
Durham E-Theses

Computer algebra and transputers applied to the �nite

element method

Barbier, Christine

How to cite:

Barbier, Christine (1992) Computer algebra and transputers applied to the �nite element method, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6112/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6112/
 http://etheses.dur.ac.uk/6112/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Computer Algebra and Transputers Applied to
the Finite Element Method

by

Christine Barbier

A Thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

Computing Service

The University of Durham

1992

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged .

.... 8 SEP 1992

Real programmers don't comment their code.

If it was hard to write, it should be hard to understand.

(Almasi and Gottlieb, 'Highly parallel computing', p150)

Heureux les pauvres d'esprit,

Ceux qui ne cherchent pas a comprendre.

(J. Prevert, 'Paroles')

Woe to the author who always wants to teach!

The secret of being a bore is to tell everything.

(Voltaire, 'De la Nature de l'Homme')

Preface

The work presented in this thesis was carried out in the Computing Service at

the University of Durham, between February 1989 and January 1992, under the

supervision of Jacqueline A. Bettess from the Computing Service, Alan Craig from

the Department of Mathematical Sciences and Peter Bettess from the Department

of Marine Technology at the University of Newcastle-upon-Tyne. No part of this

work has been previously submitted for any degree either in this or any other

university.

The work carried out is believed to be original. The material in chapter 3 is

included in a paper published in Engineering Computations t. The work in chapter

4 is described in a paper submitted for publication in the Journal of Symbolic

Computationt. Chapter 5 forms the basis of a paper published in Engineering

Computationst. The work in chapter 7 is described in a paper written jointly with

Ian Applegarth, to be submitted for publication.

t Refere to the author index at the end of the thesis. The papers written by the author are marked
with an asterix (*)

All the software resulting from the work described in this thesis is available for

genuine academic examination from the author or her supervisor at the addresses

below:

Tel

Christine BARBIER

Marine Technology Department

University of Newcastle-upon-Tyne

Armstrong Building

Newcastle-upon-Tyne

NE17RU

: (+44) 91 222 6000, ext 8220

Email : Christine.Barbier @ uk.ac.newcastle

or Jackie BETTESS

Computing Service

University of Durham

South Road

Durham

DH1 3LE

(+44) 91 374 2895

J.A.Bettess @ uk.ac.durham

Relevant information concerning the theory and the implementation on the

computer are provided with the software in the form of user guides.

I would like to thank Jackie and Peter Bet tess for their friendly supervision

throughout the time I spent in Durham. I am also grateful to Alan Craig for his

help with the reading of this thesis. I thank Josephine Coleman for her constant

availability to resolve the many technical problems that arose. Many thanks go to

all my colleagues in Durham too.

I would like to acknowlege and thank my colleague Ian Applegarth, of the

Department of Marine Technology at the University of Newcastle, who contributed

to the paper on the parallel solvers. I would also like to thank all the other

Research Associates of the Department of Marine Technology with whom I had

many interesting and stimulating conversations.

Finally, I am pleased to acknowledge the support of the Science and Engineer

ing Research Council through awards GR/E/2099.8 and GR/F /06173.

The copyright ofthis thesis rests with the author. No quotation from it should

be published without her prior written consent and information derived from it

should be acknowledged.

11

Abstract

Recent developments in computing technology have opened new prospects for

computationally intensive numerical methods such as the finite element method.

More complex and refined problems can be solved, for example increased number

and order of the elements improving accuracy. The power of Computer Algebra

systems and parallel processing techniques is expected to bring significant improve

ment in such methods. The main objective of this work has been to assess the use

of these techniques in the finite element method.

The generation of interpolation functions and element matrices has been in

vestigated using Computer Algebra. Symbolic expressions were obtained automat

ically and efficiently converted into FORTRAN routines. Shape functions based

on Lagrange polynomials and mapping functions for infinite elements were consid

ered. One and two dimensional element matrices for bending problems based on

Hermite polynomials were also derived.

Parallel solvers for systems of linear equations have been developed since such

systems often arise in numerical methods. Both symmetric and asymmetric solvers

have been considered. The implementation was on Transputer-based machines.

The speed-ups obtained are good.

An analysis by finite element method of a free surface flow over a spillway

has been carried out. Computer Algebra was used to derive the integrand of

the element matrices and their numerical evaluation was done in parallel on a

Transputer-based machine. A graphical interface was developed to enable the

visualisation of the free surface and the influence of the parameters. The speed

ups obtained were good. Convergence of the iterative solution method used was

good for gated spillways. Some problems experienced with the non-gated spillways

have lead to a discussion and tests of the potential factors of instability.

111

Foreword

This thesis is organised in three parts each containing several chapters. The

parts can be seen either as independent units or as constituents of the whole thesis.

The bibliographic refert;!nces are organised in a similar fashion. At the end of

each chapter a list of references related to that chapter is inserted. References are

indicated as numbers in the text. A complete bibliography is provided at the end

of the thesis where all references are classified by author's name in alphabetical

order. The same reference might appear in more than one chapter but will be

accounted for only once in the complete author index at the end.

This thesis has been produced using the typesetting system 'I£Xt and the

UNIRAS+ graphics interactive packages.

t Knuth D.E, The TFJX book, Addison Wesley Publishing Company, 1988

j: UNIEDIT. available from UNIRAS

lV

Contents

Preface . 1

Abstract . n1

Foreword . IV

Chapter 1: Introduction . 1

1.1 The finite element method . 1

1.1.1 Brief review . 1

1.1.2 Mathematical formulations 2

1.2 Reasons and nature of the investigations 4

References . 6

Part 1: Computer Algebra. and Finite Element Method 7

Chapter 2: Introduction to Computer Algebra 8

2.1 Generalities . 8

2.1.1 Definition . 8

2.1.2 Brief history . 8

2.1.3 Classification . 9

2.1.4 Characteristics of Computer Algebra systems 10

2.1.5 Survey . 10

2.1.6 Applications for Computer Algebra 11

2.2 Computer Algebra and mechanical engineering: a survey 12

2.3 REDUCE: an algebraic language . 14

2.3.1 Description of REDUCE . 14

2.3.2 The translator of code: GENTRAN

References .. .

Chapter 3: Automatic generation of shape functions ..

3.1 Introduction

3. 2 Algorithms implemented

3.2.1 Lagrangian element

3.2.2 Serendipity element

v

18

20

24

24

26

27

30

3.2.3 Triangular and tetrahedral elements 33

3.2.4 Triangular prisms . 38

3.3 Structure of the program . 39

3.3.1 The REDUCE code 39

3.3.2 The FORTRAN code . 42

3.4 Tests, performance and conclusions 49

3.4.1 Tests . 49

3.4.2 Performance . 50

3.4.3 Conclusions . 52

References . 53

Chapter 4: A utom~tic generation of mapping functions

for infinite elements . 54

4.1 Introduction . 54

4.2 Mapped infinite elements . 55

4.3 Multi-dimensional mapping functions 59

4.3.1 Lagrange mapping fucntions 60

4.3.2 Serendipity mapping fucntions 63

4.4 Conclusions . 67

References . 67

Chapter 5: Automatic generation of bending element

matrices . 69

5.1 Introduction . 69

5.2 Formation of the Hermite shape functions 70

5.3 Formation of the bending element matrices 73

5.4 The REDUCE program............................. 77

5.5 Tests and conclusions . 78

References . 80

Pa.rt 2: Parallel solvers . 81

Chapter 6: Introduction to parallel processing 82

6.1 Brief history 82

6.2 Definitions . 84

6.3 Classification of multiprocessor machines 85

vi

6.4 Multiprocessor machines: Old and New 88

6.5 Software survey . 93

6.6 Applications for parallel computers 97

6. 7 Transputers . 99

References . 104

Chapter 7: Parallel solvers . 106

7.1 Introduction . 106

7.1.1 Survey . 107

7.1.2 Overview of the chapter . 109

7.2 The serial approach . 110

7.2.1 LU d~composition . 112

7.2.2 Forward and backward substitutions 117

7.2.3 Storage scheme . 120

7.2.4 Fixing the unknowns . 122

7.3 Algorithms for the parallel solution 125

7.3.1 Survey . 125

7.3.2 Parallelisation of the solvers 128

7.3.3 Shared memory implementation 135

7.4 Communication schemes . 136

7.4.1 Implementation with the 31 library 139

7.4.2 Implementation with CS Tools 142

7.5 Performance evaluation . 143

7.5.1 Definitions . 144

7.5.2 Description of the tests . 146

7.5.3 Results and conclusions . 147

References . 161

Part 3: Study of a. Free Surface Flow over Gated a.nd Non-gated

Spillways

Chapter 8: Introduction to free surface flows

8.1 Introduction

8.1.1 Survey

8.1.2 Overview of the chapter

Vll

163

164

164

165

170

8.2 The governing equations

8.2.1 Laplace equation

8.2.2 Bernoulli equation

8.2.3 Statement of the problem to solve

8.2.4 Variational equations

8.2.5 Variation of the volume term

8.2.6 Variation of the surface term

8.2. 7 Final results

References .. .

Chapter 9: Finite element formulation

9.1 Discretisatio~ of the governing equation

9.1.1 Discretisation of the volume term

9.1.2 Discretised surface term

9.2 Nonlinear solvers

9.2.1 Multidimensional Newton method

9.2.2 Line of steepest descent method

9.2.3 Line search improvement

9.3 Formation of the element matrices: Use of REDUCE

9.3.1 Equations for the Newton method

9.3.2 Direct approaches

9.3.3 The refined method

171

171

172

175

177

178

181

183

183

185

186

187

195

198

199

203

205

208

208

209

214

9.4 The complete finite element code for the free surface flow 215

9.4.1 Input data . 216

9.4.2 General structure . 220

9.5 Parallelisation of the formation of the element matrices

9.5.1 Survey

9.5.2 Implementation

9.5.3 Tests and conclusions

References .. .

Chapter 10: Tests and conclusions

10.1 tests of the element matrix

10.1.1 Direct tests

10.1.2 Indirect tests

10.2 tests on the spillways

Vlll

223

223

225

227

229

230

230

230

234

244

10.2.1 Tests on the nonlinear solver 251

10.2.2 Tests on the linear solver 252

10.3 Conclusions . 254

References . 256

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

References

lX

257

260

263

268

272

276

281

Chapter I

Introduction

Developments in both computer hardware and software make it possible nowa

days to solve more and more complicated physical problems. The design of faster

hardware elements, like the Transputer1 , combined with the possibility of asso

ciating these elements in a parallel architecture has dramatically increased the

computer power available. Parallel processing is one of the latest developments in

computing and it has a promising future. Among new software tools, Computer

Algebra, which relieves the programmer from tedious and complicated algebra, has

recently become more powerful and more widely available. This evolution not only

makes it possible to solve present problems better but also new and more complex

problems can be considered.

Together with other fields, finite element methods benefit from these devel

opments. As for most numerical techniques, the finite element method depends

on the computing power available as this limits the accuracy of the results and

the size of the problems which can be solved. The finite element method is also

restricted by the complexity of the algebra involved which can become difficult to

handle. The use of these new techniques in finite element methods is thus of great

interest and is the reason for the investigations described in this thesis.

1.1 The finite element method

1.1.1 Brief review

The basic idea of the finite element method is to replace an actual problem by

a simpler one. As this concept is to a large extent physical rather than abstract, it

has been present since the beginning of civilization 2. One of its earliest uses, more

than two thousand years ago, was in geometry in such problems as determining the

perimeter and area of a circle, where regular polygons were chosen as a substitute

problem.

1

Chapter 1: Introduction

Since these early times, the finite element method has constantly been de

veloped but its major transformation happened about forty years ago with the

appearance of computers which enabled it to be applied to solve large problems.

As the computers have become more powerful, the finite element method has been

refined and its accuracy improved.

A huge amount of work and research has been done in this field3•4•5•6•7, close to

8000 references ten years ago3 and many more as internal reports. In its modern

form the finite element method started to be used for stress analysis in aircraft

structures in the 60's. Since it has spread to other engineering and non-engineering

fields like structural and fluid mechanics, semi-conductor design, thermal conduc

tion analysis, bioengineering etc.

Although the mathematical formulation was first stated by Courant8 in 1943,

its practical application did not happen before the 70's with the first book which

comprehensively treated the finite element method on both physical and math

ematical points of view by Zienkiewicz and Cheung9• These new ideas involved

variational and weighted residual formulations which could then be applied to a

wide range of problem, lifting the method outside the borders of solid mechanics.

In the following paragraphs a brief reminder of the principles of the finite

element method will be presented as this is the leitmotiv of the work undertaken in

this research. The material presented below is a summary of information obtained

from references 3, 4, 5, 6 and 7.

1.1.2 Mathematical formulations

The finite element method is mathematically stated as an approximation me

thod for solving a set of equations, usually involving partial differentials, to which

boundary values are applied. This can be written as follows:

Fi(u) = 0

Bi(u) = 0

on n
on r 0 ~ i ~ p,

(1.1)

where u is the vector of the unknowns, Fi is an equation relating the unknowns,

Bi is an equation describing boundary conditions, n is the domain where the

2

Cllapter 1: Introduction

equations apply and r is the boundary of n. Two methods are generally used:

the weighted residual method and the variational method. They both transform

the differential equations (1.1) into integra-differential equations where the finite

element approximation can be applied.

The weighted residual method consists of stating that the weighted average of

the residual errors over n and r is zero. This means that the error introduced

by an approximation of the solution u, weighted so that the most serious errors

are most taken into account, should on average be zero. This can be written as

follows:

The second method uses the principle of virtual work, or minimum potential

energy, associated to a variational principle. A functional II is written as follows:

II= k G(u)dn + fr E(u)dr. (1.3)

The solution u is a function which makes II stationary with respect to small

changes of b'u, that is to say b'II = 0. This can be written from equation (1.3) as:

b'II = k b'uG'(u)dn + fr b'uE'(u)dr = o. (1.4)

This must be true for any variation b'u:

G'(u) = 0 and E'(u) = 0. (1.5)

If G' and E' can be found so that they correspond to F and B describing the

problem equation(1.1) then an integral form of the problem similar to equation

(1.2) for the weighted residual method is obtained. For some problems a weighted

residual form exists, but not a variational statement.

3

Chapter 1: Introduction

Once these integral forms (1.2) or (1.4) have been established the actual ap

proximation is achieved by replacing u in the equations by a piecewise approxima

tion written as follows:
r

u ~ u = L Nia~,
i=l

(1.6)

where the Ni are interpolation functions, called shape functions, usually polyno

mials, and the a 1 's become the unknowns. The integral can then be written as the

sum of integrals each related to only one element.

Physically, this process corresponds to splitting up the domain n into sub

domains, the finite elements, where the unknowns are approximated according

to equation (1.6). Often, the a 1's represent the values of u at chosen points in

the element, the nodes. The integrals are then evaluated element by element.

When the equations are linear, they can be written in a matrix form, each integral

contributing to one element matrix. A solver for linear equations can then be

used. If the equations are not linear more complicated solving schemes must be

implemented.

1.2 Reasons and nature of the investigations

Nowadays, the finite element method often involves thousand of unknowns

which means very big systems of equations have to be established and solved

which is very time consuming. The algebra for deriving the shape functions, their

derivatives and the element matrices can be tedious and complicated, especially

with the current interest for finer meshes, higher order elements, and adaptive and

hierarchical elements. The recent developments in parallel processing and Com

puter Algebra raises interest in using these techniques in finite element methods

to increase the accuracy of the solution and the difficulty of the problem. Investi

gations have already taken place on these topics and this research aims at further

developments. The work has focused on three subjects:

1. Automatic generation of interpolation functions and element matrices using

Computer Algebra.

2. Development of fast solvers for systems of linear equation using parallel

processing.

4

Chapter 1: Introduction

3. Study of a free surface flow over a spillway using finite element analysis.

The thesis is divided into three parts, each related to one of the subjects

above. Within each part, the first chapter is devoted to introducingin detail the

particular technique used and survey previous work in that field. The following

chapters describe the theory and implementation on the computer. Each chapter

is ended by a presentation of results and conclusions, and by a list of references.

The first part of the work is concerned with the automatic production of FOR

TRAN code for shape functions for finite elements, mapping functions for infinite

elements and element matrices based on Hermite polynomials. Traditionally, the

mathematical expressions fpr these functions were derived and coded into the com

puter by hand which was time consuming and error-prone. The present approach

is concerned with the obtention of the computer program in an automatic and

error-free manner. The implementation has been carried out with the language

REDUCE which is introduced at the beginning of part one.

It is not uncommon that the systems of equations which arise in finite ele

ment method are linear and of large dimensions - thousands of equations and

more. Even in cases when these systems are not linear an approximation method

is generally used to linearise the system and the problem is reduced to solving

a linear set of equations. The intention of the second part is thus to present the

implementation in parallel of solvers for systems of linear equations. Both symmet

rical and unsymmetrical solvers have been considered. The parallel machines used

are Transputer-based machines progammed using a parallel version of standard

FORTRAN.

The third and last part of the work focuses on the study of a free surface flow

over a spillway. A lot of work has been done on this subject by trial and error

methods but not as many studies have involved the automation of the method on

the computer. The finite element method has been used to evaluate the position of

the surface and the values of the stream function, thus the pressure distribution on

the spillway. The Newton-Raphson method has been employed to solve the system

of non-linear equations that arose. The analytical form of the element matrices

has been derived using Computer Algebra and their numerical evaluation has been

carried out in parallel. The complete program has been coded in FORTRAN and

5

Chapter 1: Introduction

graphic routines have been used for the display of the mesh and the position of

the surface. A library of routines concerned with the implementation of parallel

concepts has also been used.

References

1. The Transputer is manufactured by !NMOS Limited. member of the SGS-Thomson Micro
electronics Group, 1000 Aztec West, Almondsbury, Bristol, BS12 4SQ, UK.

2. Martin H.C and Carey G.F, Introduction to Finite Element Analysis, Theory and application,
McGraw-Hill Book Company, 1973.

3. Zienkiewicz O.C., The Finite Element Method, Third Edition, McGraw-Hill Book Company.
1977.

4. Filho J.S.R.A, 'The Use of Transputer Based Computers in Finite Element Calculations',
PhD thesis, University of Wales, University College of Swansea, Department of Civil Engi
neering, September 1989.

5. Desai C.S and Abel J.F, Introduction to the Finite Element Method (a numerical method for
engineering analysis), Van Nostrand Reinhold Company, 1972.

6. Akin J.E., Finite Element Analysis for Undergraduates, Academic press, 1986.

7. Rao S.S., The Finite Element Method in Engineering, Second Edition, Pergamon Press,
1989.

8. Courant R., 'Variational methods for the solution of problems of equilibrium and vibration',
Bulletin of American Methematical Society, 49. 1-23, 1943.

9. Zienkiewicz O.C and Cheung Y.K, The Finite Element Method in Structural and Continum
Mechanics, McGraw-Hill. London, 1967.

6

Part I

Computer Algebra and Finite Element Method

7

Chapter II

Introduction to Computer Algebra

2.1 Generalities

2.1.1 Definition

Computer Algebra is the discipline which concerns itself with the design, anal

ysis, implementation and application of algebraic algorithms for computers1. It is

the part of Computer Science which focuses on the processing of algebraic expres

sions, the automation of algebraic calculation or, in other words, non-numerical

calculation on the computer. The name of this discipline has long varied, being

designated as Symbolic Manipulation, Algebraic Computation, Symbolics Math

ematics, Symbolics Algebra, Formula Manipulation and Analytic Calculation to

settle down as Computer Algebra in English and Calcul Forme! in French.

2.1.2 Brief history

This idea that computers could perform algebraic calculation was first sug

gested nearly a century and a half ago by Lady Ada Lovelace2, who was the

patron of Charles Babbage3 , usually credited with the development of the world's

first computer (see Figure 2.1). It was not before the 50's that a practical attempt

at Computer Algebra was made by Kahrimanian and Nolan4 (1953) with their

pioneering work on differentiation. In the 60's hardware and software capabilities

became sufficient for the development of complete packages5•6 .

At that time, the new discipline was the frontier between several fields, hence

the various names it has taken during its history. Mathematicians were involved

through the design of effective algorithms. The initial objectives were in the field

of Artificial Intelligence, even if the methods are moving away from it nowadays 7.

Physicists and engineers have also contributed to these sytems by writting spe

cial packages related to their own field of interest. Computer Algebra has finally

become a discipline in its own right.

8

"' Arb Au•u•t• Kiu • . c :..UIIIMI , , , l.o\'t>lac~

~ BahiNI&r. IIH. br S..mUC'I
Uurrnr::r •S•uonal Portntc G~.

'""""""'

Chapter 2: Introduction to Computer Algebra.

M~rl rol B.lbb.Titr t DlflfTtl"'l"rlnfV!r
lf.,.•Jtthl•thJI -\tlJ• or""!'d-.&llr•
mM'Unr IU~P' and l.<'l nllfod 11Y
" jrtm ol .all mrd unum ·· Shr nrH·~

u .. J mo:~rl ot thr ~n~oul lnfNlC
Somer ~l...nam ll.tntlr'lf'1,.,

Figure 2.1 : Lady Ada de Lovelace, Charles Babbage and his differential engine

2.1.3 Classification

WooffB divides algebraic programming languages into three groups, just as nu

merical programming languages are often designated as first , second, third, fourth

and fifth generation.

The first group comprises systems written to solve specialized problems where

the algebraic calculations necessary were extremely tedious and time consuming

such as Mathematical Physics, General Relativity, Quantum Theory, Celestial Me

chanics, and High Energy Physics. The computer systems had a significant impact

in their chosen field where the algebra, which used to consume months of a good

mathematician's time, could be derived in a very short time and reliably com

pared to pages of hand calculation. These systems were not easy to manipulate

and were non-interactive. They were only worth using on genuinely difficult prob

lems. Among the best known members are SCHOONSCHIP, CAMAL, CLAM and

ASHMEDAI which are described in van Hulzen 's article9 .

The second group includes more general purpose systems. Compared to the

9

Chapter 2: Introduction to Computer Algebra

first group they. were easier to use, portable, interactive and not restricted to a

particular application. Because of these criteria, this second grouping is much

smaller, containing systems like REDUCE10 , MACSYMA11 , Scratchpad12 , SMP13

and its successor Mathematica 14 .

Members of the third group are characterised by smaller memory requirements,

a wide range of built in functions and simplicity of use. There are currently two

principal members Maple15 and muMATH16 with its successor Derive17. Current

developments will probably increase the number of members of this grouping.

2.1.4 Characteristics of Computer Algebra systems

Nowadays, members of all three groups are still in use although only eight

systems are up-to-date and widely available18 . They are Derive, MACSYMA,

Maple, Mathematica, muMATH, REDUCE, Scratchpad and SMP. These systems

vary in their abilities to solve particular type of problems, in their availabilities

and their price. They, nevertheless, all provide some basic facilities which include

polynomial manipulation, recognition of transcendental functions, exact arithmetic

calculation, analytic differentiation, integration, equation solving and substitution,

matrix manipulation, definition of new rules, interactive use and file handling.

There is not, however, any standardisation of the Computer Algebra languages.

Some of the systems like REDUCE and Maple are available for a wide range of

machines from micro to mainframe computers. Others have a more restricted range

like muMATH and Derive which mainly run on microcomputers, MACSYMA on

UNIX workstations and SMP and Mathematica on minicomputers. Scratchpad is

significantly different from the other packages with a design based upon abstract

datatypes. It is currently an IBM internal research project but it is considered as

a possible IBM product.

2.1.5 Survey

A complete up-to-date survey18 of the mam Computer Algebra systems is

available through the Computer Algebra Support Project in Liverpool19 . Other

information can be found in specialized journals which include SIGSAMt, a bul-

t Special Interest Group in Symbolic and Algebraic Manipulation

10

Chapter 2: Introduction to Computer Algebra

letin of the world-wide organisation group of ACM20 , proceedings of congresses

EUROCAM and EUROSAM organised by the European group SAMEt, the re

view CALSYF edited by M. Mignotte from the University of Strasbourg in France

and the Journal of Symbolic Computation which has been published since 1985.

Books available include some concerned with the use a specific language such as

muMATH8, REDUCE21 and Mathematica22 , others dealing with the design of

mathematical algorithms23•24•25•26 and those orientated towards a general grasp of

the field7.

So many type of books are available because, unlike numerical languages, it is

necessary for the user to have a general idea on how to use a particular language

as well as what are the algorithms implemented in order to use these systems

efficiently. A typical example is intermediate expression swelling, which is the

unwanted expansion of intermediate expressions in a calculation, which can some

times be avoided by a restatement of the initial problem. Some systems might

fail to give satisfactory answers when a simple answer exists because of memory

requirements if the user is not able to predict a failure. Once a system has been

mastered moving to another one does not normally present many problems except

for special features which might be implemented in a different way.

2.1.6 Applications for Computer Algebra

The range of application for Computer Algebra is very wide as algebraic ma

nipulation is used in most scientific and engineering fields. The list of application

domains is too long to be exhaustively presented here. Several survey articles on

this subject have been published27•28 . Alongside the use of Computer Algebra

as a tool to develop or speed up new mathematical calculations for a particular

area of science, another important application of these systems is in teaching. A

Computer Algebra system can help a teacher to present examples and encourage

guesswork and implicit comprehension. There is, however, argument among those

concerned about whether Computer Algebra systems should be used in teaching29 .

t Symbolic and Algebraic Manipulations in Europe

11

Chapter 2: Introduction to Computer Algebra

2. 2 Computer Algebra and mechanical engineering: a survey

A subject of particular interest for the work presented in this thesis is com

putational mechanics with the use of finite element methods for which some of

the algebra can automatically and reliably be derived using Computer Algebra

systems.

Computer Algebra systems have been used in computational mechanics for at

least twenty years. References can be found as early as 197130 • Most of the major

work in this field started in the mid-seventies. References of work done in Dane

mark by Pedersen and others31•32•33•34 show that systems like FORMAC6 were used

to derive element matrices for various finite element problems. The functionali

ties of the Computer Algebra systems used included matrix multiplication, matrix

inversion, analytical derivation and integration of multivariable polynomial func

tions. When functions were more complicated than polynomials a mixed scheme

of numerical integration and analytical derivation of the integrands was adopted32 .

At that time Computer Algebra sytems were powerful enough to deal with

such calculations but were still too cumbersome to be easily used. Pedersen32

mentions that his program was not 'very user-oriented'. Other references from the

same period can be found in other countries such as the USA 35•36•37 . It is at that

time that people like Jensen34 observed that there were 'more people designing

[Computer Algebra] systems than using them'.

Although the technique has evolved since these early days and is more wide

spread, it seems that it has not become yet an obvious tool that everybody uses.

While some people38 today claim that Computer Algebra systems have been used

for at least ten years in their university as part of the undergraduate curriculum,

particularly in America, others have never heard about it and appear quite inter

ested in the prospects the technique opens. A recent seminar on case studies of

the use of Computer Algebra in industry has taken place39 which claims to be the

first of this kind. The aim was to demonstrate how Computer Algebra in industry

can be useful and cost effective. The speakers were mainly involved with research

in both academic and industrial worlds. This suggests that the claim made previ

ously on how Computer Algebra is not widely used yet is in a certain way justified

and that Computer Algebra is still an active area of research.

12

Chapter 2: Introduction to Computer Algebra

From personal observations, it seems that where Computer Algebra packages

have been introduced in the early days through, for example, the proximity of a

computer science department involved in the design of such a package, or through

contact with computer scientists involved in the field, they are nowadays used on

an everyday basis. This implies that from a research point of view the topic of

using Computer Algebra in engineering is not new and most of the concepts are

quite old. Nevertheless, the idea is not fully widespread yet, particularly in the

UK and it is worth using it to experiment with its implications to finite element

analysis.

Recent work has been undertaken in this field40•41 •42•43•44•45 but the total num

ber of papers published remains small. It seems likely that with the advent of

Computer Algebra packages which can run on PC's and the spread of powerful

workstations that this will change. Nowadays, languages like Mathematica, Derive

and REDUCE are compact enough to fit in a desktop machine. An interesting

new development, which runs on a workstation like the SUN SPARCstation, is the

SENACt package46 which is an algebraic environment providing an easy-to-use

interface to the NAG FORTRAN and Graphics libraries. It claims to be the first

system of its type and to be a new concept in scientific computations47 . It inte

grates the advantages of a robust library with the power of symbolic computation.

The advantage of using Computer Algebra packages to allow 'the analyst to

concentrate on more meaningful tasks, such as the establishment of physical as

sumptions, without being sidetracked by the tedious and trivial details of the

algebraic manipulations' was pointed out by Crespo Da Silva37 . In that sense

Computer Algebra has been used in this work to show the benefits of such a tech

nique in a scientific and educational context.

In the following section, a detailed description of the algebraic system used

in this work - REDUCE - is described. The chapters thereinafter focus on the

explicit demonstration of how this particular system has been used to automate

the calculations. It is important to note that the aim of the work was to prove the

feasibility of the use of a Computer Algebra system and the scientific and educa-

t Software Environment for Numeric and Algebraic Computation

13

Chapter 2: Introduction to Computer Algebra

tional consequences rather than demonstrating the capabilities of this particular

system.

2.3 REDUCE :An algebraic language

REDUCE48 is a general-purpose Computer Algebra system, the oldest in the

second grouping mentioned in section 2.1. It is the most widely used system in

the UK and Europe. It is available for a wide range of machines although it has

fairly large memory requirements (typically 1 MByte) to solve large problems. It

has originally been developed by A.C. Hearn at the RAND Corporation in the

USA and is continuously upgraded by Hearn and a number of other contributors

throughout Europe and th.e USA. Specialized packages have been written by the

user world throughout the years. They are loaded into REDUCE to provide ex

tra facilities for difficult mathematical problems such as analytic integration of

expression with square roots, calculus of differential geometry, determination of

symmetries of partial differential equations ... etc. The version 3.3 (from July

1987) was used for the work in this thesis, although newer versions have appeared

since. The machine on which it was run is an Amdhal 5860 mainframe running

under the MTSt operating system.

REDUCE comprises all the general facilities mentioned in section 2.1 which

are common to the modern algebraic languages. It has few built-in functions but

makes provision for easily adding new rules and functions. It is written in the

object-orientated language LISP49 and it is possible to add new definitions at

LISP level to cater for special needs. It is therefore a very open system which

allows the user to have control at both higher and system levels. An overview of

the system is now given, so as to gain familiarity with the syntax and the features

used in this work. In all examples, User input will refer to what the user types in

and REDUCE response to what the system prints subsequently on the screen. The

REDUCE code itself will be typeset in typewriter.

2.3.1 Description of REDUCE

REDUCE is designed to be an interactive system, although it can be run in

batch mode. In interactive mode, once the system is started, the user is prompted

t Michigan Terminal System

14

Chapter 2: Introduction to Computer Algebra

to enter a query. A query can be a declaration statement, an algebraic expression or

a combination of both. In return, REDUCE responds by informative statements,

algebraic expressions or another prompt.

Declarative statements include defining an array, a user function, a procedure,

an output file ... etc. Single variables do not need to be declared. Variables

in REDUCE are global in scope. Once variables have been defined they can be

accessed anywhere in the program, including procedures. They can, however, be

made local if desired.

Algebraic manipulation is automatically done by REDUCE according to inter

nal rules. The user has some control over the way REDUCE manipulates expres

sions internally through switches which are one of its characteristic features. These

switches enable the control of various aspects of the system such as the ordering of

variables in expressions, the expansion of polynomials, the printing of expressions

... etc.

Only a subset of the facilities provided by REDUCE to carry out algebraic

manipulation has been used in this work, therefore the presentation of the system

will essentially focus on these facilities.

As most of the algebraic calculation involved in this work is concerned with

polynomials, the manipulation of these quantities is of prime importance. RE

DUCE enables us to perform operations such as simplification and expansion of

polynomials, analytical integration and diffrentiation of functions including poly

nomials. The following examples show how REDUCE expands polynomials, stores

the result into variables and performs differentiation and integration.

user input p := (X+Y+Z)**2;

REDUCE response p := X2 + 2XY + 2XZ+ Y2 + 2YZ + Z2

user input D := DF(P,X);

REDUCE response D := 2(X+Y+Z)

user input INT(D,Y);

REDUCE response Y(2X+Y+2Z)

As can be seen in the previous examples, DF(P ,X) performs the differentiation of

15

Cl1apter 2: Introduction to Computer Algebra

the function P with respect to X, INT(D, Y) performs the integration of the function

D with respect toY. At the second line, the polynomial has been expanded, which

corresponds to a default status of a switch (called EXP). If no expansion is wanted,

the switch should be turned off (OFF EXP).

In the examples above, the variables X, Y and z do not have a numerical value.

They represent themselves and are as defined in mathematics. This is the basic

tool which enables algebraic manipulation on the computer.

Another important feature of REDUCE is its ability to manipulate symbolic

matrices. First, the difference between arrays, as defined in numerical languages,

and matrices must be noted. A matrix can be globally manipulated to obtain, for

example, its determinant and to perform addition or multiplication with another

matrix. An array can only be manipulated element by element. Replacing the

array with a matrix allows the user to perform matrix algebra more efficiently.

Unlike ordinary variables, matrices, and also arrays, do not represent themselves

and are initialised by default to zero when declared. They can, however, contain

algebraic expressions. Matrices are of versatile use as the examples below illustrate,

where a two-by-two matrix and a vector are defined and multiplied together.

user input A := MAT((a11,a12),(a21,a22)) ;

user input v := MAT((vl),(v2)) ;

user input w := A•V;

REDUCE response W(l,l) := all•vl + a12•v2

W(2,1) := a21•v1 + a22•v2

In the examples above, the quantities all, a12, ... vl, v2 are symbolic variables.

The result of the multiplication of the matrix A by the vector vis stored in the quan

tity w, which REDUCE recognises as being a vector and automatically evaluates its

dimensions. The full range of matrix manipulation in REDUCE includes addition,

multiplication, division, inversion, raising to a power, transposition, calculation of

the determinant, the eigenvalues, the trace ... etc.

Yet another feature of REDUCE is its ability to perform analytical substitu

tions and pattern matching. The following examples illustrate how substitution

and pattern matching work (the value of Pis as defined in previous examples):

16

Chapter 2: Introduction to Computer Algebra

user input X := 3; y := U; P;

REDUCE response X := 3

y := u
p := u2 + 2UZ + 6U + za + 6Z + 9

Unlike other Computer Algebra systems, REDUCE does not allow algebraic

simplification rules to be applied selectively to an expression but applies all cur

rently active rules until no further changes can be made to the expression. So a

user input of the form:

user input X := Y ; Y := X ;

will cause the system to crash because REDUCE would try to substitute X

by Y, then Y by X and again X by Y, indefinitely. Nevertheless, it is possible to

restrict the scope of a substitution by using the REDUCE command SUB which

performes substitution within an expression and returns the resulting substituted

expression. The original expression is, however, left unchanged. This is illustrated

in the following examples:

user input INI := a•log(x)••2 + b;

user input RES := SUB(log(x)=v,INI);

REDUCE response RES := a•V2 + b

user input INI:

REDUCE response INI := a*log(x) 2 + b;

Since there are few built-in functions, REDUCE enables the user to easily

define rules which are applied in a similar way and at the same time as the internal

rules. A rule to transform trigonometrical expressions can therefore be defined as

follows:

user input

user input

REDUCE response

FOR ALL A,B LET SIN(A)•COS(B)= 1/2•(SIN(A+B)+SIN(A-B));

SIN(X)•COS(Y) :

SIN(X+Y)+SIN(X-Y)

2

As well as its symbolic capabilities, REDUCE provides all the usual control

17

Chapter 2: Introduction tu Computer Algebra

statements, including:

e Assignment (: =)

• Group statement (BEGIN ... END or « ... »)

• Loop (FOR NB:=1 :N oo)

e Condition (IF . . . THEN . . . ELSE)

• Jump (Go To)

REDUCE also performes exact arithmetic calculations. For example 2/7 re

mains as a rational and is not transformed into a real. This means that no trun

cation errors are introduced in the calculations which avoids the problems encoun

tered in numerical languages about precision of calculations.

A program in REDUCE is built in the same way as in other languages. Tasks

can be divided into sub-tasks performed by procedures which are called in turn. A

program can be entered interactively or from a file (batch mode). There are also

facilities to produce pretty printing expressions (natural mathematical notations).

2.3.2 The translator of code: GENTRAN

An important feature of REDUCE not yet discussed is its ability to produce

FORTRAN code. This can be done using the FORT option in the language itself, but

more comprehensive facilities are available through an additional package called

GENTRAN50 . GENTRAN can produce FORTRAN, C and RATFOR (RATional

FORtran) code. GENTRAN is used within REDUCE (same syntax) to translate

and generate numerical code.

The translator of code takes a REDUCE expression, statement or procedure

and translates it into code in the target language. This mainly involves a change in

the syntax. The code generator recognizes part of the statement or expression as

needing some evaluation before translation. This is done by handing to REDUCE

the pieces of code to evaluate and then translating the resulting expressions. The

following examples illustrate how GENTRAN translates a loop statement and how

18

CJ1apter 2: Introduction to Computer Algebra

the generation of code is achieved using the GENTRAN statement EVAL (the value

of P is as defined before).

Examples:

use·rinput GENTRAN «FOR I:=1:N DO V(I):=O »;

REDUCE response DO 25001 I=1,N

user input

REDUCE response

user input

REDUCE response

V(I) = 0.0

26001 CONTINUE

GENTRAN << RES := EVAL(P) >>;

RES = U2 + 2.000000EO•U•Z + 6.000000EO•U +

Z2 + 6.000000EO•Z + 9.000000EO

GENTRAN « RES : = P » ;

RES = P

It is interesting to notice that in the examples above the executable statements

in FORTRAN are aligned at column seven which is compulsory in FORTRAN.

When a line extends beyong column seventy two, GENTRAN automatically trun

cates it and insert the remaining of the line onto the next line and makes provision

for a continuation character to be place in column six.

Tools are provided by GENTRAN to insert type declarations (statement DE

CLARE) and comments (statement LITERAL). The type declarations are automatically

inserted before any executable statement when the switch GENDECS is turned on (oN

GENDECS). GENTRAN is an external package of REDUCE which needs to be loaded

before being used (LOAD GENTRAN). CR! • represents a carriage return and TAB! • a

FORTRAN tabulation (seven columns). The next example shows the production

of a complete FORTRAN program, ready to be compiled.

19

user input

REDUCE response

References

Chapter 2: Introduction to Computer Algebra

LOAD GENTRAN ;

ON GENDECS;

GENTRAN

«

»;

END

LITERAL "C test program ",CR!*i

FOR I:=1:N DO V(I):=O;

RES := EVAL(P);

DIMENSION;

X,Y,Z,V, RES :REAL ~;

LITERAL TAB!*,"STOP",CR!*,TAB!*, "END"

C test program

DO 25001 I=1,N

V(I) = 0.0

25001 CONTINUE

RES = U2 + 2.000000EO*U*Z + 6.000000EO*U + Z2 +

6.000000EO*Z + 9.000000EO

STOP

END

1. Laos R., 'Introduction·, Computer Algebra : Symbolic and Algebraic Computation, Comput
ing supplementum 4. Springer-Verlag, pp 1-10, 1982.

2. Stein D., Ada, A Life and a Legacy, The MIT Press, 1985.

3. Dubbey J.M., The mathematical wo·rk of Charles Babbage, Cambridge University Press,
1978.

4. Kahrimanian H.G. and Nolan J., Analytic Differentiation by a Digital Computer. MA thesis,
Temple Univ. PhiL PA. and Mat.h. Dept., M.I.T Cambridge, Mass., 1!)53.

20

Chapter 2: Introduction to Computer Algebra

5. Brown W.S., 'The ALPAK System for Nonnumerical Algebra on a Digital Computer- I:
Polynomials in Several Variables and Truncated Power Series with Polynomial Coefficients',
Bell Systems Truncated Journal, 42, pp 2081-2119, 1963.

6. Bond E. et al, 'FORMAC an Experimental Formula Manipulation Compiler', Proceedings of
the 19th ACM Conference, pp K2.1-1-K2.1-18, 1964.

7. Davenport J.H., Siret Y. and Tournier E., Computer Algebra : Systems and Algorithms for
Algebraic Computation, p vii, Academic Press, 1988.

8. Wooff C. and Hodgkinson D., muMATH: A Microcomputer Algebra System, Academic Press,
pp 2-4, 1987.

9. van Hulzen J.A., 'Computer Algebra Systems', Computer Algebra: Symbolic and Algebraic
Computation, Computing supplementum 4, edited by Buchberger B., Collins G.E. and Loos
R., pp 221-243, Springer-Verlag, 1982.

10. REDUCE is available from the RAND Corporation, 1700 Main Street, Santa Monica, CA,
90406-2138, USA.

11. Macsyma-Symbolics Ltd, St. John's Court, Easton St, High Wycombe, Bucks, HPll lJX,
UK.

12. Scratchpad is available from IBM Research Division, T.J. Watson Research Center, P.O.
Box 218, Yorktown Heights, Ny 10598, USA.

13. SMP-Inference Corporation, 5300 West Central Building, Los Angeles, CA 90045, USA.

14. Mathematica is available from Wolfram Research Inc., PO Box 6059, Champaign, 61821,
USA.

15. Waterloo Maple Software Inc., 160 Columbia Street, W., Waterloo, Ontario, Canada, N2L
3L3.

16. MuMath is available from Soft Warehouse Inc., 3615 Harding Avenue, Suite 505, Honolulu,
Hawaii 96816, USA.

17. Derive is available from Soft Warehouse Inc., 3615 Harding Avenue, Suite 505, Honolulu,
Hawaii 96816, USA.

18. Harper D., 'A Guide to Computer Algebra Systems', Computer Algebra Support Project,
University of Liverpool, P.O Box 147. Liverpool, L69 3BX. fourth edition, March 1990.

