

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Generalized Differential-Integral Quadrature and
Application to the Simulation of Incompressible

Viscous Flows Including Parallel Computation

by

SHU Chang, B.Sc., M.Sc.

A Thesis Submitted to the Faculty o f Engineering, the University o f Glasgow
fo r the degree o f Doctor o f Philosophy

April 1991

© C Shu, 1991

ProQuest Number: 10987051

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10987051

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Wang Hang

CONTENTS

Acknowledgements -....................................... vi

Summary.. vi i

Chapter One: Introduction ... 1
1.1 The Current Numerical Techniques in CFD 1

1.1.1 Time Discretization................................... 2

1.1.2 Spatial Discretization 3

1.1.2.1 Finite Difference Methods 3

1.1.2.2 Finite Element Methods 4

1.1.2.3 Finite Volume Methods 5

1.1.2.4 Spectral Methods 6

1.1.2.5 Boundary Integral Methods T

1.1.3 Numerical Methods of the Resultant Equation system 8

1.2 Challenges in CFD ... 9

1.3 The Scope of This Research..................... 10

1.4 Layout of This Thesis 12

Chapter Two: Governing Equations 14
2.1 Introduction.. 14

2.2 Incompressible Navier-Stokes Equations 14

2.2.1 Differential Form............ 14

2.2.2 Non-Dimensional Form................................. 17

2.3 Boundary Layer Equations 19

2.4 Governing Equations in the General Coordinate System 20

2.4.1 2D Incompressible Navier-Stokes Equations 20

2.4.2 Incompressible Boundary Layer Equations................ 22

Chapter Three: Generalized Differential and Integral Quadrature 24
3.1 Introduction.. 24

3.2 Differential Quadrature 25

3.3 Generalized Differential Quadrature 27

3.3.1 Polynomial Approximation in the Overall Domain 27

3.3.2 Weighting Coefficients for First Derivative 28

3.3.3 Weighting Coefficients for Higher Derivatives.......... 30

3.3.4 Extent ion to the Multi-Dimensional Case 32

3.3.5 Comparison with the Finite Difference Scheme 36

3.3.6 Specific Results for Typical Distributions of Grid Points 40

3.4 Generalized Integral Quadrature 43

3.4.1 Introduction... 43

3.4.2 One Dimensional Integrals with Specified Grid Points •••• 45

3.4.3 Multi-Dimensional Integrals with Specified Grid Points •• 50

3.5 Concluding Remarks ... 51

Chapter Four: Error, Stability Analysis and Model Problems 53
4.1 Introduction.. 53

4.2 Error Estimations 54

4.2.1 The Function Approximation 54

4.2.2 The Derivative Approximation 56

4.2.3 The Integral Approximation 57

4.3 Stability Analysis ... 58

4.3.1 Spatial Discretization 59

4.3.2 Time Discretization.................................. 60

4.4 Convergence ... 63

4.5 Eigenvalues of Specific Matrices 64

4.5.1 The Convection Operator 64

4.5.2 The Diffusion Operator 70

4.5.3 The Convection-Diffusion Operator 71

4.6 Applications to Model Problems 74

4.6.1 Solutions of the Burger’s Equations 74

4.6.2 Solution of the Integral Equation..................... 77

4.7 Concluding Remarks ... 78

Chapter Five: Solutions of the 2D Incompressible N-S Equations 79
5.1 Introduction................................... 79

5.2 Discretization and Boundary Conditions 82

5.3 Single-Domain Results 85

5.3.1 Driven Cavity Flow..................................... 85

5.3.2 Natural Convection in A Square Cavity 92

5.3.3 The Flow past A Circular Cylinder...................... 102

5.3.4 The Flow past A Backward Facing Step.................. 107

5.4 Multi-Domain Results 112

5.4.1 The Concept of Domain Decomposition 113

5.4.2 The Flow past A Backward Facing Step.................. 115

5.4.3 The Flow past A Square Step................ 123

5.5 Concluding Remarks .. 131

Chapter Six: Solutions of Boundary Layer Equations 132
6.1 Introduction.......................... 132

6.2 GDQ-GIQ Approach 134

6.2.1 Stream Function Chosen as Dependent Variable 135

6.2.2 Primitive Variable Chosen as Dependent Variable *''* 137

6.3 Steady Boundary Layer Solutions 139

6.3.1 BIasius Boundary Layer 139

6.3.2 Two-Dimensional Problem 141

6.3.3 Three-Dimensional Problem 143

H i

6.4 Unsteady Boundary Layer Solutions 149

6.5 Concluding Remarks 155

Chapter Seven: Parallel Simulations of Incompressible N-S Flows •••• 156
7.1 Introduction 156

7.2 Parallel Architectures 157

7.2.1 Multiple Vector Processors 158

7.2.2 MIMD Concurrent Processors 158

7.2.3 Transputer-Based Systems 160

7.2.3.1 Transputer Hardware 160

7.2.3.2 The Meiko Computing Surface 162

7.3 Parallel Algorithms ••••................................... 164

7.3.1 Event Parallelism.................... 165

7.3.2 Geometric Parallelism................................. 165

7.3.3 Algorithmic Parallelism 166

7.4 Domain Decomposition and Topology of the Interface 167

7.4.1 Patched wth Continuity Condition (Interface I) 168

7.4.2 Patched with Interpolation (Interface II) 168

7.4.3 Overlapped (Interface III) •••••..................... 170

7.5 Development of A General Computer Code 171

7.6 Numerical Results ... 173

7.6.1 The Flow past A Backward Facing Step.......... 174

7.6.2 The Flow past A Square Step 176

7.6.3 Comparative Studies of the Driven Cavity Flows 177

7.6.3.1 Different Order of Lagrange Interpolated Polynomials 178

7.6.3.2 Different Number of Grid Points Overlapped 180

7.6.3.3 Comparison of the Interface Treatment 180

7.6.3.4 Two Versions of the N-S Equations 184

7.6.3.5 The Global and Multi-Domain GDQ Approaches 186

iv

7.7 Concluding Remarks 189

Chapter Eight: Conclusions and Prospect of Future Research 190

8.1 Conclusions .. 190

8.2 Prospect of Future Research 193

References and Bibliography 197

References ... 197

Bibliography................................. 205

Appendices: .. 207

A. Weierstrass Theorem and Definition of A Vector Space 207

B. Application of the GDQ Approach in the Domain [x. , xi+1̂ 208

C. Time-Split MacCormack Finite Difference Scheme 210

D. The SIP (Strongly Implicit Procedure) and Modified SIP 211

E. LU Decomposition Approach 214

F. Drag Coefficient for the Flow past A Circular Cylinder 215

v

ACKNOWLEDGEMENTS

The author would like to express his deepest appreciation to his super­

visor, Professor Bryan E. Richards for his support and advice throughout

this study and especially for his help in the writing of this thesis.

The author also wishes to acknowledge Professor Henry Y. Wong for his

help in many aspects, Dr. Qin Ning, Dr. Jiang Dachun, Dr. Wang Zhijian,

Mr. Xu Xiao, for their valuable discussions, during this research.

Thanks are also due to Miss Margaret Simpson, the secretary of the

department, for her kind help, to the staff of Glasgow University

Computing Centre, especially to Dr. Derek Higgins, Dr. Paul Rosenberg,

for their fruitful service.

The author is indebted to Professor Cao Qipeng of Nanjing Aeronautical

Institute, for his many suggestions and encouragement during this period.

Finally, the author would like to thank his parents and especially his

wife, Hang, for their support and encouragement throughout the course of

this study.

The author gratefully acknowledges the support of the University

Scholarship of Glasgow and an ORS award from U.K. Government.

SUMMARY

This research covers three topics: the development of numerical

techniques for the solution of partial differential and integral

equations; simulations of incompressible viscous flows using these

techniques; and their extension to parallel computation of the

incompressible N-S equations.

The differential quadrature (DQ) technique, presented by Bellman et al

(1972, 1986), was extended to a general case in this research, based on

the analysis of a high order polynomial approximation in the overall

domain and the analysis of a linear vector space. Generalized

differential quadrature (GDQ) has overcome the difficulty of DQ in

solving a set of algebraic equations to obtain the weighting

coefficients for the discretized derivatives. In the GDQ method, the

weighting coefficients for the first derivative can be easily calculated

by an algebraic formulation without any restriction on choice of grid

points. The weighting coefficients for the second or higher order

derivative can then be determined using a recurrence relationship.

The relationship between GDQ and other numerical techniques has been

investigated. It was found that the GDQ method can be considered as the

highest order finite difference scheme for a domain with a given mesh.

Application of both GDQ and Chebyshev pseudospectral methods provides

the same weighting coefficients for the first derivative when the grid

points are chosen as the roots of the Nth order Chebyshev polynomial for

both methods.

Some basic features of the GDQ method such as error, stability

analyses, and the influence of the distribution of grid points and the

types of boundary conditions on the eigenvalues of the GDQ spatial

discretization matrix have been studied. It was found that improvements

in stability were achieved when the grid was stretched near the

boundary. This was not the case when the grid was stretched near the

mid-point even for very small minimum step size. This behaviour differs

from conventional low order finite difference schemes in which the local

optimum time step size can be evaluated through the CFL condition. In

the GDQ method the time step size is evaluated by the eigenvalues. A

uniform grid gives a smaller value of the maximum eigenvalue compared

with the stretched grid, but it may cause stability problems. Hence a

uniform grid allows the use of a larger time step size, and hence needs

less computation time if the solution is stable. For

convection-diffusion problems such as the vorticity transport equation

in incompressible flows, a uniform grid may cause an instability problem

when the diffusive term becomes relatively small compared with the

convective term. For this case, the grid stretched near the boundary is

recommended to use for improving the stability. The Dirichlet boundary

conditions make the solution more stable than Neumann boundary

conditions, but give a larger value of the maximum eigenvalue, resulting

in more computation time.

A generalized integral quadrature (GIQ) method was also developed, based

on the same concept as GDQ. In the GIQ method, not only the integral of

a function over the whole domain but also the integral of a function

over a part of the whole domain can be approximated by the combination

of all the functional values in the whole domain. The weighting

coefficients for GIQ can be obtained by inverting the matrix which is

derived from the GDQ formulation. The estimation of the errors incurred

by GIQ was also studied.

For the application of GDQ to CFD problems, the 2D, laminar,

incompressible N-S equations have been chosen to validate the approach.

Solutions include: driven cavity flow; flow past a circular cylinder;

flow past a backward facing step; and natural convection in a square

cavity. For direct comparison with other numerical techniques, driven

cavity flow was also simulated using the second order time split

MacCormack finite difference scheme for the vorticity equation and the

SIP (strongly implicit procedure) preconditioning technique for the

stream function equation. Numerical experiments showed that GDQ results

using appreciably fewer grid points are more accurate, and need much

less computation time than conventional low order finite difference

results using a large number of grid points. Furthermore, to relieve the

time step size as the number of grid points increases, and towards the

treatment of complex problems, the multi-domain GDQ technique was

developed and presented. This was then applied to solve specific

complicated flow cases. Examples include the flow past a backward facing

step with 3 subdomains, and the flow past a square step with 5

subdomains. A GDQ-GIQ approach for the solution of the boundary layer

equations has also been developed in this research. The ID, 2D, 3D
steady and 2D unsteady boundary layers have been simulated using this
approach, each illustrated by means of a specific test problem.

Numerical results are demonstrated to be very accurate compared with

exact or other numerical results, with the use of only a few grid

points.

To test parallel computation on the transputer-based Meiko Computing

Surface, the above mentioned multi-domain GDQ solutions of the flows

past a backward facing step and a square step were simulated using 3 and

5 slave processors. The program on each processor was written in FORTRAN

and run from an Occam harness to control the placement of, and the

communication between, processors. For the driven cavity flow problem,

two formulations of the N-S equations (vorticity-stream function and

vorticity-velocity) and three methods for dealing with the interfaces

between subdomains (i.e. patched by enforcing continuity to the function

and its normal derivative; patched using a Lagrange interpolation

scheme; and overlapped) were studied comparatively. Additionally, an

idea for the development of a general code which can be run on any array

of transputers without modification to the program was discussed, and

was successfully applied to the driven cavity flow problem.

x

Chapter One Introduction

CHAPTER ONE

INTRODUCTION

1.1 The Current Numerical Techniques in CFD

It is well known that Newtonian fluid flow can be governed by the

Navier-Stokes (N-S) equations. If the appropriate initial and boundary

conditions are given, then the problem is well-posed. The ideal way to

find solutions of the N-S equations is through an analytical method.

Unfortunately, it is impossible to find analytical solutions of the NH5

equations for a general case since the N-S equations are highly

nonlinear. Conclusions from linear analysis, such as the principle of

linear superposition, are not valid. In fact, only for flows past

idealized geometries, such as Poiseuille flow, can analytical solutions

be found with restrictive simplifying assumptions. To investigate fluid

dynamic systems for practical cases, other ways need to be found. One

way is the use of computational fluid dynamics (CFD) to solve the N-S

equations or their simplified forms such as the Euler equations, the

potential equations, the boundary layer equations and the triple-deck

equations on modern digital computers. Compared with the analytical

approach, CFD requires relatively few restrictive assumptions and gives

a complete description of the flow field for all variables. Quite

complex configurations can be treated, and the methods are relatively

easy to apply. Relative to the experiments, CFD has few Mach number and

scale limitations and is cost effective. During the last few decades, as

computers have developed, the cost of numerical simulations of the flows

had been greatly reduced by orders of magnitude while at the same time

-1-

Chapter One Introduction

the cost of experimental measurements still remain at the same level.

Numerical simulation has an additional advantage over experiment in that

diagnostic ’probing’ of the computer simulation does not disturb the

flow and obscure the phenomena under investigation.

1.1.1 Time Discretization

The time-dependent N-S equations or their simplified forms are commonly

used for unsteady or even steady state resolutions. Then a time marching

scheme is employed. For the discretization of the time derivative, there

are two methods, namely explicit and implicit schemes.

The explicit approach discretizes the time derivative by forward

difference schemes, in which the solutions at one time step can be

determined explicitly from those at previous time steps. The major

advantage of this approach is that it is easy to apply and needs less

operational counts per time step. Among the methods used in this

category, the MacCormack two step explicit scheme (1969) and the Jameson

explicit multi-stage Runge-Kutta scheme (Jameson et al 1981, Swanson et

al 1985) were widely employed for solutions of the N-S equations or the

Euler equations. The shortcoming of the explicit approach is that the

stability condition is often so restrictive because of the CFL condition

that the time interval becomes very small and a large number of time

steps need be taken before a steady state is reached.

To relax the time interval barrier in the time marching process, one can

turn to the implicit approach which discretizes the time derivative by

backward or central difference schemes. As compared with explicit

-2-

Chapter One Introduction

schemes, implicit schemes greatly improve convergence to steady state by

taking much larger time intervals. The penalty, however is, that more

operational counts per time step and more coding work are required. The

Beam-Warming (1978) and the MacCormack (1982) implicit schemes are two

versions, which are extensively used for solutions of the N-S equations.

It is often difficult to judge whether either the implicit or the

explicit approaches are more efficient for a particular application.

Some researchers prefer explicit schemes while others favour implicit

schemes.

1.1.2 Spatial Discretization

There are several ways to discretize the spatial derivatives in CFD

which will now be reviewed.

1.1.2.1 Finite Difference Methods

Finite difference methods are employed in all areas of CFD to solve both

inviscid and viscous flow equations. For solutions of the Euler or N-S

equations, central and upwind finite difference schemes are usually

used. The MacCormack explicit (1969) and implicit (1982) schemes, the

Beam-Warming implicit scheme (1978) and the Jameson explicit multi-stage

Runge-Kutta scheme (1981) are typical central difference schemes. These

schemes, in general, work well for problems with a smooth behaviour. But

if the flow field has a discontinuity such as a shock wave, these

schemes always produce high frequency oscillation in the vicinity of

that discontinuity. In order to remove the oscillation, one can add some

-3-

Chapter One Introduction

form of artificial dissipation (Rizzi and Eriksson, 1983) in the

discretized equations solved. The choice of the parameter in the

artificial dissipation term, which has a great influence on the results

and the convergence to the steady state, depends on personal experience,

and sometimes, is not straightforward. More recently, a variety of

upwind differencing schemes which produce dissipation automatically have

been presented, based on assumptions related to the method of

characteristics and wave propagation. These schemes difference the

convective term (derivative or the flux) along the direction of wave

propagation. The monotone, total variation diminishing (TVD), flux

splitting and flux difference schemes fall in this category. The work of

Steger and Warming (1981), Van Leer (1982), Chakravarthy and Osher

(1985), Roe (1981), Yee (1987) and Harten (1983) has shown that this

approach is very efficient in capturing the shock wave. As compared to

the central difference scheme, Pulliam (1986) pointed out that the

upwind scheme is equivalent to a central difference scheme plus a

certain form of dissipation. To capture the shock wave with high

resolutions, some workers (Morton et al 1989) preferred to use the shock

fitting technique in which the Rankine-Hugoniot relations are applied.

For simulating the flow around a complex geometry, a coordinate

transformation is usually required. This can be done by the technique of

grid generation. For details, see, the work of Thompson (1978), Thompson

et al (1982), Steger et al (1980) and Eiseman (1982).

1.1.2.2 Finite Element Methods

Finite element methods are mostly used in solid mechanics and structural

-4-

Chapter One Introduction

analysis. They have however made a practical contribution to CFD since

the 1970s. For details, see, for example, the work of Chung (1978),

Hughes et al (1979), Morton (1982), Gresho et al (1984), Morgan et al

(1987), Hassan et al (1989). The mathematical foundation of the finite

element approach is based on either the variational (or extremal)

principle or the principle of weighted residuals. The finite element

methods used in CFD are mostly based on the principle of weighted

residuals. Amongst them, the Galerkin method is extensively used in

which the weighting functions are taken as the same as the basis

functions (interpolation functions). For solutions of hyperbolic

problems, the Taylor-Galerkin method (Donea et al 1988) and the Petrov-

Galerkin method (Hughes et al 1982) are widely used.

The finite element approach has been developed by mathematicians into a

very elegant, rigorous, formal framework, with precise mathematical

conditions for existence and convergence criteria and exactly derived

error bounds. It can be used for structured and unstructured grid

topology, and treats the boundary conditions more accurately than the

finite difference approach. The shortcoming of this approach is the

requirement of more coding work and more computational operation.

1.1.2.3 Finite Volume Methods

The finite volume method was apparently introduced into CFD

independently by McDonald (1971) and MacCormack and Paullay (1972) for

the solution of the two-dimensional, time-dependent Euler equations, and

extended by Rizzi and Inouye (1973) to three-dimensional flows. This

-5-

Chapter One Introduction

approach integrates the conservation form of the governing equations (in

differential form) on a finite cell, where the primary variable is

normally defined at the cell centre. All the spatial integrals, in

finite volume methods, are approximated by the product of the spatial

quantity and the average value of the integral. Thus, for a general

problem where a coordinate transformation is needed, the finite volume

methods involve the treatment of geometric terms such as volumes, areas,

and normal velocity components rather than Jacobians, matrices, and

contravariant velocity components used in the finite difference methods.

1.1.2.4 Spectral Methods

Spectral methods may be viewed as an extreme development of the class of

discretization schemes known as the method of weighted residuals. The

key elements of this approach are the basis functions and the weighting

functions. The choice of the basis functions is one of the features

which distinguishes spectral methods from finite element methods. The

basis functions for spectral methods are infinitely differentiable

global functions. In the case of finite element methods, the domain is

subdivided into small elements, and a basis function is specified in

each element. The basis functions are thus local in character, and well

suited for handling complex geometries. The spectral methods may be

considered as an extension of the finite element methods, and can be

viewed as a whole space approximation technique. According to the choice

of the weighting functions, there are three most commonly used spectral

schemes, namely, the Galerkin scheme where the weighting functions are

taken as the same as the basis functions; the collocation scheme where

the weighting functions are the delta functions centered at collocation

-6-

Chapter One Introduction

points; and the tau scheme which is similar to the Galerkin scheme in

the way that the differential equation is enforced, but the weighting

functions not needing to satisfy the boundary conditions. The spectral

methods have been successful in incompressible flow simulation. For

details, see, the books of Canuto et al (1987), Gottlieb and Orszag

(1977), and the work of Ku et al (1985), Orszag (1980), Hussaini and

Zang (1987), Streett (1987) and Kim and Moin (1985). For treating more

general geometries, the so-called spectral element methods have been

recently developed which can be considered as a cross between spectral

methods and finite element methods. The successful applications of this

scheme to fluid flow simulation were contributed by Patera (1984),

Korczak and Patera (1986), Phillips and Karageorghis (1988), etc.

1.1.2.5 Boundary Integral Methods

The boundary integral methods are also called the boundary element meth­

ods. This approach is based on linear system analysis. For a given line­

ar system, its fundamental solutions can be found, and in terms of the

superposition theorem, the general solution of the system can be expre­

ssed as the linear combination of the fundamental solutions. Since all

the fundamental solutions satisfy the system equation exactly, so does

the general solution. Thus, for a particular problem, the determination

of the coefficients in the linear combination form is only required.

This car be carried out by replacing the general solution with boundary

conditions. Thus, the boundary integral methods generally involve solu­

tion of unknowns on the boundary. The major advantage of this scheme is

that the dimension of the problem can be reduced by one, and therefore,

the computational complexity is reduced. Because this approach is based

-7-

Chapter One Introduction

on linear analysis, it is difficult to apply to nonlinear problems. If

it was thus used, some approximations need be introduced. Successful

application of boundary integral methods to incompressible viscous flows

has been achieved by Wu et al (1978, 1984).

1.1.3 Numerical Methods of the Resultant Equation System

After spatial discretization, the resultant semi-discrete equation

system can be solved by available numerical techniques for the solution

of ordinary differential equations. Amongst them, the multi-stage Runge-

Kutta, Crank-Nicolson, Euler explicit, MacCormack explicit and

predictor-corrector schemes, are widely used.

If the time derivative is discretized implicitly, the resultant equation

system is a set of algebraic equations, which can be solved by two

methods, namely, the direct method and the iterative method. The most

frequently used direct methods are the Gaussian elimination method and

the LU decomposition method. If the order of the algebraic equation

system is very large, the direct method is less efficient because of

storage problems and round-off errors. For this case, iterative methods

are recommended. The basic iterative methods are the point Jacobi method

and the point Gauss-Seidel method. Usually, the convergence rate of

these methods are very slow. To increase the convergence rate, over-

relaxation methods can be introduced. In this category, there are the

Jacobi over-relaxation method, successive over-relaxation method (SOR)

and successive line over-relaxation method (SLOR). Some preconditioning

techniques such as the Richardson method, the strongly implicit

procedure (SIP) and conjugate gradient method, can also improve the

-8-

Chapter One Introduction

convergence rate.

To accelerate the convergence rate for a general problem, the multi-grid

technique is a promising approach. The conventional iterative methods

show slow convergence rate because of the poor damping of low frequency

errors. In fact, high frequency errors are damped after a few

iterations, but low frequency errors are not. The multi-grid approach

can be considered as a smoother of errors in such a way that after one

or more iteration sweeps through the mesh, the error behaviour is

sufficiently smooth for it to be adequately represented on a coarser

grid. The application of the multi-grid technique to CFD has

demonstrated great success. For details, see the work of Ni (1982),

Johnson (1983), Stuben and Trottenberg (1982), etc.

1.2 Challenges in CFD

Although some steady three-dimensional problems and some unsteady two-

dimensional problems have been successfully simulated on modern

supercomputers, we are still far from the achievement of full simulation

of unsteady three-dimensional fluid flow problems because of lack of

computation speed and storage memory. The current attempts at unsteady

three-dimensional problems take tens or hundreds of hours on large

mainframe computers available and even then have generally only limited

spatial resolution. To tackle useful practical flow cases in CFD, fast

numerical algorithms, and supercomputers with fast floating point

operation speed and large virtual storage memory, need to be developed.

To develop fast numerical algorithms, novel, flexible, efficient

discretization schemes, which use few mesh points to achieve the same

-9-

Chapter One Introduction

accuracy as conventional discretization schemes using a large number of

mesh points, and the development of fast methods for the solution of the

resulting algebraic equation system, are required. Since a fast

numerical algorithm can greatly reduce both computer operation time and

storage memory, practical unsteady three-dimensional flows can be

realised on available supercomputers.

If supercomputers are developed with sufficient speed and memory, real

flows may be realised using current numerical algorithms. But

unfortunately, the development of single computers is limited because

these computers rely on pipelines to obtain their speed, and the speed,

at which information is propagated, is limited by the speed of light.

Parallel supercomputers are being developed to overcome these

difficulties. The architecture of the parallel supercomputer is quite

different from the single supercomputer. Thus, it is necessary to

explore flexible, robust parallel algorithms for use on these parallel

supercomputer facilities. This is a new challenge in CFD at present.

1.3 The Scope of This Research

Towards meeting the above challenges, exploration of numerical

algorithms and parallel computation was included in this research. It

involves three topics: the development of new numerical techniques; the

application of these to the simulation of incompressible viscous flows;

and the parallel computation of incompressible Navier-Stokes flows.

In the numerical algorithm development, it is assumed that a function in

the domain is sufficiently smooth that it can be approximated by a high

-10-

Chapter One Introduction

order polynomial. The technique of generalized differential quadrature

(GDQ), was firstly developed, based on the concept of the high order

polynomial approximation in the overall domain, and the analysis of a

linear vector space. The GDQ approach approximates the derivative of a

function with respect to a coordinate direction as a weighted linear sum

of all the functional values in that direction. The key to GDQ is how to

determine the weighting coefficients for any order of derivatives. The

details for determining the weighting coefficients of the ID case and

extension to the multi-dimensional case have been given. The

relationships between GDQ, finite difference schemes, and the Chebyshev

pseudospectral method were also demonstrated. The basic properties of

GDQ, such as error estimation, consistency, stability, influence of the

distribution of grid points and the types of boundary conditions on the

eigenvalues of the GDQ spatial discretization matrix, were also

analysed. Based on the same concept as GDQ, a generalized integral

quadrature (GIQ) technique was also presented. Using a linear sum of

all the functional values in the whole domain to approximate an integral

of a function over a part of the whole domain was studied. The study of

the two-dimensional and three-dimensional integrals was also included.

For the numerical simulation, the fluid flow is assumed to be laminar,

incompressible and Newtonian. Some standard examples of incompressible

Navier-Stokes flows such as the driven cavity flow, the flow past a

circular cylinder, the flow past a backward facing step and the natural

convection in a square cavity, have been chosen to validate the

numerical technique developed. Furthermore, the multi-domain GDQ

technique with application to the flow past a backward facing step, the

flow past a square step was also investigated. For the GIQ application,

-11-

Chapter One Introduction

the ID, 2D, 3D steady and 2D unsteady boundary layer equations were

simulated.

In the part of the thesis involving parallel simulation, the 2D

incompressible Navier-Stokes equations were chosen for study. The multi­

domain technique was used and the GDQ method was applied in each

subdomain. All the cases are run on the Meiko Computing Surface (a

transputer-based distributed memory multi-processor). The program on

each processor was written in FORTRAN and run from an Occam harness to

control the placement of and the communication between processors. The

flow past a backward facing step using 3 slave processors and the flow

past a square step using 5 slave processors were first investigated. For

the driven cavity problem, the comparative study was made. Two

formulations of the N-S equations (vorticity-stream function; vorticity-

velocity) and three types of interface treatment (different number of

grid points overlapped; patched with enforcing continuity condition of

the function and its normal derivative; and patched with using Lagrange

interpolation scheme), were studied. Finally, the development of a

general code which can run on any array of transputers without any

modification to the program was discussed.

1.4 Layout of This Thesis

The outline of this thesis is as follows: Chapter One consists of an

introduction to the study. The description of the governing equations

for the fluid flow is given in Chapter Two, and the details of the

generalized differential and integral quadrature (GDQ and GIQ)

techniques are given in Chapter Three. Chapter Four presents some

-12-

Chapter One Introduction

analysis of the basic properties of the GDQ and GIQ, and application to

standard model problems. The application of GDQ to the incompressible

Navier-Stokes equations is given in Chapter Five, and the application of

GDQ and GIQ to the boundary layer equations is given in Chapter Six. The

parallel simulation of the incompressible Navier-Stokes equations is

presented in Chapter Seven. Finally, some conclusions and prospects for

future work are given in Chapter Eight.

-13-

Chapter Two Governing Equations

CHAPTER TWO

GOVERNING EQUATIONS

2.1 Introduction

The basic equations of fluid dynamics are based on the universal laws of

conservation, that is, the conservation of mass, momentum and energy.

The equation derived from applying the law of conservation of mass to a

fluid flow is usually called the continuity equation. The law of

conservation of momentum is based on Newton’s second law, which yields a

vector equation known as the momentum equation. The law of conservation

of energy is equivalent to the first law of thermodynamics and the

resultant fluid dynamic equation is called the energy equation. In

addition, the equation of state, which relates the thermodynamic

variables of pressure (p), density (p), temperature (T), is needed in

order to close the system of equations. For a general case if the

velocity V = (u,v,w), any two thermodynamic variables and an equation of

state are known, the complete description of a fluid is available. For

some special cases, the complete governing equations can be simplified.

In this chapter, we describe only the governing equation for

incompressible viscous flows.

2.2 Incompressible Navier-Stokes Equations

2.2.1 Differential Form

The incompressible flow has a feature that

-14-

Chapter Two__ Governing Equations

Dp = 0 (2.1)Dt
where ^ is a differential operator

Dt St dx dy dz

Substituting condition (2.1) into the compressible Navier-Stokes

equations leads to

V-V = 0 (2.2)
nv op - = "Vp + pV V + pf (2.3)Ut e

DT opc = k V T + $ + q (2.4)v Dt h
2where \7 is the Laplacian operator, jn is the dynamic viscosity of the

fluid, f is the external volume force, q is the external volume heate h
source, c is the coefficient of specific heat under constant volume, k v
is the coefficient of thermal conductivity and

• ■ »[» K->* * g->* * 21 B->* * < l r ‘ £->■ * ' W ’ z r f

+ +)2] (2.5)Sz 3x 3 9x dy dz J
The rate of dissipation of mechanical energy is usually small in

incompressible flows, thus $ can be negligible in the equation (2.4).

And only the case in which there is no external volume heat source, i.e.

q = 0, is studied. So the energy equation can be reduced toh
pc -2IL = k V2T (2.6)v Dt

In most cases, the temperature appears only in the energy equation so

that we can uncouple this equation from the continuity and momentum

equations. For many applications, the temperature changes are either

insignificant or unimportant and it is not necessary to solve the energy

equation. But in the natural convection case, the energy equation should

be directly coupled with the momentum equations, because the buoyancy

force, caused by the temperature distribution, is the dominant motive

force of this system.

-15-

Chapter Two Governing Equations

In natural convection, the external volume force is the gravitational

force, that is

pf = pg (2.7)e
where g is the vector of acceleration due to gravity. It is common to

use the Boussinesq approximation for the study of natural convection.

The variation of density p is, according to the Boussinesq

approximation, included only in the calculation of the buoyancy terms

(i.e. pg), and proportional to the temperature. The buoyancy force is

written as

pfe = pQ [1 - 0(T - TQ)]g (2.8)

where pQ, T , are the reference density and temperature and p is the

thermal expansion coefficient. Using (2.8) and the Boussinesq

approximation, (2.3) is now simplified to

= _ _i_ Vp + yv^v + g[l - P(T - To)] (2.9)

where v = p/pQ is the kinematic viscosity. In the Cartesian system, if

the coordinate axis y is chosen to be the opposite direction of the

gravity force, then

g = (0, -g, 0) (2.10)

For the natural convection in a square cavity, the scalar form of (2.9),

in the two-dimensional case, is

Chapter Two Governing Equations

2.2.2 Non-Dimensional Form

For the case that only the continuity and momentum equations are solved,

the flow variables and coordinates can be non-dimensionalized by
* x * y * z * t

X L y L Z L L/V00 (2.13)
^ \ T V ,r w .. PV V V ^ „200 00 00 P V

00 00

where the nondimensional variables are denoted by an asterisk,

freestream conditions are denoted by co and L is the reference length

used in the Reynolds number
p V LCO CORe = -

Substituting the above relations into (2.2), (2.3) with f = 0 yields

the following nondimensional equations

continuity

Su Sv + Sw_ = 0 (2.14)
* * *

dx dy dz

x - momentum

Su * Su * Su * Su Sp + u + v + w = -* * * * *St Sx Sy Sz dx

~ * 2* 2 * ■»J_ faJL + ?!»_ + (2.15)
Re U * 2 Sy*2 sz*2 J

y - momentum

Chapter Two Governing Equations

z - momentum
♦ ♦ ♦ 0 *3w , * 3w * 3w * 3w dp + u + v + w = -* * * * *

dt dx dy dz dz

,2 * ? * .2 *
1 [*JL + + L2.1 (2.17)
Re L * 2 Sy*2 Sz*2 j

For two-dimensional problems, most researchers (de Vahl Davis, 1983;

Ghia et al, 1982; Ku et al, 1985) favour the use of vorticity w and

stream function ifi as dependent variables

3u dv , 0 10n
“ = S y (2-18)

u = ■ v = " -JT- (2'19)dy dx

Thus for natural convection problems, equations (2.11) and (2.12) can be

combined to give
du> du> ~ r~2 ~2+ u — + v 3w fd w 3 o> ") 0 3T ro o n l
St “ Sx ' " Sy + 8x~ (2-20)

= a, (2.21)
Sx2 Sy2

In (2.13), setting V = k/{p cL), p = p , and definingoo Op oo 0
T - T* o * w , * ih— —- , W — .. 77- , ijj —AT ’ V /L ’ V L00 00

(2,20), (2.21), (2,6) can be nondimensionalized as
,2 * _2 **3w *u

*3w * aw*
v — *

dt ax dy
*3T *u

*3T *
* ST + v — -

at dx dy

aV*
ax*2

+
2 * a >

Sy*2
*

= w

= Prp-?? + ^ <2-22)Ŝx Sy Sx
2 * 2 *

. S ^ + sfL (2.23)
Sx*2 Sy*2

(2.24)

where Pr is Prandtl number, Ra is Rayleigh number
pc

P r =

c p g(3L3AT
Ra = — 5-2,-------kv

-18-

Chapter Two Governing Equations

For simplicity, the asterisks will be dropped, hereafter.

2.3 Boundary Layer Equations

Although many numerical solutions of the Navier-Stokes equations have

been obtained on modern computers, the practical simulation of general

Navier-Stokes flows is still elusive. This is true, especially for

unsteady, three-dimensional flows at high Reynolds numbers since in this

case, the step size near the solid boundary should be very small in

order to capture the shear layer, and as a result, considerable computer

time is required. In contrast, the use of the boundary layer concept or

the principle of viscous-inviscid interaction can greatly reduce

computer time. The concept of the boundary layer was firstly presented

by Prandtl, deriving from his experimental observation in 1904.

