let Ai, i=1, -+++, N be the
eigenvalues of A, Vi the associated eigenvectors, and the matrix P
formed by the N columns Vi, the diagonal matrix D formed by the
eigenvalues. We then get
D =P AP . | (4.28)

Since the eigenvectors Vi form a complete set of base vectors in the
considered space, the exact solution of (4.27) and vector Q can be

written as a linear combination of Vi, thus
U=PFPU (4.29)
Q = PQ . (4.30)

where U, Q are vectors. Substituting (4.29), (4.30) into (4.27), we get
u

d
i — -
T = Aiui + qi (4.31)

where the ﬁi, ai are the components of U and 6. The solution of (4.31)

can be written as

At
_ - - At
u = [u(0) +q/ale a,/A, - (4.32)
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Using (4.29) and (4.32), the exact solution of (4.27) is

N [ At ‘31 At
Uu=Y [ui(O)-e + - (e - 1)]-Vi . (4.33)

i=1

>

i

To keep the solution U bounded requires
Re (Ai) =0 for all i (4.34)

where Re (Ai) means the real part of Af

Since the error between the exact solution of (4.27) and the numerical
solution of (4.27) always satisfies the homogeneous equation, therefore,
in terms of (4.33), the error (vector) at time level t=nAt can be

written as

N AinAt
E(nAt) = ¥ ei(0)~e ‘v, (4.35)
i=1 '

where Ei(O) is the component of the initial error vector E(0)=P"'E(0).
By defining the amplification factor G as

E(nAt) = G'E((n-1)At)
we get from (4.35)

G = et . - (4.36)
Here G is a diagonal matrix. Equation (4.34) gurantees IG;I = 1, which
means that the error will not be amplified. Equation (4.34) is,

therefore, the stability condition for the spatial discretization.

4.3.2 Time Discretization

Since the error between the exact solution and the numerical solution of
a full discrete equation always satisfies the homogeneous equation, we

will only investigate the stability behaviour of the homogeneous

equation. When the Euler explicit scheme is applied to (4.27) with Q =
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0, we obtain

U™ = (1 + At-A)-U" = Ut = M0 (4.37)
where I is a unit matrix, n means the time level and C is a matrix. The
necessary stability condition for (4.37) is

p(C) = 1 + O(At) (4.38)
where p(C) is the spectral radius of the matrix C. (4.38) guarantees the
solution of (4.37) to be bounded for a finite value of time. In
practical application, the stability condition

p(C) =1 ' : (4.39)
is recommended because it makes (4.37) always stable. Since pu(C) = 1 +
At-p(A), where p(C), p(A) means the eigenvalues of the matrices C and A,
equation (4.39) gives

|1 + At-hi| =1 ,i=1,2, -+, N (4.40)

where Ai is the eigenvalue of A.

Equation (4.40) shows, clearly, that all the eigenvalues of A
multiplied by the time step size should be within a stable region (a
unit circle). Thus for a general case of the stability of the time inte-

gration, we can only consider the behaviour of the scalar model equation

dw _ . ‘
Tl AW (4.41)

where A can be one of the eigenvalues of the spatial discretization
matrix. A general multi-step method of order K applied to (4.41) can be

written as

K K
D ock-wmk = At- ZBk-A-wmk (4.42)
=0

k k=0

with consistency conditions
K K K
) « = 0, ) k-ak = Y Bk . : (4.43)
k=0 k=0 k=0

Introducing the time shifted operator E as
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Wk = E5 R (4.44)
then (4.42) can be written as
P(E)'w =0 (4.45)

K
where P(E) = } (o - At-Bk-A)-Ek
k=0

It is shown that, the stability condition for (4.42) is to keep all the
roots of the characteristic polynomial

P(z) =0 ' (4.48)
being of modulus lower than or equal to one, i.e.

|z | =1, k=1,2, -+, K. (4.47)
When the time integration scheme 1is specified, «, Bk are known

k

numbers. As a result, zk is the function of At-aA. If the_ Euler -

explicit scheme is chosen, then K = 1, and z = 1 + At-A. For this
imaginary
4 imaginary '
Unstable
-1 »
Srabi real
I
Fig. 4.1 Euler explicit scheme Fig. 4.2 Runge-Kutta scheme

case, (4.47) is exactly the same as (4.40). Fig. 4.1 shows the stability
region of the Euler explicit scheme. The stability ?egion of the
explicit Runge-Kutta schemes is displayed in Fig. 4;2. Among the
Runge-Kutté schemes, the 4-stage scheme 1is favourable Dbecause its

high order accuracy in time is consistent with the high order accuracy
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of GDQ. To reduce the stofage required, the standard 4-stage Runge-Kutta

scheme for the equation

dw
—— = £ (4.48)
can be revised as (Pike and Roe, 1985)
[ _ .n
| w=w | (4.49)
= f(w)
[ —3 n . .
= f(w)
; n
] w=w + At-g/3 (4.51)
= f(w)
[ —3 n . .
g = f(w)
W= W™+ At-g ‘ (4.53)

4.4 Convergence

According to the equivalence theorem of Lax, (for details, see the book
of Richtmyer and Morton (1987)), it has been shown that, for a well-
posed initial value problem and a consistent discretization scheme,
stability is the necessary and sufficient condition for convergence.
This is also true in GDQ discretization because it is consistent. From
section 4.2, the order of the truncated error for the mth' order
derivative discretization by GDQ can be written as

R = O[C-R""/(N-m)!] (4.54)
where O[a] means that its value is the same order as a and m indicates
the order of the derivative. For a given m and h, there exists a finite
integer L, which has

. h
L+1>h, i.e. T+ <1 (4.55)
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Now, we see

c.pNm _ C-hL_ pN-m-L
(N-m)! L1 {N-m)+ (N-m-1)---(L+1)
L
C-h h \N-m-L
= T (EIT) (4.56)
Since C, h, L, m are the finite numbers, we have
C'h“-m
- —> 0 , when N — o (4.57)
(N-m)!
So
R™ _5o0 , when N — o (4.58)
GDQ

For the general case, the differential operator L may include different
orders of spatial derivatives. Its truncated error I%DQ caused by GDQ

)

may be the combination of Ré;;. Since every R((}HD‘Q tends to zero when N

tends to infinity, so, RGDQ > 0, when N 5 «o. In other words, GDQ

discretization is consistent.
4.5 Eigenvalues of Specific Matrices

From previous analysis, all the stability conditions are related to the
eigenvalues of the spatial discretization matrix. We will investigate,
in this section, the eigenvalues of some typical matrices obtained by
GDQ discretization for model problems, and the influence of the boundary

conditions and grid distributions on them.
4.5.1 The Convection Operator

Here L(u) is chosen as a convection operator

du
ox

with Dirichlet Boundary condition

L(u) = - on [0, 1] (4.59)

u(0)= f(x) (4.60)
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Firstly, we consider the three typical distributions of the grid points
given in section 3.6 of previous chapter to study the influence of the

grid points.

Case I :  Dbasic grid is generated by |Tu(n)| =1
Case II : basic grid is generated by TN(n) =0
Case III : uniform grid

The eigenvalues with grid of case I are plotted in Fig. 4.3. Fig. 4.4
and Fig. 4.5 show the eigenvalues with case II and case III grid
respectively. It is clear, from Fig. 4.3, that the real parts of all the
eigenvalues of case I are strictly negative. This is not true for cases
II and III. In fact, the real part of the maximum eigenvalue for cases
IT and III is positive although the modulus of the maximum eigenvalue of
these two cases is less than that of case I. It is noted that, for cases
IT and III, the maximum eigenvalue does always lie in the unstable
region. This behaviour is independent of the number of grid points used.
Thus it seems to be true that the distribution of the grid points can

greatly influence the stability behaviour of a global method such as

LO.

: 150 |
L]
30 ¢
N =15 e 1w N o 3
o ‘20! s .
[+ * = °
= ° B0 56
.Eo o 10 ] ..o'
g | E v
= s o s 3 5 6 9 12 s -O—W-d}kﬁ-m 10 20 30 40 350
. -0t T
° -20 + .
. -100
=30 +
. , . -150 }
real : real
(a) |A]| =36.5, |Ax| = 0.0125 (b) |A| = 161.1, |Ax| = 0.00274
max min max min

Fig.4.3 Convection Operator Eigenvalues with Grid of Case I
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Fig.4.4 Convection Operator Eigenvalues with Grid of Case II
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Fig.4.5 Convection Operator Eigenvalues with Grid of Case III
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GDQ. It is also found that the minimum step size near the boundary, for

cases II and III, is larger than that for case I.

Here, we pose a question: is the above observation likely to be a major
reason to cause stability problems through the use of cases II and III?

To study this, we introduce a transformation

x=(1-0a-(3x%x-2x)+ax , «=0 (4.81)

where x is the transformed coordinate. When o = 1, the transformed grid
is stretched near the boundary (i.e. grid points are more concentrated
near the boundary), when « > 1, the transformed grid is relaxed near the
boundary. Using (4.61), we can get

Case IV : Transformed from Case II with a < 1

Case V : Transforméd from Case III with ¢ < 1
To investigate the effect of the minimum step size, under the condition
of stability, on the: value of the modulus of the maximum eigenvalue, we
introduce

Case VI : Transformed from Case I with a > 1

Fig. 4.6 - 4.8 display the eigenvalues of cases IV, V and VI. In these
cases, the real parts of all the eigenvalues are strictly negative. It
is shown in Fig. 4.8 that when the minimum step size is relaxed near the
boundary, the value of the maximum eigenvalue is reduced, thus the time
step size is relaxed. It can be concluded from Fig. 4.6 - 4.7 that the
stretched grid near the boundary can improve the stability. From here,
one may have a question : what is the behaviour if the grid is stretched
at other points. To study it, we introduce another transformation, which

stretches the grid near the middle point
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Fig.4.6 Convection Operator Eigenvalues with Grid of Case IV
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Fig.4.9 Convection Operator Eigenvalues with Grid of Case VII
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£€=2(1-B8)(x>-x)+Bx , B=0, x=0.5 (4.62a)

X

x=1. -€ , x>0.5 (4.62b)

Using (4.62), we obtain case VII as

Case VII : Transformed from Case III with B < 1
Fig. 4.9 shows the eigenvalues of case VII. Obviously, the grid
stretched near the middle point does not improve the stability
behaviour. Actually, when N is a small number, the structure of the
eigenvalue does not ché.nge much, but when N becomes a large number, the
structure of the eigenvalues changes a lot. It tends to be symmetrical

about the origin.
4.5.2 The Diffusion Operator
The diffusion operator is chosen as

62u

ox

L(u) =

on [0, 1] (4.863)

The boundary condition we will impose is of Dirichlet type
u(0) = u{1) =0 (4.64)

or of Neumann type

du

= Gu =
% (0) = Ix (1) =0 (4.65)

When the grid of case I was used, the eigenvalues for both the Dirichlet
and Neﬁmann boundary conditions are real numbers. But the Neumann
boundary condition can give smaller eigenvalues than the Dirichlet
boundary condition, thus the former may allow a larger time step size to
be used. For example, the maximum eigenvalue of N = 31, i.e. 1.5443x105,
for the Dirichlet condition, can be reduced to 4.6685><104 for the
Neumann condition. This is also the case when the grid of case II was

used in which the eigenvalues for the Dirichlet condition are real
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numbers but are not for the Neumann condition. When N = 31, the maximum

eigenvalue is (-5.5389x104, 0) for the Dirichlet condition, and

(-1.6801x104, 8.0125x103) for the Neumann condition. Although the

Neumann condition can give smaller eigenvalues, it may cause stability
problems. When the grid of case III was used with the Dirichlet
condition, the real part of all the eigenvalues are negative, ﬁut when
the Neumann condition was applied, the real part of the maximum
eigenvalue is positive which can cause the computation to be unstable.
Fig.4 10 shows the eigenvalues with grid of case III for the Dirichlet

and Neumann conditions.
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(2) Dirichlet Type Condition (b) Neumann Type Condition

= 4.734x10°

[A] = 5.493x10° A
max max

Fig.4.10 Diffusion Operator Eigenvalues with Grid of Case III
4.5.3 The Convection-Diffusion Operator

We consider the convection-diffusion operator
8%a _ ou
8x2 ax

with a Dirichlet type boundary condition. When v =

L(u) = v- on [0, 1] (4.66)

0(1), this equation
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is dominated by convection and diffusion. When v « 0(1), this equation
is mainly dominated by convection. It is found that when v = 0(1), the
real parts of all the eigenvalues for all of the cases are strictly
negative, but when v is very small, the real parts of some eigenvalues
may be positive, leading to a stability problem. It is found that the
minimpm v for keeping stébility is greatly affected by ihe distribution
of grid points. For example, to obtain a stable solution, the minimum
value of v is around 0.05 for the grid of case III, and 0.0015 for the
grid of cases I and II when N=21. Thus for the case of very small v, the
uniform grid is not recommended. The instability problem can be removed
by increasing the number of grid points for all the cases when v is very
small. If the number of grid points is kept the same, it is useful to
explore the behaviour if the grid is stretched or relaxed near the
boundary. We have found that, for the grid of cases II and III, the real
parts of all the eigenvalues can be negative if the grid ié stretched
near the boundary. This is not true for the grid of case I. Fig. 4.11 -
4.12 show the eigenvalues of the convection-diffusion operator with v =
0.001 for the grid of case I. It is clear from these figures that, when

N = 21, the real part of the maximum eigenvalue is positive, but when N

31, the real parts of all the eigenvalues are strictly negative.
Keeping N = 21, when the grid is stretched near the boundary, then more
eigenvalues lie in the right half plane, but when the grid is relaxed
near the boundary, the real parts of all the eigenvalues are kept in the
left half plane. It may be concluded that for the convection-diffusion
operator, the stability can be improved by stretching the grid near the
boundary for some cases of grid, and by .relaxing the grid near the

boundary for other cases of grid.
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4.6 Applications To Model Problems
4.6.1 Solutions of the Burger’s Equations

Firstly, we consider the one-dimensional unsteady problem
u + u'u = e-u (4.67)
t X XX
x € [0, 1], t e [0, T]
with initial condition
u(x, 0) = f(x) (4.68)

where € is a constant, T is a specified time. To obtain the analytical

solution of (4.67) for comparison purposes, and using the following

transformation
ulx, t) = —2-e-w;(x, t)/H(x, t) (4.69)
f(x) = -2-e-gx(x)/g(x) , (4.70)

equation (4.67) can be reduced to a linear heat conduction equation as

follows
W =¢'W (4.71)
t XX .

with W(x, 0) = g(x)

For the test case here, f(x) is chosen as
f(x)=-2¢e[b-n-cos(nx)+0.5-c m-cos(0.5nx)1/[b-sin(nx)+c-sin(0. 5nx)+d]
The analytical solution of this can be expressed as
W(x,t)=b-exp(-en2t)-sin(nx)+c-exp(-0.25€n2t)-sin(O.Snx)+d ,

where b, c, d are the constants and chosen as

b=0.2, ¢c=0.1, d=0.3, € =0.01.

After discretization by GDQ, the resulting ordinary differential
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equations are solved by the 4-stage Runge-Kutta scheme shown in section
4.3. Table I lists the computational results using a uniform grid with
different number of grid points, 7, 11, 21. The corresponding analytical
results were also included in this Table for comparison. The time step

size was chosen as 0.01. Clearly, the numerical solution is very

accurate.
Table I Unsteady Solution of Burger’s Equation
Computational
t % Analytical
N=7 N =11 N =21
-0.051923 -0.051923 -0.051923 -0.051923
0.1 0.5 -0. 003897 -0.003897 -0.003897 -0.003897
-0.031138 -0.031126 -0.031126 -0.031127
-0.050243 -0.050226 -0.050214 -0.050215
0.5 0.5 -0.003917 -0.0033917 -0.003917 -0.003917
0. 030068 0.029993 0.0299395 0.0299395
-0.048263 -0.048219 ~0.048170 -0.048168
1.0 0.5 -0.003939 -0.003939 ~0.003939 -0.003939
0.028819 0.028628 0.028640 0.028638

- Next, we cohsider the two-dimensional steady problem by solving
u +cu +du=e-(u +u ) (4.72)
t x y ped yy
with boundary conditions for t > O
u(x,0,t)={1-expl(x-1)-c/el}/[1-exp(-c/e)], u(x,1,t)=0, O=sx=<1
u(0,y,t)={1-expl (y-1)-d/el}/[1-exp(-d/e)], u(l,y,t)=0, Osy=1 .

The exact solution to (4.72) is

1-expl(x-1)-c/e] _ 1-expl(y-1)-d/e]
1-exp(-c/¢) T-exp(-d/e) . (4.73)

ulx,y) =
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Using GDQ, we have employed the grid of cases I, II and III to simulate
this problem, and found that, when N = 11, the allowable maximum time
step size is 1.1x10™° for case I, 3.20x10™° for case II and 7.10x10"2
for case III, and that the converged results for all three cases are
nearly the same. This confirms the findings from the stability and

eigenvalue analysis in the above section. Table II 1lists the

computational results using the grid of case III with N = 11. Some exact

Table II The Steady Solution of 2D Burger’s Equation
c=10, d=20 &€=0.5

y 0.20 0.40 0.60 0.80

X Computed by GDQ ( N = 11, CPU = 0.44 sec. )

0.20 0.901911 0.854935 0.750394 0.517749
0.40 0.789693 0.748554 0.657015 0.453316
0.60 0.622288 0.589865 0.517726 0.357209
0.80 0.372555 0.353141 0. 309950 0.213851

*
X Computed by FDO {( N = 51, CPU = 17.15 sec. )
0.20 0.901928 0.854973 0.750462 0.517836
0.40 0.7839720 0.748616 0.657117 0.453437
0.60 0.622318 0.589932 0.517833 0.357328
0.80 0.372578 0.353191 0.310026 0.213933
b4 Exact
0.20 0.901916 0.854945 0.750410 0.517764
0.40 0.789702 0.748575 0.657046 0.453345
0.60 0.622299 0. 589830 0.517764 0.357244
0.80 0. 372563 0. 353160 0. 309979 0.213878
¥ ————— Time-Split MacCormack Finite Difference Scheme
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resulfs and numerical results given by a time-split MacCormack scheme
are also included in this table. For the finite difference simulation,
the allowable maximum time step size was used. The CPU time required on
the IBM 3090 are also shown in the table. It is clear that the GDQ
results are more accurate than the finite difference results even though
fewer grid points are used, and they result from considerably leés

computation time.