19. Computer Algebra Support Officer. Computing Laboratory, University of LiverpooL P.O.
Box 147, Liverpool, L69 3BX. Tel: 051-794 3755. Email: Algebra@ uk.ac.liverpooL

20. SIGSAM-ACM. Special Interest Group in Symbolic and Algebraic Manipulation, 11 Wesr
42nd. St .. NY 10036, U.S.A.

21. Rayna G., REDUCE - Soft-ware for Algebraic Computation, Springer, 1987.

22. Maeder R., Programming for Mathematica. Addison-Wesley, 1989.

23. van der Waerden B.L .. Modern Algebra, Frederick Ungar, 1953.

24. Aho, Hopcroft and Ullman, The Design and Analysis of Computer Algorithms, Addison
Wesley, 1974.

25. Buchberger B .. Collins G.E. and Loos R., Computer Algebra: Symbolic and Algebraic Com
putation, Computing .~upplementum 4, Springer-Verlag. 1982.

26. Sims C.S .. Abstract Algebra : A Computational Approach, Wiley, 1984.

21

Chapter 2: Introduction to Computer Algebra

27. Calmet J., 'Computer Algebra Applications', Computer Algebra : Symbolic and Algebraic
Computation, Computing supplement·um 4, edited by Buchberger B., Collins G.E. and Loos
R., pp 245-258, Springer-Verlag, 1982.

28. Hosack J.M, 'A guide to Computer Algebra Systems', The College Mathematics Journal,
17,5, pp 434-441, 1986.

29. Hodgkinson D., 'The use of Computer Algebra in teaching', /USC Workshop on Algebraic
Computing, University of Liverpool, 4-5 July 1989.

30. Levi I.M., 'Symbolic Algebra by Computer- Applications to Structural Mechanics', AIAA,
12th Structure, Structural Dynamics and Materials Conference, Anaheim, California, 19-21
April, 1971.

31. Pedersen P. and Megahed M.M., 'Axisymmetric Element Analysis using Analytical Com
puting', Computers and Structures, 5, pp 241-247, 1975.

32. Pedersen P., 'On Computex:-Aided Analytic Element Analysis and the Similarities of Tetrahe
dron Elements', International .Journal for Numerical Methods in Engineering, 11, pp 61-622,
1977.

33. Ladefoged T., 'Triangular Ring Element with Analytic Expressions for Stiffness and Mass
Matrix', Computer Methods in Applied Mechanics and Engineering, 61, pp 171-187, North
Holland, 1988.

34. Jensen J. and Niordson F., 'Symbolic and Algebraic Manipulation Languages and their
Applications in Mechanics', Structural Mechanics Software Series, Volume 1, Editors Perrone
N. and Pilkey W., University Press of Virginia, Charlottesville.

35. Cohen J., 'Symbolic and Numerical Computer Analysis of the Combined Local and Overall
Buckling of Rectangular Thin-Walled Columns', Computer Methods in Applied Mechanics
and Engineering, 1, Jan. 1976.

36. Noor A.K a.nd Andersen C.M., 'Computerized Symbolic Manipulation in Nonlinear Finite
Element Analysis', Compute1·s and Structures, 13, pp 379-403, June 1981.

37. Crespo Da Silva and Marcela R.M., 'The Role of Computerized Symbolic Manipulation in
Rotorcra.ft Dynamics Analysis', Computer and Mathematics with Applications, 12A, Iss 1..
pp 161-172, 1986.

38. Anonymous referee's comments from the International Journal for Numerical Methods in
Engineering.

39. SCAFI'91, Studies in Computer Algebra for Industry, 10-11 December 1991, Computer Al
gebra Amsterdam (CAN), Amsterdam, The Netherlands.

40. Lee X.G. and Da.'!gupta G., 'Analysis of Structural Variability with Computer Algebra',
Journal of Enginee·ring Mechanics-ASCE, 114. Iss 1, pp 161-171, 1988.

41. Bardnell N.S., 'The application of Symbolic Computing to the Hierarchical Finite Element
Method', International Journal for Numerical Method., in Engineering, 28, Iss 5, pp 1181-
1204, 1989.

42. Grigorev F.N and Kistlerov V.L, 'Computer Algebra. Methods used in Analysing the Stability
of Linear Dynamic Systems', Automation and Remote Control USSR, 50, Iss 7. pp 925-988.
1989.

22

Chapter 2: Introduction to Computer Algebra

43. Nishioka T. and Takemoto Y., 'Moving Finite Element Method Aided by Computerized
Symbolic Manipulation and its Application to Dynamic Fracture Simulation', JSME In
ternational Journal Series /-solid Mechanics Strength of Materials, 32, Iss 3, pp 403-410,
1989.

44. Ioakimidis N .I, 'Symbolic Computation - A Powerful Method for the Solution of Crack
Problems in Fracture Mechanics', International Journal of Fracture, 43, Iss 3, pp &39-&42,
1990.

45. Yagawa G., Ye G.W and Yoshimura S., 'A Numerical Integration Scherne for Finite Element
Method based on Symbolic Manipulation', International Journal for Numerical Methods in
Engineering, 29, Iss 7, pp 1539-1549, 1990.

46. SENAC - A Software Environment for Numeric and Algebraic Computation, developed
by the Mathematical Software Team, University of Waikato, New Zealand, distributed in
Europe by the University of London Computer Centre, 20 Guilford Street, London, WC1N
1DZ.

47. SENAC workshop, University of London Computer Centre, 23rd October 1991.

48. Hearn A.C., REDUCE User's Manual, RAND Publication CP78, Rev. 7/87, July 1987.

49. Winston P.H. and Horn B.K.P., LISP, Addison-Wesley publishing Company, 1981.

50. Gates B.L., GENTRAN user's Man·ual, REDUCE version, Information Sciences Depart
ment, The RAND Corporation, P.O box 2138, 1700 Main Street, Santa Monica, CA 90406-
2138, U.S.A.

23

Chapter III

Automatic generation of shape functions

3.1 Introduction

In finite element analysis, the shape functions are used to interpolate field

variables within elements as explained in chapter 1. Most are based on polynomials.

Co continuous shape functions are those in which the field variable is continuous

between adjoining elements but not the derivative of the field variable. The theory

for different element shape functions is available in many standard text books, for

example, Zienkiewicz 1.

Most of the text books do not, however, give the derivatives of the shape

functions, and leave it to the user to expand the polynomials, form the derivatives

and simplify the resulting expressions. Fortran code is available for some shape

functions in the NAG library, for example. While many users have their own tried

and tested shape function routines, it is useful to have access to a comprehensive

library of routines. With interest turning top-type adaptive finite element analysis,

higher order shape functions may be required and they are tedious to code and

check.

The work of Wang et al2
•3•

4 covers similar ground to the present work. Wang

and his co-workers have developed an interactive system called FINGER (FINite

element code GEneratoR). This system allows the user to develop FORTRAN

code for isoparametric elements to various levels of sophistication. At the lowest

level shape functions are generated which can then be used to construct the finite

element strain matrix, the material properties matrix (where this depends on non

linear constitutive relations), and the integrand of the system matrix.

The final objective of integrating this last item to produce the stiffness ma

trix can be achieved in certain hybrid-mixed formulations3 but in general it is not

possible because the integrand is a rational function of the local element coordi

nates. In their early work Wang et al2 used a polynomial approximation of the

24

Chapter 3: Automatic generation of shape functions

integrand by assuming that the jacobian of the element could be approximated by

its value at the centre of the element. This approximation may be useful for low

order elements suffering from little deformation, but it is unlikely to satisfactorily

replace the full isoparametric formulation. Wang's later work does not mention

this approximation4.

Kidger5 has also developed a REDUCE program to compute the shape func

tions for a 14-node brick element. It is a serendipity element where extra nodes at

the mid-faces have been chosen so that the shape functions are complete up to the

second order. Five choices of polynomial can be made and some have a particularly

good accuracy, which makes them a viable alternative to the traditional 20-node

brick element. Such a program could form an extension to the program developed

here. Smith6 has also done some work on this subject.

In this chapter a method for economically generating shape functions for a

wide variety of problems will be discussed. The use of REDUCE to generate two

dimensional Co continuous shape functions was given in an earlier paper7. The aim

of this work is to describe the formation of all the main two and three dimensional

Co continuous shape function routines, developed from the original REDUCE pro

gram but exploiting GENTRAN to generate more efficient FORTRAN 77 code. A

paper containing most of the material in this chapter has been published8.

Both the shape functions and their derivatives have been derived. Compu

tationally efficient expressions have been obtained using GENTRAN, which also

generates FORTRAN code. GENTRAN is a tool developed by Wang and van

Hulzen2 as part of the FINGER system. It can be used with VAXIMA4 , MAC

SYMA and REDUCE.

A feature of the Computer Algebra approach is its great flexibility and general

ity. For example, some users prefer to generate the shape functions for triangular

elements retaining all three area coordinates as variables, even though they are

not independent. In using REDUCE it is simple to change from the two variable

form to the three variable form. Again some users prefer to explicitly evaluate

numerically the shape functions and their derivatives at quadrature points and

store them as values, in large arrays. It is easy to adapt the REDUCE code to do

this also.

25

Cllapter 3: Automatic generation of shape functions

In the next. sections the following typesetting conventions will be used. All

mathematical formulre will be typeset in mathfont while the corresponding RE

DUCE code will be typeset in typewriter.

3.2 Algorithms implemented

Working with shape functions IS common in finite element analysis usmg

isoparametric elements. Designing a program to calculate shape functions involves

first hand manipulations then coding into a numerical language. When using a

Computer Algebra system the same steps are followed but all the actual calcu

lation and coding are done by the machine. We will now explain how the shape

functions are developed. Several types of elements have been considered. They

are Lagrangian and serendipity quadrilaterals and cubes, triangles and tetrahedra,

Lagrangian and serendipity triangular prisms.

The general form of the shape functions for these elements can be found for

example in Zienkiewicz1 . All the shape functions are built up from the one dimen

sional Lagrange polynomials for interpolating through points in one dimension.

Lagrange polynomials, of degree n are defined as:

where i = 0, ... n, ~· is the normalized coordinate in the range [-1, + 1] and the

element has n + 1 nodes.

The shape functions depend upon the cardinality condition of the Lagrange

polynomials,
Lf(~j) = 1 if i=j

Lf(ej) = o if i # j. (3.2)

The formation of the shape functions using REDUCE is described next for each

element considered. The cartesian coordinates over the standard square (cube) are

e, 1J (and(). The barycentric coordinates over the standard triangle (tetrahedron)

are £1, £2, £3 (and £4). They are called local coordinates (see Figure 3.1). The

26

Clw,pter 3: Automatic generation of shape functions

L,

L1

Figure 3.1 :Local coordinate systems

shape functions can be used to map the local coordinates to the global coordinates,

ie the actual coordinates of the nodes in the mesh.

3.2.1 Lagrangian element

The shape functions for the Lagrangian element are obtained as follows:

• 2 dimensions:

• 3 dimensions:

where e,'T/,(are the local coordinates.

i,j ,k denote the position of the node in the standard cube
(see below).

node(i,j, k) is the node number of the node whose posi
tion in the standard cube is (i,j ,k).

i,j ,k are defined as follows :

. n
l=-(e+l)

2
. n

J = -(1] + 1)
2
n

k=-((+1)
2

- 1 ~ (~ 1 ---+ 0 ~ k ~ n.

27

(3.3)

(3.4)

(3.5)

Chapter 3: Automatic generation of shape functions

The REDUCE program carries out the calculations as described by the formulre

(3.1), (3.3) and (3.4). First the one dimensional normalized coordinates co, 6, ...
Cn are calculated and stored.

i
C"i = 2 *-- 1 n

where

The REDUCE code looks like this (using XI for c):

FOR I:=O:N DO

<< XI(I) := 2•I/N - 1 >>;

i = 0, ... n. (3.6)

It is interesting to note that in the code above N does not need to hold a

numerical value. The REDUCE code looks very much like any numerical language

code, which makes it easy to use for people familiar with such languages.

The one dimensional Lagrange polynomials are then calculated in terms of a

generic coordinate VAR1 and stored. In other words, the Lagrange polynomials are

calculated for any variable of direction VAR1, which can then be replaced by the

relevant real variable e, 17 or (. The REDUCE code corresponding to equation

(3.1) is given by:

FOR I:=O:N DO

« L(I) := 1;

FOR J:=O:N DO

« IF I NEQ J THEN

« L(I) := L(I)•(VAR1-XI(J))/(XI(I)-XI(J)) »

»

»;

The REDUCE code, again, looks much like a numerical language code. The

difference appears, however, when the values contined in the array L are printed

which the REDUCE code shown below carries out:

user input

REDUCE re.•ponse

N := 2; L(O); L(1); L(2);

N := 2

L(O) := (VAR1-1)•VAR1/2

L(l) := -(VAR1+1)•(VAR1-1)

L(2) := (VAR1+1)•VAR1/2

28

Chapter 3: Automatic generation of shape functions

Let us now compare the expressions for L(O), L(l) and L(2) with the expres

sions for the one dimensional Lagrange polynomials usually derived by hand, shown

below equation (3. 7):

Lij(e) = (e- 1) * e
2

Li(e) =- (e- 1) * (e + 1)

L~(O = (e + 1) * e
2.

(3.7)

The REDUCE expressions obviously match the equation (3. 7) if we substitute VARl

bye in the REDUCE expressions. This can be done using the REDUCE command

SUB. The corresponding REDUCE code is given below, where e is denoted by XI,

and the result is stored in the array SF (SF stands for Shape Function).

FOR I:=O:N DO

<< SF(I) := SUB (VARl=XI, L(I)) >>;

As explained in chapter 2, in the section 'Description of REDUCE', the sub

stitution above is applied loca~ly to L(I) without affecting the value of L(I) in

memory, therefore allowing further substitutions if necessary. This property will

be used in the calculation of the two and three dimensional shape functions.

The two dimensional shape functions are obtained by multiplying two one

dimensional Lagrange polynomials in the e and TJ directions. REDUCE uses the

one dimensional Lagrange polynomials already calculated and substitutes VARl (op

erator SUB) by the actual coordinate. The code corresponding to equation (3.3) is

given next (using XI for e and ET for TJ) :

FOR I:=O:N DO

« FOR J : =0 : N DO

<< SF(NODE(I,J)) := SUB(VAR1=XI,L(I))•SUB(VAR1=ET,L(J)) >>

»;

In three dimensions similar code stands where the term corresponding to the

third direction (is introduced. The REDUCE code is therefore as follows:

29

Chapter 3: Automatic generation of sl1ape functions

FOR I:=O:N DO

« FOR J : =0 : N DO

»;

« FOR K:=O:N DO

»

<< SF(NODE(I,J,K)) := SUB(VAR1=XI,L(I))•SUB(VAR1=ET,L(J))

•SUB(VAR1=ZE,L(K)) >>

The REDUCE programming language uses dynamic array storage, which en

ables us to leave N as an unassigned variable. Therefore REDUCE is able to

generate Lagrange polynomials to any high order, eg N = so, which far exceeds any

practical limit as far as finite element analysis is concerned.

3~2.2 Serendipity element

A geometrical interpolation of serendipity elements is given by Zienkiewicz1 .

For example the two dimensional quadratic and cubic quadrilateral shape functions

are defined below. SF node(i.j) (~, TJ) takes three different values depending on the

position of the node in the quadrilateral (see Figure 3.2):

{

E H node(i,j) (~, TJ) for mid-side nodes on edges 1 and 3

SFnode(i,j)(e,TJ) = EVnode(i,j)(e,TJ) for mid-side nodes on edges 2 and 4

Cnode(i,j) (~, TJ) for corner nodes,
(3.8)

where

i = 1, ... n - 1 and j = 0, 1

EVnode(i.j)(~,TJ) = L}(~)Lj'(TJ) i = 0,1 and j = 0, ... n- 1

Cnode(i.j)(~,TJ) = Lf(~)Lj(ry)- Pnode(i,j)(~,()- Qnode(i,i)(~,TJ)

i = 0, 1 and j = 0, 1

and
1 n-1

Pnode(i.j)(~,TJ) = 2 2:(1 + ~c~p.)EHnode(p.,j)(~,TJ)
p.=l

1 n-1

Qnode('i,j)(~, TJ) = 2 L (1 + TJcTJp.)EVnode(i.p.)(~, TJ).
p.=l

(3.9)

30

Chapter 3: Automatic generation of shape functions

(~c,17c) are the local coordinates of the corner node, n+ 1 is the number of nodes

along one edge of the element, and edges are as shown in Figure 3.2.

Comer4
Edge3 Comer3

~ 10 9 ~ 8 7 r:/ ______ ___,

11 6
Edge4 ~ 4--- Edge2

12 5

?1 2i3 4'
Comer 1 Edge 1 Comer 2

Figure 3.2 :Cubic .serendipity element 2D - definition of the edges

E H corresponds to the nodes on the horizontal edges, except the corner nodes.

It is composed of a (n + 1) th order Lagrange polynomial in e direction and a linear

Lagrange polynomial in 17 direction as there are n+ 1 nodes in the ~ direction and

only 2 nodes in the 17 direction. Similarly, EV corresponds to the nodes on the

vertical edges, except the corner nodes.

C is the shape function for all four corner nodes. It is formed from a bilinear

function in~ and 77, from which two polynomials are subtracted. The two polyno

mials are weighted sums of E H and EV along the e and 17 directions. They ensure

that C is equal to 1 at the corner and zero at all other points of the element. The

first part of C (bilinear function) gives 1 at the corner, zero at the other corners

and some non zero values at the mid-side nodes along the edges. P and Q modify

C so that its value at the mid-side nodes is zero.

The calculation in three dimensions is similar. The mid-side nodes are calcu

lated by multiplying two linear Lagrange polynomials by a (n+ 1)th order Lagrange

polynomial. The corner nodes are calculated by assigning a trilinear polynomial

and then subtracting the sums of weighted parts of the values of the shape functions

at the mid-side nodes.

REDUCE handles the calculations as described above. The mid-side node

shape functions E H and EV are constructed with suitable order Lagrange poly

nomials in e and 17 (and (in 3D) directions, using the operator SUB. The corre-

31

Chapter 3: Automatic generation of shape functions

sponding REDUCE code for two dimensional shape functions is given below. N

corresponds to the degree of the Lagrange polynomial, therefore L (N, I) stores the

Lagrange polynomial Lf. LC2D is an array containing the number of the nodes of

the element as shown in Figure 3.2.

INDJ := 0;

FOR J:=0:1 DO

« FOR I :=1 :N-1 DO

COMMENT Calculation of EH;

« NBNODE : = LC2D (I, INDJ) ;

F(NBNODE) := SUB(VAR1=XI,L(N,I))•SUB(VAR=ET,L(1,J));

»;

COMMENT Calculation of EV;

NBNODE := LC2D (INDJ,I);

F(NBNODE) := SUB(VAR1=XI,L(1,J))•SUB(VAT=ET,L(N,I))

»;

INDJ := N

The corners are initially assigned with the bilinear (or trilinear in 3D) function

using the one dimensional Lagrange polynomials. The two polynomials P and

Q are not actually calculated. The program is such that as soon as one shape

function for a mid-side node is obtained its weighted value is subtracted from the

bilinear function. The REDUCE code for the corner nodes in two dimensions is

as shown below. First the assignment with the bilinear function is carried out and

then the modification by the P polynomial is shown. The modification by the Q,
being similar, has been omitted.

COMMENT assignment with the bilinear function;

INDJ := 0;

FOR J : =0 : 1 DO

« INDI := 0

FOR I : =0 : 1 DO

« NVERT := LC2D (INDI,INDJ);

»;

F(NVERT) := SUB(VAR1=XI,L(1,I))•SUB(VAR=ET,L(1,J));

INDI := N

32

Chapter 3: Automatic generation of shape functions

INDJ := N

»;

COMMENT modification with the P polynomial;

INDJ := 0;

FOR J:=0:1 DO

« FOR I :=1 :N-1 DO

»;

COMMENT calculation of EH;

« NBNODE : = LC2D (I , INDJ) ;

»;

F(NBNODE) := SUB(VAR1=XI,L(N,I))•SUB(VAR=ET,L(1,J));

FOR L:=O:N STEP N+l

COMMENT calculation of the scaling factor (l+XIcXIm)/2;

« SCALE := 1- ABS (L-I)/N;

NVERT := LC2D(L,INDJ);

F(NVERT) := F(NVERT) -SCALE•F(NBNODE)

»

INDJ := N

Extension to quartic and higher order serendipity polynomials requires the

introduction of mid-face nodes. Although straight forward in principle it has not

been done here, as such elements are not widely used.

3.2.3 Triangular and tetrahedral elements

The method given by Zienkiewicz1 for the construction of shape functions for

triangular and tetrahedral elements is followed herP.

A point in a triangular element is defined by its barycentric coordinates L~,

L2 , L3. A node can be denoted by three integers i,j ,k which correspond to the

transformed barycentric coordinates in the range [O,n], where n+ 1 is the number

of nodes along one edge of the element.

33

k = nL3

i + j + k = n.

Chapter 3: Automatic generation of shape functions

0 s; L2 s; 1 ----t 0 s; j s; n

0 s; L3 s; 1 ----t 0 s; k s; n
(3.10)

The shape functions can then be constructed by the multiplication of an (i+ 1)th

order polynomial in the L1 direction by a (j + 1)th order polynomial in the L2

direction and by a (k + 1)th order polynomial in the L3 direction. The first order

polynomial is set to 1. Th~ formula for the shape function is:

(3.11)

where

1.~(LI) = __ (L_1_-_L_1~(0..:..,-))_(L_1_-_L_1...:...(1..:...))-:--. _· ·~(L_I_-_L_1...:...(i_-1...:...))_

~ (L1(i)- Ll(O))(LI(i)- L1(1)) · ·. (Ll(i)- Ll(i-1))·
(3.12)

Lp(q) denotes the Lp barycentric coordinate (p=1, 2 or 3) of the node at position

q (q=O, 1 ... n) in the Lp direction, the first position being one the opposite edge

to the corner p and the last position being at corner p (see Figure 3.3). Similar

formulre stand for L}(L2) and LZ(L3).

AL2

2

Ll L3

Figure 3.3 : Coordinate definition for triangular elements

34

Chapter 3: Automatic generation of shape functions

As there can be several nodes in position q in the Lp direction the actual node

used in the formula (3.12) is undetermined. However, as all nodes in position q

have the same Lp coordinate the choice of the node is not important as the result

will be the same in all cases. For example, a triangle (123) with 4 nodes along one

edge has the following shape functions (see Figure 3.4):

• Node 1 (ij,k)=(3,0,0)

• Node 2 (ij,k)=(2,1,0)

• Node 6 (ij,k)=(1,1,1)

(Lt - Lt(9l) (L2- L2(8l) (L3- L3(2)) = * * ___ ___:._~
(Lt(6)- Lt(9)) (L2(6)- L2(8)) (L3(6)- L3(2))

= 27 L1L2L3.

The method can easily be extended to the 3 dimensional case. The 3 dimen

sional barycentric coordinate system L1, L2, L3, L4 is used. ij,k,l are defined as

35

Node numbers

1

2

3

4

5

6

7

8

9

10

follows:

Chapter 3: Automatic generation of shape functions

Barycentric coordinates

L1 L2 L3

1 0 0

2/3 1/3 0

1/3 2/3 0

0 1 0

2/3 0 1/3

1/3 1/3 1/3

0 2/3 1/3

1/3 0 2/3

0 1/3 2/3

0 0 1

Figure 3.4: Cubic triangular element

i = n£1

0 :S L2 :S 1 ---> 0 :S j ::::; n

0 :S £3 :S 1 ---> 0 :S k :S n

i + j + k + l = n.

0
10

(3.13)

The shape functions for tetrahedral elements are developed extending the formu

lation of the triangular element.

(3.14)

The REDUCE program calculates the shape functions in a similar way to

the Lagrangian element except that, contrary to the case of the quadrilateral and

cubic elements, where the polynomials are of the same order, here all lower order

polynomials are used.

36

Chapter 3: Automatic generation of shape functions

First, the normalized coordinates, varying between zero and 1, are calculated

and stored. Then the one dimensional Lagrange polynomials for the triangle, given

equation (3.12), are calculated in terms of a generic coordinate VAR2 and stored.

The REDUCE code for these polynomials is given below:

FOR I:=O:N DO

« TL(I) := 1;

IF I >= 1 THEN

« FOR J :=0: I-1 DO

<< TL(I) := TL(I)•(VAR2-TXI(J))/(TXI(I)-TXI(J)) >>

»

»;

where TXI represents the triangular one dimensional coordinate and TL stores

the Lagrange polynomials for the triangle.

The calculation of the shape functions, in equations (3.11) and (3.14), is done

by multiplying together the Lagrange polynomials for the triangle in Lt, L2 and

L3 (and L4 in 3D) using the operator SUB to substitute VAR2 by the actual

barycentric coordinates. The REDUCE code for three dimensional elements is

given next. In two dimensions similar code stands where the variable (84) and

the loop (FOR 84:=1:N) related to the third dimension are removed. LC3D holds

the node numbers for the triangle expressed in the barycentric coordinate system

denoted in the program 81, 82, 83 and 84. Since the barycentric coordinates are

not independent from each other only three of them are needed, therefore it has

been chosen that L2, L3 and L4 will be retained in three dimensions (see section

3.3 for further details about this subject).

FOR 84:=0:N-1 DO

« LIMITB3 := N - 84;

FOR 83:=0:LIMIT83 DO

« LIMITB2 : = LIMIT83 - 83;

FOR 82:=0:LIMITB2 DO

« 81 : = LIMITB2 - B2;

37

Clmpter 3: Automatic generation of shape functions

NBNODE := LC3D(B2,B3,B4);

F(NBNODE) :~ SUB(VAR2=L1,TL(Bl))•SUB(VAR2=L2,TL(B2))*

SUB(VAR2=L3,TL(B3))•SUB(VAR2=L4,TL(B4))

>>

»

»;

3.2.4 Triangular prisms

The triangular prism is defined by a local coordinate system which is made

up of barycentric and cartesian coordinates, L~, L2, £3 on the triangular faces

and (in the perpendicula,r direction. The elements can be of Lagrangian or of

serendipity type.

Lagrangian prism

The shape functions are derived as a product of triangular and Lagrangian one

dimensional polynomials :

(3.15)

where n+ 1 is the number of nodes along one edge of the element, i, j and k are

the transformed barycentric coordinates in the range [O,n], l denotes the position

of the node in the (direction, l=O on the bottom triangular plan, l=n on the top

triangular plan.

REDUCE handles these expressions in a similar manner to those described in

the sections on Lagrangian and triangular elements.

Serendipity prism

The shape functions are obtained by combining the methods for the serendipity

and triangular elements. The quadratic and cubic shape functions are obtained as

follows :

{

EHnode(i.j,k,l)(LI, L2, L3, ()

SFnode(i.j.k,l)(Lt, L2, L3, () = EVnode(i,j,k,l)(L1, L2, £3, ()

Cnode(i,j.k,l)(L1, L2, L3, ()

38

for triangular faces

for rectangular faces

for corner nodes,
(3.16)

Chapter 3: Automatic generation of shape functions

where

i j k 1 EHnode(i,j,k,l)(L1, L2, L3, () = Li(Ll)Lj(L2)Lk(L3)Lz (()

EVnode(iJ,k,l)(Ll, L2, L3, () = Lt{LI)L~{L2)Lt{L3)LY(()

Cnode(iJ,k,l)(Lt, L2, L3, () = L~(Ll)Lf{L2)Lf(L3)Ll(()

- Rnode(iJ,k,l) (Lt, L2, L3, (),

and

l = 0,1

l = 1, ... n- 1

l = 0,1

1 n-1

Rnode(i,j,k,l)(LI,L2,L3,() = 2 L:{l- (c(p)EVnode(i,j,k,p)(Ll,L2,L3,(). (3.17)
p=l

n+1 is the number of nodes along one edge of the element, i, j and k are the

transformed barycentric coordinates in the range [O,n] and l denotes the position

of the node on the vertical edges.

The geometrical interpretation and the handling of the calculations by RE

DUCE of these formulre are similar to the serendipity and triangular elements.

3.3 Structure of the program

The program is composed of two series of modules which correspond to the an

alytical calculation with REDUCE and the obtention of the FORTRAN code. The

first series of modules is concerned with the input of the user's options, the num

bering of the element nodes and the analytical calculation of the shape functions.

The second series of modules focuses on the generation of the FORTRAN code for

the shape functions including the optimisation process and the name convention

used for the FORTRAN subroutines generated.

These modules are organised within a main program unit. In the following

sections, each of these series of modules will be examined in turn.

3.3.1 The REDUCE code

The main program unit is in charge of inputting user's choices, setting up

initializations and calling the relevant procedures. The program can produce shape

39

Chapter 3: Automatic generation of shape functions

function FORTRAN code routines according to the user's choices. These choices

are listed below:

• Generating all shape functions for given minimum and maximum orders

• Generating all shape functions of a given family and for given minimum

and maximum orders

• Generating shape functions for a given family, dimension and order

This allows flexibility in the generation of shape functions and minimizes the

intervention of the user.

It would normally be expected that these options were input interactively using

read/write statements from and to the screen. REDUCE does not provide read

statements, mainly because it is by nature an interactive system. When a program

is run in batch mode, REDUCE reads the file where the program is stored and

processes each set of instructions in turn. So if the parameters defining the choices

above are put into a file and the file name is given to REDUCE, it will read in the

parameters as if a read statement was used.

The user is therefore expected to edit the option file (called SFOPT. R), to write

in the choices and then to run the program, which will automatically reads in

the contents ofSFOPT.R. The REDUCE command 'IN 11 SFOPT.R11
' is used for that

purpose. The following variables are used to store the user's choices:

OPT

FAMILY

ELEMENT

MIN

UPL

OUTPUT

Contains the option chosen (1, 2 or 3)

Family chosen if option 2 or 3 is selected

(L = Lagrangian, s = Serendipity, T = Triangle,

LP = Lagrangian Prism, SP = Serendipity Prism)

Contains the dimension of the space chosen if option 3 is

selected (02 = 2 dimensions, 03 = 3 dimensions)

Minimum number of nodes along one edge

Maximum number of nodes along one edge

Selects which output is required. The user may want to

generate FORTRAN code (Fa) or examine the REDUCE

form (RE) or both (FORE)

40

Chapter 3: Automatic generation of shape functions

The initializations carried out by the main program unit include setting up

switches, defining two output files-one for the shape function in REDUCE form,

another one for the shape function in FORTRAN form-declaring the working ar

rays, calculating the normalized coordinates, calculating the one dimensional La

grange polynomials and the one dimensional Lagrange polynomials for the triangle.

The program then processes the user's choices to call the relevant procedures.

This consists of first calling the routines to number the nodes of the element whose

shape functions are to be calculated and then calling the routine which carries out

the analytical calculations.

The numbering of the element nodes uses the following conventions (see Figure

3.5). The Lagrangian element has its nodes numbered firstly along e, secondly

along "' and thirdly along (. The serendipity element is numbered going round

the edges in 2 dimensions and up one layer after the other in 3 dimensions. The

triangular element has its nodes numbered in the same way as the Lagrangian

element. Both prism elements use the previous conventions.

2 Dirnailsiona 3 Dimenaions

1 • • a a J . CJ. Lagrangian .. ~·
1 2 • 1 • •
1 • •

~
,

·CJ·
1 11

Senondipity • • •
1 2 3 1 • •

10

• & Triangle

~
1 • • 1 2 3 ,.

Lag rangian Prism -~ .. 1 I · . I·
1 • 3

15

Se rendipity prism .. ~ ..
1 I

1 2 •

Figure 3.5 : Node numbering conventions

41

Chapter 3: Automatic generation of shape functions

To each element corresponds one REDUCE procedure which performs the num

bering. There is a test which determines whether a 2 or 3 dimensional numbering

is needed. These procedures file the node numbers in the arrays LC2D and LC3D.

LC2D(degree,col,co2)

LC3D(degree,col,co2,co3)

Contains the number of the node whose coordinates

are col and co2 in 2 dimensions. 'degree' corresponds to

the number of nodes along one edge minus 1

(ie the degree of the polynomial).

Contains the number of the node whose coordinates

are col, co2 and co3 in 3 dimensions. 'degree' corresponds

.to the number of nodes along one edge minus 1

(ie the degree of the polynomial).

The coordinates are those described in the algorithms in the previous section.

For the triangle only 2 coordinates are retained so that the arrays LC2D and LC3D

can be used. The choice here is arbitrary.

The calculation of the shape functions is done as described in the previous

section. There is a different REDUCE procedure corresponding to each element.

Tests are made in each procedure to determine whether a two or three dimensional

calculation is needed.

The program has been used to generate Lagrangian elements up to cubic,

serendipity elements up to cubic, triangular and tetrahedral elements up to quartic,

Lagrangian triangular prism elements up to cubic and serendipity triangular prism

elements up to cubic. In the next section, the generation of the FORTRAN code

will be explained and some sample of the generated FORTRAN code will also be

gtven.

3.3.2 The FORTRAN code

The generation of FORTRAN code is done according to the option selected by

the user in SFOPT. R file.

When the FORTRAN output (Fa or FORE) is selected the REDUCE expressions

are translated into FORTRAN code using the package GENTRAN and are written

42

Chapter 3: Automatic generation of shape functions

into a file. To form a proper FORTRAN subroutine additional code must be added

to the translated shape functions.

The SUBROUTINE statement with the name of the subroutine and the ar

guments list are first generated (using GENTRAN command LITERAL and EVAL).

Then a header of comments explaining what the subroutine does is written to the

file. The type declarations are automatically generated by GENTRAN (command

DECLARE). The shape functions are then translated from REDUCE followed by the

shape function derivatives which are first calculated by REDUCE and then trans

lated by GENTRAN. The two final FORTRAN statements RETURN and END are then

written to the file. This produces a proper FORTRAN subroutine which calculates

shape functions and derivatives for a given element.

An effort has been made to produce an efficient FORTRAN code from the

REDUCE algebraic expressions for the shape functions. Indeed, the FORTRAN

expressions for the shape functions produced by GENTRAN are not always opti

mized for numerical calculations. Here is an example:

SF(1) = (XI-l.O)•(ET-'1.0)/4.0

SF(2) = -(XI+l.O)*(ET-1.0)/4.0

SF(3) = -(XI-l.O)•(ET+l.0)/4.0

SF(4) = (XI+l.O)•(ET+l.0)/4.0

This is not very good code because some expressions are calculated several

times, which is time consuming. A better way of writting the same set of expres

sions would be:

Tl = XI-1.0

T2 = XI+l.O

T3 = ET-1. 0

T4 = ET+l.O

SF(l) = Tl*T3/4.0

SF(2) = -T2*T3/4.0

SF(3) = -Tl•T4/4.0

SF(4) = T2•T4/4.0

43

Chapter 3: Automatic generation of shape functions

This uses a· bit more memory but could save a lot of time in cases where

one of the Ti is used many times. REDUCE provides a command (sTRUcT) which

extracts common sub-expressions out of a series of expressions. This command can

be applied to the shape functions which form a series of polynomial expressions.

The common sub-expressions can then be stored for future use. The temporary

variables T1, T2 ... etc have then to be automatically generated.

GENTRAN provides tools to automatically generate variable names using a

radical (letters) followed by a number which is incremented each time a new vari

able is generated (command TEMPVAR). The REDUCE code to produce the optimized

form of the shape functions given previously is shown below. The shape functions

are stored in the array F and the common sub-expressions are stored in an array

called COMSUB. The temporary variable names are stored in the array TVAR.

COMMENT extract common sub-expressions;

STRUCT (F,COMSUB);

COMMENT calculate the number of common sub-expressions;

NBCOMSUB :=LENGTH (COMSUB);

COMMENT generat, the ~emporary variable names T1, T2 ... ,

FOR I: =1: NBCOMSUB DO

« TVAR(I) := TEMPVAR;

»

COMMENT replace the sub-expression by the temporary variable in the

shape functions;

FOR J: ='1: NBNODE

<< IF MAINVAR(DEN(F(J)/COMSUB(I))) = 0 THEN

« F(J) := F(J)•TVAR(I)/COMSUB(I) »;

»

COMMENT translation into FORTRAN;

FOR I : = 1 :NBC OM SUB DO

« GENTRAN « EVAL(TVAR(I)) : = EVAL(COMSUB(I)) »

»;

FOR I:=1:NBNODE DO

<< GENTRAN << SF(EVAL(I)) := EVAL(F(I)) >>

»;

44

Chapter 3: Automatic generation of shape functions

In the REDUCE code above MAINVAR is a command which returns the leading

variable in the expression. If the expression is a constante MAINVAR returns zero.

DEN extracts the denominator of a rational expression. The test to find whether a

sub-expression appears in a shape function consists of dividing the shape function

by the sub-expression and checking that the result is a polynomial, that is to say

the denominator is a constant.

The developers of GENTRAN plan that an optimisation process will be in

cluded in the future so that any FORTRAN output generated by GENTRAN will

be optimised. This is worthwhile for higher order elements where the size of the

generated code has been dramatically reduced.

A convention for naming the FORTRAN subroutines generated by the RE

DUCE program has been adopted. An element is determined by the spatial di

mension, the type (Lagrangian, Serendipity ... etc) and the number of nodes along

one edge of the element. There are as many subroutines as elements. The name

of the subroutine tells which element it is. It is formed of 5 digits which are:

SFdtn where SF stands for Shape Function

d is the dimension (1,2 or 3)

t is the type of the element (L(agrangian),

s(erendipity), T(riangle), P(lagrangian Prism),

Q(serendipity prism))

n is the number of nodes along one edge of the element

In FORTRAN form the shape functions are output as an array SF(a) where a

is the node number. The calculation of the shape function derivatives is done just

before the output to the file (whether it is in FORTRAN or REDUCE form). So

there is no need to store them in the REDUCE program. The differentiation with

respect to each coordinate is carried out and the result is output in FORTRAN form

as an array SFDL(a,b) where a=1,2 or 3 specifies with respect to which coordinate

the differentiation is carried out (e, TJ, (, Lt, L2, L3 or L4) and b is the node

number.

A problem arises for the triangle in the choice of the coordinates taken into

account for the derivatives since there are 3 coordinates in 2 dimensions and 4

coordinates in 3 dimensions. It is necessary for the rest of the finite element analysis

45

Chapter 3: Automatic generation of shape functions

to obtain the derivatives of the shape functions with respect to 2 coordinates in 2

dimensions and 3 coordinates in 3 dimensions. One of the barycentric coordinate

has to be eliminated.

The choice is not arbitrary. It is motivated by the fact that a positive jacobian

is needed for the transformation of local coordinates to global coordinates in the

next step of the finite element analysis. This has led us to retain L2 and L3 in 2

dimensions and L2, L3 and L4 in 3 dimensions. It is actually quite simple for the

user to modify the code so as to select other choices here.

Finally, an example of an automatically generated and optimised FORTRAN

subroutine is given in Fig~re 3.6.