Following this concept, the whole flow field can be split into two

regions: the viscous shear layer near the wall, which is governed by the

boundary layer equations, and the remaining inviscid region which is

governed by the Euler or potential equations. The governing equations in

two regions can be solved separately or coupled in the case of

viscous-inviscid interaction.

The boundary layer equations can be obtained from the Navier-Stokes

equations, by using order of magnitude analysis with two constraints.

These are: (1) the viscous layer must be thin relative to the

characteristic streamwise dimension of the object immersed in the flow;

(2) the largest viscous term must be of the same approximate magnitude

as any inertia term. For the three dimensional, incompressible flow past

a flat plate, let x and z denote the coordinates in the wall surface and

-19-

Chapter Two Governing Equations

y denote the coordinate which is perpendicular to the wall. The three

dimensional equation, for this case, can be written as

au 9v aw - (2.25)
,2

(2.26)
dx

+
dy + az

au + u au au au l
at ax t V ay w az p
aw aw a w dw l
at T" U ax -r V

dy W di p
with
- -1P

dp
dx - = f r + Ue

aUe +
dx

We
1 dp aWe A WeP dz ax

where Ue, We are the components of

dx ' 2
dy

+ v (2.27)az _ 2
dy

aue
az
awe
az

(2.28)

(2.29)

and z direction.

2.4 Governing Equations in the General Coordinate System

2.4.1 2D Incompressible NS Equations in the General Coordinate System

For the two dimensional case, supposing the physical coordinates x, y

are transformed into the general coordinates £, t? by

€ = €(*, y)
V = tj(x, y) (2.30)

we then obtain

€ = J~V_ » y = - J_1yf ,x 7} x £
T_ 1 T" 1£ = - J X , 7) = J Xy V y

(2.31)

(2.32)

Using the chain rule of partial differentiation and the following

divergence formulation

-20-

Chapter Two__ Governing Equations
5F 3F „ rd(y F - x F) dix^F - y J) n

v-F - 1 1 2 - 1 r v 1 v 2 i ? 2 ? 1 i (•’ 33)V F ~ m r s T - a§ ---- ---- s a J' l2-J3>

the form of the two-dimensional, incompressible Navier-Stokes equations,

in the general coordinate system, is written as

continuity

1 [3u 5u . dv dv 1 ro Q/nT y aF- “ y«? a-- + X«? a-- “ X (2.34JJ I V d% % dv % dt) y d£, J
x-momentum

Su 1 fa (Uu) a(Vu) 1 i f ap_ _ apj
dt j [a? dv J J pi € dy J

- i M * s - • ■ £-]• Sr[c N- * ” S-]} 12 3S>
y-moment urn

av i fa(Uv) a(vv)1 1 [3p_ sp_1
at j [a? dv J j [r) ai i av J

= 1 (a fA p - + B 2^-1+ f - [c P - * D S-ll (2.36)
j \ai [ai dv J dv L 8l > S C J j

where

U = uy^ - vx̂ , V = vx^ - uy^

A = a r = ~ P c = y p = _z_g--A R e * J ’ * R e - J ’ R e - J ’ U R e - J
2 2 2 2 a = x + y , |S = x xf + y y. , 7 = xtf + ytf
y y y C *r £ € €

If the vorticity-stream function formulation or the vorticity-velocity

formulation is used, their expressions, in the general coordinate

system, are

vorticity equation
do 1 fa(Uw) 3(Vw) 1
at j I d% + dv \

= 1 / 8 [a %Z- + B ̂ -1+ I— [c p — + D %t-]\ (2.37)J \ a ^ [a c dv J dv |_ dv d% J J

stream function equation

-21-

Chapter Two Governing Equations

! L J l 3 L + R 3L1 + L j r 3 L + n 3L1 = JM
9^ [l 3^ l dij J 3tj |_ l l J
u-equation

8 f . au au 1 a f_ au , ^ au 1
a l “ [Ai a l - 1 a n] « T L i 3v~ i a l“ J

_ do do
~ X1 Wir ~ xv W

v-equation
9 Ta 9v * n 5v "L 9 Ir 9v * n 5v 1a? [i a? B i an J an [1 an i a? J

[do do I
yn § T ' yC § F j

where

A = Re* A, B = Re*B, C = Re • C, D = Re • D,l l l l

Similarly, the governing equations for natural convection problems with

vorticity-stream function formulation, in the general coordinate system,

can be written as

do A i facuw) a (V w)l Ra-Pr f aT aT 1
at ‘ I [-51- ‘ -Si— j — ['» a T • ye srj

• T {irl*. W * B. S-]* a -[c. W * 5?-]} (2il>
aT i fa (U T) a (V T) 1at j [ac st) J

l fa aT _ aT 1 a f_ aT A _ aT 11 ro Aoyj {a? [Ai as, Bi an J an [1 an 1 a? JJ '
The stream function equation is the same as (2.38).

2.4.2 Incompressible Boundary Layer Equations for a General Case

If the boundary layer for the flow past a general geometry is

investigated, the study is always based on the streamwise coordinate

system. This system is usually not a Cartesian coordinate system, but an

orthogonal coordinate system. Equations (2.25)-(2.27) can be written, in

this system, as

(2.39)

(2.40)

-22-

Chapter Two_________________ Governing Equations
3(wh)

— = 0 (2 .4 3)
a (uh)3 +

aCvl^hg)
d£ dv

au + u . au du W
at hl ac V dv h3

3w + u . 3w aw _L W
at hl ac v ai7 h3

5C
+ u*w*K - w2*K ac 1 2

(2 .4 4)P'ht 3€ a„2

P + u-w-K - u2-Ka< 2 i

+ v — (2 .4 5)

where

p*h a< 23 dv

dh , d h
y _ 1 1 y _ 1 3
l h -h ’ ac ’ 2 h -h ’ 3C1 3 1 3
(h)2 = (x,)2 + (y,)2 + (z-)2i € € €
(hg)2 = (x^)2 + (y^)2 + (z^)2

and C is directed in the primary flow direction, £ is in the crossflow

direction, and v is orthogonal to the body surface.

In order to remove the singularity for solving (2.25)-(2.27), the

coordinate transformation is always required. Using the following

transformat ion
1 /*>T = Ue-t/x, £ = x, < = z, v = (Ue/r-x) -y

F = u/Ue , G = W/We

equations (2.25)-(2.27) can be transformed to

% + ir + “I f1 + K 1+ P + G’ fK ~ ° * 5K 1 = 0 (2 .4 6)^ df- dv 2 [3 j Ue a< I 5 4J

+ + v * p - + f r * S + K • [f 2- i]+ K • [f G - i] = — (2 .4 7)dv S Ue a c 3 I J 4 L J 2+ cf« -aT q a^

ac aG -aG . cr we aGaT + ^ ac dv ? G ' 0 T a <
.2,

+ 1 F - ^ + V - £ + 1G- + Kb - [g2- i]+ K 6 - [r c - l j = 5 - 5 (2 .4 8)

where
W (, „,i/2 ^ „ dv ̂ ~ We 3tjV = (x / y U e) - v + xF - + xG- n -* ■E~L

dx Ue a z
„ _ X aUe _ X We aUe
3 — Oe* aST * 4 ~ 0 T 0 T ai"
y _ X a We _ X awe
5 “ 0e ‘ a i “ ’ 6 _ wT a>T

-23-

Chapter Three GDQ and GIQ

CHAPTER THREE

GENERALIZED DIFFERENTIAL AND INTEGRAL QUADRATURE

3.1 Introduction

The numerical techniques for the solution of a partial differential

equation can be classified into two categories. One is based on the

direct discretization of the derivatives and integrals. Another is based

on the variational principles or the principles of weighted residuals.

The conventional finite difference methods lie in the first category

while the finite element and the spectral methods are in the second.

Usually, low order methods such as finite differences and finite

elements can provide accurate results by using a large number of grid

points. However, in some practical applications the numerical solution

of a governing equation is required at only a few specified points in a

domain. But for acceptable accuracy, conventional finite difference and

finite element methods also require the use of a large number of grid

points to obtain the solution at those specified points. In seeking a

more efficient method using just a few grid points to get an accurate

result, Bellman et al (1972) introduced a method of differential

quadrature, where a partial derivative of a function with respect to a

coordinate direction is expressed as a linear weighted sum of all the

functional variables at all mesh points along that direction. It is

clear that this method is based on the direct discretization of the

derivative, and therefore, is in the first category indicated above.

Preliminary computational results (Bellman et al 1984, Civan et al 1983,

-24-

Chapter Three GDQ and GIQ

1984, Mingle 1977, Jang et al 1989) showed that differential quadrature

has potential as an attractive approximation technique. The key

technique to differential quadrature is how to determine the weighting

coefficients for the discretization of any order partial derivative. To

determine the weighting coefficients of the first order derivative,

Bellman et al suggested two methods to carry this out. One method solves

a set of algebraic equations which is obtained by satisfying the linear

constrained relation for all polynomials of degree less than or equal to

N-l, where N is the total number of grid points in a domain. This

equation system has a unique solution because the matrix elements are

composed of a Vandermonde matrix. Unfortunately, when N is large the

inversion of this matrix becomes difficult. This is probably one of the

reasons that applications of this scheme so far only use the number of

grid points less than or equal to 13. The second method is to compute

the weighting coefficient a.̂ by an algebraic formulation with

coordinates of grid points chosen as the roots of an Nth order shifted

Legendre polynomial. This means that if N is specified, the

distributions of grid points (very close to the boundary) are the same

for different physical problems. This can provide a major drawback and

restrict the application of differential quadrature. In order to

overcome this drawback, the generalized differential quadrature

technique was developed in this work, based on the analysis of the high

order polynomial approximation in the overall domain.

3.2 Differential Quadrature

For the one dimensional unsteady problem, Bellman et al (1972) assume a

-25-

Chapter Three GDQ and GIQ

function u(x,t) to be sufficiently smooth to allow the following linear

constrained relation to be satisfied
N

u (x , t) = V a *u(x , t) (3.1)x i " ij jj = l
for i=l, 2, •••, N

where u (x , t) indicates the first order derivative of u(x, t) with x i
respect to x at x̂ . Substituting (3.1) into a time-dependent partial

differential equation yields a set of ordinary differential equations

which car be integrated by the well-developed schemes such as Runge-

Kutta and Adams-Moulton.

The key technique to this procedure is to determine the weighting

coefficients a^. Bellman et al suggested two ways to carry this out.

The first way is to let (3.1) be exact for all polynomials of degree

less than or equal to N-l test functions g(x)=x , k=0, 1, N-l,

which leads to a set of linear algebraic equations

£ a -x k = k-x k_1 (3.2)
j=i U J 1
for k = 0, 1, •••, N-l

i = 1, 2, •• •, N

This equation system has a unique solution since its matrix is of

Vandermonde form. Unfortunately, when N is large, this matrix is ill-

conditioned and its inversion is difficult.

Another method is similar to the first one with an exception that the

different test function
L (x)

g(x) = 7------------ r (3.3)(x - xk)-LN(xk)

is chosen, where Ln(x) is the Nth order Legendre polynomial and L^(x)

-26-

Chapter Three GDQ and GIQ

the first order derivative of Ln(x). By choosing x̂ to be the roots of

the shifted Legendre polynomial, Bellman et al obtained a simple

algebraic formulation for a

3.3 Generalized Differential Quadrature

In order to overcome the drawback described above for differential

of generalized differential quadrature has been introduced in this work,

based on the analysis of the polynomial vector space.

3.3.1 High Order Polynomial Approximation in the Overall Domain

Since any finite range can be transformed into the range of [0, 1] by a

simple transformation, we will consider only the range [0, 1] hereafter.

It is well known that a continuous function f(x) in the interval [0, 1]

can be approximated by an infinite polynomial accurately in accordance

with the Weierstrass polynomial approximation theorem. In practice, a

truncated finite polynomial may be used. Some methods, an example being

the spectral method, have successfully applied the concept of high order

polynomial approximation to the solution of the partial differential

equation. Following this approach, it is supposed that any smooth

function in the interval [0, 1] can be approximated by the (N-l)th

order polynomial.

a (3.4a)

l-2xi (3.4b)a 2x •(x - 1)i iii

quadrature and to obtain a similar simple formulation for a^, a method

-27-

Chapter Three GDQ and GIQ

It is easy to show that the polynomial of degree less than or equal to

N-l constitutes an N-dimensional vector space Vn with respect to the

operation of addition and multiplication. From the concept of linear

independence, the bases of a vector space can be considered as a

linearly independent subset which spans the entire space. Here if rk(x)>

k=l, 2, •••, N, which are in the space V , are the base polynomials, anyN

polynomial in Vn can be expressed as a linear combination of rfc(x)» =̂1,

2, • • •, N, i.e
N

f (x) = P f = Y c -r (x) (3.5)N k kk = 1

where P' is a projection operator of smooth function onto V̂ , cfe is a

coefficient, and f(x), r (x) are in space V . The spectral method uses ak n

high order polynomial similar to (3.5) to approximate the function f(x)

in the overall domain. But the procedures for the solution of the

partial differential equation are quite different. The spectral method,

which is based on the principle of the weighted residuals, involves the

determination of the coefficients of the base polynomials, namely, cfe,

while generalized differential quadrature (to be described), which uses

this formulation only to determine the weighting coefficients for

discretization of any order (less than N) partial derivative, involves

the determination of the functional values at grid points.

3.3.2 Determination of Weighting Coefficients for First Derivative

Equation (3.1) is a linear constrained relationship. If the base

polynomials rk(x), k=l, 2, •••, N, satisfy (3.1), so does polynomial
— Jc-lf(x). And if the base polynomial rk(x) is chosen to be x , the same

-28-

Chapter Three GDQ and GIQ

equation system as (3.2), given by Bellman’s first method, can be

obtained. For generality, here the base polynomial rfc(x) is chosen to be

the Lagrange interpolation polynomial

r (x) = (3.6)
k (x - x) *M(1) (x)k k
where M(x) = (x-xj)•(x-x2)*'* ̂ X-XN^

M(1)(x) = II (x - x) k j=i,j*k k j

For simplicity, we set

M(x) = N(x, x^)-(x - Xj), j=l, •••, N

(1)with N(x , x) = M (x)*6 , where 6 is the Kronecker operator.i’ j i ij’ ij y

Thus we have

M(k)(x) = N(k)(x, x^)*(x - x̂) + k*N(k l)(x, x̂) (3.7)

for k=l, 2, •••, N-l

where M(k)(x), N*k)(x, x̂) indicate the kth order derivative of M(x)

and N(x, x.). Substituting (3.6) into (3.1) yields
N (x , x)

a = -----------5-— (3.8)
ij M(1)(Xj)

From (3.7), we get
1 > (\(i) M (VN (x , x) = , for i*ji j x - xi J

M(2), .
N (x, x.) = ----------

1 1 2
So, (3.8) can be written as

M (x.)
a =- 1— ----- , for i*j (3.9a)

(x -x) *M (x) i j j
M (X)

a = ---- (3.9b)
“ 2-M<1)(xi)

for i, j = 1, 2, ••*, N

-29-

Chapter Three GDQ and GIQ

Equation (3.9) is a simple formulation for computing a^ without any

restriction on choice of the coordinates of the grid points x̂ .
(l)Actually, if x̂ is given, it is easy to compute M (x̂), thus a^ for

i*j. The calculation of a^ is based on the computation of the second
(2)order derivative M (x̂) which is not easy to be obtained. Next, it

will be shown that a can be calculated from a (i*j).ii ij

According to the theory of a linear vector space, one set of base

polynomials can be expressed uniquely by another set of base

polynomials. Thus if one set of base polynomials satisfies a linear

constrained relationship, say (3.1), so does another set of base

polynomials. And since the weighting coefficients are only dependent on

the coordinates of grid points if the number of grid points is given,

the equation system for determination of a.̂ derived from one set of

base polynomials should be equivalent to that derived from other sets of

base polynomials. Thus a^ satisfies the following equation which is

obtained by the base polynomial x when k=0
N
V a = 0 , (3.10)U j j
j=l

where a can be easily determined from a (j*i) using (3.10). Equation 11 ij
(3.9) is a general form for calculating a... It follows that if the

coordinates of the grid points are chosen as the roots of a shifted

Legendre polynomial, (3.9) is exactly the same as that given by

Bellman’s second method.

3.3.3 Determination of Weighting Coefficients for Higher Derivatives

For discretization of the second order derivative, we introduce the

-30-

Chapter Three GDQ and GIQ

following linear constrained relation
N

u (x , t) = V b -u(x , t) (3.11)
XX i ^ ij j

for i=l, 2, — , N

where u (x, t) is the second order derivative of u(x, t) with respect
XX

to x, and Lagrange interpolated polynomials are chosen as the base

polynomials (see 3.6). Using the same approach as for the first order

derivative, the weighting coefficients b.̂ become
M<2>rN (x , x.)

b = ----------- =?— (3.12)
M (x)

From (3.7), we obtain
W (2) / ̂ O XT ̂ ̂ ̂ f \M (x)-2-N (x., x)

N (x , x) = — , i*j (3.13a)
i j x - x

i j
w(3) , .

(2) M (Xi3N (x , x) =- ---- (3.13b)
1 1 3

Substituting (3.13), (3.9) into (3.12) yields

b = 2*a • (a -), for j*i (3.14a)
ij ij ii x - x

i j
«»(3) f .M (x.)

b = (3.14b)
H 3*M(1)(x)

i

for i , j = l , 2, •••, N

For î j, b can be calculated from a without a double summation. In a
ij ij

similar analysis to the case of the first order derivative, the equation

system for b derived from the above Lagrange interpolated polynomials
ij

1cis equivalent to that derived from the base polynomials x , k = 0, 1,

••*, N-l. Thus b should also satisfy the following formulation derived

from the base polynomial x when k=0
N
V b = 0 (3.15)

ij
j=l

from which b can be easily determined.
ii *

-31-

Chapter Three___ GDQ and GIQ.

Furthermore, in the case of the discretization of the higher order

derivative, the linear constrained relations are applied as follows

t) = E w ' ^ ’-ufx , t) (3.16)
j=i iJ J

u<m) (x , t) = J] w<m)-u(x , t) (3.17)x i ij jj = l
for i = 1, 2, — , N

where u(ml)(x ,t), u(m)(x ,t) indicate the (fl2-l)th and mth orderx i x i
(m-l) (in)derivative of u(x,t) with respect to x at x , w " , w the weighting

coefficients related to u(m_1)(x ,t) and u(m)(x ,t). Substituting (3.6)x i x i
into (3.16), (3.17) and using (3.7), (3.9), a recurrence formulation is

obtained as follows
(m-l)w(m) f (m-l) ij . ,0 ,.0 n

w ij H - 5-^lT J<1 (3'18)i j
for m = 2, •••, N-l; i, j = 1, 2, •••, N

where a^ is the weighting coefficients of the first order derivative

described above. Again, in terms of the analysis of the N-dimensional
(m)linear vector space, the equation system for w^ derived from Lagrange

interpolated polynomials should be equivalent to that derived from the

base polynomials xk, k=0, 1, •••, N-l. Thus wj^ should satisfy the
kfollowing equation obtained from the base polynomial x when k=0

? w (,) = 0 (3.19)i jj=l
From this formulation, w(m> can be easily calculated from w(m), i*j.ii i j

3.3.4 Extention to the Multi-Dimensional Case

For the two-dimensional approximation of a function f(x,y) in the

-32-

Chapter Three GDQ and GIQ

domain x € [0, 1], y e [0, 1], it is supposed that the value of f(x,b),

where b is a constant, b e [0, 1], can be approximated by an (N-l)th

order polynomial P Ĉx) which constitutes an N-dimensional vector space

V with N base polynomials r (x), i=l,2, and the value of f(a,y),N i

where a is a constant, a e [0, 1], can be approximated by an (M-l)th

order polynomial P (y) which constitutes an M-dimensional vector spaceM

V with M base polynomials s (y), j=l,2,***,M. The value of function
H j

f(x,y) can be approximated by the polynomial Q (x,y) with the formN X M

< W x , y) = E E V - ' - V 1 (3.20)
1=1 j=l

where c is a coefficient
ij

It is clear that Q (x,y) constitutes a NxM dimensional polynomialN X M **

vector space Vnxm with respect to the operation of addition and scalar

multiplication. It will now be shown that $ = r (x)*s (y) constitutesij i J
the base polynomials in the vector space Vnxm- Since r^Cx), s^(y) are

the base polynomials of P (x) and P (y), they must be linearlyN M

independent, that is
N
£ c *r (x) = 0 only if c. = 0, i=l,2,***,N (3.21)
i=i 1
M
£ d.-s (y) = 0 only if d =0, j=l,2,---,M (3.22)

j=i J J j

Now we see that if
N M N M
E E c •* (x,y) = 0 , i.e. £ (£ c -s.(y))-r. (x) = 0

1=1 j =i x=i j =i

From (3.21) the following equation is obtained
ME c *s (y) = 0

j=i

Finally from (3.22) we obtain c = 0. Then, $^(x,y) constitutes the

base polynomials in VNXM

-33-

Chapter Three GDQ and GIQ

Now it is assumed that the following constrained relations are satisfied

for function u(x,y,t) and its first order spatial derivative
N

u (x ,y ,t) = £ ax *u(x ,y.,t) (3.23)x i j " ik k j
. x

k=l
M

u (x ,y ,t) = £ a y -u(x,y,t) (3.24)
y i j k=! jk 1 k
for i=l,2,• • •,N; j=l,2,-*-,M

where ax , ay are the weighting coefficients related to u (x ,y ,t) and ik jk & 6 x i j
Uy(Xi, y , t) respectively. If all the base polynomials 4>ij(x,y) satisfy

(3.23), (3.24), then so does any polynomial in V . SubstitutingNXM

$ij(x,y) into (3.23), (3.24) leads to
N
£ ax *r (x) = r ’ (x) (3.25)

k=i ik j k J 1
M
£ ay *s (y) =s.’(y.) (3.26)k=i ik j k j *

where r * (x^ represents the first order derivative of r^(x) at x̂ and

Sj*(yj) represents the first order derivative of s^(y) at y^ From

(3.25), (3.26), it is obvious that ax or ay is only related to r (x)ik jk i
or Sj(y). Hence the formulation of the one dimensional case can be

directly extended to the two dimensional case, that is
M (x)

ax = ----------------, for i^j (3.27a)
iJ (xi-xj)-M(1)(xj)

N
ax = - £ ax (3.27b)ii ^ Uj=l,j*i

for i,j = 1,2,• • • ,N
P(1)(y)

ay = ---------------- , for i*j (3.28a)
1J (yj-YjJ-P (yj)

M
ay = - £ ay (3.28b)ii _ ijj=l,j*i
for i,j = 1,2,•••,M

-34-

Chapter Three GDQ and GIQ

where

(l) NM (x) = n (x - x)i j=l,j*i i j

P(1)(y.) = . n (y. - y)1 1 j

Similarly, for the second or higher order derivative the recurrence

relationship of the weighting coefficients can be obtained as follows
(n-l)w(n) , x (n-l) ij > ... (0 \w = n*(a *w --- ----), j*i (3.29a)ij ij ii X - X °i j

w(n) = - v W(n) (3.29b)ii ^ ijj=l,j*i
for n=2,3,•••,N-l; i,j = 1,2,•**,N

-(m-l)w-(m) (y -(m-l) ij v ... (nw = m* (a *w --- ----), j^i (3.30a)ij ij ii y “ y.i J
M

w(m) = - V w(m) (3.30b)ii . ijj=l,ĵ i
for m=2,3,•••,M-l; i,j = 1,2,***,M

where wj”* are the weighting coefficients of the nth order derivative of

u(x,y, t) with respect to x at x , y , namely, u(n)(x ,y.,t), and w.(n>)i j x i j ij
the weighting coefficients of the mth order derivative of u(x,y,t) with

(n0respect to y at x , y , namely, u (x ,y ,t). They satisfy i j y i j
u(n)(x ,y.,t) = £ w?"} -u(x ,y.,t) (3.31)x i j " ik k jk=l

u(m)(x ,y.,t) = £ w(“} *u(x ,y , t) (3.32)y i j jk i kk = l
for i=l,2,•••,N; j=l,2,-*-,M

Similar formulations can be obtained for the three dimensional case.

If the functional values at all grid points are obtained, it is easy to

determine the functional values in the overall domain in terms of the

polynomial approximation, i.e.

-35-

Chapter Three GDQ and GIQ

N
u(x,y) = Ju(x ,y)t (x), (3.33a)

i =1
M

ufx^y) = £ u(x.,y) *s (y), i=l,2,-*-,N (3.33b)
j=i
N M

u(x,y) = £ £ u(x ,y)*r (x)-s (y) (3.33c)
i =1 j=l

where r̂ fx), ŝ (y) are the Lagrange interpolated polynomials along the x

and y direction respectively.

3.3.5 Comparison with the Finite Difference Scheme

As stated above, the equation system for the determination of a.̂

derived from one set of base polynomials is equivalent to that derived

from another set of base polynomials. We will choose only one equation

system obtained by the base polynomials x , k =0,1,***, N-l and prove

that this equation system is the same as that given by the finite

difference approach.

For the one dimensional case, supposing the whole domain has N grid

points, x , x , ••*, x . The (N-l)th order finite difference scheme for1 2 N

the first order spatial derivative can be written as a linear sum of the

functional values at N grid points, which has the same form as (3. 1)

where the weighting coefficients are determined by the Taylor series

expansion which is usually used in the design of the low order finite

difference schemes. Using a Taylor series expansion, u(x^,t) can be

expressed as

u(x ,t) = u(x ,t) + u(1) (x ,t)*(x-x)+ ••• +u(k> (x , t) • (x -x)k/k!
j i i j i i j i

+ ... + u(N-1) (x̂ , t) • (x^-xj)N-1/(N-1)! + Rn’ (3.34)
(k)where u (x ,t) is the kth order derivative of u with respect to x ati

-36-

Chapter Three GDQ and GIQ

x , R * is the truncated error, and can be written asi N
Hh* = u(N)(^, t) • (x -̂x^ V n ! , e [x^ xj

Substituting (3.34) into (3.1) yields
N r (i)u(x,t)= V a •*|u(x,t)+u (x , t) • (x -x) + ••• +x i ij [i i j i

u<H'1)(xi,t)-(xj-xi)','1/(N-l)! + Rn’| (3.35)

In order to keep the right side of (3.35) consistent with the left side

of (3.35) with (N-l)th order accuracy, we set
N
V a = 0 ijj=l
N
V a *(x -x) = 1 (3.36)
. , 1J J 1J=1
N
V a *(x-x)k = 0 , k = 2, 3, •••, N-l
u ij j i j =1

for i = 1, 2, • • •, N.

Equation set (3.36) is another equation system for the determination of

the weighting coefficients aj. which are derived from the Taylor series

expansion. It will now be proved that equation system (3.36) is the same

as (3.2) which is derived from the high order polynomial approximation

in the overall domain.

It is obvious that the first equation of (3.2) and (3.36) are the same,

i.e.
N
V a = 0 (3.37)ijj=l

Furthermore, it can be shown that the second equation of the two systems

are the same, i.e.
N N N N
V a • (x -x) = V a *x -(V a)*x = V a *x = 1 (3.38)
u ij j i ij j ij i ij jj=l j=l j=l J j=l

Now, assuming that the first p+1 equations of the two systems are the

-37-

Chapter Three GDO and GIQ

same, that is
N N
Y a • (x -x)k = Y a • xk - k • x*" * = 0 ij J i ij J ij=i j=i

k-l (3.39)

for k = 0, 1, ••*, p; i = 1, 2, N

then using the binary formulation

(a-b)p = ap-c1 • ap_1 • b+• • • + (-l)lt-ck-apk-bk + •••♦ (-l)p-bp (3.40)P P
here c is the combination of p terms taken k at a time,

p
and setting a = b = 1, the following expression will be obtained.

c1 _ c2 + ... + (_i)k+1ck + ... + (-l)p+1 = 1. (3.41)
p p p

Using (3.40), the (p+2)th equation of (3.36) can be written as

Y a • (x -x)p+1 = Y a *xp+1 - c1 *x • [Y a • (xp -
jli ij j 1 j=i ij j P+1 1 j=i iJ J

4--c1-xp'1-x + ■•• + (-l)p-xp"1/(p+l))] (3.42)2 p j i i
Substituting (3.41), (3.39) into (3.42) leads to

Y a • (x-x)p+1 = Y a *xp+1 - c1 *x *[p-xp_1 -
U ij j i ij j P+1 i ij=l j=l

4 - c 1-(p-l)-xp-1 + ... ♦ (-l)p-1-xp-,l
d p i i

= Y a *xp+1 - (p+1) *xp* [ca-c2 + ••• +(-l)k+1ck + ••• +(-l)p+1], i j j i P P Pj =1
N

= V a -Xp+1 - (p+l)-xp (3.43)ij j iJ=1
Equation set (3.43) demonstrates that the (p+2)th equation of the two

systems are the same. Since p is an arbitrary integer only if p ^ N-2,

it has been proved that the two systems (3.36) and (3.2) are exactly the

same.

Similarly, for the case of higher order derivatives, it is easy to show
/ m\

that the weighting coefficients w^ satisfy the following equation

system, derived from the finite difference scheme for the rath order

derivative in the overall domain

-38-

Chapter Three GDQ and GIQ

(3.44)

£ w(m) = 0 ijj=l

E (ro) / % ro .
wii = m!j=i

V w(m)•(x -x)k = 0 , k = 1, 2, • • •, N-l, but k*m
u ij j i j=l

for i = 1, 2, •••, N; m = 2, 3, •••, N-l .

It is clear that the first equation of (3.44) is exactly the same as

(3.19) for m = 2, ••*, N-l. To prove that w(m), for 2 ^ m ^ N-l,i j
satisfies other equations of (3.44), it is supposed that w|” **

satisfies those equations firstly, that is

(m—1)! when k = m-1

0 others

Using (3.18), now we have, for 1 :£ k ^ N-l

E (in*l) / \ kw (x —X) =
. , ij j 1J=1

(3.45)

N NE (m) , , k (m-1),-, ,w • (x -x) = m*w • V a • (x -x) +
j=l j 1 11 j=1 j 1

m. -x)k_1 . (3.46)
. , ij j iJ -1

Substituting (3.45), (3.36), (3.19) into (3.46) leads to

m! when k = m
(3.47)

0 others

Since m is an arbitrary integer only if 2 ^ m ^ N-l, it has been proved

NE (m) / \ kW .(X -K) =
j=l

that w ^ satisfies (3.44) exactly. Thus it can be concluded that GDQ is

an extension of finite difference methods, and is a highest order finite

difference scheme. It also provides a new way to develop high order

finite difference schemes. It has been shown in Appendix B that the

formulation of the first order derivative discretization obtained by GDQ

in the interval [xi , is exactly the same as that given from the

-39-

Chapter Three GDQ and GIQ

second order finite difference scheme.

3.3.6 Specific Results for Typical Distributions of Grid Points

In this section, three specific formulations of the weighting

coefficients will be given for three typical distributions of the grid

points: uniform grid; the coordinates chosen as the roots of ^(t?) or

|Tn(Tfj) | - 1, where is an Nth order Chebyshev polynomial. Since the

complete weighting coefficients of the second and higher order

derivatives can be calculated from those of the first order derivative,

and that for the multi-dimensional cases, each direction can be treated

as in the ID case, then only the weighting coefficients of the first

order derivative in the ID case are considered.

Case I: Uniform Grid

By a uniform grid it is meant that the grid has the same step sizes.

Thus setting

Ax = x - x = x - x = x - x , etc. ,2 1 i i-l N N-l

one can obtain

x - xt = (j-i)Ax
= (-l)N'1-(Ax)N'1-(i-l)! * (N-i)! , i = 1, 2, •••, N

Thus

a = (-1)1+J- t— -I, (3.48a)ij Ax-(i - j)•(j-1)!•(N-j)!
for i, j = 1, 2, N, except j*i

N
a = - V a , i = 1, 2, N (3.48b)ii u ijJ=l,j*i

-40-

Chapter Three GDQ and GIQ

Case II: Coordinates Chosen As the Roots of IT Ct?) I - 1■ j| i

An Nth order Chebyshev polynomial can be written as

T^(tj) = cos(N0) (3.49)

with i) = cos 0 , -1 ^ 7) ^ 1

Setting |T (i?) | = 1 yields

N0 = jir , j = 0, 1, • • •, N

i.e. T) = cos(jir/N) , j = 0, 1, •••, N

where i) is the coordinate of the grid point in the domain [1, -1].
j

In this case, the Lagrange interpolated polynomial can be written as
C-1)J+1-(1-D2)-T ’(n)

r (t») = =-- , j = 0, 1, •••, N (3.50)
C *N • (T)—T? .)
j J

where T ’ (tj) is the first derivative of T (7?), andN N

C =j
2 when j = 0, N

1 others

Thus (3.9) can be reduced to
(-d j+1-5.

a = — -------- — , i, j = 0, 1, • • •, N, but j*i (3.51a)
iJ

N
a = - H a , i = 0, 1, •••, N (3.51b)
11 • i ijj-i,

It can be seen that (3.51) is the same as that deduced from the pseudo-

spectral Chebyshev method (Ehrenstein et al, 1989). To analyse this

behaviour, it is well known that both spectral methods and finite

element methods are based on the principle of the weighted residuals.

Spectral collocation methods can be considered as an extension of finite

element methods. The difference is that the spectral collocation methods

include only one element while finite element methods include many

-41-

Chapter Three GDQ and GIQ

elements. As shown in Appendix B, finite difference methods can also be

considered as "finite element" methods which are different from the

standard approach in that the elements in a finite difference method are

overlapped while the elements in a standard finite element method are

patched. But if the whole computational domain is composed of only one

element, both finite difference methods, and finite element methods in

which the weighting function is taken as the delta function, should give

the same results. This is because in this case, one overlapped element

and one patched element are the same. From this analysis, it is shown

that the GDQ approach should give the same results as the spectral

collocation methods if the same distribution of grid points is used,

since they can be considered as an extension of the finite difference

and finite element methods with only one element. This phenomenon is

confirmed in this research shown above.