4.6.2 Solution of the Integral Equation

We will use the technique of GIQ developed in Chapter 3 to solve the
model integral equation
y(x) = 0.5:x-(1~x) + [, K(x,£)-y(£)-d€ (4.74)

with a symmetrical kernel

£(1-x) when 0=€=x
K(x,&) =
x(1-€) when x=£1

This equation has an exact solution

y(x) = A:sin(x) + B:cos(x) - 1 (4.75)
where A = tan(0.5) and B=1
Table III Results of the Integral Equation
X 0.040507  0.118239 0. 226900 0.357685 0.500000
c°’“p“§ed 0.021312  0.057508 0.097403 0.128106 0.139771
by W
C°mpf§ed 0.021143  0.057211 0.095778 0.128198 0.137014
by W
Exact  0.021303  0.057462 0.097264 0.127974 0. 139494

After discretization by GIQ for the integral, the resultant algebraic

equations system is solved by a direct method. Table III shows the

-77-



Chapter Four Error, Stability Analysis and Model Problems

computed and the exact results using weighting coefficients W' and
I .

W from equations (3.76) and (3.72). Since y(x) 1is symmetrical with

respect to x = 0.5, only the results in [0, 0.5] are shown. The solution

was obtained with N = 11. From this table, it is clear that the

weighting coefficients WI give more accurate results than W

4.7 Concluding Remarks

It has been found that GDQ and GIQ are global methods, which can achieve
the same accuracy using Jjust a few grid points as the conventional
finite difference scheme using a large number of grid points. It was
also shown that GDQ discretization 1is consistent, the stability
conditions for both the semi-discrete equation and the full-discrete
equation are dependent on the eigenvalues of the spatial discretization
matrix obtained by GDQ. The distribution of the grid points was found to
haQe a considerable influence on the stability condition. Grid
stretching near the boundary can improve the stability, but the grid
stretching near the middle point makes it worse even though the minimum
step size is very small. This is a case of the global method differing
from the low order local method. For second order differential equation
problems, the types of the boundary conditions can also effect the
stability. Comparing with the Neumann type boundary condition, the
Dirichlet type boundary condition can causes more stable results, but
give larger value of the maximum eigenvalue. This means that it allows a
smaller time step size and thus bneeds more time steps to sfeady
resolution. For the convection-diffusion problem, increasing the number
of grid points can improve stability, and stretching the grid near the

boundary does likewise.
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CHAPTER FIVE
SOLUTIONS OF TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
5.1 Introduction

In engineering, many fluid flow problems such as encountered in low
speed aerodynamics, industrial channel flows, hydraulics can be
approximated as incompressible flow. If a Newtonian fluid is cqnsidered,
these flows are governed, in mathematical terms, by the incompressible

Navier-Stokes (N-S) equations which have been discussed in Chapter Two.

The incompressible N-S equations are a»mixed set of elliptic-parabolic
equations which can be written in several forms. One of the most popular
methods for solving the 2D incompressible N-S equations is through the
use of the vorticity-stream function approach. This scheme reduces the
original equations to a transport equation for vorticity w, and a
Poisson equation for stream function . The successful application of
this approach has been the subject of contributions by many researchers
such as Burggraf (1966), Osswald et al (1985), Ku et al (1985), Morrison
and Napolitano (1988). In the vorticity-stream function approach,
however, the implementation of boundary conditions for ¥ is not straight
forward. For example, two physical boundary conditions for the velocity
u, v can give two boundary conditions for ¥, but current numerical
techniques normally use'only one boundary condition (of the Dirichlet
type) for ¢ in the calculation.'Other researchers (Fasel and Booz 1984,

Farouk and Fusegi 1985) have then used the vorticity-velocity approach
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which reduces the original equations to a transport equation for w, and
two Poisson equations for u, v. Compared with the vorticity-stream

function approach, this approach needs more computational time.

Another version of the incompressible N-S equations used in the 2D
steady case is the stream function approach which reduces the original
equations to a 4th order differential equation for . This approach
still needs to be Jjustified for a general application because two
difficulties appear. One difficulty arises from the solution of a 4th
order differential equation, resulting in complexity of the algorithm.
Another arises from the implementation of the boundary conditions for
the stream function. The stream function-related approaches for solving
the incompressible N-S equations lose their attractiveness when applied
to a three-dimensional flow becauseAa single scalar stream function does
not exist in this case. As a consequence, the primitive—Qériable form is

usually used for three-dimensional problems.

One of the schemes for solving the incompressible N-S equations in
primitive-variable form is the artificial compressibility method of
Chorin (1967). In this method, the continuity equation is modified to
include an artificial compressibility term which vanishes when the
steady state solution is reached. With the addition of this term to the
continuity equation, the resultant N-S equations are a mixed set of
hyperbolic-parabolic equations which can be solved using a standard
numerical approach. A difficulty with this approach lies in the choice
of the optimal time step size and the artificial compressibility factor

for the general case. In most cases, a value of around 0.5 for the
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maximum artificial compressibility Mach number can produce a
satisfactory result. There are many successful applications of this
approach. For details, see, for example, the work of Steger and Kutler
(1976), Chang and Kwak (1984), Rizzi and Eriksson (1985). Another scheme
in the primitive—variable approach involves using a Poisson equation for
pressure in place of the continuity equation. This approach consists of
a basic iterative procedure between the velocity and the pressure
fieldé. For an initial approximation of the pressure, the momentum
equation is solved to determine the velocity field. The resultant
velocity field does not satisfy continuity and has to be corrected.
Since this correction has an impact on the pressure field, a related
pressure correction is defined, obtained by showing that the corrected
velocity satisfies the continuity equation. This approach has a wide
application in CFD, see, for instance, the work of Patankar and Spalding

(1972), Ghia et al (1981), Cebeci et al (1981), Chan et al (1987).

The numerical algorithms described in Chapter 1 can be used to solve the
incompressible N-S equations. Chapter Four has shown that GDQ has
potential as an attractive technique as a result of the applications to
model problems. In this chapter, we will apply GDQ to solve the
incompressible 2D N-S equations, and check out its behaviour to various
' engingering problems. The vorticity-stream function formulation, and
several standard test problems are chosen for demonstration. For
application to general problems, the multi-domain GDQ technique is also
developed in this chapter. For comparison purposes, the finite
difference resolution to the driven cavity flow problem was also

included, which was obtained by using a second order time-split
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MacCormack finite difference scheme for the vorticity equation, and a

SIP approach for the stream function equation.

5.2 Discretization and Boundary Conditions

Fig. 5.1 Problem Definition of the Driven Cavity Flow

For demonstration purposes, we will choose the vorticity-stream function
formulation in the Cartesian coordinate system to solve the driven
cavity flow problem and show the discretization of the governing

- equations and the treatment of the boundary conditions.

The non-dimensional vorticity-stream function formulation of the 2D N-S
equations is
w +uoe + Vi = Ve (5.1)
Vs o (5.2)
where w, Y, u, v, Re, t, %X, V¥, V2 have the same meaning as shown in
Chapter Two. For the driven cavity flow problem, the physical boundary
conditions are

u=v=0, at x y <1 (5.3)

[
°
[Ery
o
1A

(5.4)

1]
o
(@]
1A
X
IA
—

u=v=20, at y
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u=1,v=0, aty=1 |, 0<x<1 (5.5)
The problem definition is shown in Fig. 5.1. Clearly, the two corner
points on the upper wall are singular points which in a numerical
technique normally cause .difficulties in treating the boundary‘

conditions. Since

_ oy _ Y |
u = ay ’ v = 5)—<— (5.6)

the boundary conditions (5.3)-(5.5) for u, v can be transformed to

w=¢x=o, at x =0, 1, 0=<y<1 (5.7)
!!I=!lly=0, at y=0 , 0=x=1 " (5.8)
¢=o,¢y=1,aty=1 , 0<x<1 (5.9)

for stream function Y. Thus, there are eight boundary conditions for ¥,

each boundary with two types (one Dirichlet and one Neumann).

With the mesh of N grid points in the x direction and M grid points in
the y direction, when the derivatives of (5.1) and (5.2) are

approximated by GDQ, the discretized forms of (5.1), (5.2) become

dwij (1) " —(1)
dt Z wkj "Lw k =
k=1 k=1
" -(2)
ﬁ_ [ X w O * Tw ol ‘ (5.10)
k=1 k=1
N M
() -(2) _

Y W l/lkj + ¥ o wik =0, - (5.11)
k=1 k=1

The boundary conditions for (5.10) can be obtained from (5.2) with the

discretized form as

N
(2) i = * s e
@ = LW, Y =12 -, M (5.12)
k=1
S (2)
wNj = Z ka .lllkj ’ J = 19 2) b » M (5. 13)
k=1
S =(2) :
1 k§1w“‘ S i=2,3 -, N1 (5.14)
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=(2)

Mk
1

k

- L2 i=2,3, -+, N-1. (5.15)

Il ™M =

Using (5.6), the velocity can be determined by

M
u_ = YwPy | 1=2,3,---,N-1, j=2,3,---,M-1 (5.16)
ij jk ik

k=1
v, =~ Z Wfl)"/l . s 1=2,3,--+,N-1, 5=2,3,---,M-1. (5.17)
ij k=1 ik kj .

The four boundary conditions for w can also be obtained from the

velocity
N ‘
- - (1)0 ] = e e »
w1j = kglwlk Ky J 1, 2, , M (5.18)
N
(1) . - .
W = - W s =1, 2, -+, M 5.19
Nj k§1 Nk kj J ( )
¥ .
~(1) P e -
w ., = Y wotu i=2, 3, , N-1 (5.20)
k=1
M _
w_= Yully i=2, 3, -, N-1 (5.21)
iM k=1 Mk ik

Four Dirichlet boundary conditions for (5.11) can be written as

,/,‘M = wm = .l,lj = ,'I’Nj =0 . (5.22)

Another four Neumann boundary conditions, after discretizing by GDQ, can

be combined to give
N

(1 (1) (1) (1)
_ i EYS : 5.23
¢2,j [ L (wl,k YioN-1 Nk wl,N-l) 'l'k,j]/AXN ( )
k=1,k#2,N-1
X (1 (1) (1 (1)
= . - . . 5.24
wl\l-l,j [ L (wN,k Wiz " Yk wN,z) wk,j]/AXN ( )
k=1,k¥#2,N-1
-(1) - —(1) -(1) (1) -(1)
¥ z=[w1,14-1+ ) (wl,k.wM,M—l- wM,k.wl,M-l).l/li,k]/AYM (5.25)
k=1, k#2,M-1
-(1) i —(1) =(1)  =(1) -(1)
'lli,n-1 = [—w1,2+ ) (wu,k.w1,2 - w1,k'wx,2)'w1,k]/AYM (5.26)
k=1, k#2,M-1
where
AN = w0
N,2 "1,N-1 1,2 'N,N-1
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AVM = DL S
M,2  1,M-1 1,2 M,M-1

' Thus there are two boundary conditions for ¥ on each boundary.

With the boundary conditions (5.12)-(5.15) or (5.18)-(5.21), the set of
(N-2)x(M-2) ordinary differential equations for w, (5.10), can be solved
by the 4-stage Runge-Kutta scheme which was given in Chapter Four. With
eight boundary conditions, the set of (N-4)x(M-4) algebfaic equations,
(5.11), can be solved by LU decomposition which is shown in Appendix E.
Noting that the Laplacian operator is a linear operator, we need only
decompose the matrix of the equations system (5.11) once and store the

inverted matrix elements for all the following time steps.
5.3 Single-Domain Results

In this section, four standard test problems, which have been
extensively studied by many researchers using conventional numerical

techniques, are chosen to validate the GDQ approach.
5.3.1 Driven Cavity Flow

This flow problem, often chosen .as a test case for checking new
numerical techniques, has been simulated very éxtensively. There are a
. variety of numerical results available for comparisan. For example, the
vortek centre and fhe velocity profile through the geometrical centre
are présented by Ghia et al (1982) and Ku et al (1985). For numerical
simulation, the solutions were obtained in the Reynolds number range

from 100 to 1000. The grid of Case IV shown in Chapter 4 was used for
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thé GDQ simulation. Particularly, mesh sizes of 13x13, 17x15, 21x17 and
23x21 for Reynolds number of 100, 200, 400, 1000 were used respectively.
The initial values for all variables in the interior points are chosen
to be zero. For direct comparison of GDQ with conventional numerical
techniques, numerical results using a second order time-split MacCormack
finite difference scheme (shown in Appendix C) for vorticity equation
and a preconditioning technique of SIP (shown in Appendix D) for stream
function, are also obtained for a uniform grid of mesh size of 51x51. By

numerical experiment, the allowable maximum time step size was used.

Table I Parameters of Vortex Center for Driven Cavity Flow

Re - Reference Grid bl y /] w
Ghia et al 129x129 0.6172 0.7344 -0.1034 3.1665
100 Present (GDQ) 13x13 0.615 0.735 -0.1035 3.1547
Present (FD) 51x51 0.620 0.740 -0.1030 3.18915
Ku et al 25x15 0.6023 0.6657 -0.1071 2.6345
200 Present (GDQ) 17x15 0.600 0.665 -0.1089 2.6686
Present (FD) 51x51 0.600 0.660 -0.1072 2.6673
Ghia et al 128x129 0.5547 0.68055 -0.1139 2.2947
400 Present (GDQ) 21x17 0.555 0.605 -0.1131 2.2794
Present (FD) 51x51 0.560 0.600 -0.1105 2.2428
Ghia et al 129x129 0.5313 0.5625 -0.1179 2.0497
1000 Present (GDQ) 23x21 0.530 0.565 -0.1184 2.0649
‘Present (FD) 51x51 0.540 0.560 -0.1103 1.9326
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Table II The CPU Time Taken by Driven Cavity Flow Simulation

Re 100 200 400 1000
CPU time (GDQ) 4.27 6.69 16.99 33.79
seconds _
CPU time (FD) 44273 536.98 601.50  732.90

seconds

As is well known, duringb the transition from fluid motion governed
mainly by viscosity to one where inertia forces dominate the flow with
increasing Reynolds number, the core of the primary vortex centre seems
to behave as a solid boundary. One indication of this behaviour is that,

the location of the primary vortex center moves to the geometric center
of the cavity with increasing Reynolds number, which is shown clearly in
Table I. Table I includes the results of GDQ aéproximation, the finite
- difference approximation and results given by Ghia et al (1982) and Ku
et al (1985). It is clear from Table I that the GDQ approximation is
very accurate even though just a few grid points were used, compared
with the finite difference approximations using a large number of grid
points. Table 1II showé the CPU time on the IBM 3080 by the GDQ
approximation and the time-split MacCormack finite difference
approximation. The mesh size used is the same as Table I. We see,

clearly, that the GDQ approach requires much less CPU time for accurate
results. The computed horizontal velocity profiles along the vertical
line through the geometric center of the cavity, are displayed in Fig.
5.2, and the vertical velocity profiles along the horizontal line
through the geometric center of the cavity are shown in Fig. 5.3. Also
included in Fig. 5.2 and 5.3 are the results of Ghia et al. Fig 5.4 and

5.5 show the streamlines computed by GDQ and the MacCormack finite
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1.0
0.9 4
0.8 +
0.7 +
0.6 4
0.5 4+
0.4 4
GHIA ET AL (GRID 129X129)

0.5 4+ o RE = 100

o RE = 400
0.2 + a RE = 1000

PRESENT
0.1 1 (13x13, 21x17 and 23x21 grid respectively)
0.0 — + - = +
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0« 0.6 0.8 1.0
u
(a) Results from GDQ Approach
1.0
0.9 +
0.8 +
0.7 +
0.6 +
0.5 +
0.4 4
GHIA ET AL (GRID 129X129

0.3 + o RE = 100

® RE = 400
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FD 51x51
0.0 + t t + h t t + —
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U

(b) Results from the MacCormack Time-Split Finite Difference Scheme

Fig. 5.2 Horizontal Velocity past the Geometric Center of the Cavity
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o RE = 400
a RE = 1000
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(a) Results from GDQ Approach
0.6
0.5 +
0.4 4 GHIA ET AL (GRID 129X129)
v “ ® RE=100
0.3 - v RE = 400
@ RE = 1000
012 "'
PRESENT
0.1 FD 51X51
0.0 -
-0.1 4
0.2 -
-0.3 4
-0.4 4
0.5
a
-0.6 — —+ 4 + + + —+ ¢ -+

0.0 0.1 0.2 03 0.4 05,06 0.7 0.8 0.9 1.0

(b) Results from the MacCormack Time-Split Finite Difference Scheme
Fig. 5.3 Vertical Velocity past the Geometric Center of the Cavity
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O\ D

{(a) Re = 100, grid 13X13

N

S

(b) Re = 1000, grid 23X%X21

Fig. 5.4 Streamlines for Driven Cavity Flow (GDQ Results)
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N

(a) Re = 100, grid 51X51

7

2

wQ

(b) Re = 1000, grid 51X51

Fig. 5.5 Streamlines for Driven Cavity Flow (FD Resulté)
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difference scheme for the Reynolds number cases of 100, 1000. The values
of the streamlines are listed in Table III. Fig. 5.2-5.5 show clearly
that the GDQ results using few grid points are more accurate than the

finite difference results using a lot of grid points.