SUBROUTINE SF2S4 (XI, ET, SF, SFDL, ISFDL)
C •••SHAPE FUNCTION SUBROUTINE
C (c) Christine Barbier , 1989
c ---
c PURPOSE :
C Forms element shape function and derivative
c
C ARGUMENTS IN
c
c XI
c ET
c ISFDL
c

First co-ordinate
Second co-ordinate
1st dimension of shape function derivative array

C ARGUMENTS OUT
c
c
c
c
c

SF
SFDL

Shape function array
Array of shape function derivatives vith respect to
local co-ordinates

c •••
c

INTEGER ISFDL
DOUBLE PRECISION SF(•),SFDL(ISFDL,•),XI,ET

c
C••• Form the element shape functions
c

DOUBLE PRECISION Tl,T13,T12,T11,T10,T9,T2,T7,TB,T14,T6,T4,T5,T17,
. T16,T3,T15
T1=9.000000EO•ET••2+9.000000EO•XI••2-1.000000E1
T2=ET-1.000000EO
T3=XI-1.000000EO
T4=3.000000EO•XI-l.OOOOOOEO
TS=XI+l.OOOOOOEO
T6=3.000000EO•XI+l.OOOOOOEO

46

c

Clw.pter 3: Automatic generation of shape functions

T7=:3.000000EO•ET-1.000000EO
TB=ET+l.OOOOOOEO
T9=3.000000EO•ET+1.000000EO
T10=9.000000EO•ET••2+2.700000E1•XI••2-(1.800000E1•XI)-1.000000E1
T11=9.000000EO•XI••2-(2.000000EO•XI)-3.000000EO
T12=9.000000EO•XI••2+2.000000EO•XI-3.000000EO
T13=9.000000EO•ET••2+2.700000E1•XI••2+1.800000E1•XI-1.000000E1
T14=2.700000E1•ET••2-(1.BOOOOOE1•ET)+9.000000EO•XI••2-1.000000E1
T15=9.000000EO•ET••2-(2.000000EO•ET)-3.000000EO
T16=9.000000EO•ET••2+2.000000EO•ET-3.000000EO
T17=2.700000E1•ET••2+1.BOOOOOE1•ET+9.000000EO•XI••2-1.000000E1
SF(1)=T2•T3•T1/3.200000E1
SF(2)=-(9.000000EO•T5•T2•T3•T4)/3.200000E1
SF(3)=9.000000EO•T5•T2•T3•T6/3.200000E1
SF(4)=-(T5•T2•T1)/3.200000E1
SF(5)=9.000000EO•TS•T~•T2•T7/3.200000E1

SF(6)=-(9.000000EO•TS•TB•T2•T9)/3.200000E1
SF(7)=T5•TB•T1/3.200000E1
SF(B)=-(9.000000EO•TS•TB•T3•T6)/3.200000E1
SF(9)=9.000000EO•TS•TB•T3•T4/3.200000E1
SF(10)=-(TB•T3•T1)/3.200000E1
SF(11)=9.000000EO•TB*T2•T3•T9/3.200000E1
SF(12)=-(9.000000EO•TB•T2•T3•T7)/3.200000E1

c•••Form the shape function derivatives
c

c

SFDL(1,1)=T2•T10/3.200000E1
SFDL(1,2)=-(9.000000EO•T11•T2)/3.200000E1
SFDL(1,3)=9.000000EO•T2•T12/3.200000E1
SFDL(1,4)=-(T13•T2)/3.200000E1
SFDL(1,5)=9.000000EO•TB•T2•T7/3.200000E1
SFDL(1,6)=-(9.000000EO•TB•T2•T9)/3.200000E1
SFDL(1,7)=T13•TB/3.200000E1
SFDL(1,8)=-(9.000000EO•TB•T12)/3.200000E1
SFDL(1,9)=9.000000EO•T11•TB/3.200000E1
SFDL(1,10)=-(TB•T10)/3.200000E1
SFDL(1,11)=9.000000EO•TB•T2•T9/3.200000E1
SFDL(1,12)=-(9.000000EO•TB•T2•T7)/3.200000E1
SFDL(2,1)=T3•T14/3.200000E1
SFDL(2,2)=-(9.000000EO•TS•T3•T4)/3.200000E1
SFDL(2,3)=9.000000EO•T5•T3•T6/3.200000E1
SFDL(2,4)=-(TS•T14)/3.200000E1
SFDL(2,5)=9.000000EO•TS•T15/3.200000E1
SFDL(2,6)=-(9.000000EO•TS•T16)/3.200000E1
SFDL(2,7)=T5•T17/3.200000E1
SFDL(2,8)=-(9.000000EO•TS•T3•T6)/3.200000E1
SFDL(2,9)=9.000000EO•T5•T3•T4/3.200000E1
SFDL(2,10)=-(T3•T17)/3.200000E1
SFDL(2,11)=9.000000EO•T3•T16/3.200000E1
SFDL(2,12)=-(9.000000EO•T3•T15)/3.200000E1

47

Cliapter 3: Automatic generation of sliape functions

RETURN
END
SUBROUTINE SF3S2 (XI, ET, ZE, SF, SFDL, ISFDL)

C •••SHAPE FUNCTION SUBROUTINE
C (c) Christine Barbier , 1989
c ---
c PURPOSE
C Forms element shape function and derivative
c
C ARGUMENTS IN
c
c XI
c ET
c

First co-ordinate
Second co-ordinate
Third co-ordinate

c
ZE
ISFDL 1st dimension of shape function derivative array

c
c ARGUMENTS OUT
c
c SF Shape function array
c
c

SFDL Array of shape function derivatives with respect to
local co-ordinates

c
c ***
c

INTEGER ISFDL
DOUBLE PRECISION SF(•),SFDL(ISFDL,*),XI,ET,ZE

c
C*** Form the element shape functions
c

c

DOUBLE PRECISION T1,T6,T2,T4,T3,T5
Tl=ZE-l.OOOOOOEO
T2=ET-1.000000EO
T3=XI-1.000000EO
T4=XI+1.000000EO
T5=ET+1.000000EO
T6=ZE+1.000000EO
SF(1)=-(T2•T3•T1)/B.OOOOOOEO
SF(2)=T2•T1•T4/8.000000EO
SF(3)=-(T5•T1•T4)/8.000000EO
SF(4)=T5•T3•T1/8.000000EO
SF(5)=T2•T3•T6/8.000000EO
SF(6)=-(T2•T6•T4)/8.000000EO
SF(7)=T5•T6•T4/8.000000EO
SF(8)=-(T5•T3•T6)/8.000000EO

C•••Form the shape function derivatives
c

SFDL(1,1)=-(T2•T1)/8.000000EO
SFDL(1,2)=T2•T1/8.000000EO
SFDL(1,3)=-(T5•T1)/8.000000EO
SFDL(1,4)=T5•T1/8.000000EO

48

c

SFDL(1,5)=T2•T6/8.000000EO
SFDL(1,6)=-(T2•T6)/8.000000EO
SFDL(1,7)=T5•T6/8.000000EO
SFDL(1,8)=-(T5•T6)/8.000000EO
SFDL(2,1)=-(T3•T1)/8.000000EO
SFDL(2,2)=T1*T4/8.000000EO
SFDL(2,3)=-(Tl•T4)/8.000000EO
SFDL(2,4)=T3•T1/8.000000EO
SFDL(2,5)=T3•T6/8.000000EO
SFDL(2,6)=-(T6•T4)/8.000000EO
SFDL(2,7)=T6•T4/8.000000EO
SFDL(2,8)=-(T3•T6)/8.000000EO
SFDL(3,1)=-(T2•T3)/8.000000EO
SFDL(3,2)=T2•T4/8.000000EO
SFDL(3,3)=-(T5•T4)/8.000000EO
SFDL(3,4)=TS•T3/8.000000EO
SFDL(3,5)=T2•T3/8.000000EO
SFDL(3,6)=-(T2•T4)/8.000000EO
SFDL(3,7)=T5•T4/8.000000EO
SFDL(3,8)=-(T5•T3)/8.000000EO

RETURN

END

Chapter 3: Automatic generation of shape functions

Figure 3.6 : FORTRAN generated code

3.4 Tests, performance and conclusions

3.4.1 Tests

To check the validity of the FORTRAN code produced by GENTRAN, several

tests were carried out on the shape functions and their derivatives. Sources of

errors have been searched for in both the REDUCE and FORTRAN codes.

Firstly, the REDUCE code may contain errors. Simple tests have been carried

out at this stage. The REDUCE responses for the low order elements have been

printed out and checked against calculations from other sources. Secondly, the

REDUCE/GENTRAN packages can contain faults, although it is less likely than

programming mistakes. Problems can arise at the translation stage. This has been

encountered and the problem was related to loss of parentheses in the denominator

of rational polynomials. This problem has been reported.

49

Clutpter 3: Automatic generation of shape functions

The first test checks that the cardinality property of the shape functions is

respected. The tests have been carried out up to cubic elements although they

could be easily extended to higher orders. For each element the sum of the shape

functions at each node should be equal to 1. Equation (3.18) gives the form of the

test for a quadrilateral Lagrangian element :

1 1

L L sF node(i,j) (e' TJ) = 1 for i=O, ... n , j=O, ... n. (3.18)
{=-177=-1

where n+ 1 is the number of nodes along one edge of the element.

At each node the sum of the shape functions derivatives with respect to the

kth coordinate should be equal to 0. Equation (3.19) gives the expression of the

test for a quadrilateral Lagrangian element :

1 1

L L SF Dknode(i,j)(e, TJ) = 1 for i = 0, ... n, j = 0, ... n, k = 1, 2,
e=-177=-1

(3.19)

where SF Dk represents the derivative with respect to the kth coordinate (e, ry).

3.4.2 Performance

A interesting question was whether it was better to create the shape functions

as products of one dimensional shape functions or to expand them completely as it

is done in the generated FORTRAN routines produced by the REDUCE program.

To determine which is better, FORTRAN software for all shape functions has

been written directly by hand. This software uses the one dimensional Lagrange

polynomials, the one dimensional Lagrange polynomials for the triangle and their

derivatives produced by REDUCE and translated by GENTRAN. The FORTRAN

code written by hand reflects the REDUCE code in the way it works. The two and

three dimensional shape functions and their derivatives have been calculated by

forming products of the one dimensional Lagrange polynomials and their deriva

tives. The numerical results obtained with the above software have been checked

to be identical to those obtained with the REDUCE translated code.

The performance of the REDUCE translated code have been evaluated in ab

solute value, in comparison with the software directly coded by hand in FORTRAN

50

Chapter 3: Automatic generation of shape funrtions

and the NAG library routines. The results for the quadratic and cubic elements are

given in Table 3.1 and 3.2. The times have been obtained on a mainframe Amdahl

5860 computer running under MTSt operating system. The IBM FORTRANVS

V.l.3.2 FORTRAN compiler has been used. Timings have been obtained without

using the optimiser of the FORTRAN compiler.

The results in Tables 3.1 and 3.2 show that in most cases the REDUCE trans

lated code is faster than the FORTRAN direct code and the NAG library.

2 dimensions 3 dimensions

Quadratic

elements FD NG RT FD NG RT

Lagrangian 80 I 29 263 I 137

Serendipity 147 40 24 449 401 95

Triangle 90 112 14 196 268 26

All times are in J-LS, RT: Reduce translated, NG : NAG library routines,FD :

Fortran Directly written by hand.

Table 3.1 : Performance of REDUCE translated code for quadratic elements

The REDUCE translated code contains only assignment statements and the

time is largely spent doing arithmetic operations. It is likely to run faster than the

code written directly which contains calls to procedures, loops ... etc in addition

to assignments and arithmetic operations. The best speed-ups have been obtained

for the serendipity and triangular elements where the REDUCE translated code

runs on average 75% faster than the direct FORTRAN. The Lagrangian elements

give average speed-up for quadratic elements but quite poor speed-up for cubic

elements. Indeed, the expanded expressions for the Lagrangian elements are com

plicated because the polynomials used are of higher order than for the serendipity

and triangular elements.

t Michigan Terminal Sy11tem

51

Chapter 3: Automatic generation of shape functions

2 dimensions 3 dimensions

Cubic elements FD NG RT FD NG RT

Lagrangian 107 I 91 546 I 546

Serendipity 217 85 56 770 710 176

Triangle 115 231 47 333 598 101

All times are in J-LS, RT: Reduce translated, NG : NAG library routines,FD :

Fortran Directly written by ha.nd.

Table 3.2 :Performance of REDUCE translated code for cubic elements

The REDUCE translated code for serendipity elements compares well with the

NAG library routines. The times for the NAG routines for the triangle are to be

considered with caution as the calculations are carried out differently. The RE

DUCE translated code and the direct FORTRAN code use the barycentric coordi

nates in the calculations and as arguments in the subroutine statement. The NAG

library uses the cartesian coordinates in the subroutine statement and the barycen

tric coordinates in the calculations which implies extra calculation to transform

the cartesian coordinates into barycentric coordinates. Lagrangian shape functions

are not available in the NAG library.

3.4.3 Conclusions

An alternative method for generating numerical code for shape functions has

been presented which uses Computer Algebra. It is comprehensive and accurate

because most algebraic manipulations are carried out by the machine and FOR

TRAN code is generated automatically from the resulting expressions. The shape

function derivatives are also provided. The FORTRAN code obtained is optimized

and its performance compares well with other methods and existing libraries.

In the next chapter the case of infinite elements will be studied. The inter

polation functions for these elements can be automatically derived using similar

methodology to that presented in this chapter.

52

Chapter 3: Automatic generation of shape functions

References

1. Zienkiewicz O.C., The Finite Element Method, 3rd edn, McGraw-Hill, 1977.

2. Wang P.S., Chang T.Y.P and van Hulzen J.A., 'Code generation and optimization for finite
element analysis', Proc. EUROSAM '84, London, pp 237-247, 9-11 July 1984.

3. Wang P.S., Tan H., Saleeb A. and Chang T.Y., 'Code generation for hybrid mixed mode for~
mulation in finite element analysis', ACM SYMSAC'86 Conference, University of Waterloo,
Canada, 21-23 July.

4. Wang P.S., 'FINGER : a symbolic system for automatic generation of numerical programs
in finite element analysis', Journal for Symbolic Computation, 2, pp 305-316, 1986.

5. Kidger D.J, 'The 14 node brick element', Proceedings of the second ann·ual Robert J. Melosh
Medal Paper competition, Duke University, N.C., March 1990, to be published in a special
issue of Finite Elements in .Analysis and Design.

6. Smith I.M., 'Are there any new elements', The finite element method in the 1990's, Editors
Onate E., Periaux J. and Samuelsson A., Cimne Barcelona, pp 109-118, 1991.

7. Bettess P. and Bettess J.A., 'Automatic Generation of Shape Function Routines', Paper
S20 in Numerical Techniques for Engineering and Design, Proceedings of the International
Conference on Numerical Methods in Engineering: Theory and Applications, NUMETA '87,
Swansea, Vol. II, Matinus Nijhoff, Dordrecht, 1987.

8. Barbier C., Clark P.J, Bettess P. and Bettess J.A, 'Automatic generation of shape functions
for finite element analysis using REDUCE', Engineering Computation, 7, pp 349-358, Dec.
1990.

53

Chapter IV

Automatic generation of mapping functions for
infinite elements

4.1 Introduction

As is now known, infinite elements can be used to extend the finite element

method to unbounded domain pr-oblems, for example behaviour of dam founda

tions and flow past aerofoils. A number of papers have been published on this

subject 1•2•3•4 . One particularly effective technique is the mapped infinite element.

The first explicitly stated mapping was by Beer and Meek5 who used a mapping

which included a term of the form 1/(1 - ~) which maps a finite ~ domain onto

an infinite x domain. Their mapping was in two sections, linear and non-linear.

The second part of the mapping is similar to that proposed later by Zienkiewicz6 .

They also used a standard Gauss-Legendre numerical integration over the finite ~

domain. The Pissanetzky7•8 approach is similar, but he carried out the integration

in the infinite domain, and so had to modify the Gauss-Legendre abscissre and

weights. However, the mapping method has the benefit of retaining the finite

element quadrature rule.

The Zienkiewicz approach leads to a clarification and simplification of the class

of methods introduced by Beer and Meek and Pissanetsky. The form in which the

Zienkiewicz mapping was originally given has been simplified and systematized

by Marques and Owen9 , who worked out and tabulated the mapping functions

for a large range of commonly used infinite elements. The simplification was also

proposed by Kumar10 .

This chapter focuses on the automatic generation of these mapping functions

using Computer Algebra. The method used is similar to that presented in the pre

vious chapter on shape functions. Most of the material in this chapter is contained

in a paper submitted for publication 11 . The background information is derived

54

Chapter 4: Automatic generation of mapping functions for infinite elements

from a draft chapter of a book being written by Peter Bettess, who I acknowledge

here.

4. 2 Mapped infinite element

The main characteristic of the Zienkiewicz method for deriving mapped infinite

elements is the mapping used for the shape functions and the one for the numerical

integration, usually Gauss-Legendre, are identical. This has the advantage that

the original Gauss-Legendre abscissae and weights are retained. The only change

needed to a finite element routine to make the element infinite is a new computation

of the Jacobian matrix. The theory for the one dimensional elements will be briefly

derived next.

x, • • • • Xs X

0 1 2 co

1 1 /
~~ ~2 ~3

-1 0 1

Figure 4.1 : Infinite element mapping

Consider first the geometry of the one-dimensional problem as shown in Figure

4.1. The element extends from point x1 through x2 to xa, which is at infinity. xo

is taken to be the 'pole' of the radial behaviour. This element is to be mapped

onto the finite domain -1 < ~ < 1. A suitable mapping expression is:

x = No(Oxo + N2(~)x2,

55

(4.1)

Chapter 4: Automatic generation of mapping function.'l for infinite elements

where

Indeed,

At ~ = 1,

~ = 0,

~ = -1,

- -~
No(~)= 1- e
- ~
N2(~) = 1 +-.

1-~

(4.2)

~
x = (1 _ ~) (x2- xo) + x2 = x3 = oo

X = X2 (4.3)

X = (xo + X2)/2 = Xl.

The point at ~ = -1 is to correspond to the point x 1, which is now defined to

be midway between xo and x2. It implies that the inner half of the infinite element,

from the 'pole' to the inner boundary of the infinite element, has the same extent

as in the finite domain.

A mapping between the finite and infinite domains has now been Pstablished.

The next step is to see into what form polynomials in the finite ~ domain are

transformed in the unbounded x domain. Consider a polynomial, P,

(4.4)

which is typical of those used in finite element methods. The ~ to x mapping

already given in equation (4.1) can be written:

2a
x = xo + (1 _e) ,

where a = x2 - x1 = x1 - xo. Its inverse is:

~ _ 1 _ 2a
- (x- xo) '

and where r = x- xo, these can be written as

2a
r=--

1-~
and ~ = 1-

2
a .

r

56

(4.5)

(4.6)

(4.7)

Chapter 4: Automatic generation of mapping functions for infinite elements

On substitution into the general polynomial, P, a new polynomial in inverse

powers of r is obtained:

(4.8)

where the {3/s can be determined from a and the a's. If the polynomial is required

to decay to zero at infinity then f3o = 0.

It can be seen from equation (4. 7) that there is a strict relation between ~ and

r, and this should be adhered to when placing the nodes of the infinite element

in the radial direction. Sp~cific values are given in Table 4.1. For example, when

using the quadratic element, if the first node is at a distance a from the 'pole' of

the problem, in order to obtain the appropriate mapping, the mid-side node must

be at a distance 2a. If the nodes are put at other positions, the results will not

necessarily be wrong, but may be unpredictable. Certainly, the polynomial in ~

will not map into a form like equation (4.8).

~ -1 -1/2 -1/3 0 1/3 1/2 1

r a 4a/3 3a/2 2a 3a 4a 00

Table 4.1 : Relation between e and r, for mapped infinite elements

Many exterior potential problems have solutions in the form of equation (4.8)

and the advantage of this mapping is that they can be modelled using ordinary

finite element polynomials. Any degree of accuracy can be obtained by adding

extra terms to the series equation (4.8). The point xo is seen to be the pole of the

expansion of P. The advantage of this approach is that the finite element domain

is used for the definition of the shape functions and for the numerical integration.

No changes need to be made to the element shape function routines, or to the

integration abscissre and weights. The only alteration needed is that the Jacobian

matrix is calculated using the mapping, equation (4.1), and not using derivatives

of shape functions.

57

Chapter 4: Automatic generation of mapping functions for infinite elements

In some respects it is more convenient to relate the mapping to the element

nodes. This can be achieved simply by changing the mapping functions, as was

done by Marques and Owen9 . A similar procedure was suggested by Kumar10 .

In the Marques and Owen formulation No and N2 are replaced by mapping

functions M1 and M2 so that:

(4.9)

It is easy to work out the forms of these functions. The mapping function

No(e) has the value 1/2 ate= -1 and oat e = o and tends to -co as e tends to

1. We seek a mapping fmiction M1 which will behave in the same way at e = 0

and e = 1, but will be 1 when e = -1. Clearly the correct expression for M1 is

2 X No(e). N2 can be evolved in a similar fashion. Since N2 = 1/2 when e = -1

and .N2 = 1 when e = o, while tending to co when e tends to 1, a suitable choice

for M2 is N2(e)- No(e). The new mapping functions are shown in Table 4.2. The

mapping functions for the 'last' node, the node at infinity, are not given, because

they are not generally needed. They are also difficult to conceive of and define.

Mapping Function e= -1 0 1

M1 2 x No(e) -2e11- e 1 0 -co

M2 il2(e)- ilo(e) (1 + 0/(1- e) 0 1 co

Table 4.2 : Infinite element mapping functions

Now consider the standard Lagrange type finite element shape functions for a

one dimensional quadratic element (see Figure 4.2). The three nodes are conven

tionally placed at e = -1, e = 0 and e = 1. The shape functions can be written

as follows:

Ll(e) = (e- 6)(e- 6) = (e-o)(e- 1) = -e(1- e),
6-6 6-6 -1-0 -1-1 2

(4.10)

58

Chapter 4: Automatic generation of mapping functions for infinite elements

(4.11)

~1 ~2 ~3

-1 0 1

Figure 4.2 : One dimensional quadratic Lagrange element

On comparing the two sets of shape and mapping functions, we note that the

only difference is in the terms relating to ~ = 1, that is the terms at infinity. This

is demonstrated in Table 4.3.

Node ei Quadratic Finite Element Quadratic Infinite Element

Number, i Parent Shape Functions Pi Mapping Functions Mi

1 -1 -ex (1- e)/2 -e x 2/(1 -e)

2 0 (1 +e) x (1- ~) (1 +e) x 1/(1 -e)

Table 4.3 : Comparison of infinite and finite element functions

The term corresponding to the node at infinity is inverted. This immediately

shows thP possibility of generating an open-ended set of infinite element mapping

functions. As will be seen it is possible to generate sets of mapping functions, both

Lagrange and serendipity, for all square and cube finite element parent shapes to

any desired order, just as for finite elements. The necessary processes will now be

explained.

4.3 Multi-dimensional mapping functions

In two and three dimensions, the most usual case is to have an element which

extends to infinity in one direction and is finite in the other directions. More in-

59

Chapter 4: Automa.tir. generation of mapping functions for infinite elements

frequently, one needs an element which extends to infinity in several directions.

Mapped shape functions can be derived for both Lagrange and serendipity ele

ments. The Lagrangian element is the simplest and will be dealt with first.

4.3.1 Lagrange mapping functions

Let us denote L'f the Lagrange polynomials and M? the mapped Lagrange

polynomials. L is given by:

(4.12)

where i = 0, ... n, e is the normalized co-ordinate in the range [-1, + 1] and the

element has n + 1 nodes. M is calculated as described in section 4.2 (see Table

4.3). The corresponding equation is given below:

Lf(e) = (e- eo)(e- 6) (e- ei-l)(e- ei+I) (ei- en)
(ei- eo)(ei- 6) (ei - ei-d(ei- ei+l) (e- en)

(4.13)

The mapping functions for a Lagrangian element are derived next. Let consider

the general case of a q dimensional element. The element is supposed to have p

infinite directions dir1, dir2, ... dirp out of q directions and n nodes along one edge.

The equation for the mapping function can be expressed as follows:

M Fnode(l1 , •• .lp •... lq)(dirl, ... dirp, ... dirq)

= Ml~(dir1) * ... MJ;(dirp) * L~+l (dirp+l) * ... Lf~(dirq)
(4.14)

p q

= IJ Ml;(dirj) * IJ L~(dirj),
j=l j=p+l

where ll,···lq denote the position of the node in the element (see below equation

(4.15)) and node(lt, ... lq) gives the number of the node at that position. The lj are

related to the dirj as follow:

(4.15)

In practice p :::; q :::; 3.

60

Chapter 4: Automatic generation of mapping functions for infinite elements

-·------+------
7

········· .
8 9

4 5 6 6.------------------------------..... -) t

········· .
1 2 3

Figure 4.3 Three nodes Lagrangian element

For example, the mapping functions of a two dimensional Lagrangian element

with three nodes along one edge and extending to infinity in the e direction (Figure

4.3) are as follows:

M F = ry(1 - 1J)e
1 (1 -e)

M F = -17(1- ry)(1 +e)
2 2(1 - e)

M F. = -2e(1 + ry)(1 -ry)
4 (1 - e)

M p, = (1 - 112)(1 +e)
5 (1- e)

M F = -ery(1 + ry)
7 (1 - e)

MF1 = ry(1+ry)(1+e)
8 2(1 - e) ·

The mapping functions above can be easily calculated using the algebraic lan

guage REDUCE. First the algebraic expressions for the Lagrange polynomials and

the mapped Lagrange polynomials are obtained according to formulre(4.12) and

(4.13). the REDUCE code is given next:

61

Chapter 4: Automatic generation of mapping functions for infinite elements

FOR I:=O:N DO

« L(I) := 1;

M(I) := 1;

FOR J:=O:N DO

»;

« IF I NEQ J THEN

»

<< L(I) := L(I)•(VAR1-XI(J))/(XI(I)-XI(J)) >>;

IF J=/ N THEN

»

M(I) := M(I)•(VAR1-XI(J))/(XI(I)-XI(J))

ELSE

M(I) := M(I)*(XI(I)-XI(J))/(VAR1-XI(J))

END IF

The mapping functions are then constructed as described in equation (4.14).

They are made up of Lagrange and mapped Lagrange polynomials depending on

whether the direction is finite or infinite. The REDUCE program includes a test

on the finitude of each direction and selects the appropriate polynomial for that

direction. The mapping functions corresponding to the nodes at infinity are set

to zero. The REDUCE code is shown below for the three dimensional mapping

functions:

COORD(1) := XI; COORD(2) := ET; COORD(3) := ZE;

FOR K:=O:N DO

« IND(3) := K;

FOR J:=O:N DO

« IND(2) := J;

FOR I:=O:N DO

« IND (1) : = I ;

NBNODE := LC3D(I,J,K);

MF(NBNODE) := 1;

FOR DIR:=1:3 DO

« IF INFI (DIR) = 0 THEN

MF(NBNODE) := MF(NBNODE)*SUB(VAR1=COORD(DIR),L(IND(DIR))

62

Chapter 4: Automatic generation of mapping functions for inhnite elements

ELSE

<< IF IND(DIR) =/ N THEN

MF(NBNODE) := MF(NBNODE)•SUB(VARl=COORD(DIR),M(IND(DIR))

ELSE

MF(NBNODE) := 0 >>;

»

»

»

»;

The array COORD stores the cartesian co-ordinate system (dir1, dir2, ... dirp in

equation (4.14)) while the array IND stores the position of the node in the element

(h, l2, ... lp in equation (4.15)).

Using REDUCE, the algebraic expressiOns obtained are differentiated with

respect to the local variables e, Tf and (to obtain the mapping function deriva

tives, needed for the calculation of the Jacobian matrix. These expressions are

then translated into FORTRAN using GENTRAN. This method enables us to

automatically produce compilable FORTRAN code with a high confidence in its

correctness.

4.3.2 Serendipity mapping functions

As there is a rational procedure for deriving the shape functions for the serendi

pity element, which is clearly described by Zienkiewicz12 , a precisely analogous

procedure can be followed for the infinite mapped elements. A formula is now given

for the two dimensional quadratic and cubic elements with one infinite direction.

Let us denote e and Tf the two directions, e being the infinite direction and

Tf the finite one. As for the Lagrange mapping functions L will represent the

Lagrange polynomials and M the mapped Lagrange polynomials. The mapping

functions take three different values depending on the position of the node in the

63

Chapter 4: Automatic generation of mapping functions for infinite elements

quadrilateral (see Figure 4.4):

where

for mid-side nodes on edges 1 and 3

for mid-side nodes on edges 2 and 4

for corner nodes,
(4.16)

EHnode(i,i)(~, 11) = Mf(~)L}(11)

EVnode(i,j)(~, 71) = M}(~)Lj(11)

i = 1, ... n - 1 and j = 0, 1

i = 0,1 and j = 0, ... n- 1

i = 0, 1 and j = 0, 1,

and
n-1 2

Tnode(i,j)(~, 11) =]; (1 + ~c~p) EHnode(iJ.j)(~, 11)

_ n-
1 {1 + 11c11p)

Unode(i,j)(~,71)- L 2 EVnode(i,,_,)(~,71).
p=l

(4.17)

(~c,11c) are the local co-ordinates of the corner nodes, n+ 1 is the number of nodes

along one edge of the element, and edges are as shown in Figure 4.4.

Edge3 4' 17

~ l ~. !

[
1-o----9--~~--~8-----

11 ! 6
L-------------------------------------) ~

Comer4 Comer3

•
7

12 •
5

•
2 3 4 ?1

I Comer2 Comert
Edge 1

Figure 4.4 : 2D Cubic serendipity element - definition of the edges

64

Chapter 4: Automatic generation of mapping functions for infinite elements

E H corresponds to the nodes on the horizontal edges, except the corner nodes.

It is composed of a (n + 1)th order mapped Lagrange polynomial in e direction

and a linear Lagrange polynomial in TJ direction as there are n+ 1 nodes in the e
direction and only two nodes in the TJ direction. Similarly, EV corresponds to the

nodes on the vertical edges, except the corner nodes.

C is the shape function for all four corner nodes. It is formed from a mapped

linear function in e and a linear function in .,, from which two polynomials are

subtracted. The two polynomials are weighted sums of E H and EV along the e
and TJ directions. They ensure that C is equal to 1 at the corner and zero at all

other finite points of the element. The first part of C gives 1 at the corner, zero

at the other finite corners 'and some non zero values at the finite mid-side nodes

along the edges. T and U modify C so that its value at the finite mid-side nodes

is zero.

When the TJ direction is infinite and the e direction is finite, the formula for

the mapping functions can be obtained from equation (4.17) by using M in place

of L in the TJ direction, L in place of M in the e direction and inverting the scaling

factors in the sums forT and U, that is to say {1 + ecef.L)/2 forT and 2/ (1 + TJcTJ~-')
for U. When both directions are infinite we need to use M everywhere in the

formula (4.17) and inverted scaling factors in T and U which are 2/(1+eceu) and

2/(1+TJcTJu) .

The REDUCE code is similar to that described in the previous chapter for

the shape functions with the addition of a test for choosing between the Lagrange

polynomials and the mapped Lagrange polynomials. The complete REDUCE pro

gram to calculate the two dimensional serendipity mapping functions is given in

appendix A.

The procedure for three dimensions is similar. Mapped Lagrange polynomials

are used in the infinite directions and ordinary Lagrange polynomials in the finite

directions. Extension to quartic and higher order Serendipity polynomials requires

the introduction of mid-face nodes. Although simple in principle it has not been

done here, as such elements are not widely used.

The automatic generation of FORTRAN code from the REDUCE analytical

65

Chapter 4: Automatic generation of mapping functions for infinite elements

expressions is carried out in a very similar way to the one used for the shape

functions in the previous chapter. The optimisation process is also the same.

The complete REDUCE program to generate the FORTRAN code is given in

appendix B while two examples of FORTRAN mapping functions routines are

given in appendix C.

It is now useful to explain what name convention has been adopted for the

FORTRAN mapping functions routines. This is shown next:

Midtn where M stands for Mapping Function

i indicates which direction is infinite

i = 1 , x infinite (y and z finite)

i = 2 , y infinite (x and z finite)

i = 3 , z infinite (x and y finite)

i = 4 , x andy infinite (z finite)

i = 5 , y and z infinite (x finite)

i = 6 , x and z infinite (y finite)

i = 7 , x, y and z infinite

d is the dimension (1,2 or 3)

t is the type of the element (L (agrangian),

s (erendipity).

n is the number of nodes along one edge of the element

For similar reasons to the one explained in the previous chapter it has been

necessary to carry out tests on the FORTRAN mapping functions routines to

ensure that they were correct.

At first, the REDUCE analytical expressions for the mapping functions for

lower order elements have been checked against other sources. The tests on the

FORTRAN routines are more complicated than in the case of the shape functions.

These tests involve taking linear combination of the mapping functions for the

nodes at finite distance and checking that the result is as expected. The mapping

functions for the nodes at finite distance are all multiplied by the concerresponding

value of r, from Table 4.1. The constant a is taken to be unity. Thus for the 8-

node serendipity element, Mt, M7 and Ms are multiplied by one and M2 and M6

by two. If the mapping functions are then summed, we should recover the linear

66

Chapter 4: Automatic generation of mapping functions for infinite elements

mapping functions, which is in this case 2/(1-e). A similar operation on the e
derivatives should yield 2/(1-02 and on the TJ derivatives zero when the element

extends to infinity only in the TJ direction. Similar tests are valid for mapping

functions extending to infinity in more than one direction.

4.4 Conclusions

A simple method for calculating mapping functions for the infinite elements,

using the Zienkiewicz method, has been described. The automatic generation of

numerical code for the mapping functions using an algebraic language has been pre

sented. The generated FORTRAN code is comprehensive, reliable and optimized.

The mapping function derivatives are also provided.

The next chapter ends the series of investigation of the application of Computer

Algebra to finite element method through explaning the generation of particular

element matrices.

References

1. Ungless R.L., An infinite finite element, M ASc Thesis, University of British Columbia, 1973.

2. Anderson D.L. and Ungless R.L., 'Infinite finite elements', Int. Symp. Innovative Num.
Anal. Appl. Eng. Sci., France, 1977.

3. Lynn P.P. and Hadid H.A., 'Infinite elements with 1/rn type decay', Int. J. Num. Meth.
Eng., 17(3), pp 347-355, 1981.

4. Zienkiewicz O.C., Emson C. and Bettess P., 'A novel boundary infinite element', Int.J. Num.
Meth. Eng .. 19, pp 393-404, 1983.

5. Beer G. and Meek J.L., 'Infinite domain elements', Int. J. Num .. Meth. Eng., 17(1), pp
43-52, 1981.

6. Zienkiewicz O.C., Bettess P .. Chiam T.C. and Emson C., 'Numerical methods for unbounded
field problems and a new infinite element formulation', ASME. AMD. 46, pp 115-148, New
York, 1981.

7. Pissanetzky S., 'An infinite element and a formula for nui:Uerical quadrature over an infinite
interval', Int. J. Num. Meth. Eng .. 19, pp 913-928, 1983.

8. Pissanetzky S .. 'A Simple Infinite Element'. COMPEL, Boole Press, to be published.

67

Chapter 4: Automatic generation of mapping functions for infinite elements

9. Marques J .M .. M.C. and Owen D.R.J ., 'Infinite elements in quasi-static materially non-linear
problems', Computers and Structures, to be published.

10. Kumar P. discussion of Ref. 2-27, Int. J. Num. Meth. Eng., 20, pp 1173-1174, 1984.

11. Barbier C., Bettess P. and Bettess J.A, 'Automatic Generation of Mapping Functions for
Infinite Elements using REDUCE', submitted for publication in the Journal of Symbolic
Computation

12. Zienkiewicz O.C, The Finite Element Method, 3rd edn, McGraw-Hill, 1977.

68

Chapter V

Automatic generation of bending element
matrices

).1 Introduction

In finite element analysis the approximation solution is defined by the nodal

values and the shape functions. T.he shape functions are usually based on polyno

mials. A common way of obtaining these functions is by using Lagrange polyno

mials as seen in chapter 3. The functions derived are then Co continuous which is

sufficient in many cases. Sometimes, though, it is necessary to use shape functions

with higher order of continuity particularly in plate and beam bending problems

and in streamfunction models of viscous flow problems. Other types of polynomial

are then used.

In this chapter we are concerned with the generation of shape functions based

on Hermite polynomials using a Computer Algebra package. The Hermite poly

nomials used are the Hermite interpolation polynomials, as distinct from the Her

mite orthogonal polynomials which are quite different. These shape functions are

then used to generate element mass, geometric stiffness and stiffness matrices.

These matrices are well known and can be found in text books related to structural

analysis1•2,3•4 . Since the original paper on the topic5 showed computer generated

coefficients, the idea is not new. Rather the idea is to show, in an educational

sense, how simply standard element matrices can be generated using Computer

Algebra.

As an example, this chapter demonstrates how much easier and simpler it is

to derive the mass, geometric stiffness and stiffness matrices using the Computer

Algebra system REDUCE. The REDUCE program incorporates the calculation

of the Hermite shape functions, the formation of the integrand for the element

matrices and the analytical integration of these integrands, which is probably the

most difficult and tedious task to carry out by hand, despite the fact that these

69

Chapter 5: Automatic generation of bending element matrices

integrands are polynomials. FORTRAN code is also automatically produced from

the symbolic expressions. The method is flexible as it allows us to generate matrices

for any size of element in one and two dimensions, with an obvious extension to

three dimensions. A paper has been published6 on this work.

In the following sections the equations will be established and the use of Com

puter Algebra to carry out the calculations will be explained. The full REDUCE

code and FORTRAN routines are provided in appendices D, E and F. This and

similar exercises could profitably be used in finite element courses.

5.2 Formation of the Hermite shape functions

The theory for the one dimensional elements will be briefly repeated here for

the convenience of the reader. The interpolation polynomials used here are such

that at each point i of co-ordinates Xi, the values of the interpolated function f(x)

are continuous as well as its derivative f' (x). This can be expressed as follows (see

Figure 5.1):
n

f(x) = L,(Hi(x)fi + hi(x)Jf), (5.1)
i=l

where

fi = f(x = Xi)

t = df(x) (x =Xi)
t dx

Hi(x) = 1 and H:(x) = 0 when X= Xi

Hi(x)=O and n:(x) = o when j # i
(5.2)

X= Xj

hi(x) = 0 and h~(x) = 1 when X = Xi

hi(x) = 0 and h~(x) = 0 when X= Xj j # i,

and i=1,2 ... n.

Hi and hi are the Hermite interpolation polynomials where H ensures that

the values of the interpolated function f are continuous and h ensures that the

70

Chapter 5: Automatic generation of bending element matrices

f(x)

Figure 5.1 : Interpolation using Hermite polynomials

derivatives of f are continuous. The expressions for H and h are recalled below:

n (x-x·)
2

Hi(x) = (aix + bi) J1 Xi_ :j
j::l.i

n 1
ai = -2 L ...,----~

i=l (xi- Xj)
j#i

bi = 1 - aiXi

(5.3)

It is easy to check that the above polynomials exhibit the properties given in

equation (5.2).

The language REDUCE can easily be used to generate the analytical expres

sions corresponding to equation (5.3). This can be seen in the REDUCE program

in appendix 0 at lines 91-100, where XX(I) represents the node's co-ordinate Xi. X is

a variable standing for itself, which means that it does not hold a numerical value.

ai, bi are represented in the program by AA and BB. Both H and h are stored in the

71

Cl1apter 5: Automatic generation of bending element matrices

same vector HE~ where the arrangement is that H 1, h 1, H 2, h2, ... H n, hn are stored

sequentially in HERM. An example of the values of H and h for a one dimensional

linear element calculated by the REDUCE program is next given below:

3 2 3
L - 3•L•X + 2•X

HERM (1) = --------------------
3

L
2

X •(3•1 - 2•X)
BERM (3) = ----------------

3
L

2 2

HERM (2) = ---------------------

2

2
L

X •(L - X)
BERM (4) = - ------------

2
L

The two dimensional shape functions are obtained by multiplying together two

one dimensional Hermite polynomials, each related to one of the two variables x

or y. The continuity of both the values of a two dimensional function g(x, y) and

its derivatives with respect to x, y and xy has to be achieved. Let us call the

two dimensional shape functions SF. To ensure continuity as expressed above the

following equations hold:

SFm(x,y) = Hi(x)Hj(Y)

8~:m(x,y) = hi(x)Hj(Y)

8SFm () By (x, y) = Hi x hj(Y)

82SFm
8

x
8

y (x,y) = hi(x)hj(y),

(5.4)

where (i,j) refers to the node at position i,j in the element as shown in Figure 5.2.

m is the number of the node whose position is i,j. The definition of SF above

enables us to write the interpolated expression for a function g(x, y) as follows:

() _~(SF 8SFm89m 8SFm89m 82SFm82gm)
g x,y - ~ mYm + 8 8 + 8 8 + 8 8 8 8 '

m=1 X X y y X y X y
(5.5)

where n is the number of nodes in each dimension, 9m is the value of the function

gat point m of position i,j in the element, 8gm/8x, 8gm/8y, 82gmf8x8y are the

values of the derivatives of g at point m.

72

n

j

Chapter 5: Automatic generation of bending element matrices

~------------------~n•n

------------1 m
I
I
I
I
I
I •

2 I I n

n

= node number

= node position

Figure 5.2 : Position and numbering of the two dimensional element nodes

The REDUCE code for two dimensional elements can be found in appendix D

at lines 107-118. The RE;DUCE command SUB locally substitutes the variable X

by Y in HERMXY, which stores the two dimensional shape functions SF, but does not

affect their value in memory, thus allowing further substitutions to be carried out.

Although three dimensional C1 shape functions are rarely used they can be

found as follows. All three variables x, y and z and their corresponding derivatives

(8j8x, 8j8y, 8j8z, 82j8x8y, 82j8y8z, 82 j8x8z, 83 j8x8y8z) are involved. For

example, SF and the derivative 82/ 8x8y are defined as follows:

SFm(x,y,z) = Hi(x)Hj(y)Hk(z)

82SF
axa;·(x,y,z) = hi(x)hi(y)Hk(z).

(5.6)

The function H is used when the variable x, y or z does not appear in the

derivative and h is used otherwise. The REDUCE code, although not given here,

would be very similar to that for the two dimensional case, where an extra term

SUB(X=Z,SUB(L=C,HERM(1,K4))) would be multiplied to the expression for HERMXY.

5.3 Formation of the bending element matrices

Using the shape functions established previously, element mass, geometric stiff

ness and stiffness matrices can be calculated. These three matrices can be derived

for one, two or three dimensional cases. In this section we will only consider the

one and two dimensional equations as only these two have been implemented. The

three dimensional case is easy to obtain too but there are few practical applications

for this case.

73

Cl1apter 5: Automatic generation of bending element matrices

First the matrix equations in the one dimensional case are established. The

element considered is shown in Figure 5.3.

xt x2 xn
X

1 2 n
Figure 5.3: One dimensional element

The mass (M), geometric stiffness (G) and stiffness (K) equations are defined

. M =loa p(f(x))2dx

G = J." u(d',i:))' dx (5.7)

K =f." EI(tfl.fx~x))' dx,

where p, a and EI are constants related to physical properties of the element.

Replacing f(x) by its discretised interpolated expression from equation (5.1) we

obtain the matrix formulation. Let us introduce a vector N storing all shape

functions as follows:

N(2i- 1) =Hi

N(2i) =hi 1 ~ i ~ n,
(5.8)

where n is the total number of nodes of the one dimensional element. This is

shown Figure 5.4. The element matrices can then be expressed as a function of

the vector N as follows:

ELM = loa pNtN dx

ELG =f." u(:) t (:) dx

ELK= f." EI(~::)' (~::) dx.

74

(5.9)

Chapter 5: Automatic generation of bending element matrices

~ h1 H2 h2 Hn hn

Figure 5.4 : Vector N

The REDUCE code which achieves this is given at lines 101-105 and lines

130,141 and 151 of the appendix D. The vector N is represented in the REDUCE

program by BERM. The first and second derivatives of N with respect to x are

stored in the program as OHERM and D2HERM (lines 101-105 of appendix D). They

are calculated using the REDUCE operator DF(f, var) which calculates the partial

derivative of the function f with respect to the variable var.