If the physical domain is not [1, -1], but [a, b], then we need to use

the following transformation

x = 0.5* (b-a) • (1-7}) + a , where x is the physical coordinate

The weighting coefficients a. in the physical coordinate system can be

written as

a = -2*a /(b-a) , i, j = 0, 1, • • •, N. (3.52)ij ij °

Case III: Coordinates Chosen As the Roots of T (tj)N

Setting T (t)) = 0 yields

N0 = 0. 5* (2 J—1) 7r , i.e. t? = cos[0. 5-(2j-l)7r/N] , j =

It should be noted that 7) is in the domain [ti , tj], where t? =j I N I

-42-

Chapter Three GDQ and GIQ

cos(0. 5tt/N) , = —ti , and 7̂ * 1. In this case, the Lagrange

interpolated polynomial can be written as

(-1)J + 1-(1-tt)1/2-T (u)
r (tj) = =5-,- -̂---- 5-- , J = 1, •••, N. (3.53)j N* (7) - T)) » u »

Then (3.9) can be reduced to
(-l)j + i*(l-rj2)1/2

a = J , i, j = 1, • • •, N, but j*i (3.54a)
lJ (U.-U.)-(I-Tlf) ^i J i

N
a =- V a , i = 1, 2, •••, N. (3.54b)i i i j ’ ’

Similarly, if the physical domain is [a, b], using the following

transformat i on

7) = d *(x-a)/(b-a) + d , where d = cos [0. 5tt/N], d = - 2*d ,2 1 1 2 1

the weighting coefficients a in the physical coordinate system can be
i j

written as

a = d *a /(b-a) = - 2*cos[0.57T/N] *a /(b-a) (3.55)ij 2 ij ij

for i, j = 1, 2, • • •, N.

3.4 Generalized Integral Quadrature (GIQ)

3.4.1 Introduction

In practice, for some problems such as the area of a surface and the

volume of a body, it is necessary to know the integration of a function

over some domain. In most cases, it is difficult to obtain the value of

the integration analytically. As a result, numerical integration

techniques are of interest in engineering. The numerical integration of

function f(x) over domain [a, b] can usually be written in the form

-43-

Chapter Three GDQ and GIQ

f(x)*dx = £ c *f(x) (3.56)
i=i 1 1a

where is the weighted coefficient. There are a lot of conventional

rules to determine ĉ . The low order Simpson’s rule is the most

frequently used in obtaining approximate integrals. To obtain accurate

results, high order methods are preferrable. Amongst them, the

integration rules of Gaussian quadrature are extensively used, where

both the weighting coefficients and the coordinates of the grid points

are taken as unknowns which are determined by the 2N powers 1, x, ••*,
2N-1x . The major advantage of Gaussian quadrature is its high accuracy.

But for the general case, it has a disadvantage that the coordinates

obtained may be outside the interest region. Thus it is necessary to

check for the correct coordinates before numerical integration. Some

specific Gaussian quadrature techniques such as the Gauss-Legendre can

remove this drawback. Another drawback of Gaussian quadrature is that,

since the coordinates are determined by the roots of some functions,

they cannot be arbitrarily given. This may provide a difficulty in use

for some problems where the functional values are only known at some

specific grid points which may not coincide with the coordinates

obtained, e.g. the experimental data are given at some selected points.

In the case of the solution of a differential-integral equation, the

grid points, where the unknowns are set, are usually generated in

advance, and may not be the same as the coordinates of Gaussian

quadrature. If this method was used for these cases, an interpolation

approach needs to be employed. This may introduce additional errors in

numerical computations.

If the grid points are given in advance, the weighted coefficients can

-44-

Chapter Three___ GDQ and GIQ

be determined by the integration rule of interpolatory type, can be

written as
-b

c = j M(x)'dx , .1 = 1, 2, •••, N (3.57). j = 1, 2, •••, N
(x-x)*M (x) a j J

The exact expression of (3.57) is very complicated. Thus it is not easy

to calculate ĉ accurately on the computer using (3.57). As a special

example, when the uniform grid is used, (3.57) is reduced to the Newton-

Cotes integration formula which has some asymptotic expressions for cj.

For details, see, for example, the book of Davis et al (1975).

In some cases, the function f(x) is continuous in a whole domain

containing sufficient grid points, and the integral over a part of the

whole domain involving only a few grid points is of interest. When the

conventional numerical integral schemes are used to approximate this

integral, the results will be of low accuracy since these schemes use a

linear combination of the functional values only in the integral domain

to approximate the integral, thus only few functional values can be

used. In order to improve the accuracy for this special integral, one

may raise the question: is it possible to have a method which uses the

functional values of the overall domain to approximate the integral over

a part of the overall domain? The answer is positive, and will be shown

in this section. The weighting coefficients of the integral for the case

of given grid points are determined by the inversion of an matrix which

is easily obtained on the computer.

3.4.2 One Dimensional Integrals with Specified Grid Points

It is supposed that a function f(x) is continuous in the overall domain

-45-

Chapter Three GDQ and GIQ

[a, b], which can be decomposed into N-l intervals with grid points as

x (=a), xs> ••*, xn (=b). Since f(x) is continuous in the whole

domain, it can be approximated by an (N-l)th order polynomial. In

particular, when the functional values at N grid points are known, f(x)

can be approximated by the Lagrange interpolated polynomial which are

related to the functional values at all mesh points. As a result, the

integral of this approximated polynomial over [x^ x̂] may involve the

functional values outside the integral domain. As a general case, it is

assumed that the integral of f(x) over a part of the whole domain can be

approximated by a linear combination of the functional values in the

overall domain with the form

is a traditional integral. In a similar fashion to the analysis in the

previous section, the (N-l)th order polynomial, which is an

approximation to f(x), constitutes an N-dimensional linear vector space.

Thus if all the base polynomials satisfy (3.58), so does any polynomial

in the space. If the Lagrange interpolated polynomials, rn(x)> n = 1,

••*, N, are chosen as the base polynomials, c*^ can be determined by

(3.58)

where x̂ , x̂ are numbers that can be altered. When x^a, x̂ =b, (3.58)

ciJ = r (x)-dxk k (3.59)

The expression of c*^ is very complicated. Therefore, it is difficult to

calculate c*^ accurately using (3.59). We will turn to another way to

determine c1̂ .k

The GDQ formulation (3.1) can be written as a vector form

-46-

Chapter Three GDQ and GIQ.

U = AU (3.60)
X

where

U =^u(xi), u(x2), •••, u (xn)JT

U = u (x), u (x), ••*, u (x)x x 1 x 2 x N J
and A is a matrix composed by â .. Equation (3.60) is exact when u(x) is

a polynomial of degree less than or equal to N-l. Now, if we set
f(x) = dutxL (3.61)dx

or u(x) = J^ffxl-dx + u(c) (3.62)c
where c is a constant,

f1 =fj1f(x)*dx, J^2f(x)*dx, •••, J Nf(x)*dx1T (3.63)

I = (1, 1, ••••, l)1 (3.64)

f = U (3.65)
X

then (3.60) can be written as

f = A*(f1 + u(c)-I). (3.66)

Setting

W1 = A"1 (3.67)

we obtain

f1 = WX;f - u(c) • I (3.68)

The scalar form of (3.68) can be written asr N
Jf(x)-dx = £ w1 • f(x) - u(c) (3.69)ik k c k = l

for i = 1, 2, •••, N

Thus
N

Jf(x)-dx = V (w1 - w1)•f(x) (3.70)II, tl,' 1,r „J " jk ikX k=1i

c1-* = w1 - w1 (3.71)k jk ik
It is found that the weighting coefficients w1 determined by (3.67) areik

-47-

Chapter Three GDQ and GIQ

not accurate when u(x) is an (N-l)th order polynomial. From (3.61), it

is clear that when u(x) is an (N-l)th order polynomial, f(x) is an

(N-2)th order polynomial. Particularly, when the base polynomials for

u(x) are taken as 1, x, •••, xN_1, then the base polynomials for f(x)

become 0, 1, •••, xN 2. Obviously, u(x) = 1 and f(x) = 0 does not always

satisfy (3.62). In other words, to hold (3.62) for all cases, u(x) * 1.

But, since the determination of A involves the use of u(x) = 1, it can

be concluded that (3.67) is not accurate for W1. For the purpose of

future comparison, we write

W1 = A"1 (3.72)

In order to keep f(x) being a (N-l)th order polynomial and (3.62) held

for all cases, u(x) should be an Nth order polynomial without constant

term. Thus u(x) has N terms with the form

u(x) = x* (a + a *x + ••• + a *xN *) (3.73)o 1 N-l
It is clear, from (3.73), that u(x) constitutes an N dimensional linear

vector space. One set of its base polynomials can be chosen as

g (x) = x*r (x) , k = 1, 2, •••, N (3.74)k k
where rk(x) is the Lagrange interpolated polynomial. Comparing with

equation (3.1), we can set
N

u (x) = V a *u(x). (3.76)X i ij jj=l
Using the same analysis as above, we obtain

W1 = (A)'1 (3.76)

where A is a matrix composed of a . We will discuss how to determine A

through two cases.

-48-

Chapter Three GDQ and GIQ

Case I: The Integral Domain not Including the Origin

It is supposed that the integral domain does not include the origin,

i.e. a > 0 or b < 0. Substituting (3.74) into (3.75) yields
x

a = — — *a , when i * j (3.77a)ij x ij °j
a = a + 1/x (3.77b)ii ii i

for i, j= l , 2, •••, N

(3.77) requires x * 0, for i = 1, •••, N. This is guaranteed by the

condition of a > 0 or b < 0.

Case II: The Integral Domain Including the Origin

In this case, if all the grid points do not include the origin, then

(3.77) can still be used, but if one grid point coincides with the

origin, (3.77) is singular. This problem can be removed by the following

transformation

x = x + d (3.78)

where x is the transformed coordinate, and d is a constant which

guarantees that the transformed integral domain does not include the

origin, that is, a = a + d > 0 or b = b + d < 0. (3.77) is held in the

domain [a, b]. Using (3.78), we get a.̂ , in this case, as
x.+ d

a = — -— -r *a , when i * j (3.79a)ij x + d ij °j

a = a + l/(x +d) (3.79b)ii ii i

for i, j = 1, 2, • • •, N.

-49-

Chapter Three GDQ and GIQ.

3.4.3 Multi-Dimensional Integrals With Specified Grid Points

Firstly, we consider the two-dimensional case. The whole domain is x €

[a, b], y etc, d] which can be decomposed into (N-l)x(M-l) intervals

with N grid points in the x direction x̂ ̂ (=a), xz> •••, xn (=b), and M

grid points in the y direction y (=c), y , ••*, y (=d). We will study1 2 M
the integral over a part of the whole domain. The shaded area as shown

in Fig. 3.1 is taken as the integral domain.

If the function f(x,y) is continuous in

the overall domain, using the same technique

as in the ID case and in the GDQ analysis,

we can use the functional values in the

overall domain to approximate the integral

over a part of the whole domain. As a result,

Fig. 3.1

the formulation of the 2D integral of f(x,y) over the domain

x € [x , x], y e [y , y] can be written asi j 1 m
r* pY n m
[J f"f(x,y)-dx-dy = £ £ (w’ - wf J-tw1 - w*)-f(x ,v) (3.80)J J jn in mk lk n k
x. ~yi n=l k=l

where w? ., w? . are the weighting coefficients of the one-dimensional ij ij e &
integral

w* - w* = | j r(x)-dx , i, j,n=l,2, • • •,jn in n N (3.81)

-i -i f7 w - w = jk ik J s,(y)*dy , i,j,k=l,2,k ,M (3.82)

which can be determined by the inversion of the matrix as stated pre­

viously. Here r (x), s (y) are the Lagrange interpolated polynomials n k
respectively. For the three-dimensional integral, it is supposed that

-50-

Chapter Three GDQ and GIQ

the function f(x,y,z) is continuous in the overall domain x e [a, b], y

€ [c, d], z € [g, h] which can be divided into (N-l)x(M-l)x(L-l) inter­

vals with N grid points in the x direction x̂ (=a), xg, xn (=b), M

grid points in the y direction y (=c), y , •••, y (=d) and L grid1 2 M
points in the z direction z (=g), z2> ••*, z ' (=h). It is shown that

the integral of f(x,y, z) over any interval in the domain can be

approximated by the combination of all the functional values in the

whole domain. The GIQ formulation of this case can be written as
_zq f (x,y,z) *dx*dydz =p f - rx y zi 1 e

N M LE E E “ w*)*(wX - w* J-Cw1 - W1)-f(x ,y ,z) (3.83)jn in mk lk qp ep n k pn=l k=l p=l

where w1 is the weighting coefficient of the ID integral in the z qp
direction, which can be obtained by the inversion of a matrix.

= i = t rzw - w = q t (z)*dz , e,q,p=l,2,•••,L (3.84)qp «p J z p
e

where t (z) is the Lagrange interpolated polynomial in the zp
direction.

In all cases discussed in this subsection, if the domain in a particular

direction includes a point of origin, the weighting coefficients of the

integral in that direction can be obtained using the same way as in the

ID case.

3.5 Concluding Remarks

Based on the analysis of the high order polynomial approximation in the

overall domain, and the analysis of a linear vector space, the

-51-

Chapter Three GDQ and GIQ

generalized differential and integral quadrature techniques, which are

global methods, were developed. For the case of GDQ, the weighting

coefficients of the first order derivative were determined by a simple

algebraic formulation without any restriction on choice of grid points.

Furthermore, a recurrence relationship for the determination of the

weighting coefficients of the second and higher order derivatives was

developed. For the multi-dimensional case, each direction can be treated

using the same approach as in the ID case. It has been shown that GDQ

can be considered as the highest order finite difference scheme, and

when the coordinates of grid points are chosen as the roots of a

Chebyshev polynomial, the formulation of the first order derivative

discretization obtained by GDQ is exactly the same as that given by the

Chebyshev Pseudospectral method. For the case of GIQ, if the function is

continuous in the whole domain, then the integral of the function over a

part of the whole domain (including the case of a whole domain) can be

approximated by a linear combination of all the functional values in the

overall domain. The weighting coefficients of the integral can be

determined from those of the first order derivative discretization. The

multi-dimensional integrals can be approximated in the same way as in

the ID case.

-52-

Chapter Four_____________ Error. Stability Analysis and Model Problems

CHAPTER FOUR

ERROR, STABILITY ANALYSIS AND MODEL PROBLEMS

4.1 Introduction

The theory and details of GDQ and GIQ have been described in the pre­

vious chapter. In this chapter, the basic properties of these schemes

will be analysed. The errors of the approximations for the derivatives

and integrals will be estimated in section 4.2. For the stability analy­

sis, it is desirable to take into account the influence of the types and

numerical treatments of the boundary conditions on the overall stability

of the scheme. This can be done by matrix methods. This approach has an

advantage over the Von Neumann method, which can only consider the

influence of the periodic boundary conditions, in that the influence of

the different types of the boundary conditions can be easily taken into

account. In section 4.3, we study the stability condition using matrix

methods, firstly for the semi-discrete equations obtained by the spatial

discretizations, then for the time discretized equations. Since all the

stability conditions Eire related to the eigenvalues of the spatial

discretization matrix, it is valuable to know the properties of these

eigenvalues. The eigenvalues of the specific matrices given from GDQ are

given in section 4.5, where the influence of the different types of the

boundary conditions and the distributions of the grid points are

discussed. Section 4.6 shows the application of GDQ and GIQ to model

problems. Some comparisons with exact solutions and numerical solutions

given from finite difference schemes are also included in this section.

-53-

Chapter Four Error. Stability Analysis and Model Problems

Finally, some concluding remarks are given in section 4.7.

4.2 Error Estimations

4.2.1 The Function Approximation

It is interesting to analyse the errors resulting from the approximation

of the function, derivatives and integrals. For the sake of simplicity,

the cases of derivatives with respect to x and from one-dimensional

integrals are only considered.

Firstly, we will discuss the approximation error when f(x) is

approximated by an (N-l)th order polynomial, particularly by the

Lagrange interpolation polynomial.
N

P f = £f(x.)-r (x) (4.1)N i li =1
We define the approximation error of f(x) as

E(f) = f(x) - P f . (4.2)N
If it is supposed that the Nth order derivative of function f(x) is a

constant, say K, then using a Taylor expansion, we can obtain

f(x) = f(c) + f(1) (c) • (x-c) + ••• + f(k) (c) • (x-c)k/k! + •••

+ f(N-1)(c)-(x-c)N-1/(N-l)! + f(n) (£) • (x-c)N/N!

= m + m x + m x 2 + ’* * + m xN-1 + K*xN/N! (4.3)0 1 2 N-l
where c is a constant, and £ € [x, c]. Since (4.1) is exactly satisfied

for a polynomial of degree less than or equal to N-l, we have

E(xk) = 0, when k = 0, 1, •••, N-l. (4.4)

Substituting (4.3) into (4.2) and using (4.4), we obtain

E(f) = K*E(xN)/N! (4.5)

-54-

Chapter Four Error. Stability Analysis and Model Problems

where
N

E(xN) = xN - ^x^-r^x) . (4.6)
i =1

NOn the other hand, substituting the (N-l)th order polynomial g(x) = x -
N(x-x)*(x-x)***(x-x) = x - M(x) into (4.1), we obtain1 2 N

N
JJxJt ^ x) = xN - M(x) (4.7)
i =1

Finally, we get

E(f) = K*M(x)/N! (4.8)

In most cases, the Nth order derivative of f(x) is not a constant, but

may be bounded. In this case, we can turn to another way to analyse

E(f). For simplicity, we set 0(x) = F̂ f, and define the function F(z) as

F(z) = f(z) - 0(z) - a*M(z) (4.9)

Clearly, when z = x , x, ••*, x, F(z) = 0. If we set F(x) = 0, we get1 2 N

E(f) = f(x) - P f = f(x) - <f>(x) = a*M(x) (4.10)

Since F(z) has N+l roots in the domain, by repeated application of
(N)Rolle’s theorem, the Nth order derivative of F(z), F (z), is found to

have at least one root lying between x and x . Let £ denote this point.1 N

We have

F(n)(£) = 0 . (4.11)

From (4.9), we obtain

a = f(N)(£)/N! , (4.12)

so, E(f) = f(N) (£) *M(x)/N! . (4.13)

Generally, £ is a function of x.

-55-

Chapter Four_____________Error. Stability Analysis and Model Problems

4.2.2 The Derivative Approximation

We define the error for the mth order derivative approximation as
t \ 3m(Pf)

E (f) = — -- ----- s— = — ----- 8 ^ (4.14)
D Sx" 8xn Sx" 3x"

(ni)where m = 1, 2, — , N-l. Generally, Ed (f) can be written as

ED(m)(f) = ir-am[f(N)(C)*M(x)]/5xm (4.15)

(i n)Since £ is an unknown function of x, it is difficult to estimate E (f)^ D
using (4.15). As a special case, if we assume that the Nth order deri­

vative of f(x) is a constant, namely K, then from (4.8), we get

E (m)(f) = K*M(m) (x)/N! (4.16)D

Although (4.16) is satisfied for the condition of f(N)(£) = K, it is

useful in the error analysis. Firstly, (4.16) has no restriction on x,

in other words, x can be any coordinate in the domain. Secondly, similar

to the analysis of the order of the truncated error in a low order

finite difference scheme, when the order of the truncated error caused

by GDQ is studied, we can only consider the (N+l)th term in the Taylor

series expansion though this term is not the exact error. The (N+l)th
(N) Nterm of the Taylor series expansion is f (c)*(x-c) /N!, where c is a

(N)constant. So, f (c) can be treated as a constant in this case. Thus

the analysis of the function and the derivative approximations is the

same as that shown above. For a more general case, we can use a similar

method as in the analysis of the function approximation to do it. Since

g(z) = f(z) - <f>(z) has N roots in the domain, according to Rolle’s
(m)theorem, its mth order derivative g (z) has at least N-m roots in the

domain, namely, x , x , •••, x . Thus the function1 2 N—m
F("’(z) = g<m)(z) - a-M(z) = f<m)(z) - 0<m)(z) - a-M(z) (4.17)

-56-

Chapter Four Error. Stability Analysis and Model Problems

where

M(z) = (z-x)•(z-x)•••(z-x„) ,1 2 N-m
 __ ___ (in) “ —vanishes at x , x , ••*, x . Now, if we set F (x) = 0, where x is1 2 N-m

™ — — / m \different from x , x , •••, x , then F (z) has N-m+1 roots, and1 2 N-m

E Cm>(f(x)) = f(m)(x) - 0(m)(x) = a-M(x) (4.18)D

Using Rolle’s theorem repeatedly (N-m times), the (N-m)th order

derivative of F (z) is found to have at least one root £, i.e.

f(N)(€) - a-(N-m)! = 0,

so, a = f(N) (£)/(N-m)!

and

E (m)(f(x)) = f(N>(€)-M(x)/(N-m)! (4.19)D
Equation (4.19) is satisfied for x =* x , x , ••*, x„ . This is1 2 N-m
guaranteed if x is outside the domain of x , xg, ••*, xn-

If it is assumed that all the x and x are in the interval h, and thei
Nth order derivative of function f is bounded, then

jf(N> (£[) | < C, where C is a positive constant

|M<m,(x)|s N-(N-l)•••(N-m+1)•hN~"

|M(x) |s hH-m

so

s -TnS - (4-20)
for 1 ^ m ^ N-l

4.2.3 The Integral Approximation

The error of the numerical integral of f(x) in the domain [x., xj is

defined as

-57-

Chapter Four_____________Error. Stability Analysis and Model Problems

dxEjCf, x^ x̂) = f(x)-dx - J j 0(x)
X Xi i
x N

= r j f(x)-dx - E (w1 - W1)-f(x) (4.21)J “ jk ik kx k = li
where w^ is the weighting coefficient of the integral described in the

previous chapter. For a general case, using (4.13), we get

Ejtf, xt> Xj) = -L-J J f(H’();)-M(x)-dx . (4.22)
Xi

If the integral domain is [x , x], then M(x) does not change its signi i+l
in [x., xi+1l* By using the second mean-value theorem, (4.22) can be

reduced to
r(N)f 'i r*E (f, x. x,) = .,,7I> -r‘ + 1.M(x)-dx (4.23)I i i+l N! Jxi

Generally, M(x) may change its sign in the domain [x̂ , x], but |M(x) |

is always positive in the domain. If it is assumed that |f(N)(£)| ^ C,

then (4.22), (4.23) can be rewritten as

lEI(f* Xi> Xj}l - -RT-P (4.24)
X i

lEi(f’ xi’ s - W ’ij‘+1-M(x)-dxl (4-25)
X i

4.3 Stability Analysis

Time-dependent problems are usually well-posed by the equation

-g£- = Mu) (4.26)

with proper initial and boundary conditions, where L is an operator

which contains the spatial part of the partial differential equations. L

is generally a non-linear operator. After discretization by GDQ and

linearization of the non-linear terms, (4.26) can be transformed into a

-58-

Chapter Four Error. Stability Analysis and Model Problems

set of ordinary differential equations in time

= AU + Q (4.27)dt
where U is the vector of the functional values at interior grid points,

Q contains non-homogeneous and boundary values and A is a matrix. The

stability condition of (4.27) is the same as that for the spatial

discretization, which will be discussed in the following subsection,

since there is no time discretization in (4.27).

4.3.1 Spatial Discretization

The stability analysis of (4.27) is based on the eigenvalue structure of

the matrix A, since the exact solution of (4.27) is directly determined

by the eigenvalues and eigenvectors of A. Let A^ i=l, ••*, N be the

eigenvalues of A, the associated eigenvectors, and the matrix P

formed by the N columns V , the diagonal matrix D formed by the

eigenvalues. We then get

D = P_1AP . (4.28)

Since the eigenvectors V form a complete set of base vectors in thei
considered space, the exact solution of (4.27) and vector Q can be

written as a linear combination of V , thusi
U = PU (4.29)

Q = PQ (4.30)

where U, Q are vectors. Substituting (4.29), (4.30) into (4.27), we get
du
—■ji-1 = A u + q (4.31)dt i i

where the û , q̂ are the components of U and Q. The solution of (4.31)

can be written as
At

Ui = + 1 ” • (4.32)

-59-

Chapter Four___________ Error. Stability Analysis and Model Problems

Using (4.29) and (4.32), the exact solution of (4.27) is
N r-_ At q At

U = E |u (0) *e 1 ♦ -r-i—• (e 1 -
i =1 L i

To keep the solution U bounded requires

Re (A^ ^ 0 for all i (4.34)

where Re (A^ means the real part of A..

Since the error between the exact solution of (4.27) and the numerical

solution of (4.27) always satisfies the homogeneous equation, therefore,

in terms of (4.33), the error (vector) at time level t=nAt can be

written as
n A nAt

E(nAt) = E e (0)*e 1 -V (4.35)
i =1

where e^O) is the component of the initial error vector E(0)=P 1E(0).

By defining the amplification factor G as

E(nAt) = G*E((n-l)At)

we get from (4.35)

G = eDAt . (4.36)

Here G is a diagonal matrix. Equation (4.34) gurantees [G^ ^ 1, which

means that the error will not be amplified. Equation (4.34) is,

therefore, the stability condition for the spatial discretization.

4.3.2 Time Discretization

Since the error between the exact solution and the numerical solution of

a full discrete equation always satisfies the homogeneous equation, we

will only investigate the stability behaviour of the homogeneous

equation. When the Euler explicit scheme is applied to (4.27) with Q =

1) -V (4.33)

-60-

Chapter Four Error. Stability Analysis and Model Problems

0, we obtain

U"+1 = (I + At-A)-tf = C-lf = Cn+1-U° (4.37)

where I is a unit matrix, n means the time level and C is a matrix. The

necessary stability condition for (4.37) is

p(C) 2 1 + 0(At) (4.38)

where p(C) is the spectral radius of the matrix C. (4.38) guarantees the

solution of (4.37) to be bounded for a finite value of time. In

practical application, the stability condition

p(C) 2 1 (4.39)

is recommended because it makes (4.37) always stable. Since jn(C) = 1 +

At-p(A), where p(C), p(A) means the eigenvalues of the matrices C and A,

equation (4.39) gives

|1 + At-Aj 2 1 , i = 1, 2, •••, N (4.40)

where A. is the eigenvalue of A.

Equation (4.40) shows, clearly, that all the eigenvalues of A

multiplied by the time step size should be within a stable region (a

unit circle). Thus for a general case of the stability of the time inte­

gration, we can only consider the behaviour of the scalar model equation

= A-w (4.41)dt
where A can be one of the eigenvalues of the spatial discretization

matrix. A general multi-step method of order K applied to (4.41) can be

written as

£ a -wn+k = At- £ 0 • A• wn+k (4.42), « k k k=0 k=0
with consistency conditions

K K K
£ a k = 0 , £k-ak = £ 0 k . (4.43)

k=0 k=0 k=0
Introducing the time shifted operator E as

-61-

Chapter Four Error, Stability Analysis and Model Problems

n+k _k n W = E *W (4.44)

(4.45)

then (4.42) can be written as

P(E) • wn = 0
K

where P(E) = V (a - At-0 • A) • Ek .k kk=0
It is shown that, the stability condition for (4.42) is to keep all the

roots of the characteristic polynomial

P(z) = 0 (4.46)

being of modulus lower than or equal to one, i.e.

|zj si, k = 1, 2, •••, K . (4.47)

When the time integration scheme is specified, â , |3 are known

numbers. As a result, z is the function of At*A. If the Eulerk
explicit scheme is chosen, then K = 1, and z = 1 + At*A. For this

imaginary
p- 4n imaginary

U n sta b le

realS t a b le
real

Fig. 4.1 Euler explicit scheme Fig. 4.2 Runge-Kutta scheme

case, (4.47) is exactly the same as (4.40). Fig. 4.1 shows the stability

region of the Euler explicit scheme. The stability region of the

explicit Runge-Kutta schemes is displayed in Fig. 4.2. Among the

Runge-Kutta schemes, the 4-stage scheme is favourable because its

high order accuracy in time is consistent with the high order accuracy

-62-

Chapter Four Error. Stability Analysis and Model Problems

of GDQ. To reduce the storage required, the standard 4-stage Runge-Kutta

scheme for the equation

= f(w) (4.48)
d t

can be revised as (Pike and Roe, 1985)
nW = W

g = f(w)

w = w + 0.25-At-g
g = f(w)

w = wn + At‘g/3

(4.49)

(4.50)

(4.51)
g = f(w)

w = wn + 0.5•At•g (4.52)
g = f(w)

wn+1 = wn + At*g (4.53)

4.4 Convergence

According to the equivalence theorem of Lax, (for details, see the book

of Richtmyer and Morton (1967)), it has been shown that, for a well-

posed initial value problem and a consistent discretization scheme,

stability is the necessary and sufficient condition for convergence.

This is also true in GDQ discretization because it is consistent. From

section 4.2, the order of the truncated error for the mth order

derivative discretization by GDQ can be written as

R("’ = 0[C-hN'”/(N-ra)!] (4.54)GDQ
where 0[a] means that its value is the same order as a and m indicates

the order of the derivative. For a given m and h, there exists a finite

integer L, which has

Chapter Four Error. Stability Analysis and Model Problems

Now, we see
c-hN"m c-hL hN-m"L
(N-m)! L! (N-m)•(N-m-1)•••(L+l)

< C‘h . (JL.)N~m~L (4.56)L! L+l
Since C, h, L, m are the finite numbers, we have

p # hN-m
7vr— r-r- — > 0 , when N — » oo (4.57)(N-m)!

So

R(m) — > 0 , when N — » oo (4.58)GDQ
For the general case, the differential operator L may include different

orders of spatial derivatives. Its truncated error R caused by GDQGDQ
may be the combination of R(m). Since every R(m) tends to zero when N* GDQ GDQ
tends to infinity, so, R -+ 0, when N -» oo. In other words, GDQ

J GDQ
discretization is consistent.

4.5 Eigenvalues of Specific Matrices

From previous analysis, all the stability conditions are related to the

eigenvalues of the spatial discretization matrix. We will investigate,

in this section, the eigenvalues of some typical matrices obtained by

GDQ discretization for model problems, and the influence of the boundary

conditions and grid distributions on them.

4.5.1 The Convection Operator

Here L(u) is chosen as a convection operator

L(u) = - on [0, 1] (4.59)
OX

with Dirichlet Boundary condition

u(0)= f(x) (4.60)

-64-

Chapter Four Error, Stability Analysis and Model Problems

basic grid is generated by | (t?) | = 1

basic grid is generated by T (tj) = 0N

Firstly, we consider the three typical distributions of the grid points

given in section 3.6 of previous chapter to study the influence of the

grid points.

Case I
Case II
Case III : uniform grid

The eigenvalues with grid of case I are plotted in Fig. 4.3. Fig. 4.4

and Fig. 4.5 show the eigenvalues with case II and case III grid

respectively. It is clear, from Fig. 4.3, that the real parts of all the

eigenvalues of case I are strictly negative. This is not true for cases

II and III. In fact, the real part of the maximum eigenvalue for cases

II and III is positive although the modulus of the maximum eigenvalue of

these two cases is less than that of case I. It is noted that, for cases

II and III, the maximum eigenvalue does always lie in the unstable

region. This behaviour is independent of the number of grid points used.

Thus it seems to be true that the distribution of the grid points can

greatly influence the stability behaviour of a global method such as

ua
a
'3d
a
£

•

30

" 20
■

8
'0

•
•

N = 15

•
5 *12 -9 -6 -3 3 6 9 12

• -10
a

s
-20

8

-30 •

8
------------------------------40 -

>>u
P
p
*3d
p
£

150 ■

100 •
•

sa" :
9

r -

N = 31

;0 -A0 - 3 0 ^ ^ -10

’ -5 a
9

•
-100

-1509

10 20 30 40 !

real real
(a) |X|=36.5, I Ax I =0.0125 (b) |X| = 161.1, lAxl.=0.002741 'max 1 'min 1 'max 1 'min

Fig.4.3 Convection Operator Eigenvalues with Grid of Case I

-65-

Chapter Four Error, Stability Analysis and Model Problems

>>u
czc

’53d
C3
£

------------ -4S-, 150♦ ♦
30 ■
20♦

N = 15 >4u
cz
G

100 N = 31•
♦ 1 A ’3d 50.-♦

10 •
♦ £ •••••« • mm . , .♦ V

5 -12 -9 -6 -3 3 6 9 12 5 10 -40 -30 -?2Q -10 10 20 30 40 !
-10♦ -5t) ^ ♦

♦
-2 2

-100 ■
♦

-30 »
-150 ■

♦
-------------4 0 -

realreal

(a) IAI =34.4, I Ax I = 0.0219 (b) IAI = 139.4, lAxl = 0.005131 'max 1 'min 1 'max ' 'min

Fig.4.4 Convection Operator Eigenvalues with Grid of Case II

u
C3
G• m*WD
czE

1---------------
30

20

a
■ 10B

a
a ---

--
1----

--

1--
-"f

"
1

l

a

z ii Lfl
■

a
5 _12 59 -6 -3

8 « -io.
a

-20

-30 •

--------------- 40-

3 6 9 12

■
■

£eec
*3da
B

150

100

50 ■
- ■

N = 31

3

i0 _40 -30 ^CT8^ 8
-50

-100

-150

10 20 30 40 '
’ ■ - a a

real real

(a) |X| = 25. 1, I Ax I =0.0714 (b) 1AI = 69.89, |Ax I ;= 0.033331 'max 1 'min 1 'max 1 'min

Fig.4.5 Convection Operator Eigenvalues with Grid of Case III

-66-

Chapter Four Error. Stability Analysis and Model Problems

GDQ. It is also found that the minimum step size near the boundary, for

cases II and III, is larger than that for case I.

Here, we pose a question: is the above observation likely to be a major

reason to cause stability problems through the use of cases II and III?

To study this, we introduce a transformation

x = (1 - a)*(3*x2 - 2*x3) + a*x , a 2: 0 (4.61)

where x is the transformed coordinate. When a ^ 1, the transformed grid

is stretched near the boundary (i.e. grid points are more concentrated

near the boundary), when a > 1, the transformed grid is relaxed near the

boundary. Using (4.61), we can get

Case IV : Transformed from Case II with a < 1

Case V : Transformed from Case III with a < 1

To investigate the effect of the minimum step size, under the condition

of stability, on the value of the modulus of the maximum eigenvalue, we

introduce

Case VI : Transformed from Case I with a > 1

Fig. 4.6 - 4.8 display the eigenvalues of cases IV, V and VI. In these

cases, the real parts of all the eigenvalues are strictly negative. It

is shown in Fig. 4.8 that when the minimum step size is relaxed near the

boundary, the value of the maximum eigenvalue is reduced, thus the time

step size is relaxed. It can be concluded from Fig. 4.6 - 4.7 that the

stretched grid near the boundary can improve the stability. From here,

one may have a question : what is the behaviour if the grid is stretched

at other points. To study it, we introduce another transformation, which

stretches the grid near the middle point

-67-

Chapter Four Error. Stability Analysis and Model Problems

>>u
G
G

*DJD
GE

(a)- |X| = 40.5, I Ax I = 0.01611 'max 1 'min
a = 0.71

40

30

" 20
■

10
B

a (

N = 15

5 -12 -9 -6 - 3 |0
a

a
-20a

-30

-*o

3 6 9 12

real

so.
150

ooB N = 31

" so
■■■

r
V l ■

;0 -40 -30 -10
55«a

10 20 30 40 !