Table III Values of Streamlines in Fig. 5.4 and Fig. 5.5

Contour number Value of ¢ Contour number Value of Y
1 -1.10x10"% 8 -1.00x107®
2 -1.00x107" 9 5.00x10™°
3 -9.00x1072 10 2.00x10"*
4 -7.00x10~2 11 5.00x10™*
5 -5.00x1072 12 1.00x107°
6 -3.00x10"2 13 2.00x107°
7 -1.00x1072

' 5.3.2 Natural Convection in a Square Cavity

The buoyancy driven flow in a square cavity with vertical sides which
are differentially heated is a suitable vehicle for testing and
validating numerical methods used for a wide variety of practical
problems. This problem has been extensively studied by many researchers
such as Phillips (1984), and as illustrated in the paper of G. de Vahl
.Davis and I.P. Jones (1983) which outlined numerous contributed results
reported at the 2nd Conference on Numerical Methods in Thermal Problems,
compared with a bench mark solution. The problem being considered here
is that of the two-dimensional flow of a Boussinesq fluid of Prandtl
number 0.71 in an upright square cavity described in non—-dimensional
terms by O=x=1, Osy=1 with y vertically upwards. The governing equations

are (2.21)-(2.23) shown in Chapter Two, and the problem definition and
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u=0,v=0, T =0
y

u= : =0
v= v=0
=1 =0
u=0,v=0,T =0
y

Fig. 5.6 Problem of the Natural Convection in A Square Cavity

the Boundary condifions are displayed in Fig. 5.6. Using the same
approach as for the driven cavity flow, the resultant set of (N-2)x(M-2)
ordinary differential equations for vorticity w and for temperature T
are solved by the 4-stage Runge-Kutta scheme , and the set of
(N-4)x(M-4) algebraic equations for Y are solved by the LU decomposition
technique. The treatment of the boundary condition for w and Y are the
same as for the driven cavity flow problem. Two Dirichlet type boundary
conditions in the horizontal direction, and two Neumann type boundary
conditions in the Vertical direction, are used for T. The grid of case
IV was used for GDQ simulation. Numerical results for the values of Ra
of 103, 104, 105, 106, which have been communicated (18990), were
obtained by wusing the mesh sizes of 13x13, 15x15, 21ix17, 21x17
respectively. When the values of the fluid variables are known at the
grid points, the full flow field can be determined by equation (3.33).
© All the following resulté are based on the interpolated values. For the
comparison, the following quantities are calculated

lemid the stream function at the mid-point of the cavity

|l/1|max the maximum absolute value of the stream function (together

with its location)
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Table IV GDQ Results of The Natural Convection Problem

max

Ra
10° 10* 10° 10°
mesh size : 13x13 15x15 21x17 : 21x17
lv . .| 1.175 5.075 9.115 16.33
el . - - 9.617 16.82
XY - - 0.285,0.600 0. 150, 0.550
u 3.649 16.19 34.73 64. 36
max
y 0.815 v 0.825 0.855 0.850
v 3.697 19.61 68.63 221.80
max
X 0.180 0.120 0.065 0.035
Nu 1.1178 2.2454 4.524 8.797
Nu1/2 1.1179 2.245 4,526 8.745
Nu 1.1179 2.250 4.524 8.837
Nu 1.506 3.548 7.751 ' 17.13
max
y 0.030 0.145 0.080 0.045
Numin 0.6914 0.5860 0.7240 0.9260
y 1 1 1 1
u the maximum horizontal velocity on the vertical mid-plane of
the cavity (together with its location)
‘vmm< the maximum vertical velocity on the horizontal mid-plane of
the cavity (together with its location)
Nu the average Nusselt number throughout the cavity
Nul/2 the average Nusselt number on the vertical mid-plane of the
cavity
N%) the average Nusselt number on the vertical boundary of the
cavity at x =0
Nu the maximum value of the local Nusselt number on the boundary

at x = 0 (together with its location)
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Numin the minimum value of the local Nusselt number on the boundary

at x = 0 (together with its location)

Table IV lists the GDQ results and‘Table V and Table VI list the bench
mark solutions and the second order finite difference results given from
| the work of G.de Vahl Davis (1983). Clearly, the GDQ results are very
accurate, and nearly the same as the bench mark solutions. It is also
found that the GDQ results are more accurate than the finite difference
results even though fewer mesh points are used. Table VII shows the CPU
time cost on the IBM 3090 by GDQ resolutions. Figure 5.7-5.11 shows
isotherms, streamlines, vorticity contours, horizontal velocity contours

and the vertical velocity contours.

Table V Bench Mark Solutions of The Natural Convection Problem

Ra
10° 10* 10° 10°
¥ ..l 1.174 5.071 9.111 16.32
lol - - 9.612 16.75
X,y - , - 0.285,0.601 0.151,0.547
u 3.849 16.178 34.73 64.63
vy 0.813 0.823 0.855 0.850
v 3.897 19.617 68.59 219.36
X 0.178 0.119 0.086 0.0379
Nu 1.118 2.243 4.519 8.800
Nu 1.118 2.243 4.519 8.799
Nu 1.117 2.238 4.509 8.817
Nu 1.505 3.528 7.717  17.925
y 0.092 0.143 0.081 0.0378
Nu 0.692 0.5860 0.7290 0.9890
y 1 1 1 1
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Table VI FD Results of The Natural Convection Problem

Results are from the work of G.de Vahl Davié

Ra
10° 10* , 10° 10°
mesh size 41x41  41x41 81x81 81x81
v | 1.174 5.098 9.142 16.53
mid
|l - - 9.644 16.961
max
X,y - - 0.285,0.602 0.151,0.543
u 3.634 16. 182 34.81 65.33
max )
y 0.813 0.823 0.855 0.851
Vo 3.679 19.509 68.22 216.75
X 0.179 0. 120 0.066 0.0387
Nu 1.116 2.234 4.510 8.798
Na _ 1.117 2.235 4.512 8.816
Nu 1.116 2.242 4.523 8.928
Na 1.501 3.545 7.761 18.076
y 0.087 0. 149 0.085 0.0456
Na 0.694 0.5920 0.7360 1.005
y 1 1 1 1

Table VII CPU Time Taken by Natural Convection Problem Simulation

4 ) 6

Ra 10 10 10 10

CPU (seconds) 16.01 25.00 93.65 78.85
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6

(¢) Ra = 10° (d) Ra = 10
Fig. 5.7 Contour Maps of temperature T

Contours at 0(0.1)1 in each case
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O

(a) Ra = 103; contours at (b) Ra = 104; contours at
-1.175, -1.05(0.1)-0.1 -5.075,-4.80,-4.5(0.5)-0.50
(c) Ra = 105; contours at (d) Ra = 106; contours at
-9.60, -9.47,-8.648(0.9607)-0.96 -16.75,-16.00,-15.07(1.675)-1.67

Fig. 5.8 Contour Maps of Stream Function ¢
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(a) Ra = 103; contours at (b) Ra = 104; contours at
-32.01(8.328)51.27 -124.8(55.17)426.9

(c) Ra = 105; contours at (d) Ra = 106; contours at

-600.0(322.6)2626.0 -3178(1847.1)15233

Fig. 5.9 Contour Maps of Vorticity w
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@Z

contours at

{a) Ra = 103; contours at (b) Ra = 104;

-3.637(0.7274)3.637 -16.00(3.20)16.00

v
==

(d) Ra = 106; contours at

(c) Ra = 105; contours at

-43.59(8.719)43. 59 -125.5(25.10)125.5

Fig. 5.10 Contour Maps of Horizontal Velocity u
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T

{(a) Ra = 103; contours at (b) Ra = 104; contours at

-3.663(0.7327)3.663 -19.39(3.877)19.39

(c) Ra = 105; contours at (d) Ra = 106; contaurs at
-67.96(13.59)67.96 -207.6(41.52)207.6

Fig. 5.11 Contour Maps of Vertical Velocity v
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5.3.3 The Flow past a Circular Cylindér

For the flow past a circular cylinder, using the following transfor-
mation, the physical domain can be mapped into a rectangular domain

x = el.cost y = e'sin€ (5.27)

" assures an appropriately clustered grid point

where the function e
distribution close to the cylinder surface. The governing equations for
this problem are (2.37), (2.38) shown in Chapter Two. To avoid having to
deal with the large values of ¥ occurring in the far field and also to
facilitate the numerical implementation of the far field boundary
conditions, the stream function Y is decomposed into two parts such as

=y _+Y
where, win is chosen as the value of the inviscid flow, i.e.

PSR I N '
g, = (e e ')-sing

Thus the governing equations can be written as

20, - o - (G o = | _
e w + (wg + vl) wn (wn + ul) wg 2(wEE + wnn)/Re (5.28)
v v =eM. 5.29
Veg * Upy =& 0 (5.29)
with
u = (e"+ e M.sing

v. = (" - e M.cost

On the surface of the body, the no-slip boundary conditions are

Yy=0, En = -2sinf onmn =0 (5.30a)

- =0 ~ (5.30Db)
w wnn on 7n

and the boundary conditions at infinity become

J]:O, Jjnzo onn = o (5.313.)
w = e_zn-ﬁnn ‘onn = . ' (5.31b)

For numerical simulation, the infinite boundary in the m direction can
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be truncated to a finite distance which is far enough from the cylinder
to allow the far boundary conditions to be satisfied accurately. For
steady state resolution of the problem, the most sensitive parameter to
check the accuracy of numerical simulation is the calculation of the
parameters defining the structure of the wake behind the cylinder. The
cylinder and the geometrical parameters of the closed wake is shown in
Fig. 5.12. After discretization by GDQ, the reduced set of (N-2)x(M-2)
ordinary differential equations for w are solved by the 4-stage Runge-
Kutta scheme, and the set of (N-2)x(M-4) algebraic equations are solved

by LU decomposition as before.

Fig. 5.12 Geometrical parameters of the closed wake behind cylinder

For the numerical simulation here, the LI is chosen as 3.0, and the
grid of case IV is used. It is known that the accurate simulation of the
flow past a circular cylinder has demonstrated sensitivity in the impo-
sition of the boundary conditions. The key factors may be fhe implemen-
tation of reasonable conditions at the far field boundary and the

boundary conditions at the surface of the cylinder. In the present
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——

(a) Re = 20

(b) Re = 25

Fig. 5.13 Streamlines Past A Circular Cylinder
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computation, the Neumann boundary conditions for w and Y on the surface
of the cylinder were treated with (M-1)th order accuracy, where M is the
total number of grid points in the 7 direction. On the outer boundary,
 the inviscid flow (u=1, §=0) was assumed to provide two boundary condi-
tions for @, where the Neumann boundary condition was treated with (M-
1)th order accuracy, and the boundary condition for w was examined by
two cases: one is to assume the outer boundary being in the inviscid
region which yields w=0; another is to compute w from the definition w =
.uy - v, which is discretized with (M-1)th order accuracy. Numerical
results for Re of 20, 25 show that both cases demonstrate nearly the
same solutions. This further demonstrates that the outer boﬁﬁdary is in
the inviscid region for these low Reynolds numbers. For the steady state
resolution, the treatment of the boundary condition along the cutvline
(from the rear point of the cylinder to the outer boundary) was examined
using two cases. One is to use the symmetric boundary conditions, name-
ly, y=0, w=0, the other is to use the patching technique which enforces
w, Y and their first derivatives with respect to the normal direction of
the cut line to be continuous. Numerical experiment showed that both
cases achieve nearly the same results but require different time steps
vfor satisfying the given convergence criterion. Recommended is the use
of w=0, Y=0 at the cut lihe since this requires less time steps without
losing accuracy. Fig. 5.13 shows the streamlines for Re = 20, 25, the
values of the streamlines being 3.0, #2.0, #1.0, 0.5, 0.15,
+5.0x107%, +5.0x107%, 1.0x10™%, 0.0. The symmetric eddy pair is clearly
shown in the Figure. For the results of Fig. 5.13, the outer boundary

condition was set to the value of inviscid flow, the boundary condition

on the cut line was set to be yY=0, w=0, and the mesh size used is 25x21.
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Table VIII Geometric Parameters of the Closed Wake behind A Cylinder

Re Reference L a b X 1 e C
Imax max s D
*
experiment 0.83 0.33 0.47 0.66 0.80 44.80 2.1243
20 present ©0.92 0.352 0.41 0.88 0.74 43.7o 2.1220
Dennis et al 0.94 43.7o 2.0450
*
~ experiment 1.21 0.44 0.51 0.75 0.85 48.00 1.8176
25 present 1.21 0.424 0.475 0.73 0.82 46.60 1.8336
o

Gresho et al 1.15 038 0.47 0.87 0.81 43.7 2.2600

Table VIII gives the details of the parameters of the wake eddy pair.
Also included in Table VIII are the experimental data  (Tritton 1959,
Coutanceau and Bouard 1977) and other numerical results (Gresho et al
1984, Dennis and Chang 1970). It is shown from Table VIII that the
present results are closer to the experimental data than those of Gresho
et al although these authors put the outer boundary further away from
the surface than the present work and use a larger number of grid
points. The present results were thus more accurate than other numerical
results even though the outer boundary was closer to the cylinder
surface and fewer grid points were used. It is seen that on the one
hand, GDQ appears to be a robust, efficient numerical technique, and on
" the qther hand, the treétment of the boundary condition on the surface

of the cylinder may be critically important in numerical simulation. The

* CD (drag coefficient) is from the work of Tritton, other
pahameters are from the work of Coutanceau and Bouard with A=0,

where A is the ratio between the cylinder and the tank diameter
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major difference between the present approach and other numerical
approaches is the treatment of the Neumann boundary conditions, with
high order accuracy in the present approach and low order accuracy in

other approaches.
5.3.4 The Flow past A Backward Facing Step

Thé flow past a backward facing step in a channel, shown in Fig. 5.14,
is a challenging problem whiéh had been chosen by the organizers of a
GAMM workshop (Morgan et al 1984) as a test case for validating numerous
solutions of the incompressible N-S equations. The governing equation
for this problem is the same as for the> driven cavity flow, but with
different boundary conditions. As studied by other researchers (Thomas
et al 1981), the computational domain in this case is limited to the
interior of the channel immediately to the right of the step. A fully

developed parabolic velocity profile (Couette flow) is used as the

Lol //////////////////////////////zf/m

v =y = c
y=v up 9,=0 Downstream
H N y boundary
[ ] x= :
77777, ¢ le =0
h 49=0 : w, =0
Ae =0 ¥ =0 #y=0 !
A X y !
/////////////////77/////////”5]/77777

Fig. 5.14 Problem Definition of the Flow past A Backward Facing Step
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boundary condition in the upper part of the left boundary, the
downstream boundary condition, being set at a distance from the step
equal to 10, is implemented by the natural channel condition (zero
gradient). For the case here, the non-dimensional height of the channel
H is equal to 1.5, the height of the step is 0.5, and the maximum value
of the non-dimensional longitudinal Qelocity at the inlet is equal to

1.0. Thus the boundary conditions can be written as

¥ = 4(0.5-y° - y°/3) ¥ =0 , at the inlet
¥ =0 , w =0, at the outlet
y=0 , Yy =0, on the wall

with 7 boundary conditions for ¥ , 3 of which are in the x direction and
4 in the y direction, and 4 boundary conditions for w. The resultant set
of (N-2)x(M-2) ofdinary differential equations for w are solved by the
4-stage Runge-Kutta scheme, and the set of (N-3)x(M-4) algebraic
equations for Y are solved by LU decomposition using the same approach
as for the driven cavity flow. For the numerical simulation, the sharp
corner of the step (point C in Fig. 5.14) was chosen as the origin of
the coordinate system, and the grid size used was 23x19. Numerical
results for Reynolds number range from 50 to 450 were obtained. Figure
5.15 shows thevstreamlines for different Reynolds numbers, where the
values of the streamlines (w/wmm)'are 1.0, 0.9, 0.8, 0.7, 0.8, 0.5,
0.4, 0.3, 0.2, 0.1, 0.0, -0.1, -0.01, -0.001 and the window. in the x
direction for plotting these streamlines is from x = 0.0 to x = 8.0.
Figure 5.16, 5.17 show the vorticity distributions for different
Reynolds numbers along the lower and upper walls. The dashed line

included in these figures are the results which can be obtained

theoretically when the downstream boundary is far endugh so that the
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Fig. 5.15 Streamlines past A Backward Facing Step
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Fig. 5.16 Vorticity Distributions on the Lower Wall

THEDRETICAL

RE = 100
RE = 200
RE = 300
RE = 400

4 0900

Fig. 5.17 Vorticity Distributions on the Upper Wall
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fully developed parabolic velocity profile is obtained. From Fig. 5.18,
5.17, one can see clearly that the outflow boundary conditions have not
been imposed far enough downstream except for a Reynolds number of 100.
It is, therefore, demonstrated that the outflow boundary conditions of
. Neumann type may be useful for reasonable solutions with a short
distahce downstream; It is also shown in Fig. 5.16 and 5.17 that the
vorticity near the step gives some minor spurious results. This
behaviour may be caused by the discontinuity of ¢&y at the corner C. In
the present calculation, the value of ¢&y at the corner C, is evaluated
analytically, with the point C being considered as the part of the inlet
flow domain (w&y = 4), and this is not true for the vertical wall of the
step. Thus on the boundaries of the computational domain, there is a
point of singularity, namely C, which is not at a. corner of the
computational domain. On the other hand, GDQ is indeed a global method,
which makes the variables at all interior grid points to be related to
the variables on the boundary. In all cases computed, no convergence
problems were encountered, but a small wiggle of the vorticity isolines
near the step was observed. Also observed in Fig. 5.16 and 5.17 is that,
as Reynolds number increases, the spurious values were weakened. The
reason may be that a larger amount of diffusion 1is produced due to the
sharp vorticity gradient around the corner, and as the Reynolds number
increases, the convective term plays a more important role in the flow
field than the diffusive term. Thus the influence of the point C on the
results is weakened. Fig. 5.18 shows the reattachment length of the
primary vortex vs Reynolds number. Some experimental results (Kueny and