The integrands of the integrals shown in equation (5.9) are derived as depicted

in equation (5.9), which is shown in the appendix D at lines 130, 141 and 151.

The REDUCE operator TP takes a symbolic matrix as argument and returns it

transposed. The multiplication sign refers to matrix multiplication, although the

same sign is used for scalar multiplication. The analytical integration is carried

out using the operator INT2 which is defined in the appendix D at lines 79-80. It is

striking that the extensive expansion of polynomials and their integration, which

is so tedious for the human, are carried out with very few instructions, and with no

mistakes. The integrands of the element matrices obtained at lines 130, 141 and

151 are then integrated using this user defined operator (lines 131-132, 142-143

and 152-153 of appendix D).

In two dimensions, the mass, geometric stiffness and stiffness equations become:

M =loa fob p(g(x, y))2dxdy

G =loa fob(V(Gx,y9(x,y))) 2dxdy

K =loa fo\v 2 (Dx,yg(x, y)))2dxdy,

(5.10)

where Vis the gradient functional (Vg = (8gj8x, 8gj8y)), V2 is the Laplace

75

Chapter 5: Automatic generation of bending element matrices

operator, Gx,y and Dx,y are matrices of constants related to the directions x and

y. A matrix form can then be derived from equation (5.10) by replacing g(x, y)

by its discretised interpolation form. In two dimensions the vector N of shape

functions becomes:
N(4k- 3) = HiHj

N(4k- 2) = hiHi

N(4k- 1) = Hihi

N(4k) = hihj,

(5.11)

where (i,j) are the positions of the nodes in the element, 1~ k ~ nand n is the

number of nodes in each dimension. The expressions for the element matrices are

therefore as follows:

(5.12)

where

Txy l
ay

0 l 0 '
Dxy

and ax, ay, rxy, Dx, Dy, Dxy, D1 are constants. They respectively represent the

direct stress resultant in x direction, the direct stress resultant in y direction, the

shear stress resultant in x and y directions, the flexural rigidity in x direction, the

flexural rigidity in y direction, the Poisson ratio effect and the torsional rigidity.

The REDUCE code for the two dimensional elements is very similar to that

for the one dimensional elements where both variables x and y appear and the

differentiation has to be carried out with respect to these two variables. This

is shown in appendix D at the following lines: 119-122 for the calculation of

76

Chapter 5: Automatic generation of bending element matrices

derivatives of N, represented by HERMXY in the program, 135-137, 145-147 and

155-157 for the calculation of the element matrices and their integration.

5.4 The REDUCE program

The REDUCE program is organised in two parts: procedures which generate

the FORTRAN code and a main program which carries out the calculations to

obtain the analytical expressions for the element matrices, as shown in previous

sections.

The FORTRAN code is obtained using a REDUCE feature (switch ON FORT)

which enables the translation of REDUCE expressions into FORTRAN code. This

is done automatically so that provided the REDUCE code is error free the FOR

TRAN code will also be error free. This is a very easy and comprehensive way for

obtaining code for the element matrices.

A listing of the REDUCE procedures which translate the REDUCE analytical

expressions for the element matrices into FORTRAN is given in appendix D at

lines 4-66. The procedure WRITEEL1 (lines 4-24) generates FORTRAN code for the

one dimensional matrices and WRITEEL2 (lines 27-50) produces FORTRAN code for

the two dimensional matrices.

The FORTRAN code obtained for two dimensional elements appeared to be

very large which lead us to consider optimising the code. The first obvious opti

misation arises from the fact that the element matrices are symmetric therefore

only half of each matrix needs to be generated. A small FORTRAN routine can

be used to fill in the other half of the matrix so it is complete. This optimisation

process has been included in the REDUCE code so that only half of the analytical

expressions for the matrices are actually translated into FORTRAN.

The second optimisation consists of avoiding multiple calculation of the same

intermediate expressions. For example in the calculation for ELM, expressions

like ab, ab2, a2b2, a2b3 ... etc arise several times in the FORTRAN code (up to 32

times for a2b2). Similarly, expressions like a2ay and a2 Dy appear up to 136 times

in the code for ELG and ELK. It is more efficient to calculate these expressions

77

Chapter 5: Automatic generation of bending element matrices

once at the beginning of the program, assign them to intermediate variables and

use these intermediate variables subsequently in the program.

Using the version 3.3 of REDUCE from 1987, there is no easy way to detect

such repetition of intermediate expressions in the analytical expressions in the

REDUCE code itself. Therefore the optimisation has been carried out by hand in

the FORTRAN code using a text editor. The FORTRAN routines generated for

the one and two dimensional stiffness matrices is given in appendix F. Nevertheless,

the latest version of REDUCE from July 1991, which has just been announced,

claims to contain an optimisor of FORTRAN code which would avoid the post

editing mentioned above.

The program as it stands in appendix D is theoretically capable of generating

the bending element matrices for any order of element. In practice, though, as the

element matrices become larger, the system tends to run out of memory. This has

been experienced for two dimensional quadratic elements. The program was run

on the mainframe computer of the University of Durham, an Amdhal 5860, where

REDUCE can use up to 1Mbyte of memory.

Therefore, it has been necessary to modify the program so that the bending el

ement matrices are not actually stored in the REDUCE program, but each element

of these matrices is evaluated in turn. The principle of the new program is similar

to that of the old program except that the matrix multiplication which was carried

out automatically to obtain the integrand of the element matrices is replaced by

the explicit coding of this multiplication using loops. The full modified program is

shown in appendix E. This modification implies that a lot less memory is required

and the code could run on a smaller machine. Although it might take up to several

minutes to compute the FORTRAN routines for quadratic and higher order two

dimensional elements, this is only done once, thus it is not of prime concern.

5.5 Tests and conclusions

When FORTRAN code is automatically produced using a Computer Algebra

system it is necessary to check that the code obtained is correct. The checks can

be carried out by hand on the analytical expressions obtained. It can be tedious

if no external source of results is available and some of the calculations have to

78

Chapter 5: Automatic generation of bending element matrices

be carried out by hand, which defeats in a way the purpose of using a Computer

Algebra system.

Another method is to automatically test the FORTRAN code by checking

that it complies with some known physical or mathematical properties. Usually a

combination of both methods leads to a very secure FORTRAN code.

The mass, geometric stiffness and stiffness bending element matrices for one

and two dimensional linear elements have been checked by hand against published

results 7•8•9.

The matrix ELK has also been checked using the property that a general

rigid body motion should give zero nodal forces and moments. The corresponding

equations are as follows:

1 dimension

2 dimensions x = (a,,B,,,o,

Q + ,B * a,,B,,,o, (5.13)

a+r*b,,B,,,o,

a+ ,B *a+ 'Y * b, ,B, '' 0),

where a and b are the dimensions of the element in the x and y directions.

Using the vector x defined in equation (5.13) should then lead to the following

result:

ELK*x= 0. (5.14)

This has successfully been checked.

Computer Algebra has been used to automatically generate known expressions

for element matrices used in mass, geometric stiffness and stiffness problems. The

FORTRAN code obtained is reliable and has been optimised. The advantage of

the Computer Algebra approach is that it is an easy and comprehensive way for

obtaining code for these element matrices and if necessary new matrices for higher

order elements can also be derived using the REDUCE program developed.

79

Chapter 5: Automatic generation of bending element matrices

In using Computer Algebra, the work of forming element matrices is greatly

simplified and the possibility of errors is reduced. It allows students to generate

their own matrices without a lot of tedious algebra. This makes the teaching pro

cess more interesting and enjoyable for the student. He or she can concentrate on

the underlying theory and not the tedious and error prone algebraic manipulations.

New formulations and speculative elements can be explored quickly and easily. The

conciseness of the REDUCE code, particularly after the formatting instructions are

removed, in comparison with the resulting FORTRAN is very striking.

This chapter concludes the first part of the thesis concerning the use of Com

puter Algebra in finite element analysis. Its main aim was to demonstrate the

feasability of such methods and their potential use in this branch of engineering,

opening prospects for other fields using similar algebra. A practical application of

this methodology will be presented in part 3 where Computer Algebra is used to

generate element matrices for non-linear studies using finite element analysis.

References

1. McMinn S.J., Matrices for structural analysis, 1962.

2. Livesley R.K., Matrix Methods of Structural Analysis, Pergamon press, 1964.

3. Godden W.G., Numerical Analysis of Beam and Column Structures, Prentice-Hall Inc.,1965.

4. Przemieniecki J.S., Theory of matrix structural analy.~is, McGraw-Hill Book Company, 1968.

5. Bogner F.K, Fox R.L and Schmit L.A., 'The generation of interelement-compatible stiffness
and mass matrices by the use of interpolation formulae', Proceedings of the Conference on
Matrix Methods in Structural Mechanics, Air Force Institute of Technology, Wright Patterson
A.F Base, Ohio, USA, October 1965.

6. Barbier C., 'Automatic generation of bending element matrices for finite element method
using REDUCE', to appear in Engineering Computation.

7. Ref 4., pp 81. 297 and 391.

8. Ref 5., Addendum p 441 and Table 6 pp 430-431.

9. Clark. P.J., ·The Vibration of a Stiffened Panel: Analysis by means of an Orthotropic Plate
Conforming Finite Element', MSc Ma·rine Technology, The University of Newcastle-upon
Tyne, September 1982.

80

Part II

Parallel Solvers

81

Chapter VI

Introduction to parallel processing

'Parallel processing' is a term found increasingly in journals and conferences.

It appears to be the key in the search for more processing power. Although this

concept is usually thought of as new, parallel processing has been around for some

time, not always, however, successfully surpassing the performance of conventional

computers of their time.

Parallel processing is an attractive option in number crunching applications,

such as the finite element method, to gain more power at little cost . Several

aspects of the finite element method are suitable for efficient implementation on

parallel machines including the formation of the element matrices and the solving of

linear/nonlinear systems of equations. In this part, the implementation of parallel

solvers for systems of linear equations is analysed. The next part is concerned with

the parallel formation of element matrices.

Since parallel processing has only recently become widely available there are

no standards available either in machines and software or in vocabulary and terms

used to describe such systems. Therefore, it seems appropriate to define more

precisely what is meant by parallel processing and what systems are available,

including the ones used in this work .

. 1 Brief history

The concept of parallel processing has been around since the early days of

computing. Menabrea1 (1842) wrote in his 'Sketch of the analytical engine invented

by Charles Babbage' that 'when a long series of identical computations is to be

performed ... , the machine can be brought into play so as to give several results

at the same time . . . '.

When the first specification for computers was designed by John von Neumann

in 1947, the model was serial which meant that only one thing was happening at a

82

Clw.pter 6: Introduction to parallel processing

time, therefore making the specification easy to understand and implement. Nev

ertheless, the idea of parallelism was already there but unfeasable to implement

with the technology of the time. Several factors contributed to bring the idea of

parallel processing to life in the late seventies2 , when these machines were primi

larily built for study as things in themselves. The main factor was the advent of

the VLSI technology which meant that the cost of computers was not any more an

exponential function of the cost of the individual elements like at the time when

the vacuum tubes were used. The second factor was the development of program

ming techniques such as time sharing, semaphores which, being well understood,

could be used directly in a parallel computer prototype.

One of the first practic;al implementations of a parallel machine was 'the first

supercomputer'3 , the ILLIAC IV composed of 64 processors and designed in 1967.

It was commercially produced and used for several years by NASA 4 in the 70's.

A number of research projects on parallel computers resulted in machines which

did not turn into commercial products. The examples of the Cm* (Computer

Module, 1978) and WRM (Wire Routine Machine, 1983) are discussed in Almasi

and Gottlieb4 . The first machine consisted of 50 16-bit processors and the latter

machine had 64 8-bit processors.

These early multiprocessor systems still suffered from underpowered hardware

with heavy overheads for communications and memory access. At the same time

serial machines were developing fast as the hardware improved, and the new tech

nology parallel machines had not only to keep up with the serial machines but also

had to surpass them.

In the eighties, parallel computers intended for use rather than for study started

to appear. Nevertheless, they were generally regarded as an academic curiosity

whose natural environment was the research laboratory2. Among these early com

mercially produced machines are the ICL-DAP and the Cosmic-cube.

There are several reasons for moving to parallel processing on a commercial

basis nowadays. Parallel computers tend to be more cost effective than the serial

machines, as ten small VLSI chips cost less than one big one. The other and

probably main reason is the physical limitation that information cannot travel

faster than the speed of the light. One way of overcoming this limitation is by

83

Chapter 6: Introduction to parallel processing

reducing the distance that the information has to travel, which is achieved by new

technologies, like the use of GAs, but is limited by quantum mechanics. The other

way is to move more information at once, which is parallelism.

Today, parallelism is being used to produce increasingly powerful and cost

effective machines. The questions are then how many and how big should the

processors be and how should they be organised. This is discussed in the following

sections.

Although the term 'serial machines' is used nowadays to designate machines

using the von Neumann model of computers, the hardware architecture of these

machines is very often para:llel with operations within the machine being executed

concurrently, usually hidden from the user.

This is the case of the CRAY-1 5 , one of the first widely available 'Supercom

puters', which was based on a pipeline architecture where only one processor was

used but the ALU and CPU within this processor were replicated, connected in

a pipeline form and ran concurrently. Another type of parallelism found in single

processor machines is the multifunction architecture where some function units are

replicated (like the co-processor for floating point operations) and run in parallel

under an expanded control unit. An example is the 8086 chip from Intel with its

floating point co-processor 8087 chip found in Personal Computers. Parallelism

is also present when machines are connected through communication networks

(distributed processing).

6.2 Definitions

Before starting a more detailed review of parallel processing it is useful to

define what is meant by parallel processing in the light of the discussion in the

previous section. A general definition is given in Almasi and Gottlieb6 : it is 'a

large collection of processing elements that can contribute and cooperate to solve

large problems fast'.

As this definition includes the kind of parallelism found in single processor ar

chitecture (pipelined, multifunction) as well as the parallelism found in distributed

systems (networks), for this work it is necessary to narrow down the scope of the

84

Chapter 6: Introduction to parallel processing

definition by adding that only processing elements composed of a whole CPU and

included in a single physical machine will be considered. This can be denoted as

a multiprocessor machine.

Another term which appears along with this kind of machine is process or task.

This is a part of a job which can be carried out on a multiprocessor machine with

several processes working concurrently to contribute to the end result. In other

words, a process is to software what a processor is to hardware.

The problem to be solved is split up into tasks or processes. Processes are then

assigned to processors for execution. Where more than one process is assigned to

one processor, each process may run either serially (in a von Neumann fashion)

or concurrently. In the latter case, techniques like time sharing may be used to

emulate parallelism.

6.3 Classification of multiprocessor machines

The size, number and inter-relationship of processors and processes (hardware

and software) are used to classify the type of machine available and the kind of

parallelism which can be achieved for a particular problem. A technical vocabulary

has been developed to define the quantities used in classification. First let us

consider the machines.

The coupling of a multiprocessor machine defines how much hardware is shared

between the different processors present in the machine. Two types of machines

currently exist: loose coupling and tight coupling machines which respectively cor

respond to what is called distributed memory (not to be confused with distributed

processing) and shared memory multiprocessor machines. The shared resource is

the memory and the amount of coupling is measured by how much memory two

processors in a machine can both freely access.

Another parameter which is used in the classification of machines is the grain

of the machine. This denotes the relationship between the number of processors

and the size of each processor. Fine grain machines and coarse grain machines are

available. Coarse grain machines are composed of fewer more powerful processors

whilst the fine grain machines consist of a larger number of simpler processors.

85

Chapter 6: Introduction to para.llel processing

In a similar way one can define grain and coupling of software processes. The

grain of a particular problem is the average size of the processes which make up that

problem. The coupling is the amount of data shared between processes. Finally,

the degree of parallelism is defined as the number of processes which make up the

problem, and the the level of parallelism defines whether the parallelism occurs at

procedure level, expression level, instruction level, bit level ... etc.

The concepts introduced above enable us to differentiate between multiproces

sor machines. More general classification schemes enable us to identify all possi

ble machines whether serial, parallel, single or multiprocessor. The current most

widespread classification is that of Flynn7 which, interestingly, was defined in 1972

well before fast and efficient multiprocessor machines became commercially avail

able. It relies upon the concept of 'stream', which may be a stream of instruction

or a stream of data. The classification divides computers in four groups as shown

in Figure 6.1.

SISD
MISD
SIMD
MIMD

Single Instruction Multiple instruction

Single data SISD MISD

(von Neumann model) (pipeline systems)

Multiple data SIMD MIMD

(array processors) (general multiprocessors)

Single Instruction stream Single Data stream
Multiple Instruction stream Single Data stream
Single Instruction stream Multiple Data stream
Multiple Instruction stream Multiple Data stream

Figure 6.1: Flynn's taxonomy

This classification fails, however, to distinguish between the different types of

MIMD machines. In order to improve the Flynn classification, different schemes

have been proposed but are less in use.

86

1n Stream
1d type

icalar

lrray

I Scalar

1 Array

Chapter 6: Introduction to parallel processing

Sharp 8 proposed the scheme shown in Figure 6.2 where the MIMD category

is divided into two sub-classes. Other classification have been designed by Kuck9,

Treleaven10 and Gajski11 . They are shown in Figure 6.212 . A totally different

approach has been followed by Shore13, where machines are classifiedaccording to

their organisation from four abstract basic parts- the control unit, the processor

unit, the data memory and the instruction memory. This classification is shown

in Figure 6.314.

Single processor Multiple processors

Scalar data SES MES

(Flynn's SISD) (Flynn's MIMD)

Array data SEA MEA

(Flynn's SIMD) (Flynn's MIMD)

SES Scalar data executing on single processor
SEA Array data executing on single processor
MES Scalar data executing on multiple processors
MEA Array data executing on Multiple processors

Sharp's taxonomy

Execution Stream number and type CONTROL MECHANISM

Single, Single, Multiple, Multiple,
Scalar Array Scalar Array

SISSES SISSEA

SIASEA

MISMES MISMEA

less
exp I ic it
control

control driven

pattern driven

demand driven

data driven

I

DATA MECHANISM

SHARED MEMORY PRIVATE MEMORY
(message passing:

von I communicating
Neumann processes

logic actors

graph string
reduction reduction

dataflow dataflow
!-structure tokens

Kuck 's taxonomy Treleaven's taxonomy

87

Chapter 6: Introduction to parallel processing

Task Process Instruction

Serial

Parallel

Gaiski and Pier's taxonomy
Flynn Kuck

~~-
l
~:;ki

Treleaven triplet

Summary

Figure 6.2: Sharp's , Kuck's, Treleaven's and Gajski and Pier's taxonomies

6.4 Multiprocessor machines : Old and New

Although not complete, the Flynn taxonomy being the most popular, it is

used next for the description of a few typical machines. Several books have a

comprehensive description of parallel machines available15•8•16•4 . An up-to-date

survey of all parallel machines· available in 1991 along with a description of the

hardware and the software has recently been published2. Latest developments are

found in computing journals17•18. There are currently available on a commercial

basis several types of machines: SIMD and MIMD.

The SIMD can be of pipeline or vector type. The pipeline machines are simply

a series of processors arranged in a pipeline form with the data passing along the

pipeline and each processor receiving a different treatment. The speed of such a

structure is limited by the speed of the slowest processor. The structure attains

its maximum performance when the pipeline is full.

The vector and array processor machines are composed of a large number

of simpler processors (fine grain) which execute the same instruction, normally

with a set of hardware connections between the processors which enables the data

to circulate among the processors in a predefined way (loose coupling). All the

processors are synchronised by a clock. The machine is then rated at the speed of

the slowest processor.

88

Chapter 6: Introduction to parallel processing

!I l::l_jl I I I I
I :E i.----4 :::! I

LJLJ
I

i
I;

'--------'

Figure 6.3: Shore's taxonomy

Examples of the above machines are given in Table 6.1.

There is also a special case of SIMD machine which 1s described next. The

89

Chapter 6: Introduction to parallel processing

OLD (70's) NEW (80's) VERY NEW (late 80's, 90's)

UNIVAC CYBER 205 1) Mid-·range machines

ILLIAC IV CRAY X-MP Convex (4 proc)

IBM Stretch IBM 3090 Alliant (28 proc)

IBM 7090 ICL DAP FPS (8-28 proc)

IBM 701 NEC SX HP Apollo DN10000 (4 proc)

CDC 6600

WARP (sytolic) 2) Large scale machines

Purdue (systolic) Connection Machine (65356 1-bit proc)

CRAY Y-MP

MASPAR MP-1 (1 to 16000 proc)

Table 6.1: Examples of SIMD machines

term systolic t machine originally designated a special purpose architecture. It

consisted of a series of simple processors, called processing elements, which were

regularly interconnected so that there was links with the neighbours only and

synchronisation of the execution of all instructions by the processing elements was

achieved through a clock19 . They 'pump' data synchronously to give regular data

to the network. They are a combination of pipeline and array architectures. A

successor to the systolic machine is the wavefront machine19 which has the same

connectivity as the systolic arrays but is data-flow driven, so therefore does not

require a synchronous clock.

Nowadays, the word systolic has a more general meaning refering more to

a programming technique than to a hardware architecture20 . This programming

method, called systolic design, transforms algorithm descriptions that do not spec

ify concurrency or communication into functions that distribute the program's op

erations over time and space. These functions can then be refined further and

translated into a description for either fabrication of a VLSI chip, as it used to

be, or more recently into a distributed program for execution on a multiprocessor

machine which was not nriginally designed for systolic style programming.

t Systolic derives from the word systole which is a biological term designating the heart contraction
rhythm to pump blood

90

Chapter 6: Introduction to parallel processing

The systolic design mainly consists of, given a serial specification for a serial

algorithm, designing a restricted serial specification which can then be directly

mapped onto a systolic specification. The attractive aspect of this concept is that

this design can be automated and a wide range of problems can be suitably solved

using this technique, such as numerical analysis, signal or image processing, graph

theory ... etc. With the increasing possibilities of the new computer architectures,

some of the restrictions on systolic specification can be relaxed, such as the en

forcement of connection to neighbours only can be extended to constant distance

for all connections. The main idea of regular array has to be kept, though. The

essence of a systolic design is to minimize both the time it takes to run the program

and the number of processors necessary to run the program.

Two types of MIMD machines are found: shared (tightly coupled) and dis

tributed (loosely coupled) memory machines. Examples are given in Table 6.2.

The performance of the most recent machines are over the GFlop {109 Floating

Point Instructions per Second) mark.

The shared memory machines use common memory to exchange information

between processors with memory protection implemented both in hardware and

via the operating system. The distributed memory machines use a message passing

mechanism to transmit information between processors via hardware links. This

is illustrated in Figure 6.4.

SHARED MEMORY

Local Memory

Shared Memory

Figure 6.4: Communication in shared and distributed memory environments

The connections between processors of distributed machines can take various

91

Chapter 6: Introduction to parallel processing

SHARED MEMORY DISTRIBUTED MEMORY

OLD (80's) NEW (late 80's, 90's) OLD (80's) NEW (late 80's, 90's)

CMU Encore (Multimax) Dado project 1) Mid-range machines

C.mmp Pyramid PAX (japanese) Caltech Cosmic Cube

Cm* Sequent WRM ,psc
Denelor HEP DEC 6000,9000,5000 NCUBE-2

NYU Ultracomputer TC 2000 Intel Hypercube

BBN Butterfly Stardent Parsys

IDMRP3 !NMOS Transputer

UI Cedar Transtech boards

CHopp

2) Large scale systems

Meiko Computing surface

Tnode (France)

Intel Delta

(announced Nov 90)

Table 6.2: Examples of MIMD machines

geometric forms-linear, ring, star, tree, cube ... etc as illustrated in Figure 6.5.

The connectivity chosen depends on the nature of the parallelism found in a par

ticular application. Research is still going on in this area.

(a) Linear array

(d) Tree

(b) u..,

(e) Nearest-neichbor
••h

(c) Star

(f) Sy•tollc array

(8) Co~~pletelT
connected

(j) 4-cube

Figure 6.5: Connections between processors

92

(h) Qonlal •ina

Ml
k%

(i) 3-cube

(k) 3 .. cube-conaected cycle

Chapter 6: Introduction to paraJlel processing

Future machines seem to be moving towards hybrid architectures such as

SIMD+MIMD or towards a totally different approach to software analysis like

the data flow model described in detail by Sharp21 .

6.5 Software survey

One of the main argument against parallel processing is the lack and non

standard nature of the software available and the difficulty to program parallel

machines. This argument only applies to programmers in general, not those, like

scientific programmers in leading edge fields, who have been used to programming

in assembler languages to get optimum performance out of their machine therefore

accepting the everchanging nature of computers and computer languages.

To overcome the problems caused by parallelism various approaches have been

followed2. The approach in which the parallelism of the machine is completly hid

den to the user through the use of parallelising compilers can be quite popular for

those who are not interested in parallel processing but want more performance out

of their machine. These compilers take standard serial code, for example FOR

TRAN code, and automatically search for parallelism and produce a parallel exe

cutable code. This means that the parallel machine appears to be a serial machine

to the user with increased computing power. Such compilers are already available

for the shared memory MIMD machines like Convex and Alliant, and Meiko is

developing a similar compiler for its distributed memory MIMD machine22 .

Another approach is through tools which are developed to allow programmers

to reuse what they know about concurrent programming on conventional machines

such as semaphores. This is the case for the MIMD shared memory machines like

the Encore machines, where languages like FORTRAN have been enhanced with a

'parallel' construct together with a semaphore mechanism23 • This is easy enough

to use but ensuring that memory contengency is in all cases properly resolved

by the program implies some effort on the programmer's side, though it is not a

problem if the programmer is already familiar with these concepts.

Finally, the more involving approach is when programmers are made to write

parallel programs explicitly using various software tools. These tools can range

from more or less sophisticated function calls made within serial programmmg

93

Chapter 6: Introduction to parallel processing

languages to entirely new programming languages for describing parallel concepts.

Here the degree of commitment of the programmer to learn new concepts is vari

able.

So far the most popular approach 2 has been to provide the user with the

ability to create and place processes on processors which can communicate with one

another through function calls. The functions are provided by the manufacturer

in the form of a set of tools, or library, with a range of capabilities. Examples of

such libraries of parallel utilities, or toolsets, are given next.

The 3L parallel FORTRAN24 or C libraries for the Transputer contain very

basic facilities to send and receive messages between processes running in parallel.

It is very dependent on the hardware of the machine on which it is run as process

numbers and communication names have to be specified according to the particular

Transputer network used.

The CS Tools25 toolset is more general in the sense that it provides a layer

of abstraction between the hardware and the processes, so the variation of the

number of processors used or the change in the mapping process-processor dos not

require the program to be changed and recomplied. It also allows mixed processor

architectures to be connected together like, for example, a network of Suns and

Transputers.

At the top of the range of these utilities can be found systems like Express26•

The degree of abstraction from the hardware is higher, therefore the degree of

portability between different machines and processors is superior, although it still

restricts itself to MIMD distributed memory machines. The facilities provided are

also more comprehensive than in CS Tools. They include broadcast of messages,

global synchronisation, exchange of messages and automatic split up of grid-based

applications, such as image processing, onto processors, standardised access to in

put/output and graphics routines, debugger, tools to evaluate performance without

interfering with the execution of the program ... etc.

Another approach is to create a 'half language' which is well suited for im

plementing communication between parallel processes and can be tied up with

conventional languages like C or FORTRAN for executing the calculations. This

94

Chapter 6: Introduction to parallel processing

produces an hybrid-mixed language whose aim is to both reuse existing sequential

code and provide a standard well-suited and portable communication language.

Two examples of such languages are LINDA and STRAND. A brief specification

of the capabilities of both systems is given next.

LINDA 27 is solely a communication paradigm which supports interprocess

communication, shared data structures and process creation. It is therefore port

able on a wide range of multiprocessor machines, whether MIMD shared or dis

tributed memory machines. It claims to be simple to use and scalable, which

means that the number of processors on which the program actually runs can be

changed without altering the program. Debugging tools are provided.

LINDA is based on the concept of tuples and tuple space, which are respectively

objects and object store. A tuple is comprised of fields. These fields can, for

example, be an integer variable, which either have an actual value - they have

been assigned a value - or have a formal value - they stand for themselves. A

pattern matching mechanism operates on the tuple space so that two tuples in the

tuple space can be associated and their fields matched so that formal value fields

from one tuple are assigned to the values of the actual value fields of another tuple.

This pattern matching mechanism is used to carry out to the communication

between different processes. This is illustrated in Figure 6.6.

tuple space 5, true)

"x", 5, true

?i, ?b)

Figure 6.6: Tuples and tuple space for communication between processors

The process which sends a message places the contents of the message in the

tuple which is itself inserted in the tuple space (operation 'out'). The receiving

95

Chapter 6: Introduction to parallel processing

process looks in the tuple space for a matching tuple. If this matching tuple is

present , the message is copied accross using the matching mechanism and it is re

moved from the tuple space. If not, the receiver process is blocked until a matching

tuple appears in the tuple space. The communication is thus synchronised.

LINDA is based on ideas taken from logical languages such as object-orientated

languages. One drawback, though, is that being a high level communication mech

anism, overheads are introduced which makes it not suitable for applications like

real time monitoring.

STRAND28 follows very much the same ideas as LINDA in the sense that it is

a logic language based on .pattern matching mechanism, whose syntax resembles

very much PROLOG syntax. It is more general, however, as a whole program

can be written in STRAND, which supports arithmetic operations, comparisons,

recursivity, input/output procedures ... etc. It is therefore a concurrent logic

programming language. One important feature is its foreign language interface

which enables the incorporation of modules written in sequential languages like C

and FORTRAN. This makes it, like LINDA, an hybrid language which permits

the reuse of existing serial codes. It can thus be used as a harness to sequential

languages. It claims to be portable accross the whole range of parallel machines,

from SIMD to MIMD computers.

Finally, for those who enjoy programming in parallel, or more realistically

those who need to fully control calculations and communications, there are sev

eral dedicated parallel languages. OCCAM and ADA are two good examples of

such languages. They are both based on a formal method called Communicating

Sequential Processes29 (CSP) developed by Hoare. OCCAM is virtually the im

plementation of this method whereas ADA implements a modified version of it.

The CSP method is briefly described next and is followed by an overview of where

ADA implementation differs from it.

CSP unifies the concepts of synchronisation and communication. Processes

in CSP synchronise and communicate by means of input and output statements

based on a rendezvous mechanism. A rendezvous is established when one task is

ready to execute an input statement and the second task is ready to execute the

corresponding output statement. If either task is not ready, then the other task is

96

Chapter 6: Introduction to parallel processing

forced to wait. Communication in CSP is therefore explicit, requiring no shared

variables and CSP is therefore suitable for MIMD distributed memory machines.

The language OCCAM30 has been developed for the Transputer (see section

thereafter) and follows exactly the CSP concepts. ADA, on the other side, has

adapted the CSP concepts to produce a language containing both communication

mechanism and programming facilities designed to tackle real problems, mainly in

the field of real time applications.

The main differences between CSP and ADA are listed below31 . A rendezvous

in CSP is an unidirectional communication. In ADA, the rendezvous mechanism,

which is implemented by <;alls to functions, enables exchange of information be

tween both processes, thus realising a bi-directional communication. When a com

munication is established in CSP parameters are copied accross between the two

processes, then each process resumes its own task. In ADA, when the rendezvous

is established the process which is accepting the communication can execute state

ments before exchanging information with the process which initiated the com

munication. This enables the implementation of drivers for interface with the

hardware, such as printer drivers. Additional facilities include time-outs on com

munication, which enables the process initiating the communication to stop waiting

for the other process to be ready after a given time and retry later. This is useful

for implementing error handling mechanism.

6.6 Applications for parallel computers

The applications that can benefit from parallel processing are obviously those

which need a lot of computing power. This includes graphics, scientific and engi

neering fields such as flow dynamics, particle behaviour, weather prediction and

seismic modeling, VLSI design, Artificial Intelligence ... etc.

Some economic factors must also be taken into account in the advantages for

using multiprocessor machines. Nowadays these machines are capable of reaching

and surpassing the performance of the traditional supercomputers like the CRAY

at a fraction of the cost. This, in theory, suggests that multiprocessor machines

should put out of business the more costly machines. In practice, however, one

97

Chapter 6: Introduction to parallel processing

of the reasons that these expensive machines still sell is the availability of a wide

range of application software.

This is why machines like the CRAY Y-MP, which contains a smaller number

of powerful processors, are still very popular because large amount of software can

be recycled for them. On the smaller scale, machines based on classical micropro

cessors like the Intel 80386 which provide mainframe performance at minicomputer

cost are also popular because much of the existing software can be re-used.

Most multiprocessor machines are difficult to program and porting software

from serial machines to parallel machines is expensive and not always efficient

because of overheads introduced by the communication necessary to exchange in

formation between processes. In this sense, the shared memory MIMD machines

are easier to use than the distributed memory machines because the communi

cation is implicit through the use of common memory. Therefore, most of the

techniques developed for multitasking computers such as semaphores can be used

directly. One drawback, though, is that they cannot be scaled up indefinitely as

the access to memory eventually creates a bottleneck.

A typical example of the economic strength of the traditional supercomputer

machines is the Met Office in charge of weather forecasting and of monitoring cli

matic changes, which in early 1990 bought a new CRAY Y-MP {1.4 GFlop) to

improve its forecasting32 . The European Centre for Medium Range Weather Fore

casting is in the process of installing a similar computer32 • At the same time, com

puter scientists are excited at the possibility of analysing data related to weather

forecasting in real time when 300 GFlop machines are be available32 . The possi

bility and ease of programming such a machine is, however, still questionable.

These giant multiprocessor machines are seen by some as a step backward

because the influence of the hardware on the software is great compared to the serial

model. The implications are that parallel software is not really portable between

machines of different architectures, for example between shared and distributed

memory machines. Some high level languages have been developed to address

this issue, like LINDA and STRAND, discussed before, where communication and

parallelism are expressed as abstract models.

98

Chapter 6: Introduction to para.llel processing

The trend for the future is not clear. Some people firmly believe that parallel

machines should be able to run existing serial codes faster than on existing serial

machines and compilers which automatically parallelise serial codes are being de

veloped to address this demand. The parallelism is then hidden as it was in single

processor machines and the user need not worry about it.

Another approach which follows the same kind of ideas is to hide distributed

memory by emulating shared memory on top of it, using a switching network, as

this is easier to deal with. An example of such a machine is the BBN Butterfly

with its most recent version, the TC200033 •

Others are in favour of a totally different approach to computing where the

von Neumann model is forgotten and programs would not be instruction driven

any more. A step in this direction has been taken by object-orientated languages

like STRAND. Functional and data-flow approaches seem the trend for the fu

ture. These models assume parallelism and introduce serial processing only when

necessary.

Among all the machines and systems described in the previous sections, the

work carried out in this part of the thesis focuses on the use of a particular MIMD

distributed memory machine based on the Transputer. The application area is

engineering with the development of solvers for large systems of linear equations

as they occur in the finite element method.

6. 7 Transputers

The Transputer34 is a VLSI chip which combines processing, memory and con

nection links on a single physical chip35 . The first Transputer to be commercially

available appeared in 1985. It was the T414 32-bit Transputer. It had 2KBytes of

on-chip memory and four 10 Mbits/second serial links.

These links are a special feature of all members of the Transputer family as

they enable Transputers to be connected together in a flexible way. There is an

on-chip link manager which· looks after the exchange of information with other

Transputers enabling the communication to be concurrent with the calculations.

Although each Transputer possesses four links which enable the construction of

99

Chapter 6: Introduction to parallel processing

various shapes of Transputer network, t here is a limitation on the complexity of

possible connections. For example, with four links, a maximun of five Transputers

can be arranged in a complet ely connected network as shown previously in Figure

6.5.

A more powerful Transputer, t he T800 , was introduced in 1987. It has 4

KBytes of on-chip memory and a floating point co-processor but st ill four links,

running at 20 Mbits/second. Its internal architecture is shown in Figure 6. 7.

Figure 6. 7: Transputer 's internat architecture

This is the type of Transputer used for the work carried out in this thesis.

At the time of writing this thesis, a newer version of the Transputer family was

launched , the T9000. It has increased power, achieving 200 Mips and 25 MFlops

peak performance at 50 MHz. It is based on a superscalar architecture with a

32-bit integer processor and a 64-bit floating point unit . The on-chip memory

has been increased to 16 Kbytes. It is believed that it has the right balance of

computing and communications36 and is expected to fare particularly well in the

embedded applications market.

Transputers can be programmed with many conventional languages: FOR

TRAN, Pascal, C, Prolog ... etc. These languages have been enhanced with tools

to build parallel programs. A special purpose language, OCCAM, was developed

based on the formal method CSP The Transputer, in terms of design, implements

in hardware the philosophy of CSP. OCCAM and the Transputer were developed

at the same time

100

Chapter 6: Introduction to parallel processing

The Transputer Development System37 helps to develop OCCAM programs,

provid.ing a special editor based on folds, a compiler, a linker and a means of config

uring the Transputer. A number of other operating systems have been developed

for Transputer-based systems including Trollius, MeikOS and Helios, all described

by Harp19 .

Transputers on their own do not constitute a usable machine as they do not

provide access to external devices like keyboards, screens and files. Most of the

time a network of Transputers is attached to a 'host machine', for example a PC or

a workstation. A file server runs on the host machine which executes, for example,

file access for the network of Transputers.

A Transputer-based machine can come in two forms. The first form consists

of Transputers connected to a host machine which runs the operating system.

Processes are loaded onto the processors and executed by a command given on the

host. While the parallel system is running, the host acts as a fileserver. In the

second form, the operating system runs on one or more of the parallel processors.

In this case, the host machine acts solely as a fileserver.

An example of the first case is a PC with a INMOS34 or a Transtech38 add-on

board where the user accesses the network of Transputers via the PC command

line. An example of the second case is the Meiko Computing Surface39 , based on

the MeikOS operating system (Meiko's implementation of UNIX), such as the one

in the Edinburgh Parallel Computing Centre40 , where the user actually logs on

to the Transputers themselves and never has to deal directly with the file server

machine. The operating system runs, however, solely on one Transputer of the

network. Another operating system, Helios, is a fully parallel implementation of

UNIX which runs accross the network of Transputers.

The machines used for this work are of the two types. The machines involved

were a PC with a Transtech board, a Sun SPARCstation remotely logged on to a

Meiko Computing Surface and the Edinburgh Concurrent Supercomputer. A brief

description of each machine and their corresponding software is given next.

The first machine is an IBM PC AT with a TMB0841 Transtech board con

taining three T800 Transputers, one with 8 MBytes of memory and the other

101

Chapter 6: Introduction to parallel processing

two with 2 MBytes of memory. The idea behind this selection of memory is that

one Transputer, called the root, would store all the relevant data for the program

while the other two Transputers would carry out calculations on subsets of the

data, therefore needing less memory.

The programs for this machine have been developed using the 3L parallel

FORTRAN24 which is standard FORTRAN enhanced with some non-standard

features (such as identifier names longer than six characters) and with a library

of routines enabling communication between processes and processors. This is the

function calls approach to parallelism described in section 6.5.

The second system is composed of a SPARCstation 1, running version 4.0.3

of Sun's SunOS operating system and a Meiko Computing Surface comprising one

local host MK014 board, two MK060 boards with four T800 Transputers with 2

MBytes of memory each, the whole being contained in a M10 cabinet. Programs

have been written in Meiko FORTRAN which is similar to that of 3L except the

library of routines for communication is a general purpose ready-made communi

cation harness, CS Tools, more powerful than the 3L routines for communication.

The SPARCstation was used to develop the program as CS Tools enables us to run

concurrent processes on one processor, here the Sun processor42 . The program had

to be recompiled to run on the Transputers as the machine language is different

for each chip.

The third system used is the Edinburgh Parallel Computer Center (EPCC)'s

Computing Surface which is based on Meikos's Computing Surface. It is a multi

user machine, consisting of domains of Transputers, each with its own local mem

ory, and interconnected by programmabe switch chips. This machine is part of

the EPCC's pool of parallel machines which also includes an AMT DAP, a Meiko

i860 facility and a Parsytec machine. Details about the EPCC can be found in its

Anual Report and Project Directory43 . As this machine is in effect a standalone

Transputer-based machine, it is worth giving a more detailed description, which is

presented in the following paragraphs.

The Computing Surface comprises over 430 Transputers organised in groups of

fixed sizes. It revolves around a spine of T414 Transputers which handles all the

102

Chapter 6: Introduction to parallel processing

data transfers in the machine. Connected to the spine are file servers, terminals

and these groups of Transputers called domains.

Each domain is composed of a seat Transputer, a T800, and a number of slave

Transputers, also T800, all having a minimum of 4Mbyte of memory each. The seat

Transputer is connected to the file servers and outside world via its corresponding

T414 on the spine.

The entire machine is managed by a global operating system, called M2VCS,

which is in charge of allocating resources to the user, handling communication

accross the spine and dividing the machine into a number of domains. Each domain

runs on the seat Transpu~er a UNIX like operating system called MeikOS. The

editing and compiling of the user's programs are carried out under MeikOS on the

seat Transputer while the program itself runs on the network of slave Transputers.

The domains thus appear like a private, single user computing surface, very much

like powerful workstations. MeikOS also manages the fileservers which are Hewlett

Packard disks.

The partition of the machine into domains is such that small domains are

available for testing and debugging purposes and larger domains are reserved for

high performance runs. The machine can be accessed remotely via the national

academic network JANET, which was the route used for the work in this part.

Finally, the software supported on the Computing Surface comprises FORTRAN,

C, OCCAM and CS Tools.