■ -100 •

-150 •

-----------------------------200*

real
(b) IX I = 199.1, I Ax I = 0.003361 'max ' 'min

a = 0.65

Fig. 4. 6 Convection Operator Eigenvalues with Grid of Case IV

t-
C3
G

*53d
Gs

150 ■
■

3Cf

^0
a

9 10
3
O

N = 15

ima
gin
ary 100 •

a

50. 'a

N = 31

a
5 -f2 -9 -6 -3

■ -10
a

3 6 9 12 5 so -40 -30^*0 -10

“ "-§0. (

10 20 30 40 !

-20 ■

-100
-30.

a
-150

real real
(a) IA | = 34.5, I Ax I = 0.0163' 'max ' 'min

a = 0.03

(b) IA I = 140.4, I Ax I .= 0.00341
I 1 ms* v 1 1 m i r*

a = 0.005

Fig.4.7 Convection Operator Eigenvalues with Grid of Case V

-68-

Chapter Four_____________ Error. Stability Analysis and Model rroblems

Ofi

-to
-20

-30.

150 ■
■

100 •

■

50a 1

. (r : 1

z II CM

;o -40 -3 (p * e p -10

"■-So. c
B

-100

a
-150 -

10 20 30 40 !

real real

(a) |X| = 31.5, I Ax I = 0.0159
1 1 max 1 1 mi n

a = 1.28

(b) | X | = 1 4 0 . 3 , | Ax I = 0 . 0 0 3 1 5
1 'max 1 'min

a = 1.15

Fig.4.8 Convection Operator Eigenvalues with Grid of Case VI

30

>>ua
S

20 ■
N = 15

a B
WDa
E

a ' 0 ■
a

■
a
a

5 -12 -9 B-6 -3
B —10

■

3 6 9 12

■
-20

-30

f rreal
(a) | X | = 2 1 . 1, | Ax I = 0 . 0 1 2 0 4

' 1 max 1 mi n

150

100
U
ac
*3d
S

-50 -40 -30 -2 0 o -t0

-50

-100 ■■

-150

real
(b) 1X1=63.81, | Ax I = 0.00844

1 'max 1 'min

0 = 0.03 0 = 0.20

Fig.4.9 Convection Operator Eigenvalues with Grid of Case VII

-69-

Chapter Four_____________Error. Stability Analysis and Model Problems

x = € = 2- (1 - 0)-(x2- x) + 0-x , 0 £ 0 , x :S 0.5 (4.62a)

x = 1. - £ , x > 0.5 (4.62b)

Using (4.62), we obtain case VII as

Case VII : Transformed from Case III with 0 < 1

Fig. 4.9 shows the eigenvalues of case VII. Obviously, the grid

stretched near the middle point does not improve the stability

behaviour. Actually, when N is a small number, the structure of the

eigenvalue does not change much, but when N becomes a large number, the

structure of the eigenvalues changes a lot. It tends to be symmetrical

about the origin.

4.5.2 The Diffusion Operator

(4.63)

(4.64)

(4.65)

When the grid of case I was used, the eigenvalues for both the Dirichlet

and Neumann boundary conditions are real numbers. But the Neumann

boundary condition can give smaller eigenvalues than the Dirichlet

boundary condition, thus the former may allow a larger time step size to
5be used. For example, the maximum eigenvalue of N = 31, i.e. 1.5443x10 ,

4for the Dirichlet condition, can be reduced to 4.6665x10 for the

Neumann condition. This is also the case when the grid of case II was

used in which the eigenvalues for the Dirichlet condition are real

The diffusion operator is chosen as
a2L(u) = on [0, 1]
dx2

The boundary condition we will impose is of Dirichlet type

u(0) = u(l) = 0

or of Neumann type

(0) = (1) = 0dx dx

-70-

Chapter Four Error. Stability Analysis and Model Problems

numbers but are not for the Neumann condition. When N = 31, the maximum

eigenvalue is (-5.5389x10 , 0) for the Dirichlet condition, and

(-1.6801xl04, 8.0125xl03) for the Neumann condition. Although the

Neumann condition can give smaller eigenvalues, it may cause stability

problems. When the grid of case III was used with the Dirichlet

condition, the real part of all the eigenvalues are negative, but when

the Neumann condition was applied, the real part of the maximum

eigenvalue is positive which can cause the computation to be unstable.

Fig.4 10 shows the eigenvalues with grid of case III for the Dirichlet

and Neumann conditions.

93c
*Sd93
5

6000

3000
N = 3 '

-2H00 -1000

-3000

-6000-

1000

real

93c
'53d93

21100

6C00

3000

%

N = 3 ;

-2000 ■1000

-3000

-4000-

1000 2000

real
(a) Dirichlet Type Condition

.3

(b) Neumann Type Condition

1A| = 4.734xl03
max 1 1 max

Fig.4.10 Diffusion Operator Eigenvalues with Grid of Case III

= 5.493x10

4.5.3 The Convection-Diffusion Operator

We consider the convection-diffusion operator
T f \ 9 U 3u r —. . 1L(u) = v -- - on [0, 1JQ 2 ox dx

(4.66)

with a Dirichlet type boundary condition. When v = 0(1), this equation

-71-

Chapter Four Error. Stability Analysis and Model Problems

is dominated by convection and diffusion. When v « 0(1), this equation

is mainly dominated by convection. It is found that when v = 0(1), the

real parts of all the eigenvalues for all of the cases are strictly

negative, but when v is very small, the real parts of some eigenvalues

may be positive, leading to a stability problem. It is found that the

minimum v for keeping stability is greatly affected by the distribution

of grid points. For example, to obtain a stable solution, the minimum

value of v is around 0.05 for the grid of case III, and 0.0015 for the

grid of cases I and II when N=21. Thus for the case of very small vy the

uniform grid is not recommended. The instability problem can be removed

by increasing the number of grid points for all the cases when v is very

small. If the number of grid points is kept the same, it is useful to

explore the behaviour if the grid is stretched or relaxed near the

boundary. We have found that, for the grid of cases II and III, the real

parts of all the eigenvalues can be negative if the grid is stretched

near the boundary. This is not true for the grid of case I. Fig. 4.11 -

4.12 show the eigenvalues of the convection-diffusion operator with v -

0.001 for the grid of case I. It is clear from these figures that, when

N = 21, the real part of the maximum eigenvalue is positive, but when N

= 31, the real parts of all the eigenvalues are strictly negative.

Keeping N = 21, when the grid is stretched near the boundary, then more

eigenvalues lie in the right half plane, but when the grid is relaxed

near the boundary, the real parts of all the eigenvalues are kept in the

left half plane. It may be concluded that for the convection-diffusion

operator, the stability can be improved by stretching the grid near the

boundary for some cases of grid, and by. relaxing the grid near the

boundary for other cases of grid.

-72-

Chapter hour Error, Stability Analysis and Model Problems

£ac
*3d
£

1---------- wo-

0 50
• o

••9
• --

--
«—

--
--

•

2 : n (V)
•

0 -30 -20 -10 2 10 20 30
•
9

• »
-50 ■G

•

---------- wo-

St
a
‘5bst
b

------------------*00-
9

1009
9 9

N = 31

iO -40 -30 -20 ovToK>o"o

9
-100 ■

a
L-----------------real

(a) N = 21, v = 0.001
real

(b) N = 31, v = 0.001

Fig. 4.11 Convection-Diffusion Operator Eigenvalues with Grid of Case I

u
St
.£‘3d
St
E

50

o
9 9a9

9

N = 21

•

a

e
►0 -30 -20 -10 |

9
Q

-50 ■

-------------- wo-

10 20 30
9

9

9

real
(a) Stretched near the boundary

a = 0.80, v = 0.001

u
StS
‘3d
st
B

9 N = 21
0 50

3
9
9
G
9
9
9

•0 -30 -20 -10 2 10 20 30
9
9
1

-50e
a

----------- WO-

real
(b) Relaxed near the Boundary

a = 1.20, v = 0.001

Fig.4.12 Convection-Diffusion Operator Eigenvalues with Grid of Case VI

Chapter Four Error. Stability Analysis and Model Problems

4.6 Applications To Model Problems

4.6.1 Solutions of the Burger’s Equations

Firstly, we consider the one-dimensional unsteady problem

u + u* u = e*u (4.67)
t X XX

X € [0, 1], t € [0, T]

with initial condition

u(x, 0) = f(x) (4.68)

where e is a constant, T is a specified time. To obtain the analytical

solution of (4.67) for comparison purposes, and using the following

transformat ion

u(x, t) = -2*e*W (x, t)/W(x, t) (4.69)
X

f(x) = -2*e-gx(x)/g(x) , (4.70)

equation (4.67) can be reduced to a linear heat conduction equation as

follows

W = e-W (4.71)
t XX

with W(x, 0) = g(x) .

For the test case here, f(x) is chosen as

f (x)=-2e[b*7i*cos(7rx)+0.5*C‘7r*cos(0. 5tcx)] / [b*sin(7rx)+c*sin(0.57rx)+d]

The analytical solution of this can be expressed as
2 2 W(x, t)=b*exp(-€7r t) *sin(7rx)+c*exp(-0. 25e7r t) *sin(0.57rx)+d ,

where b, c, d are the constants and chosen as

b = 0.2, c = 0.1, d = 0.3, e = 0.01 .

After discretization by GDQ, the resulting ordinary differential

-74-

Chapter Four Error, Stability Analysis and Model Problems

equations are solved by the 4-stage Runge-Kutta scheme shown in section

4.3. Table I lists the computational results using a uniform grid with

different number of grid points, 7, 11, 21. The corresponding analytical

results were also included in this Table for comparison. The time step

size was chosen as 0.01. Clearly, the numerical solution is very

accurate.

Table I Unsteady Solution of Burger’s Equation

t X

Computational

N = 7 N = 11 N = 21
Analytical

0.0 -0.051923 -0.051923 -0.051923 -0.051923
0. 1 0.5 -0.003897 -0.003897 -0.003897 -0.003897

1.0 -0.031138 -0.031126 -0.031126 -0.031127

0.0 -0.050243 -0.050226 -0.050214 -0.050215
0.5 0.5 -0.003917 -0.003917 -0.003917 -0.003917

1.0 0.030068 0.029993 0.029995 0.029995

0.0 -0.048263 -0.048219 -0.048170 -0.048168
1.0 0.5 -0.003939 -0.003939 -0.003939 -0.003939

1.0 0.028819 0.028628 0.028640 0.028638

Next, we consider the two-dimensional steady problem by solving

u + c*u + d*u = e*(u + u) (4.72)
t x y xx yy

with boundary conditions for t > 0

u(x,0,t)={l-exp[(x-1)•c/e]>/[1-exp(-c/e)], u(x,l,t)=0, O^x^l

u(0,y,t)={l-exp[(y-1)*d/e]}/[l-exp(-d/e)], u(l,y,t)=0, O^y^l .

The exact solution to (4.72) is
u(x,y) = l-expHx-D -c/e] . 1-exp[(y-1)-d/e]

l-exp(-c/e) 1-exp(-d/e)

-75-

Chapter Four_____________Error, Stability Analysis and Model Problems

Using GDQ, we have employed the grid of cases I, II and III to simulate

this problem, and found that, when N = 11, the allowable maximum time

step size is 1. lxlCf3 for case I, 3.20xl0~3 for case II and 7.10x10 3

for case III, and that the converged results for all three cases are

nearly the same. This confirms the findings from the stability and

eigenvalue analysis in the above section. Table II lists the

computational results using the grid of case III with N = 11. Some exact

Table II The Steady Solution of 2D Burger’s Equation
c = 1.0, d = 2.0, e = 0.5

y 0.20 0.40 0.60 0.80

X Computed by GDQ (N = 11, CPU = 0.44 sec.)

0.20 0.901911 0.854935 0.750394 0.517749
0.40 0.789693 0.748554 0.657015 0.453316
0.60 0.622288 0.589865 0.517726 0.357209
0.80 0.372555 0.353141 0.309950 0.213851

X
*

Computed by FD (N == 51, CPU = 17.15 sec.)

0.20 0.901928 0.854973 0.750462 0.517836
0.40 0.789720 0.748616 0.657117 0.453437
0.60 0.622318 0.589932 0.517833 0.357328
0.80 0.372578 0.353191 0.310026 0.213933

X Exact

0.20 0.901916 0.854945 0.750410 0.517764
0.40 0.789702 0.748575 0.657046 0.453345
0.60 0.622299 0.589890 0.517764 0.357244
0.80 0.372563 0.353160 0.309979 0.213878

Time-Split MacCormack Finite Difference Scheme

-76-

Chapter Four Error. Stability Analysis and Model Problems

results and numerical results given by a time-split MacCormack scheme

are also included in this table. For the finite difference simulation,

the allowable maximum time step size was used. The CPU time required on

the IBM 3090 are also shown in the table. It is clear that the GDQ

results are more accurate than the finite difference results even though

fewer grid points are used, and they result from considerably less

computat i on t i me.

4.6.2 Solution of the Integral Equation

We will use the technique of GIQ developed in Chapter 3 to solve the

model integral equation

(4.74)o ' '
with a symmetrical kernel

£ (1 -x) when O^^x

x(l-£) when x^£l

This equation has an exact solution

y(x) = A*sin(x) + B*cos(x) - 1 (4.75)

where A = tan(0.5) and B = 1

ytx) = 0.5-x-tl-x) + K(x,C)-y(5)-d?

K(x,€) =

Table III Results of the Integral Equation

x 0.040507 0.118239 0.226900 0.357685 0.500000

Computed
by W1

0.021312 0.057509 0.097403 0.128106 0.139771

Computed
by W1

0.021143 0.057211 0.095778 0.128198 0.137014

Exact 0.021303 0.057462 0.097264 0.127974 0.139494

After discretization by GIQ for the integral, the resultant algebraic

equations system is solved by a direct method. Table III shows the

-77-

Chapter Four_____________ Error, Stability Analysis and Model Problems

computed and the exact results using weighting coefficients W1 and

W from equations (3.76) and (3.72). Since y(x) is symmetrical with

respect to x = 0.5, only the results in [0, 0.5] are shown. The solution

was obtained with N = 11. From this table, it is clear that the
i ~iweighting coefficients W give more accurate results than W .

4.7 Concluding Remarks

It has been found that GDQ and GIQ are global methods, which can achieve

the same accuracy using just a few grid points as the conventional

finite difference scheme using a large number of grid points. It was

also shown that GDQ discretization is consistent, the stability

conditions for both the semi-discrete equation and the full-discrete

equation are dependent on the eigenvalues of the spatial discretization

matrix obtained by GDQ. The distribution of the grid points was found to

have a considerable influence on the stability condition. Grid

stretching near the boundary can improve the stability, but the grid

stretching near the middle point makes it worse even though the minimum

step size is very small. This is a case of the global method differing

from the low order local method. For second order differential equation

problems, the types of the boundary conditions can also effect the

stability. Comparing with the Neumann type boundary condition, the

Dirichlet type boundary condition can causes more stable results, but

give larger value of the maximum eigenvalue. This means that it allows a

smaller time step size and thus needs more time steps to steady

resolution. For the convection-diffusion problem, increasing the number

of grid points can improve stability, and stretching the grid near the

boundary does likewise.

-78-

Chapter Five Solutions of Incompressible N-S Equations

CHAPTER FIVE

SOLUTIONS OF TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

5.1 Introduction

In engineering, many fluid flow problems such as encountered in low

speed aerodynamics, industrial channel flows, hydraulics can be

approximated as incompressible flow. If a Newtonian fluid is considered,

these flows are governed, in mathematical terms, by the incompressible

Navier-Stokes (N-S) equations which have been discussed in Chapter Two.

The incompressible N-S equations are a mixed set of elliptic-parabolic

equations which can be written in several forms. One of the most popular

methods for solving the 2D incompressible N-S equations is through the

use of the vorticity-stream function approach. This scheme reduces the

original equations to a transport equation for vorticity o>, and a

Poisson equation for stream function ip. The successful application of

this approach has been the subject of contributions by many researchers

such as Burggraf (1966), Osswald et al (1985), Ku et al (1985), Morrison

and Napolitano (1988). In the vorticity-stream function approach,

however, the implementation of boundary conditions for \p is not straight

forward. For example, two physical boundary conditions for the velocity

u, v can give two boundary conditions for ip, but current numerical

techniques normally use only one boundary condition (of the Dirichlet

type) for \p in the calculation. Other researchers (Fasel and Booz 1984,

Farouk and Fusegi 1985) have then used the vorticity-velocity approach

-79-

Chapter Five Solutions of Incompressible N-S Equations

which reduces the original equations to a transport equation for a>, and

two Poisson equations for u, v. Compared with the vorticity-stream

function approach, this approach needs more computational time.

Another version of the incompressible N-S equations used in the 2D

steady case is the stream function approach which reduces the original

equations to a 4th order differential equation for ip. This approach

still needs to be justified for a general application because two

difficulties appear. One difficulty arises from the solution of a 4th

order differential equation, resulting in complexity of the algorithm.

Another arises from the implementation of the boundary conditions for

the stream function. The stream function-related approaches for solving

the incompressible N-S equations lose their attractiveness when applied

to a three-dimensional flow because a single scalar stream function does

not exist in this case. As a consequence, the primitive-variable form is

usually used for three-dimensional problems.

One of the schemes for solving the incompressible N-S equations in

primitive-variable form is the artificial compressibility method of

Chorin (1967). In this method, the continuity equation is modified to

include an artificial compressibility term which vanishes when the

steady state solution is reached. With the addition of this term to the

continuity equation, the resultant N-S equations are a mixed set of

hyperbolic-parabolic equations which can be solved using a standard

numerical approach. A difficulty with this approach lies in the choice

of the optimal time step size and the artificial compressibility factor

for the general case. In most cases, a value of around 0.5 for the

Chapter Five Solutions of Incompressible N-S Equations

maximum artificial compressibility Mach number can produce a

satisfactory result. There are many successful applications of this

approach. For details, see, for example, the work of Steger and Kutler

(1976), Chang and Kwak (1984), Rizzi and Eriksson (1985). Another scheme

in the primitive-variable approach involves using a Poisson equation for

pressure in place of the continuity equation. This approach consists of

a basic iterative procedure between the velocity and the pressure

fields. For an initial approximation of the pressure, the momentum

equation is solved to determine the velocity field. The resultant

velocity field does not satisfy continuity and has to be corrected.

Since this correction has an impact on the pressure field, a related

pressure correction is defined, obtained by showing that the corrected

velocity satisfies the continuity equation. This approach has a wide

application in CFD, see, for instance, the work of Patankar and Spalding

(1972), Ghia et al (1981), Cebeci et al (1981), Chan et al (1987).

The numerical algorithms described in Chapter 1 can be used to solve the

incompressible N-S equations. Chapter Four has shown that GDQ has

potential as an attractive technique as a result of the applications to

model problems. In this chapter, we will apply GDQ to solve the

incompressible 2D N-S equations, and check out its behaviour to various

engineering problems. The vorticity-stream function formulation, and

several standard test problems are chosen for demonstration. For

application to general problems, the multi-domain GDQ technique is also

developed in this chapter. For comparison purposes, the finite

difference resolution to the driven cavity flow problem was also

included, which was obtained by using a second order time-split

-81-

Chapter Five________________Solutions of Incompressible N-S Equations

MacCormack finite difference scheme for the vorticity equation, and a

SIP approach for the stream function equation.

5.2 Discretization and Boundary Conditions

u = 1, v = 0

u = 0 u = 0
v = 0 v = 0

u = 0, v = 0

Fig. 5.1 Problem Definition of the Driven Cavity Flow

For demonstration purposes, we will choose the vorticity-stream function

formulation in the Cartesian coordinate system to solve the driven

cavity flow problem and show the discretization of the governing

equations and the treatment of the boundary conditions.

The non-dimensional vorticity-stream function formulation of the 2D N-S

equations is
X 2o) + u*w + v*it> = =—• V o) (5.1)

Chapter Two. For the driven cavity flow problem, the physical boundary

conditions are

X y Re

(5.2)
2where w, ip, u, v, Re, t, x, y, V have the same meaning as shown in

u = v = 0 , at x = 0, 1, 0 ^ y < 1 (5.3)

u = v = 0 , at y = 0 , O ^ x ^ l (5.4)

-82-

Chapter Five Solutions of Incompressible N-S Equations

u = 1, v = 0, at y = 1 , 0 < x < 1 (5.5)

The problem definition is shown in Fig. 5.1. Clearly, the two corner

points on the upper wall are singular points which in a numerical

technique normally cause difficulties in treating the boundary

conditions. Since

u = , v = - (5.6)Sy dx

the boundary conditions (5.3)-(5.5) for u, v can be transformed to

\p = ip = 0 , at x = 0, 1 , 0 == y < 1 (5.7)
X

ip = iJj = Q , at y = 0 , O ^ x ^ l (5.8)

ip = 0, ip = 1 , at y = 1 , 0 < x < 1 (5.9)y
for stream function \p. Thus, there are eight boundary conditions for ip,

each boundary with two types (one Dirichlet and one Neumann).

With the mesh of N grid points in the x direction and M grid points in

the y direction, when the derivatives of (5.1) and (5.2) are

approximated by GDQ, the discretized forms of (5.1), (5.2) become
dw N Mij . „ (l) ■ „ -(l)+ u • V w *0) + v • V w =dt i j ik kj i j jk ikk=1 k=l

i-*[V w(2)-w + V w(2)-w] (5.10)
Re u ik kj u jk ikk=l k=l

N (2) ME w 121̂ + V w(2:-\p = w . (5.11)
u ik kj u jk ik ijk=1 J k=l

The boundary conditions for (5.10) can be obtained from (5.2) with the

discretized form as

N (2)to = V w •ip , j = 1, 2, •••, M (5.12)ij u lk Mcj °k = 1
N

w = y w(2)*i/r , j = 1, 2, •••, M (5.13)Nj u Nk rkj °k= 1
M

U = y;w(2)*̂ , i = 2, 3, • • •, N-l (5.14)il u lk ik ’ > > »k = 1

-83-

Chapter Five Solutions of Incompressible N-S Equations

“lM= i -2. 3. N-l . (5.15)
k = l

Using (5.6), the velocity can be determined by
M

- (1)“., = I » , 1 = 2 , 3 , J=2,3,---,M-1 (5.16)ij , , Jk ikk = 1
N MiV.. =- E w , 1 = 2 , 3 , j=2,3, •••,M-1 . (5.17)ij , , ik kjk = l

The four boundary conditions for w can also be obtained from the

velocity

• J - l . 2. M (5.18)
k = l

% = ■ E C A j > j = l. 2, M (5.19)k= 1
H

w = Y w *u , i = 2, 3, •••, N-l (5.20)il lk ikk = l
H

w = Y W(1)-u , i = 2, 3, •••, N-l . (5.21)iM Mk ikk = l

Four Dirichlet boundary conditions for (5.11) can be written as

\ p = \ p = i p = i p = 0 . (5.22)il iH *ij Nj
Another four Neumann boundary conditions, after discretizing by GDQ, can

be combined to give
N

ip = [Y (w(1)*w(1) - w(1)*w(1))'\p]/AXN (5.23)2, j " l,k N,N-1 N,k 1 ,N-1 k, jk=l,k^2,N-l
N

\p = [Y (w(1)>w(1) - w(1) *w(1))-ip]/AXN (5.24)
’ ■* ',’k 1 > 2 1 ’k N ’2 k ’J

\p =[w(1) + Y, (w(1)*w(1) - w(1)*w(1))'\p]/AYM (5.25)i,2 1, M-1 " 1 ,k M,M-1 M,k 1,M-1 i,kk=l,k*2,M-l
H

_ r r,(1) V /•“ <!> - t D - k I 1 / * v u re o c iV. „ „ = L-w + Y (w -w - w -w)'\p J/AYM (5.26)i ,M-1 1,2 " M,k 1,2 l,k M,2 vi,kk=l,k*2,M-l
where

AVM (1) (1) (1) (1) AXN = w • w - w • wN,2 1 ,N-1 1,2 N,N-1

-84-

Chapter Five Solutions of Incompressible N-S Equations

AYM = w-(l) -(l) w • wM,2 1,M-1
Thus there are two boundary conditions for \Jj on each boundary.

With the boundary conditions (5.12) —(5.15) or (5.18)-(5. 21), the set of

(N-2)x(M-2) ordinary differential equations for w, (5.10), can be solved

by the 4-stage Runge-Kutta scheme which was given in Chapter Four. With

eight boundary conditions, the set of (N-4)x(M-4) algebraic equations,

(5.11), can be solved by LU decomposition which is shown in Appendix E.

Noting that the Laplacian operator is a linear operator, we need only

decompose the matrix of the equations system (5.11) once and store the

inverted matrix elements for all the following time steps.

5.3 Single-Domain Results

In this section, four standard test problems, which have been

extensively studied by many researchers using conventional numerical

techniques, are chosen to validate the GDQ approach.

5.3.1 Driven Cavity Flow

This flow problem, often chosen as a test case for checking new

numerical techniques, has been simulated very extensively. There are a

variety of numerical results available for comparison. For example, the

vortex centre and the velocity profile through the geometrical centre

are presented by Ghia et al (1982) and Ku et al (1985). For numerical

simulation, the solutions were obtained in the Reynolds number range

from 100 to 1000. The grid of Case IV shown in Chapter 4 was used for

Chapter Five Solutions of Incompressible N-S Equations

the GDQ simulation. Particularly, mesh sizes of 13x13, 17x15, 21x17 and

23x21 for Reynolds number of 100, 200, 400, 1000 were used respectively.

The initial values for all variables in the interior points are chosen

to be zero. For direct comparison of GDQ with conventional numerical

techniques, numerical results using a second order time-split MacCormack

finite difference scheme (shown in Appendix C) for vorticity equation

and a preconditioning technique of SIP (shown in Appendix D) for stream

function, are also obtained for a uniform grid of mesh size of 51x51. By

numerical experiment, the allowable maximum time step size was used.

Table I Parameters of Vortex Center for Driven Cavity Flow

Re Reference Grid X y * u>

100
Ghia et al
Present (GDQ)
Present (FD)

129x129
13x13
51x51

0.6172
0.615
0.620

0.7344
0.735
0.740

-0.1034
-0.1035
-0.1030

3.1665
3.1547
3.1915

200
Ku et al

Present (GDQ)
Present (FD)

25x15
17x15
51x51

0.6023
0.600
0.600

0.6657
0.665
0.660

-0.1071
-0.1089
-0.1072

2.6345
2.6686
2.6673

400
Ghia et al
Present (GDQ)
Present (FD)

129x129
21x17
51x51

0.5547
0.555
0.560

0.6055
0.605
0.600

-0.1139
-0.1131
-0.1105

2.2947
2.2794
2.2428

1000
Ghia et al
Present (GDQ)
Present (FD)

129x129
23x21
51x51

0.5313
0.530
0.540

0.5625
0.565
0.560

-0.1179
-0.1184
-0.1103

2.0497
2.0649
1.9326

-86-

Chanter Five Solutions of Incompressible N-S Eauations

Table II The CPU Time Taken by Driven Cavity Flow Simulation

Re 100 200 400 1000

CPU time (GDQ)
seconds 4.27 6.69 16.99 33.79

CPU time (FD)
seconds 442.73 536.98 601.50 732.90

As is well known, during the transition from fluid motion governed

mainly by viscosity to one where inertia forces dominate the flow with

increasing Reynolds number, the core of the primary vortex centre seems

to behave as a solid boundary. One indication of this behaviour is that,

the location of the primary vortex center moves to the geometric center

of the cavity with increasing Reynolds number, which is shown clearly in

Table I. Table I includes the results of GDQ approximation, the finite

difference approximation and results given by Ghia et al (1982) and Ku

et al (1985). It is clear from Table I that the GDQ approximation is

very accurate even though just a few grid points were used, compared

with the finite difference approximations using a large number of grid

points. Table II shows the CPU time on the IBM 3090 by the GDQ

approximation and the time-split MacCormack finite difference

approximation. The mesh size used is the same as Table I. We see,

clearly, that the GDQ approach requires much less CPU time for accurate

results. The computed horizontal velocity profiles along the vertical

line through the geometric center of the cavity, are displayed in Fig.

5.2, and the vertical velocity profiles along the horizontal line

through the geometric center of the cavity are shown in Fig. 5.3. Also

included in Fig. 5.2 and 5.3 are the results of Ghia et al. Fig 5.4 and

5.5 show the streamlines computed by GDQ and the MacCormack finite

-87-

Chapter Five________________Solutions of Incompressible N-S Equations
1 . 0

0.9

0.8

0. 7

0.6

0.5

0.<*
GHIA ET Ai. (GRID 129X1291

0.6
o RE = 400
3 RE = 10000.2

 PRESENT
(13x13.21x17 and 23x21 grid respectively)

0. 1
0. 0

1.0 - 0 .3 -0 .6 -0. <♦ - 0 .2 0 .0 0 .2 0. * 0 .6 0 .8 1.0

U
(a) Results from GDQ Approach

0 .9 --

0.8 --Y
0 .7 -■

0.6 --

0.5 - ■

0 .4 --

GHIA ET AL (GRID 129X1291

0 RE = 100
♦ RE = 400
0 RE = 1000

0.3 --

0.2 -■

PRESENT

FD 51X51

0.0
1.0 -0 .8 -0 .6 -0 .4 -0 .2 0.0 0 .2 0.4 0.6 0.8 1.0

(b) Results from the MacCormack Time-Split Finite Difference Scheme

Fig. 5.2 Horizontal Velocity past the Geometric Center of the Cavity

-88-

Chapter Five Solutions of Incompressible N-S Equations

GHIA ET AL (GRID 1 2 9 X 1 2 9)V

0.2
 PRESENT

(13x13.21x17 and 23x21 grid respectively)

0.0

-0.

- 0. 2 - -

-0. 3 --

-0. <♦ --
- 0 . 5 ■-

- 0.6
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

X
(a) Results from GDQ Approach

0.6

0 . 5 -■

0 . 4 -- GHIA ET AL (GRID 1 2 9 X 1 2 9)

O RE = 1 0 0

V RE = 4 0 0

0 RE = 1 0 0 0

0 . 3 --

0.2 --
PRESENT

FD 51X51

0.0

- 0.1 --

- 0 .2 -•

- 0 . 3

- 0 . 4 -■

- 0 . 5 --

-0.6
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 v 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

(b) Results from the MacCormack Time-Split Finite Difference Scheme

Fig. 5.3 Vertical Velocity past the Geometric Center of the Cavity

-89-

Chapter Five Solutions of Incompressible N-S Equations

(a) Re = 100, grid 13X13

(b) Re = 1000, grid 23X21

Fig. 5.4 Streamlines for Driven Cavity Flow (GDQ Results)

-90-

Chapter Five Solutions of Incompressible N-S Equations

(a) Re = 1 0 0 , grid 5 1 X 51

(b) Re = 1 0 0 0 , grid 51 X 51

Fig. 5.5 Streamlines for Driven Cavity Flow (FD Results)

-91-

Chapter Five Solutions of Incompressible N-S Equations

difference scheme for the Reynolds number cases of 100, 1000. The values

of the streamlines are listed in Table III. Fig. 5.2-5.5 show clearly

that the GDQ results using few grid points are more accurate than the

finite difference results using a lot of grid points.

Table III Values of Streamlines in Fig. 5.4 and Fig. 5.5

Contour number Value of tp Contour number Value of iff

1 -1.10xl0-1 8 -1.OOxlO-6
2 -1.OOxlO-1 9 5.OOxlO-5
3 -9.OOxlO-2 10 2.OOxlO-4
4 -7.OOxlO-2 11 5.OOxlO-4
5 -5.OOxlO-2 12 1.OOxlO-3
6 -3.OOxlO-2 13 2.OOxlO-3
7 -1.OOxlO-2

5.3.2 Natural Convection in a Square Cavity

The buoyancy driven flow in a square cavity with vertical sides which

are differentially heated is a suitable vehicle for testing and

validating numerical methods used for a wide variety of practical

problems. This problem has been extensively studied by many researchers

such as Phillips (1984), and as illustrated in the paper of G. de Vahl

Davis and I. P. Jones (1983) which outlined numerous contributed results

reported at the 2nd Conference on Numerical Methods in Thermal Problems,

compared with a bench mark solution. The problem being considered here

is that of the two-dimensional flow of a Boussinesq fluid of Prandtl

number 0.71 in an upright square cavity described in non-dimensional

terms by O^x^l, O^y^l with y vertically upwards. The governing equations

are (2.21)-(2.23) shown in Chapter Two, and the problem definition and

-92-

Chapter Five Solutions of Incompressible N-S Equations

u=0,v=0, T =0y

u=0 u=0
v=0 v=0
T=1 T=0

u=0,v=0,T =0y
Fig. 5.6 Problem of the Natural Convection in A Square Cavity

the boundary conditions are displayed in Fig. 5.6. Using the same

approach as for the driven cavity flow, the resultant set of (N-2)x(M-2)

ordinary differential equations for vorticity w and for temperature T

are solved by the 4-stage Runge-Kutta scheme , and the set of

(N-4)x(M-4) algebraic equations for \p are solved by the LU decomposition

technique. The treatment of the boundary condition for u> and \J) are the

same as for the driven cavity flow problem. Two Dirichlet type boundary

conditions in the horizontal direction, and two Neumann type boundary

conditions in the vertical direction, are used for T. The grid of case

IV was used for GDQ simulation. Numerical results for the values of Ra

of 103, 104, 105, 10B, which have been communicated (1990), were

obtained by using the mesh sizes of 13x13, 15x15, 21x17, 21x17

respectively. When the values of the fluid variables are known at the

grid points, the full flow field can be determined by equation (3.33).

All the following results are based on the interpolated values. For the

comparison, the following quantities are calculated

the stream function at the mid-point of the cavitymid

|0| the maximum absolute value of the stream function (together1 1 m ^vmax

with its location)

-93-

Chapter Five Solutions of Incompressible N-S Equations

Table IV GDQ Results of The Natural Convection Problem

Ra

o CO io4 io5 io6

mesh size 13x13 15x15 21x17 21x17
1* 1* m i d ■ 1. 175 5.075 9. 115 16.33
1*11 1 max - - 9.617 16.82
x,y - - 0.285,0.600 0.150,0.550

u 3.649 16. 19 34.73 64.36
max
y 0.815 0.825 0.855 0.850
V 3.697 19.61 68.63 221.80

max
X 0. 180 0.120 0.065 0.035
Nu 1.1178 2.2454 4.524 8.797
Nu 1/2 1.1179 2.245 4.526 8.745
Nu0 1.1179 2.250 4.524 8.837
Nu 1.506 3.548 7.751 17. 13

max
y 0.090 0. 145 0.080 0.045

Nu 0.6914 0.5860 0.7240 0.9260
min

y 1 1 1 1

u the maximum horizontal velocity on the vertical mid-plane of
max

the cavity (together with its location)

v the maximum vertical velocity on the horizontal mid-plane of
max

the cavity (together with its location)

Nu the average Nusselt number throughout the cavity

Nu the average Nusselt number on the vertical mid-plane of the1/2
cavity

Nuq the average Nusselt number on the vertical boundary of the

cavity at x = 0

Nu the maximum value of the local Nusselt number on the boundarymax

at x = 0 (together with its location)

Chapter Five Solutions of Incompressible N-S Equations

Nu the minimum value of the local Nusselt number on the boundary
mi n

at x = 0 (together with its location)

Table IV lists the GDQ results and Table V and Table VI list the bench

mark solutions and the second order finite difference results given from

the work of G.de Vahl Davis (1983). Clearly, the GDQ results are very

accurate, and nearly the same as the bench mark solutions. It is also

found that the GDQ results are more accurate than the finite difference

results even though fewer mesh points are used. Table VII shows the CPU

time cost on the IBM 3090 by GDQ resolutions. Figure 5.7-5.11 shows

isotherms, streamlines, vorticity contours, horizontal velocity contours

and the vertical velocity contours.