Binder 1984) were also included in Fig. 5.18 for comparison.
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Fig. 5.18 Length of Recirculation Zone vs Reynolds Number
5.4 Multi-Domain Results

It is shown in Chapter Four that, as the number of grid points
increases, the eigenvalues of the spatial discretization matrix,
obtained by GDQ, increase very quickly. Thus. the allowable time step
size becomes very small for a large number of grid points and needs many
time steps for converged results. On the other hand, GDQ generally
requires the computational domain to be rectangular in the same way as
for the spectral method, but in practical applications, the physical
domain is usually complex, leading to difficulties in numerical
simulations. These difficulties can be alleviated by the choice of grid
generation and multi-domain techniques. In addition, a multi-domain
technique 1is suited to the case in which there are geometrical
singularities such as corners and sharp edges as tackled in the
following simulation or the case where the computational domain may be

divided into several regions described by different differential

-112-



Chapter Five Solutions of Incompressible N-S Equations

equations, e.g. the viscous region near the surface of a solid body is
given by the N-S equations, and the inviscid region far from the solid
boundary by the Eulér equations. This section is devoted to the
presentation and application of a multi-domain GDQ technique for solving
the incompressible N-S equations in vorticity-stream function
formulation. This approach combines the geometric capaﬁilities of the

_ multi-domain technique with the potential for accuracy of GDQ.
5.4.1 The Concept of Domain Decomposition

The physical domain of the problem can be represented by , and the
boundary by I'. The multi-domain technique, firstly, decomposes the
domain © into several subdomains Qi, i=1,2, -+, K, where K is the
number of the subdomains. In each subdomain, a local mesh can be genera-
ted with stretching near the boundaries and a local GDQ technique can be
used in the same fgshion as the application of GDQ in a single domain.
In the case of solving the incompressible N-S equations, this means that
the resultant ordinarybdifferéntial equations for vorticity and the alg-
ebraic equations for stream function are to be solved in each subdomain.
Each subdomain may have a different number of grid points. The solutions
for interior grid points are independent for each subdomain, thus they
can easily be computed in parallel. Globally, the information exchange
betweén the subdomains is required. This can be done across the inter-
facevof the subdomains. Since any complex geometry can be transformed
into a rectangular domain or a combination of the rectangular subdomains
by the technique of grid generation. Here we only consider the

rectangular domain for demonstration without losing generality.
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Q Q.
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Fig. 5.19

Supposing Fij is the interface of the subdomains Qi and Qj, that is, 1"U
= Qian. The patching condition is enforced at the interface Fij so that
both the function and its first derivative normal to Fij are continuous
along the normal direction of the interface, i.e.
iy _ j ’

f(xN) = f(X1) on Fij ‘(5.32)

£ (x)) = £ (x) on T | (5.33)

n N n 1 .

ij ,
where f(x;), f(xi) represent the values of the function f at the
interface of the subdomaips Qi and Qj, and fn(X;), fn(xi) the values of
the derivative of f with respect to n at the interface. For the cases
selected for study, each subdomain is rectangular. Then the normal
directioﬁ to the interface is parallel to one coordinate axis in the
local coordinate system. For simplicity, this coordinate axis can be
assumed as the x axis, and in this direction, there are N grid points in
the subdomain Qi, and M grid points in the subdomain Qj. The weighting
coefficients of the first order derivative along the x direction are

written as ain in the Qi and ain in the Q. Thus using the technique of
J

GDQ, (5.33) can be written as

N M
ioacoty = Joapod
I ag, f(xk) L a, £(x) (5.34)
k=1 k=1
Using (5.32), and setting f(x;) = f(xi) = £, we obtain
N-1 M
3 1o iy Jopapod jo_ i
f (kza a, flx) kzé ay flx))/(a), 2 (5.35)
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where f is the value of the approximation to the function f at the
interface Fij, which exchanges the information between the subdomains,
and the f(x;), f(xi) represent the values of the function f at x; in the

subdomain Qi and xi

in the subdomain Qj. For the solution of the
incompressible N-S equations in the vorticity-stream function
formulation, f can be the.vorticity and the stream function, and (5.35)
is used as the Dirichlet boundary condition for them. Equation (5.35) is
suitable for rectangular domains. If the computational domain is a

non-rectangular domain, it should be transformed into several

rectangular subdomains firstly, then (5.35) can be used.
5.4.2 The Flow past A Backward Facing Step

This problem is the same as that described in the section 5.2.4 with a
difference that the the inlet is located at a distance upstream of the
step. For numerical simulation here, the computational domain is divided
into 3 subdomains. The problem definition and the computational domain
~are shown in Fig. 5.20, where the expansion ratio is 1:1.5. All the
lengths have been normalizéd by the inlet width D, and the velocities by
the maximum value of the longitudinal velocity at inlet, u - The
location of the inlet is chosen as 6D upstream of the step, and the
outlet is located at 12D downstream of the step. The implementation of
the boundary condition can be treated using the same method as in the
section 5.2.4. In each subdomain, one Dirichlet boundary condition fér
vorticity was used on each boundary and the interface, but for stream
function, two boundary conditions (one being of Dirichlet type, another

of Neumann type) on each boundary, and one Dirichlet boundary condition
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on the interface, were used. To verify that the solution is independent
of grid{ different mesh sizes have been tested. Numerical experiment
shows that this case can be accurately simulated using few grid points.
The length of recirculation zone computed by the mesh size of 15x13 for

domain I, 23x13 for domain II, and 23x11 for domain IIl is less than

1.0 T

0.5 1 | I

_gg |- T T r -~ - - - T - - -
-6 -4 -2 0 2 4 6 8 10 12

Fig. 5.20 Problem Definition and the Computational Domain

Fig. 5.21 Meshes for Flow past A Backward Facing Step

three per cent different from that computed by the mesh size éf 15x17
for domain I, 23x17 for domain II, and 23x19 for domain III for all
Reynolds numbers. In this section, all the results are based on the mesh
size of 15x13 for domain I, 23x13 for domain II, and 23x11 for domain

III, which is shown in Fig. 5.21.
As stated in the section 5.2.4, the sharp corner of thé step is a
singularity, and since this point is on the boundary, not at the corner,

of the computational domain, small spurious deviations were produced
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near the step. On the other hand, the computation for Reynolds number
over 500 becomes difficult because of the effect of the singularity. The
singularity can be removed by techniques such as the interpolation
method, asymptotic expansion, etc. For the case here, the multi-domain
technique was used to avoid dealing with the sharp corner singulérity
since the sharp corner of the step is exactly at the corner of the

subdomain.

Numerical results for Reynolds numbers range from 100 to 1000 were
obtained. Fig. 5.22 1illustrates the computed streamlines for Reynolds
numbers of 200, 400, 600, 800, 1000, where the values of the streamlines
are the same as shown in the section 5.2.4, and the window for plotting
the streamlines in the x direction is from x = -2.0 to x = 8.0. Fig.
5.23, 5.24 show the vorticity distributions for different Reynolds
numbers along the lower and upper walls. Fig. 5.25 and 5.26 compare the
single-domain results with the multi-domain results fof the vorticity
distributions along the walls. The dashed 1lines included in these
figures represent the results of the fully developed parabolic profile
which would be oﬁtained if the downstream boundary is located at an
infinite distance from the step. From these figures, it is clear that no
spurious deviations in the vicinity of the step were fSEBEFfESF“Ehe
multi-domain results; the single domain results differ from the multi-
domain results near the step because of the effect of the singularity,
but in the downstream, the single domain results agree well with the
multi-domain results; the flow does not become fully developed at the
high Reynolds number cases. Fig. 5.27 shows the horizontal velocity

profiles for Reynolds number of 100 and 900 at the step. The dashed line
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Fig. 5.22 Streamlines of the Flow past A Backward Facing Step
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Fig. 5.23 Vorticity along the Lower Wall (Multi-Domain Results)
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Fig. 5.24 Vorticity along the Upper Wall (Multi-Domain Results)

-119~



Chapter Five Solutions of Incompressible N-S Equations

2.5
2.0 THEORETICAL
1.5
®
1.0
0.5 f
0.0 { ,
SINGLE-DOMAIN
-0.5 o RE = 100
o RE = 200
RE = 300
-1.0 ¢ 2 v % .00
-1.5 1 = HULTI-DGMAIN
-2.0 —
0 1 2 3 & 5 6 7 8 9 10

Fig.5.25 Comparison of Single-Domain Results with Multi-Domain Results

Vorticity along the Lower Wall
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Fig.5.26 Comparison of Single-Domain Results with Multi-Domain Results

Vorticity along the Upper Wall

-120-



Chapter Five Solutions of Incompressible N-S Equations

1.0
0.8 ¢ ~
™
%
Y N

o RE=100 %
0.6 + ° RE=900

— — PARABOLIC
0.4

P
0.2 ¢
0.0 A
0.0 0.2 0.4 U 0.6 0.8 1.0

Fig. 5.27 Horizontal Velocity Profiles at the Step
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Fig. 5.28 Horizontal Velocity Profiles at the QOutlet
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in this figure represents the parabolic velocity profile imposed at thé
inlet. It is seen that the velocity profile for the low Reynolds number
case was close to the parabolic profile, except for a systematical small
deviation due to the pressure gradient enforced by the step. However,
the velocity profile at the high Reynolds number case tended towards the
parabolic profile due to the convective term playing a greater role in
the flow field. Thus it is suggested that, for accuracy, the inlet
should be a reasonable distance before the step for 1low Reynolds
numbers, but can be imposed at the step for high Reynolds numbers.
Figure 5.28 shows the velocity profiles at the outlet compared with the
fully developed parabolic profile represented again by the dashed line.

It is, again, shown that at high Reynolds number the velocity profile at

16 + .
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Fig. 5.29 Length of Recirculation Zone vs Reynolds Number
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the outlet is not fully developed. This demonstrates that the outflow
boundary condition of the Neumann type may give reasonable solutions for
a short distance downstream. Figure 5.29 gives the length of the recir-
culation zone for different Reynolds numbers compared with the experi-
mental data (Kueny and Binder 1984) and other numerical resulfs (Bredif

1984). The present results agree well with the experimental data.
5.4.3 The Flow past A Square Step

Now considered is the flow in a channel containing a square step in
which the step is located fairly close to the inlet. The flow past 'a
square step with a "flat" inlet velpcity distribution rather than a
fully developed parabolic profile, is a more challenging problem for
numerical simulation since in this case, not only the two sharp corners
of the step produce vorticity ‘singularities, but also the boundary
condition at the inlet introduces other vorticity singularities. Hughes
et al (1979) presented several results using FEM and claimed that the
conventional Galerkin method produced spurious wiggles in the velocity
vectors upstream of the step. They suggested an upwind method which then
~ generated the solution without wiggles. Leone and Gresho (1981) studied
this'problem exhaustively using a velocity-pressure formulation and the
conventional Galerkin method, and claimed that the spurious wiggles of
the solution may be caused by a combination of the following factors:
(1) too coarse a grid to resolve the steep gradient occurring in the
flow direction; (2) inlet boundary conditions and the resulting leading
edge singularities; (3) proximity of the inlet region to the step; (4)

the sharp edge singularity at the leading corner of the step. They
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firstly studied Stokes flow and found that the inlet wiggles are caused
by the leading edge singularities (high pressures are generated at the
corners where the fluid decelerates and converges toward mid-channel).
They then studied viscous flows through the N-S equations and claimed
that, when a coarse mesh is used the inlet wiggles may be caused more by
the presence of the step than the leading edge singularity, and when the
finer mesh is used, most of the inlet wiggles disappear, only small
deviations appearing near the top singularity of the inlet leading edge.
They thus suggested that this difficult problem should be solved on a
fine grid. Also some results exist in the work of Yang and Atluri (1884)

where a mixed finite element method is used.
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Fig. 5.30 Square Step Problem Definition and Computational Domain
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Fig. 5.31 Meshes for Flow past A Square Step
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Following the work of Hughes et al, it is attempted to simulate the
developing flow in a one unit high (the characteristic 1length for
defining the Reynolds number) channel containing a square step located
at 1.2 units from the inlet which is 0.4 units high and 0.4 units
across. The problem definition and the computational domain are shownlin
Fig. 5.30, where the whole domain is decomposed into 5 subdomains with 4
interfaces. The inlet boundary condition is a "flat" velocity profile,
u=1 and v=0, except that the no-slip condition, u=0, occurs on the top
and bottom surfaces, which gives

y=y, wx = 0, at the inlet | (5.38)
and the boundary condition

Yy =0, w =0 (5.37)
is imposed at the outlet. On the walls and the surface of the step, the

no-slip boundary condition gives

1 on the upper wall
= .38
v 0 others (5 2)
w; = 0, where n is normal to the surface (5.38b)

For the present calculation, the outlet location is chosen as 8 units
from the inlet. Numerical experiment shows that the accurate fesults can
be obtained by using the mesh sizes of 15x13 for domain I and II, 7x13
for domain III, 21x13 for domain IV and V. This configuration is shown
in Figure 5.31. Using the same approach as for the backward facing step,
the multi-domain solutions of this problem for Reynolds numbers range
from 50 to 250 were obtained. Fig. 5.32 shows the streamlines for
Reynolds numbers of 50, 100, 150, 200, 250, where the values of the
streamlines are 1.0, Q.Q, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0,
-0.1, -0.01, -0.001 and the window for plotting these streamlines in the

x direction is from x=0.0 to x=6.0. Clearly, it is shown that no wiggles
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appear in the flow field except for very small deviations caused by the
top éingularity of the channel leading edge, which appear near the top
corner of the inlet (streamlines have a small contraction near
mid-channel). This agrees well with the analysis of Leone et al and
demonstrates that the mesh sizes used are fine enough to get accurate
results. Fig. 5.33 shows the vorticity distributions along the lower
wall before the step for different Reynolds numbers. The plots displéy
clearly a large influence of the lower singularity of the leading edge
on the flow near the inlet. In the region close to the bottom corner of
the inlet, the flow is dominated by the high pressure gradient produced
mainly by the singularity rather than by viscosity, since in this
region, the vorticity is independent of the Reynolds number. Fig. 5.34
shows the Vortiéity distribution along the lower wall behind the step
for different Reynolds numbers. The. dashed line included in this figure
is the result of the fully developed parabolicrprofile which would be
obtained if the outlet is placed at an infinite distance from the inlet.
One can see from Fig. 5.34 that most cases except for Re=50 do not
achieve a fully developed parabolic velocity profile at the outlet. This
demonstrates that the Neumann type boundary condition imposed at the
outlet can provide reasonable solutions when the outlet is placed only a
short distance downstream. Fig. 5.35 shows the vorticity distributions
along the surface of the step. The two singularities at the sharp
corners are shown clearly. Figure 5.36 displays the vorticity
distributions along the upper wall for different Reynolds numbers. It
demonstrates that the flow near the upper singularity of the inlet is
dominated by the high pressure gradient, produced mainly by the

singularity since the vorticity in this region is shown to be
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independent of the Reynolds number. This shows that the small deviations
in streamlines occurring near the upper corner of the inlet is indeed
caused by the singularity of the inlet leading edge. The dashed line
included in Figure 5.36 is again the result of the fully developed
parabolic profile. Fig. 5.37 gives the velocity profiles at the outlet
for Reynolds number cases of 50 and 250. The plots show that the
velocity for the low Reynolds number case achieves a nearly parabolic
profile at the outlet. fhis is not the case for the high Reynolds number
case. The lengths of the upstream and downstream separated zone for the
various Reynolds numbers are shown in Table IX, where Xu§ and X i
represent the lengths of the upstream and downstream separation zones,
and x =X /h, X_ = x, /h, h is the height of the step.

up up do

Table IX Lengths of the Separation Zone for A Square Step Problem

Re 25 50 85 100 150 200 250
Qup 0.1749 0.1749 0.1749 0.1757 0.1777 0.5771 0.5846
ido 1.5771 2.6701 3.8876 4.3501 5.7543 7.0636 7.9824
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(a) Re = 50

(d) Re = 200

(e) Re = 250

Fig. 5.32 Streamlines of the Flow past A Square Step
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Fig. 5.33 Vorticity along the Lower Wall before the Square Step
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Fig. 5.34 Vorticity along the Lower Wall behind the Square Step
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Fig. 5.37 Horizontal Velocity Profiles at the Outlet

5.5 Concluding Remarks

The GDQ and multi-domain GDQ techniques for the solution of the

incompressible N-S equations have been shown in this chapter. Numerical

results, obtained by GDQ using Jjust a few grid points, are very

accurate, and need less storage and computational time, compared with

the conventional numerical techniques such as the finite difference

methods using a large number of grid points. The reason for GDQ results

needing much less CPU time are twofold. One is that the GDQ results are

obtained using few grid points, thus fewer degrees

involved in the solution of resultant equation systems.