The programs were initially developed on the PC then adapted to run on the

Meiko machines. The difference between the two versions is in the communication

aspect of the program. On the PC the communication involves establishing and

numbering every communication between two processes whereas on the Meiko the

actual communication is carried out by CS Tools and the user refers to it by

abstract names which means that the number of processes and processors can

easily be changed without recompiling the programs. More details about the use

of CS Tools in the program will be given in subsequent sections.

Having set the scene on parallel processing and Transputers the next section

will be devoted to the definition of the problem and the derivation of the parallel

103

Chapter 6: Introduction to parallel processing

algorithms.

References

1. Menabrea L.F. Sketch of the analytical engine invented by Charles Babbage, ESP. Bib
liotheque Universelle de Geneve, 82, 1842.

2. Trew A. and Wilson G., Past, Present, Parallel: A Survey of Available Parallel Computing
Systems, Springer-Verlag, 1991.

3. Hord R.M., The flliac-IV: The first Supercomputer, Computer Science Press, 1982.

4. Almasi G.S. and Gottlieb A., Highly Parallel Computing, The Benjamin/Cummings Pub
lishing Company Inc, p27, 1989.

5. CRAY-1 system (1976) described in Ref 3, p311 & Hockney R.W and Jesshope C.R, Parallel
Computers, Adam Hilger Ltd, 1981.

6. Ref 4, p5.

7. Flynn M.F, 'Some Computer organisations and their effectiveness', IEEE Trans. Compt.
C-21, pp 948-960, 1972.

8. Sharp J .A, An introduction to Distributed and Parallel Proce'ssing, Blackwell Scientific pub
lications, p37, 1987.

9. Kuck D.J, The structure of Computers and Computations, John Wiley publishing, 1978.

10. Treleaven P., 'Control-Driven Data-Driven and Demand-Driven Computer Architecture (ab
stract)', Parallel Computing 2, 1985.

11. Gajski D.D. and Peir J., 'Comparison of five multiprocessor systems', Parallel Computing
2, pp 265-282, 1985.

12. Ref 4, pp 112-114.

13. Shore J.E., 'Second thoughts on parallel processing', Computers and Electrical Engineering,
1, (1), pp 95-109, 1973.

14. Ref 8, p35.

15. Kuhn R.H. and Padua D.A. Tutorial on Parallel Processing. IEEE Computer Society pub
lication, 1981.

16. Hackney R.W. and Jesshope C.R, Parallel Computers 2: Architecture, programming and
Algorithms, ed. Adam Hilger, 1988.

17. Computing, weekly publication. VNU House, 32-34 Broadwick street, London, W1A 2HG,
UK.

18. Computer Weekly, weekly publication, Quadrant House, The Quadrant, Sutton, Surrey, SM2
5AS. UK.

19. Harp G., Transputer Applications, Pitman ed., p5, 1989.

20. Lengauer C. 'Systolic Design', Edinburgh Parallel Computing Centre annual Seminar: Ab
stracts, 23rd September 1991.

21. Ref 8, pp 139-169.

104

Chapter 6: Introduction to parallel processing

22. Neesham C., 'Hi-tech wheathercocks help to save the planet', Computing, pp 16-17, 19 july
1990.

23. Encore Computer Corporation, PO Box 409148, Fvrt Lauderdale, Florida, 3334Q-9148, USA.

24. Parallel FORTRAN user guide, 3L Ltd, Peel House, Ladywell, Livingston, EH54 6AG, UK,
1988.

25. CS Tools, A technical overview and A programmer'.~ introduction to SUN - CS Tools, Meiko
Limited (Ref 30).

26. Ref 2., pp 292-296.

27. Leler W., 'Linda meets UNIX', Application of Transputers, Proceedings of the First Inter
national Conference on Application of Transputers, Liverpool, UK, 23-25 August 1989, and
Ref 2., pp 304-308.

28. Foster I. and TaylorS., STRAND: New Concepts in Parallel Programming, Prentice Hall.

29. Hoare C.A.R., 'Communication Sequential Process', Communication of ACM, 21, (8), Au-
gust 1978.

30. !NMOS Limited, OCCAM 2 Reference Manual, Prentice Hall, 1988.

31. Gehani N., ADA, Concurrent Programming, Prentice Hall, 1984.

32. Abate T., 'Engines power business towards the chequered flag', Computing, pp 22-23, 13
december 1990.

33. Ref 2., pp 64-75.

34. The Transputer is manufactured by INMOS Limited, 1000 Aztec West, Almondsbury, Bris-
tol, BS12 4SQ, UK.

35. Ref 19, pp 11-30.

36. SERC/DTI Transputer Initiative Mailshot, !NMOS News Release, p 17, May 1991.

37. Transputer Developement System, second edition, INMOS Ltd, Prentice Hall, 1990.

38. Transtech Devices Limited, Unit 17, Wye industrial estate, London road, High Wycombe,
Bucks., HPll 1LH, UK.

39. Meiko computing surface, available from Meiko Limited, 650 Aztec west, BristoL BS12 4SD,
UK.

40. Edinburgh Parallel Computing Centre, the King's Building, Mayfield road, Edinburgh, EH9
3JZ, UK.

41. TMBOB installation and user manual, available form Transtech Devices Limited (Ref 29).

42. Computing Surface, CS Tool.~ for SunOS documentation, edition 83 - 009 AOO- 02.02, two
volumes, available from Mciko Limited (Ref 30).

43. Edinburgh Parallel Computing Centre, Annual Report 1990-91 and Project Directory, avail
able from Ref. 41.

105

Chapter VII

Parallel solvers

'.1 Introduction

In such fields as Engineering and Science the need for solving systems of linear

equations often arises as a consequence of the discretising sets of partial differential

equations, using for example finite element or finite difference methods. Such

equations model a vast multitude of physical phenomena.

There is always a need to solve large systems of equations and the size of the

systems which are actually attempted are greatly dependent on the speed with

which they can be solved. Therefore, much effort has been put into reducing the

time taken for such solutions by the construction of efficient algorithms, especially

where special features of the system can be exploited, such as symmetry, sparsity,

positive definiteness and so on. One way to speed up the solution is to use a

computer with a faster chip (ci.S one becomes available) without the need to alter

the software.

With the advent of parallel computers the necessity arose not simply to port

the relevant software to these new machines but to devise new algorithms to ex

ploit the inherent parallelism of the problem. Further difficulties existed, and still

exist, because of the greatly varying architecture of the different parallel comput

ers available. These differences manifesting themselves in the forms of variation in

the access to data, change in the number of processors and hence complexity, and

programming languages.

Research on parallel solvers has followed the developments and improvements

of parallel machines. The amount of work done in this field is too large to be

reviewed here since there is a wide range of both solvers and parallel machines. For

references, we direct the reader to two recent comprehensive surveys by Bertsekas1

on the iterative class of solvers and Gallivan2 on the direct class of solvers for dense

systems.

106

Chapter 7: Parallel solvers

Our prime interest in this work is in the direct class of solvers based on the LU

decomposition applied to dense or locally dense matrices. Therefore, the survey

focuses on this class of solvers, although it also seems interesting to mention two

special methods for solving sparse systems, as they involve new concepts also

relevant to dense problems.

7.1.1 Survey

The first method is concerned with the use of a data flow model of computer

and was developed to solve sparse systems in parallel using the L U decomposition

technique followed by forward and backward substitutions3•4 .

The algorithm for the sparse L U decomposition consists of two steps: a divide

operation involving a division and an update operation involving a multiplication

and a subtraction. A data flow diagram for these three operations is devised where

the arithmetic operations on the operands are only executed when the operands

become available.

The algorithm is implemented on the MIT TTDA t machine which is a fine grain

distributed memory computer. It is composed of N identical processing elements

whose structure is very simple, N identical storage elements which are a special

type of memory suited for storing array-like data structures and a communication

network which links processing elements and storage elements. The network is

arranged in aN-cube configuration which is composed of exactly N nodes, each of

which has exactly log2N links to the neighbouring nodes.

The scheduling of the processors and the optimal configuration for the minimal

completion time are derived from the data flow model. The point in describing this

work is to show that data flow computers are now used in practical applications

and that they are a potential successor to the traditional instruction driven models,

whether serial or parallel.

The second method is based on a large-scale MIMD machine, the (SM)2-nt.

containing thousands of microprocessors5 . It is a machine dedicated to scientific

t Tagged Token Dataflow Architecture

t Sparse Matrix solving machine

107

Chapter 7: Parallel solvers

calculations and is intended to be a back-end processor. For that reason, a static

approach is implemented and no multi-user or multi-task services are provided.

The structure of the machine can be described as a series of clusters connected

via a simple bus. Each cluster is itself composed of a limited number of processors,

each with private memory, and connected via a simple bus. Although the memory

is physically distributed each cluster has global shared logical addresses. It is a

mixture of shared and distributed memory configurations.

A small special operating system controls the machine and ensures that the

global addresses are converted to the local addresses of each processor. A C-like

language is used to program the machine. The communication between processes

is achieved through static channels and shared variables are not allowed. The

language is therefore based on a message passing strategy while the architecture

is organised around buses and global addressing mechanisms. It is an interesting

mixture of concepts which demonstrates that hybrid-mixed strategies can be viable

for certain type of problems.

The paper discusses the advantages and drawbacks of shared memory, dis

tributed memory and data flow approaches for massively parallel machines and

explains why the hybrid-mixed strategy was used in the context of solving sparse

systems of linear equations. The authors claim that for this particular problem

they can obtain 'almost the same performance level as data flow machines with a

more cost-effective structure'5.

The aim in discussing this special-purpose machine was to show how a parallel

successor to the simple math co-processor might look like and that there is a need

for this type of machines which would be plugged into the back of a general

purpose parallel computer, in much the same way as graphics cards of FFT chips

are plugged into serial computers nowadays.

More in the line of the work carried out in this chapter, Geist and Romine6 have

published a study of two possible strategies for the L U factorisation on distributed

memory machines: the row-wise and column-wise distribution of the matrix with

partial pivoting combined with respectively dynamic load balancing and pipelining

108

Cllapter 7: Parallel solvers

of operations executed at each step. Their analysis demonstrates that both solu

tions are acceptable and achieve high rates of efficiencies. Lin and Zhang7 have

proposed an algorithm for linear triangular systems suitable for both shared and

distributed memory machines which can efficiently be used for the backward and

forward substitutions for the L U solver. Concepts similar to those described in

the two previous papers have been used by Farhat and Wilsons in solving specific

systems arising from finite differences and finite elements in engineering problems.

7.1.2 Overview of the chapter

The work in this chapter has focused on the development of a set of routines

for solving symmetric and· unsymmetric systems of linear equations. The prime

interest has been in solving dense or locally dense systems, that is to say banded

systems, leaving out the solution of sparse systems, which requires very different

storage scheme and algorithms. The main reason for this choice is that these

solvers have been developed for use in finite element methods for which the systems

encountered are mostly banded. A special storage scheme has hence been adopted

to take advantage of this structure and some control over the unknowns of the

system has also been included. This is discussed in greater details in the next

section.

The work described in this chapter is a result of a collaboration with Ian

Applegarth, of the University of Newcastle-upon-Tyne. Starting from the same

basic equations, Ian has developed algorithms for an Encore Multimax shared

memory computer while a version for the Transputer-based distributed machines

was implemented as part of this work. It seems very interesting to see how the

parallel algorithms, their implementation and the performance vary between the

two machines. Therefore, together with a detailed description of the distributed

memory version of the solvers, a brief overview of the shared memory version will

be given.

The method used in this chapter follows the work carried out by Farhat and

Wilsons on the solution of symmetric systems of linear equations in parallel. The

implementation of the symmetric solver uses exactly the same algorithms as those

described by Farhat and Wilson although they did not give details of their commu

nication scheme which had therefore to be developed independently. The unsym-

109

Chapter 7: Parallel solvers

metric solver is an extension of the symmetric method for which the full algorithms

have been derived and implemented.

The algorithms have been developed m FORTRAN using double precision

arithmetic. As far as possible standard FORTRAN F77 has been used. Inevitably

however, the language has to be extended to include parallel operations. These are

carried out using the 3L FORTRAN and the CS Tools libraries of parallel utilities

for the Transputer-based machines and the Encore FORTRAN extension for the

shared memory machine.

This chapter is organised in five sections. Firstly, the full algorithms with the

storage scheme and control over the unknowns are given for the serial implemen

tation. The algorithms for this serial version have been coded up by Ian. This has

enabled us to perform comparison tests between serial and parallel implementa

tions in order to evaluate the efficiency of the parallel solvers.

Secondly, the algorithms for the parallel solution are derived for the symmetric

and unsymmetric solvers for the distributed and shared memory machines. Thirdly,

the implementation on the various machines used for this work is described. The

performance evaluation of the algorithms is then explained and a description of

the tests carried out is given. Finally, graphs of comparative timings of the vari

ous solvers along with the analysis of their meaning are discussed and conclusive

remarks are made. A paper has been written9 on this work.

7. 2 The serial approach

This section concentrates on explaining what are the underlying equations and

the corresponding serial algorithms. The problem considered is that of solving a

system of symmetric or unsymmetric linear equations which can be denoted in a

matrix form as follows:

Ax= b, (7.1)

where A is a n x n real symmetric or unsymmetric matrix, x is a vector of length

n which is the unknown of the problem and b is a vector of length n which is the

right hand side of the system or known of the problem.

110

Chapter 7: Parallel solvers

The theory for the symmetric case is a simplified version of the unsymmetric

case, therefore easier to understand. When the programs were developed, the

parallel algorithms for the symmetric solver were first investigated as it was the

easier case, and the unsymmetric system was then considered. Nevertheless, in this

chapter the unsymmetric case will be explained first followed by a presentation of

the simplification of the algorithms in the symmetric case.

The method used to solve the system of linear equations is a direct method

based on the L U decomposition followed by forward and backward substitutions.

This is a well established method which is described in many textbooks on numer

ical analysis10•11 .

The idea is to decompose the matrix A as a product of a lower triangular matrix

L and an upper triangular matrix U. This decomposition is possible because any

matrix with non-zero terms on the diagonal can be written as a product of a lower

and an upper triangular matrix in an infinity of ways12 .

The choice of a particular decomposition has lead to various methods. The

Cholesky decomposition corresponds to the case when the decomposition is made

unique by imposing that all the diagonal terms of L are equal to all the diagonal

terms of U (lii = Uii). The Crout reduction imposes that all the diagonal terms

of U are equal to 1 (Uii = 1) and the Doolittle decomposition assumes that all

the diagonal terms of L are equal to 1 (lii = 1). The technique used here is the

Doolittle method.

The corresponding equation is:

A= LU, (7.2)

where L is a lower triangular matrix with unit diagonal terms and U is an upper

triangular matrix .. In the case when the matrix A is symmetric, equation (7.2)

takes the following simplified form:

(7.3)

where D is a diagonal matrix. Identifying equations (7.2) and (7.3) in the sym

metric case leads to:

(7.4)

111

Chapter 7: Parallel solvers

Therefore, a simple relation exists between U and L in the symmetric case and

only one of the two matrices needs to be calculated. The choice is arbitrary. In

the unsymmetric case both L and U have to be evaluated. The formulre for both

cases are derived next.

7.2.1 LU decomposition

The decomposition of A into the LU form is shown in Figure 7.1.

1 0 0 0 0 0 0 uu U12 u13 U14 Uti Utn

121 1 0 0 0 0 0 0 U22 U23 U24 U2i U2n

1at 1a2 1 0 0 0 0 0 0 uaa U34 ua; Uan

141 142 143 0 0 0 0 0 0 0 U44 U4; U4n

*
1il 1;2 l;a 1i,i-1 1 0 0 0 0 0 0 U;; Uin

lnl ln2 lna ln,i-1 lni ln,n-l 1 0 0 0 0 0 Unn

au a12 a1a a14 a1; a1n

a21 a22 a23 a24 a2i a2n

aa1 aa2 a a a a34 a a; a an

= a41 a42 a43 a44 a4; a4n

ail ai2 aia ai4 aii a in

an1 an2 ana an4 ani ann

Figure 7.1: LU decomposition

It is important to stress that while Figure 7.1 shows a dense matrix, which is

a matrix whose elements are all non-zero a priori, it is equally valid for a banded

matrix where the zero elements simplify some of the calculations. This is taken

into account in the algorithms for which the special storage scheme adopted is

described in a later section.

The unsymmetric case is considered next. The calculation proceeds such that

the first row of U and the first column of L are derived first, then the second row

of U and the second column of L are obtained and so on. The calculation therefore

involves n steps, for an x n matrix, where each step produces one row of U and

one column of L. The equations for step 1, 2 and i are explicitly derived below

followed by the general formula for the step i.

112

Chapter 7: Parallel solvers

Calculation of row 1 of U
nu =au
u12 = a12

UtJ = a13

u14 = a14

uli =ali

Utn = a1n

Calculation of row 2 of U

Calculation of column 1 of L

l21 uu = a21 ¢:::} l21 = azt/uu

131 un = a31 ¢:::} 131 = a31ju11

141 un = a41 ¢:::} 141 = a4t/uu

lil u 11 = a;1 ¢:::} l;1 = a;tfuu

lntUu = anl ¢:::} lnl = an1/un

(7.5)

Calculation of column 2 of L
121 u12 + u22 = a22 ¢:::} u22 = a22 - 121 u12

121 u13 + u23 = a23 ¢:::} u23 = a23 - 121 u13

121 Ut4 + u24 = a24 ¢:::} U24 = a24 - l21 U14

121 U1i + U2i = a2i ¢:::} U2i = a2i - l21 U1i

/21 U1n + U2n = azn ¢:::} U2n = azn - 1z11t1n

ht Ut2) + l3zU22 = a32 ¢:::} l32 = (a32 - 131 u12)/u22

l41u12l + l42U22 = a42 {::::::} l42 = (a42 -l41u12)/u22

l;tUtz) + l;zu22 = a;z {:=:::::} 1;z = (a;z -1;tu12)/uzz

1nl U12) + ln2U22 = an2 ¢:::} 1,.2 = (an2 - 1nl U12)/u22

Calculation of row i of U
l;1 Uti+ l;zU2i + [;JUJi + · · .li,i-1 Ui-l,i + Uii =a;;

¢::::} U;; =a;;- (l;tU1i + l;2U2i + l;3U3i + • · .li,i-1Ui-l,i)

[il Uti+ 1;zUzi + /;3U3; + · · .[i+l,i-1 Ui-t,i+l + Ui,i+l = ai,i+l

¢::::} Ui,i+t = ai,i+t - (l;tUti + l;2U2i + l;3U3i + o o oli+l,i-t Ui-t,i+1)

lil Uti + l;zUzi + l;3U3; +. o o1n,i-t Ui-t,n + Uin = a;n

¢::::} Uin = ain - (lil Uti + 1;zU2i + 1i3U3i + o o .ln,i-t Ui-1,n)

Calculation of column i of L
[i+l.l Uli + li+t,2U2i + [i+l,3U3i + o · oli+t,i-t Ui-Li + [i+1.iUii = a;+l,i

(7.6)

¢:::} [i+l,i = ai+toi - (li+1,t Uti + 1i+1,2U2i + 1i+t,3U3i + · · .1i+1,i-t Ui-t,;)/u;;

lnot1Ltn + lnzU2n + ln3U3n + o · olnoi-1 Ui-l.n + lniUii =ani

{::::::} lni =ani- (lnt1ltn + lnzUzn + ln3U3n + o o•ln,i-tUi-t,n)/1tii

(7.7)

The general formulrefor obtaining the elements Uij of U and lji of L at step i

are therefore:

i-1

Uij = aij - L likUkj
k=l
i-1

lji = (aji- L ljkUki)/uii
k=l

J > i (7.8a)

j > i. (7.8b)

One interesting feature of these equations IS that Uii is the only element of U

calculated at step i that is required to calculate the whole of the column i of L.

113

Chapter 7: Parallel solvers

Therefore, the evaluation of this diagonal term is performed first then each element

Uij and lji are calculated in turn. The corresponding algorithms is:

for ·i = 1 to n do
calculate 'Uii

for j = ·i + 1 to n do
calculate Uij

calculate lji
end for

end for

Figure 7.2: Algorithm for the unsymmetric LU decomposition {1)

Similar equations hold for the symmetric matrix. The two matrices L and U

being dependent, only one· of them need to be evaluated and U is chosen as the

independent matrix. The elements of L are therefore expressed as a function of

the elements of U.

The dependence formula can be derived using a proof by induction. The for

mula for the first step can be derived from equation (7.5) using the property that

z
21

= a21 = a12 = u12 l31 = a31 = a13 = U13 141
= a41 = a14 = u14

un un un uu uu un un uu uu

l
.
1

_ ail _ ali _ uli
1 - - -

lnl = an1 = a1n = Uln.
un un uu un un uu

(7.9)

Assuming that for all steps from 1 to i- 1 the relation lj·i = Uij /uii holds and

using equation (7.8) leads to:

i-1

lji = (aji- L ljkUk·i)/uii
k=l
i-1 i-1

= (U·ij + L likUk~j - L ljkUki)/Uii
k=1 k=1

(~(Uk·i ~(Ukj))/ = Uij + L.- -)Ukj - L.- - Uki U·i·i
k=1 Ukk k=1 Ukk

(7.10)

i-1
_ (.. ""(-U_ki_'Uk-"-·j UkiUkj))j
- U.tJ + L.- - Uii

k=1 Ukk Ukk

114

Chapter 7: Parallel solvers

Therefore the relation between l and u is:

(7.11)

and the formula for the L U decomposition in the symmetric case is:

j ~ i. (7.12)

An examination of the equation above shows that the division by Ukk does not

need to be carried out for every Uij. This equation is related to the calculation

of the row i of U where i' is fixed for that step and j varies. This means that

the elements Uki• which are contained in the column i standing above Uii are used

without modification for the calculation of each Uij where i < j < n, whereas the

elements Ukj are different for each Uij. This is illustrated in Figure 7.3.

(fixed) (variable)
i j ---7

u
Figure 7.3: location of terms Uki and Ukj in U

Therefore if, when calculating ·uii, the terms ukdukk are stored , they can be

used for the calculation of all the other elements of the row i of U. This can be

expressed in vector notation as follows:

(
Uli U2i U3i Ui-1.-i)

Vi = UU
1

u22
1

'U33
1
••• Ui-l.i-1

W j = (U lj , U2j , U3j 1 • • • Ui-l.j) (7.13)

U·ij = aij -Vi· Wj,

115

Chapter 7: Parallel solvers

where · represents the dot product of vectors. The advantages of this formulation

is that Vi only needs to be formed once for each step, therefore saving time by

reducing the number of divisions to carry out. The algorithm corresponding to

equation (7.13) is therefore:

for i=1 to n do
form vi
calculate the dot product vcwi
for j=i + 1 ton do

calculate the dot product v;·w;
Uij = Uij - V; · Wj

end for
end for

Figure 7.4: Algorithm for the symmetric L U decomposition

The algorithm for the unsymmetric L U decomposition can also be expressed

in terms of the vectors Vi and Wj where

Vj =(lib li2, li3, · · .li,i-1)

l ··- (aji-Vj·Wi)
J~- .

Uii

The corresponding algorithm is given next:

for -i=1 to n do
form vi and w;

calculate the dot product v;·w;
Uii = a;; - v; · w;

for j =i + 1 to n do
calculate the dot product v;-w i and vi ·w;
u;; = a;i- vi· Wj

u;; = (a;;- Vj · w;)/u;;
end for

end for

Figure 7.5: Algorithm for the unsymmetric L U decomposition {2)

(7.14)

Obviously, in this case no arithmetic operations are avoided but the fact of

copying the ith column of U and the ith row of L into respectively Vi and Wi

means that they are locally available which can save time on access to memory

116

Chapter 7: Parallel solvers

7.2.2 Forward and backward substitutions

When the matrix A is decomposed in its LU form, the equation (7.1) which

describes the system of linear equation can be reformulated as follows:

LUx= b,

which can be divided in two separate calculations as shown below:

Ly = b

Ux = y.

(7.15)

(7.16a)

(7.16b)

This involves solving two triangular systems of equations which correspond to

forward and backward substitutions. These substitutions consist of a series of steps

which each produces one ofthe elements ofthe solution using arithmetic operations

and which have to be executed in a set sequence. The term forward denotes

the sequence corresponding to evaluating in turn the first to the last element of

the solution, whereas backward refers to the reverse order. Equation (7.16a) is

therefore a forward substitution and equation (7.16b) a backward substitution.

The equations for the substitutions are the same for both symmetric and un

symmetric solvers, except that in the symmetric case the elements of L have to be

evaluated in function of the elements of U as described in equation (7.11) prior to

calculations.

The forward substitution is illustrated in Figure 7.6. The first few steps are

given next. ·

1 0 0 0 0 0 0 Y1 b1
121 1 0 0 0 0 0 Y2 b2

131 132 1 0 0 0 0 Y3 b3

141 [42 143 0 0 0 0 Y4 b4 =
l;1 l;z 1;3 li.i-1 1 0 0 Yi b;

lnl ln2 ln3 ln.i-1 lni ln.n-1 1 Yn bn

Figure 7.6: Forward substitution

117

Chapter 7: Parallel solvers

Y1 = b1
l21Y1 + Y2 = b2 ¢=> Y2 = b2 - l21Y1
la1Y1 + la2Y2 + Y3 = b3 <==> Y3 = ba - (131Yl + l32Y2)
l41y1 + l42Y2 + l43Y3 + Y4 = b4 ~ Y4 = b4- (l41Y1 + l42Y2 + l43y3)
li1Y1 + li2Y2 + li3Y3 + · · .li,i-lYi-1 + Yi = bi ~ Yi = bi- (lilYl + li2Y2 + li3Y3 + .. . li,i-lYi-d
lnlYl + ln2Y2 + ln3Y3 + • · .ln,n-lYn-1 + Yn = bn ¢=> Yn = bn - (lnlYl + ln2Y2 + ln3Y3 + • • .ln,n-lYn-d

The general formula is therefore:

i-1

Yi = bi - L likYk·
k=l

(7.17)

(7.18)

The formula above is not optimal for the computer implementation as for each

new Yi all the y's calculated at previous steps have to be retrieved from memory.

It is more efficient to carry out the calculation 'vertically' in the matrix, which

means that when a new value Yi is obtained all the other Yi for j > i below Yi are

updated such as:

Yi = Yi - ljiYi· (7.19)

The initial value of Yi is bj. This means that the calculation runs in n steps, where

at each step i a partial value for Yi, j > i, is computed and Yi is obtained. The

examination of the formulre in (7.17) shows that when bi has been used once, it

is never used again in the calculation, therefore its storage space is overwritten by

the Yi values. The corresponding algorithm is therefore:

for j = 1 to n - 1 do
for i = j + 1 to n do

b; = b; - l;iYi
end for

end for

Figure 7. 7: Algorithm for the forward substitution

The algorithm implicitly assumes that b1 remains unchanged which is equiva

lent to saying Yl = b1 in equation (7.17).

The equation and the algorithm are similr~.r in the symmetric case except that

lji has to be replaced by Uij /uii, since the matrix L is not stored.

118

Chapter 7: Parallel solvers

The backward substitution is evolved similarly. The formulre for both symmet

ric and unsymmetric solvers are the same. The first few steps are given in Figure

7.8.

0 0

0

0

0

UnnXn = Yn

0

0

0

0

0

0

U1,n-2

Ui,n-2

Un-2,n-2

0

0

Figure 7.8:

Un-l,n-lXn-1 + Un-t.nXn = Yn-1

U1,n-1

Ui,n-1 Uin

Un-2,n-1 Un-2,n

Un-l,n-1 Un-l,n

0 Unn

Backward substitution

<==> Xn = Yn/Unn

Xn-2

Xn-1

Xn

YI

Yi

Yn-2

Yn-1

Yn

<==> Xn-1 = (Yn-1- Un-l,nXn)/un-l,n-1

Un-2,n-2Xn-2 + Un-2,n-1Xn-1 + Un-2,nXn = Yn-2

<==> Xn-2 = (Yn-2- (un-2,nXn + Un-2,n-1Xn-d)/un-2,n-2

UiiXi + · · · Ui,n-zXn-2 + Ui,n-1Xn-1 + UinXn = Yi

<==>Xi= (yi- (ui,nXn + Ui,n-!Xn-1 + · · .Ui,i+!Xi+I))/Uii

UuXI + ... ul,n-zXn-2 + ul,n-lXn-1 + U!nXn = Yl

<==> XI = (yl - (uinXn + ul,n-lXn-1 + ... U1zxz))/uii

(7.20)

In the same way as for the forward substitution, the general formula can be

expressed either in a 'horizontal' fashion where the values of Xi is obtained from

all previous values Xj, j > i, or in a 'vertical' manner where partial values for

all Xi are calculated as new values become available. For similar reasons to those

explained for the forward substitution the vertical approach is more efficient. The

corresponding algorithm is given in Figure 7.9, where the storage space for Yi is

reused, avoiding the storage of Xi in a separate vector.

Yn = y,.funn

for j = n to 1 step -1 do
for -i = 1 to j - 1 do

Xi = (Xi - UijXj)/Uii

end for
end for

Figure 7.9: Algorithm for the backward substitution

119

Chapter 7: Parallel solvers

7.2.3 Storage scheme

In order to take advantage of the particular features of the matrices arising from

finite element problems, a special-purpose storage scheme has been adopted. It is

known as 'profile' or 'skyline' storage and was originally introduced by Jenning13 .

It is well known and widely adopted in engineering fields, particularly for problems

solved by finite element method. This form of storage is explicitly stated next.

The matrix A is stored as two separate matrices: one which stores the elements

of A below the main diagonal and the other stores elements which lie on or above

the main diagonal. These two matrices (which are lower and upper triangular

matrices) will be referred to as the L' and U' matrices respectively. This is shown

in Figure 7.10.

c
0 0 0

~) c· u~2 u~a u~4

~') c a12 a1a a14 a,) 0 0 0 u~2 u~a u~4 u~5 a21 a22 a23 a24 a2s

~~1 1~2 0 0 0 + 0 0 u;3 ·u;4 u~5 = a31 a32 a33 a34 a35

~~1 ~~2 ~~3 0 0 0 0 0 u~4 U45 a41 a42 a43 a44 a45

~~1 ~~2 ~~3 ~~4 0 0 0 0 0 u~5 as1 as2 a 53 as4 ass

Figure 7.10: Storage of A as upper and lower triangular matrices

The system matrix A can therefore be denoted:

L' + U' =A. (7.21)

The diagonal elements of U' are set equal to those of A, so this implies that

each diagonal term in L' must equal zero. Therefore, we do not need to store these

zeros in the computer memory. The storage for these zeros is, however, retained

in order to keep the storage schemes for both L' and U' identical which unifies the

procedures to access elements in each matrix. It is obvious that in the symmetric

case the matrix L' is not stored at all and this problem does not arise.

From now on, we will use the notation U' and L' to represent both the above

matrices and their form of storage in the computer memory. The matrices will

be denoted with round brackets () and their corresponding storage with square

brackets 0.
120

Chapter 7: Parallel solvers

The storage for each L' and U' matrices is perhaps best explained by the means

of an example. Consider the upper triangular matrix as shown in Figure 7.11.

u~1 u~2 0 u~4 0 0
0 u~2 u~3 u~4 0 0
0 0 u~3 0 u~5 0
0 0 0 I

'U44 'U~5 u~a
0 0 0 0 u~s u~a
0 0 0 0 0 u~a

Figure 7.11: Upper triangular matrix rJ

This matrix can be stored as a single vector of consecutive columns in the form

of

To reduce memory requirements only the elements from the first non-zero term to

the diagonal term in each the column are stored. An additional piece of information

is also needed to complete this storage scheme. This is the steering vector which

contains the position in the vector of the diagonal terms in the matrix, and for the

above example has the form

Su' = [L 3, 5, 9, 12, 15],

where Su' stands for Steering vector for the matrix U'.

The lower triangular matrix is stored similarly to the U' matrix , but this time

by consecutive rows .The storage for the matrix L' is shown in Figure 7.12.

~~ 1 0 0 0 0 0

~~1 ~~2 0 0 0 0
0 0 z;J 0 0 0

~~1 0 ~~3 ~~4 0 0
0 ,~2 ~~3 ~~4 ~~5 0
0 0 ~~3 ~~4 1~5 ~~6

Sl' = [L 3, 4, 8, 12, 16].

Figure 7.12: Storage of the lower triangular matrix L'

121

Chapter 7: Parallel solvers

Finally, a working example of the storage of the whole system matrix A is

given next, in Figure 7.13.

where

1. 3. 7. 0. 5. 0.
9. 4. 9. 3. 7. 0.

A=
8. 1. 8. 1. 1. 0.

=U'+L';
0. 3. 2. 6. 6. 1.
0. 0. 0. 7. 2. 9.
0. 2. 4. 8. 1. 3.

U' = [1., 3., 4., 7 .. 9., 8., 3., 1., 6., 5., 7., 1., 6., 2., 1., 9., 3.]

L' = (0., 9., 0., 8., 1., 0., 3., 2., 0., 7., 0., 2., 4., 8., 1., 0.]

Su' = [1, 3, 6, 9, 14, 17]

Sl' = [1, 3; 6, 9, 11, 16].

Figure 7.13: Storage of an unsymmetric matrix A

The above storage takes advantage of any handedness of the matrix to re

duce memory requirements. Another advantage is that the calculation for these

zero elements are not carried out therefore saving on the number of operations to

compute.

The examination of equations (7.8) shows that after any element of A, aij

is used once, it never again appears in the equations. This enables us to reuse

the storage space for L' and U' which are overwritten by L and U during the

decomposition.

7.2.4 Fixing the unknowns

In engineering problems, it is sometimes convenient to be able to fix some of the

unknowns Xi to a value known before starting the calculations. This corresponds

to the application of boundary conditions in real problems. For example, when

solving a stress problem using finite element method a set of linear equations arises

where the Xi are the displacements of the nodes and the bi are the forces. Physically

some of the nodes must not be allowed to move (for example attached to a wall).

The Xi for these nodes are then known and the bi, which are the reaction forces,

are unknown a priori.

122

Chapter 7: Parallel solvers

A profile ma.trix solver containing built-in constraints was devised by Bettess

and Bettess14 . Their method of implementing the constraint facility is used here.

The principle of constraining unknowns and the corresponding equations are given

next.

In the equation for the solvers, Ax = b, all the elements of b are normally

known and the elements of x are unknown. When one element of x, Xi, is assigned

a value a priori, it is said to be fixed. When this happens, it is not necessary to

perform the calculations corresponding to obtaining this Xi· As we will see in the

example below, this is equivalent to ignoring the row i and column i of A, therefore

not performing the step i in the calculations, and modifying the vector b. Consider

the simple system composed of three linear equations as shown below:

(7.22)

If x2 is fixed to be a known value v, the equation (7.22) can be restated as:

(7.23)

where x 1, x3 and b2 are the unknowns and b]., b~ and v are known. When solving

the system for the unknowns XI and x3 the third equation can be ignored. The

system is therefore reduced to two equations with a modified right hand side vector

h'.

The generalisation to a n x n system with p fixed Xi is straightforward. The

columns and rows corresponding to the fixed values are removed from the matrix

A, which is achieved by retaining their storage and ignoring them in the algorithms,

and the vector b is altered according to the following equation:

bi = b-i - L aikXk,
kEn

123

(7.24)

Chapter 7: Parallel solvers

where the xk are the fixed values and n is a series of length p containing the

numbers of the fixed unknowns.

The implementation of this technique is carried out through the use of a vector

fix of dimension n. It is a vector whose elements point to the elements of x which

are fixed. The corresponding equations are:

fix(i)=O

fix(i) = 1

if Xi is free

if Xi is fixed.
(7.25)

The algorithm which performs the modification of b uses this vector. It works

differently from equation (7.24) as for each fixed value xk all the right hand sides

bi are modified. The values of the bi corresponding to a fixed Xi are left unchanged.

The algorithm is given below:

for k = 1 to n do
if fix(k) equals 1

for i = 1 to n do
if fix(i) equals 0

b; = b; - a;kXk

end if
end for

end if
end for

Figure 7.14: Algorithm for the modification of the right hand side

The algorithms previously given for the L U decomposition, the forward and

backward substitutions have also to be modified to take into account fixed values.

They are given below:

fori = 1 to n do
if fix(i) equals 0

calculate 'U;;

for j = i + 1 ton do
if flx(j) equals 0

calculate Uij

calculate lji
end if

end for
end if

end for

a: Unsymmetric L U decomposition

124

for j = 1 to n - 1 do
if flx(j) equals 0

for -i = j + 1 to n do
if fix(·i) equals 0

bi = bi - liiYi
end if

end for
end if

end for

b: Forward substitution

Chapter 7: Parallel solvers

Yn = Yn/Unn
for j = n to 1 step -1 do

if flx(J') equals 0
for ·i = 1 to j - 1 do

if flx(i) equals 0
Xi= (Xi- UijXj)/Uii

end if
end for

end if
end for

c: Backward substitution

Figure '7.15: Serial algorithms with constraints

The computer programs implemented for this serial approach are a direct cod

ing of the algorithms and storage scheme presented previously. They have been

developed in standard FORTRAN F77. This version of the solvers is subsequently

used for comparison with the parallel version and for performance evaluation.

7.3 Algorithms for the parallel solution

The serial approach described in the previous section can be parallelised in dif

ferent ways. Before explaining which technique was used in this work, an review of

the various methods used in parallelising the solvers is given which is mainly based

on the work done by Geist and Romine6 . They investigated the parallelisation of

the L U decomposition including the technique of pivoting and its parallel imple

mentation. A quick introduction to the pivoting scheme is given next, followed by

a review of Geist and Romine work.

7.3.1 Survey

The direct class of solvers10 is based on the Gauss elimination technique where

the equations of the system are linearly combined and exchanged in order to obtain

an upper triangular system by successive elimination of the variables between the

equations which can then be solved with a backward substitution. An alternative

method, the Gauss-Jordan method, is to incorporate the backward substitution

in the process so that a diagonal system is obtained for which the solution is

immediate.

125

Chapter 7: Parallel solvers

A problem arising in this class of solvers is that some pivots, which are the

coefficient in front of the variable to be eliminated might be zero. This happens

when either the matrix is singular, in which case no unique solution exists, or when

the order of the equations is unsuitable. In the latter case, the pivoting technique

is used to resolve the zero pivot and also to improve the accuracy6 .

Various types of pivoting scheme exist. The partial pivoting corresponds to the

case when only rows are exchanged. One approach, the maximal column pivoting,

is to find the maximum value of the elements of the column below the pivot and use

that value as the pivot. The scaled-column pivoting follows a similar method but

before finding the maximum pivot all rows are scaled with the largest coefficient

of that row. The total pivoting, on the other hand, implies pivoting both rows

and columns. At each step, the maximum value of all rows and columns below the

pivot is found and used as the pivot by bringing it in place through column and

row pivoting.

When the LU decomposition method is used to solve the system, normally

only partial pivoting of the type maximal column pivoting is used as it is the

only one easily incorporated in the L U decomposition. The parallel algorithms

investigated by Geist and Romine concern the L U decomposition with maximal

column pivoting. They have considered two schemes: distribution of the matrix

by rows and distribution by column.

In the distribution by rows, at each step finding the pivot involves commu

nication among all processors because the pivot column is scattered among the

processors. The way communication has been carried out by the authors is related

to the particular machine they used, the Intel iPSC, for which a tree configuration

is efficiently implemented.

Each leaf node of the tree calculates its local maximum and passes it up to the

parent node which compares it with its local maximum and passes up the largest

of the two. When the pivot is found, the processor which stores the pivot acts as

the leading processor, therefore avoiding the communication needed in exchanging

the rows. This is what the authors call 'dynamic pivoting'.

The rows of the matrix are initially distributed in an arbitrary order among the

126

Chapter 7: Parallel solvers

processors. For the first p rows of the matrix, p being the number of processors,

the order of the processors which contain the pivot is different for each system

solved and is determined dynamically.

A process can only contain one of the first p pivots, therefore when more than

one pivot is stored in the process, actual communication to exchange the rows

has to take place. The row is exchanged with a process which does not already

contain a pivot from the first p rows. There might be more than one process in

this situation so the choice is made by selecting the nearest neighbour which does

not already store a pivot. Depending on the system of equations and its order,

pivots might be stored on p different processors, which is the best case when no

communication is needed, or all pivots might be stored in only one process, which

is the worst case when (p- 1) communications have to take place.

In practice, the initial distribution of the rows is even so that a distribution

between those two extreme situations is generated. The algorithm produces a

mapping of rows to processors which is unique and different for each system. This

procedure described for the first p rows is carried out again for the next packet of

p rows and so on.

In the distribution by columns, the pivoting is much easier as the whole pivot

column is stored on one processor only. The initial distribution of the columns is in

a wrapped fashion therefore fixes the mapping of columns processors and is optimal.

The problem in this case is the bottleneck introduced by the serial calculation

of the pivot, where the determination of the maximum value and calculation of

the portion of the matrix attributed to that processor are carried out while the

other processors are idle waiting for the pivot. A solution, which the authors call

'pipelining', consists of sending the pivot column to all the other processors before

calculation of the rest of the matrix carries on for that step.

In the serial algorithms described in the previous section, no mention has

been made of pivoting. This is mainly due to the particular type of matrices

found in finite element problems. Often these matrices are positive definite, which

means that no diagonal term is zero, therefore the L U decomposition always works

properly. Even when the matrices are not positive definite, they are thought

127

Chapter 7: Parallel solvers

of being well-behaved, that is to say diagonally dominant, therefore most finite

element system solvers do not implement pivoting.

Another reason is related to the storage scheme used, the profile storage, which

makes pivoting harder to implement. The solvers developed in this chapter do not

therefore contain any pivoting scheme. Nevertheless, it might be that for some

non-linear problems the matrices encountered are not so well-behaved and that

pivoting may be necessary for improving the accuracy.