Table V Bench Mark Solutions of The Natural Convection Problem

Ra

103 104 io5 COotH

I'/' 1• m i d '
1. 1 7 4 5 . 0 7 1 9 . I l l 1 6 . 3 2

I'M1 1 max - - 9 . 6 1 2 1 6 . 7 5

x,y - - 0 . 2 8 5 , 0 . 6 0 1 0 . 1 5 1 , 0 . 5 4 7

U 3 . 6 4 9 1 6 . 1 7 8 3 4 . 7 3 6 4 . 6 3
max
y 0 . 8 1 3 0 . 8 2 3 0 . 8 5 5 0 . 8 5 0

V 3 . 6 9 7 1 9 . 6 1 7 6 8 . 5 9 2 1 9 . 3 6
max
X 0 . 1 7 8 0 . 1 1 9 0 . 0 6 6 0 . 0 3 7 9

Nu 1 . 1 1 8 2 . 2 4 3 4 . 5 1 9 8 . 8 0 0

Nu
1 / 2 1 . 1 1 8 2 . 2 4 3 4 . 5 1 9 8 . 7 9 9

Nu
0 1 . 1 1 7 2 . 2 3 8 4 . 5 0 9 8 . 8 1 7

Nu 1 . 5 0 5 3 . 5 2 8 7 . 7 1 7 1 7 . 9 2 5
max

y 0 . 0 9 2 0 . 1 4 3 0 . 0 8 1 0 . 0 3 7 8

Nu 0 . 6 9 2 0 . 5 8 6 0 0 . 7 2 9 0 0 . 9 8 9 0
min

y 1 1 1 1

-95-

Chapter Five Solutions of Incompressible N-S Equations

Table VI FD Results of The Natural Convection Problem

Results are from the work of G. de Vahl Davis

Ra

io3 io4 o 01 io6
mesh size 41x41 41x41 81x81 81x81

1 m i d 1 1.174 5.098 9. 142 16.53
1*11 ' max

- - 9.644 16.961
x,y - - 0.285,0.602 0.151,0.543

U
max 3.634 16.182 34.81 65.33
y 0.813 0.823 0.855 0.851

V
max 3.679 19.509 68.22 216.75
X 0.179 0. 120 0.066 0.0387
Nu 1.116 2.234 4.510 8.798
Nu1/2 1.117 2.235 4.512 8.816
Nu0 1.116 2.242 4.523 8.928
Nu

max 1.501 3.545 7.761 18.076
y 0.087 0. 149 0.085 0.0456

Nu
min

0.694 0.5920 0.7360 1.005
y 1 1 1 1

Table VII CPU Time Taken by Natural Convection Problem Simulation

Ra io3 104 10s io6
CPU (seconds) 16.01 25.00 93.65 78.85

-96-

Chapter Five Solutions of Incompressible N-S Equations

(a) Ra = 10' (b) Ra = 10

(c) Ra = 10s (d) Ra = 106

Fig. 5.7 Contour Maps of temperature T

Contours at 0(0.1)1 in each case

Chapter Five Solutions of Incompressible N-S Equations

(a) Ra = 103; contours at (b) Ra = 104; contours at

-1.175, -1.05(0.l)-0.1 -5.075,-4.80,-4.5(0.5)-0.50

g** 0
(c) Ra = 10 ; contours at (d) Ra = 10 ; contours at

-9.60, -9.47,-8.648(0. 9607)-0. 96 -16.75,-16. 00,-15. 07(1. 675)-l.67

Fig. 5.8 Contour Maps of Stream Function \})

-98-

Chapter Five Solutions of Incompressible N-S Equations

<>
s
6

7

8
9

10

10
«
a
7as4

(a) Ra = 10 ; contours at

- 3 2 . 0 1 (8 . 3 2 8) 5 1 . 2 7

(b) Ra = 10 ; contours at

-124.8(55.17)426.9

(c) Ra = 10 ; contours at

-600.0(322.6)2626.0

(d) Ra = 10 ; contours at

-3178(1847.1)15293

Fig. 5.9 Contour Maps of Vorticity w

-99-

Chapter Five Solutions of Incompressible N-S Equations

(a) Ra = 103; contours at

-3.637(0.7274)3.637

6

•>o

<b

C D

(b) Ra = 104; contours at

-16.00(3.20)16.00

(c) Ra = 10s; contours at (d) Ra = 106; contours at

-43.59(8.719)43.59 -125.5(25.10)125.5

Fig. 5.10 Contour Maps of Horizontal Velocity u

-100-

Chapter Five Solutions of Incompressible N-S Equations

6

4-

3(a) Ra = 10 ; contours at

- 3 . 6 6 3 (0 . 7 3 2 7) 3 . 6 6 3

4(b) Ra = 10 ; contours at

- 1 9 . 3 9 (3 . 8 7 7) 1 9 . 3 9

q g
(c) Ra = 10 ; contours at (d) Ra = 10 ; contours at

- 6 7 . 9 6 (1 3 . 5 9) 6 7 . 9 6 - 2 0 7 . 6 (4 1 . 5 2) 2 0 7 . 6

Fig. 5.11 Contour Maps of Vertical Velocity v

-101-

Chapter Five Solutions of Incompressible N-S Equations

5.3.3 The Flow past a Circular Cylinder

For the flow past a circular cylinder, using the following transfor­

mation, the physical domain can be mapped into a rectangular domain

x = e^*cos^ , y = e^*sin^ (5.27)
7)where the function e assures an appropriately clustered grid point

distribution close to the cylinder surface. The governing equations for

this problem are (2.37), (2.38) shown in Chapter Two. To avoid having to

deal with the large values of 0 occurring in the far field and also to

facilitate the numerical implementation of the far field boundary

conditions, the stream function 0 is decomposed into two parts such as

0 = 0 + 0in
where, 0 is chosen as the value of the inviscid flow, i.e.in

ifj. = (e71 - e_7*)-sin£in
Thus the governing equations can be written as

277 - —e *tt> + (0^ + v)*w - (0 + u = 2(o)~s. + o>)/Ret € i V V i € €€ m

+ - e2T*-o>€€ m
with

û = (e7* + e ^)*sin^

v = (e7* - e)̂ *cos£

On the surface of the body, the no-slip boundary conditions are

0 = 0, 0^ = -2sin£ on T) = 0 (5.30a)

0) = 0 on i) = 0 (5.30b)K)T)

and the boundary conditions at infinity become

0 = 0, 0^ = 0 on T) = ra (5.31a)

w = e 2T**0 on T) = oo . (5.31b)
m

For numerical simulation, the infinite boundary in the tj direction can

(5.28)

(5.29)

-102-

Chapter Five Solutions of Incompressible N-S Equations

be truncated to a finite distance which is far enough from the cylinder

to allow the far boundary conditions to be satisfied accurately. For

steady state resolution of the problem, the most sensitive parameter to

check the accuracy of numerical simulation is the calculation of the

parameters defining the structure of the wake behind the cylinder. The

cylinder and the geometrical parameters of the closed wake is shown in

Fig. 5.12. After discretization by GDQ, the reduced set of (N-2)x(M-2)

ordinary differential equations for u> are solved by the 4-stage Runge-

Kutta scheme, and the set of (N-2)x(M-4) algebraic equations are solved

by LU decomposition as before.

E

Fig. 5.12 Geometrical parameters of the closed wake behind cylinder

For the numerical simulation here, the 77 is chosen as 3.0, and themax
grid of case IV is used. It is known that the accurate simulation of the

flow past a circular cylinder has demonstrated sensitivity in the impo­

sition of the boundary conditions. The key factors may be the implemen­

tation of reasonable conditions at the far field boundary and the

boundary conditions at the surface of the cylinder. In the present

-103-

Chapter Five Solutions of Incompressible N-S Equations

(a) Re = 2 0

(b) Re = 25

Fig. 5.13 Streamlines Past A Circular Cylinder

-104-

Chapter Five Solutions of Incompressible N-S Equations

computation, the Neumann boundary conditions for io and 0 on the surface

of the cylinder were treated with (M-l)th order accuracy, where M is the

total number of grid points in the -q direction. On the outer boundary,

the inviscid flow (u=l, v=0) was assumed to provide two boundary condi­

tions for 0, where the Neumann boundary condition was treated with (M-

l)th order accuracy, and the boundary condition for to was examined by

two cases: one is to assume the outer boundary being in the inviscid

region which yields a>=0; another is to compute u> from the definition io =

u - v , which is discretized with (M-l)th order accuracy. Numerical y x
results for Re of 20, 25 show that both cases demonstrate nearly the

same solutions. This further demonstrates that the outer boundary is in

the inviscid region for these low Reynolds numbers. For the steady state

resolution, the treatment of the boundary condition along the cut line

(from the reap point of the cylinder to the outer boundary) was examined

using two cases. One is to use the symmetric boundary conditions, name­

ly, 0=0, w=0, the other is to use the patching technique which enforces

io, 0 and their first derivatives with respect to the normal direction of

the cut line to be continuous. Numerical experiment showed that both

cases achieve nearly the same results but require different time steps

for satisfying the given convergence criterion. Recommended is the use

of o>=0, 0=0 at the cut line since this requires less time steps without

losing accuracy. Fig. 5.13 shows the streamlines for Re = 20, 25, the

values of the streamlines being ±3.0, ±2.0, ±1.0, ±0.5, ±0.15,

±5.0x10 3, ±5.0x10 4, ±1.0x10 4, 0.0. The symmetric eddy pair is clearly

shown in the Figure. For the results of Fig. 5.13, the outer boundary

condition was set to the value of inviscid flow, the boundary condition

on the cut line was set to be 0=0, w=0, and the mesh size used is 25x21.

-105-

Chapter Five Solutions of Incompressible N-S Equations

Table VIII Geometric Parameters of the Closed Wake behind A Cylinder

Re Reference L a b X
lmax

1
max

0
s

CD
*

experiment 0 . 9 3 0 . 3 3 0 . 4 7 0 . 6 6 0 . 8 0 4 4 . 8 ° 2 . 1 2 4 3

2 0 present 0 . 9 2 0 . 3 5 2 0 . 4 1 0 . 6 8 0 . 7 4 4 3 . 7 ° 2 . 1 2 2 0

Dennis et al 0 . 9 4 4 3 . 7 ° 2 . 0 4 5 0

*
experiment 1 . 2 1 0 . 4 4 0 . 5 1 0 . 7 5 0 . 8 5 4 8 . 0 ° 1 . 8 1 7 6

2 5 present 1 . 2 1 0 . 4 2 4 0 . 4 7 5 0 . 7 3 0 . 8 2 4 6 . 6 ° 1 . 8 3 3 6

Gresho et al 1 . 1 5 0 3 8 0 . 4 7 0 . 6 7 0 . 8 1 4 3 . 7 ° 2 . 2 6 0 0

Table VIII gives the details of the parameters of the wake eddy pair.

Also included in Table VIII are the experimental data (Tritton 1959,

Coutanceau and Bouard 1977) and other numerical results (Gresho et al

1984, Dennis and Chang 1970). It is shown from Table VIII that the

present results are closer to the experimental data than those of Gresho

et al although these authors put the outer boundary further away from

the surface than the present work and use a larger number of grid

points. The present results were thus more accurate than other numerical

results even though the outer boundary was closer to the cylinder

surface and fewer grid points were used. It is seen that on the one

hand, GDQ appears to be a robust, efficient numerical technique, and on

the other hand, the treatment of the boundary condition on the surface

of the cylinder may be critically important in numerical simulation. The

Cd (drag coefficient) is from the work of Tritton, other

parameters are from the work of Coutanceau and Bouard with A=0,

where A is the ratio between the cylinder and the tank diameter

-106-

Chapter Five Solutions of Incompressible N-S Equations

major difference between the present approach and other numerical

approaches is the treatment of the Neumann boundary conditions, with

high order accuracy in the present approach and low order accuracy in

other approaches.

5.3.4 The Flow past A Backward Facing Step

The flow past a backward facing step in a channel, shown in Fig. 5.14,

is a challenging problem which had been chosen by the organizers of a

GAMM workshop (Morgan et al 1984) as a test case for validating numerous

solutions of the incompressible N-S equations. The governing equation

for this problem is the same as for the driven cavity flow, but with

different boundary conditions. As studied by other researchers (Thomas

et al 1981), the computational domain in this case is limited to the

interior of the channel immediately to the right of the step. A fully

developed parabolic velocity profile (Couette flow) is used as the

777777.
A * = 0

 ̂~ v̂up # = o ’ Downstream
boundary

f x _ u

C

t =0 $ =0 *y=0
7.V ////7 /7 7 7 y7 7 7777777777777777/^ 777.

#x = o
w x = 0

vvv

Fig. 5. 14 Problem Definition of the Flow past A Backward Facing Step

-107-

Chapter Five Solutions of Incompressible N-S Equations

boundary condition in the upper part of the left boundary, the

downstream boundary condition, being set at a distance from the step

equal to 10, is implemented by the natural channel condition (zero

gradient). For the case here, the non-dimensional height of the channel

H is equal to 1.5, the height of the step is 0.5, and the maximum value

of the non-dimensional longitudinal velocity at the inlet is equal to

1.0. Thus the boundary conditions can be written as

ip - 4(0.5*y2 - y3/3) , ip = 0 , at the inlet
X

\p = 0 , u> = 0 , at the outlet
X X

\p = 0 , \p = 0 , on the walln
with 7 boundary conditions for \p , 3 of which are in the x direction and

4 in the y direction, and 4 boundary conditions for w. The resultant set

of (N-2)x(M-2) ordinary differential equations for u> are solved by the

4-stage Runge-Kutta scheme, and the set of (N-3)x(M-4) algebraic

equations for $ are solved by LU decomposition using the same approach

as for the driven cavity flow. For the numerical simulation, the sharp

corner of the step (point C in Fig. 5.14) was chosen as the origin of

the coordinate system, and the grid size used was 23x19. Numerical

results for Reynolds number range from 50 to 450 were obtained. Figure

5.15 shows the streamlines for different Reynolds numbers, where the

values of the streamlines (ib/ip) are 1.0, 0.9, 0.8, 0.7, 0.6, 0.5,max
0.4, 0.3, 0.2, 0.1, 0.0, -0.1, -0.01, -0.001 and the window in the x

direction for plotting these streamlines is from x = 0.0 to x = 8.0.

Figure 5.16, 5.17 show the vorticity distributions for different

Reynolds numbers along the lower and upper walls. The dashed line

included in these figures are the results which can be obtained

theoretically when the downstream boundary is far enough so that the

-108-

Chapter Five So1utions of Incompressible N-S

(a) Re = 1 0 0

(b) Re = 2 0 0

(c) Re = 300

(d) Re = 4 0 0

Fig. 5.15 Streamlines past A Backward Facing Step

Equations

-109-

Chapter Five Solutions of Incompressible N-S Equations

THEORETICAL

- 0 . 5
RE =. 200
RE » 300

- 2.0
X

Fig. 5.16 Vorticity Distributions on the Lower Wall

0.0
- 0 . 5

THEORETICAL
- 2 . 0

- 2 . 5

- 3 . 0 RE = 100
RE a 200
RE a 300
RE = 400- 3 . 5

- 4 . 0

- 4 . 5

0 1 2 3 4 x 5 6 7 8 9 10

Fig. 5.17 Vorticity Distributions on the Upper Wall

-110-

Chapter Five Solutions of Incompressible N-S Equations

fully developed parabolic velocity profile is obtained. From Fig. 5.16,

5.17, one can see clearly that the outflow boundary conditions have not

been imposed far enough downstream except for a Reynolds number of 100.

It is, therefore, demonstrated that the outflow boundary conditions of

Neumann type may be useful for reasonable solutions with a short

distance downstream. It is also shown in Fig. 5.16 and 5.17 that the

vorticity near the step gives some minor spurious results. This

behaviour may be caused by the discontinuity of ip at the corner C. In

the present calculation, the value of ijj at the corner C, is evaluated
yy

analytically, with the point C being considered as the part of the inlet

flow domain =4), and this is not true for the vertical wall of the
yy

step. Thus on the boundaries of the computational domain, there is a

point of singularity, namely C, which is not at a corner of the

computational domain. On the other hand, GDQ is indeed a global method,

which makes the variables at all interior grid points to be related to

the variables on the boundary. In all cases computed, no convergence

problems were encountered, but a small wiggle of the vorticity isolines

near the step was observed. Also observed in Fig. 5.16 and 5.17 is that,

as Reynolds number increases, the spurious values were weakened. The

reason may be that a larger amount of diffusion is produced due to the

sharp vorticity gradient around the corner, and as the Reynolds number

increases, the convective term plays a more important role in the flow

field than the diffusive term. Thus the influence of the point C on the

results is weakened. Fig. 5. 18 shows the reattachment length of the

primary vortex vs Reynolds number. Some experimental results (Kueny and

Binder 1984) were also included in Fig. 5.18 for comparison.

-Ill-

Chapter Five________________ Solutions of Incompressible N-S Equations
10

8
X/H

6

4

PRESENT
2 EXPERIMENTAL

0
0 100 200 r e 300 400

Fig. 5.18 Length of Recirculation Zone vs Reynolds Number

5.4 Multi-Domain Results

It is shown in Chapter Four that, as the number of grid points

increases, the eigenvalues of the spatial discretization matrix,

obtained by GDQ, increase very quickly. Thus the allowable time step

size becomes very small for a large number of grid points and needs many

time steps for converged results. On the other hand, GDQ generally

requires the computational domain to be rectangular in the same way as

for the spectral method, but in practical applications, the physical

domain is usually complex, leading to difficulties in numerical

simulations. These difficulties can be alleviated by the choice of grid

generation and multi-domain techniques. In addition, a multi-domain

technique is suited to the case in which there are geometrical

singularities such as corners and sharp edges as tackled in the

following simulation or the case where the computational domain may be

divided into several regions described by different differential

-112-

Chapter Five Solutions of Incompressible N-S Equations

equations, e.g. the viscous region near the surface of a solid body is

given by the N-S equations, and the inviscid region far from the solid

boundary by the Euler equations. This section is devoted to the

presentation and application of a multi-domain GDQ technique for solving

the incompressible N-S equations in vorticity-stream function

formulation. This approach combines the geometric capabilities of the

multi-domain technique with the potential for accuracy of GDQ.

5.4.1 The Concept of Domain Decomposition

The physical domain of the problem can be represented by Q, and the

boundary by r. The multi-domain technique, firstly, decomposes the

domain Q into several subdomains Q , i = l, 2, •••, K, where K is thei
number of the subdomains. In each subdomain, a local mesh car be genera­

ted with stretching near the boundaries and a local GDQ technique can be

used in the same fashion as the application of GDQ in a single domain.

In the case of solving the incompressible N-S equations, this means that

the resultant ordinary differential equations for vorticity and the alg­

ebraic equations for stream function are to be solved in each subdomain.

Each subdomain may have a different number of grid points. The solutions

for interior grid points are independent for each subdomain, thus they

can easily be computed in parallel. Globally, the information exchange

between the subdomains is required. This can be done across the inter­

face of the subdomains. Since any complex geometry car be transformed

into a rectangular domain or a combination of the rectangular subdomains

by the technique of grid generation. Here we only consider the

rectangular domain for demonstration without losing generality.

-113-

Chapter Five Solutions of Incompressible N-S Equations

Fig. 5.19

Supposing T is the interface of the subdomains £2 and £2 , that is, T ij i j ij
= £2 n£2 . The patching condition is enforced at the interface T so thati j ^ 6 ij
both the function and its first derivative normal to T are continuousi j
along the normal direction of the interface, i.e.

on rf(x*) = f(x?)N 1 ij
f (x ‘) = f (x f) n N n 1 on r

(5.32)

(5.33)ij
where f(x*), f(x)̂ represent the values of the function f at theN 1
interface of the subdomains £2 and £2 , and f (x*), f (x̂) the values ofi j n N n 1
the derivative of f with respect to n at the interface. For the cases

selected for study, each subdomain is rectangular. Then the normal

direction to the interface is parallel to one coordinate axis in the

local coordinate system. For simplicity, this coordinate axis can be

assumed as the x axis, and in this direction, there are N grid points in

the subdomain £2̂, and M grid points in the subdomain £2̂. The weighting

coefficients of the first order derivative along the x direction are

written as a1 in the £2 and z) in the £2.. Thus using the technique of

GDQ, (5.33) can be written as

I = E a?k.fC*J)
k = l k = l lk

Using (5.32), and setting f(x) = fix) = f, we obtainN 1N-l M
f = (£ a1 *f(x‘) - V aJ -f(xJ))/(aJ -a1), U Nk k u lk k 11 NNk = l k =2

(5.34)

(5.35)

-114-

Chapter Five Solutions of Incompressible N-S Equations

where f is the value of the approximation to the function f at the

interface r̂ ., which exchanges the information between the subdomains,

and the f(x*), f(x)̂ represent the values of the function f at x1 in the k k k
subdomain fi and xJ in the subdomain Q . For the solution of thei k j
incompressible N-S equations in the vorticity-stream function

formulation, f can be the vorticity and the stream function, and (5.35)

is used as the Dirichlet boundary condition for them. Equation (5.35) is

suitable for rectangular domains. If the computational domain is a

non-rectangular domain, it should be transformed into several

rectangular subdomains firstly, then (5.35) can be used.

5.4.2 The Flow past A Backward Facing Step

This problem is the same as that described in the section 5.2.4 with a

difference that the the inlet is located at a distance upstream of the

step. For numerical simulation here, the computational domain is divided

into 3 subdomains. The problem definition and the computational domain

are shown in Fig. 5.20, where the expansion ratio is 1:1.5. All the

lengths have been normalized by the inlet width D, and the velocities by

the maximum value of the longitudinal velocity at inlet, u . The
max

location of the inlet is chosen as 6D upstream of the step, and the

outlet is located at 12D downstream of the step. The implementation of

the boundary condition can be treated using the same method as in the

section 5.2.4. In each subdomain, one Dirichlet boundary condition for

vorticity was used on each boundary and the interface, but for stream

function, two boundary conditions (one being of Dirichlet type, another

of Neumann type) on each boundary, and one Dirichlet boundary condition

-115-

Chapter Five Solutions of Incompressible N-S Equations

on the interface, were used. To verify that the solution is independent

of grid, different mesh sizes have been tested. Numerical experiment

shows that this case can be accurately simulated using few grid points.

The length of recirculation zone computed by the mesh size of 15x13 for

domain I, 23x13 for domain II, and 23x11 for domain III is less than

- 6 - 4 - 2 0 2 4 6 8 10 12

Fig. 5.20 Problem Definition and the Computational Domain

Fig. 5.21 Meshes for Flow past A Backward Facing Step

three per cent different from that computed by the mesh size of 15x17

for domain I, 23x17 for domain II, and 23x19 for domain III for all

Reynolds numbers. In this section, all the results are based on the mesh

size of 15x13 for domain I, 23x13 for domain II, and 23x11 for domain

III, which is shown in Fig. 5.21.

As stated in the section 5.2.4, the sharp corner of the step is a

singularity, and since this point is on the boundary, not at the corner,

of the computational domain, small spurious deviations were produced

-116-

Chapter Five Solutions of Incompressible N-S Equations

near the step. On the other hand, the computation for Reynolds number

over 500 becomes difficult because of the effect of the singularity. The

singularity can be removed by techniques such as the interpolation

method, asymptotic expansion, etc. For the case here, the multi-domain

technique was used to avoid dealing with the sharp corner singularity

since the sharp corner of the step is exactly at the corner of the

subdomain.

Numerical results for Reynolds numbers range from 100 to 1000 were

obtained. Fig. 5.22 illustrates the computed streamlines for Reynolds

numbers of 200, 400, 600, 800, 1000, where the values of the streamlines

are the same as shown in the section 5.2.4, and the window for plotting

the streamlines in the x direction is from x = -2.0 to x = 8.0. Fig.

5.23, 5.24 show the vorticity distributions for different Reynolds

numbers along the lower and upper walls. Fig. 5.25 and 5.26 compare the

single-domain results with the multi-domain results for the vorticity

distributions along the walls. The dashed lines included in these

figures represent the results of the fully developed parabolic profile

which would be obtained if the downstream boundary is located at an

infinite distance from the step. From these figures, it is clear that no

spurious deviations in the vicinity of the step were found for the

multi-domain results; the single domain results differ from the multi­

domain results near the step because of the effect of the singularity,

but in the downstream, the single domain results agree well with the

multi-domain results; the flow does not become fully developed at the

high Reynolds number cases. Fig. 5.27 shows the horizontal velocity

profiles for Reynolds number of 100 and 900 at the step. The dashed line

-117-

Chapter Five Solutions of Incompressible N-S Equations

(a) Re = 2 0 0

(b) Re = 4 0 0

(c) Re = 600

(d) Re = 8 0 0

(e) Re = 1 0 0 0

Fig. 5.22 Streamlines of the Flow past A Backward Facing Step

-118-

Chapter Five Solutions of Incompressible N-S Equations

2. 5

2 . 0 THEORETICAL
. 5
CO
.0

0 . 5

0. 0
0. 5

. 0
1 . 5

-2. 0
0 1 2 3 ^ 5 6 * 7 3 9 1 0 1 1 1 2

Fig. 5.23 Vorticity along the Lower Wall (Multi-Domain Results)

0.0
- 0 . 5
co

- 1 . 0

1 . 5

THEORETICAL
- 2 . 0

2 . 5

3 . 0

- 3 . 5

4 . 0

- 4 . 5

0 1 2 3 4 5 6 X 7 8 9 10 1 1 1 2

Fig. 5.24 Vorticity along the Upper Wall (Multi-Domain Results)

-119-

Chapter Five Solutions of Incompressible N-S Equations

2 . 5

2.0 THEORETICAL ■6“
1 . 5

1.0

0 . 5

0.0
SINGLE-DOMAIN

- 0 . 5 RE = 200
RE = 3001.0

1 . 5 MULTI-DOHAIN
- 2.0

0 1 2 3 4 5 6 7 8 9 10

X

Fig.5.25 Comparison of Single-Domain Results with Multi-Domain Results

Vorticity along the Lower Wall

0.0
- 0 . 5

1.0

1 . 5

THEORETICAL
- 2. 0

- 2 . 5
SINGLE-DOMAIN

- 3 . 0 RE = 200
- 3 . 5

- 4 . 0 MULTI-DOMAIN
- 4 . 5

0 1 2 3 4 5 6 7 8 9 10

X

Fig.5.26 Comparison of Single-Domain Results with Multi-Domain Results

Vorticity along the Upper Wall

-120-

Chapter Five Solutions of Incompressible N-S Equations

1.0

0.8

RE=100
RE=900
PARABOLIC

0. 6

0.2

0. 0
0.0 0.2 0. 4 0. 6 0. 8 1.0

Fig. 5.27 Horizontal Velocity Profiles at the Step

RE=100RE=900PARABOLIC

- 0.2

-0 . 4

0. 4 U 0. 60.0 0.2 0.8 1. 0

Fig. 5.28 Horizontal Velocity Profiles at the Outlet

-121-

Chapter Five Solutions of Incompressible N-S Equations

in this figure represents the parabolic velocity profile imposed at the

inlet. It is seen that the velocity profile for the low Reynolds number

case was close to the parabolic profile, except for a systematical small

deviation due to the pressure gradient enforced by the step. However,

the velocity profile at the high Reynolds number case tended towards the

parabolic profile due to the convective term playing a greater role in

the flow field. Thus it is suggested that, for accuracy, the inlet

should be a reasonable distance before the step for low Reynolds

numbers, but can be imposed at the step for high Reynolds numbers.

Figure 5.28 shows the velocity profiles at the outlet compared with the

fully developed parabolic profile represented again by the dashed line.

It is, again, shown that at high Reynolds number the velocity profile at

X/H

PRESENT

NUMERICAL

EXPERIMENTAL

RE200 400 600 800 1000

Fig. 5.29 Length of Recirculation Zone vs Reynolds Number

-122-

Chapter Five Solutions of Incompressible N-S Equations

the outlet is not fully developed. This demonstrates that the outflow

boundary condition of the Neumann type may give reasonable solutions for

a short distance downstream. Figure 5.29 gives the length of the recir­

culation zone for different Reynolds numbers compared with the experi­

mental data (Kueny and Binder 1984) and other numerical results (Bredif

1984). The present results agree well with the experimental data.

5.4.3 The Flow past A Square Step

Now considered is the flow in a channel containing a square step in

which the step is located fairly close to the inlet. The flow past a

square step with a "flat" inlet velocity distribution rather than a

fully developed parabolic profile, is a more challenging problem for

numerical simulation since in this case, not only the two sharp corners

of the step produce vorticity singularities, but also the boundary

condition at the inlet introduces other vorticity singularities. Hughes

et al (1979) presented several results using FEM and claimed that the

conventional Galerkin method produced spurious wiggles in the velocity

vectors upstream of the step. They suggested an upwind method which then

generated the solution without wiggles. Leone and Gresho (1981) studied

this problem exhaustively using a velocity-pressure formulation and the

conventional Galerkin method, and claimed that the spurious wiggles of

the solution may be caused by a combination of the following factors:

(1) too coarse a grid to resolve the steep gradient occurring in the

flow direction; (2) inlet boundary conditions and the resulting leading

edge singularities; (3) proximity of the inlet region to the step; (4)

the sharp edge singularity at the leading corner of the step. They

-123-

Chapter Five Solutions of Incompressible N-S Equations

firstly studied Stokes flow and found that the inlet wiggles are caused

by the leading edge singularities (high pressures are generated at the

corners where the fluid decelerates and converges toward mid-channel).

They then studied viscous flows through the N-S equations and claimed

that, when a coarse mesh is used the inlet wiggles may be caused more by

the presence of the step than the leading edge singularity, and when the

finer mesh is used, most of the inlet wiggles disappear, only small

deviations appearing near the top singularity of the inlet leading edge.

They thus suggested that this difficult problem should be solved on a

fine grid. Also some results exist in the work of Yang and Atluri (1984)

where a mixed finite element method is used.

1
I I , 1 1 1

"
IV

I V

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

Fig. 5.30 Square Step Problem Definition and Computational Domain

-124-

Chapter Five Solutions of Incompressible N-S Equations

Following the work of Hughes et al, it is attempted to simulate the

developing flow in a one unit high (the characteristic length for

defining the Reynolds number) channel containing a square step located

at 1.2 units from the inlet which is 0.4 units high and 0.4 units

across. The problem definition and the computational domain are shown in

Fig. 5.30, where the whole domain is decomposed into 5 subdomains with 4

interfaces. The inlet boundary condition is a "flat" velocity profile,

u=l and v=0, except that the no-slip condition, u=0, occurs on the top

and bottom surfaces, which gives

0 = y > 0 = 0, at the inlet (5.36)
X

and the boundary condition

0 = 0 , w = 0 (5.37)X X
is imposed at the outlet. On the walls and the surface of the step, the

no-slip boundary condition gives
1 on the upper wall

(5.38a) 0 others0 =

0 = 0 , where n is normal to the surface (5.38b)
n

For the present calculation, the outlet location is chosen as 8 units

from the inlet. Numerical experiment shows that the accurate results can

be obtained by using the mesh sizes of 15x13 for domain I and II, 7x13

for domain III, 21x13 for domain IV and V. This configuration is shown

in Figure 5.31. Using the same approach as for the backward facing step,

the multi-domain solutions of this problem for Reynolds numbers range

from 50 to 250 were obtained. Fig. 5.32 shows the streamlines for

Reynolds numbers of 50, 100, 150, 200, 250, where the values of the

streamlines are 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0,

-0.1, -0.01, -0.001 and the window for plotting these streamlines in the

x direction is from x=0.0 to x=6.0. Clearly, it is shown that no wiggles

-125-

Chapter Five Solutions of Incompressible N-S Equations

appear in the flow field except for very small deviations caused by the

top singularity of the channel leading edge, which appear near the top

corner of the inlet (streamlines have a small contraction near

mid-channel). This agrees well with the analysis of Leone et al and

demonstrates that the mesh sizes used are fine enough to get accurate

results. Fig. 5.33 shows the vorticity distributions along the lower

wall before the step for different Reynolds numbers. The plots display

clearly a large influence of the lower singularity of the leading edge

on the flow near the inlet. In the region close to the bottom corner of

the inlet, the flow is dominated by the high pressure gradient produced

mainly by the singularity rather than by viscosity, since in this

region, the vorticity is independent of the Reynolds number. Fig. 5.34

shows the vorticity distribution along the lower wall behind the step

for different Reynolds numbers. The dashed line included in this figure

is the result of the fully developed parabolic profile which would be

obtained if the outlet is placed at an infinite distance from the inlet.