.GDQ is a global method, which has a global convergence.

it needs less time steps for convergence.
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CHAPTER SIX
SOLUTIONS OF BOUNDARY LAYER EQUATIONS
6.1 Introduction

The boundary layer approximation provides a useful mathematical model
for some engineering problems which include the Jjet and wake flows,
channel and tube flows and wall boundary layers. Another aspect of the
boundéry layer approximation currently of interest is the simulation of
the flow with a small separation region which can be carried out by the
concept of viscous-inviscid interaction, where the calculation of the
viscous part is obtained by boundary layer computation. This approach
can greatly reduce the computational effort compared with a
Navier-Stokes solver. The classical numerical methods for the solutién
of the boundary layer equations caﬂ generally be categorized as (1)
integral methoas and (2) differential methods. The integral methods
transform the boundary Ilayer equations into ordinary differential
equations by integrating the differential equations in the normal
direction after making assumptions about thé genefal form of the
velocity and temperature profiles. The advantage of integral methods is
their simplicity as well as small computational effort. But for a
general problem, the application of integral methods 1is not as
straightforward as for differential methods. Furthermore, the numerical
results are very sensitive to the form of the velocity and temperature
profiles iﬁ the three-dimensional case. Most schemes using differential

methods involve finite differencing. The Crank-Nicolson finite
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difference scheme was found to work well for a general boundary layer
calculation, and has been adopted by many researchers (Werle and Bertke,
1972, etc.). Among otheré, the Keller-box method (1974) for parabolic
partial differential equations has been successfully applied by Keller
and Cebeci (1970), for boundary layer resolution. For the unsteady or
three-dimensional boundary layer calculation, if the flow has 'a
separation region, the Zig-Zag-box scheme (Cebeci, 1979) should be used
since the Keller-box scheme fails to work in this case. Recently, the
application of finite element methodology (Chung, 1978), and the
spectral method (Streett, Zang and Hussaini, 1984) to the boundary layer

equations has been reported.

Boundary layer equations can be solved when they are expressed in
physical coordinates or in transformed coordinates. Generally, the
transformed form is favourable because it can remove the singularity
occurfing at the vleading edge of the surface. Using transformed
coordinates, most researchers prefer to use the stream function as the
dependent variable. The major advantage of this is that the continuity
equation can be dropped from the solution procedure. Accordingly, the
order of the differential equations is increased by one, which may
create difficulties in dealing with the boundary conditions. Some other
researchers favour the use of the primitive-variable (veiocity) as the
dependent variable enabling 2D methods to be extended to the 3D case
directly. The difficulty then is the coupling of the continuity equation
with the momentum and energy equations. The reason for not using the
integral form of the continuity equation is that the nqrmal velocity

obtained by integrating the equation along the normal coordinate is less
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accurate because of accumulated round-off errors.

As will be shown in this chapter, the GIQ technique can provide a
promising way to obtain the normal velocity accurately by an explicit
formulation derived from the integration of the continuity equation in
the normal direction. As stated in Chapter 3, the integral over a part
~of the overall domain can be accurately approximated by >a linear
combination of all the functional values in the overall domain. Thus,
the determination of the normal velocity at any mesh point involves all
the functional information of the normal coordinate direction of that
mesh point, and has the same order of accuracy for all mesh points along
the normal direction. On the other hand, it has been shown in Chapter 5
that the GDQ scheme is a robust, efficient technique to discretize
spatial derivatives, which can achieve results of high accuracy using
Just a few grid points. We will use both the GDQ and GIQ techniques in
the normal direction for discretizing the derivatives and the integrals.
The mesh points chosen for GDQ and GIQ are the same. In the streamwise
or the crossflow direciion, both GDQ and finite diffefence schemes can
be used. We will show that the GDQ-GIQ technique for the boundary layer
resolution is a general one, which can be used for »both primitive

variables and stream function or other functional variables.

6.2 GDQ-GIQ Approach

We will consider the GDQ-GIQ approach to the solution of the boundary
layer equations using two cases of dependent variable. These are the

stream function variable and the primitive variable. Although two
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specific test problems are chosen for demonstration, the GDQ-GIQ

approach can be used for general boundary layer problems.
6.2.1 Stream Function Chosen As Dependent Variable

For simplicity, we consider the two-dimensional Howarth boundary layer
problem. The governing equation (Keller and Cebeci, 1970) is

3 2 2 2
af af [1_( af 2] - zs[af af of of (6.1)

—+ e —— B(g). _) - - — e
6n3 an2 an an 8&an 6n2 8€
where f(&, 7m) is the dimensionless stream function and is subject to the
boundary conditions
of
= = 6.2

f(&,0) a17(&,0) 0] . ( )

of

EE(E’n) — 1, when 7 — o - (8.3)

Here (&€,7n) are the Levy-Lees coordinates; £ increases in the free stream

direction and 7 increases away from the wall. And B(£&) is given by

‘ - 3
B(E) = —S_——T . . (6.4)
Setting u = g% , then the 3rd order equation (6.1) can be reduced to
2 N .
du du 2, _ ,0u _ du of
5;5 + f T + B(&)-[1 - u"] = Zg[u 3€ ~ am 6&] (6.5)
£ =[] u-dn + £(0) (6.8)

For numerical simulation, the infinite interval in the 7 direction can
be truncated to the finite interval [o, nm]. Using GDQ and GIQ in the

domain [O, nm], we have

azu " =(2)

(—2)i =YW N (6.7a)

a,n »J k=1 J 1

du " =(1)

(W)i,,] =k§:1ij ik (6.7b)
" I 1

fhj= g:(wjk--wlk)uik-i-fi,1 (6.7c)
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where Q:?) are the weighting coefficients of the mth order derivative of
the function with respect to 7, w:j are the weighting coefficients of
the integral along the m direction, and the boundary conditions (6.2),
(6.3) become

u =0, w o= 1 . f =0 (6.8)
which is easily implemented in the solution procedure. It is clear that
there are two boundary conditions for u in the 7 direction for this
case. As we will show, another boundary condition for u in the 7

direction can be implemented if it is necessary. Referring to equation

(3.69), the discretization of (6.6) can also be written as

M M
= I, _ - I
£, Zwﬂlﬂk f(c) *E Zwmlﬂk (6.9)
k=1 : k=1
where ¢ is chosen as ¢ = 0, thus f(c)= f = 0. Equation (6.9) can

i,1

provide another boundary condition for u, i.e.

¥ wik-uik =f =0 . | (6.10)
k=1

It is noticed that if (6.9) is used, then (6.10) should be implemented

as another boundary condition for u.

If a second order finite difference scheme is used at (&

for
i-172 °’ nj)

the discretization of the derivative of u or f with respect to g, after
linearization of the non-linear terms, the resultant algebraic equations

can be written as

A-U=Db (6.11)
where
U=(u , u , **+, u )T when two boundary conditions are used
1,2 1,3 i,M-1
or U=(u13,ui4, tee, uin_l)T when three boundary conditions are used.

A is a full matrix and b is a known vector. Using (6.11), the boundary
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layer solution in the whole domain can be obtained by a marching

technique along the &€ direction.

If the GDQ scheme is used in the € direction, after linearization of the
non—-linear terms, we can get a similar form of the algebraic equation
system to (6.11), but the VectorvU includes all the interior functional
values uhj' Thus the marching technique cannot be used in this case. If
only steady state resolution is of interest, we can turn to another

method. Introducing an unsteady term in (6.5), we can write (6.5) as

2
a"u au 2 du
5;5 + f I + B(&)-[1 -u"] = 3T

The spatial discretization of (6.12) leads to a set of ordinary

du _ du af

+ 2€[u-5€ " & EE] . (6.12)

differential equations which can be solved by the 4-stage Runge-Kutta
- scheme. Equation (6.12) is not a true unsteady boundary layer equation,

and is only used for steady state resolution.
6.2.2 Primitive Variable Chosen As Dependent Variable

For demonstration, we consider the two-dimensional unsteady flow past a
circular cylinder started impulsively from rest. The non-dimensional
form of the governing equations (Cebeci 1979, Liakopoulos 1988) is

ua +v =0 (6.13)

u * U F VU= et g;f tuo (6.14)
with initial condition

u(x,y,0) = ue(x) = sinx , (y # 0) - (6.15)
and boundary conditions

u(x,0,t) = v(x,0,t) =0 ' ’ (6.18)

u(x, o, t) ue(x) = sinx " (6.17)

-137-



Chapter Six Boundary Layer Solutions

u(0,y,t) = u(mn,y,t) =0 . (6.18)
The computational domain in the y direction can be obtained by
truncating the infinite domain to [O, nm]. Using GDQ and GIQ, the uy,

uyy discretization formula are the same as (6.7a), (6.7b), but v is

given by
.1 I,
Vig =T ) (wjk - wlk)-(ux)ik * Vi, (6.19)
: k=1
or by
N A _
Vig =T ijk-(ux)ik (6.20)
k=1
.1
—kglwlkf(ux)ik =V, (6.21)

In a similar fashion to the above subsection, when the x-related
derivatives are discretized by a second order finite difference scheme
at (Xi-1/2’yj)’ the solution procedure can be marched along the X
direction, but when GDQ is used in both the x and y direction, the
marching technique is invalid. In this case, the 4-stage Runge-Kutta

scheme can be used for the solution of the resultant ordinary

differential equations.

The use of GDQ in the x direction is still attractive although it may
increase the storage. Since GDQ can achieve the same accuracy using few
grid Ipoints as a finite difference scheme using a large number of grid
points, the total number of the degrees of freedom can be greatly
reduced if GDQ and GIQ are used in all the coordinate directions. Thus
the total storage and the computational operations required may be
reduced. If the GDQ is used in the x direction, we recommend the

employment of (6.19) rather than (6.20) and (6.21), since the
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implementation of (6.21) is very complicated. For simplicity, we will
use GDQ and GIQ to discretize the spatial derivatives and the integral
in all cases, and use the 4-stage Runge-Kutta scheme to solve the

resultant ordinary differential equations in the following calculations.
6.3 Steady Boundary Layer Solutions

In this section, the 1D, 2D, and 3D steady state boundary layer
resolutions obtained by the GDQ-GIQ approach will be demonstrated. Each

case includes one test problem.

6.3.1 Blasius Boundary Layer

Firstly, we consider the classical Blasius boundary layer, which is

governed, in mathematics, by

3 2

LR R (6.22)

an 6n2
Setting u= g% and introducing an unsteady term, (6.22) can be written
as

8 8% 8

- 28, e SU (6.23)

ot 2 15

an
£ = [ u-dn + £(0) . | (6.24)

For numerical simulation, the computational domain is truncated to [O,
3], and the grid is stretched near n = 0. Using the technique shown in
subsection 6.2.1, we have studied the difference between the use of
(6.7c) and (6.9), (6.10). It is found that when (6.8) and (6.10) are
used, that is, the three boundary conditions are employed in the 7
direction, the allowable time step size is much larger than that when

(6.7c) is used, that is, only two boundary conditions implemented. For
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example, when N = 12, the allowable time step size is 1.30x1072 if (6.9)
and (6.10) are used, and is 1.0x10™° if (6.7c) is used. As a result, for
the convergence criterion of the maximum residual of less than 1.Ox10-4,
(6.9) and (6.10) require 385 time steps and 1.03 seconds of CPU time on

the IBM 3090, but (6.7c) needs 5119 time steps and 12.92 seconds of CPU

3.9

y © COMPUTED N=12
24 EXACT
Lad
e
0.6
0.0 — ‘ '
0.0 0.2 0.4 0.6 0.8 1.0
u

Fig. 6.1 Velocity Profile of The Blasius Boundary Layer

time on the same computer. In addition, it is found that (6.9) and
(6.10) can give more accurate results than (6.7c). For the test problen,
the exact value of the wall shear stress is 1.3284. Equation (6.9) and
(6.10) give 1.3286 using N =12 and (6.7c) gives 1.3298 using N = 12.
Figure 6.1 shows the computed and the exact velocity profile of the
Blasius boundary layer. The computed results are obtained by using (6.9)

and (6.10) and N = 12.
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6.3.2 Two-Dimensional Problem

As a test example, the Howarth boundary layer is chosen for study. The
governing equations are shown in subsection 6.2.1. This flow problem has
a separation point at € ¢ 0.901. So, the computational domain in £
' direction should be [0, b] where b < 0.901 because of the Goldstein
singularity. In the 7 direction, the infinite domain is truncated to [0,
5.0]. The GDQ and GIQ techniques are used in both the & and the 7
direction, and (6.9) is used for calculating the normal velocity vid.
Three boundary conditions (6.8), (6.10) are used for u in the 7
direction. It is found that the GDQ-GIQ approach is very sensitive to
the choice of b when b is close to the separation point. Actually, when
b is taken as 0.90, the computation will diverge quickly after a few
time steps, but when b is chosen as less than or equal to 0.894, the
steady state resolution can be obtained accurately. The convergence rate
is very fast when b is far from the point of 0.901, and is slow when b
is very close to the point of 0.901. Fig. 6.2 displays the computationai
results of the Howarth boundary layer using the mesh size of 11x12, and
b = 0.894. Clearly, the current numerical results are very close to

those given by the Keller-box finite difference scheme using a large

" mesh of 51x121.
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Fig. 6.2 Solutions of the Howarth Boundary Layer
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6.3.3 Three-Dimensional Problem

Fig. 6.3 Flow past A Flat Plate with Attached Cylinder

For 3D boundary layer simulations, we choose the 3D laminar flow past a
flat plate with attached cylinder as a test example. The problem
definition is shown in Figure 6.3. It will be assumed that the thin
plate does not affect the inviscid flow around the cylinder. We will
then simulate the 3D boundary layer flow on the flat plate due to the
inviscid flow created by the cylinder. This flow problem has been
computed extensively and accurately by Cebeci (1975), Dwyer (1968), etc.
The governing equations are (2.46)-(2.48) shown in Chapter 2, and the

inviscid velocity distribution is given by

Ue = u [1 + a%A /A%] (6.25)
[} 2 1
2 2 '
We = -2u a -A /A (6.26)
2] 3 1
where
C femw 12 2
A1 = (x xo) + 2z
PR - 2
Az = -(x xo) + z
A3 = (x-xo)°z

Here u is a reference velocity, a is the cylinder radius, and X, deno-

tes the distance of the cylinder axis from the leading edge, x=0. To
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make a direct comparison between our computed results and with those
obtained by Cebeci, we have chosen um=30.50 m/sec, 2=0.061m, x0=0.457m,

nw=8.0.

As we know, the boundary layer equations pose a combined initial and
boundar'y value problem. The boundary conditions are usually obtained
from the independent inviscid flow equations, whereas the initial
conditions must be obtained somehow from the boundary iayer equations
themselves. For the test problem, since the primitive variable is chosen
as the dependent variable, then for simplicity, only two boundary
conditions in the 7 direction are implemented for F and G, that is

F=0 , G=0 , atn=0 (5.27)

n (5.28)

o

F=1 , G=1 , atnq

And V can be determined by

M
- - I _ Ty,
Vi,jyk - 2 (ij w]_m) Qi’m,k + vi,l,k (6.29)
m=1
where
- . OF . 8G B
Lmk [x 3% + 0.5F(1+K3) + x-We 3% /Ue + G(K.S O.5K.4)]i,m’k

KB’ K4, K5 were defined in Chapter 2.
The governing equations along the x=0 line of the flat plate reduce to
the Blasius equation for both F and G. Thus the initial condition at x=0
can be obtained from the Blasius boundary layer solutions. In addition,
the initial condition along some z equal to a constant line should be
given. For the test case here, the initial condition élong the line of
symmetry (z=0) is first obtained. Since, along the line of symmetry, w,

We are zero, we define the variable Gz as

- ow/38z
z d(We)/0z

Thus the governing equations along the line of symmetry are reduced to

G
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oF  av

X' 3% * gy * 0-SF(14K)) + G K =0 | (6.30)
% + xF-g—E +v-g—f’ = Zil; + K (1-F9) (6.31)
aG aG aG T'azc
Tt K g et = - %+ K- (1-G) + K (1-F'G ) (6.32)
where K = X OWe,z We,z = 8(We)/82z
7 We,z dx ° ?

After obtaining the initial values along the line of x=0, the initial
values along the line of symmetry can be found by solving the equations
(6.30)-(6.32). With the boundary and initial values, the full boundary
layer solutions can be obtained by solving the equations (2.46)-(2.48),

using the approach as shown in the section 6.2.

For the GDQ-GIQ simulation, the mesh size used is 11 grid points in the
x and z direction, and 13 grid points in the 7m direction. And the
computational domain in the z direction is chosen as between z=0 and
z=0.20. Since the cylinder causes an adverse pressure gradient in front
of itself, it is expected that the streamwise velocity will reverse in
direction along a line in front of the cylinder. Since thé adverse
pressure gradient is a maximum along the line of symmetry, the flow
reversal in the boundary layer will first occur in the line of symmetry.
Thus the computational domain in the x direction should be before the
separation point in the line of symmetry because of the Goldstein
singularity. It is found that the GDQ-GIQ approach is very sensitive to
the Goldstein singularity. When the computational domain in the x
direction is taken as [0.0, 0.25970], the steady resolution can be
obtained very quickly (17.76 seconds CPU time on the IBM 3080) and
accurately. But when the computational domain is taken as [0.0,

0.25975], the computation will diverge after a few time steps. Thus it
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appears that the separation point in the line of symmetry is between
0.25970 and 0.25975, which agrees well with other researcher’s results.
This also demonstratés that the GDQ-GIQ approach is very accurate and
efficient. Table I lists the computed values of (aF/an)w and (6G/617)w at
some specific points. Also included in Table I are the results of Cebeci
(1975) which were ébtained by the Keller-box finite difference scheme
with Richardson extrapolation processing. Clearly, the current results
agree well with Cebeci’s results. Fig. 6.4 and 6.5 show the
non-dimensional streamwise and crossflow velocity profiles along the
line of symmetry. Figure 6.6 displays the streamlines of the inviscid

flow, and figure 6.7 shows the wall shear lines of the boundary layer.