The method followed for the parallel implementation is based on the column

wise distribution of the matrix as described by Geist and Romine. Therefore, it

would be possible to implement a pivoting scheme without modifying the com

munication aspect of the program, although the calculations and length of the

messages sent would have to be altered.

The remainder of this section is devoted to the description of the parallel

solvers for both symmetric and unsymmetric matrices, with first an explanation of

the distribution of the data on the processors.

A word on terminology is necessary at this stage. A processor corresponds to

a physical chip while a process denotes a software piece of work. Although the

storage of data is physically done in the memory of the processors, expressions

like 'storage of data on a process' will be used. This is because the processes

composing a program are unique whereas their mapping onto the processors can

vary. Therefore data which can only be accessed by one process might physically

be adjacent in the memory of the processor to the private data allocated to another

process, in the case when both processes are mapped onto the same processor.

7 .3.2 Parallelisation of the solvers

The parallelisation of the solvers is based on the identification within the serial

algorithms of the operations which can be executed independently. Within a series

of calculations, when each calculations is independent from one another, each piece

can be computed by a different processor concurrently, and the speed-up obtained

can ideally be a linear function of the number of processors used.

128

Chapter 7: Parallel solvers

The independent operations in the solvers considered here are the calculation

of the elements of the ith row of U and ith column of L. This means that the

parallel algorithms will be composed of n steps, for a n x n matrix, where at

each step a series of calculations is carried out concurrently. Because the results

obtained at each step are used in the following step, a global synchronisation of

all processors after each step has to take place so that one process does not start

a new iteration using the wrong data.

The independence of the calculations at each step can be seen from equation

(7.8) which is recalled below:

i-1

Uij = aij - L likUkj j 2: i (recall 7 .Sa)
k=1
i-1

lji = (aji- L ljkUki)/uii j > i. (recall 7.8b)
k=1

At step i, the elements Uij and lji, j > i, are evaluated after Uii is computed.

Therefore, if Uii is first calculated all Uij and lji can be calculated independently

as none of them require values from the other for that step since the index k varies

from 1 to i- 1. None of the l elements from step i are used in the formula (7.8a)

for u and none of the u elements from step i are used in the formula (7.8b) for l.

The only values used in the formula are those which have been obtained in the

previous steps.

A first specification of the full parallel algorithms is to take the serial algorithms

given in the previous section and insert the generic term 'in parallel' to show the

independent operations. Very often, independent operations happen within a loop,

where each step in the loop can be carried out at the same time as another step in

the loop. This is the easiest way of identifying parallelism in serial program which

is used by compilers for automatic production fo parallel code. The independent

operations for the solvers are located in the inner loop which is executed in parallel.

This is shown next:

129

for ·i = 1 to n do
calculate u;;

in parallel
for j = i + 1 to n do

calculate U;j

calculate lji
end for

end parallel
end for

Chapter 7: Parallel solvers

Figure 7.16: First unsymmetric L U decomposition parallel algorithm

A similar algorithm stands for the symmetric LU decomposition. The forward

and backward substitution~ algorithms are parallelised in the same way, as shown

next:

for j = 1 to n - 1 do
in parallel

fori= j + 1 ton do
bi = bi - lji'Yi

end for
end parallel

end for

a: Forward substitution

Yn = Yn/1Lnn
for j = n to 1 step -1 do

in parallel
for i = 1 to j - 1 do
Xi= (xi- UijXj)/1Lii

end for
end parallel
end for

b: Backward substitution

Figure 7.17: First substitution parallel algorithms

The parallel algorithms as shown above implicitly assume the free access to

all data and ignore any memory contingency. There are two ways in which these

algorithms can be modified to account for these problems. One is to assume shared

memory environment and the other is to suppose distributed memory environment.

Therefore, from now the algorithms for the two implementation will diverge.

Since the work undertaken in this chapter is concerned with the implementation

in a distributed memory context, this will be described next in detail. The shared

memory implementation is underlined at the end of this section. From now on, the

word 'process' will be used in relation to memory storage as explained previously.

In the distributed memory configuration, each process has its private memory

which cannot be directly accessed by any other processes. The exchange of data

130

Chapter 7: Parallel solvers

between the processes is achieved through a mechanism of communication where

one process has to submit its request for data to the process storing it in its private

memory which in turn fetches the data and sends it to the requesting process.

A crude way to implement the parallel solvers in a distributed communication

environment would be to store the whole matrix A and the vector b in the private

memory of each process to give full access to all data. Nevertheless, after the first

step the process which holds the up-to-date values of L and U for that step still

needs to communicate these new values to all the other processes so they hold the

correct version of the matrices.

An efficient way of implementing the parallel algorithms is to distribute data

so that the matrix A and the vector b are evenly spread across the processes.

Attention must be paid to load balancing issue when choosing the distribution

scheme. Load balancing means that one process should not have too much work

while others are idle. This corresponds in our case to the fact that all processes

should have at each step roughly the same number of elements of L and U to

calculate.

A well-known method is the 'wrapping scheme' also used by Geist and Romine

and Farhat and Wilson. For example, in the symmetric case, this corresponds to

the distribution where each process stored every p-alternate column of U, where p

is the total number of processes. In the unsymmetric case, U is wrapped onto the

processes by columns and L by rows. This is shown in Figure 7.18.

processor
number 1

2
3
1
2
3
1
2

p=3

12312312

~ I
- K
- -~ A u

l}.!o

" 1- A L " " "
A

1
2
3

X -~

2
3
1
2

X b

Figure 7.18: Wrapped distribution scheme

131

Chapter 7: Parallel solvers

The full parallel algorithms for the L U solvers are derived next in the unsym

metric case. When the data is distributed each process needs to know whether it

stores the pivot row and column. The pivot row and column, which are denoted

'active row' and 'active column' following the terminology of Farhat and Wilson,

are the row i of L and the column i of U for the iteration i. This is shown in

Figure 7.19.

l

L u

Figure 7.19: Elements involved at step i

The process which stores the active column and row can therefore evaluate

the diagonal term Uii since it only needs the element of this row and column to

perform the calculation. Obtaining Uii is a prerequisite for all the other processes

to calculate their share of the row i of U and the column i of L. Therefore, the

process which calculates Uii, denoted the 'active process', has to send it to all the

other processes together with the active row and column also needed by the other

processes. This can be seen in equation (7.8) where lik and Uki are the elements of

the active row and column. This is illustrated in Figure 7.19.

One interesting aspect of this algorithm is that the forward substitution can

be performed at the same time as the L U decomposition. Indeed, referring back

to equation (7.18) recalled next

i-1

Yi = bi - L likYkl
k=l

132

(recall 7.18)

Chapter 7: Parallel solvers

the terms of L involved, lji, are those being calculated during one step in the

LU decomposition since lji is the ith active column of L shown in Figure 7.19.

Therefore, when a process has obtained one element of column i of L, this element

can straight away be used to compute a new value of Yi· This assumes that each

process has access to all up-to-date values of Yi which means that these values have

to be communicated between the processes, which can be done at the same time

as the communication of the active row and column.

The combined algorithm for the L U decomposition and forward substitution

is given below:

for i = 1 to ncol do
calculate /;1 = u;l/uu
calculate y; = Yi - lilYl

end for
for i = 2 to n do

active process = process storing column i and row i
if this process is active process then

Calculate u;;

send column i, row i and Yi to all other processes
else

receive and store column ·i, row i and y;

end if
for j = start to ncol do

calculate Uij

calculate l ji
calculate Yi = Yi - y;lji

end for
end for

Figure 7.20: Pseudo code for the LU decomposition and forward substitution

Since the forward substitution cannot be performed independently from the

L U decomposition, only systems with a single right hand side can be solved. If

systems with multiple right hand sides had to be solved, a modification of the

algorithm would be necessary so as to separate the forward substitution from the

L U decomposition. This is easy to do as the structure of the algorithm for the

L U decomposition and the forward substitution are similar. The communication

scheme would be unchanged and only the calculation corresponding to the L U

decomposition would have to be removed.

133

columnj

Chapter 7: Parallel solvers

The main problem with the implementation of a parallel backward substitution

lies in the distribution of data scheme adopted where Lis distributed by rows and

U by columns. This means that the parallel algorithm shown in Figure 7.17 cannot

be directly implemented because the operations shown as being executed in parallel

would be executed serially by one process. Indeed, the calculations carried out in

parallel correspond to the evaluation of the terms UijXj where j is fixed and i

varies, therefore involving the column j of U which is stored on one process only.

It would be possible to implement the backward substitution in parallel as

it stands but the amount of communication compared to the calculation would

impose too much overheads. At each step in the backward substitution the whole

column j of U and the term xi would have to be distributed to all the other

processors as shown in Figure 7.21.

active process other process

n @--- D L::i ----- - ----- --------- x,
X ------- -------' ----- ---~--

/
. ------ • x,=(x,-u,r1)1uu

co umnJ ·

U X

Figure 7.21: parallel backward substitution {1)

A more efficient way of parallelising the backward substitution is to design

a scheme which runs across the columns of U rather than across the rows of U

as explained before. This corresponds to a direct parallelisation of the original

formula in equation (7.20) where all the products UijXj for i fixed and j variable

are executed concurrently and the results are accumulated by the active process

which also carries out the division.

This scheme works at its maximum efficiency only when step p is reached,

where p is the total number of processes. In the iterations before step p, there are

134

p processors Chapter 7: Parallel solvers

·<) I

active processor other processor

Figure 7.22: parallel backward substitution (2)

less products to be carried' out than processes, which means that some processes

will be idle during that time. This is shown in Figure 7.22.

The parallel algorithm is given next:

calculate Yn = Ynfunn
for i = n - 1 to 1 do

active process = process storing element i of y

if this process is active process then
Calculate products UijXj from own data and accumulate
receive products from other processes and add to own
Yi = (Yi + products)/uii

else
calculate products 1LijXj from own data and accumulatr
send to active process total products

end if
end for

Figure 7.23: Parallel algorithm for the backward substitution

In the algorithms presented previously, the keywords send and receive have

been used to express the communication between the processes. The actual im

plementation of these functions is machine dependent and will be discussed in the

next section. The remaining this section concentrates on briefly describing the

shared memory implementation of the solvers.

7.3.3 Shared memory implementation

The shared memory multiprocessor computer used 1s the Encore Multimax

135

Chapter 7: Parallel solvers

containing 14 processors. The chip for this machine is the NS32532 with a clock

speed of 30 MHz. For 14 processors the Encore has an integer rating of 8.5 Va.x

Mips, for floating point operations it achieves a sustained 0.3 Mflops. All processors

are connected to the same memory via a high speed bus, known as the Nanobus,

which has a rate of data transfer of 100 Mbytesjsec. The particular Multima.x

used in this work has 96 Mbytes of real memory.

The main aspect of the Encore Parallel FORTRAN exploited here is the parallel

do loop. The parallel do loop executes iterations of the loop in parallel. It can be

seen from the algorithms given in Figures 7.17 and 7.18 that this is exactly what we

require to execute the algorithms in parallel. The program for the Encore machine

looks very much like the aigorithms (Figure 7.17 and 7.18) where the inner loops

statements for i= .. . to neq do are replaced by doall (i= 1 :neq) and the end by

end doall.

Each iteration of the parallel do loop is then executed in parallel. It means that

if, for example, the program is run on three processors, the first three iterations

of the loop will be executed concurrently by processors 1, 2 and 3. Then, as

soon as one of the processors has finished its work it is assigned to execute the

next iteration. This is very much a 'processor farm' type configuration where the

iterations are feed to whichever processor has finished its work first.

The implementation of the parallel algorithms based on executing the body

of the inner loops in parallel is therefore straightforward on the Encore machine.

Practically, the program can be first developed and debugged in a serial form as

far as possible and when it is working the do loops are replaced by the parallel do

loops and all the other alterations to the serial code are straight forward.

7.4 Communication schemes

The aim of this section is to outline the communication schemes adopted for

each distributed memory machine used in this work and to explain the problems

encountered and the solutions devised. Although three different machines were

used, a Transtech board in a PC, a Meiko Computing Surface and the EPCC

Computing Surfaces, only two different schemes are needed as both the Meiko and

136

Chapter 7: Parallel solvers

the EPCC Computing Surface are fully compatible and the software can be readily

ported between the two machines.

The communication model has been implemented with the 3L FORTRAN and

the CS Tools library of utilities. As briefly mentioned in the previous chapter,

the 3L FORTRAN provides very basic utilities for message passing implementa

tion whereas CS Tools enables a higher level and more abstract development of

communication schemes.

In order to fully describe the communication model used, it is necessary to

explain in more detail the structure of the program.

The structure for both·symmetric and unsymmetric solvers is identical. Only

the actual calculation carried out changes. The programs are composed of three

types of processes, all running in parallel. A 'main' process is in charge of gener

ating the matrix A and vector b, calling the relevant solver, distributing the data

across the network and collecting the results. This is basically a test program

whose functionalities will be described in the next section. A series of 'slave' pro

cesses is assigned with the task of performing the L U decomposition, the forward

and backward substitutions. Finally, a series of 'communication' processes carries

out the message passing needs of the program.

When using the 3L library the communication processes have to be written by

hand whereas in the case of CS Tools these processes are supplied as part of the

library. The details in both cases are given next.

The Transtech board used only contains three Transputers, therefore a small

communication harness has been written which is not extendable to more than

three processes. Nevertheless, the program has been written keeping in mind

that more processes might become available later on. It is organised in modules

where the communication is separate from the calculation and can be removed and

replaced by new modules without affecting the overall structure of the program.

The reason for developing a communication harness limited to three Transput

ers is that there has been a lot of work done on these harnesses and it was felt

unnecessary to duplicate work already done when an efficient commercial package

could easily be used.

137

Chapter 7: Parallel solvers

The communication in the program is composed of two parts: the initial distri

bution of the data to all the processes and the communication between processes

at each iteration. Before the calculation can start, each slave process has to receive

its part of the matrix A and vector b from the main process. The communication

involved here can be seen in Figure 7.24.
Slave/

Slave2

Main

Slavep

Figure 7.24: Initial distribution of the data

It is a succession of 'one to one' process communication, which means that a

message is sent from one process to another independently. When a process has

received its share of the data, it can start calculating. If it is process number one, it

has to evaluate the first diagonal term and sent it to all the other processes together

with the first active row and column. Then, at step two, process number two

becomes active and initiates the communication, and so on. The communication

involved here is a broadcast for which the active process changes at each step, as

illustrated in Figure 7.25. This is due to the wrapping method used to initially

distribute the data across the processes. Synchronisations

Step 1

proc I

proc2

procJ

proc4

proc5

I
I
I

Step 3 / Step 4
I ,:,-

:
I

! StepS
I ,:,-

Figure 7.25: Broadcast communication

138

StepS

Chapter 7: Parallel solvers

One important feature indicated in Figure 7.25 is the synchronisation between

each broadcast. This corresponds to the main problem which has been experienced

when implementing the communication algorithms. It is essential to prevent any

process from starting the calculation for the next iteration before the broadcast

for the current iteration is completed. If this is not enforced, messages can get

out of synchronisation, which is a problem that has been experienced several times

during the development of the programs.

7.4.1 Implementation with the 3L library

The synchronisation for this case has been achieved using a selective mechanism

for inputting messages into processes. This means that a process is allowed to start

the next iteration as soon as it has received the message for the current iteration

but it cannot receive a message from the wrong process. This is illustrated in

Figure 7.26:
~.r.

il'q.p,
0!'/o,..

''e

~ . ------~~~~ ~ ,-· Slave process

iteration i

~sseJSe

~ ~------------~

Figure 7.26: Selective input of messages

In Figure 7.26, if the message for iteration k (k > i) arrives before the message

for iteration i, it will be blocked until the message for iteration i has arrived. If

k > i + 1, that message will remain blocked until iteration k in the calculation is

reached.

The implementation of this scheme for three Transputers requires a knowledge

of the connections between the processes. The three slave processes are fully

connected together and the main process is only connected to the first slave as

shown in Figure 7.27.

139

Chapter 7: Parallel solvers

MAIN = Test + Serial solver + Main parc:tel solver
CA = Calc:Uotion

co = Cornrulicotion
c =Charnel
I - Link

Figure 7.27: Connections between processes

The main process is not fully connected to all the slaves because a Transputer

only has four links. Since, the main process has to be placed on the only Transputer

which has access to the input/output facilities (screen , keyboard, files) for which

two links are reserved for system activities, it only leaves two links free which is

not enough for a full connection. The other two Transputers have all four links

available to the user, but no input/output can directly be performed from them.

The communication processes run in parallel with the slave processes as shown

m Figure 7.27. They are given the knowledge of which slave process they are

associated with and which step in the calculations is currently processed. Knowing

the number of the associated slave process, the order in which the messages should

arrive to a communication process can be determined in advance. This is shown

in Figure 7.28.

MAIN = Test + Serial solver + Main pcrallel solver
CA = Calc:Uation

CO = Cormulicotion
c = Olannel
I = Uric

Figure 7.28: Order of arrival and destination of messages

This scheme ensures that the correct message arrives for each iteration. This

140

Chapter 7: Parallel solvers

is equivalent to the synchronisation shown in Figure 7.25. Depending on from

where the message has arrived, the communication process is able to broadcast

the message to the relevant processes. This is indicated by the dashed arrows for

process two in Figure 7.28

The initial distribution of the data from the main process to the slave processes

has been routed via the first communication process since the main process does

not have access to all the other processes. This is shown in Figure 7.29.

m3
,------------------------
1
I
I
I

i•

Figure 7.29: Routage for the initial messages

Finally, the full algorithms for the three communication processes, denoted Cl,

C2 and C3 are given. M denotes the main process and Sl, S2 and S3 denote the

slave processes.

Main

sends message

Cl

receive message
retrieve the number of the

destination process
if destination process equals 1

send to Sl
else if destination process equals 2

send to C2
else

send to C3
end if

a: initial distribution of system matrix A

141

C2

receive message
send to S2

C3

receive message
send to S3

(communication process number)

For ·i = 2 to n do
If i equals 2, 5, 8 ...

Receive message from
Send to

else if i equals 3, 6, 9 ...
Receive message from
Send to

else if ·i equals 4, 7, 10 ...
Receive message from
Send to

end if

End for

b: Broadcast at each step

Chapter 7: Parallel solvers

Cl C2 C3

Sl Cl Cl
C2 and C3 82 83

C2 82 C2
81 Cl and C3 83

C3 C3 83
81 C2 Cl and C2

Send to main

Figure 7.30: Algorithms for the communication with the 3L library

The broadcast algorithm given previously shows the different behaviours de

pending on the number of the communication process. The 'send to main' instruc

tion executed by Cl at the end corresponds to the fact that the results are collected

by the main process at each step in the calculations rather than at the end of the

calculations. This is a general feature of the implementation also appearing in the

CS Tools version.

7.4.2 Implementation with CS Tools

When using CS Tools, the communication processes are provided by the library

and are valid for an arbitrary number of processes. Nevertheless, CS Tools does

not provide a broadcast function which has to be programmed specifically. The

control over the way the cornrnuniccttion was carried out using 3L FORTRAN is

lost when using CS Tools therefore a new mechanism for synchronisation has been

devised.

A process is attributed the task of synchronising all the other processes. At

each step, the active process sends its message to the synchronisation process

and then carries on with its own task. The synchronisation process distributes

the message to all the other processes in ascending process number order, first to

142

Chapter 7: Parallel solvers

process one and last to process p (p processes in total). This is illustrated in Figure

7.31. IJ I :: :

synchronisation ! 2
process !

Correct scheme

I ,, ' ,, ,,
1:~----+----:------t
\ send message
' \
' \
\
'
'...

i ~ active process

p

receive message

Active process ---7
(sends message)

receive message

Figure 7.31: Synchronisation with CS Tools

3

Alternative scheme

The alternative scheme shown in Figure 7.31 was first attempted but proved

to introduce synchronisation problems as two messages could arrive together in a

process and their acceptance would then be arbitrary if their arrival was simulta

neous.

The basic difference between the two schemes is that the active process m

the correct scheme is not blocked by any other process except the synchronisation

process. This means that if another process is slower because it has more work to

do, it does not affect the active process. In the second scheme the active process

can be blocked by any process therefore permitting another process to send a

message before the active process has finished sending its message, inducing loss

of synchronisation.

The synchronisation process should be dedicated to its task and should not

perform any calculations. The main process is chosen as the synchronisation pro

cess because during the calculation it is idle, only collecting the results as they

arrive. This process is, however, busy before the start of the calculations when it

has to distribute the data among the processes.

7. 5 Performance evaluation

This section concentrates on defining the various ways of assessing the efficiency

of a parallel program and applies it to the evaluation of the performance of the

solvers.

143

Chapter 7: Parallel solvers

The evaluation of parallel programs is more difficult than for serial programs

because several quantities can be measured. Moreover, the process of evaluation

itself can influence the behaviour of a parallel program. This is caused by the

time dependency of parallel programs which can behave in different ways when

diagnostic writes are added because the scheduling of the program is then altered.

Various authors have discussed the problem of parallel system evaluation and

we refer to reader to the work done by Filho15 who discusses in detail this topic

and other topics concerning the use of parallel solvers in the finite element method.

An interesting new experimental system for evaluation of parallel computing

systems has recently appeated16 . PAWSt provides an interactive user-friendly envi

ronment for analysis of existing, prototype and conceptual machine architectures

running a common application. It is based on the transformation of high level

source language into a single data dependency graph, following similar ideas to

those found in data driven languages. This graph can then be mapped onto real or

conceptual machines. The authors claim that it enables the comparison of existing

machines as well as the evaluation of machines before building them.

7.5.1 Definitions

One of the basic concept in analysing parallel software is that of obtaining

speed-up factors. This is the ratio of the time it takes for the program to run on one

processor (TI) to the time it takes to run on p processors (Tp)· The efficiency can

then be derived by dividing the speed-up factor by the total number of processors

p:

T1
speedup=

Tp
Effi

. T1 1
Ciency =- * -.

Tp P
(7.26)

This gives an indication of how efficiently the processors are being used. This

efficiency can ideally be up to 100% (1-;.) = TI/p) but in reality factors like com

munication and the proportion of the program which cannot be parallelised imply

t Parallel Assessment Window System

144

Chapter 7: Parallel solvers

the following upper bound limit to the efficiency15 :

where

pis the total number of processors

m is the total number of processes

(7.27)

t 8 is the time to run the serial part (non-parallelisable part)

tp is the time to run the parallel part

tah is the time introduced by the communication overhead

{3 = int (m/p) is the grain size (intis the nearest whole integer)

In some respects this definition is unrealistic as it would be pointless to con

struct a parallel program with ensuing overhead just to be run on one processor

as a serial program.

This bring us to define another definition of efficiency, which will be denoted

Efh The efficiency obtained previously will be called Eff1. The new efficiency

consists of comparing the time taken by the most efficient serial method to the

time taken by the parallel program. It is run on one processor and the time is

denoted Tserial· The new efficiency is then:

(7.28)

In the case of the solvers there are two possible definitions for Tp. A parallel solver

can be called from within a serial code or from within a parallel code. In the first

case the user does not want to know about parallelism and the solver is just seen as

being faster. In the second case, the users are aware of parallelism and is ready to

incorporate in their own parallel program any data distribution or communication

necessary for the correct use of the solver.

This distinction between the two parallel solvers only applies in the case of

implementation on distributed memory machines. The difference between the two

comes from the data distribution which is different in each case. When the solver is

used as part of a serial program the matrix A and the vector b have to be initially

145

Chapter 7: Parallel solvers

distributed among the processes and at the end the results must be brought back

to the process where the serial program runs. In the second case, when the solver is

run as part of a parallel program, it is assumed that the data is already distributed

among the processes and that it is available at the beginning of the calculations.

When the solver is called from a serial program it is possible to leave the

backward substitution serial as the whole matrix A is stored on one processor. This

has been done on the recommendations of Farhat and Wilson8 who indicate that

due to the data structure used the backward substitution is not worth parallelising.

When the solver is called from a parallel program the backward substitution had

to be parallelised since the matrix A is not available as a whole for execution of a

serial backward substitution.

For distributed memory machines, where the communication between processes

takes time, Tp in the first case takes into account the time for distributing the data

before the calculations start whereas in the second case it is not included. This dis

tinction does not exist on shared memory machines as the data is always available

for all processes at any time, therefore avoiding the need for communication.

The code for both types of solvers, called within serial and parallel programs,

has been developed on the distributed memory machine. The parallel execution

time in the serial case is denoted T~ and in the parallel case Tp. A series of tests

have been run to evaluate the various efficiencies.

The tests consist of generating a matrix A and a solution vector x, obtaining

the vector b as b = Ax, solving for A and b and comparing the solution to the initial

x. Two types of matrices have been considered: densed and banded. The former

gives an optimal efficiency, as at each step in the algorithm as much calculation as

possible is carried out, whereas the latter gives a more realistic efficiency, as this

is the type of problem which may arise in practical engineering applications. The

actual values of the elements of A and x are randomly generated. For these tests,

no unknown element of b has been fixed.

7.5.2 Description of the tests

The tests have been carried out on dense matrices mainly. The tests are

146

Chapter 7: Parallel solvers

numerous as all three efficiencies have to be evaluated. Some of the tests have been

restricted because of the limited amount of memory available for each processor.

When running fully parallelised code the data is distributed across the memory

of all the Transputers. On the machine used, each Transputer has a minimum of

4Mbytes of memory which means that the total memory available is quite large

and it increases as processors are added.

As explained before the evaluation of the efficiency involves obtaining the time

to solve the problem for a serial version and a parallel version running on one pro

cessor. The maximum memory available with any one Transputer on the machine

used is 16Mbytes of memory which means that double precision matrices larger

than 1300 x 1300 can not be stored in the local memory of one processor. This has

limited the range of tests which can be carried out on the Meiko machine.

In order to estimate the running time for problems with more than 1300 un

knowns the serial time has been extrapolated from the values obtained for the

number of unknowns ranging from 100 to 1300 to a number of unknowns up to

4800. A cubic polynomial has been fitted with very good precision through the

data available and has been used to deduce the values above 1300.

Efficiencies have been obtained for fixed numbers of processors of 4, 8, 15, 32

and 64 and fixed number of unknowns of 1000. The three efficiencies EJJ1, EJJ2

and EjJ3 correspond to EJJ1, Eff2 for call within a serial program and EJJ2 for call

within a parallel program. Some speed-ups are also given which are denoted S1.

s2 and s3 following similar notation to the efficiencies.

7.5.3 Results and conclusions

The tests have been limited by memory availability. When numerical results

are missing in the tables and graphs it is because the available memory has been

exhausted.

There are various ways of evaluating the efficiencies of the solvers which influ

ence the results. The first variation is related to the way the program is mapped

onto the Transputers.

147

Chapter 7: Parallel solvers

In previous sections, pseudo codes for performing the solution of the system

have been presented. All these pseudo codes are duplicated to run on each pro

cessor. A 'main' process is in charge of testing the solver by creating the matrix

A and vector x, distributing the data, collecting the results and performing the

timings. In addition to the various implementations of the solver depending on

whether the main program using the solver is assumed to be serial or parallel, the

calculation of each efficiency can be altered by the mapping chosen.

Denoting 'main' the test process and 'slave' the solution processes two types

of mapping are possible, which are shown in Figure 7.32.

Transputer 1

a Transputer 1

bJ
Transputer 2

Transputer 2 Transputer 3 a 6 I ~ava2 I 1

Transputer 3 Transputer 4
Transputer 4 Transputer 5

I ~ve3 I EJ a EJ
scheme a scheme b

Figure 7.32: Mappings for 4 slave processes

When calculating the efficiency in the case of the scheme a the speed-up should

be divided by 5, which is the number of physical Transputers used whereas in the

case of the scheme b the speed-up is divided by 4 since only 4 Transputers are

used. An example of the two ways of evaluating the efficiency is given in Table 1.

Although all the figures indicate good performance, the difference in the effi

ciencies between the schemes a and b is striking. The mapping of type b is more

efficient and is used in all subsequent timings.

Before presenting the results obtained for both the symmetric and unsymmetric

solvers, it seems interesting to examine the results obtained by the Farhat and

148

Chapter 7: Parallel solvers

T1(s) Tp(s) s eff(%)

scheme a 3040 785 3.87 77

scheme b 3040 786 3.86 96

Times for 4 slave processes and 1000 x 1000 dense unsymmetric matrix.

Table 1: Comparison of the different mappings

Wilson8 symmetric solver which has also been implemented on the Meiko machine.

These are given in Ta.ble 2.

For 4 processors our solver fares slightly better which is due to the fa.ct that the

L U decomposition and the forward substitutions are performed together whereas

Farhat and Wilson performed them separately. For higher number of processors

the significant drop in performance of our solver is due to a poor configuration of

the machine and also to a different hardware which ma.y imply that communication

is carried out faster on the IPSC machine used by Farhat and Wilson than on the

Meiko machine.

matrix 4 processors 16 processors 15 processors

SIZe Far our Far our

450 91 94 60 46

900 I I 83 64

The matrices are symmetric and dense. 'Far' represents Farhat and Wilson results and 'our'

represents the results obtained on the Meiko machine. The numbers represent eff2 in percents.

Table 2: Comparisons for the symmetric solver

The results obtained are given in Figures 7.33 to 7.41. The results are next

analysed.

149

100 ---9

70

611

Elf
IJ) !ill

311

211

10

0

100

811

70

fill

Elf
Ill !ill

311

211

10

0

100 2111 5111 1111 IIDI 1100 12111 I:Dl

Slza rrl tha =trlx

Efficiencies for ~lc •trices an 4 Tl'lfiBIIUters

---9

I
I

I

100

I
I

/
/

I

2111 !Ill !Ill IIDI 1100 12111 I:Dl

Efflcia"~Cies for syMetric atrlces Ill 4 Transputers

Figure 7.33

150

- Effl

-- E:ff2

- •- Eff3

- -'7-- ldlllll

- Effl

--- E:ff2

-..111-- ldlllll

100 ---·

70

60

Eff
Ill !il

20

10

0

100

90

.,
70

60

Eff
Ill !il

41

:JI

20

10

D

100 200 !iiO IDI 1000 1100 1200 1DI

Sl:ra of the strlx

Efficiencies for ~ic atrices on 8 Transputers

---·

100

I
I

'/

200

---... ·--=--=*--,;:-=- - - -
::::-------

/

/
I

/

/
/

!iiO

IDI 7111

Sl:ra of thl •trlx

-- --...

Efficiencies For sy~~~~~tric atrices on 8 Transputers

Figure 7.34

151

1000 1100 1200 1DI

- Efft

-- Eff2

---- Eff3
- .JV-- Ideal

- Eff1

----- Eff2

---- Eff3
- JT-- Ideal

~ -------------------------------
!II

70

60 - EFfl

EFf ------ Eff3
Ill 50

- ~- ldlel

211

10

0
100 2110 600 700 1111 !110 1000 1100 12110 1:DJ

s I Zll of tha lllltr I X

Efficiencies for unsy.etric atrices on 12 Transputers

~ -------------------------------
90

80

70

60 -- EFf1

EFf
Ill 50

-.- ldlel

211

10

0
100 2110 600 7111 1111 !110 1000 1100 12110 1:DJ

Slm of the ..trlx

Efficiencies for sy.atric aatrices on 12 Transputers

Figure 7.35

152

~ -------------------------------

7U

-- Eff1
&II

---- EFf3
Eff
Ill 511 - •- Ideal

211

10

0
100 Iiiii 7UO 1000 1100 12111 1:110

Size of tht ..tr h1

Efficiencies for unayuetric atrices on 15 Transputers

UXI -------------------------------
!Ill

IKI

7U

611 -- Eff1

Eff - EFf3
Ill !II

- • - ldllal

«<

:II

211

10

0
100 Iiiii 7UO 1000 1100 12111 1:110

Sla of till ..trlx

Efficiencies For sy.etric •trlcee on 15 Transputers

Figure 7.36

153

1111 ----------------------
!XI

110

70 --- .. praca

611
---+-- 8 praca

Efft
---·--- 12 praca

Ill !ill _ ... __
15 pMICII

~ -- ldllel

~

211

10

D
1111 2110 D Iiiii 7111 1000 11111 12110 1D

Slm of the e.trhc

Colparative efficiencies for dense W18YD8trlc ~atrices

100

!XI

110

70 --- 4 fi"DCCI

liD - 8 p-aca

Efh
--*""- 1Z proca

Ill !ill --111-- 15 praCII

«< -- Ial

~

211

10

D
1111 2110 Gl Iiiii 7111 1000 IIIII 12110 1D

COIIpllr&tive efficiencies for dense ayaetric atrlces

Figure 7.37

154

l2
lt
JJ
l'.l
II
11
IS
Zl
u
ZJ
12
n
Ill
IJ
18
17
IS
IS
14
13
12
II
ID
I • I
6
5

• :3
iZ

I
a

t 1111

__....,_ Sl

""''

5IID 1111 13111 11111 ZIDD ZIDD, 2111 33111 31111

Speed up fill' sv-etric oalrices crt 32 Transputers

·~ --
ID

Ill

ID _....,_ , .. ,
~tIll
')

511

c

JJ

lll

ID

41DD - 1111 till 11111 21111 ZIDD Z1DD JJIIJ 31111 41111 811

Slzo of U. atria

j ~--------------------------------~-:.,----·
1111

ID

Ill
Effl

7D
Zl
Ill ,
18
17
16
15
11
II
IZ
II
Ill
9
i
7

13111 11111 Zllll

Sla ol U. .trlx

Ill

EH
Ill 511

c

ll

lll

ID

Figure 7.38

155

ldool

1111 9111 I liD 11111 Zllll Dl)

...
sz
ill
!II
16
s.
S2
!II ..
6 ..
12
()
311
l&
~
l2
ll
111
l6
z•
12
10
18
1& I.
12
10
a
;

--

• 2
.0

1' -·

-- !1

1 ... 1

Speed up for ~tric •trices 11'1 64 Trenoputers

" ---
sz
Ill
!II
$
54
S2
!II
.. !1 ..
.. -12
Cl
311
l6
~

l2
ll
ll
l6
z•
12
2D
18
1& I.
12
10
a
i
4
2
0
t till -· Speed up for ~ic atricoo 11'1 64 Trenoputers

I ill

!II

80

7D

Bl

EH
Ill !II

()