One can see from Fig. 5.34 that most cases except for Re=50 do not

achieve a fully developed parabolic velocity profile at the outlet. This

demonstrates that the Neumann type boundary condition imposed at the

outlet can provide reasonable solutions when the outlet is placed only a

short distance downstream. Fig. 5.35 shows the vorticity distributions

along the surface of the step. The two singularities at the sharp

corners are shown clearly. Figure 5.36 displays the vorticity

distributions along the upper wall for different Reynolds numbers. It

demonstrates that the flow near the upper singularity of the inlet is

dominated by the high pressure gradient, produced mainly by the

singularity since the vorticity in this region is shown to be

-126-

Chapter Five Solutions of Incompressible N-S Equations

independent of the Reynolds number. This shows that the small deviations

in streamlines occurring near the upper corner of the inlet is indeed

caused by the singularity of the inlet leading edge. The dashed line

included in Figure 5.36 is again the result of the fully developed

parabolic profile. Fig. 5.37 gives the velocity profiles at the outlet

for Reynolds number cases of 50 and 250. The plots show that the

velocity for the low Reynolds number case achieves a nearly parabolic

profile at the outlet. This is not the case for the high Reynolds number

case. The lengths of the upstream and downstream separated zone for the

various Reynolds numbers are shown in Table IX, where x and xjup do

represent the lengths of the upstream and downstream separation zones,

and x = x /h, x = x /h, h is the height of the step,
up up do do

Table IX Lengths of the Separation Zone for A Square Step Problem

Re 2 5 5 0 8 5 1 0 0 1 5 0 2 0 0 2 5 0

x 0.1749 0.1749 0.1749 0.1757 0.1777 0.5771 0.5846
__up
x 1.5771 2.6701 3.8876 4.3501 5.7549 7.0636 7.9824

do

-127-

Chapter Five Solutions of Incompressible N-S Equations

(a) Re = 50

(b) Re = 100

(c) Re = 150

(d) Re = 200

(e) Re = 250

Fig. 5.32 Streamlines of the Flow past A Square Step

-128-

Chapter Five Solutions of Incompressible N-S Equations

30

25
co
20

15

10

5

0

- 5

0. 0 0. 2 0. 4 x 0. 6 0. 3 1 . 0 1 . 2

Fig. 5.33 Vorticity along the Lower Wall before the Square Step

8

6

4

00
2

0

-2

- 4

-6

-8
1 . 6 2 . 4 3 . 2 4 . 0 4 . 8 5 . 6 6 . 4 7 . 2 8 . 0

X

Fig. 5.34 Vorticity along the Lower Wall behind the Square Step

THEORETICAL

RE = 100 RE = 150
RE = 200
RE = 250

RE = 100 RE = 150 RE = 200
RE = 250

-129-

Chapter Five Solutions of Incompressible N-S Equations

200

180
• RE ■ 50
♦ RE - 100
■ RE - ISO
▼ RE - 200
a RE - 250

160

140

120
100

s

front top rear
I - I I---------- -

0.0 0.^ 0.8 1.2

Fig. 5.35 Vorticity along the Surface of the Square Step

Fig. 5.36 Vorticity along the Upper Wall for Flow past A Square Step

-130-

Chapter Five Solutions of Incompressible N-S Equations

1.0

o. a
Y

0.6

0 .4

0.2

0.0
0.0 0 .3 0 .90.6 1.2 1 .5 1 . 8

Fig. 5.37 Horizontal Velocity Profiles at the Outlet

5.5 Concluding Remarks

The GDQ and multi-domain GDQ techniques for the solution of the

incompressible N-S equations have been shown in this chapter. Numerical

results, obtained by GDQ using just a few grid points, are very

accurate, and need less storage and computational time, compared with

the conventional numerical techniques such as the finite difference

methods using a large number of grid points. The reason for GDQ results

needing much less CPU time are twofold. One is that the GDQ results are

obtained using few grid points, thus fewer degrees of freedom are

involved in the solution of resultant equation systems. Another is that

GDQ is a global method, which has a global convergence. In other words,

it needs less time steps for convergence.

-131-

Chapter Six Boundary Laver Solutions

CHAPTER SIX

SOLUTIONS OF BOUNDARY LAYER EQUATIONS

6.1 Introduction

The boundary layer approximation provides a useful mathematical model

for some engineering problems which include the jet and wake flows,

channel and tube flows aiid wall boundary layers. Another aspect of the

boundary layer approximation currently of interest is the simulation of

the flow with a small separation region which can be carried out by the

concept of viscous-inviscid interaction, where the calculation of the

viscous part is obtained by boundary layer computation. This approach

can greatly reduce the computational effort compared with a

Navier-Stokes solver. The classical numerical methods for the solution

of the boundary layer equations can generally be categorized as (1)

integral methods and (2) differential methods. The integral methods

transform the boundary layer equations into ordinary differential

equations by integrating the differential equations in the normal

direction after making assumptions about the general form of the

velocity and temperature profiles. The advantage of integral methods is

their simplicity as well as small computational effort. But for a

general problem, the application of integral methods is not as

straightforward as for differential methods. Furthermore, the numerical

results are very sensitive to the form of the velocity and temperature

profiles in the three-dimensional case. Most schemes using differential

methods involve finite differencing. The Crank-Nicolson finite

-132-

Chapter Six Boundary Laver Solutions

difference scheme was found to work well for a general boundary layer

calculation, and has been adopted by many researchers (Werle and Bertke,

1972, etc.). Among others, the Keller-box method (1974) for parabolic

partial differential equations has been successfully applied by Keller

and Cebeci (1970), for boundary layer resolution. For the unsteady or

three-dimensional boundary layer calculation, if the flow has a

separation region, the Zig-Zag-box scheme (Cebeci, 1979) should be used

since the Keller-box scheme fails to work in this case. Recently, the

application of finite element methodology (Chung, 1978), and the

spectral method (Streett, Zang and Hussaini, 1984) to the boundary layer

equations has been reported.

Boundary layer equations can be solved when they are expressed in

physical coordinates or in transformed coordinates. Generally, the

transformed form is favourable because it can remove the singularity

occurring at the leading edge of the surface. Using transformed

coordinates, most researchers prefer to use the stream function as the

dependent variable. The major advantage of this is that the continuity

equation can be dropped from the solution procedure. Accordingly, the

order of the differential equations is increased by one, which may

create difficulties in dealing with the boundary conditions. Some other

researchers favour the use of the primitive-variable (velocity) as the

dependent variable enabling 2D methods to be extended to the 3D case

directly. The difficulty then is the coupling of the continuity equation

with the momentum and energy equations. The reason for not using the

integral form of the continuity equation is that the normal velocity

obtained by integrating the equation along the normal coordinate is less

-133-

Chapter Six Boundary Layer Solutions

accurate because of accumulated round-off errors.

As will be shown in this chapter, the GIQ technique can provide a

promising way to obtain the normal velocity accurately by an explicit

formulation derived from the integration of the continuity equation in

the normal direction. As stated in Chapter 3, the integral over a part

of the overall domain can be accurately approximated by a linear

combination of all the functional values in the overall domain. Thus,

the determination of the normal velocity at any mesh point involves all

the functional information of the normal coordinate direction of that

mesh point, and has the same order of accuracy for all mesh points along

the normal direction. On the other hand, it has been shown in Chapter 5

that the GDQ scheme is a robust, efficient technique to discretize

spatial derivatives, which can achieve results of high accuracy using

just a few grid points. We will use both the GDQ and GIQ techniques in

the normal direction for discretizing the derivatives and the integrals.

The mesh points chosen for GDQ and GIQ are the same. In the streamwise

or the crossflow direction, both GDQ and finite difference schemes can

be used. We will show that the GDQ-GIQ technique for the boundary layer

resolution is a general one, which can be used for both primitive

variables and stream function or other functional variables.

6.2 GDQ-GIQ Approach

We will consider the GDQ-GIQ approach to the solution of the boundary

layer equations using two cases of dependent variable. These are the

stream function variable and the primitive variable. Although two

-134-

Chapter Six Boundary Laver Solutions

specific test problems are chosen for demonstration, the GDQ-GIQ

approach can be used for general boundary layer problems.

6.2.1 Stream Function Chosen As Dependent Variable

For simplicity, we consider the two-dimensional Howarth boundary layer

problem. The governing equation (Keller and Cebeci, 1970) is

where f(£, t?) is the dimensionless stream function and is subject to the

boundary conditions

f(C,°) = = 0 (6.2)
^-(£, h) — > 1, when T) — > co (6.3)dll

Here (£,t?) are the Levy-Lees coordinates; £ increases in the free stream

direction and tj increases away from the wall. And £(£) is given by

e(€) = -g-f-4 • (6.4)
9fSetting u = ^ , then the 3rd order equation (6.1) can be reduced to

d2u
din2

♦ f. §H_ ♦„(€)■[! - u 2, = 2C [u.| - |H.|] (6.5)

f = Xq u-dT) + f(0) (6.6)

For numerical simulation, the infinite interval in the tj direction can

be truncated to the finite interval [0, i)]. Using GDQ and GIQ in the00

domain [0, kj], we have 00

Chapter Six_________________________________Boundary Laver Solutions

~ (i n)where w^ are the weighting coefficients of the mth order derivative of

the function with respect to 17, w* are the weighting coefficients of

the integral along the y direction, and the boundary conditions (6.2),

(6.3) become

u = 0 , u = l , f = 0 (6.8)i,1 i,M i,l
which is easily implemented in the solution procedure. It is clear that

there are two boundary conditions for u in the y direction for this

case. As we will show, another boundary condition for u in the y

direction can be implemented if it is necessary. Referring to equation

(3.69), the discretization of (6.6) can also be written as
M M

f = V w1 *u - f(c) + f = V w 1 -u (6.9)
i,j k=i Jk ik 1,1 k=i jk ik

where c is chosen as c = 0, thus f(c)= f = 0. Equation (6.9) cani,1
provide another boundary condition for u, i.e.

m
V w1 -u = f = 0 . (6. 10)
u lk ik i, 1k=l

It is noticed that if (6.9) is used, then (6.10) should be implemented

as another boundary condition for u.

If a second order finite difference scheme is used at (£ , y.) fori-1/2 j
the discretization of the derivative of u or f with respect to after

linearization of the non-linear terms, the resultant algebraic equations

can be written as

A-U = b (6.11)

where
TU = (u , u , •••, u) when two boundary conditions are usedi ,2 i>3 i,M-l

Tor U=(u ,u , ••*, u) when three boundary conditions are used.1,3 1,4 1, M-l
A is a full matrix and b is a known vector. Using (6.11), the boundary

-136-

Chapter Six_________________________________Boundary Layer Solutions

layer solution in the whole domain can be obtained by a marching

technique along the £ direction.

If the GDQ scheme is used in the £ direction, after linearization of the

non-linear terms, we can get a similar form of the algebraic equation

system to (6.11), but the vector U includes all the interior functional

values u. . Thus the marching technique cannot be used in this case. If

only steady state resolution is of interest, we can turn to another

method. Introducing an unsteady term in (6.5), we can write (6.5) as
2a u au o f i r . r 2, au ^ au au a f , 1 0 >

a r + p (c) ' [1 " u 1 = a t + 2 ? [U '§C - a ^ S f] • (6 ’ 12)

The spatial discretization of (6. 12) leads to a set of ordinary

differential equations which can be solved by the 4-stage Runge-Kutta

scheme. Equation (6.12) is not a true unsteady boundary layer equation,

and is only used for steady state resolution.

6.2.2 Primitive Variable Chosen As Dependent Variable

For demonstration, we consider the two-dimensional unsteady flow past a

circular cylinder started impulsively from rest. The non-dimensional

form of the governing equations (Cebeci 1979, Liakopoulos 1988) is

u + v = 0 (6.13)x y
U + U’U + v*u = Ue* + u (6.14)t x y dX yy

with initial condition

u(x,y,0) = ue(x) = sinx , (y * 0) (6.15)

and boundary conditions

u(x,0,t) = v(x,0,t) = 0 (6.16)

u(x, oo, t) = ue(x) = sinx (6.17)

-137-

Chapter Six Boundary Laver Solutions

u(0,y,t) = u (tt,y,t) = 0 . (6.18)

The computational domain in the y direction can be obtained by

u discretization formula are the same as (6.7a), (6.7b), but v isyy
given by

In a similar fashion to the above subsection, when the x-related

derivatives are discretized by a second order finite difference scheme

direction, but when GDQ is used in both the x and y direction, the

marching technique is invalid. In this case, the 4-stage Runge-Kutta

scheme can be used for the solution of the resultant ordinary

differential equations.

The use of GDQ in the x direction is still attractive although it may

increase the storage. Since GDQ can achieve the same accuracy using few

grid points as a finite difference scheme using a large number of grid

points, the total number of the degrees of freedom can be greatly

reduced if GDQ and GIQ are used in all the coordinate directions. Thus

the total storage and the computational operations required may be

reduced. If the GDQ is used in the x direction, we recommend the

employment of (6.19) rather than (6.20) and (6.21), since the

truncating the infinite domain to [0, t)]. Using GDQ and GIQ, the u ,co y

(6.19)

or by

(6.20)
M

- E w1 • (u) = V^ lk x ik k=l
(6.21)

at (x̂ 1/2»y.)» solution procedure can be marched along the x

-138-

Chapter Six_______________________ Boundary Laver Solutions

implementation of (6.21) is very complicated. For simplicity, we will

use GDQ and GIQ to discretize the spatial derivatives and the integral

in all cases, and use the 4-stage Runge-Kutta scheme to solve the

resultant ordinary differential equations in the following calculations.

6.3 Steady Boundary Layer Solutions

In this section, the ID, 2D, and 3D steady state boundary layer

resolutions obtained by the GDQ-GIQ approach will be demonstrated. Each

case includes one test problem.

6.3.1 Blasius Boundary Layer

Firstly, we consider the classical Blasius boundary layer, which is

governed, in mathematics, by

— + f- — = 0 . (6.22)
9tj3 5t)2

9fSetting u= ^ and introducing an unsteady term, (6.22) can be written

as

<£ = 2!“ + f. «H_ (6.23)
St 3i)2 a,)

f = x' u - d n + f(0) . (6.24)= Xo
For numerical simulation, the computational domain is truncated to [0,

3], and the grid is stretched near tj = 0. Using the technique shown in

subsection 6.2.1, we have studied the difference between the use of

(6.7c) and (6.9), (6.10). It is found that when (6.9) and (6.10) are

used, that is, the three boundary conditions are employed in the w

direction, the allowable time step size is much larger than that when

(6.7c) is used, that is, only two boundary conditions implemented. For

-139-

Chapter Six Boundary Laver Solutions

-2example, when N = 12, the allowable time step size is 1.30x10 if (6.9)
-3and (6.10) are used, and is 1.0x10 if (6.7c) is used. As a result, for

-4the convergence criterion of the maximum residual of less than 1.0x10 ,

(6.9) and (6.10) require 385 time steps and 1.03 seconds of CPU time on

the IBM 3090, but (6.7c) needs 5119 time steps and 12.92 seconds of CPU

5.0

o COMPUTED N=12
EXACT

0.0
0.0 0.2 0.H 0.6 0.8 t .O

U
Fig. 6.1 Velocity Profile of The Blasius Boundary Layer

time on the same computer. In addition, it is found that (6.9) and

(6.10) can give more accurate results than (6.7c). For the test problem,

the exact value of the wall shear stress is 1.3284. Equation (6.9) and

(6.10) give 1.3286 using N =12 and (6.7c) gives 1.3298 using N = 12.

Figure 6.1 shows the computed and the exact velocity profile of the

Blasius boundary layer. The computed results are obtained by using (6.9)

and (6.10) and N = 12.

-140-

Chapter Six Boundary Laver Solutions

6.3.2 Two-Dimensional Problem

As a test example, the Howarth boundary layer is chosen for study. The

governing equations are shown in subsection 6.2.1. This flow problem has

a separation point at £ = 0.901. So, the computational domain in £

direction should be [0, b] where b < 0.901 because of the Goldstein

singularity. In the tj direction, the infinite domain is truncated to [0,

5.0]. The GDQ and GIQ techniques are used in both the £ and the t?

direction, and (6.9) is used for calculating the normal velocity v. .1 J J
Three boundary conditions (6.8), (6.10) are used for u in the T)

direction. It is found that the GDQ-GIQ approach is very sensitive to

the choice of b when b is close to the separation point. Actually, when

b is taken as 0.90, the computation will diverge quickly after a few

time steps, but when b is chosen as less than or equal to 0.894, the

steady state resolution can be obtained accurately. The convergence rate

is very fast when b is far from the point of 0.901, and is slow when b

is very close to the point of 0.901. Fig. 6.2 displays the computational

results of the Howarth boundary layer using the mesh size of 11x12, and

b = 0.894. Clearly, the current numerical results are very close to

those given by the Keller-box finite difference scheme using a large

mesh of 51x121.

-141-

sh
ea

r
st

re
ss

Chapter Six Boundary Laver Solutions

□ X = 0 . 8 9 4

0 X = 0 . 0

IS
10

IS
10

t.S

1.0

as

0.0
a i 0.20.0 a 7 1.0

u

(a) Velocity Profile

&S0

0.23

0.20

 PRESENT (GRID 11X12)

a os O KELLER ET AL 03? 10 51X121)

too ai& i a* as a 7

x

(b) Shear Stresses at Wall

Fig. 6.2 Solutions of the Howarth Boundary Layer

-142-

Chapter Six Boundary Laver Solutions

6.3.3 Three-Dimensional Problem

Z

Fig. 6.3 Flow past A Flat Plate with Attached Cylinder

For 3D boundary layer simulations, we choose the 3D laminar flow past a
flat plate with attached cylinder as a test example. The problem

definition is shown in Figure 6.3. It will be assumed that the thin

plate does not affect the inviscid flow around the cylinder. We will

then simulate the 3D boundary layer flow on the flat plate due to the
inviscid flow created by the cylinder. This flow problem has been

computed extensively and accurately by Cebeci (1975), Dwyer (1968), etc.

The governing equations are (2.46)-(2.48) shown in Chapter 2, and the

inviscid velocity distribution is given by

Ue = u [1 + a2*A /A2] (6.25)00 2 1
We = -2u -a2-A /A2 (6.26)oo 3 1

where
. f x 2 2A = (x-x) + z1 o
A = -(x-x)2 + z22 0
A = (x-x) • z3 0

Here u is a reference velocity, a is the cylinder radius, and x deno-oo O
tes the distance of the cylinder axis from the leading edge, x=0. To

-143-

Chapter Six Boundary Layer Solutions

make a direct comparison between our computed results and with those

obtained by Cebeci, we have chosen u =30.50 m/sec, a=0.061m, x =0.457m,oo 0
7) =8.0.oo

As we know, the boundary layer equations pose a combined initial and

boundary value problem. The boundary conditions are usually obtained

from the independent inviscid flow equations, whereas the initial

conditions must be obtained somehow from the boundary layer equations

themselves. For the test problem, since the primitive variable is chosen

as the dependent variable, then for simplicity, only two boundary

conditions in the 7j direction are implemented for F and G, that is

F = 0 , G = 0 , at 7) = 0 (5.27)

F = 1 , G = 1 , at 7) = 7] (5.28)00

And V can be determined by
M

v = - V (w1 - w1)•$ + v (6.29)i,j,k jm lm i,m,k i,l,km=l
where

k$ = [x- ^ + 0.5F(1+K) + x-We- /Ue + G(K -0.5K) |i,m,k [dx 3 dz 5 4 Ji,m,
Kg, K̂ , Kg were defined in Chapter 2.

The governing equations along the x=0 line of the flat plate reduce to

the Blasius equation for both F and G. Thus the initial condition at x=0

can be obtained from the Blasius boundary layer solutions. In addition,

the initial condition along some z equal to a constant line should be

given. For the test case here, the initial condition along the line of

symmetry (z=0) is first obtained. Since, along the line of symmetry, w,

We are zero, we define the variable G asz
k _ Sw/Sz
z 9(We)/3z *

Thus the governing equations along the line of symmetry are reduced to

-144-

Chapter Six_________________________________Boundary Laver Solutions

x- + 0.5FC1+K) + G -K = 0 (6.30)dx dr) 3 z 5

€ l + K-(l-F2) (6.31)9T ox . art 0 2 3dr)
aG aG aG a g
5=^ + xF-3-^ + V - ^ =--- - + K • (l-G2) + K • (1-F*G) (6.32)3T dx dr) , 2 5 z 7 zdr]

where K = — • ̂ £ j_z We,z = a(We)/az7 We, Z 3X
After obtaining the initial values along the line of x=0, the initial

values along the line of symmetry can be found by solving the equations

(6.30)-(6.32). With the boundary and initial values, the full boundary

layer solutions can be obtained by solving the equations (2.46)-(2.48),

using the approach as shown in the section 6.2.

For the GDQ-GIQ simulation, the mesh size used is 11 grid points in the

x and z direction, and 13 grid points in the t? direction. And the

computational domain in the z direction is chosen as between z=0 and

z=0.20. Since the cylinder causes an adverse pressure gradient in front

of itself, it is expected that the streamwise velocity will reverse in

direction along a line in front of the cylinder. Since the adverse

pressure gradient is a maximum along the line of symmetry, the flow

reversal in the boundary layer will first occur in the line of symmetry.

Thus the computational domain in the x direction should be before the

separation point in the line of symmetry because of the Goldstein

singularity. It is found that the GDQ-GIQ approach is very sensitive to

the Goldstein singularity. When the computational domain in the x

direction is taken as [0.0, 0.25970], the steady resolution can be

obtained very quickly (17.76 seconds CPU time on the IBM 3090) and

accurately. But when the computational domain is taken as [0.0,

0.25975], the computation will diverge after a few time steps. Thus it

-145-

Chapter Six Boundary Layer Solutions

appears that the separation point in the line of symmetry is between

0.25970 and 0.25975, which agrees well with other researcher’s results.

This also demonstrates that the GDQ-GIQ approach is very accurate and

efficient. Table I lists the computed values of (dF/dy)^ and (dG/dy)^ at

some specific points. Also included in Table I are the results of Cebeci

(1975) which were obtained by the Keller-box finite difference scheme

with Richardson extrapolation processing. Clearly, the current results

agree well with Cebeci’s results. Fig. 6.4 and 6.5 show the

non-dimensional streamwise and crossflow velocity profiles along the

line of symmetry. Figure 6.6 displays the streamlines of the inviscid

flow, and figure 6.7 shows the wall shear lines of the boundary layer.

Table I Comparison of Current Results with Cebeci*s Results
z = 0

Cebeci Present Cebeci Present
X idF/dy)w idF/dy) w idG/dy) w idG/dy) w
0 0.332066 0.331898 0.332066 0.331898

0.0488 0.324951 0.325169 0.702488 0.702674
0.0976 0.312821 0.312574 1.124300 1.124564
0.1464 0.290184 0.290472 1.624250 1.623227
0.1952 0.243524 0.243612 2.250740 2.247190
0.2440 0.125972 0.123533 3.126830 3.119115

z = 0.0488

Cebeci Present Cebeci Present
X (dF/drf)w idF/dy)w idG/dy)w idG/dy) w
0 0.332066 0.331898 0.332066 0.331898

0.0488 0.325184 0.325653 0.717599 0.695967
0.0976 0.314423 0.314859 1.124210 1.106794
0.1464 0.295233 0.295767 1.605920 1.585971
0.1952 0.259005 0.259305 2.191930 2.171027
0.2440 0.181979 0.177060 2.959350 2.940921

-146-

Chapter Six Boundary Laver Solutions

0. 07071

0.0 0.5 1.0 y/uE

Fig. 6.4 u-Velocity Profiles along the Line of Symmetry

0. 2590
0. 18829

0. 1295
0. 07071

X=0. 0
0.0 0.5 1.0 w z/(We)z

Fig. 6.5 Gz Profiles along the Line of Symmetry

-147-

u

ow

Chapter Six Boundary Laver Solutions

6.4 Unsteady Boundary Layer solutions

The unsteady boundary layer simulation is another area of interest in

CFD. On the one hand, this is because many practical problems are

unsteady. On the other hand, there is still a controversy in the

literature concerning the occurrence of singularities in the solution of

unsteady boundary layers. For steady boundary layer problems, it is well

known that there may exist a Goldstein singularity in the boundary layer

solution. But for unsteady boundary layer problems, there are arguments

as to whether there exists a finite time singularity in the solution of

the unsteady boundary layer equations. For the unsteady, 2D laminar flow

past a circular cylinder started impulsively from rest, some researchers

(e.g. Bodonyi and Stewartson 1977, Van Dommelen and Shen 1982) claimed

that there is a finite time singularity in the solution procedure, while

others (e.g. Cebeci 1979, 1986) suggested that there is no finite time

singularity.

We will choose this flow problem as a test case for the unsteady

simulation. The problem has been introduced in section 6.2.2. To begin

our study, we choose y = 35.0, and discretize all spatial derivatives00

by GDQ, and integrals by GIQ. The mesh size used is 21x31. It is found

that the reverse flow first starts at 0=180° and time, t=0.644 which is

in agreement with Cebeci*s results. As time increases, the point of zero

wall shear moves along the surface of the cylinder towards the steady

state value 0 = 104.5° (position of the Goldstein singularity).
G

However, the computation cannot reach the steady state resolution

because the numerical instability breaks down the calculation at t =

-149-

Chapter Six Boundary Laver Solutions

3.0. Fig. 6.8 shows the instantaneous streamlines computed by the GDQ-

GIQ approach. Clearly, when t = 2.5, some wiggles occur in the

streamlines. This is because GDQ is a global method, and when the

solution develops a singularity at a point, this singularity will

spread in the whole computational field. To study this, we use a second

order finite difference scheme to discretize the derivatives in the x

direction, the derivatives in the y direction being discretized by GDQ.

We call this scheme the GDQ-GIQ-FD approach for convenience. Figure 6.9

shows the instantaneous streamlines computed by the GDQ-GIQ-FD approach.

The mesh size used is 81x31. Compared with Fig. 6.8, when t ^ 2.0, the

results for both approaches are nearly the same, but when t > 2.0, the

GDQ-GIQ-FD approach gives a considerable improvement over the GDQ-GIQ

approach. Fig. 6.10 displays the wall shear distributions, Fig.6.11

shows the displacement thickness values, and Fig. 6.12 gives the

velocity profiles at the rear stagnation point. The solid lines in these

figures are the results of the GDQ-GIQ-FD approach, and the symbols are

the results of the GDQ-GIQ approach. It is found from these figures that

when t ^ 2.0, both approaches agree well, but when t > 2.0, some GDQ-GIQ

results are less accurate. All the velocity profiles at the rear

stagnation point are nearly the same for both approaches. Fig. 6.13

shows the position of zero wall shear, where the dashed line is the

position of Goldstein singularity. It is seen that the unsteady

computation cannot reach the position of the Goldstein singularity.

Table II lists the present and other researcher’s results of the

position of the zero wall shear and the time.

-150-

Chapter Six Boundary Laver Solutions

(c) t = 2.5

Fig. 6.8 Instantaneous Streamlines of the GDQ-GIQ approach

-151-

Chapter Six Boundary Laver Solutions

(c) t = 2.8

Fig. 6.9 Instantaneous Streamlines of the GDQ-GIQ-FD approach

-152-

Chapter Six Boundary Laver Solutions

2

]. 8
Cf
] . 4

0

- 0 . 4

8 GDQ-GIQ-FD

symbols GDQ-GIQ

2

1. 5700. 785 2 . 3550. 000 3 . 140

Fig. 6.10 Wall Shear Distributions

8

6

GDQ-GIQ-FD

4
symbols GDQ-GIQ

2

0
1.5700. 000 0. 785 2. 355 3. 140

X

Fig. 6.11 Displacement Thickness Values

-153-

Chapter Six Boundary Laver Solutions

0. 25

2.0

GDQ-GIQ-FD

symbols GDQ-GIQ

-0,1 -4.4 -4.4 -0.2 0.0 0.2 0.4 0.4 0.8 1.0

U

Fig. 6.12 Velocity Profiles at the Rear Stagnation Point

180

GDQ-GIQ SCHEME

GDQ-GIQ-FD SCHEME

60 -

0 1 2 3 4 5
time

Fig. 6.13 Position of Zero wall Shear

-154-

Chapter Six Boundary Laver Solutions

Table II Comparison of the Time and the Zero Wall Shear Stress

Reference 180° 166° 146° 138° 124° 110°

Bar-Lev and Yang 0.644 0.660 0.778 0.876 1.204 2.188
Cebeci 0.640 0.660 0.780 0.872 1.192 2.200

Present (GDQ-GIQ) 0.644 0.664 0.790 0.874 1.193 2.098
Present (GDQ-GIQ-FD) 0.644 0.668 0.791 0.878 1.196 2.204

6.5 Concluding Remarks

The GDQ-GIQ approach for the solution of the boundary layer equations

has been introduced in this chapter. It has been demonstrated, using

test problems, that this approach can achieve accurate results using

just a few grid points. Thus, both the number of degrees of freedom and

the computation time can be greatly reduced. For the dependent variable,

we recommend the use of the stream function as a dependent variable

because in this case, the three boundary conditions can be easily

implemented in the solution procedure which then yields more accurate

results and needs less computation time. It is also found that when the

computational field has a singularity at some point, the GDQ-GIQ

approach is less efficient.

j

-155-

Chapter Seven Parallel Simulations

CHAPTER SEVEN

Parallel Simulations of Incompressible Navier-Stokes Flows

7.1 Introduction

As stated in Chapter One, the simulation of a general 3D, unsteady

viscous flow requires considerable computational power, which may not be

achieved with single processor computers due to physical limitations

such as the speed of light and gate switching limits. In contrast,

parallel processor computers offer the possibility of achieving the

throughput needed in CFD. The research on the effectiveness of using

parallel computers for the solution of CFD problems is now becoming an

active area. Although problems using explicit methods have been success­

fully implemented on parallel computers (Gropp and Smith 1990), it is

still necessary to demonstrate the same level of performance for prob­

lems using an implicit method. In practice, when an implicit problem is

considered, the domain decomposition (multi-domain) technique is usually

used in parallel simulation. The major problem in the multi-domain tech­

nique is how to deal with the interface accurately for an implicit prob­

lem. The efficiency of the multi-domain approach for implicit problems

is still under study since treatment of interfaces can greatly reduce

accuracy and convergence rate. Incompressible viscous flow provides an

implicit problem when the N-S equations with vorticity-stream function

formulation or the vorticity-velocity formulation are used.

As shown in Chapter Four, as the number of grid points increases, the

-156-

Chapter Seven Parallel Simulations

time step size for the ordinary differential equations resulting from

GDQ becomes extremely small. This unfavourable feature can be relaxed by

the GDQ element approach or the GDQ multi-domain approach. In Chapter

Five, we have successfully applied the GDQ multi-domain approach to

solve two complex problems on a single computer. In this chapter, these

two problems are simulated on a transputer-based distributed Meiko

Computing Surface using the same scheme as shown in Chapter Five. The

program on each transputer was written in FORTRAN and run from an Occam

harness which can control the placement and the communication between

transputers. To study the influence of the interface, and compare the

efficiency of the N-S formulations, we have chosen the driven cavity

flow as a test problem, where three types of interface topology and two

formulations of the incompressible N-S equations were investigated. Many

results have been obtained. Since the parallel computer has a different

architecture to the computer with a single processor, the data, tasks

and communication need to be distributed among the transputers. Thus

different flow problems may require different transputer architectures.

This may require the modification of the parallel program when the same

problem is run on different arrays of transputers, leading to an

inconvenience in practice. In this chapter, the idea to develop a

general code which can run on any array of transputers without any

modification to the program has been developed, and successfully applied

to the driven cavity flow problem.

7.2 Parallel Architectures

A number of different types of parallel architecture computers are

-157-

Chapter Seven Parallel Simulations

available today. Generally, they can be classified as multiple vector

processors and MIMD concurrent processors.

7.2.1 Multiple Vector Processors

Multiple vector processors consist of several vector computers operating

in parallel. In these computers, mathematical operations are pipelined

and performed on data which flows through the processor in a stream.

Usually, in the computers the data stream is a single vector stream, so

the computers in this category are also called vector computers. A great

advantage of these machines is that old serial code can be run without

modification, users then being able to improve performance by

"vectorizing" the costly sections of code. To run in parallel, exchanges

of information and synchronization between the processors is facilitated

by special high speed communication hardware. In general, each single

processor is very powerful, and the degree of parallelism available is

not very high, usually two to six processors being available. Examples

are the Cray X-MP, Cray 2 and IBM 3090 600 VF.

7.2.2 MIMD Concurrent Processors

The MIMD (multiple instruction, multiple data-stream) parallel computers

work on essentially independent data in parallel. This kind of computer

has become a feasible proposition over the last few years due to the

cheapness of microprocessor systems. Numerous microprocessors can be

linked together in a loosely-bound network in which they all have their

own independent memory, or they can be combined as a tightly-bound

-158-

Chapter Seven Parallel Simulations

network in which each processor can access any memory.

Tightly coupled MIMD machines are collections of independent processors

which are closely connected, usually by shared memory. A parallel

program running on this type of machine consists of independent threads

of control which may access each other’s data and can tightly control

each other’s operation by manipulating this shared data. The advantage

of this type of machine is that there is no single thread of control,

and hence no a priori serial execution. One example of this type is the

BBN Butterfly machine, which consists of a large number of

microprocessors, each with 1 to 4 Mbytes of memory, interconnected via a

butterfly switch.

Loosely coupled MIMD (distributed memory) machines are collections of

independent processors which communicate through some reliable

mechanism, but do not share directly any data. Instead, all

interprocessor sharing of data is done by I/O operations, typically the

sending and receiving of message packets. This provides a measure of

programming safety and reproducibility of results often absent in

tightly coupled MIMD machines, since all modifications to "shared" data

structures are done explicitly by the programmer, rather than implicitly

through a shared memory access. This kind of machine can easily be

developed to a massively parallel computer. As the number of processors

increases, both the memory and floating point operation per second

increase. Examples of this type include the transputer-based systems and

the LCAP system of IBM.

-159-

Chapter Seven Parallel Simulations

7.2.3 Transputer-Based System

7.2.3.1 Transputer Hardware

The MIMD concurrent computers can be constructed out of (a) large

processors each of which could be the basis of a powerful computer; (b)

processors which occupy a board and are equivalent to a full mini­

computer; and (c) single-chip processors which can perform the full

range of requisite functions. The transputer-based systems are in

category (c), where the single chip is the transputer.

Transputers are built by INMOS Ltd. It is a programmable building block

for concurrent systems, spanning a wide range of system sizes from

microcomputer to supercomputer. The transputer is designed to implement

the process model of concurrency, expressed through the Occam pro­

gramming language, which was developed in parallel with the hardware.

The transputer architecture is wordlength independent so that trans­

puters of different wordlengths may be interconnected and programmed as

a single system. Since all memory is local, the memory bandwidth grows

in proportion to the number of transputers. Each transputer has an

external memory interface which extends the address space into off-chip

memory. Transputers use point to point communication links. Every member

of the transputer family has one or more standard links which may be

connected to links on other transputers to build networks of various

sizes and topologies. Hence, the communication bandwidth does not

saturate as more transputers are added. Each link provides synchronous

-160-

Chapter Seven Parallel Simulations

bi-directional communication corresponding to two Occam channels, one in

each direction. Communication via any link may occur concurrently with

communication on all other links and with program execution. The trans­

puter can be programmed in other high level languages such as FORTRAN,

C, PASCAL, but that if concurrency is to be exploited , Occam should be

used as a harness to link modules written in the selected language.

Figure 7.1 is a schematic diagram of a transputer.

Floating p o in t Unit

32

w

Syctani 32 bit
Caret*32

Urn

LinkIrmrte*
4*byt*t

of
Orvcrtp
RAM

Link

Link32

32

£ ^ 3 2 bk Ext a m * ■ua

Fig. 7.1 Schematic diagram of a transputer

-161-

Chapter Seven Parallel Simulations

Among the family of transputers, T414 and T800 are extensively used.

T414 is a 32 bit, 10 MIPS processor with 2Kbyte of memory and

sustainable 32 bit floating-point performance of around 80 Kflops;

T800 is a 32 bit, 10 MIPS processor with 4Kbyte of memory, a 64 bit

floating-point unit which is capable of sustaining 1.5 Mflops which is

around 5 times faster than a MC68020 processor and about the same speed

as a VAX 8600.