Table I Comparison of Current Results with Cebeci’s Results

z=0

Cebeci Present Cebeci Present
X. (6F/6n)w (aF/an)w (6(?,/81))‘w (6G/an)w
0 0. 332066 0.331898 0.332066 0.331898
0.0488 0.324951 0.325169 0.702488 0.702674
0.0976 0.312821 0.312574 1.124300 1.124564
0.1464 0.290184 0.290472 1.624250 1.623227
0. 1952 0.243524 0.243612 2.250740 2.247190
0. 2440 0.1258972 - 0. 123533 3.126830 3.119115

z = 0.0488

Cebeci - Present Cebeci Present
X (6F/6n)w (aF/Bn)w (aG/an)w (ac/an)w
0] 0. 332066 0.331898 0.332066 0.331898
0.0488 0.325184 0.325653 0.717599 0.695967
0.0976 0.314423 0.314859 , 1.124210 1.108794
0.1464 0.295233 0. 295767 1.605920 1.585971
0. 1952 0. 259005 0.259305 2.191930 2.171027
0.2440 0.181979 0. 177060 2.959350 2.940921
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Fig. 6.4 u-Velocity Profiles along the Line of Symmetry
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Fig. 6.5 G, Profiles along the Line of Symmetry
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6.4 Unsteady Boundary Layer solutions

The unsteady boundary layer simulation is another area of interest in
CFD. vOn. the one hand, Athis is because many practical problems are
unsteady. On the other hand, .there is still a controversy in the
literature concerning the occurrence of singularities in the solution of
unsteady boundary layers. For steady boundary layer problems, it is well
known that there may exist a Goldstein singularity in the boundary layer
solution. But for unsteady boundary layer problems, there are argument;s
as to whether there exists a finite time singularity in the solution of
the unsteady boundary layer equations. For the unsteady, 2D laminar flow
past a circular cylinder started impulsively from rest, some researchers
(e.g. Bodonyi and Stewartson 1977, Van Dommelen and Shen 1982) claimed
that there is a finite time singularity in the solution procedure, while
others (e.g. Cebeci 1979, 1986) suggested that there is no finite time

singularity.

We will choose this flow problem as a test case for the unsteady
simulation. The problem has been introduced in section 6.2.2. To begin
our study, we choose Yo = 35.0, and discretize all spatial derivatives
by GDQ, and integrals by GIQ. The mesh size used is 21x31. It is found
that the reverse flow first starts at 6=180° and time, t=0.644 which is
in agreement with Cebeci’s results. As time increases, the point of zero
wall shear moves along the surface of the cylinder towards the steady
state value GG = 104.50 (position of the Goldstein singularity).
However, the computation cannot reach the steady state resolution

~

because the numerical instability breaks down the calculation at t =
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3.0. Fig. 6.8 shows the instantaneous streamlines computed by the GDQ-
GIQ approach. Clearly, when t = 2.5, some wiggles occur in the
streamlines. This is because GDQ is a global method, and when the
solution develops a singularity at a point, this singularity will

spread in the whole computational field. To study this, we use a second
order finite difference scheme to discretize the derivatives in the x
direction, the derivatives in the y direction being discretized by GDQ.

We call this scheme the GDQ-GIQ-FD approach for convenience. Figure 6.9
shows the instantaneous streamlines computed by the GDQ-GIQ-FD approach.

The mesh size used is 81x31. Compared with Fig. 6.8; when t = 2.0, the
results for both approaches are nearly the same, but when t > 2.0, the
GDQ-GIQ-FD approach gives a considerable improvement over the GDQ-GIQ
approach. Fig. 6.10 displays the wall shear distributions, Fig.6.11

shows the displacement thickness values, and Fig. 6.12 gives the
velocity profiles at the rear stagnation point. The solid lines in these
figures are the results of the GDQ-GIQ-FD approach, and the symbols are
the results of the GDQ-GIQ approach. It is found from these figures that

when t = 2.0, both approaches agree well, but when t > 2.0, some GDQ-GIQ
results are less accurate. All the velocity profiles at the rear
stagnation point are nearly the same for both approaches. Fig. 6.13
shows the position of zero wall shear, where the dashed line is the
position of Goldstein singularity. It is seen that the wunsteady
computation cannot reach the position of the Goldstein singularity.
Table II 1lists the present and other researcher’s results of the

position of the zero wall shear and the time.
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(c) t =2.5

Fig. 6.8 Instantaneous Streamlines of the GDQ-GIQ approach
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(c) t = 2.8

Fig. 6.9 Instantaneous Streamlines of the GDQ-GIQ-FD approach
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Table II Comparison of the Time and the Zero Wall Shear Stress

Reference 180° 166° 146° 138° 124° 110°

Bar-Lev and Yang 0.644 0.6860 0.778 0.876 1.204 2.188

Cebeci 0.640 0.660 0.780 0.872 1.192 2.200
Present (GDQ-GIQ) 0.644 0.664 0.780 0.874 1.193 2.098
Present (GDQ-GIQ-FD) 0.644 0.668 0.791 0.878 1.196 2.204

6.5 Concluding Remarks

The GDQ-GIQ approach for the solution of the boundary layer equations
has been introduced in this chapter. It has been demonstrated, using
test problems, that this approach can achieve accurate results using
Just a few grid points. Thus, both the number of degrees of freedom and
the computation time can be greatly reduced. For the dependent variable,
we recommend the use of the stream function as a dependent variable
because in this case, the three boundary conditions can be easily
implemented in the solution procedure which then yields more accurate
results and needs less computation time. It is also found that when the
computational field has a singularity at some point, the GDQ-GIQ

approach is less efficient.
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CHAPTER SEVEN

Parallel Simulations of Incompressible Navier-Stokes Flous

7.1 Introduction

As stated in Chapter One, the simulation of a general 3D, unsteady
viscous flow requires considerable computational power, which may not be
achieved with single processor computers due to physical 1limitations
such as the speed of -light and gate switching limits. In contrast,
parallel processor computers offer ’the possibility of achieving the
throughput needed in CFD. The research on the effectiveness of using
parallel computers for the solution of CFD problems is now becoming an
active area. Although problems using explicit methods have been success-
- fully implemented on parallel computers (Gropp and Smith 1990}, it is
still necessary to demonstrate the same level of performance for prob-
lems using an implicit method. In practice, when an implicit problem is
considered, the domain decomposition (multi-domain) technique is usually
used in parallel simulation. The major problem in the multi-domain tech-
nique is how to deal with the interface accurately for an implicit prob-
lem. The efficiency of the multi-domain approach for implicit problems
is still under study since treatment of interfaces can greatly reduce
éccuracy and convergence rate. Incompressible viscous flow provides an
implicit problem when the N-S equations with vorticity-stream function

formulation or the vorticity-velocity formulation are used.

As shown in Chapter Four, as the number of grid points increases, the
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time step size for the ordinary differential equations resulting from
GDQ becomes extremely small. This unfavourable feature can be relaxed by
the GDQ element approach or the GDQ multi-domain approach. In Chapter
Five, we have successfully applied the GDQ multi-domain approach to
solve two complex problems on a single computer. In this chapter, these
two problems are simulated on a transputer-based distributed Meiko
Compufing Surface using the same scheme as shown in Chapter Five. The
program on each transputer was written in FORTRAN and run from an Occam
harness which can control the placement and the communication between
transputers. To study the influence of the interface, and compare the
efficiency.of the N-S formulations, we have chosen the driven cavity
flow as a test problem, where three types of interface topology and two
formulations of the incompressible N-S equations were investigated. Many
results have been obtained. Since the parallel computer has a different
architecture to the computer with a single processor, the data, tasks
and communication need to be distributed among the transputers. Thus
different flow prbblems may require different transputer architectures.
This may require the modification of the parallel program when the same
problem is run on different arrays of transputers, leading to an
inconvenience in practice. In this chapter, the idea to develop a
general code which can run on any array of transputers without any
modification to the program has been developed, and successfully applied

to the driven cavity flow problem.
7.2 Parallel Architectures

A number of different types of parallel architecture computers are
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available today. Generally, they can be classified as multiple vector

processors and MIMD concurrent processors.
7.2.1 Multiple Vector Processors

Multiple vector processors consist of several vector computers operating
in parallel. In these computers, mathematical operations are pipelined
and performed on data which flows through the processor in a stream.
Usually, in the computers the data stream is a single vector stream, so
the computers in this category are also called vector computers. A great
advantage of these machines is that old serial code can be run without
modificétion, users then being able to improve performance by
"vectorizing" the.costly sections of code. To run in parallel, exchanges
of information and synchfonization between the processors is facilitated
by special high speed communication hardware. In general, each single
processor is very powerful, and the degree of parallelism available is
not very high, usually two to six processors being available. Examples

are the Cray X-MP, Cray 2 and IBM 3090 600 VF.
7.2.2 MIMD Concurrent Processors

The MIMD (multiple instruction, multiple data-stream) parallel computers
work on essentially independent data in parallel. This kind of computer
has become a feasible proposition over the last few years due to the
cheapness of microprocessor systems. Numerous microprocessors can be
linked together in a loosely-bound network in which they all have their

own independent memory, or they can be combined as a tightly-bound

-158-



Chapter Seven Parallel Simulations

network in which each processor can access any memory.

Tightly coupled MIMD machines are collections of independent processors
which are ’closely connected, usually by shared memory. A parallel
program running on this type of machine consists of independent threads
of control which may access each other’s data and can tightly control
each other’s operation by manipulating this shared data. The advantage
of this type of machine is that there is no single thread of control,
and hence no a priori serial execution. One example of this type is the
BBN Butterfly machine, which consists of a large number of
microprocessors, each with 1 to 4 Mbytes of memory, interconnected via a

butterfly switch.

Loosely coupled MIMD (distributed memory) machines are collections of
independent processors which communicate through some reliable
mechanism, but do not share directly any data. Instead, all
interprocessor sharing of data is done by I/0 operations, typically the
sending and receiving of message packets. This provides a measure of
programming safety and reproducibility of results often absent 1in
tightly coupled MIMD machines, since all modifications to "shared" data
structures are done explicitly by the programmer, rather than implicitly
through a shared memory access. This kind of machine can easily be
developed to a massively parallel computer. As the number of processors
increases, both the meméry and floating point operation per second
increase. Examples of this type include the transputer-based systems and

the LCAP system of IBM.
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7.2.3 Transputer-Based System
7.2.3.1 Transputer Hardware

The MIMD concurrent computers can be constructed out of (a) large
processors each of which could be the basis of a powerful computer; (b)
processors which occupy a board and are equivalent to a full mini-
computer; and (c) single-chip processors which can perform the full
range of requisite functions. The transputer-based systems are in
category (c), where the single chip is the transputer.

Transputers are built by INMOS Ltd. It is a programmable building block
for concurrent systems, spanning a wide range of system sizes from
microcomputer to supercomputer. The transputer is designed to implement
the pfocess model of concurrency, expressed through the Occam pro-
gr'ammipg language, which was developed in parallel with the hardware.
The transputer architecture is wordlength independent so that trans-
puters of different wordlengths may be interconnected and programmed as
a single system. Since all memory is local, the memory bandwidth grows
in proportion to the number of transputers. Each transputer has an
external memory interface which extends the address space into off-chip
memory. Transputers use point to point communication links. Every member
of the transputer family has one or more standard links which may be
connected to links on other transputers to build networks of various
sizes and topologies. Hence, the communication bandwidth does not

saturate as more transputers are added. Each link provides synchronous
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bi-directional communication corresponding to two Occam channels, one in
each direction. Communication via any link may occur concurrently with
communication on all other links and with program exécution. The trans-
puter can be programmed in other high level languages such as FORTRAN,
C, PASCAL, but that if concurrency is to be exploited , Occam should be
used as a harness to link modules written in the selected language.

Figure 7.1 is a schematic diagram of a transputer.
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Fig. 7.1 Schematic diagram of a transputer
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Among the family of transputers, T414 and T800 are extensively used.

T414 is a 32 bit, 10 MIPS processor with 2Kbyte of memory and

sustainable 32 bit floating-point performance of around 80 Kflops;

T800 is a 32 bit, 10 MIPS processor with 4Kbyte of memory, a 64 bit
floating-point unit which is capable of sustaining 1.5 Mflops which is
around 5 times faster than a MCB8020 processor and about the same speed

as a VAX 8600.

All transputers are single 1.5y CMOS chips with a reduced instruction
set architecture, supporting 4 INMOS standard, full duplex, serial

links.

7.2.3.2 The Meiko Computing Surface

There are several computing systems available which use the transputers
as the basic processors. Amongst them, the Meiko Computing Surface is
widely used. The Meiko Computing Surface is a computer system designed
by Meiko Ltd. to exploit the power of the transputer on compute-
intensive . applications. Compute, graphics and 1I/0 _elements are
available, together with interface and intermodule boards. The 1links
from each element are electronically switched enabling the user to
create the topology required by their program. The Meiko Computing
Surface is a modular, reconfigurable transputer array, which consists of
a number of modules each containing up to 40 boards housed in two 19-
inch racks. All inter-board links within a module are routed via the

system backplane, and 1links between modules are provided by special
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inter-module link boards. The structure of the Computing Surface is
illustrated in Fig. 7.2. The system backplane in each module supports a
supervisor bus as well as the link connectivity, and this provides for
low bandwidth communication between all computing elementé in the
system. Meiko provides system software to control a computing surface in
single or multiple mode, and are developing MEIKOS, a UNIX-like system.
In the system, there are‘compilérs for Occam, C, Fortran and Pascal,
each generates code for T414’s and T800’s. Communication over Occam-
style <channels has been added to the conventional languages.
Multiprocessor programs are built by linking sequential single programs

(in C and Fortran) with an Occam harness.

The Meiko Computing Surface is still in development. Since the work in
this thesis was completed, CS tools have been made available. These can
run the pure conventional languages in parallel without establishing an
Occam harness. This makes it easy to use for a new user, but may reduce
the efficiency since the configuration may not be optimal to some

physical problems.
7.3 Parallel Algorithms

Ideally, a program runs N times faster on N processors than on a single
processor, although the actual speed-up may be much less. The design of
algorithms to achieve this sort of speed—ub is an active area of
research. Since the algorithm, programming language and hardware are
intimately connected, the major effort should be to match the

parallelism of the algorithm to the parallelism of the computer in such
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a way as to minimise the execution time of the program. At any stage
within an algorithm, the parallelism of the algorithm is the number of
operations that are independent and can therefore be performed
concurrently. This may vary from stage to stage. The natural hardware
parallelism is the number of processors that may run concurrently,
including both arithmetic and link processors. The current parallel
algorithms can be roughly categorised into three classes: event

parallelism; geometric parallelism; and algorithmic parallelism.
7.3.1 Event Parallelism

Event parallelism is suitable for independent tasks where each processor
executes a program in isolation from all the other processors. One of
the simplest, and often the most efficient, ways of exploiting parallel
processing is to distribute independent tasks to each of the processors;
Such a configuration of the system is also called a task farm. Another
variant on the task farm approach, is when a single computation can be
divided into many independent sub-tasks which can be farmed out amongst
the slave processors. The event parallelism is an ideal way to make
parallel computation, but unfortunately, most engineering problems are

beyond this type.
7.3.2 Geometric Parallelism
The geometric parallelism is also called domain decomposition or multi-

domain parallelism, in which each processor executes the same program on

data corresponding to a subdomain of the system being simulated and
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communicates boundary data to neighbouring processors handling
neighbouring subdomains. Since, at the present level of technology,
communication is expensive, we should minimise the data transferred from
one processor to another processor. In addition, the communication time
is also proportional to the distance between processors. So, the
proceésor array should have, as far as possible, the same geometric
configuration as the system being simulated. Geometric parallelism has
been achieved in some useful applications of CFD problems (Lin 1989,

Gropp and Smith 1990).

For transputer-based systems, 2D problems can be treated in a straight
forward manner because each subdomain has at most 4 neighbouring
subdomains. This requires 4 channel pairs for communication, and the
transputer provides a promising way to do that. But for 3D problems, the
application is not straight forward. Since some subdomains may require 6
links, we need to build a block using 2 transputers for each subdomain.
This introduces the extra complication of distributing the data in one
subdomain over the transputers, and the handling of internal

communications.

7.3.3 Algorithmic Parallelism

This approach is to construct a network of processors, each with its own
special role to play, through which all the data flows, as in a factory
production line. There are a number of difficulties with algorithmic
parallelism. One is that at different stages during the computation,

different algorithms may apply, and a configuration of transputers
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optimised for implementing one algorithm is unlikely to be appropriate
for another. Another difficulty to be solved is how to get control data
to each of the slave processors, for example, to initialise them at the
start of the computatioh. Finally, it may happen that one process
dominates the execution time. If this process cannot be divided up
amongst more than one processor, it alone will determine the throughput
and constitute a bottleneck. Because of these difficulties, many
published papers referring to algorithmic parallelism are beginning to
appear in mathematical periodicals and books. Obviously, algorithmic
parallelism is a natural way to simulate a machine, a production
process, or even a whole faqtory. The major obstacle to efficiency is
load blancing: the number of processors assigned to simulating each

component must be carefully tuned.
7.4 Domain Decomposition and Topology of the Interface

In the domain decomposition technique, the overall computational fluid
field is divided into several subdomains, equal in number to the number
of available slave processors. With the boundary c§nditions at the
physical boundary or at the interface, the evolution of the fluid in the
interior of each subdomain is determined entirely by data which is
present in that processor’s local memory. But since the boundary
conditions at the interfaces are ﬁsually given the initial values at the
beginning of the solution procedure which are not the solutions of a
problem, they should be corrected as iteration progresses. Generally for
simplicity, the functional values at the interfaces are determined by an

explicit formulation for an implicit problem, which is related to the
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neighbouring subdomains. Thus communication between processors is
required for exchanging the data to give the new functional values at
the interface. The formulation to determine those values at  the
interface is related to the topology of the interface. In the following,

three basic cases are considered.
7.4.1 Patched with Continuity Condition (Interface I)

This case has been considered in Chapter Five. Along the interface, the
function is c! continuity, and may not satisfy the N-S equations.
According to formulation (5.35), the functional values at the interface
are related to all the interior values of both adjoining subdomains.
Since each subdomain is assigned to a processor, that means all the
interior values in a éubdomain should be transferred into neighbouring
subdomains; This may cost considerable communication time. To reduce
that, we can combine all the interior functional values using (5.35) to
give a stream of data, which is, in number, equal to thé number of grid
points at the interface, and is transferred into neighbouring processors

to determine the functional values at the interface.