lD

20

10

tiD

!II

80

Bl

Eff
Ill !II

c

lD

20

tD

Figure 7.39

156

tiD

Efficiency For ~tric •lriceo 11'1 64 T,......ters

tiD

Slarlh..,.l•

EFFiciency For ~ic •lricoo 111 64 T,......ters

1111

~

Ill

10

lill

Eff1
111 511

Cl

311

211

10

0

1111

~

Ill

70

60

Eff1.
(l) 511

Cl

311

211

10

D

----------------------·

, ,
I

I
I

I
I

I
I
I
I

I
I ,

I
I
I

I ,

1111

-· --- -----.... -

--- --
_____ ..Q

1311 17111 Ztlll Dll 41111

Sba !If the ..trlx

eo.parative efficienclea Far drnle unav-trlc •trices

----------------------·

..-
~~~31 
' , 

' I I I 
' / , 

------A -------------

--- --- ---Iii 

-- --- ---
--

11ll IDI 17111 21111 2!111 Dll 411ll 

Slm !If the .trlx 

Comparative efficiencies for danae syllll8tric utrices 

Figure 7.40 

157 

- 4 praGII 

- ~~ --- 12~ 

-- Zl-- 15~ --- 32pra:~ 

-g... 64prse -- I .. I 

- 4 praca - B prse -- 1Z prse 

--31-- 15 proco --- 32proco 

-g... 64proco -- ht.l 



63 

611 

~ 

54 

51 

48 

45 

42 

39 

3li .. ~ 33 
Jl 

21 

24 

21 

18 

15 
12 

9 

6 

3 

0 

63 

611 

57 

54 

51 
48 

45 

42 

39 

3li .. ~ 33 

Jl 

21 

24 

21 
18 

15 

12 

9 

6 

3 

0 

"' , , , 
"' , , , 

; 
; 

, 
"' , 

/ 
/ 

/ 

"' 

/ 
/ 

/ 

"' / 

"' / 
/ ,.. 

/ ,.. ,.. 
"' , , 

"' / 
/ ,.. 

/ 

/ 
/ 

/ 

/ 

"' / 

/------------..::.:.::.-------------
. ·--------------------==·· =--·-···== 

.. 

•• 
o 3 & 9 ~ ~ ~ 21 ~ 21 Jl 33 3li 39 42 45 • ~ 54 57 m 63 

IWiroF..-a 

Speed ups for a dense 1000*1000 unaytatric •trix on Transputers 

; , 
; 

; 
; 

; 
; 

/ , , 
; 

; , , 
; , 

/ 

; 
/ 

; 

, 
/ 

; 
; 

; 
; 

, 
/ , , , , , , 

; 
/ 

/ , , , , 

~----------~-----------------------------==--=== ---

, 
; , 

; 

/ 
/ 

.. 
/ 

0 3 6 9 12 15 18 21 24 l1 Jl 33 36 39 42 45 411 51 54 57 liD 63 

!WiroF...-e 

Speed ups for a dense 1000*1000 sy.etric aatrix on Transputers 

Figure 7.41 

15B 

--53 

---~-- S1 

---- ldllel 

-53 

---~-- St 

---- ldllel 



Chapter 7: Parallel solvers 

The comparison of the three efficiencies eff1, eff2 and ejJ3 are given in Figures 

7.33 to 7.37. The graph for eff1 is always located above the graph for ejJ3 which 

indicates that evaluating the solver using e!J1 is misleading since in reality when 

the user replaces the serial solver by the parallel solver the efficiency obtained ( ejJ3) 

is between 5 and 10 percent lower than predicted by effl· 

The behaviour of eff2 in Figure 7.33 and 7.34 indicates that for matrices large 

enough the parallel backward substitution becomes efficient whereas for smaller 

matrices the serial execution of the backward substitution is definitely faster. eff2 

is not available for 12 and 15 processors (Figures 7.35 and 7.36) because the Meiko 

machine used had some configuration problems. 

Figure 7.37 shows the comparative efficiencies e!J1 from the previous 4 graphs. 

For the size of matrices tested, using 4 processors gives the best efficiencies. From 

the shape of the lines for 8, 12 and 15 processors and their relative position it can 

be concluded that using more processors is worth if the matrices are bigger than 

1300x1300. 

Figures 7.38 and 7.39 indicate similar behaviour. When the number of proces

sors increases the ratio between the time spent on communication and the time 

spent on calculations increases which has the effect of reducing the efficiency. This 

is due to the fact that Transputers having only four links when a large number 

of them is used messages from one Transputer to another have to be routed via 

a number of other Transputers, which takes time. It means that the distance 

between two Transputers increases which is very penalising for large networks. 

Figure 7.40 gathers all the results from the previous graphs. It indicates that 

for each matrix size there is an optimum number of Transputers to be used to 

obtained the best efficiency. Unfortunately is has not been possible to extend the 

lines for 4, 8, 12 and 15 processors to more than 1300 unknowns due to memory 

restrictions. What is suspected is that all the lines will eventually rise towards a 

100/down when the amount of work to be carried out by each Transputer becomes 

too large. 

Finally Figure 7.41 shows what is the optimal number of Transputers to be 

used for obtaining the solution of a 1000 x 1000 matrix the fastest possible in terms 

159 



Chapter 7: Parallel solvers 

of real figures. This number is situated around 15 processors. This optimal num

ber of Transputer does not make the best use of the processing power available 

(relatively poor efficiency) but gives the fastest solution time. It is suspected that 

as the matrix size increases the graph will be shifted rightwards thus increasing 

the optimal number of Transputers. 

In all the graphs the unsymmetric solver shows better performance than the 

symmetric solver. This is expected since both solvers have exactly the same com

munication structure and the unsymmetric solver carries out more calculations 

than the symmetric solver. The proportion of calculation to communication is 

therefore more advantageous in the unsymmetric case than in the symmetric case. 

Overall the solvers implemented work well on the Meiko machine and give the 

best efficiencies for a small number of Transputers. The algorithm used appears 

to be a coarse grain algorithm. Some work still needs to be done on the topic of 

optimal configuration of the Network of Transputer. It would also be useful if a 

few Transputers in the network would have an increased amount of memory which 

would enable us to run much larger problems. 

The efficiencies for the shared memory Encore machine are very similar. The 

graph is given in Figure 7.42. 

Eff 
Ill 

1111 

II 

&II 

211 

------~-- --,, ..... ,... ...... I 
,. -- ~---:.:.::,--:..--- ::·:""_--,.. .--~ 

, ........ , , ,,' ' ,' ,... ... ... _ _.. __ ,, 
,/ ,' ........... /, 

I 
I 

I 

a • a a • ~ ~ s ~ m • ~ m 
Sl•fllllll ... lo 

Efflcln:l• far cMn. ....,._trlc •triCII8 !Encarel 

-__ ,.__ 

---
c..
•..
tz...-

Figure 7.42: Efficiencies on the Encore machine for unsymmetric matrices 

160 



Cbapter 7: Parallel solvers 

One point about this machine is that the efficiencies increase until all but one 

processors are used. When they are all used, the operating has to compete with 

the user's program which incures degradation in the performance. 

The similarity of the results on the two machines confirms that the application 

1s better suited for coarse grain parallelisation, at least for the size of problems 

attempted. For larger problems, the limitation on the Encore machine would 

come from a saturation of the communication bus and on the Meiko machine they 

would be brought by the small amount of memory available to each Transputer. 

References 

1. Bertsekas D.P. and Tsitsiklis J.N., 'Some Aspects of Parallel and Distributed Iterative Al
gorithms- A Survey', Automatica, 27, Iss 1, pp 3-21, 1991. 

2. Gallivan K.A., Plemmons R.J. and Sameh A.H., 'Parallel Algorithms for Dense Linear Al
gebra Computations', SIAM Review, 32, Iss 1, pp 54-135, March 1990. 

3. Yu D.C. and Wang H., 'A New Parallel LU Decomposition Method', IEEE Transactions on 
Power Systems, 5, Iss 1, pp 303-310, February 1990. 

4. Yu D.C. and Wang H., 'A New Approach to the Forward and Backward Substitutions of 
Parallel Solution of Sparse Linear Equations - Based on Dataflow Architecture', IEEE 
Transactions on Power Systems, 5, Iss 2, pp 621-627, May 1990. 

5. Amano H .. Boku T. and Kudoh T., '(SM)2-II: A Large-Scale Multiprocessor for Sparse 
Matrix Calculations', IEEE Transactions on Computers, 39, Iss 7, pp 889-905, July 1990. 

6. Geist G.A. and Romine C.H., 'LU Factorisation on Distributed-Memory Multiprocessors', 
Proceedings of the third SIAM Conference on Parallel processing for Scientific Computing, 
pp 15-18, Los Angeles, California, USA, December 1987. 

7. Lin A. and Zhang H., 'A new Parallel Algorithm for Linear Triangular Systems', Proceedings 
of the third SIAM Conference on Parallel processing fo·r Scientific Computing, pp 36-39, Los 
Angeles, California, USA, December 1987. 

8. Farhat C. and Wilson E., 'A Parallel Active Column Equation Solver', Computers and 
Structures, 28, Iss 2. pp 289-304, 1988. 

9. Applegarth I. and Barbier C., 'A Parallel Equation Solver for U nsymmetric Systems of 
Linear Equations', to be submitted for publication. 

10 Gerald C.F. and Wheatley P.O., Applit~d Numerical Analysis, third edition, Addison-Wesley 
Publishing Company, 1984. 

161 



Chapter 7: Parallel solvers 

11. Burden R.L. and Faires J.D., Numerical Analysis. third edition, Prindle, Weber and Schmidt 
publishers, 1985. 

12. Ref. 9, p 100. 

13. Jennings A., 'Solution of variable band-width partial differential equations', Computer. J., 
15, p 446, 1971. 

14. Bettess P. and Bet tess J .A., 'A profile matrix solver with built-in constraint facility'. Engi
neering Computations, 3, Iss 3, pp 209-216, September 1986. 

15. Filho J.S.R.A., 'The Use of Transputer Based Computers in Finite Element Calculations', 
PhD Thesis, Department of Civil Engineering, University College of Swansea, September 
1989. 

16. Pease D., Ghafoor A., Ahmad I., Andrews D.L., Foudil-Bey K., Karpinski T.E., Mikki M.A. 
arid Zerrouki M., 'PAWS: A Performance Evaluation Tool for Parallel Computing Systems', 
Computer, 24, Iss 1, pp 18-29, January 1991. 

162 



Part III 

Study of a Free Surface Flow over Gated and 
Non-gated Spillways 

163 



Chapter VIII 

Introduction to Free Surface Flows 

.1 Introduction 

The study of gravity flows with a free surface has attracted great interest in 

the past, mainly because of its importance in the design of spillways. In developing 

a spillway crest-profile engineers are concerned principally with the avoidance of 

negative pressures against the surface of the structure. A negative pressure on the 

spillway means that a cavitation phenomenon can appear on the concrete surface 

and incur damages to the spillway. This damage show itself as holes of variable 

diameter and depth in the concrete surface of the spillway. 

It is extremely costly to repair such damage to the surfaces. The idea is thus 

to design a spillway crest-profile such that in normal conditions of use no negative 

pressures appear on the concrete bed. In abnormal conditions of use, however, such 

as flooding due to heavy rains, negative pressures may appear, incurring some costs 

for repairs which cannot always be avoided as a particular spillway shape can only 

guaranty a restricted range of trouble-free conditions of use. 

Other factors must be taken into account in the design of a spillway crest-profile 

which include the hydraulic efficiency (coefficient of discharge), the constraints 

imposed by a particular site, the stability of the structure and the economics of 

the construction. 

Several standard designs have been developed in the past century, all with the 

principle aim of avoiding negative pressures. Some were developed from a simple 

mathematical analysis of the trajectory of a fully aerated nappe1, others from 

measurements on a series of physical models2•3• The latter had the advantage 

of including the effect of friction between the fluid and the spillway surface, a 

significant factor in terms of surface pressures. 

164 



Chapter 8: Introduction to Free Surface Flows 

In many instances it is not convenient to use a standard profile and one has 

to resort to the use of physical models to evaluate the particular crest geometry 

chosen. If the crest proves to be hydraulically unsatisfactory the model has to 

be modified and retested until the results are acceptable. Therefore the final 

design is obtained by trial and error. Using physical models this process can be 

time consuming and expensive. On the other hand a numerical model, even if its 

accuracy did not match that of the physical model, could look at a range of design 

fairly quickly and economically and the physical model would only be required for 

the final confirmation of the chosen design. 

The problem is to predict numerically the position of the free surface in some 

two-dimensional flow, for example a spillway, over a weir or under a sluice or gate. 

It will be assumed that the flow is inviscid and irrotational. For many practical 

problems this is a reasonable assumption, although of course for some free surface 

flows, the hydraulic jump for example, it would not be, and the method described 

later would be inadmissible. 

The difficulty of the problem is that both the discharge and the position of 

the free surface are unknown, and that the boundary condition on the free surface 

is nonlinear. In addition, the flow is subcritical in the upstream portion of the 

crest of the spillway, while it is supercritical in the downstream portion. Because 

of these difficulties, the earlier studies of the problem were mostly experimental. 

8.1.1 Survey 

The first attempt to numerically predict the position of the free surface was 

done by Southwell and Vaisey4 using finite difference scheme. The first modelling of 

spillway flow was made by Cassidy5. By means of a relaxation technique iterating 

within the complex potential plane, the surface profiles and discharges coefficient 

for weir contours designed as profiles of a spillway were calculated. Slow conver

gence was encountered. From then, three different approaches to the problem have 

been followed, which are described by Bet tess and Bettess6. They are as follows: 

1. Fixing the element mesh and varying the element properties so as to 

model the position of the free surface. 

165 



Chapter 8: Introduction to Free Surface Flows 

2. Extending the finite element mesh from the bed to the free surface and 

moving the mesh to follow the free surface as iterations are performed. 

3. Inverting the problem by using coordinates as dependent variables and 

using the streamfunction and the velocity potential as independent vari

ables. 

The method 1 has mainly been used for seepage or similar flows in which the 

kinetic energy of the flow is small. It is not of interest for the problems of flows 

over spillways considered here, where the kinetic energy of the flow can be high. 

The methods 2 and 3 are those which have been employed for solving the type of 

problems in which we are interested. Method 2 uses finite element methods while 

method 3 is based on relaxation techniques. They both, in their earlier forms, 

relied on the user to guess an initial discharge and iterate manually towards the 

discharge which gives the smoothest surface for the flow. 

Early work on method 2 was carried out by lkegawa and Washizu 7 who were 

the first to use a variable domain functional approach. They used the variational 

principle derived by Luke8 which was stated in terms of the velocity potential. 

Although this principle was well suited to problems of water waves, for the two

dimensional steady flow problems it was more convenient to solve the problem in 

terms of the streamfunction. Ikegawa and Washizu rederived Luke's variational 

principle in terms of the streamfunction and used a Newton-Raphson type of iter

ation and a formulation by finite elements but incorrectly neglected some terms. 

Betts9 derived the correct variational formulation and used triangular linear el

ements in the finite element approximation. Further work using a similar approach 

was performed by Diersch et al10 and Aitchison 11 . 

The method of Varoglu and Finn 12 is different in that it also automatically 

determined the discharge. They formulated the problem in terms of the hydraulic 

head H rather than the velocity potential or streamfunction. They solved the 

problem in the (x,H) coordinate system where xis the x coordinate of the nodes 

and transformed back the solution in the ( x ,y) plan. Although they initally app

plied their method to seepage problems they also successfully used it for steady 

flow over spillway. 

166 



Chapter 8: Introduction to Free Surface Flows 

Early work on method 3 was carried out by Cassidi5 , as mentioned earlier on, 

and Markland13 who applied it to free flow over an overfall. It was subsequently 

applied to large amplitude waves by Williams14 . 

The next generation of applications of methods 2 and 3 were based on the 

observation that the linear approximations used to model the different parameters 

and variables of the problem were too crude and that higher order approximations 

were needed to model the curved surfaces. They also tried to solve for both the 

streamfunction and the discharge. 

The work done by Li et al15 on the Finite Analytic Solution of Flows over 

Spillways considers a problem similar to the one in this chapter but they use a 

different technique to solve the governing equations which overcomes the problem 

of the simplistic linear approximation. They use a boundary fitted coordinate 

system which has the advantage of accurately model the curved boundary on the 

free surface. 

The principle of the boundary fitted coordinate system is to consider the 

boundary of the problem as the new coordinate system. A mapping between the 

real domain of study and a simple rectangular domain is numerically generated 

as the solution of an elliptic system of partial differential equations with Dirichlet 

boundary conditions. The advantage is that complex boundary geometry can be 

expressed simply and with minimal error. 

In this new system the equations are expressed and solved using the Finite 

Analytic method which has been developed to solve equations in this new system. 

This method is based on the decomposition of the new domain into small elements. 

Triangular elements are used here. In each of these elements the analytic equations 

are solved and the solutions are combined into a set of algebraic equations which 

approximate the governing equations in the whole domain. These are solved and 

the solution is transformed back to the original domain. The interesting aspect of 

this method is in the avoidance of the use of approximation functions, like in the 

finite element method, therefore eliminating the truncation errors. 

The solution for the free surface shape and the value of the discharge is obtained 

through a double iteration scheme. From an initial guess of the free surface position 

167 



Chapter 8: Introduction to Free Surface Flows 

and the discharge, an inner iteration solves for the free surface shape and at each 

step adjusts the shape of the surface according to the solution obtained. When the 

nodes on the surface do not vary more than 10-3 from one iteration to another, 

the shape of the surface obtained is considered satisfactory and a new value for 

the discharge is derived. 

The outer iteration modifies the value of the discharge until a tolerance of 

5 x 10-4 in the changes of the value is obtained. Finally, the pressure on the 

spillway are calculated. The authors claim that this method gives good results 

when comparing the output of the program to practical experiments. 

Henderson et al16 have developed a computer-aided spillway design based on 

very similar grounds to that used in this part. Their formulation is in term of a 

streamfunction and Laplace and Bernoulli equations with extra boundary condi

tions. They do not however use the finite element method to solve the equations 

but the Boundary element method. 

This method, developed in the late 70's, is based on the discretisation into 

elements of only the boundary of the domain. The solution on the boundary 

enables the calculation of the solution inside the domain. The elements obtained 

with this technique are not independent, contrary to the finite element method, 

and therefore the matrices obtained contain fewer zeros. The dimensions of the 

matrices are, however, smaller than the dimensions for the finite element method 

and the discretisation of the free surface is much easier. The element used are still 

linear, though. 

The Laplace equation is transformed into a line integral along the boundaries, 

using the second Green's theorem, and the Bernoulli equation is directly discre

tised. The equations are solved for the position of the free surface, the values 

of the streamfunction on the boundaries and the discharge. The model is non

dimensionalised so that the equations have an equal weight. 

This approach is interesting because the free surface and the discharge are 

obtained at the same time. The set of nonlinear equations is solved using a suc

cessive quadratic programming algorithm and a finite difference gradient. The 

authors mention the use of higher order elements, but point out that a numerical 

168 



CI1apter 8: Introduction to Free Surface Flows 

derivation of the equations would then be necessary and the calculations involved 

are more costly. They do not mention Computer Algebra as an aid to derive the 

equations. 

The effect of the number of elements in the inlet and outlet has been studied 

as well as the behaviour when enlarging the upstream and downstream sections. 

The authors qualify the results as being satisfactorily. They also used the method 

to derive a cavitation criterion. 

Another method which seems popular in the solution of free surface flows 

is the use of a complex potential made up of the velocity potential ~ and the 

streamfunction 1/J such as f.= ~ + i'!f;. The complex plane is mapped using various 

methods onto a (-plane where the flow equations are expressed and the problem 

is reduced to a complex analysis. All models use non-dimensionalised equations. 

Dias et al17 have used this method to find the flow over rectangular weirs. 

They use an hodograph variable to indirectly find the complex analytic function 

solution to the equations. This hodograph variable is expressed in terms of a 

truncated infinite series which constitutes the discretisation used. The nonlinear 

equations obtained are solved using a numerical Newton method. The results 

obtained are said to be in fair agreement with the real spillways. 

King and Bloor18 used the complex potential formulation to find the flow 

over an arbitrary bed topology. They reformulated the fluid equations using a 

generalised Schwarz-Christofell method to obtain their form in the (-plane. They 

then obtain a pair of coupled integral and integra-differential equations holding on 

the free surface and the bed. In the first place the equations are solved using a 

linearisation method then a full nonlinear solver, the hybrid Powell's method, is 

used to find the solution. The results obtained from the two methods are compared. 

Forbes19·20•21 also used the complex potential technique but he applied it to 

critical flows rather than steady state flows. Although this is slightly out of the 

scope of the work done here, some of the results obtained are interesting, particu

larly those concerning the use of the Newton method. Forbes has studied critical 

flows over a semi-circular obstruction where the Froude number is sought as part 

of the solution. 

169 



C ... 1 tf'r 8: Introduction to Free Surface Flows 

The nonlinear equations obtained are solved using the Newton method. For 

small semi-circle radius the Newton method gives a reasonable agreement with 

the real flow but for larger values the it completely fails. The author attributes 

this to a problem with numerical accuracy, which they found was connected to a 

clustering of the numerical grid points in the downstream part, although this is not 

sure. Forbes has also studied two-layer critical flows20 using the same technique. 

This survey highlight the fact that no definite method has been found to accu

rately solve the problem of free surface flows. New techniques are investigated to 

solve the governing equations which inevitably lead to nonlinear systems of equa

tions which are solved numerically by a linear approximation or an iterative solver 

like the Newton method. Although most of the papers seem to obtain good results, 

the actual words used to qualify the accuracy are generally 'fair', 'acceptable' and 

'satisfactory'. 

8.1.2 Overview of the chapter 

The work done in this part of the thesis follows the same basic ideas as the 

works mentioned in the survey section. The method chosen to solve the governing 

equation is the finite element method and the solver for the nonlinear equations 

is the Newton method. The novelty, though, is in the investigation of new tools 

to help improve the accuracy and open scope for more complicated formulations 

such as the use of higher order elements or more refined nonlinear solvers. 

The work is based on a previous investigation of Bettess and Bettess6 from 

which some of the material in this part is derived. They carried out an analysis of 

free surface flows using isoparametric finite elements. The equations were expressed 

using a variational principle for which the nonlinear inverse of the Jacobian matrix 

was developed in a Taylor series truncated after the second order. The Newton 

method was used to solve the resulting discretised set of nonlinear equations. They 

also used an iterative scheme to obtain the discharge which was based on the errors 

in the Bernoulli equation on the surface. A double iteration technique similar to 

that of Li15 was employed to find both the free surface position and the discharge. 

Starting from the same basic equations, the approach followed in this part of 

the thesis formulated the inverse of the Jacobian matrix exactly by obtaining its an-

170 



Chapter 8: Introduction to Free Surface Flows 

alytical expression using Computer Algebra. The integration of the element matrix 

is still carried out numerically. The idea in using Computer Algebra is to remove 

one level of approximation in the hope that the convergence problems encountered 

by the original investigators would partly be solved through an improvement of 

the accuracy. 

An other aim of the investigation is to improve the running time of the pro

grams through the use of parallel processing. The formation of the element matri

ces in parallel has been carried out and the efficiency has been evaluated. 

This part of the thesis is organised in three chapters. The present chapter 

concentrates on stating the basic principles of free surface flows. The next chapter 

explains in details the dicretisation of the governing equations, the use of Com

puter Algebra to form the finite element matrices and the parallelisation of their 

numerical evaluation. Finally, the last chapter is devoted to the discussion of the 

tests carried out, the results obtained and the problems encountered together with 

the further investigation carried out to solve them. 

8.2 The governing equations 

The aim of the work is not to examine the leading equations of the problem 

but to concentrate on their coding on the conputer, including the analysis of the 

approximation method used to solve the problem. Therefore, the basic principles 

of fluid mechanics are assumed and the corresponding equations are given without 

special references or demonstrations. Nevertheless, where these equations have 

been used in a different form from the traditional statements, for example use of 

different conventions or coordinate systems, their expression is fully derived. 

In this section, the basic equations governing the behaviour of a flow over a 

spillway are derived for the conventions adopted in this study. Their solution using 

a variational principle is given. 

8.2.1 Laplace equation 

The flow considered is assumed to be irrotational. Therefore the problem can 

be formulated in term of a streamfunction, denoted 1/J. Other formulations can also 

171 



Chapter 8: Introduction to Free Surface Flows 

be used including velocity potentials. Although the form of the equations obtained 

varies depending on the formulation chosen, the end results are the same. 

The streamfunction measures the flux of the flow across a given section of the 

flow. The streamlines of the flow are the lines where 'ljJ is constant. The value of 

'1/J on a streamline is not unique as the streamline '1/J = 0 may be assigned to any 

convenient streamline. 

The streamfunction is related to the velocities of the fluid through the first 

order derivatives. In a cartesian coordinate system Oxy, let denote u the compo

nent of the velocity in the x direction and v the component in the y direction. The 

relation between the streamfunction and the velocity is then given by the following 

equations: 
8,P 

U=--
8y 

8'1/J 
v = 8x· (8.1) 

The choice of the signs in front of the first order derivatives of '1/J depends on a 

convention which is variable from author to author. Providing the same conven

tion is used throughout the calculations, the choice of the signs is arbitrary. The 

equation ( 8.1) uses the convention of Massey21 . 

The condition of irrotationality of the flow is given below: 

8u 8v 
----0 8y 8x- · (8.2) 

When equations (8.1) and (8.2) are combined together, the Laplace equation is 

obtained: 
82'1/J 82'1/J 
8x2 + 8y2 = 0. (8.3) 

This equation applies throughout the volume of the liquid. 

8.2.2 Bernoulli equation 

For inviscid, incompressible and steady flows, the Bernoulli equation applies 

. along each streamline. Free surface flows have a natural streamline along the 

surface, for which the Bernoulli equation holds: 

p y2 
- +- + gh =constant, 
p 2 

172 

(8.4) 



Chapter 8: Introduction to Free Surface Flows 

where P is the pressure, V is the velocity and h is the elevation above some 

convenient datum of a point along the surface of the :Bow. We will here take h 

as y and the convenient datum as the y origin of the coordinate system Oxy. pis 

the density of the :Bow and is constant since the fluid is incompressible. g is the 

gravity acceleration. For free surface :Bows, the surface of the :Bow is at atmospheric 

pressure and P is zero. The Bernoulli equation is simplified as: 

v2 
T + gy = constant. (8.5) 

The velocity V in the. equation above can be expressed in function of the 

streamfunction 7/J as shown below: 

(8.6) 

This can be further simplified when introducing the local coordinate system 

made up of the tangential and normal directions at point (x,y), called (w,n). This 

is shown in Figure 8.1. Free surface 

y 

Figure 8.1: Global and local coordinate systems 

Denoting the components of V in (w,n) as Vw and Vn, the following equation 

173 



Chapter 8: Introduction to Free Surface Flows 

holds: 

(8.7) 

The surface being a streamline, the velocity on the surface is tangantial to the 

surface, therefore 

Vn = 0. (8.8) 

Combining equations (8.6), (8. 7) and (8.8) leads to: 

v' = (~!)' + (::)' = (~)' (8.9) 

The Bernoulli equation becomes: 

1(8'1jJ) 2 

2 on + gy = constant. (8.10) 

To determine the constant, more details about the geometry of the problem are 

needed. The domain of study is composed of a fixed geometry bed and a fluid 

domain n expressed in the coordinate system Oxy as shown in Figure 8.2. 

Energy level 

Free surface 

y 

Domain 0 

Figure 8.2: Geometry of the problem 

174 



Chapter 8: Introduction to Free Surface Flows 

E represent the energy level, which is the stagnation level far upstream. The 

Bernoulli equation ( 8.1) holds for all points on the surface, including those at 

infinite distance upstream for which the velocity is zero (stagnant water) and the 

level coincide with the energy level by definition. Therefore, for these points the 

Bernoulli equation is: 
y2 

2 + gy = gE =constant. (8.11) 

The final form of the Bernoulli equation is given below, where z = E - y is taken 

as the distance between the energy level and the free surface: 

(
8'1/J)2 
Bn = '2(constant- gy) = 2(gE- gy) = 2gz. (8.12) 

Another quantity in the problem is the discharge Q, which is defined as the rate 

of volume flow which enters the domain of study n. In the case of steady state 

flows, the rate going in is equal to the rate coming out. The formula for Q is given 

below: 

Q = { Vdf, 
lri 

(8.13) 

where ri is the boundary of the domain n at the inlet, as shown in Figure 8.3. 

A similar equation could be written at the outlet. In the special case when the 

velocities at the inlet are constant and r i is a straight vertical boundary of length 

d this relation simplifies as: 

Q= Vd. (8.14) 

8.2.3 Statement of the problem to solve 

The problem to solve here is, given Q, determining the values of the stream

functions throughout the domain n coupled with finding the position of the free 

surface boundary r S· The additional problem of finding the value of Q has also to 

be solved. 

When studying a real situation, the knowns of the problem normally are the 

shape of the spillway and the stagnation level upstream. Under these given condi

tions, and assuming they are realistic, the fluid flows over the spillway in a unique 

175 



Chapter 8: Introduction to Free Surface Flows 

manner imposing both the shape of the surface and the value of Q. Therefore, the 

governing equations of the problem should take into account this coupling. 

Traditionally the two problems have been separated. The discharge Q is fixed 

to a value close to the real one, obtained by empirical formulre, and the position 

of the surface is found. Some criteria for measuring the 'goodness' of the surface 

are then derived and a new value of Q is tried until the ideal match between the 

surface shape and the discharge is found. 

This type of approach has been followed here, since there is some reference 

work on the subject. Later, a proposed alternative scheme will be explained where 

the new equations solve fo~ both the surface shape and the discharge at the same 

time. 

Ultimately, what is interesting to find out is the pressure distribution on the 

bed. This can be obtained through the Bernoulli equation applied to the streamline 

coinciding with the bed. This is stated below: 

V2 
P= E- --y. 

2g 
(8.15) 

V being related to the steam function through equation (8.6), the values of the 

streamfunction on the bed have to be found. 

The problem can then be stated as follows. The unknowns of the problem are 

the values of the streamfunctions on the bed and the position of the free surface. 

The problem is described by a set of two equations given below: 

(Laplace equation) 

(8.16) 

(Bernoulli equation). 

A set of boundary conditions are added to these equations to specify a unique 

solution: 
'1/J = 0 

'1/J=Q 

on the bed 

on the surface. 

176 

(8.17) 



Chapter 8: Introduction to Free Surface Flows 

8.2.4 Variational equations 

The solution of these equations uses a functional formulation where the equa

tions are derived as stationary points of an appropriately chosen integral. The 

functional was first derived by Luke8 and is based on the calculus of variations as 

developed in Courant and Hilbert23 . The functional is: 

1 [(a,p) 2 (a,p) 2

] Ill = J k 2 8x + 8y dO (8.18) 

II2 = _!:_g [L z2(x )dx, 
2 Jo 

where n is a variable domain. Figure 8.3 shows the variations of the domain n 
which are measured as displacements in the normal direction to the surface 8n. r 
is the variable boundary of the domain. 

r r----------------------------------------· 
I n ---------1 .... 
I ,, .... .... .... 

.................. , 

! ,.;',, 
' .... , 

n ' ~L ', 

Figure 8.3: Variational domain 

'',,, 
',,1 

I 
I 
I 

The term II1 relates to the Laplace equation which applies throughout the 

fluid, hence we call it the volume term. II2 is called the surface term as it is 

associated with the Bernoulli equation applying on the surface. 

Finding the stationary points of II is equivalent to solving both the Laplace 

equation and the Bernoulli equations given in (8.8). The proof of this statement 

177 



Chapter 8: Introduction to Free Surface Flows 

is given in the following sections. 

The proof is based on the formulre related to variable bound integrals and their 

variation. Consider the integral G as follows: 

G = j In F(x, y, f(x, y), fx(x, y), /y(x, y))dO., (8.19) 

where not only the function f is variable but also the limits of the domain 0. may 

be variable. The variation of G can then be written as follows23 : 

5G= j fniF]J5fdxdy+ fr (Ft.~: +F1,~) 5fds+ frF(5x;. +5y~) ds, 
(8.20) 

where 
f - 8f 
x- 8x 

f = 8! 
y 8y 

8n = variation of the domain 0. 

[ F]t = Euler functional derivative of F 

8.2.5 Variation of the volume term 

(8.21) 

The variation of the volume term II1 is first derived using the variation formula 

(8.20) for which f is the streamfunction 'lj; and the function F can be written as 

follows using the definitions in equation (8.21 ): 

(8.22) 

F is therefore a function of ·1/Jx and '1f;y only. The Euler functional derivative of F 

178 



Chapter 8: Introduction to Free Surface Flows 

is then: 
1 ( 8 8F 8 8F) 

[Ftj!] = -2 8x 87/Jx + 8y 87/Jy 

= -~ (:X 27/Jx + ~ 27/Jy) (8.23) 

= - ( a2,p 821/J) 
8x2 + 8y2 • 

The expressions for FtJ!x and Ftj!y are next given: 

(8.24) 

On the surface, the expression ofF can be simplified, using the relation established 

equation (8.9): 

F = ~( ,p; + 7/J~) 
1 2 

= 27/Jn. 
(8.25) 

Taking into account the results established in the equations (8.23), (8.24) and 

(8.25), the variation of II1 can be written as follows: 

(8.26) 

Further simplification can be brought in by examining the terms in the surface 

integrals. First consider the second integral of 8II1. The chain rule can be applied 

so that: 
87/J 8x 87/J 8y 87/J --+--=-. 
8x 8n 8y 8n 8n 

(8.27) 

The variation of 7/J along the surface is constrained as 7/J is constant along that 

line. When the surface moves by a quantity 8n along the outer normal n, there is 

a change in the discharge Q of 8Q and a change in 7/J of 87/J: 

'I/J1 = 7/Jo + 87/J 

Q1 = Qo + 8Q, 

179 

(8.28) 



Chapter 8: Introduction to Free Surface Flows 

where the indices 0 and 1 represent respectively the values of 1/J and Q before and 

after the movement of the free surface. From equation (8.13), 8Q is defined as: 

8Q = V6n. (8.29) 

The velocity on the surface is tangential to the surface and can be expressed in 

the local (w,n) coordinate system as (see equations (8.7) and (8.8)): 

v =- 81/J. 
8n 

(8.30) 

The boundary conditions impose that 1/J is equal to Q on the surface. This implies 

that: 

Combining equations (8.28), (8.29) and (8.30) leads to: 

81/J 
61/J = 6Q = V6n = --6n. 

8n 

The second integral in the variation of II1 thus becomes: 

{ (81/J 8x + 81/J 8y) 61/Jds = { 81/J 61/Jds 
lr ax 8n 8y 8n lr 8n 

(81/J)2 
= -fr Bn 6nds 

= - fr 1/Jn6nds. 

(8.31) 

(8.32) 

(8.33) 

In the third integral of 6II1, the expression in parenthesis can be simplified as 

follows: 
8x 8y 

6x Bn + 6y Bn = 6n. (8.34) 

This can be seen from geometric relations shown in Figure 8.4. 

Adding all the terms together leads to the following result: 

(8.35) 



y 

c5y 

w 

n 

Chapter 8: Introduction to Free Surface Flows 

6n=a+b 

=cos(B ,)6x+cos(81)6y 

cos(8,)=6x 
6n 

sin(8 ,)=cos(81)=6y 
6n 

Figure 8.4: Relation between local and global coordinates 

8.2.6 Variation of the surface term 

Now, the variation of Il2 has to be found. II2 is recalled below: 

(recall 8.18) 

The evaluation of the variation involves a change of coordinate system from x to 

s, where s is the curvilinear coordinate along the free surface, as shown in Figure 

8.5 

---------7 
X 

w 

Figure 8.5: Change of coordinate on the free surface 

181 



Chapter 8: Introduction to Free Surface Flows 

The expression of z as a function of the displacement of the surface on is: 

z = zo - oncos( 9), (8.36) 

where zo is the position before the surface moves and 9 is the angle between 

the direction of movement of the surface, that is to say the normal to the surface, 

and the vertical direction y, as shown in figure 8.4. The integral II2 is transformed 

from the formulation in terms of the cartesian coordinate x to the formulation in 

terms of the curvilienar coordinate s, as shown in Figure 8.5. This is carried out 

in order to obtain a formula for the variation of II2 compatible with that obtained 

for the first part of the functional rrl, whose line integrals were expressed in terms 

of s rather than x. The relation between the two coordinates, which can be seen 

in Figure 8.5, is: 
ds 

dx= --. 
cos9 

Changing coordinate system in (8.37) and expressing z explicitly leads to: 

1 fr 2 ds II2 = --g (zo- oncos(9)) -non. 
2 r cosu 

The integral II2 is a function of n only, therefore its variation is: 

8II2 
oiT2 =-on 

8n 

1 h 8 ( 2) ds = --g -. (zo- 8ncos(9)) -8n 
2 r 8n cos9 

1 h ds = --g 2(zo- 8ncos( 9))( -cos9)-n8n 
2 r cosu 

= g fr(zo- 8ncos(9))ds8n. 

The variation of the surface is therefore: 

g fr z( s )8nds. 

182 

(8.37) 

(8.38) 

(8.39) 

(8.40) 



Chapter 8: Introduction to Free Surface Flows 

8.2. 7 Final results 

Adding all terms of the variation of the functional II together leads the final 

expressiOn: 

(8.41) 

Setting oil to zero, which is equivalent to finding the stationary points of the 

functional, clearly leads to the Laplace and Bernoulli equations stated previously 

equation (8.16). 

In the next chapter, the solution of finding the stationary points of II is ex

plained. 

References 

1. Craeger W.P., Engineering of masonary dams, John Wiley publisher, New York, 1929. 

2. Davis C.V., Handbook of applied hydra-ulics, McGraw-Hill, New York, second edition, pp 
259-263, 1952. 

3. USBR, Design of small dams, US Government Printing Office, Washington, 1973. 

4. Southwell R.V. and Vaisey G., 'Relaxation methods applied to engineering problems. XII. 
Fluid motions characterised by 'free' stream-lines', Phil. Trans. Roy. Soc., Land, 240 A, 
pp 117-160, 1946. 

5. Cassidy J.J., 'lrrotational flow over spillways of finite height', .J. Engrg. Mech. Div., ASCE. 
91, Iss 6, pp 155-173, 1965. 

6. Bet tess P. and Bet tess J .A, 'Analysis of free surface flows using isoparametric finite elements·, 
International .Journal fo1' N-umer·ical Mt:thods in Engineering, 19, pp 1675-1689, 1983. 

7. lkegawa M. and Washizu K .. 'Finite clement method applied to analysis of flow over a 
spillway crest', International.Joumalfor N-umerical Methods in Engineering, 6, pp 179-189. 
1973. 

8. Luke J.C, 'A variational principle for a fluid with a free surface', .Jo-urnal of Fl-uid Mechanics. 
27, Iss 2. pp 395-397. 1967. 

9. Betts P.L., 'A variational principle in terms of stream function for free-surface flows and its 
application to the finite element method'. Comp-uters and fluid.~, 7. pp 145-153. 1979. 

10. Diersch H. Schirmer A. and Busch K., ·Analysis of Flows with Initially Unknown Discharge· . 
.Jo·urnal of the Hydm-ulic DiviS'ion, 103. pp 213-232. 1977. 

183 



c ... ptPr 8: Introduction to Free Surface Flows 

11. Aitchison J.M., 'A variable finite element method for the calculation of flow over a weir', 
RL-79-069, Rutherford Laboratory. 1979. 

12. Varoglu E. and Finn W.D.L, 'Variable domain finite element analysis of free surface gravity 
flow', Computers and fluids, 6, pp 103-114, 1978. 

13. Markland E., 'Calculation of flow at a free overfall by relaxation method', Proc. Inst. Civ. 
Engrs., 31, pp 71-78, 1965. 

14. Williams J .M., 'An integral equation method for the computation of progressive gravity 
waves of finite height', HRS Report !NT 136, 1974. 

15. Li W., Xie Q. and Chen C.J., 'Finite Analytic Solution of Flow over Spillways', Journal of 
Engineering Mechanics, 115, Iss 12, pp 2635-2648, 1989. 

16. Henderson H.C., Kok M. and De Koning W.L., 'Computer-aided spillway design using the 
boundary element method and non-linear programming', International Journal of Numerical 
Methods in Fluids, 13. pp 625-641, 1991. 

17. Dias F., Keller .J.B. and Vanden-Broeck J., 'Flows over rectangular weirs', Physics of Fluids, 
31, Iss 8, pp 2071-2076, 1988. 

18. King A.C. and Bloor M.I.G., 'Free-surface flow of a stream obstructed by an arbitrary bed 
topography', Quaterly Journal of Mechanics and Applied Mathematics, 43, Iss 1., pp 87-106, 
1990. 

19. Forbes L.K., 'Critical free-surface flow over a semi-circular obstruction', Journal of Engi
neering Mathematic.~, 22, pp 3-13. 1988. 

20. Forbes L.K., 'Two-layer critical free-surface flow over a semi-circular obstruction', Journal 
of Engineering Mathematic.~. 23, pp 325-342, 1989. 

21. Forbes L.K., 'An Algorithm for 3-Dimensional Free-Surface Problems in Hydrodynamics', 
Journal of Computational Physics, 82, pp330-347, 1989. 

22. Massey B.S., Mechanics of Fluids, Second edition, Van Nostrand Reinhold Company, Lon
don, 1970. 

23. Courant R. and Hilbert D .. Methods of Mathematical Physics, Vol. 1, Wiley-Interscience, 
New-York, 1953. 

184 



Chapter IX 

Finite element formulation 

This chapter concentrates on describing how the governing equations of free 

surface flow have been solved. The finite element method has been used to find 

the position of the free surface and the values of the streamfunction. The discreti

sation of the equations leads to a system of nonlinear equations whose solution 

has been attempted using iterative methods. The two novel aspects of this work 

lie in the generation of the element matrices for the finite element formulation us

ing the symbolic language REDUCE and in the parallelisation of their numerical 

evaluation. 

This chapter is organised around the description of the finite element formula

tion with explanations of the discretisation models and the discretised form of the 

equations, the organisation of the computer code including the use of REDUCE 

and the parallelisation of the code. Nonlinear solvers are also considered. 

This work is based on an earlier program, written in Algol 68 by Peter and 

Jackie Bettess1, which has some common features with the computer code devel

oped here in FORTRAN. Most of the routines dealing with inputting the data in 

to the program and generating the finite element mesh are a direct translation of 

the Algol code into FORTRAN code. The routines which perform the calculations 

to solve the problem are new. The graphics interface which displays the mesh and 

the streamlines of the flow is an amalgam of graphics routines developed by Noel 

Hardy, of the Department of Marine Technology in the University of Newcastle

upon-Tyne, of calculation routines for finding out the streamlines written by Peter 

Bettess and modified and other routines specially written for this work. 

The full program for the analysis of the free surface flow is quite large and the 

problem of testing the code important, especially in view of the various instabilities 

of both the physical problem and the numerical approximation used. This has lead 

us to devote a separate chapter to this matter. This constitutes the next chapter. 

185 



Chapter 9: Finite element formulation 

9.1 Discretisation of the governing equation 

The governing equation presented in the previous chapter is recalled below: 

1 [(87/J) 
2 

(87/J) 
2
] 1 L = 2 J k ax + 8y dO.- 29 fo z2(x)dx. 

(recall 8.18) 

The discretisation of this equation consists of replacing the continuous variables 

7/J and n by a set of approximation values 7/Jl, 7/J2, ... , n 1, n2, ... taken at given points 

of coordinates (xt, Yb ), (x2, Y2), .... When using the finite element method, the 

discretisation points are the nodes which define the mesh of finite elements. The 

domain where the fluid is studied, n, is divided into a finite number of elements 

as shown in Figure 9.1. 

ELEMENT MESH 

ENERGY LINE 

Figure 9.1: Division of the domain into elements 

This can be expressed by the following equation: 

totels 

n = L: ni. (9.1) 
i=l 

where totels is the total number of elements composing the domain 0. and each 

O.i represents one element. The elements are made up of nodes which are the 

186 



Chapter 9: Finite element formulation 

discretisation points. The continuous variables are replaced by their values at the 

nodes of the elements and interpolation functions are used to obtain values between 

the nodes. 

The elements used in this work are the eight-noded serendipity elements and 

the interpolation functions are the quadratic shape functions associated with these 

elements. The formulre for these shape functions have been derived in chapter 3. 

The FORTRAN code used in this chapter is the one generated by the REDUCE 

program presented in chapter 3. 

9.1.1 Discretised form of the volume term 

Consider first the volume term TI1. It can be expressed in a matrix form by 

introducing the vector B defined as follows: 

(¥!;) B= ~ . (9.2) 

The volume term then becomes: 

(9.3) 

The summation property of integrals can be applied to the volume term to give 

the following equation: 

totels 1 ) 
n1 = I: (- J fr. BfBidni , 

i=l 2 n. 
(9.4) 

where Bi is the vector B related to the element i. 

The problem is narrowed down to finding the expression of the first order 

derivatives of the streamfunction in relation to the discretised variables. The basic 

relation between the approximation and its nodal values is expressed through the 

shape functions. Given the eight-noded serendipity element as shown in Figure 

187 



Chapter 9: Finite element formulation 

9.2, the relation~ are: 

7 

y 
8 

1 

8 

X= L NiXi 
·i=l 

8 

y = LNiYi 
i=l 

8 

1/J = L Ni1/Ji' 
i=l 

'T' '17 
I 
I 

!6 5 
.L 
11 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

! 1 4 
~--------------- -------~ 

,~ 

"' 
2 3 

Figure 9.2: Element and coordinate systems 

(9.5) 

where Ni is the quadratic shape function associated with the node i. It is a 

function of the local coordinates ~ and TJ shown in Figure 9.2. The full definition 

of the shape functions and local and global coordinate systems can be found in 

chapter 3. Although the discussion in this section is based on the eight-noded 

serendipity element, it is quite general and the computer code has been developed 