All transputers are single 1.5p CMOS chips with a reduced instruction

set architecture, supporting 4 INM0S standard, full duplex, serial

links.

7.2.3.2 The Meiko Computing Surface

There are several computing systems available which use the transputers

as the basic processors. Amongst them, the Meiko Computing Surface is

widely used. The Meiko Computing Surface is a computer system designed

by Meiko Ltd. to exploit the power of the transputer on compute­

intensive applications. Compute, graphics and 1/0 elements are

available, together with interface and intermodule boards. The links

from each element are electronically switched enabling the user to

create the topology required by their program. The Meiko Computing

Surface is a modular, reconfigurable transputer array, which consists of

a number of modules each containing up to 40 boards housed in two 19-

inch racks. All inter-board links within a module are routed via the

system backplane, and links between modules are provided by special

-162-

Chapter Seven Parallel Simulations

y///////////A'777777A

3331

 ̂<

sna
Q g

V///////////////////A
v) c/5 w 5/A 2 (j w °/X LD S' l C/3 " o u | o

$ “■ if Ez SM Q c S 1 - 5

ISOSsna

V)
3ffl

(AVMHOMH 1 3 X ld

> ocn >

Fig. 7.2 Structure of the Meiko Computing Surface

-163-

Chapter Seven Parallel Simulations

inter-module link boards. The structure of the Computing Surface is

illustrated in Fig. 7.2. The system backplane in each module supports a

supervisor bus as well as the link connectivity, and this provides for

low bandwidth communication between all computing elements in the

system. Meiko provides system software to control a computing surface in

single or multiple mode, and are developing MEIKOS, a UNIX-like system.

In the system, there are compilers for Occam, C, Fortran and Pascal,

each generates code for T414’s and T800’s. Communication over Occam-

style channels has been added to the conventional languages.

Multiprocessor programs are built by linking sequential single programs

(in C and Fortran) with an Occam harness.

The Meiko Computing Surface is still in development. Since the work in

this thesis was completed, CS tools have been made available. These can

run the pure conventional languages in parallel without establishing an

Occam harness. This makes it easy to use for a new user, but may reduce

the efficiency since the configuration may not be optimal to some

physical problems.

7.3 Parallel Algorithms

Ideally, a program runs N times faster on N processors than on a single

processor, although the actual speed-up may be much less. The design of

algorithms to achieve this sort of speed-up is an active area of

research. Since the algorithm, programming language and hardware are

intimately connected, the major effort should be to match the

parallelism of the algorithm to the parallelism of the computer in such

-164-

Chapter Seven Parallel Simulations

a way as to minimise the execution time of the program. At any stage

within an algorithm, the parallelism of the algorithm is the number of

operations that are independent and can therefore be performed

concurrently. This may vary from stage to stage. The natural hardware

parallelism is the number of processors that may run concurrently,

including both arithmetic and link processors. The current parallel

algorithms can be roughly categorised into three classes: event

parallelism; geometric parallelism; and algorithmic parallelism.

7.3.1 Event Parallelism

Event parallelism is suitable for independent tasks where each processor

executes a program in isolation from all the other processors. One of

the simplest, and often the most efficient, ways of exploiting parallel

processing is to distribute independent tasks to each of the processors.

Such a configuration of the system is also called a task farm. Another

variant on the task farm approach, is when a single computation can be

divided into many independent sub-tasks which can be farmed out amongst

the slave processors. The event parallelism is an ideal way to make

parallel computation, but unfortunately, most engineering problems are

beyond this type.

7.3.2 Geometric Parallelism

The geometric parallelism is also called domain decomposition or multi­

domain parallelism, in which each processor executes the same program on

data corresponding to a subdomain of the system being simulated and

-165-

Chapter Seven Parallel Simulations

communicates boundary data to neighbouring processors handling

neighbouring subdomains. Since, at the present level of technology,

communication is expensive, we should minimise the data transferred from

one processor to another processor. In addition, the communication time

is also proportional to the distance between processors. So, the

processor array should have, as far as possible, the same geometric

configuration as the system being simulated. Geometric parallelism has

been achieved in some useful applications of CFD problems (Lin 1989,

Gropp and Smith 1990).

For transputer-based systems, 2D problems can be treated in a straight

forward manner because each subdomain has at most 4 neighbouring

subdomains. This requires 4 channel pairs for communication, and the

transputer provides a promising way to do that. But for 3D problems, the

application is not straight forward. Since some subdomains may require 6

links, we need to build a block using 2 transputers for each subdomain.

This introduces the extra complication of distributing the data in one

subdomain over the transputers, and the handling of internal

communi cat i ons.

7.3.3 Algorithmic Parallelism

This approach is to construct a network of processors, each with its own

special role to play, through which all the data flows, as in a factory

production line. There are a number of difficulties with algorithmic

parallelism. One is that at different stages during the computation,

different algorithms may apply, and a configuration of transputers

-166-

Chapter Seven Parallel Simulations

optimised for implementing one algorithm is unlikely to be appropriate

for another. Another difficulty to be solved is how to get control data

to each of the slave processors, for example, to initialise them at the

start of the computation. Finally, it may happen that one process

dominates the execution time. If this process cannot be divided up

amongst more than one processor, it alone will determine the throughput

and constitute a bottleneck. Because of these difficulties, many

published papers referring to algorithmic parallelism are beginning to

appear in mathematical periodicals and books. Obviously, algorithmic

parallelism is a natural way to simulate a machine, a production

process, or even a whole factory. The major obstacle to efficiency is

load blancing: the number of processors assigned to simulating each

component must be carefully tuned.

7.4 Domain Decomposition and Topology of the Interface

In the domain decomposition technique, the overall computational fluid

field is divided into several subdomains, equal in number to the number

of available slave processors. With the boundary conditions at the

physical boundary or at the interface, the evolution of the fluid in the

interior of each subdomain is determined entirely by data which is

present in that processor’s local memory. But since the boundary

conditions at the interfaces are usually given the initial values at the

beginning of the solution procedure which are not the solutions of a

problem, they should be corrected as iteration progresses. Generally for

simplicity, the functional values at the interfaces are determined by an

explicit formulation for an implicit problem, which is related to the

-167-

Chapter Seven Parallel Simulations

neighbouring subdomains. Thus communication between processors is

required for exchanging the data to give the new functional values at

the interface. The formulation to determine those values at the

interface is related to the topology of the interface. In the following,

three basic cases are considered.

7.4.1 Patched with Continuity Condition (Interface I)

This case has been considered in Chapter Five. Along the interface, the

function is C continuity, and may not satisfy the N-S equations.

According to formulation (5.35), the functional values at the interface

are related to all the interior values of both adjoining subdomains.

Since each subdomain is assigned to a processor, that means all the

interior values in a subdomain should be transferred into neighbouring

subdomains. This may cost considerable communication time. To reduce

that, we can combine all the interior functional values using (5.35) to

give a stream of data, which is, in number, equal to the number of grid

points at the interface, and is transferred into neighbouring processors

to determine the functional values at the interface.

7.4.2 Patched with Interpolation (Interface II)

lrij
<— H—

n Qi 1 J

Fig. 7.3 Topology of a Patched Interface

-168-

Chapter Seven Parallel Simulations

The topology of the interface II is the same as the above case. But the

functional values at the interface are obtained using a high order

Lagrange interpolated polynomial. For simplicity, it is assumed that

subdomains £2 and £2 have the same structure of grid and the same locali j e
coordinate system, and globally, the coordinates in both subdomains are

symmetric to the interface T . Thus, we can establish a frame whose

origin is on the interface for subdomains £2j and £2̂, as shown in Fig.

7.4. Using the Lagrange interpolation polynomial, the functional values

at the interface can be obtained by the extrapolation from both sides of

the interface, which is given as

f = ELl'fUj) ' + .)
k=2 k=2 N-k + 1 (7.1)

where x1, xJ are the local coordinates in £2 and £2 , f is the functionalk’ k i j’
value at the interface, (L-l) is the number of the functional values in

a subdomain being used for the interpolation, and
2

L xlLr = L = —̂ ni i 2 j=2,j*i 2 2X - Xj i
Here x = xj. Similar to the above case, the interior functional valuesk k
in a subdomain can be combined, using (7.1), to give a minimum stream of

data before transferred into neighbouring subdomains. In this case, the

functional values at the interface may not satisfy the governing

equations.

£2
Interface

£2

-x -x -x 0 x x3 2 2 3 X

Fig. 7.4 Global Coordinates for subdomains £2 and £2i J

-169-

Chapter Seven Parallel Simulations

7.4.3 Overlapped (Interface III)

C G D H

A E B F

Fig. 7.5 Topology of Overlapped Interface

The overlapped topology of the interface, as shown in Fig. 7.5, is an

easy way to implement parallel computation using the domain

decomposition approach. In Fig. 7.5, subdomain ABCD is overlapped with

subdomain EFGH (shaded area). It is noted that the right boundary of

subdomain £2 , BD, is in the interior of subdomain £2 , and the left i j
boundary of subdomain £2̂, EG, is in the interior of subdomain £2̂ Thus,

if the solution in the interior of the subdomains is known at a time

step, then the functional values along the lines of BD and EG are known.

These values are then transferred into neighbouring subdomains as new

boundary conditions to get the solution in the interior of subdomains at

next time step, i.e. the values along EG are transferred into subdomain

£2̂, and the values along BD are transferred into subdomain £2̂ This

process continues until converged solutions in all subdomains are

obtained. For the overlapped topology, the functional values at the

interface are given from the solution of the governing equations, but

the functional values within the overlapped region may not be unique.

-170-

Chapter Seven Parallel Simulations

They can be determined from the solution of a subdomain, and can also be

given from the solution of another neighbouring subdomain. The

overlapped region may include 2 or more grid points overlapped.

7.5 Development of A General Computer Code

A parallel program, which can run on any number of processors without

any change of the program, is very attractive in engineering. To develop

this, we firstly consider the particular features of parallel

computation. Usually, these new considerations include: (1) how the data

is to be distributed in the memory; (2) how computations are distributed

among the processors; (3) inter-processor communications; and (4) inter-

processor connections (configurations). If a domain decomposition

technique and the distributed Meiko Computing Surface are used, the

first two items are easy to implement since each processor is assigned

to be responsible for the computation of a subdomain and the data used

in the computation is stored in the local memory of that processor. The

problem lies in determining how the master processor divides the whole

computational field into required subdomains, each with its local

properties such as the generation of local coordinates, assignment of

the initial field, and the way that the local slave processors ascertain

the location of the physical boundary and the interface in a subdomain.

It is very important to know the position of the interface in the

solution of a differential equation. This is because, on the one hand,

the interior solutions are greatly affected by the boundary conditions,

not only in their values and types, but also in their positions. On the

other hand, since the data communication is required across the

Chapter Seven Parallel Simulations

/////////✓✓✓✓✓✓////// 1 2 2 2 3
/✓//✓/////✓/////✓////

A 5 5 5 6
✓/////////✓/✓///// A 5 5 5 6
///✓✓✓////✓////////// A 5 5 5 6
//////✓✓✓////✓/✓✓✓/✓/ 7 8 8 8 9

Fig. 7.6 Basic Cases for A Two-Dimensional Problem

interface, the inter-processor communications and connections are

related to the position of interfaces. In other words, depending on the

position of the interfaces in a subdomain, the local slave processor

needs to know where the communications and connections are required to

the neighbouring subdomains. Thus, in terms of the topology of

subdomains, we may generate a program which can automatically distribute

the data and computation to each slave processor, and produce a

configuration for the communications and connections. To demonstrate

this, we consider a rectangular computational field for simplicity. For

this case, if it is assumed that in both the x and y directions, there

are 2 or more than 2 subdomains, then all the topology of subdomains can

be described within a set of 9 basic cases, as shown in Fig. 7.6, where

i indicates the case i, i=l,2,•••,9. If the program includes all these 9

basic cases, it can then be run on any array of processors (again only

if the number of subdomains in both the x and y directions are 2 or more

than 2).

-172-

Chapter Seven Parallel Simulations

7.B Numerical Results

To test the efficiency of a parallel computation, the two channel flow

problems, which have been studied using a multi-domain GDQ approach in

Chapter Five, are chosen to extend to parallel schemes. Some preliminary

results for a comparative study of the driven cavity flow problem to

demonstrate the application of the general computer code in section 7.5

are also presented. The efficiency of a parallel computation is defined

as

where

t = time taken by the program on a single processor

N*t = time taken by the program on N slave processorsN

Using the Meiko Computing Surface, the computational program is written

in Fortran operating under the MeikOS system, and the Occam harness is

edited by the Occam 2 language operating under the OPS (Occam

Programming System). The network of transputers consists of one host

transputer, one master transputer, and an array of slave transputers. In

the present research, the master transputer is also a slave transputer.

The host transputer is one which runs OPS. The master transputer

directly connects to the host transputer which handles I/O with the

outside world (terminal, keyboard, files on disk, etc.), and which may

control a number of slave transputers. In particular, for the solution

of incompressible N-S equations, the master processor firstly reads

input data from a file on the disk, then broadcasts them to all the

-173-

Chapter Seven Parallel Simulations

slave processors, and sends a message telling them to begin work. After

marching a time step, all the slave processors send the maximum

residuals in their local subdomains to the master processor, and the

master processor then compares them with a given tolerance. If they are

within the tolerance, the master processor then sends a message telling

the slave processors to cease their calculations and send the results to

the master processor for output to a file on the disk, if not, then

sends a message telling the slave processors to continue their tasks.

The slave transputers are the working processors.

7.6.1 The Flow past A Backward Facing Step

Master*
Slave

Slave

SlaveHost

Fig. 7.7 Configuration of A Backward Facing Step Problem

The network of transputers for this case is shown in Fig. 7.7, which has

the same configuration as the physical system. Three slave transputers

(one is also a master transputer) are used for parallel simulation.

Almost the same program (without communications and connections) has

also been run on a single transputer. It was found that numerical

results obtained by a single transputer and multiple transputers are

-174-

Chapter Seven Parallel Simulations

16

14
X/H
12

10

8

6

4

2

0
0

Fig. 7.8 Lengths of Recirculation Zone vs Reynolds Numbers

1.0

0.8

Tl
0.6

0. 4

0.2

0.0
0

Fig. 7.9 Efficiency of the Parallel Simulation

O 0 O O 0 0 0 0 0 O 0

 1----- 1 I----- 1-----1-
200 400 RE 600 800 1000

SINGLE PROCESSOR
o MULTIPLE PROCESSORS

RE
2 0 0 4 0 0 6 0 0 8 0 0 1000

-175-

Chapter Seven Parallel Simulations

nearly the same, the efficiency of parallel computation is very high,

which is about 92.5% . Fig. 7.8 shows the length of recirculation zone

vs Reynolds numbers for both cases. Clearly, both cases give almost the

same values. Fig. 7.9 displays the efficiency of the parallel simu­

lation, where i) = t /t , t is the operation time taken by the singles m s
processor, t is the total operation time taken by 3 slave processors.m

7.6.2 The Flow past A Square Step

Host Master?
Slave

Slave Slave

Slave

Slave

Fig. 7.10 Configuration of A Square Step Problem

The network of transputers for parallel simulation is shown in Fig.

7.10, which, again, has the same configuration as the physical problem.

To study the efficiency of the parallel computation, the program

(without communications and connections) was also run on a single

transputer. Numerical results for both cases are nearly the same. Fig.

7.11 shows the efficiency of parallel simulation for this problem, where

7) = t /t , t is the operation time taken by a single processor, t iss m s m
the total operation time taken by 5 slave processors. The efficiency for

all the simulated cases is over 90% .

-176-

Chapter Seven Parallel Simulations

1.0

0. 8

*n
0. 6

0.4

0.2

0.0
0 50 100 150 RF 200 250 300

Fig. 7.11 Efficiency of the Parallel Simulation

7.6.3 Comparative Studies of the Driven Cavity Flows

For this test case, we firstly use the vorticity-velocity formulation to

study the influence of the order of interpolated polynomials, the number

of grid points overlapped, on the accuracy of results and the

operational time. The comparison of the accuracy and operational time

needed, between three types of interfaces using the vorticity-velocity

formulation, and between the vorticity-velocity and vorticity-stream

function formulations, are also studied. Finally, the accuracy of

results and the computational efficiency are discussed, as the number of

subdomains increases. In all the following cases, the program is

produced using the general scheme proposed in section 7.5, which can be

run on any array of transputers without modification to the program. One

o o OO 0 O O O

-t*

-177-

Chapter Seven Parallel Simulations

type of network of transputers is shown in Fig. 7.12, which uses 5x5

slave transputers, and has the same configuration as the physical case.

Slave

Slave

Slave

Slave

Fig. 7.12 Configuration of A Driven Cavity Flow Problem

7.6.3.1 Different Order of Lagrange Interpolated Polynomials

Using interface type II, it was found that, as L increases from 2 to 3,

the accuracy of results is improved, and more operational time is

required; and as L increases above 3, the accuracy of results keeps

nearly the same, and a little more operational time is needed. Thus in

balance, to reduce the operational time and obtain accurate results, the

use of L=3 is recommended. Fig. 7. 13 displays the velocities through the

geometric centre of the cavity, where the array of 2x2 slave transputers

(or subdomains), and a local mesh size of 11x11 for R e = i0 0 , 17x17 for

Re=400 in each subdomain, were used. Fig. 7.14 shows the non-dimensional

operation time, where the reference time T is the operational time

-178-

Chapter Seven Parallel Simulations

i.o

0. 8
Y

0. 6

0.4

0.2

0.0
1 .0 - 0 . 5 0 . 0 0 . 5 1 .0

0 .5

0 .4
0 .3

0 .2 0. 1
0.0

-0.1

-0 .2
-0 .3
-0 .4

-0 .5

a V

0.2 0.4 X 0.6 0 .8 1.0

(a) Horizontal Velocity (b) Vertical Velocity

Fig. 7.13 Velocities Through the Geometric Centre of the Cavity

(for section 7.6.3.1)

1 . 4 ■

T /T
r e f 8

5 5 8
1 . 2 ■

1 . 0 ■ ■

0.8 ▼ RE - 100
0 RE = 400

0.6 ■

0 2 4 . 6 8

Fig. 7.14 Comparison of the Non-Dimensional Operational Time

(for section 7.6.3.1)

-179-

Chapter Seven Parallel Simulations

taken by the case of L=2.

7.6.3.2 Different Number of Grid Points Overlapped

Using interface Type III, it was found that, as NO increases from 2 to

3, where NO is the number of grid points overlapped, the numerical resu­

lts are nearly the same, but the operational time is greatly reduced;

and when NO increases above 3, both the accuracy of results, especially

in the overlapped region, and the operational time, are reduced. The

reason for reduction of the accuracy in the overlapped region is that

solutions in this region may not be unique since they can be obtained in

a subdomain and in other neighbouring subdomains. Although the physical

positions in the overlapped region are the same, solutions derived from

different subdomains may not be consistent with each other. This is

particularly true when NO becomes relatively large. Hence, to obtain

accurate results with less operational time, the use of N0=3 is reco­

mmended. Fig. 7.15 shows the velocities through the geometric centre of

the cavity, where the array of 2x2 slave transputers and the local mesh

size of 13x13 for R e= 1 0 0 , 17x17 for R e= 400 in each subdomain, were used.

Fig. 7.16 shows the non-dimensional operational time, where the refer­

ence time T is the operational time taken by the case of N0=2.

7.6.3.3 Comparison of the Interface Treatment

Using the vorticity-velocity formulation, the performance of the three

types of interface treatment introduced in section 7.4, has been

studied. Numerical experiment showed that the interface III gives the

-180-

Chapter Seven Parallel Simulations

GHIA ET AL

0.2

0.0
- 1 . 0 - 0 . 5 0 . 0 0 . 5 1.0

U

0.5

V 0.3
0.2

0.0

-0.2
-0.3

-0.5

GHIA ET AL (GRID 129X1291

0.4 X 0.60.0 0.2 0.0 1 . 0

(a) Horizontal Velocity (b) Vertical Velocity

Fig. 7. 15 Velocities Through the Geometric Centre of the Cavity

(for section 7.6.3.2)

i.o
T/T

r e f

0. 8

0.6

0. 4

0.2

0.0

▼ RE = 100
0 RE = 400

o
V

0
T 0 O▼ ▼

4 6
N O

Fig. 7.16 Comparison of the Non-Dimensional Operational Time

(for section 7.6.3.2)

-181-

Chapter Seven Parallel Simulations

most accurate results and needs the least operational time, and the use

of interface II presents more accurate results and requires less

operational time than that of interface I. For the reason of this

behaviour, it is analysed that the solutions in the interior of each

subdomain can be affected by the boundary conditions and by the

solutions at the interface, thus any error introduced at the interface

may spread into the interior solutions. Hence, although the interior

solutions are obtained by GDQ with high order accuracy, the low order

solutions at the interface may produce low order solutions in the whole

computational field. Since the use of interfaces II and III give

solutions at the interface with high order accuracy, which is consistent

with the accuracy of interior solutions in subdomains, and the use of

interface I gives solutions at the interface with accuracy of order one,

the interfaces II and III provide more accurate results than interface

I. On the other hand, although solutions at the interface are obtained

by high order polynomials for interface II, they may not satisfy the

governing equations. This is not the case for interface III. As a

result, the use of interface III gives more accurate results than

interface II. From numerical experiment, it seems that the higher order

accuracy of solutions at the interface may require fewer time steps, and

therefore less operational time, to steady state resolution. Fig. 7. 17

gives the velocities through the geometric centre of the cavity, where

the array of 2x2 slave transputers and the local mesh size of 13x13 for

Re=100, 17x17 for Re=400 in each subdomain, were used. Fig. 7.18 shows

the non-dimensional operational time, where the reference time T is

the operational time taken by using interface I.

-182-

Chapter Seven Parallel Simulations

GHIA ET AL

 BE - *00

0.6

1.0 - 0 . 5 0 . 0 0 . 5 1 . 0
U

0.5

V 0.3
0.2

0.0

-0.2
-0.3

-0.5

0.4 X 0.60.2 o.a 1.00.0

(a) Horizontal Velocity (b) Vertical Velocity

Fig. 7.17 Velocities Through the Geometric Centre of the Cavity

(for section 7.6.3.3)

1.2
T/T „r e f

1 . 0

0. 8

0. 6

0.4

0. 2

0.0
0 100 200 re 300 400 500

Fig. 7.18 Comparison of the Non-Dimensional Operational Time

(for section 7.6.3.3)

▼ ▼ ▼

▼ INTERFACE Ia INTERFACE II, L*3o INTERFACE III N0=3
o 0

□

0 0 0

-183-

Chapter Seven Parallel Simulations

7.6.3.4 Vorticity-Velocity and Vorticity-Stream Function Formulations

We have compared the numerical results and the operational time using

two formulations of the N-S equations, and found that the vorticity-

stream function (V-S) formulation provides more accurate results and

requires less operational time even though more time steps are taken,

than the vorticity-velocity (V-V) formulation. To analyse this

behaviour, it is noted that in the present research, two boundary

conditions on the solid boundary are implemented for the solution of the

stream function while only one boundary condition is used for the

solution of each velocity component. This may be the reason that the

vorticity-stream function gives better results. The vorticity equation

for both V-S and V-V formulations are exactly the same, but the V-S

formulation needs to solve only one Poisson equation for the stream

function while the V-V formulation needs to solve two Poisson equations

for two components of velocity. Thus although the V-S formulation needs

more time steps to steady state resolution, it requires less operational

time than the V-V formulation. Fig. 7.19 displays the velocities through

the geometric centre of the cavity, where the array of 2x2 slave

transputers and the local mesh size of 11x11 for R e= 1 0 0 , 17x17 for

R e= 400 in each subdomain, were used. Fig. 7 . 2 0 shows the non-dimensional

operational time, where the reference time T is the operational time
r e f

taken by the V-V formulation.

-184-

Chapter Seven___________________________________ Parallel Simulations

GHIA ET AL
— RE • 100
- - RE = 400

0.0
- 1 .0 - 0 .5 0 .0 0 .5 1.0

u

O V-S FORMULATION V V-V FORMULATION

0.5
0.4V
0.2

-0.2
GHIA ET AL (GRID 129X1291

 RE = 100
 RE = 400

-0.3

-0.5
0.0 0.2 0.4 X 6 0.8 1 . 0

(a) Horizontal Velocity (b) Vertical Velocity

Fig. 7.19 Velocities Through the Geometric Centre of the Cavity

(for section 7.6.3.4)

1 . 2

T/Tref
1.0

0 . 8

0.6

0 .4

0.2

y VORTICITY-VELOCITY FORMULATION
o VORTICITY-STREAM FUNCTION FORMULATION

0.0
0 100 200 RE 300 400 500

Fig. 7.20 Comparison of the Non-Dimensional Operational Time

(for section 7.6.3.4)

-185-

Chapter Seven Parallel Simulations

7.6.3.5 The Global GDQ Approach and the Multi-Domain GDQ Approach

Compared with the global GDQ results, the multi-domain GDQ results,

obtained by parallel computation, demonstrated that they are less

accurate even though a larger number of grid points was actually used in

the whole domain. This is because, on the one hand, although the total

number of grid points in the full computational field for the multi­

domain GDQ approach is larger than that for the global GDQ approach, the

order of the discretization of derivatives in subdomains from the multi­

domain GDQ approach is usually less than that from the global GDQ

approach. Thus, the accuracy of solutions in subdomains is generally

less than the accuracy of solutions obtained globally in the whole

domain. On the other hand, the concept of multi-domain introduces the

interface. Usually, the solutions at the interface are less accurate

than those in the interior of subdomains. In other words, additional

errors are introduced at the interface. As analysed in section 7.6.3.3,

the error at the interface may spread into the interior of subdomains

and reduce the accuracy of solutions in the whole domain. So, the

increase of the number of interfaces may decrease the accuracy of

results. Keeping the total number of grid points the same, as the number

of subdomains increases, the number of interfaces increases and the

accuracy of solutions in subdomains is reduced. As a result, the

accuracy of solutions in the whole domain is reduced.

Another interesting result is that the total operational time taken by

all the slave processors using the multi-domain GDQ approach may be less

than that taken by a single processor using the global GDQ approach if

-186-

Chapter Seven Parallel Simulations

the total number of grid points in the whole domain is kept the same. As

shown in Chapter Four, the allowable time step sizes are determined by

the eigenvalues of the spatial discretization matrix, and the eigenva­

lues increase as the number of grid points increases. Thus, if the total

number of grid points in the overall domain is kept the same, the multi­

domain GDQ approach may use much larger allowable time step sizes in

subdomains than the global GDQ approach in the whole domain. Therefore,

if one subdomain is allocated to one slave processor, each slave proce­

ssor may take much less operational time to the convergent solutions and

the total operational time may be less than that taken by a single pro­

cessor. Fig. 7.21 displays the velocities through the geometric centre

of the cavity, where the "single" indicates the global GDQ results using

the mesh size of 21x19, and the "parallel 3x3 or 4x4" means that the

array of 3x3 or 4x4 slave processors was used for the multi-domain GDQ

results. The numerical solutions are obtained by using the vorticity-

stream function formulation and interface I. For the Reynolds numbers of

100, 400, the local mesh size in each subdomain of 10x10 for the array

of 3x3 slave processors, and 8x8 for the array of 4x4 slave processors,

were used. Obviously, as the number of subdomains increases, although

the total number of grid points is increased, the accuracy of solutions

is reduced, especially for the high Reynolds number cases. Fig. 7.22

shows the non-dimensional operational time, where the reference time

T is the operational time taken by a single processor using the glo-
r e f

bal GDQ approach with the mesh size of 21x19. This figure demonstrates

that the total operational time taken by all the slave processors may be

less than that taken by a single processor for some cases. For a given

array of slave processors, if more grid points in each subdomain, e.g.

-187-

Chapter Seven Parallel Simulations

1.0

0. 8

Y

0.6

0.4

0.2

0 . 0

1 .0 - 0 . 5 0 . 0 0 . 5 1 .0

u r.N.LLCL, AmKAT 3X3
O PARALLEL, ARRAf AXA

0.5
0.4
0.3
0.2 0. 1
0.0

- 0 . 1
-0.2
-0.3
-0.4
-0.5

GHIA ET AL (GRID 129X129)

•/

u

(a) Horizontal Velocity (b) Vertical Velocity

Fig. 7.21 Velocities Through the Geometric centre of the Cavity

(for section 7.6.3.5)

1.2
T/T

r e f
1 . 0 -■

▼ ARRAY 2X2, LOCALMESH13X13□ ARRAY 3X3, LOCALMESH10X10o ARRAY 4X4, LOCALMESHBX8

T ▼ ▼0 □ □
0.4

G

0.2 --

0.0 ■ 1 1 1-----
0 100 200 re 300 400 500

Fig. 7.22 Comparison of the Non-Dimensional Operational Time

(for sect ion 7.6.3.5)

-188-

Chapter Seven Parallel Simulations

the local mesh size of 15x15 for the array of 2x2 slave processors, are

used, the total operational time taken by all the slave processors may

be larger than that taken by a single processor.

7.7 Concluding Remarks

The multi-domain GDQ approach has been shown to suit and to benefit from

parallel computation. The computational efficiency of this approach on

the distributed parallel computer is very high when the number of sub-

domains is not large. The overlapped interface provides the most

accurate results and needs the least operational time, compared with the

patched interface using the continuity condition or using the Lagrange

interpolation scheme. If high order numerical approaches such as the GDQ

approach are used in the local subdomains, it is better to use a high

order scheme for the solutions at the interface to keep high order reso­

lutions in the whole computational field. The vorticity-stream function

formulation gives more accurate results and requires less operational

time than the vorticity-velocity formulation. Keeping the number of grid

points in the whole domain the same, as the number of subdomains

increases, the accuracy of solutions is reduced, and the total opera­

tional time taken by all the slave processors using the multi-domain GDQ

approach may be less than that taken by a single processor using the

global GDQ approach. The general codes, which can be run on any array of

processors without modification to the program, appear to offer- a way

forward in engineering applications. The Meiko Computing Surface is a

reconfigurable parallel computer, which is easy to use, and to control

the placement of and the communication between processors.

-189-

Chapter Eight Conclusions and Future Research

CHAPTER EIGHT

Conclusions and Prospect of Future Research

8.1 Conclusions

The new numerical approaches of generalized differential quadrature

(GDQ) and generalized integral quadrature (GIQ) have been developed in

this research. Their application to the solutions of incompressible

viscous flows without discontinuities involving parallel simulations was

also reported. Some conclusions drawn from this research are listed as

follows:

(1) The GDQ approach, developed in this research, is a global method,

which overcomes the difficulty of differential quadrature (DQ) in

obtaining the weighting coefficients for the discretization of the first

derivative when the number of grid points is large and the distribution

of grid points is arbitrary. The determination of the weighting

coefficients for any order of derivatives are very easy. The weighting

coefficients of the second or higher order derivatives are obtained from

those.of the first derivative by a recurrence relationship. Thus, the

application of the GDQ approach in engineering may be more widespread

than the DQ approach. Although the application of the GDQ approach is

demonstrated for CFD in this research, it can also be applied to other

engineering problems in continuum media.

-190-

Chapter Eight Conclusions and Future Research

(2) Some basic features of the GDQ approach such as arising in stability

conditions differ from those of low order numerical schemes. In the GDQ

approach, features, such as the allowable time step size, are dependent

on the global characteristics of the problem such as the global

distribution of grid points, while in low order numerical approaches

such as finite differences, the features are dependent on the local

characteristics of the problem. In particular, the GDQ approach requires

the grid to be stretched near the boundary to ensure stability of

solutions. A uniform grid or a grid stretched near the mid-point is not

suitable for solving the incompressible N-S equations.

(3) It has been shown that the GDQ approach developed can be considered

as the highest order finite difference scheme. It has also been shown

that, both the GDQ approach and the spectral collocation method can give

the same results if the same grid points are used for both approaches

although they are based on different mathematical foundations. This is

demonstrated by the fact that when the coordinates of grid points are

chosen as the roots of a Chebyshev polynomial, both the GDQ approach and

the spectral Chebyshev collocation method give the same weighting

coefficients for the discretization of the first derivative.

(4) The GIQ approach developed is also a global method, where not only

the integral of a function over the whole domain but also the integral

of a function over a part of the whole domain can be approximated by the

combination of all the functional values in the overall domain. They

have the same order of numerical errors.

-191-

Chapter Eight Conclusions and Future Research

(5) The GDQ and GIQ approaches can be used with arbitrary distributions

of grid points. Thus, they can be applied in a general coordinate

system.

(6) Application of GDQ to the solutions of the incompressible N-S

equations showed that the GDQ approach can achieve the same accuracy

using just a few grid points and needs much less computational time, as

compared with low order numerical approaches using a large number of

grid points.

(7) Application of the GDQ-GIQ approach to the solutions of the boundary

layer equations demonstrated that this approach is very efficient, and

can achieve the same accuracy using just a few grid points as

conventional schemes such as the Keller-box finite difference scheme. In

the direction normal to the surface, the derivatives and the integral

are discretized by the GDQ and GIQ approaches. In other directions, the

derivatives can be discretized by the GDQ approach or by the local

finite difference scheme. It is better to use the stream function as the

dependent variable to achieve more accurate results and less computa­

tional time needed. The use of the GDQ approach in the streamwise direc­

tion is very sensitive to discontinuities such as a separation point.

(8) The multi-domain GDQ approach combines the ability to deal with

geometric complexity along with high order accuracy. It provides a

promising way to treat increasingly complex problems.

(9) For parallel simulation of the incompressible N-S equations using a

-192-

Chapter Eight Conclusions and Future Research

multi-domain GDQ approach, sin overlapped interface gives more accurate

results and needs less operational time than a patched interface. The

vorticity-stream function formulation presents more accurate solutions

and requires less operational time than the vorticity-velocity

formulation. The computational efficiency is very high when a small

number of subdomains and a multi-domain GDQ method are used. The

increase of the number of subdomains may reduce the accuracy of results

and the computational efficiency. For any two dimensional problem in

engineering and using the multi-domain concept, the achievement of a

general code, which can be run on any array of processors without

modification to the program, is possible. Extension to three dimension

is expected to be possible.

(10) The Meiko Computing Surface is a flexible, reconfigurable parallel

computer, on which parallel computation is easily implemented.

8.2 Prospect of Future Research

The research work reported in this thesis is by no means complete.

Indeed, both the application and the algorithms themselves are still in

their infancy. Some topics for further research are suggested as:

(1) The application of the GDQ approach to other engineering problems

such as in solid mechanics is of interest area in the future. In CFD,

the application of the GDQ method to compressible flows, where shock

waves may exist, is a challenging area. To capture the shock wave,

available schemes adopted by other numerical methods, such as artificial

-193-

Chapter Eight Conclusions and Future Research

viscosity and filtering, need to be introduced.