7.4.2 Patched with Interpolation (Interface II)

Fig. 7.3 Topology of a Patched Interface
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The tbpology of the interface II is the same as the above case. But the
functional values at the interface are obtained using a high order
Lagrange interpolated polynomial. For simplicity, it is assumed that
subdomains Qi and Qj havé the same structure of grid and the same local
coordinate system, and globally, the coordinates in both subdomains are
symmetric to the interface Fij. Thus, we can establish a frame whoée
origin is on the interface for subdomains Qi and Qj, as shown in Fig.
7.4. Using the Lagrange interpolation polynomial, the functional values
at the interface can be obtained by the extrapolation from both sides of
the interface, which is given as
f = %L;-f(xi)# %Li-f(xi ) (7.1)

N-k+1
k=2 k=2

where x;, xi are the local coordinates in Qi and'Qj, f is the functional

value at the interface, (L-1) is thé number of the functional values in

a subdomain being used for the interpolation, and

.1 L X2
L=l= ol
]

xj - xi
J

Here xk = xk. Similar to the above case, the interior functional values
in‘a subdomain can be combined, using (7.1), to give a minimum stream of
data before transferred into neighbouring subdomains. In this case, the
'functional values at the interface may not satisfy the governing

equations.

Interface

Fig. 7.4 Global Coordinates for subdomains Qi and QJ
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7.4.3 Overlapped (Interface III)

Q
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L

Fig. 7.5 Topology of Overlapped Interface

The overlapped topology of the interface, as shown in Fig. 7.5, is an
easy way to implement parallel computation wusing the domain
decomposition approach. In Fig. 7.5, subdomain ABCD is overlapped with
subdomain EFGH (shaded area). It is noted that the right boundary of
subdomain Qi, BD, is in the interior of subdomain Qj, and the ‘lef‘t,
boundary of subdomain Qj, EG, is in the interior of subdomain Qi. Thus,
if the solution in the interior of the subdomains is known at a time
step, then the functional values along the lines of BD and EG are known.
These values are then transferred into neighbouring subdomains as new
boundary conditions to get the solution in the interior of éubdomains at
next time step, i.e. the values along EG are transferred into subdomain
Qj, and the values along BD are transferred into subdomain Qi. This
process continues until converged solutions in all subdomains ére
obtained. For the overlapped topology, the functional values at the
interface are given from the solution of the governing equations, but

the functional values within the overlapped region may not be unique.
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They can be determined from the solution of a subdomain, and can also be
given from the solution of another neighbouring subdomain. The

overlapped region may include 2 or more grid points overlapped.
7.5 Development of A General Computer Code

A parallel program, which can run on any number of processors without
any change of the program, is very attractive in engineering. To develop
this, we firstly consider the particular features of parallel
computation. Usually, these new considerations include: (1) how the data
is to be distributed in the memory; (2) how computations are distributed
among the processors; (3) inter-processor communications; and (4) inter-
processor connections (configurations). If a domain dec§mposition
technique and the distributed Meiko Computing Surface are used, the
first two items are easy to implement since each processor is assigned
to be responsible for the computation of a subdomain and the data used
in the computation is stored in the local memory of that processor. The
problem lies in determining how the master processor divides the whole
computational field into required subdomains, each with its local
properties such as the generation of local coordinates, assignment of
the initial field, and the way that the local slave processors ascertain
the location of the physical boundary and the interface in a subdomain.
It is very important to know the position of the interface in the
solution of a differential equation. This is because, on the one hand,
the interior solutions are greatly affected by the boundary conditions,
not only in their values and types, but also in their positions. On the

other hand, since the data communication 1is required across the
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Fig. 7.6 Basic Cases for A Two-Dimensional Problem

interface, the inter-processor communications and connections are
related to the position of interfaces. In other words, depending on the
position of the interfaces in a subdomain, the local slave processor
needs to know where the communications and connections are required to
the neighbouring subdomains. Thus, in terms of the topology of
subdomains, we may generate a program which can automatically distribute
the data and computation to each slave processor, and produce a
configuration for the communications and connections. To demonstrate
this, we consider a rectangular computational field for simplicity. For
this case, if it is assumed that in both the x and y directions, there
are 2 or more than 2 subdomains, then all the topology of subdomains can
be described within a set of 9 basic cases, as shown in Fig. 7.8, where
i indicates the case i, i=1,2,:--,9. If the program includes all these 9
basic cases, it can then be run on any array of processoﬁs (again only
if the number of subdomains in both the x and y directions are 2 or more

than 2).
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7.6 Numerical Results

To test the efficiency of a parallel computation, the two channel flow
problems, which have been studied using a multi-domain GDQ approach in
Chapter Five, are chosen to extend to parallel schemes. Some preliminary
results for a comparative study of the driven cavity flow problem to
demonstrate the application of the general computer code in section 7.5
are also presented. The efficiency of a parallel computation is defined

as

! (7.2)

where

t
1

time taken by the program on a single processor

N-tN = time taken by the program on N slave processors

Using the Meiko Computing Surface, the computational program is written
in Fortran operating under the MeikOS system, and the Occam harness is
edited by the Occam 2 language operating under the OPS (Occam
Programming System). The network of transputers consists of one host
transputer, one master transputer, and an array of slave transputers. In
the present research, the master transputer is also a slave transputer.
The host transputer is one which runs OPS. The master transputer
directly connects to the host transputer which handles I/0 with the
outside world (terminal, keyboard, files on disk, etc.), and which may
control a number of slave transputers. In particular, for the solution
of incompressible N-S equations, the master processor firstly reads

input data from a file on the disk, then broadcasts them to all the
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slave processors, and sends a message telling them to begin work. After
marching a time step, all the slave processors send the maximum
residuals in their local subdomains to the master processor, and the
master processor then compares them with a given tolerance. If they are
within the tolerance, the master processor then sends a message telling
the slave processors to cease their calculations and send the results to
the master processob for output to a file on the disk, if not, then
sends a message telling the slave processors to continue their tasks.

The slave transputers are the working processors.

7.6.1 The Flow past A Backward Facing Step

Masters

Slave Slave

Host

Slave

Fig. 7.7 Configuration of A Backward Facing Step Problem

The network of transputers for this case is shown in Fig. 7.7, which has
the same configuration as the physical system. Three slave transputers
(one is also a master transputer) are used for parallel simulation.
Almost the same program (without communications and connections) has
also been run on a single transputer. It was found that numerical

results obtained by a single transputer and multiple transputers are
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Fig. 7.8 Efficiency of the Parallel Simulation
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nearly the same, the efficiency of parallel computation is very high,
which is about 92.5% . Fig. 7.8 shows the length of recirculation zone
vs Reynolds numbers for both cases. Clearly, both cases give almost the
same values. Fig. 7.9 displays the efficiency of the parallel simu-
lation, where 13 = ts/tm, t; is the operation time taken by the single

processor, tm is the total operation time taken by 3 slave processors.

7.6.2 The Flow past A Square Step

Slave Slave Slave
Masters
Host Slave Slave

Fig. 7.10 Configuration of A Square Step Problem

The network of transputers for parallel simulation is shown in Fig.
7.10, which, again, has the same configuration as the physical problem.
To study the efficiency of the parallel computation, the program
(without communications and connections) was also run on a single
transputer. Numerical results for both cases are nearly the same. Fig.
7.11 shows the efficiency of parallel simulation for this problem, where
n = ts/tm, ts is the operation time taken by a single processor, tm is
the total operation time taken by 5 slave processors. The efficiency for

all the simulated cases is over 90% .
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Fig. 7.11 Efficiency of the Parallel Simulation

7.6.3 Comparative Studies of the Driven Cavity Flows

For this test case, we firstly use the vorticity-velocity formulation to
study the influence of the order of interpolated polynomials, the number
of grid points overlapped, on the accuracy of results and the
operational time. The comparison of the accuracy and operational time
needed, between three types of interfaces using the vorticity-velocity
formu}ation, and between the vorticity-velocity and vorticity-stream
function formulations, are also studied. Finally, the accuracy of
. results and the computational efficiency are discussed, as the number of
subdomains increases. In all the following cases, thé program is
produced using the general scheme proposed in section 7.5, which can be

run on any array of transputers without modification to the program. One
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type of network of transputers is shown in Fig. 7.12, which uses 5x5

slave transputers, and has the same configuration as the physical case.

Host

- ‘\s{:‘:’ Slave r_ Slave Slave Slave

Slave Slave Slave l Slave Slave

Slave Slave Slave Slave Slave

Slave Slave Slave Slave Slave

Fig. 7.12 Configuration of A Driven Cavity Flow Problem
7.6.3.1 Different Order of Lagrange Interpolated Polynomials

Using interface type II, it was found that, as L increases from 2 to 3,
the accuracy of results 1is improved, and more operational time is
required; and as L increases above 3, the accuracy of results keeps
nearly the same, and a little more operationalrtime is needed. Thus in
balance, to reduce the operational time and obtain accurate results, the
use of L=3 is recommended. Fig. 7.13 displays the velocities through the
" geometric centre of the cavity, where the array of 2x2 slave transputers
{(or subdomains), and a local mesh size of 11x11 for Re=100, 17x17 for

Re=400 in each subdomain, were used. Fig. 7.14 shows the non-dimensional

operation time, where the reference time T . is the operational time
re
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taken by the case of L=2.
7.6.3.2 Different Number of Grid Points Overlapped

Using interface Type III, it was found that, as’NO increases from 2 to
3, where NO is the number of grid points overlapped, the numerical resg-
lts are nearly the same, but the operational time is greatly reduced;
and when NO increases above 3, both the accuracy of results, especially
in the overlapped region, and the operational time, are reduced. The
reason for reduction of the accuracy in the overlapped region is tﬁat
solutions in this region may not be unique since they can be obtained in
a subdomain and in other neighbouring subdomains. Although the physical
positions in the overlapped region are the same, solutions derived from
different subdomains may not be consistent with each other. This is
particularly true when NO becomes relatively large. Hence, to obtain
~ accurate results with léss operational time, the use of NO=3 is reco-
mmended. Fig. 7.15 shows the velocities through the geometric centre of
the cavity, where the array of 2x2 slave transputers and the local mesh
size of 13x13 for Re=100, 17x17 for Re=400 in each subdomain, were used.
Fig. 7.16 shows the non—dimensional'Qperational time, where the refer-

ence time Tref is the operational time taken by the case of NO=2.
7.6.3.3 Comparison of the Interface Treatment
Using the vorticity-velocity formulation, the performance of the three

types of interface treatment introduced in section 7.4, has been

studied. Numerical experiment showed that the interface III gives the
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most accurate results and needs the least operational time, and the use
of interface II presents more accurate results and requires less
operational time than that of interface I. For the reason of this
behaviour, it is analysed that the solutions in the interior of each
subdomain can be affected by the boundary conditions and by the
solutions at the interface, thus any error introduced at the interface
"may spread into the interior solutions. Hence, although the interior
solutions are obtained by GDQ with high order accuracy; the low order
solutions at the interface may produce low order solutions in.the whole
computational field. Since the use of interfaces II and III give
solutions at the interface with high order accuracy, which is consistent
with the accuracy of intérior solutions in subdomains, and the use of
interface I gives solutions at the interface with accuracy of order one,
the interfaces II and III provide more accurate results than interface
I. On the other hand, although solutions at the interface are obtained
by high order polynomials for interface II, they may not satisfy the
governing equations. This is not the case for interface III. As a
result, the use of interface IIT gives more accurate results than
interface II. From numerical experiment, it seems that the higher order
accuracy of solutions at the interface may require fewer time steps, and
therefore less operational time, to steady state resolution. Fig. 7.17
gives the velocities through the geometric centre of the cavity, where
the array of 2x2 slave transputers and the local mesh siée of 13x13 for
Re=100, 17x17 for Re=400 in each subdomain, were used. Fig. 7.18 shows
the non-dimensional operational time, where the reference time T}ef is

the operational time taken by using interface I.
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7.6.3.4 Vorticity-Velocity and Vorticity-Stream Function Formulations

We have compared the numerical results and the operational time using
two formulations of the N-S equations, and found that the vorticity-
stream function (V-S) formulation provides more accurate results and
requires less operational time even though more time steps are taken,
than the vorticity-velocity (V-V) formulation. To analyse this
behaviour, it is noted ‘that in the present research, two boundary
conditions on the solid boundary are impleménted for the solution of the
stream function while only one boundary condition is used for the
solution of each velocity component. This may be the reason that the
vorticity-stream function gives better results. The vorticity equation
for both V-S and V-V formulations are exactly the same, but the V-S
formulation needs to solve only one Poisson equation for the stream
function while the V-V formulation needs to solve two Poisson equations
for two components of velocity. Thus although the V-S formulation needs
more time steps to steady state resolution, it requires less operational
time than the V-V formulation. Fig. 7.19 displays the velocities through
the geometric centre of the cavity, where the array of 2x2 slave
transputers and the local mesh size of 11x11 for Re=100, 17x17 for
Re=400 in each subdomain, were used. Fig. 7.20 showsbthe non-dimensional
operational time, where the reference time T;ef is the operational time

taken by the V-V formulation.
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7.6.3.5 The Global GDQ Approach and the Multi-Domain GDQ Approach

Compared with the global GDQ results, the multi-domain GDQ results,
obtained by parallel computation, demonstrated that they are less
accurate even though a larger number of grid points was actually used in
the whole domain. This is because, on the one hand, although the total
number of grid points in the full computational field for the multi-
domain GDQ approach is larger than that for the global GDQ approach, the
order of the discretization of derivatives in subdomains from the multi-
domain GDQ approach is wusually less than that from the global GDQ
approach. Thus, the accuracy of solutions in subdomains is generally
less than the accuracy of solutions obtained globally’ in the whole
domain. On the other hand, the concept of multi-domain introduces the
interface. Usually, the solutions at the interface are less accurate
than those in the intefior of subdomains. In other words, additional
errors are introduced at the interface. As analysed in section 7.6.3.3,
the error at the interface may spread into the interior of subdomains
and reduce the accuracy of solutions in the whole domain. So, the
increase of the number of interfaces may decrease the accuracy of
results. Keeping the total number of grid points the same, as the number
of subdomains increases, the number of interfaces increases and the
accuracy of solutions in subdomains is reduced. As a result, the

accuracy of solutions in the whole domain is reduced.
Another interesting result is that the total operational time taken by

all the slave processors using the multi-domain GDQ approach may be less

than that taken by a single processor using the global GDQ approach if
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the total number of grid points in the whole domain is kept the same. As
shown in Chapter Four, the allowable time step sizes are determined by
the eigenvalues of the spatial discretization matrix, and the eigenva-
lues increase as the number éf grid points increases. Thus, if the total
number of grid points in the overall domain is kept the same, the multi-
domain GDQ approach may use much larger allowable time step sizes in
subdomains than the global GDQ approach in the whole domain. Therefore,
if one subdomain is allocéted to one slave processor, each slave proce-
ssor may take much less operational time to the convergent solutions and
the total operational time may be less than that taken by a single pro-
cessor. Fig. 7.21 displays the velocities through the geometric centre
of the cavity, where the "single" indicates the global GDQ results using
the mesh size of 21x19, and the "parallel 3x3 or 4x4" means that the
array of 3x3 or 4x4 slave processors was.used for the multi-domain GDQ
results. The numerical solutions are obtained by using the vorticity-
stream function formulation and interface I. For the Reynolds numbers of
100, 400, the local mesh size in each subdomain of 10x10 for the array
of 3x3 slave processors, and 8x8 for the array of 4x4 slave processors,
were used. Obviously, as the number of subdomains increases, although
the total number of grid points is increased, the accuracy of solutions
is reduced, especially for the high Reynolds number cases. Fig. 7.22
shows the non-dimensional operational time, where the reference time
T}ef is the operational time taken by a single processor using the glo-
bal GDQ approach with the mesh size of 21x19. This figure demonstrates
that the total operational time taken by all the slave processors may be
less than that taken by a single processor for some cases. For a givén

array of slave processors, if more grid points in each subdomain, e.g.
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the local mesh size of 15x15 for the array of 2x2 slave processors, are
used, the total operational time taken by all the slave processors may

be larger than that taken by a single processor.
7.7 Concluding Remarks

The multi-domain GDQ approach has been shown to suit and to benefit from
parallel computation. The computational efficiency of this approach on
the distributed parallel computer is very high when the number of sub-
domains is not large. The overlapped interface provides the most
accurate results and needs the least operational time, éompared with the
patched interface using the continuity condition or using the Lagrange
interpolation scheme. If high order numerical approaches such as the GDQ
approach are used in the local subdomains, it is better to use a high
order scheme for the solutions at the interface to keep high order reso-
lutions in the whole computational field. The vorticity-stream function
formulation gives more accurate results and requires less operational
time than the vorticity-velocity formulation. Keeping the number of grid
points in the whole domain the same, as the number of subdomains
increases, the accuracy of solutions is reduced, and the total opera-
tional time taken by all the slave processors using the multi-domain GDQ
approach may be less than that taken by a single processor using the
global GDQ approach. The general codes, which can be run on any array of
processors without modification to the program, appear to offer-a way
forward in engineering applications. The Meiko Computing Surface is a
reconfigurable parallel computer, which is easy to use, and to control

the placement of and the communication between processors.
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CHAPTER EIGHT
Conclusions and Prospect of Future Research

8.1 Conclusions

The new numerical approaches of generalized differential quadrature
(GDQ) and generalized integral quadrature (GIQ) have been developed in
this research. Their application to the solutions of incompressible
viscous flows with§ut discontinuities involving parallel simulations was
also reported. Some conélusions drawn from this research are listed as

follows:

(1) The GDQ approach, developed in this research, is a global method,
which overcomes the difficulty of differential quadrature (DQ) in
obtaining the weighting coefficients for the discretization of the first
derivative when the number of grid points is large and the distribution
of grid points is arbitrary. The determination of the weighting
coefficients for any order of derivatives are very easy. The weighting
coefficients of.the second or higher order derivatives are obtained from
those. of the first derivative by a recurrence relationship. Thus, the
application of the GDQ approach in engineering may be more widespread
than the DQ approach. Although the application of the GDQ approach is
demonstrated for CFD in this research, it can also be applied to other

engineering problems in continuum media.
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(2) Some basic features of the GDQ approach such as arising in stability
conditions differ from those of low order numerical schemes. In the GDQ
approach, features, such as the allowable time step size, are dependent
~on the global charactéristics of the problem such as the global
distribution of grid points, while in low order numerical approaches
such as finite differences, the features are dependent on ﬁhe local
characteristics of the problem. In particular, the GDQ approach requires
the grid to be stretched near the boundary to ensure stability of
solutions. A uniform grid or a grid stretched near the mid-point is not

suitable for solving the incompressible N-S equations.

(3) It has been shown that the GDQ approach developed can be considered
as the highest order finite difference scheme. It has also been shown
that, both the GDQ approach and the spectral collocation method can give
the same results if the same grid points are used for both approaches
although they are based on different mathematical foundations. This is
demonstrated by the fact that when the coordinates of grid points are
chosen as the roots of a Chebyshev polynomial, both the GDQ approach and
the spectral Chebyshev collocation method give the same weighting

coefficients for the discretization of the first derivative.

(4) The GIQ approach developed is also a global method, where not only
the integral of a function over the whole domain but also the integral
of a function over a part of the whole domain can be approximated by the
combination of all the functional values in the overall domain. They

have the same order of numerical errors.
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(5) The GDQ and GIQ approaches can be used with arbitrary distributions
of grid points. Thus, they can be applied in a general coordinate

system.

(6) Application of GDQ to the solutions of the incompressible N-S
equations showed that the GDQ approach can achieve the same accuracy
using just a few grid pointsband needs much less computational time, as
compared with low order numerical approaches using a large number of

grid points.

(7) Application of the GDQ-GIQ approach to the solutionsvof the boundary
layer equations demonstrated that this approach is very effiéient,‘and
can achieve the same accuracy using Jjust a few grid points as
conventional schemes such as the Keller-box finite difference scheme. In
the direction normal to ihe surface, the derivatives and the integral
are discretized by the GDQ and GIQ approaches. In other directions, the
derivatives can be discretized by the GDQ approach or by the local
finite difference scheme. It is better to use the stream function askthe
dependent variable to achieve more accurate results and less computa-
tional time needed. The use of the GDQ approach in the streamwise direc-

tion is very sensitive to discontinuities such as a separation point.
(8) The multi-domain GDQ approach combines the ability to deal with
geometric complexity along with high order accuracy. It provides a

promising way to treat increasingly complex problems.

(8) For parallel simulation of the incompressible N-S equations using a
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multi-domain GDQ approach, an overlapped interface gives more accurate
results and needs less operational time than a patched interface. The
vorticity-stream function formulation presents more accurate solutions
and requires less ope?ational time than the vorticity-velocity
formulation. The computational efficiency is very high when a small
number of subdomains and a multi-domain GDQ method are used. The
increése of the number of subdomains may reduce the accuracy of results
and the computational efficiency. For any two dimensional problem in
engineering and using the multi-domain concept, the achievement of a
general code, which can be run on any array of processors without
modification to the program, is possible. Extension to three dimension

is expected to be possible.

(10) The Meiko Computing Surface is a flexible, reconfigurable parallel

computer, on which parallel computation is easily implemented.

8.2 Prospect of Future Research

The research work reported in this thesis is by no means complete.
Indeed, both the application and the algorithms themselves are still in

their infancy. Some topics for further research are suggested as:

(1) The application of the GDQ approach to other engineering problems
such as in solid mechanics is of interest area in the future. In CFD,
the application of the GDQ method to compressible flows, where shock
waves may eXxist, is a challenging area. To capture the shock wave,

available schemes adopted by other numerical methods, such as artificial
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viscosity and filtering, need to be introduced.

(2) When the number of grid points is large, the explicit allowable time
step size becomes extremely small, and hence, a large number of time
steps is required for the convergent results. To speed up the
convergence, an implicit scheme can be used, which allows the use of a
bigger time step size, and therefore needs 1less time steps for
convergence. To further accelerate the convergence, the multi-grid
approach and some preconditioning schemes can be used. It is expected
that the application of a multi-grid GDQ approach will be easy and
straightforward since in the GDQ approach, the interpolation from fine

to coarse or from coarse to fine grids is very easy and accurate.

(3) The application of the GDQ approach to turbulent flows, especially
in the incompressible case, is another interest area where an appro-

priate turbulence model need be introduced.

(4) If more complex problems are tackled, the physical space will need
to be transformed into computational space. Thus, grid generation

schemes will be required, especially for the three-dimensional case.

(5) The development of the GDQ element method appears to be an
attractive area in the future. This approach can also combine the
geometric complexity with high order accuracy. The solutions over all
the computational domain including the interface between elements are

obtained globally through solutions of the governing equations.
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(6) In mathematics, it has been proved that any smooth function in a
domain can be approximated by an optimal polynomial. Since in the GDQ
approach, the approximated polynomial is related to the distribution of
grid points, there should exist a optimal distribution of grid points
for a smooth problem. This may be achieved by using an adaptive grid

approach.

(7) Tﬁe application of a marching scheme of the GDQ;GIQ approach to the
solution of the boundary layer equations could be fruitfully studied in
the future. Two schemes could be tested. One scheme would apply the GDQ
and GIQ methods only in the normal direction to the surface. In the
streamwise or the crossflow direction, conventional local finite
difference schemes, which make it possible to march the solution alohg
the streamwise or the crossflow direction, would be used. Another scheme
would divide the computational domain in the streamwise and crossflow
directions into several subdomains (blocks). Thus, the surface would be
composed of several blocks. In one block, the GDQ and GIQ approaches
would be applied in all directions, that is, solutions in one block
would be obtained globally. After getting all the solutions in a block,
the solutions on the boundary of this block would be taken as the
initial values for the solution of another neighbouring block. This
procedure would continue'by marching the solution block by block until

all the solutions in the computational field are obtained.
(8) Some other functions such as triangular polynomials could be used as

the base functions for the approximation of the problem. Triangular

polynomials are well suited to the approximation of periodic problems.
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If other functions are used, the formulation of the weighting
coefficients for the discretization of derivatives could be obtained

using a similar approach as in this thesis.

(9) The efficiency of parallel computation using the multi-domain GDQ
approach, especially the study of the treatment of the interface, needs
to be investigated further. Parallel simulation using the GDQ element
method is another area of interest in parallel computation. In addition,
parallel simulation wusing conventional finite differences, finite

elements and finite volumes methods is also a future area of activity.
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APPENDIX A

Weierstrass Theorem and Definition of A Vector Space

Weierstrass Theorem : Let f(x) be a real valued continuous function

defined in the closed interval [0, 1], there exist a sequence of
polynomials P;(x) which converge to f(x) uniformly as n goes to

infinity.

The proof of this theorem is shown in many text books. For details, see

the book of Bellman and Roth (1886).

A vector space V over a field F is defined as follows: it is a set of

elements called vectors such that any two vectors « and B of V determine

a (unique) vector o+ as sum and that any vector « from V and ¢ from F

determine a vector ca in V with the properties:

(1) Associativity : a + (B + Y) = (o + B) + ¢

(2) Identity : there is a vector O in V such that « + 0 = « for all «

(3) Inverse Law: there is a solution in V to the equation o« + x = O,
that is in V

(4) Commutative Law : for all o« and B in V, a + B =B + «

(5) Distributive Law : c(a + B) = ca + cB

(6) (ab)a = a(ba), where a, b are in F

(7) Unity : 1la =
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APPENDIX B

Application of The GDQ Approach in the Domain [xi_l, xi+1]

As an example, we will show that the discretization of the first order
derivative by the GDQ approach in the domain [Xi-1’ x1+1] is the same as
that given from the second order finite difference scheme. Clearly, the

domain [x1—1’ xi+1] includes three grid points x _, X X0 and it is

i-1 i+1

known that any smooth function in this domain can be approximated by a
polynomial of degree 2, which constitutes a 3-dimensional polynomial
vector space. Thus the weighting coefficients of the first derivative
for this specific case can be determined as follows according to

formulation (3.7), (3.9)

M(x) = (x—xi_l)-(x-xi)-(x—xi+1) (B.1)
(1) _ ) _
M (Xl—l) B (xi—l_xi) (Xi—1 Xi+1) (B.2)
(1) _ _ . _
M (xl) = (xi X1-1) (xi X1+1) (B.3)
(1) _ _ . -
M (x1+1) - (x1+1 Xi) (x1+1 Xi—l) (B.4)
and
2 = —A2/[(A1+A2)A1] (B.5)
& i T Al/[(A1+A2)A2] (B.B)
a};i = (AZ—AI)/(A1°A2) (B.7)
where
A =x -x
1 i i-1
A =x - X
2 i+l i

Hence, the first derivative of a function f can be approximated as
1
fx(xl) =¥

-f(xj) (B.8)
j=-1

1,14]
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It is easy to show that (B.8) is exactly the same as that from the
second order finite difference scheme and if the grid is uniform, (B.8)
can be reduced to

fx(xi) = 0.5[f(xi+1) - f(xi—1)]/A (B.9)

where A=A = A
1 2
which is the same as used in the finite difference scheme. In the same

manner, the discretization of the first derivative at xi . and xi+1 can

be written as

21_\1+A2 A1+A2 A1
80407 - g, T 1E 1) T g s, F) (B0
1 2 2 12 1 2 2
A2 A1+A2 2A2+A1
fx(x“1)=(——A T2 £z, ) - x5 T g5 £lx ) (B.11)
1 2 1 12 1 2 1

which are exactly the same as those from the second order finite
difference scheme. For the overall domain case, it is suggested. that
such a domain can be divided into N-1 elements with grid points, X

R xu. At location xi, i=2,3, :++, N-1, the first order derivative

, x 1.

of a function can be discretized by (B.8) in the element [xi_ 141

1

It is noted that in the case here, the two neighbouring elements [xi_

’

1

x“l] and [xi, x“z], used for the discretization of the first

derivative at collocation points X, and X, _, are overlapped with the

1+1
region of [xi, X1+1]' This behaviour is different from the standard
finite element approach where the neighbouring elements are patched.
Similarly, at Xl and xN, the discretization of the first order
derivative of a function can be obtained by (B.10) in the element [xl,
xS] and by (B.11) in the element [Xu—z’ Xn]° It can be concluded that

any higher order finite difference scheme can be designed using this

technique in a straight forward way.
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APPENDIX C
Time-Split MacCormack Finite Difference Scheme

For demonstration, we consider a two-dimensional Burger equation as

2 2
ou oF aG d"u du

+ + =pul — + —) (C.1)
ot ax dy P ay2

The time-split MacCormack scheme "splits" the original MacCormack scheme

into a sequence of one-dimensional operations thereby achieving a less
restrictive stability condition. The one-dimensional difference

operators Lx(Atx) and Ly(Aty) are defined as

u = L (At )u" | (C.2)
i, X x 1,j
which is equivalent to the two-step formula
: At °
u =u - == (F - F% ) + p-At -8°u” (C.3)
i,] i,j Ax i+1,) i,] x x 1,)
- At - - _
* _ 1 n »* _ x * _ * . . 2 *
4= 3 [u.i,j + g B (F‘i,j Fi—l,j) + At Bxui’j] (C.4)
o ui+1 —2ui + ui_1
where & u o= »J ;j »J
x 1) (Ax)
and u. _ = L (At )u” A (C.5)
i) y y 1,]
which is equivalent to the following two-step formula
‘; n Aty n n 2 n
= - _Y - . . C.6
U,y = U,y T ay (Cpga TGy At S (C.8)
- At - - -
* 1 n * y * * 2 *
= = - 2 - . . C.7
%3 2 [ui,j T T Ry (Gi,j Gi,j-i) * Aty ayum] (€.
2 Yo 2Nt Y g,
where J8 ui ; = 3 ;j »J
’ (Ay)

A second order time-split MacCormack scheme can be constructed by

applying the Lx and Ly operators to u?_ in the following manner

»J

n+l _ At At n
ui,j = Ly( Z_)Lx(At)Ly( Z_)ui,j (C.8)
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This scheme has a truncation error of O[(At)%, (Ax)?, (Ay)?]. Generally,
a scheme constructed by a sequence of one-dimensional operators has
the following features: (1) stable, if the time step of each operator
does not exceed the allowable time step size for that operator; (2)
consistent, if the sum of the time steps for each of the operators are
equal; (3) second order accurate, if the sequence is symmetric.

Accordingly, other sequences can be formed, for example,

n+l _ At At At At .m n
ul,j - [Ly( Z_)Lx( 2_)Lx( Z_)Ly( ’2—')] ui,j (C.9)
where m is an integer.
APPENDIX D

The SIP (Strongly Implicit Procedure) and Modified SIP

The strongly implicit procedure is presented by Stone (1968) for solving
the algebraic equations arising from the numerical solution of second
order partial differential equations by a finite difference scheme. To
illustrate this approach, we consider a set of algebraic equations
arising from the use of the second order finite difference scheme for
Poisson’s equations as

(D.1)

B u +D u +E u  +F u +H u . =R
i,j 1,j-1 i,j i-1,j i,j 1,5 i,j i+1,] i, 1,j+1 1i,]

which can be written in matrix form as

[Alu=r : (D.2)
where [A] is a matrix with five nonzero diagonals, u is a vector of
unknowns, and r is a vector of known quantities. The SIP scheme is to
replace the matrix [A] by a modified form [A+P] such that the modified

matrix can be decomposed into upper and lower triangular sparse matrices
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denoted by [U] and [L]. An iterative procedure is defined by writing
(D.2) as

[A+P]1u™! = r + [PIW" (D.3)
Decomposing [B] ; [A+P] into the upper and lower triangular matrices [Ul
and [L], (D.3) can be written as

[L1[UIe™! = r + [PIu" (D.4)
Defining an intermediate vector as v = [Uld™!, the following

two-step algorithm can be formed

step 1: [Ljv*?

r + [Plu” (D.5)
step 2: (U™ = v ' (D.6)
This procedure is repeated iteratively. Stone (1968) selected [P] so
that [L] and [U] have only three nonzero diagonals with the principal
diagonal of [U] being the unity diagonal. Furthermore, the elements of
[L] and [U] are determined such that the coefficients in the matrix [B]
in the locations of the nonzero entries of matrix [A] are identical with
those in [A]. Two additional nonzero diagonals appear in [B]. The
procedure 1is implicit in both the x and y directions. The
details of this procedure are given by Stone (1968). Here some

results are listed. With the form of matrix [A] as

the matrix [L] and [U] can be written as

[A] =

, =212~
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[L] =

NN

/

» Ul =

L.

The coefficients are determined by the following formula
Bi 5
i,j-1
Di 5
.y = T (D.8)
i-1,j
4,57, 5Py 58 ia*C i) TP T Gt (D.9)
Fi - (x-bi i1, 5-1
e = ) s ) s J- A (D. 10)
i,3 d
i,]
Hi 5 - a-ci jfi 1,1
= 3 b “1 .11
f‘i’j T j | (D.11)

Here o is a parameter. When the program operates in the relaxation mode,
a can be varied according to the following relationship

«=1- (Der)™™ , n=0,1, -+, N (D. 12)

where N is the maximum number of elements in the a sequence, Der = 1-a

max

We have developed the modified strongly implicit procedure when the

matrix [A] has a form

For this case, the matrices [L] and [U] have the same form as shown

above, but the formula for the determination of the coefficients are
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different, which are given as follows

Bi j+a-Gij
LR e — (D.13)
i,j-1
Di j+oc-Sij
ci,j = m‘_‘-f,———‘—— (D. 14)
i-1,j)
dy, 57, by 8 5% T,y Gy T 5y
- -f -c e (D. 15)
i,j i,j-1 i,] i-1,j
Fi 3 - oc-bi jei j_1+oc-G1 5
ei’j = 3 (D. 18)
i,]
H 3 7 %% A j+a'si j
£, = J _ (D. 17)
i,)
APPENDIX E

LU Decomposition Approach

A set of algebraic equations can be written as a form of matrix

[AIX =D (E. 1)
The matrix [A] can be decomposed_into‘two upper and lower triangular
matrices [U] and [L], which is written as

[A]l = [L] [U] (E.2)
Introducing an intermediate vector Y, and setting

[UIX=Y (E.3)

(E.1) can be reduced to

[L]IY =D (E.4)
The solutions of_(E.4) and (E.3) can be written as
i-1
Yi = bi —jgﬂ L&ij , i=12, -, N | (E.5)
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N
Xi = (Yi - ¥ U'inj)/Uii , i=N, N1, -+, 1 (E.8)
j=1i+1
The components of L and UlJ can be calculated as
i-1
= - iz i .7
Uij Zle mj (J = 1) (E.7)
j-1
- _ N s .8
L, A ELimUmj)/Ujj , (i>J) (E ),
; m=1
APPENDIX F

‘Drag Coefficient for the Flow past A Circular Cylinder

To calculate the total drag coefficient on the surface of a cylinder, we
need to calculate the surface pressure distribution firstly which can be
obtained by integrating the tangential component of the N-S equations,

for the case here, that is

1 £
p = EJ‘O @, d€ , with p(0) = 0 (F.1)

The pressure coefficient cp is equal to 2p on the surface, the
tangential stress is given by o = w/Re. Thus the total drag coefficient
can be written as

C =C_+C : (F.2)

D DP DF
with
Cp = 2 J; p-yE-dE | (F.3)
-
CDF = - '—Re— Jo w°x§'d€ (F-4)
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