(2) When the number of grid points is large, the explicit allowable time

step size becomes extremely small, and hence, a large number of time

steps is required for the convergent results. To speed up the

convergence, an implicit scheme can be used, which allows the use of a

bigger time step size, and therefore needs less time steps for

convergence. To further accelerate the convergence, the multi-grid

approach and some preconditioning schemes can be used. It is expected

that the application of a multi-grid GDQ approach will be easy and

straightforward since in the GDQ approach, the interpolation from fine

to coarse or from coarse to fine grids is very easy and accurate.

(3) The application of the GDQ approach to turbulent flows, especially

in the incompressible case, is another interest area where an appro­

priate turbulence model need be introduced.

(4) If more complex problems are tackled, the physical space will need

to be transformed into computational space. Thus, grid generation

schemes will be required, especially for the three-dimensional case.

(5) The development of the GDQ element method appears to be an

attractive area in the future. This approach can also combine the

geometric complexity with high order accuracy. The solutions over all

the computational domain including the interface between elements are

obtained globally through solutions of the governing equations.

-194-

Chapter Eight Conclusions and Future Research

(6) In mathematics, it has been proved that any smooth function in a

domain can be approximated by an optimal polynomial. Since in the GDQ

approach, the approximated polynomial is related to the distribution of

grid points, there should exist a optimal distribution of grid points

for a smooth problem. This may be achieved by using an adaptive grid

approach.

(7) The application of a marching scheme of the GDQ-GIQ approach to the

solution of the boundary layer equations could be fruitfully studied in

the future. Two schemes could be tested. One scheme would apply the GDQ

and GIQ methods only in the normal direction to the surface. In the

streamwise or the crossflow direction, conventional local finite

difference schemes, which make it possible to march the solution along

the streamwise or the crossflow direction, would be used. Another scheme

would divide the computational domain in the streamwise and crossflow

directions into several subdomains (blocks). Thus, the surface would be

composed of several blocks. In one block, the GDQ and GIQ approaches

would be applied in all directions, that is, solutions in one block

would be obtained globally. After getting all the solutions in a block,

the solutions on the boundary of this block would be taken as the

initial values for the solution of another neighbouring block. This

procedure would continue by marching the solution block by block until

all the solutions in the computational field are obtained.

(8) Some other functions such as triangular polynomials could be used as

the base functions for the approximation of the problem. Triangular

polynomials are well suited to the approximation of periodic problems.

-195-

Chapter Eight Conclusions and Future Research

If other functions are used, the formulation of the weighting

coefficients for the discretization of derivatives could be obtained

using a similar approach as in this thesis.

(9) The efficiency of parallel computation using the multi-domain GDQ

approach, especially the study of the treatment of the interface, needs

to be investigated further. Parallel simulation using the GDQ element

method is another area of interest in parallel computation. In addition,

parallel simulation using conventional finite differences, finite

elements and finite volumes methods is also a future area of activity.

-196-

References and Bibliography

REFERENCES

Bar-Lev, M. and Yang, H.T., (1975), "Initial Flow Field over an Impul­
sively Started Circular Cylinder", J. Fluid Mech., Vol. 72, 625-647

Beam, R.M. and Warming, R.F., (1978), "An Implicit Factored Scheme for
the Compressible Navier-Stokes Equations", AIAA J, Vol. 16, 393-402

Bellman, R. , Kashef, B.G. and Casti, J. , (1972), "Differential Quadra­
ture : A Technique for the Rapid Solution of Nonlinear Partial Differ­
ential Equations", J. Comput. Phys. Vol.10, 40-52

Bellman, R., Naadimuthu, G., Wang, K.M. and Lee, E.S., (1984), "Differ­
ential Quadrature and Partial Differential Equations: Some Numerical
Results", J. Math. Anal. Appl. Vol.98, 220-235

Bellman, R.E. and Roth, R.S., (1986), "Methods in Approximation", D.

Reidel Publishing Company

Bodonyi, R.J. and Stewartson, K., (1977), "The Unsteady Laminar Boundary
Layer on a Rotating Disk in a Counter-Rotating Fluid", J. Fluid Mech.,
Vol. 79, 669-688

Bredif, M., (1984), "Calculation of Laminar Flow over A Step by A Finite
Element Method Based on the Stream Function-Vorticity Formulation",
Notes on Numerical Fluid Mechanics, Vol. 9, Vieweg, Braunschweig

Burggaf, O.R. , (1966), "Analytical and Numerical Studies of the Struc­
ture of Steady Separated Flows", J. Fluid Mech. Vol.24, 113-151

Canuto, C. , Hussaini, M.Y., Quarteroni, A., and Zang, T.A., (1987),
"Spectral Methods in Fluid Dynamics", Springer, New York, Berlin,

Heidelberg, London, Paris, Tokyo

Cebeci, T., (1975), "Calculation of Three-Dimensional Boundary Layers,
II. Three-Dimensional Flows in Cartesian Coordinates", AIAA J. Vol.
13, No. 8, 1056-1064

Cebeci, T., (1979), "The Laminar Boundary Layer on a Circular Cylinder
Started Impulsively from Rest", J. Comput. Phys. Vol. 31, 153-172

-197-

References and Bibliography

Cebeci, T. , Hirsh, R.S. , Keller, H.B., and Williams, P.G., (1981),
"Studies of Numerical Methods for the Plane Navier-Stokes Equations",
Computer Methods in Applied Mechanics and Engineering, Vol. 27, 13-44

Cebeci, T. (1986), "Unsteady Boundary Layers with an Intelligent
Numerical Scheme", J. Fluid Mech., Vol. 163, 129

Chakravarthy, S.R. and Osher, S., (1985), "A New Class of High Accuracy
TVD Schemes for Hyperbolic Conservation Laws", AIAA Paper 85-0360

Chan, D.C., Sindir, M.M. , Gosman, A.D., (1987), "Numerical Flow
Simulation of Passages with Strong Curvature and Rotation Using A
Three-Dimensional Navier-Stokes Solver", AIAA Paper 87-1354

Chang, J.L. and Kwak, D. , (1984), "On the Method of Pseudo Compressibi­
lity for Numerically Solving Incompressible Flows", AIAA Paper 84-0252

Chorin, A.J. , (1967), "A Numerical Method for Solving Incompressible
Viscous Flow Problems", J. Comput. Phys., Vol.2, 12-26

Chung, T.J., (1978), "Finite Element Analysis in Fluid Dynamics", New

York, McGraw

Civan, F. and Sliepcevich, C.M., (1983), "Application of Differential
Quadrature to Transport Processes", J. Math. Anal. Appl., Vol. 93,
206-221

Civan, F. and Sliepcevich, C.M. , (1984), "Differential Quadrature for
Multi-Dimensional Problems", J. Math. Anal. Appl., Vol. 101, 423-443

Coutanceau, M. and Bouard, R. , (1977), "Experimental Determination of
the Main Features of the Viscous Flow in the Wake of A Circular
Cylinder in Uniform Translation. Part I: steady Flow", J. Fluid Mech.,
Vol. 79, 231-256

Davis, P.J. and Rabinowitz, P., (1975), "Methods of Numerical
Integration", Academic Press, Inc. (London) Ltd.

De Vahl Davis, G. and Jones, I.P, (1983), "Natural Convection in A
Square Cavity: A Comparison Exercise", Int. J. Numer. Methods Fluids,
Vol. 3, 227-248

-198-

References and Bibliography

De Vahl Davis, G. , (1983), "Natural Convection of Air in A Square
Cavity: A Benchmark Numerical Solution", Int. J. Numer. Methods

Fluids, Vol. 3, 249-264

Dennis, S.C.R. and Chang, G., (1970), "Numerical Solutions for Steady
Flow past A Circular Cylinder at Reynolds Numbers up to 100", J. Fluid
Mech., Vol. 42, 471-489

Donea, J., Selmin, V. and Quartapelle, L. , (1988), "Recent Developments
of the Taylor-Galerkin Method for the Numerical Solution of Hyperbolic
Problems", In Numerical Methods for Fluid Dynamics, (Morton and Baines
ed.), Academic Press

Dwyer, H.A., (1968), "Solution of a Three-Dimensional Boundary Layer
Flow with Separation", AIAA J, Vol. 6, No.7, 1336-1342

Ehrenstein, U. and Peyret, R. , (1989), "A Chebyshev Collocation Method
for the Navier-Stokes Equations with Application to Double-Diffusive
Convection", Inter. J. Numer. Methods Fluids, Vol. 9, 427-452

Eiseman, P.R., (1982), "Coordinate Generation with Precise Controls Over
Mesh Properties", J. Comput. Phys., Vol. 47, 331-351

Farouk and, B. and Fusegi, T. , (1985), "A Coupled Solution of the
Vorticity-Velocity Formulation of the Incompressible Navier-stokes
Equations", Inter. J. Numer. Methods. Fluids, Vol. 5, 1017-1034

Fasel, H. and Booz, 0., (1984), "Numerical Investigation of Supercri­
tical Taylor-Vortex Flow for a wide Gap", J. Fluid Mech., Vol. 138,
21-52

Ghia, U., Ghia, K.N., Rubin, S.G., and Khosla, P.K., (1981), "Study of
Incompressible Flow Separation Using Primitive Variables", Comput.
Fluids, Vol. 9, 123-142

Ghia, U. , Ghia, K.N. and Shin, C.T., (1982), "High-Re solutions for
Incompressible Flow Using the Navier-Stokes Equations and A Multi-Grid
Method", J. Comput. Phys., Vol. 48, 387-411

Gottlieb, D. and Orszag, S.A., (1977), "Numerical Analysis of Spectral

-199-

References and Bibliography

Methods: Theory and Applications", SIAM-CBMS, Philadelphia

Gresho, P.M., Chan, S.T., Lee, R.L. and Upson, C.D., (1984), "A Modified
Finite Element Method for Solving the Time-Dependent, Incompressible
Navier-Stokes Equations, Part II: Applications", Inter. J. Numer.

Methods Fluids, Vol. 4, 619-640

Gropp, W.D. and Smith, E.B., (1990), "Computational Fluid Dynamics on
Parallel Processors", Computers and Fluids, Vol. 18, No. 3, 289-304

Harten, A., (1983), "High Resolution Schemes for hyperbolic Conservation
Laws", J. Comput. Phys., Vol. 49, 357

Hassan, 0., Morgan, K. and Peraire, J. , (1989), "An Adaptive Implicit
/Explicit Finite Element Scheme for Compressible Viscous High Speed
Flows", AIAA Paper 89-0363

Hughes, T.J.R., Liu, W. K. and Brooks,A., (1979), "Finite Element
Analysis of Incompressible Viscous Flows by the Penalty Function
Formulation", J. Comput. Phys., Vol. 30, 1-60

Hughes, T.J.R., Tezduyar, T.E. and Brooks, A.N., (1982), "A Petrov-
Galerkin Finite Element Formulation for Systems of Conservation Laws
with Special Reference to Compressible Euler Equations", In Numerical
Methods for Fluid Dynamics, (Morton and Baines ed.), Academic Press

Hussaini, M. Y. and Zang, T.A., (1987), "Spectral Methods in Fluid
Dynamics", Ann. Rev. Fluid Mech., Vol. 19, 339-367

Jameson, A., Schmidt, W. and Turkel, E., (1981), "Numerical Solution of
the Euler Equations by the Finite Volume Methods Using Runge-Kutta
Time-Stepping Schemes", AIAA Paper 81-1259

Jang, S.K., Bert, C.M. and Striz, A.G., (1989), "Application of Differ­
ential Quadrature to Static Analysis of Structural Components", Inter.
J. Numer. Methods Eng., Vol. 28, 561-577

Johnson, G.M., (1983), "Multiple-Grid Convergence Acceleration of
Viscous and Inviscid Flow Computations", Appl. Math. Comp., Vol. 13,
375-398

-200-

References and Bibliography

Keller, H.K. and Cebeci, T. , (1970), "Accurate Numerical Methods for
Boundary layer flows, I. Two Dimensional Laminar Flows", Lecture Notes
in Physics, Vol. 8, 92-100

Keller, H.B., (1974), "Accurate difference methods for Two-Point Boun­
dary Value Problems", SIAM J. Numer. Anal. Vol. 11, 305-320

Kim, J. and Moin, P., (1985), "Application of A Fractional-Step Method
to Incompressible Navier-Stokes Equations", J. Comput. Phys., Vol. 59,
308-323

Korczak, K.Z. and Patera, A.T., (1986), "Isoparametric Spectral element
Method for Solution of the Navier-Stokes Equations in Complex
Geometry", J. Comput. Phys., Vol. 62, 361-382

Ku, H.C. and Hatziavramidis, D. , (1985), "Solutions of the Two-
Dimensional Navier-Stokes Equations by Chebyshev Expansion Methods",
Comput. Fluids, Vol. 13, 99-113

Kueny, J.L. and Binder, G. , (1984), "Viscous Flow over Backward Facing
Steps: An Experimental Investigation", Notes on Numerical Fluid Mecha­
nics, Vol. 9, Vieweg, Braunschweig

Leone, Jr., J.M. and Gresho, P.M., (1981), "Finite Element Simulations
of Steady, Two-Dimensional, Viscous Incompressible Flow over A Step",
J. Comput. Phys., Vol. 41, 167-191

Liakopulos, A., (1988), "Pseudospectral solutions of separated Flows",
AIAA Paper 88-3643-CP

Lin, A., (1989), "Fast Parallel Algorithms for Computational Fluid
Dynamics", in Numerical Methods in Laminar and Turbulent Flows, Vol. 6

MacCormack, R.W. , (1969), "The Effect of Viscosity in Hyper-velocity
Impact Cratering", AIAA Paper 69-354

MacCormack, R.W. and Paullay, A.J., (1972), "Computational Efficiency
Achieved by Time Splitting of Finite Difference operators", AIAA Paper
72-154

MacCormack, R.W. , (1982), "A Numerical Method for Solving the Equations

-201-

References and Bibliography

of Compressible Viscous Flows", AIAA J., Vol. 20, 1275-1281

McDonald, P.W., (1971), "The Computation of Transonic Flow Through Two-
Dimensional Gas Turbine Cascades", ASME Paper 71-GT-89

Mingle, J.O., (1977), "The Method of Differential Quadrature for Tran­
sient Nonlinear Diffusion", J. Math. Anal. Appl. Vol.60, 559-569

Morgan, K., Periaux, J. and Thomasset, F. , (Eds), (1984), "Analysis of
Laminar Flow over A Backward Facing Step", Notes on Numerical Fluid
Mechanics, Vol. 9, Vieweg, Braunschweig

Morgan, K. and Peraire, J., (1987), "Finite Element Methods for Compres­
sible Flows", Von Karman Institute for Fluid Dynamics, Lecture Series,
1987-04, Belgium

Morrison, J.H. and Napolitano, M. , (1988), "Efficient Solutions of Two
Dimensional Incompressible Steady Viscous Flows", Comput. Fluids, Vol.
16, 119-132

Morton, K.W., (1982), "Generalised Galerkin Methods for Steady and
Unsteady Problems", In Numerical Methods for Fluid Dynamics, IK.W.
Morton and M. J. Baines ed.), Academic Press

Morton, K.W. and Paisley, M. F. , (1989), "A Finite Volume Scheme with
Shock Fitting for the Steady Euler Equations", J. Comput. Phys. Vol.
80, 168

Ni, R.H. , (1982), "A Multiple Grid Scheme for Solving the Euler
Equations", AIAA J, Vol. 20, 1565-1571

Orszag, S.A., (1980), "Spectral Methods for Problems in Complex Geome­
tries", J. Comput. Phys., Vol. 37, 70-92

Osswald, G.A. and Ghia, K.N. , (1985), "An Implicit Time-Marching Method
for Studying Unsteady Flow with Massive Separation", AIAA Paper 85-1489

Patankar, S.V. and Spalding, D.B., (1972), "A Calculation Procedure for
Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic
Flows", Int. J. Heat Transfer, Vol. 15, 1787-1806

-202-

References and Bibliography

Patera, A.T., (1984), "A Spectral Element Method for Fluid Dynamics:
Laminar Flow in A Channel Expansion", J. Comput. Phys., Vol. 54, 468-
488

Phillips, T.N., (1984), "Natural Convection in an Enclosed Cavity", J.
Comput. Phys., Vol. 54, 365-381

Phillips, T.N. and Karageorghis, A., (1988), "Chebyshev Collocation
Methods for the Solution of the Incompressible Navier-Stokes Equations
in Complex Geometries", In Numerical Methods for Fluid Dynamics III
(K.W. Morton and M.J. Baines ed.), Clarendon Press, Oxford

Pike, J. and Roe, P.L., (1985), "Accelerated Convergence of Jameson’s
Finite Volume Euler Scheme Using Van Der Houwen Integrators", Comput.
Fluids, Vol. 13, 223-236

Pulliam, T.H., (1986), "Artificial Dissipation Models for the Euler
Equations", AIAA J. Vol. 24, 1931-1940

Richtmeyer, R. D. and Morton, K.W., (1967), "Difference Methods for
Initial Value Problems", John Wiley, New York

Rizzi, A.W., and Inouye, M. , (1973), "Time split Finite Volume Method
for Three-Dimensional Blunt-Body Flows", AIAA J.t Vol. 11, 1478-1485

Rizzi, A.W. and Eriksson, L.E., (1983), "Explicit Multistage Finite
Volume Procedure to Solve the Euler Equations for Transonic Flow",
Lecture Series on Computational Fluid Dynamics, Von Karman Institute
for Fluid Dynamics, Belgium

Rizzi, A.W. and Eriksson, L.E., (1985), "Computation of Inviscid
Incompressible Flow with Rotation", J. Fluid Mech., Vol. 153, 275-312

Roe, P.L., (1981), "Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes", J. Comput. Phys., Vol. 43, 357-372

Schreiber, R. and Keller, H. K., (1983), "Driven Cavity Flows by Effi­
cient Numerical Techniques", J. Comput. Phys., Vol. 49, 310-333

Shu, C. and Richards, B.E., (1990), "High Resolution of Natural Convec-

-203-

References and Bibliography

tion in A Square Cavity by Generalized Differential Quadrature", in
Proceedings of 3rd Int. Conf. on Advances in Numer. Methods in Engine­

ering: Theory and Applications, Swansea, U.K., Jan. 1990, (eds. by
Pande and Middleton), Vol. II, 978-985

Steger, J.L. and Kutler, P., (1976), "Implicit Finite Difference Proce­
dures for the Computation of Vortex Wakes", AIAA Paper 76-385

Steger, J.L. and Sorenson, R.C. , (1980), "Use of Hyperbolic Partial
Differential Equations to Generate Body Fitted Coordinates", Numerical
Grid Generation Techniques, Proceedings of A Workshop, NASA Langley
Research Centre

Steger, J.L. and Warming, R.F., (1981), "Flux Vector Splitting of the
Inviscid Gasdynamic Equations with Application to Finite Difference
Methods", J. Comput. Phys., Vol. 40, 263-293

Stone, H.L., (1968), "Iterative Solutions of Implicit Approximations of
Multi-Dimensional Partial Differential Equations", SIAA Journal of
Numerical Analysis, Vol. 5, No.3

Streett, C.L., Zang, T.A. and Hussaini, M. Y. , (1984), "Spectral Methods
for Solution of the Boundary Layer Equations", AIAA Paper 84-0170

Streett, C.L., (1987), "Spectral Methods and Their Implementation to
Solution of Aerodynamic and Fluid Mechanic Problems", Int. J. Numer.
Methods Fluids, Vol. 7, 1159-1189

Stuben, K. and Trottenberg, U., (1982), "Multigrid Methods: Fundamental
Algorithms, Model Problem Analysis and Application", Led. Notes in
Math., Vol. 960, 1-176

Swanson, R.C.,and Turkel, E. , (1985), "A Multistage Time-Stepping Scheme
for the Navier-Stokes Equations", AIAA Paper 85-035

Thomas, C.E., Morgan, K. and Taylor, C. , (1981), "A Finite Element
Analysis of Flow over A Backward Facing Step", Comput. Fluids, Vol. 9,
265-278

Thompson, J.F., (1978), "Numerical Solution of Flow Problems Using

-204-

References and Bibliography

Body-Fitted Coordinate Syetems", Lecture Series in Computational Fluid
Dynamics, Von Karman Institute for Fluid Dynamics, Belgium

Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W. , (1982), "Boundary Fitted
Coordinate Systems for Numerical Solution of Partial Differential
Equations - A Review", J. Comput. Phys., Vol. 47, 1-108

Tritton, D.J., (1959), "Experiments on the Flow past A Circular Cylinder
at Low Reynolds Numbers", J. Fluid Mech., Vol. IB, No. 4

Van Dommelen, L.L. and Shen, S.F., (1982), "The Genesis of Separation",
in Numerical and Physical Aspects of Aerodynamic Flows, Springer-

Verlag

Van Leer, B., (1982), "Flux-Vector Splitting for the Euler Equations",
Lect. Notes in Phys., Vol. 170, 507-511

Werle, M.J., and Bertke, S.D., (1972), "A Finite Difference Method for
Boundary Layers with Reverse Flow", AIAA J. Vol. 10, 1250-1252

Wu, J.C., Sankar, N.L. and Sugavanam, A., (1978), "A Numerical Study of
Unsteady Viscous Flows around Airfoils", Proc. Symp. on Unsteady
Aerodynamics, AGARD CP-227, Paper 24

Wu, J.C., (1984), "Fundamental Solutions and Numerical Methods for Flow
Problems", Int. J. Numer. Methods in Fluids, Vol. 4, 185-201

Yang, C. and Atluri, S.N., (1984), "An ’Assumed Deviatoric Stress-
Pressure-Velocity’ Mixed Finite Element Method for Unsteady,
Convective, Incompressible Viscous Flow, Part II: Computational
Studies", Inter. J. Numer. Methods Fluids, Vol. 4, 43-69

Yee, H.C., (1987), "Construction of Explicit and Implicit Symmetric TVD
Schemes and Their Applications", J. Comput. Phys., Vol. 68, 151

BIBLIOGRAPHY

Anderson, D.A., Tannehill, J.C. and Pletcher, R.H. , (1984),
"Computational Fluid Mechanics and Heat Transfer", McGraw-Hill, New York

-205-

References and Bibliography

Bercovier, M. and Engelman, M. , (1979), "A Finite Element for the
Numerical Solution of Viscous Incompressible Flows", J. Comput. Phys.,
Vol. 30, 181-201

Cebeci, T. and Smith, A.M.0., (1977), "Analysis of Turbulent Boundary
Layers", McGraw-Hi11-Hemisphere, Washington, D.C.

Jiang, D.C., (1986), "Prediction of Shock/Turbulent Boundary Layer
Separated Flows Using the Navier-Stokes Equations", Ph. D. Thesis,
Dept, of Aerospace Eng., University of Glasgow

Kopal, Z., (1955), "Numerical Analysis", London, Chapman and Hall Ltd.

Pulliam, T.H. and Steger, J.L., (1985), "Recent Improvements in Effi­
ciency, Accuracy, and Convergence for Implicit Approximate Factori­
zation Algorithms", AIAA Paper 85-0360

Qin, N., (1987), "Towards Numerical Simulation of Hypersonic Flow around
Space-Plane Shapes", Ph. D. Thesis, Dept, of Aerospace Engineering,
University of Glasgow

Riley, N., (1975), "Unsteady Boundary Layers", SIAM Rev. Vol. 17, 274

Rinaldo, A. and Giorgini, A., (1984), "A Mixed Algorithm for the Calcu­
lation of Rapidly Varying Fluid Flows: the Impulsively Started Circu­
lar Cylinder", Inter. J. Numer. Methods Fluids, Vol. 4, 949-969

Streett, C.L., Zang, T.A. and Hussaini, M.Y. , (1985), "Spectral Multi­
grid Methods with Applications to Transonic Potential Flow", J.
Comput. Phys., Vol. 57, 43-76

Wang, Z., (1990), "Numerical Simulation Of 3D Hypersonic Flow Using High
Resolution Schemes", Ph. D. Thesis, Dept. of Aerospace Eng.,
University of Glasgow

-206-

Appendices

APPENDIX A

Weierstrass Theorem and Definition of A Vector Space

Weierstrass Theorem : Let f(x) be a real valued continuous function

defined in the closed interval [0, 1], there exist a sequence of

polynomials P (x) which converge to f(x) uniformly as n goes ton
infinity.

The proof of this theorem is shown in many text books. For details, see

the book of Bellman and Roth (1986).

A vector space V over a field F is defined as follows: it is a set of

elements called vectors such that any two vectors a and j3 of V determine

a (unique) vector a+/3 as sum and that any vector a from V and c from F

determine a vector ca in V with the properties:

(1) Associativity : a + (0 + y!0 = (a + £) + ifj

(2) Identity : there is a vector 0 in V such that a + 0 = a for all a

(3) Inverse Law: there is a solution in V to the equation a + x = 0,

that is in V

(4) Commutative Law : for all a and /3 in V, a + £ = /3 + a

(5) Distributive Law : c(a + £) = ca + c£

(6) (ab)a = a(ba), where a, b are in F

(7) Unity : la = a

-207-

Appendices

APPENDIX B

Application of The GDQ Approach in the Domain [x , x]i-1 i+1

As an example, we will show that the discretization of the first order

derivative by the GDQ approach in the domain [x , *1+11 is the same as

that given from the second order finite difference scheme. Clearly, the

known that any smooth function in this domain can be approximated by a

polynomial of degree 2, which constitutes a 3-dimensional polynomial

vector space. Thus the weighting coefficients of the first derivative

for this specific case can be determined as follows according to

formulation (3.7), (3.9)

Hence, the first derivative of a function f can be approximated as

domain [x , x] includes three grid points x , x , x , and it isi-l i+1 i-1 i i+1

M(x) = (x-x)*(x-x)*(x-x)i-l i i+1 (B. 1)

(B. 2)

(B. 3)

(B. 4)

and

(B. 5)

(B. 6)

(B. 7)

where

x

____________________________ Appendices_______________________ _______

It is easy to show that (B.8) is exactly the same as that from the

second order finite difference scheme and if the grid is uniform, (B.8)

can be reduced to

fx(xt) = 0.5[f(xi+i) - f(xi a)]/A (B.9)

where A = A = A l 2
which is the same as used in the finite difference scheme. In the same

manner, the discretization of the first derivative at x and x, cani-l i+1
be written as

2A +A A +A A
f)= - ,» w f(x)+ f(x) - f. »1 •>. ~ f(x) (B. 10)X i-l (A +A)A i-l A A i (A +A)A i+11 2 2 1 2 1 2 2

A A +A 2A +A
f <x. J = r'A ..a2'* ftx, J - 4 - ^ f(x,) + f(x, ,) CB. 11)x i+1 (A +A)A i-l A A i (A +A)A i+11 2 1 1 2 1 2 1
which are exactly the same as those from the second order finite

difference scheme. For the overall domain case, it is suggested that

such a domain can be divided into N-l elements with grid points, x ,

•••, x . At location x , i = 2, 3, ••*, N-l, the first order derivativeN i
of a function can be discretized by (B.8) in the element [x̂ xi+1̂ -

It is noted that in the case here, the two neighbouring elements

x] and [x , x], used for the discretization of the firsti+1 i i+2
derivative at collocation points x. and xi+1> are overlapped with the

region of [x , x]. This behaviour is different from the standard° i i+1
finite element approach where the neighbouring elements are patched.

Similarly, at x̂ ̂ and xn> the discretization of the first order

derivative of a function can be obtained by (B. 10) in the element [x ,

x] and by (B. 11) in the element [x , x]. It can be concluded that3 N-2 N
any higher order finite difference scheme can be designed using this

technique in a straight forward way.

-209-

Appendices

APPENDIX C

Time-Split MacCormack Finite Difference Scheme

For demonstration, we consider a two-dimensional Burger equation as

3u aF A 3G , a2u ̂ a2u, (r
aT~ + + 5 = p(+ ---) (C. 1J
a t 8x Sy ax a y 2

The time-split MacCormack scheme "splits" the original MacCormack scheme

into a sequence of one-dimensional operations thereby achieving a less

restrictive stability condition. The one-dimensional difference

operators L (At) and L (At) are defined as x x y y
u = L (At)un (C.2)i,j x x i,j

which is equivalent to the two-step formula
- At
u = un - (Fn - Fn) + p* At -S2un (C. 3)i, j i»j Ax i +1, j i,j x x i, j

At -
* I n * v * *U = =r [u + u - (F - F) + p-At -8 u] (C. 4)i > j 2 i,j i,j Ax i,j 1-1, j ^ x x i,j

u -2u + u*2 1+1, J i , j 1-1, Jwhere 8 u - *J ,J
x i,j (Ax)2

and u = L (At)un (C.5)i,J y y i,j
which is equivalent to the following two-step formula

- At
u = un - -t—— (Gn - Gn) + p*At -62un (C.6)i»j i»j Ay i, j+i i,j ^ y y i,j

At - - -
* I n * \ / * * 2 * , „ *u = o [u + u - -t—^ (G - G) + p*At -8 u] (C.7)i,j 2 i, j i,j Ay i,j i,j-l ^ y y i,j

u -2u + u1. *2 i, j+1 i , j i, j-1where 6 u -
y i,J (Ay)2

A second order time-split MacCormack scheme can be constructed by

applying the L and L operators to un in the following manner x y i»j
n+1 = L (A t) t (A t) i (A t) u „ (c 8)
i , j y 2 x y 2 i , j

-210-

____________________________ Appendices__________________________ _ _

2 2 2This scheme has a truncation error of 0[(At) , (Ax) , (Ay)]. Generally,

a scheme constructed by a sequence of one-dimensional operators has

the following features: (1) stable, if the time step of each operator

does not exceed the allowable time step size for that operator; (2)

consistent, if the sum of the time steps for each of the operators are

equal; (3) second order accurate, if the sequence is symmetric.

Accordingly, other sequences can be formed, for example,
n+l ,* / At \ - f At. , f At \ j f At \.iq n f «%u = [L (=-)L (=-)L (=-)L (=-)] u (C.9)
i,j y 2 x 2 x 2 . y 2 i,j

where m is an integer.

APPENDIX D

The SIP (Strongly Implicit Procedure) and Modified SIP

The strongly implicit procedure is presented by Stone (1968) for solving

the algebraic equations arising from the numerical solution of second

order partial differential equations by a finite difference scheme. To

illustrate this approach, we consider a set of algebraic equations

arising from the use of the second order finite difference scheme for

Poisson’s equations as

B u +D u +E u +F u +H u =R (D. 1)
i,j i»j-l i > j 1-1,J i,j i,j i,j 1+1,j i,j i,j+l i,j

which can be written in matrix form as

[A]u = r (D.2)

where [A] is a matrix with five nonzero diagonals, u is a vector of

unknowns, and r is a vector of known quantities. The SIP scheme is to

replace the matrix [A] by a modified form [A+P] such that the modified

matrix can be decomposed into upper and lower triangular sparse matrices

-211-

Appendices

denoted by [U] and [L]. An iterative procedure is defined by writing

(D.2) as

[A+P]un+1 = r + [P]un (D. 3)

Decomposing [B] = [A+P] into the upper and lower triangular matrices [U]

and [L], (D.3) can be written as

[L][U]un+1 = r + [P]un (D. 4)

Defining an intermediate vector as Vn+1 = [U]un+1, the following

two-step algorithm can be formed

step 1: [L]V"+1 = r + [P]un (D.5)

step 2: [U]un+1 = V11*1 (D. 6)

This procedure is repeated iteratively. Stone (1968) selected [P] so

that [L] and [U] have only three nonzero diagonals with the principal

diagonal of [U] being the unity diagonal. Furthermore, the elements of

[L] and [U] are determined such that the coefficients in the matrix [B]

in the locations of the nonzero entries of matrix [A] are identical with

those in [A]. Two additional nonzero diagonals appear in [B]. The

procedure is implicit in both the x and y directions. The

details of this procedure are given by Stone (1968). Here some

results are listed. With the form of matrix [A] as

[A] =

the matrix [L] and [U] can be written as

-212-

Appendices

[L] = [U] =

The coefficients are determined by the following formula
B

i,j

l+a*ei,j-i
Di »j

1+a-f

(D. 7)

(D. 8)
i-l, J

d =E +a(b *e +c*f) - b *f - c *e i,j i,j i,j i,j-l i,j i-l* j i,j i, j~l i,j 1-1,J (D. 9)

i»J

i»J

F - a*b e i »j i,J i,j-1
di , j

H - a-c fi,J_______i,J i-l,J
di , j

(D.10)

(D.11)

Here a is a parameter. When the program operates in the relaxation mode,

a can be varied according to the following relationship

a = 1 - (Der)"7” , n = 0, 1, •••, N (D. 12)

where N is the maximum number of elements in the a sequence, Der = 1-amax

We have developed the modified strongly implicit procedure when the

matrix [A] has a form

[A] =

For this case, the matrices [L] and [U] have the same form as shown

above, but the formula for the determination of the coefficients are

-213-

Appendices

different, which are given as follows
B +a-G

b = -liJ ill (D. 13)i,j 1+a-ei,j-i
D +a-S = i,J i,J

i,j 1+a-f
1 - 1 ,j

(D.14)

d =E +a(b -e +c -f - G - S)i,j i»j i»j i,j-l i»j 1-1,J i.j i,J
- b -f - c -e (D. 15)i,j i,j-i i,j i-i,j

F - a-b e +a-G
e = __LlJ 1>J i>J~1 LlL (D. 16)i, j d

i , J

H - a-c f +a-S
_ 1 > J i , J 1-1 > J______1 > J y j)

i, j d1 »j

APPENDIX E

LU Decomposition Approach

A set of algebraic equations can be written as a form of matrix

[A]X = b (E.1)

The matrix [A] can be decomposed into two upper and lower triangular

matrices [U] and [L], which is written as

[A] = [L] [U] (E.2)

Introducing an intermediate vector Y, and setting

[U]X = Y (E.3)

(E.1) can be reduced to

[L]Y = b (E. 4)

The solutions of (E.4) and (E.3) can be written as
i -1

Y = b - V L Y , i = 1, 2, N (E.5)i i i j jj=l

-214-

Appendices

N
X, = (Y - £ U. X)/U , i = N, N-l, •••, 1 (E.B)
i i i J j i ij = i +1

The components of L and U can be calculated asij iji-l
U = A - JL. U . , (J ^ i) (E.7)ij ij ^ im mjm=l

j-1
L = (* , - J L U)/U , (i > j) (E.8)ij ij im mj jjm=l

APPENDIX F

Drag Coefficient for the Flow past A Circular Cylinder

To calculate the total drag coefficient on the surface of a cylinder, we

need to calculate the surface pressure distribution firstly which can be

obtained by integrating the tangential component of the N-S equations,

for the case here, that is
£

p = - i - f w d£ , with p(0) = 0 (F. 1)
Re Jo 71

The pressure coefficient c is equal to 2p on the surface, thep
tangential stress is given by <r = w /R e. Thus the total drag coefficient

can be written as

C = C + C (F.2)D DP DF
with