so that other elements can be used such as higher order elements. 

The relations in equation (9.5) assume that the domain defining the flow is 

fixed. In the case when the flow has a surface which is allowed to move freely, the 

relations defining x and y are modified to take into account the displacement of 

the surface nodes. 

When the surface nodes move, two approaches can be followed: 

188 



Chapter 9: Finite element formulation 

1. The surface nodes move but the other nodes in the mesh are fixed (Fig

ure 9.3 a) 

2. The surface nodes move and the other nodes are moved proportionally, 

leaving the nodes on the bed unchanged (Figure 9.3 b) 

r!QUntd free surface level 

o--o-..q 

bed -, 

old mesh strategy a 

( 

strategy b 

a: movement of top nodes only. b: movement of all nodes. 

Figure 9.3: Movements due to the free surface 

The first strategy has the advantage of simplifying the calculations, as the 

relations in equation (9.5) remain unchanged but it can introduce distortions in 

the mesh which may lead to inaccurate solution or no solution at all if some of 

the elements 'flip over' as shown in Figure 9.4. The second strategy makes the 

finite element formulation more complicated but ensures a regular distribution of 

the nodes in the mesh which is more likely to lead to a correct solution. 

The second strategy has been adopted here. When a surface node is displaced 

by a distance b all the nodes underneath it are moved proportionally as shown 

in Figure 9.5. The angle between the direction of displacement and the vertical 

coordinate y is measured by (). The component of the displacement in the normal 

direction n is bi. Let now consider the movements at element level. In equation 

(9.5) the values of the Xi and Yi have to be modified to take into account the top 

node displacements. The modification of the element node number 1,8 and 7 are 

related to b1, node number 2 and 6 are related to b2 and node number 3, 4 and 5 

189 



Chapter 9: Finite element formulation 

6 

old surface 

new surface 

Figu~e 9.4: Flip over of the elements 

are related to ba (see Figure 9.2 for element node numbers). Simple trigonometric 

consideration enables us to write: 

iBs 
I l 83\J . l-- ----~c___ ~ rfls/ 

\,~ 1 ~ ...... ~.. .. _ ;, 
~t___ _ __ y__ ~ .. r:J. 

I I -.......... : 
I I ---
~ 0 I 

11 I !f · . J ._ __ .... ___ ., ____ t i; 
I • ---~ 
~I , 

free surface 

bed 

Figure 9.5: Proportional displacement of the nodes in the mesh 

(9.6) 

where x~ is the new value of the x position for node i after taking into considera

tion the displacement of the corresponding surface node j. O:j is the proportional 

amount of displacement of node i in the element. An example of the values of O:i 

190 



ag 1 

as 0.875 

a7 0.75 

a6 0.625 

as 0.50 

a4 0.375 

a3 0.25 

a2 0.125 

a1 0 

Chapter 9: Finite element formulation 

9 

8 element 4 
7---..--

6 element 3 
5---'l!f---

element 2 

element 1 

Figure 9.6: Example of displacement values 

is given in Figure 9.6. 

In equation (9.5), Xi is thus replaced by xi. A similar relation holds for Yi 

where /3 and cos(8) are used in place of a and sin(8). Equation (9.5) can then 

be reformulated in a matrix form as follows. Denoting by N the vector of shape 

functions such that: 

and defining the three matrices representing the movement of the nodes as: 

a1sin(81) f3tcos( 81) 0 0 

0 0 a2sin(82) /32cos( 82) 

0 0 0 0 

0 0 0 0 
Lt = 

0 0 
L2 = 

0 0 

0 0 a6sin(82) f36cos( 82) 

a7sin( 81) f37cos( 81) 0 0 

assin( 81) /3scos( 81) 0 0 

191 



Chapter 9: Finite element formulation 

0 0 

0 0 

a3sin(83) ,B3cos(83) 

La= 
a4sin(83) ,B4cos(83) 

(9.8) 
assin(83) ,Bscos(93) 

0 0 

0 0 

0 0 

the equation (9.5) can be expressed in matrix form as: 

(9.9) 

where ( x ,y) is the vector of the continuous variables and x is the matrix of the 

discretised variables as defined below: 

X! Yl 

X2 Y2 

X3 Y3 

X4 Y4 
(9.10) x= 

xs Y5 

Xfi Y6 

X7 Y7 

Xg YB 

The relation in equation (9.5) for 7/J remains unchanged. 

Coming back to the original aim of calculating B, the first order derivatives of 

'ljJ need to be found. From equation (9.5), the following relations can be derived: 

(9.11) 

where the 7/Ji are constant values and Ni is a function of x and y. More precisely, 

Ni is a direct function of~ and ry, the local coordinates and an indirect function 

192 



Chapter 9: Finite element formulation 

of x andy. The chain rule is used to transform equation (9.11) as follows: 

aNi aNi a~ 8Ni arJ -=--+--ax a~ ax arJ ax 
aNi aNi ae aNi arJ -=--+--, ay ae ay arJ ay 

(9.12) 

the equations above can be reformulated in matrix terms as follows: 

8x _ Fx 8x 7Jt 
( 

!lJii ) ( 8f._ £!1. ) ( 8N· ) 

8aW - ~ t 8~j . 
(9.13) 

The two by two matrix is tr.aditionally called the inverse of the Jacobian matrix and 

denoted J-1. It contains the relation between the local and the global coordinates. 

The expression for J- 1 is obtained by inverting the expression for J which is defined 

as: 

( 

/Jx 

J= ~ 
711, 

Wt) 
~-

From equation (9.9), the formula for J can be derived as: 

(9.14) 

(9.15) 

where Libi uses the summation convention ('Er=l Libi) and VN is the matrix of 

the shape functions derivatives as shown below: 

(9.16) 

Combining the equations (9.11), (9.13) and (9.15) the vector B can now be fully 

expressed in function of the discretised variables of the problem in a matrix form: 

B = (J-1)(VN)P, 

193 

(9.17) 



Chapter 9: Finite element formulation 

where P is the vector containing the '1/Ji values as shown below: 

'1/JI 

'1/J2 

'1/J3 

P= 
'1/J4 

(9.18) 
'1/J5 

'I/J6 
'1/J7 

'1/Js 

In the expression for III given in equation (9.4), the element domains ni are ex

pressed in terms of the global coordinates (x,y). This needs to be changed as the 

vector B is expressed in function of the local coordinates (e,7J). The known for

mula related to transformation of coordinates in multidimensional integrals can be 

applied here: 

dni = detJ de d17, (9.19) 

where J is the Jacobian matrix as defined previously and (e,7J) are the local coor

dinates related to element i. The volume term can therefore finally be expressed 

as: 

(9.20) 

From the equation above, it is important to identify the dependence on the dis

cretised variables of each term since the first order derivatives of III need to be 

evaluated. The main point is that the volume term is a linear function of the 

variable '1/J and a nonlinear function of the variable n. In terms of discretised vari

ables, III is a linear function of the '1/Ji's and a nonlinear function of the b/s. The 

nonlinearity comes from the term J-I. The Jacobian matrix is a linear function 

of the bi's as shown in equation (9.15). Therefore its inverse is a function of 1/bi 

which is nonlinear. This implies that the calculation of the first order derivative 

of III with respect to n, or bi in the discretised form, is not straightforward. 

In the original work done by Peter and Jackie Bettess, the nonlinear term in 

bi was developed in a Taylor series which was truncated at the second order for 

reasons we will discuss later. The novelty of the work done in this chapter is 

194 



Chapter 9: Finite element formulation 

that the Computer Algebra system REDUCE has been used to obtain the exact 

analytical expression for the derivatives of the nonlinear term. The integration is 

still, however, carried out numerically because there is no exact analytical integrand 

to the differentiated nonlinear term, as it will be shown in a later section. 

Even without considering the surface term of the functional Il2, it appears that 

the system of equations which arises from the calculation of the stationary points 

of the functional is nonlinear. Indeed, the equation to be solved is: 

8II = 0, 

which is equivalent in terlll-s of the discretised variables to: 

8II 
-=0 
81/;i 
8II 
8b· = 0 

J 

i = 1, totnod 

j = 1, totsnd, 

(9.21) 

(9.22) 

where totnod is the total number of nodes in the mesh and totsnd is the total 

number of nodes on the surface of the flow. As II is nonlinear in terms of bj, it 

implies that the equations in (9.17) are nonlinear. 

In the original work, the Newton-Raphson method was used to solve the non

linear equations. This is why the Taylor series development was truncated after 

the second order term as the Newton method only requires the knowledge of the 

first order derivatives. 

Before going any further in the derivation of the equations for the volume term, 

the discretised form of the surface term is obtained. 

9.1.2 Discretised surface term 

The equation for the surface term is recalled below: 

1 !oL 2 Il2 = -- z (x )dx. 
2 0 

(recall 8.18) 

A similar methodology to the one used for the volume term is followed here. 

This time, though, the discretisation is carried out along the line of the surface 

195 



Chapter 9: Finite element formulation 

instead of in the two dimensional volume. This means that the interpolation 

functions used are different. They are the one dimensional shape function for 

three-noded elements, which directly correspond to the one dimensional Lagrange 

polynomials shown in chapter 3. 

The line corresponding to the free surface of the flow is divided into one di

mensional elements as shown in Figure 9.7. 

eLement 1 

Figure 9. 7: Discretisation of the free surface 

The discretisation formulre are therefore: 

3 

X= L MiXi 
j=l 

3 

z = L MiZi, 
j=l 

(9.23) 

where Mi denote the three-noded one dimensional shape functions. Although 

the equations are given for three-noded one dimensional elements, which corre

spond to the number of nodes in the x direction for the eight-noded two dimen

sional elements, they can be extended to any number of nodes by simply replacing 

the shape functions by the appropriate ones for the chosen number of nodes. 

The movement of the nodes on the surface implies that the relations in equation 

(9.24) need to be altered. The alteration for the x coordinate is the same as the one 

stated in equation (9.9) where only the x direction is taken into account. Denoting 

the x component of the Li matrices Ri, and M the vector of the one dimensional 

shape functions, the following equation holds: 

x = M(x + R1b1 + R2b2 + R3b3). 

196 

(9.24) 



Chapter 9: Finite element formulation 

From the formula above, the relationship between the global x variable and the 

local ~ variable describing the position along the free surface can be derived for 

the discretised problem. As it is a one dimensional problem, x is a function of ~ 

only. Therefore the variation of x can be written as: 

8x 
dx = 8~d~. (9.25) 

Using equation (9.25) where only M is a function of~' and adopting the summation 

convention leads to: 
8 

dx = 8~ (M(x + Ribi)) ~ 

= VM(x + Ribi)d~, 
(9.26) 

where VM is the vector of the shape function derivatives. The surface term can 

now be reformulated in terms of the local variable ~ and discretised variables as 

shown in the next equation : 

l12 = -~ {L z 2(x)dx 
· 2 lo 

1 totsel

1
[i+l 

2 = -- L z (x)dx 
2 i=l li 

1 totsel

1
1 

= -- L z2(x(0)VM(x + ~bi)d~, 
2 . 1 -1 

I= 

(9.27) 

where totsel denotes the total number of elements along the surface, li and li+l are 

the bounds of element i. Taking into account the movement of the surface nodes 

z can be expressed in the discretised form as: 

3 

z(x(~)) = L MiZi 
i=l 

3 

= L M.i(Zoi- cos(Bi)bi), 
i=l 

(9.28) 

where zoi is the position of the surface before it moves and Bi is the angle between 

the direction of movement and the vertical direction y. This is shown in Figure 

9.8. 

197 



Chapter 9: Finite element formulation 

·i' 

bicos(~)j 
I 

I 
I 

.,v 

H energy level 

z 

------___ : ........... 
---------'• 

Figure 9.8: Measurement of the movement of the surface 

The surface term can finally be expressed in matrix notation as: 

1 totsel 1 

Ih = --g L j (M(zo- cos(fJj )bj fv'M(x + ~bi)de, 
2 . 1 -1 J= . 

(9.29) 

where zo is the vector of the free surface position before movement. Analysing 

the expression for n2 above leads to the conclusion that it is a function of the 

bi's only and that the relationship is linear. Contrary to the volume term, the 

Jacobian rather than its inverse appears in n2 which is a linear function of the 

bi's as shown in equation (9.24). The integrand in equation (9.23) is therefore a 

polynomial which can analytically be integrated. This has been carried out using 

REDUCE as explained in a later section. 

9. 2 Nonlinear solvers 

As it has been shown in the previous section, the system of equations which 

arises from the discretisation of the flow's governing equations is nonlinear. A 

solver for nonlinear equations is used. Such solvers are based on a linearisation 

technique combined with an iteration scheme. This usually means that a set of 

iteration is carried out for which a system of linear equations has to be solved at 

each step. 

198 



Chapter 9: Finite element formulation 

The first method considered in this work is the Newton-Raphson method ex

tended for a multivariable function. Further on, the problems encountered in the 

convergence of the algorithm has led us to consider both alternative linear and 

nonlinear solvers. The reason and nature of these investigations will be given in 

the next chapter concerned with testing. In the following sections the theory for 

the various nonlinear solvers is given. 

9.2.1 Multidimensional Newton method 

The one dimensional Newton-Raphson method, which will be called the New

ton method, is concerned with finding the zeros of a function f(x ). It is an iterative 

method which requires the guess of a starting point. This starting point can in 

theory be chosen anywhere in the x space, but in practice the closer the starting 

point is from the solution the better the algorithm converges. Obviously, when 

there is more than one solution, the choice of a starting point will determine to 

which solution the algorithm converges. In one dimensional problems, the method 

normally works well providing the function f is continuous. 

From a starting point xo the next point in the iteration is found by the following 

formula: 

Xk+l = Xk- Ax, (9.30) 

where 

(9.31) 

This is illustrated in Figure 9.9. 

One relevant application of this method to the problem considered in this 

chapter is that of finding the stationary points of a function. Although we are 

concerned with the stationary points of a multivariable function, it is simpler to 

explain the method in the one dimensional case first. 

When looking for stationary points, the conditions is that the first derivative 

of the function is zero, which can be expressed as: 

df = 0. 
dx 

199 

(9.32) 



Chapter 9: Finite element formulation 

J(:r:) 

Figure 9.9: One dimensional Newton method 

The conditions of validity of this equation include minimum, maximum and points 

of inflexions of the function f. This is better expressed by the phrase 'turning 

points'. In the problem of free surface flows, given the conditions of steady state to 

be achieved, the minimum is probably what is sought, although strictly speaking, 

there is nothing in the equations that suggests the condition for a minimum is 

present. The next chapter, related to testing, investigates in more detail this 

topic. In the remaining of this section the theory for finding turning points is 

presented. 

Using the Newton method, equation (9.32) can be solved. Finding the turning 

points of the function f is equivalent to finding the zeros of its first derivative 

which can be calculated using the Newton iterative formula as follows. Starting 

from a guess of the solution xo the increment Ax is obtained as: 

~x = :(xk) 
~(xk) 

Xk+l = Xk- Ax. 
(9.33) 

The distinction between maximum, minimum and points of inflexion comes from 

the sign of the second order derivative. If d2 f / dx 2 is strictly positive, the turning 

point is a minimum, if it is strictly negative a maximum is found and if it is zero 

a point of inflexion is reached. 

200 



Chapter 9: Finite element formulation 

The conditions of convergence of this method are that either the value of the 

function df / dx is close enough to zero or that the series of the approximation to 

the solution Xk converges towards a constant value a. This can be expressed as: 

~X= Xk+l- Xk =a+ €- a= E, (9.34) 

where E is defined as the tolerance for convergence. This comes from the fact 

that only a finite number of iteration is practical to implement and therefore the 

calculations are stopped when the accuracy of the solution is sufficient. 

The Newton method converges quadratically, which means that at each itera

tion the number of correct decimal points in Xk doubles. This comes from the fact 

that it is based on a Taylor's series expansion about the solution truncated at the 

second order. It also means that it is not very effective unless the current guess xk 

is near to the solution when the truncation does not bring too much inaccuracy. 

The drawback of the method, though, is that it is expensive as the evaluation 

of both the first and second order derivatives has to be carried out. This problem 

is mostly crucial for multivariable functions solved on a serial computer. With the 

advent of parallel processing, the cost of this method may decrease as the amount 

of calculation to perform is not so penalizing. The advantage of using simpler but 

less accurate ,methods may then be less obvious. 

The extension of the formula to n dimensions is given2 next. The function 

considered is denoted j(x1, x2, ... , xn) where Xi is the variable in the ith direction. 

The formulre (9.31) and (9.32) can simply be extended to then variable case as: 

Xk+l = Xk- ~X, (9.35) 

where 

(9.36) 

201 



f:llapter 9: Finite element formulation 

The variable x is replaced by the vector of variables x. The first and second order 

derivatives are the vector and matrix defined below: 

S!l ~ a!lx2 a~hxi a!lxn 8zi 

BL a:;Jx1 ~ a::hx; {jz~~Xn 8x2 
df and d2 f 
dx it dx2 - ~ ~ ~ & , 1 , 2 ax. , n , 

it &t A a!..lixi !ll 8xn8Xl 0 n 2 8z~ 
(9.37) 

The vector of the first order derivatives is denoted g and the matrix of the second 

order derivatives is denoted G. Equation (9.31) can be reformulated in term of 

these matrices as: 

(9.38) 

In the above equation the matrix multiplication is implicitly denoted as an ordinary 

multiplication (no sign). Equation (9.38) is very useful in showing where the system 

of linear equations arises. The expression G-1g literally corresponds to solving a 

system of linear equation where the system matrix is G and the right hand side 

vector is g as shown below: 

G~x= g. (9.39) 

The vector ~x can also be interpreted geometrically as it corresponds to a 'search 

direction' in which the solution is to be found. This aspect is discussed in greater 

detail in the two following sections. 

The condition of convergence in then-variable case is: 

~X= Xk+l- Xk =a+ t- a= t, (9.40) 

where e is the vector of the errors on the first derivatives of the function f and a 

is the vector solution. 

The distinction between minimum, maximum and points of inflexions for the n

variable case is made by considering the properties of the matrix G. If the matrix 

G is positive definite then the solution found is a minimum. If it is negative 

202 



Chapter 9: Finite element formulation 

definite the solution found is a maximum and if it is indefinite a point of inflexion 

is obtained, which is called in n dimensions a saddle point. 

9.2.2 Line of steepest descent method 

The line of steepest descent is based on a similar principle to the Newton 

method. From a starting point, an increment ~xis calculated and the method 

iterates until the solution is reached. The increment represents the direction of 

search which is different from the Newton one. It is defined as: 

{9.41) 

Geometrically, it can be int~rpreted as the vector normal to the hyperplane defined 

by f(xk)=constant at the point k. It is difficult to visualize this in the general case 

of n dimensions, so the example of a two variable function f is shown in Figure 

9.10. 

Figure 9.10: Two dimensional steepest descent method 

This method ensures that the vector of search is always pointing in the direction 

of a minimum. Intuitively, the direction of search is always pointing downhill, 

hence the name of the method. This means that this method cannot find a saddle 

point. A maximum can easily be obtained by multiplying all the equations by -1. 

However, if there are local minimum on the way to the absolute minimum, the 

method will find these local minimum and stop there. This is dependent on the 

starting point chosen and, in this respect, the steepest descent method behaves 

similarly to the Newton method. 

203 



Chapter 9: Finite element formulation 

The condition of convergence of the method is similar to Newton in that the 

solution is reached when either the length of the search vector becomes smaller 

than a chosen tolerance or the approximation to the solution Xk converges within 

a certain tolerance. 

The method is less costly than the Newton method in that at each step it only 

requires the evaluation of the first order derivatives of the function f. On the other 

hand it takes more iterations to converge and is less accurate. 

The principle differences in the behaviour of the two methods is that the steep

est descent method works well far from the solution and that the Newton method 

converges faster and with. better accuracy when near to the solution. For this 

reason, the steepest descent method can be used to obtain the first guess to the 

Newton method. Practically, the iterations start with the search direction given by 

the steepest descent vector, which is the vector of the first order derivatives, and 

then switches to the direction given by the Newton method when close enough to 

the solution. The difficulty then is to find criteria to characterize the point when 

to switch from one method to the other. 

A way of finding such criteria is to measure the angle between the directions 

of search predicted by each method. If this angle is bigger than a given value 

one method is used, otherwise the other method is used. This can be formally 

expressed as: 

if 8 > i - K then 

use Steepest descent 

else 

use Newton 

end if 

Figure 9.11: Algorithm for switching from steepest descent to Newton 

where the value of K has to be determined. Depending on the problem treated, 

K will vary, therefore its value is found by experimentation for each particular 

problem. An intuitive interpretation of this can be that far from the solution 

the steepest descent method gives a more realistic search direction whereas the 

Newton method might point out in a completely wrong direction. When nearer 

to the solution the two vectors would be pointing roughly in the same direction as 

204 



Chapter 9: Finite element formulation 

Newton becomes more accurate. This means that far from the solution the angle 

between the two vectors is greater than when close to it. 

9.2.3 Line search improvement 

A way of speeding up the convergence of both methods described above is 

to use a line search. The principle of the line search algorithm is to search for 

a minimum along the predicted direction. When using the steepest descent or 

the Newton method the distance of travel from the previous approximation of the 

solution Xk to the next approximation Xk+I is fixed and equal to the norm of the 

vector defining the search direction. This is illustrated in Figure 9.12. 

' ,!------------~ .. X 

' 

Figure 9.12: Fixed distance along the search direction 

When performing a line search the next approximation for the solution Xk+I 

is allowed to be placed anywhere along the search direction, even in the opposite 

direction. This is shown in Figure 9.13. 

/ ----------------
~----

' ----7 

Figure 9.13: Line search method 

X 

This can formally be expressed as minimising the function f(x +>.Ax) where 

)\ is allowed to take any positive or negative value. The steepest descent and 

Newton methods correspond to the case when >.=1. The problem is that of a 

one-dimensional minimisation where >. is the variable. 

205 



Chapter 9: Finite element formulation 

Various methods can be used to solve this problem and consideration must be 

given to the amount of time spent to carry out the minimisation. The aim of the 

line search method is to reduce the number of iterations, therefore as little time 

as possible should be spent on executing it. The simplest technique is to use the 

success and failure algorithm. Other methods include the Bisection method, the 

method of linear interpolation and the one dimensional Newton method3. The 

advantage of the success and failure method is that is only involves the evaluation 

of the function f at each step. 

The idea behind ·the line search is to ensure that between each step of the 

method chosen (steepest descent or Newton) an improvement has been made. This 

improvement corresponds t'o a monotonic decrease or increase of the function whose 

turning points are to be found. The improvement is chosen to be increasing for 

maximum and decreasing for minimum. Since the two schemes are incompatible, a 

prior knowledge of the nature of the turning point sought (maximum or minimum) 

is needed in order to use a line search improvement. 

For the free surface flow problem, such a knowledge is not available, although 

physically a minimum is more likely than a maximum. For reasons explained in 

the next chapter, a minimum was expected and the method for the line search in 

this case is given next, although its amendment for the maximum search would be 

straightforward. 

The algorithm is iterative and needs a guessed starting point. A possible 

starting point would be to set ,\ = 1, which means that the search would start 

around the originally predicted next approximation to the solution Xk+l· The 

success and failure algorithm explores by a quantity d,\ the direction of search 

from the starting point. If the value of the function fat that point has decreased, 

the search continue in the same direction with the value /\ + 2d,\. If not the search 

goes back on step and start again in the other direction with the value ,\ - d>.J 4. 

This is shown in Figure 9.14. 

As the main reason for using the line search is to speed up the corresponding 

iterative method, there is no need for having a high accuracy of the minimum of the 

function f along the direction of search. Moreover, unless the iterative algorithm 

is already near the solution, the direction of search is probably incorrect and a 

206 



if f(x + (.\ + d..\)Ax) < f(x +..\Ax) then 

d..\=2d..\ 

..\=..\+d..\ 

else 

d..\= -d..\/4 

end if 

Chapter 9: Finite element formulation 

Figure 9.14: Line search technique for minimum 

minimum on that line might be quite remote from the solution sought. This is 

illustrated in Figure 9.15. 

Figure 9.15: Local improvement v. global improvement 

There are several ways for restricting the number of iterations for the line 

search. The simplest is to set a high tolerance when testing if the value of d..\ is 

changing from one step to another. More complicated schemes consist of setting 

up bounds within which the iterations are stopped. Although these techniques 

have been considered, they have not been implemented so no description is given 

here apart from their name: the Golstein and Wolfe conditions4 . 

207 



Chapter 9: Finite element formulation 

9.3 Formation of the element matrices: Use of REDUCE 

When using the Newton method for solving the nonlinear equations arising 

from the term II1 of the functional, the vector g and the matrix G have to be 

evaluated at each step. This section concentrates on giving the equations for g 

and G and explaining how this has been obtained using REDUCE. 

9.3.1 Equations for the Newton method 

The governing equation for the free surface flow has been expressed in previous 

sections as the turning poirits of the functional II. Applying the multidimensional 

Newton method to II means that the vector g and the matrix G have to be derived. 

The discretised form of II i~ used and the vector x of the Newton method is defined 

as follows: 

(9.42) 

where totnod is the total number of nodes in the mesh and totsnd is the total 

number of nodes on the free surface. The functional is expressed as the sum on all 

the elements of the local functionals as: 

totels 

II= L Ilk 
k=l 

Ilk= j_ll j_ll pt(vJ-l)t(J-l)t(J-l)(VN)PdetJ<:ted77 (9.43) 

111 2 -- (M(zo- cos(Oi)bi)) V'M(x + Ribi)d( 
2 -1 

This decomposition by element is possible because II is composed of integrals which 

can be expressed as the sum of their local values in each element. In order to unify 

the unknowns ,Pi's and bi 's a 'modified' eight-noded serendipity element is used, 

where three extra nodes are added at the top of each element as shown in Figure 

9.16. 

These extra nodes have the same ( x ,y) coordinates as the associated surface 

nodes but in place of having 1/J as unknown, they have bas unknown. All elements 

in a column have the same extra three nodes. When forming the Gk matrix and 

the gk vector for each element, the dimension of these is then 11 rather than 8. 

208 



Chapter 9: Finite element formulation 

9 10 11 
• • • 

7 .....__ __ ... __ ____, 5 
6 

8 4 

1 2 8 
Figure 9.16: extra top nodes for elements 

The outline of the structur~ of the Newton matrix and the Newton right hand side 

vector is given below: 

t:i~~j 1!!/: 
gk = (9.44) 

i~Ytj ~¥ik 

Using standard procedures from the finite element method, the matrix Gk, 

called the element matrix, is assembled into the system matrix G, which involves 

all the unknowns of the problem including the extra surface nodes. Similarly, the 

element right hand side vector gk is assembled into the right hand side vector g. 

The system G~x=g is then solved for ~x which gives the direction of search where 

to find the new approximation to the solution Xk+l· The calculation of Ilk and 

subsequently 8IIk/8,Pi, 8IIk/8b.i, 82IIk/87/Ji87/Jj, 82IIk/87/Ji8bj and 82IIk/8bi8bj 

has been attempted using the Computer Algebra system REDUCE. The idea is 

to obtain the analytical form of the two integrands in Ilk and to carry out both 

integrations analytically. 

9.3.2 Direct approaches 

In the first place, an attempt was made to directly generate Ilk according to 

formula (9.43). Since the difficulty comes from the term II1 because it is not linear, 

this is considered first. 

209 



Chapter 9: Finite element formulation 

A simple REDUCE program has been written for calculating the expression 

P(VN)t(J-1 )t(J-1 )(VN)P. In the first place a very simple case was considered 

where J was calculated without taking into account the movement of the surface 

nodes. The outline of the REDUCE program is given below. 

NB:=S; 
MATRIX N(1,NB),DN(2,NB),XX(NB,2),PPSI(NB,1); 

initialise N with the analytical expressions for the 8-noded 
serendipity element 

initialise XX with (X1, X2, XNB) 
initialise PPSI with (PSI1, PSI2, ... PSINB) 

FOR I:=l:NB DO 
« DN(l,I) = DF(N(I) ,XI) 

DN(2,I) = DF(N(I),ET) >>; 
J := DN•XX; 
JINV := J••(-1); 
JND : = JINV•ND; 
PI = TP(PPSI)•TP(JND)•JND•PPSI; 

Figure 9.17: Direct REDUCE code 

where XI and ET represent the local variables e and ry, DN contains the shape 

function derivatives VN, J is the Jacobian matrix, JINV is the inverse of the Jaco

bian matrix and PI corresponds to IT. This code can easily be adapted for different 

type of elements by altering the parameter NB and changing the expressions for the 

shape functions. It was tested for linear triangular elements for which NB=3, the 

four and nine noded Lagrange elements and the eight-noded serendipity element. 

The program managed to produce an expression for IT which, unfortunately, 

extended to more than 6 pages. When it came to find out the derivatives of IT 

with respect to '1/Ji REDUCE failed to produce any results. Similarly when the 

integration with respect to e and ry was attempted REDUCE ran out of space. 

The main problem was that in order to calculate these quantities a number of 

large intermediate expressions were generated by REDUCE which eventually ran 

out of space. REDUCE was run on the University of Durham mainframe computer 

with lMByte of space available. 

It appeared impossible to tackle the problem directly, especially in the view 

that the simple code given in Figure 9.17 did not take into account the nonlinear 

part of the problem. 

210 



Chapter 9: Finite element formulation 

A different ~pproach has then be attempted where the calculations are decom

posed in order to avoid the huge expressions obtained with the direct approach. 

The idea is to keep each term of II separate. The first and second order 

derivatives are then obtained from the derivatives of the various parts. As shown 

before, the volume term II1 is a linear function of 1/Ji and a nonlinear function of 

bi. The derivatives with respect to 1/Ji should therefore be straightforward whereas 

the ones for bi require more effort. The expression for Illk before integration is: 

(9.45) 

The expression for the inv~rse of the Jacobian matrix can be formulated using the 

adjacent matrix AJ defined as follows: 

and 

-J12) 
Jn 

for 

J-1 = AJ 
detJ' 

J = ( Jn 
J21 

where detJ is the determinant of the Jacobian matrix: 

(9.46) 

(9.47) 

(9.48) 

Therefore the term (J-l)t(J-1)detJ, denoted MD (for MidDle term) can be ex

pressed as: 

II lk is then formulated as: 

= ( !:S ( d~tJJ) detJ 

AJtAJ 
detJ · 

Illk = Pt(V'N)tMD(V'N)P, 

211 

(9.49) 

(9.50) 



Chapter 9: Finite element formulation 

where MD is a function of bi only and pt(VN)t (VN)P is a function of 'ljli only. 

The formulre for the derivatives with respect to bi are thus: 

(9.51) 

The derivative with respect to 'ljli needs more attention. Denoting (VN)tMD(VN) 

= NMDN, which is a 8 x 8 matrix, the first order derivatives are expressed as 

follows: 

(9.52) 

The multiplication of 8Pt / 8'1jli by NMDN corresponds to taking the ith row 

of the matrix NMDN, since the first order derivative of P is a vector composed 

of zero except at the ith position where there is a 1. This is illustrated in Figure 

9.20. 

i 

I o · . 1 . ·o I i 

------------- ........ ...... ' ,.. ' 
L------:rL"'-"'--1 \ 
r- "" ' 

.-'" - .. ' .. .,' 
a Pt 

a '1/Ji 
NMDN 

i 

0 

......... i 1 'J , 

0 

NMDN 

Figure 9.20: Graphics interpretation of the first order derivatives 

212 



Chapter 9: Finite element formulation 

Similarly, multiplying NMDN by 8P / 81/Ji is equivalent to taking the ith col

umn of NMDN, as shown in Figure 9.20. Therefore the expression for the first 

order derivative with respect to 1/Ji becomes: 

arrlk t 
-
0
- = (rowi)P + P (columni)· 
1/Ji 

(9.53) 

The second order derivatives are now obtained. 

(9.54) 

The second order derivatives of P are zero since P is a linear function of 1/Ji. The 

cross terms can be found using a graphics interpretation similar to that used for 

the first order derivatives. This is shown in Figure 9.21. 

j 

NMDN 

Figure 9.21: Graphics interpretation of the second order derivatives 

Therefore the second order derivatives are: 

(9.55) 

The advantages of this approach compared to the previous one is that the deriva

tives are easily obtained before the expressions become large. We have experi

mented with this method for three-noded triangular elements and the REDUCE 

program for it is given in Appendix G. REDUCE was able to produce expressions 

213 



Chapter 9: Finite element formulation 

for the derivatives but each one was taking more than one page. An example is 

given in Appendix H. 

An inspection of the analytical expressions obtained showed that it was a 

rational function of the bi 's with a polynomial of degree n at the numerator and a 

polynomial of degree d at the denominator, where typically nand d had the values 

9 and 7. Such functions do not generally possess an analytical integrand. 

The expression for G being too large for practical use, an alternative method 

has been devised based on the same principles as the second approach described 

here where the simple algebra is carried out by hand and only the complicated 

nonlinear part is obtained with REDUCE. 

9.3.3 The refined method 

In the refined method, the separate formulation of equation 9.50 is retained 

but the evaluation of the term MD is decomposed further. The numerator and 

the denominator are kept separate: 

MD= N = AJtAJ 
D detJ ' 

(9.56) 

where N is a 2x2 matrix and D is a scalar. J is expressed as a function of the bi's 

as follows: 

(9.57) 

where K and Si are 2x2 matrices. K correspond to the Jacobian matrix when 

the surface is fixed and Si expresses the movement of the surface. The idea is 

that N and D being polynomial functions of the bi's their derivatives can easily 

be obtained using REDUCE. 

Next, the formula for the derivatives of N/ D, which can be derived by hand, 

can be expressed as a function of the the derivatives of N and D. The advantage 

of using REDUCEfor obtaining this formula is that it can be directly translated 

into FORTRAN code, therefore avoiding errors in the calculations. The feature of 

REDUCE concerning the formal definition of formulre is used here. In REDUCE, 

214 



Chapter 9: Finite element formulation 

it is possible to declare a function as depending on a variable without explicitly 

giving the relationship. An example is given below: 

OPERATOR N,D; 
F := N(X,Y)/D(X,Y) 
DF(F,X); 

D(X,Y)*DF(N(X,Y),X)-N(X,Y)*DF(D(X,Y),X) 

D(X,Y)**2 

Figure 9.20: Formal calculation of the derivative of a fraction 

This type of calculation is used to formally derive the expression of the first 

and second derivatives of MD in function of the first and second derivatives of N 

and D. 

The REDUCE code to obtain the analytical expression for MD is given in 

Appendix J. The program includes the translation into FORTRAN of the results 

obtained in REDUCE form. The calculation of G and g from MD is carried 

out numerically according to the formulce (9.51), (9.53), and (9.55) derived in the 

previous section. The integration is also carried out numerically using the Gaussian 

Quadrature procedure5 with three integration points. The program has the option 

of increasing the number of integration points if necessary. 

The evaluation of the surface term II2 is easier because it can be totally derived 

analytically, including the integration, since all the functions involved are simple 

polynomial functions. The REDUCE code and the corresponding generated FOR

TRAN code are given in Appendix J. 

9.4 The complete finite element code for the free surface flow 

In this section an outline of the structure of the whole program for the de

termination of the free surface is given, Some detail about the nature of the data 

input in the program and the automatic generation of the finite element mesh for 

spillways are explained. 

215 



Chapter 9: Finite element formulation 

9.4.1 Input data 

Most of the data input in the program is concerned with the definition of the 

spillway shape and the type of mesh associated with the domain of study n. The 

parameters are now listed, in the order they should appear in the input file. 

The gravity g is first defined. Although it varies very little around Europe, 

the necessity for it to be a variable parameter comes from some of the tests which 

have been devised to check the element matrices as explained in the next chapter. 

The number of Gauss integration points is specified next. The program caters 

for up to ten Gauss points. A flag indicating whether full diagnostic is wanted or 

only partial information is needed has been defined to enable the examination of 

the results during the development of the program. 

Next comes the geometrical definition of the spillway. It is divided in two parts: 

the upstream section lying before the crest of the spillway and the downstream 

section lying after the crest. The origin of the cartesian coordinate system Oxy is 

taken at the crest of the spillway. Two parameters nu and nd hold the number of 

points defining the geometry of the spillway in each part. The (x,y) coordinates 

of these points are stored in an array. An example of a spillway is given in Figure 

9.21. 

The program has been designed so that spillways coupled with obstructive 

gates can also be computed. The geometry of these gates is based on an arc of 

circle. They can pivot around the origin of the circle so that the flow over the 

spillway is variably obstructed by the gate. The geometry of such gates is defined 

by the radius of the gate r, the angle (} between the x axis and the bottom of the 

gate and the ( x ,y) coordinates of the origin of the circle defining the gate. This is 

shown in Figure 9.21. 

Next comes the definition of the flow itself. This comprises the initial guess for 

the discharge and the level of the water upstream of the mesh, at the edge of the 

finite element mesh. This latter parameter enables the calculation of the energy 

level E. The discharge can either be explicitly specified or be evaluated by the 

program using an empirical formula based on a coefficient of discharge, which is 

also input. 

216 



nu.=5 

upstream 

y /j', 
I 
I 
I 
I 
I 

Chapter 9: Finite element formulation 

(x,y) 

--""'""'--------------------------------) ·z 

nd=7 

downstream 

crest 

Figure 9.21: Spillway and gate definition 

The definition of the finite element mesh comes next. The program contains 

an automatic mesh generator which defines both the extent of the mesh and splits 

the mesh up into elements. Depending on whether a gate is present or not, the 

domain of study 0 varies. This is shown in Figure 9.22. 

a: without a gate b: with a gate 

Figure 9.22: Extent of the mesh (domain 0) 

217 



Chapter 9: Finite element formulation 

The upstream part of the mesh is constructed by swinging an arc of circle 

between the bottom of the spillway upstream to the level of the water upstream. 

The origin of the arc is placed at the intersection of the tangent at the bottom of 

the spillway and the upstream level (see Figure 9.22). 

The mesh is then divided into elements. The division is notionally carried out 

in a straight edges mesh, as shown in Figure 9.23, and is then distorted to fit the 

real domain n. LXl, LX2, LYl and LY2 represent the number of elements in each 

part of the mesh, in the x and the y directions. The mesh shown is L-shaped which 

corresponds to the case when a gate is present. If there is not a gate, the mesh is 

reduced to the lower rectangular part, which corresponds to LY2=0. 

LX1=2 LX2=4 

LY1=3 LY2=2 

( ) r---------~ 

LX1 LX2 

RX2=b/a. 
RY2=2 

RY1=1/3 
Q, b 

RX1=1 RX2=7 

Figure 9.23: Creation and grading of the mesh 

The grading of the mesh consists of specifying four ratios, corresponding to the 

four areas of the mesh. Each ratio denoted the size of the element furthest from 

218 



Cbapter 9: Finite element formulation 

the upstream section in terms of the element closest to the upstream section. An 

example is shown in Figure 9.23. 

Finally various parameters, including the tolerance for convergence of the loop 

which finds the free surface shape, are input. 

From the input data the attributes of the finite element mesh and the flow are 

generated. The topology and geometry of the mesh are calculated and stored as 

several FORTRAN arrays. The elements and the nodes of the mesh are numbered 

as shown in Figure 9.24. The initial values of the streamfunction are also generated 

from the value of the discharge. All the nodes on the bed have '1/J values equal to 

zero and the nodes on the free surface have 7/J values equal to the discharge Q. 

This corresponds to the boundary conditions expressed in equation ( 8.17) in the 

previous chapter. The values of '1/J for intermediate nodes are deduced using a 

linear distribution between zero and Q. 

JO J6 J6 j2 J2 

1/1=0 -----7 ~41-L-+>--fiLI----. 

1/1=7018 

1/1=3014 

1/1=5018 

@) : element number 

5 : node number 

1/1=012 -----7 ii--fJ.l----¥-L___.:x.~~,____.,...__.,~IU---<---4f-'-

1/1=3018 -----7 
1/1=014 -----7 ~-+L----P--4J.~.l..--4...____.P---.P-~---_,...'--4'~" 

1/1=018 -----7 
1/1=0 -----7 M------41-L-~----+1-~l-#-l....-.4~~ 

Figure 9.24: Numbering of nodes and elements; Initial values of '1/J 

The boundary conditions on the bed and the surface apply throughout the 

calculations, therefore a means of constraining the corresponding nodes must be 

included. This can be done by the use of a fix vector similar to the one presented 

in the chapter on the solvers. The matrix G and the right hand side vector g for 

the Newton method are at first calculated as if all nodes were free of movement 

and could take any 7/J value. Before solving the system G~x=g the values of '1/J for 

219 



Chapter 9: Finite element formulation 

Figure 9.25: Application of constraints 

the nodes on the bed are reset to zero and those for the nodes on the free surface 

are reset to Q. This is illustrated in Figure 9.25. 

Other constraints can also be applied and their usefulness will be explain in 

the next chapter. They include fixing the 7/J values of the nodes at the inlet and/or 

at the outlet of the domain, and fixing the surface node at the inlet and/ or at the 

outlet so that they cannot move (b is fixed rather than 7/J ). The extra constraints 

are shown in Figure 9.25. 

The program assumes that the surface always moves in the normal direction to 

the bed in the downstream section and vertically (parallel to Oy) in the upstream 

section. Other type of movements are possible since the angle between the vertical 

direction Oy and the direction of movement are stored in a FORTRAN array and 

can therefore be modified. This is illustrated in Figure 9.26. 

Routines for inputting special shape of spillways have also been written. A 

mesh can, if desired, be fully specified by hand including the definition of all the 

nodes coordinates, the initial values of the streamfunctions ... etc. The special 

case of the flat channel is also catered for, for which a simple mesh generator has 

been developed. 

9.4.2 General structure 

To complete the picture of the program, the outline of the structure is given 

next, where the inner loop iterates towards a free surface shape and the outer loop 

220 



Chapter 9: Finite element formulation 

Surface movement (upwards or downwards) 

t t t t 
Flow 

Figure 9.26: Direction of movement of the surface 

iterates towards the associ~ted discharge. The original program written by Peter 

and Jackie Bettess contained routines to automatically iterate towards the correct 

value of the discharge. These routines have been translated into FORTRAN but 

they have not been tested because of lack of time. The outer iteration is therefore 

carried out by hand for testing purposes, although an automatisation is outlined 

in the next chapter. 

ini tialisations 
input data and generate mesh attributes and flow specifications 
display mesh 
outer loop 

inner loop 
for all elements in the mesh do 

get the element data 
form the element matrix and right hand side vector 
assemble into system matrix and right hand side 

end for 
solve for ~x of the Newton method 
choose between Newton and steepest descent directions 
if chosen, carry out the line search 
find Bernoulli errors 
display mesh 
test inner convergence 

end inner 
calculate new mesh 
input new Q value 

end outer 

Figure 9.27: Algorithm of the free surface program 

221 



Chapter 9: Finite element formulation 

The Bernoulli errors, which are found at the end of each iteration in the in

ner loop correspond to the difference between the predicted water level given by 

the Bernoulli equation and the real level found by the program. The velocity is 

obtained from the values of the streamfunction and the error is calculated as: 

(9.58) 

Another parameter, rat, is calculated to help decide on whether the inner loop has 

converged or not. It measures the movement of the surface from one iteration to 

the other. Denoting x=( 1/11, 1/!2, ... 7/!totnod, b1, b2, ... btotsnd) rat is defined as: 

rat= II Xk II 
II Xk-1 II' 

(9.59) 

where k denotes the current iteration and k - 1 the previous iteration. The norm 

used II II is the ordinary norm. 

The inner iteration convergence test is carried out by hand through the ex

amination of the Bernoulli errors, the rat parameter, the length of the vectors g 

and ~x and the angle between these two vectors. Automatisating this procedure 

is straightforward but for test purposes it was easier to enable full control of the 

convergence. 

Another powerful tool to enable decision is the graphical display at each step 

of the mesh including the shape of the free surface and the plotting of the contours 

of equal 7/1 values. An example of such graphics output is given in Figure 9.28. 

A number of 'buttons' enable the optional display of the node numbers, the 

values on the contour lines, the zoom on part of the mesh and the selective display 

of the mesh and/or the contours. 

Because of lack of time the program has not been tidied up to be fully user 

friendly and most of the efforts have concentrated on testing the program and 

obtaining a notion of the problems and their cause. 

222 



mm lfiil C!!iEl C!i6l l!!!!l ... ....... : a...... c..~ u-: a ..... , 
---~ ... a"' t .. ~ __.....: a .. ... . 
"•: D11r a .. , em a.,. ... Dan .. ,.n, .. : a .. ... , 

Chapter 9: Finite element formulation _ .. _ 
,_, ..... : r•J • -==:::=1 .. 
..... t•U•: [II] • a:::::=::=:J .. 

u 11111:111111 

Figure 9.28: Graphics display of mesh 

9.5 Parallelisation of the formation of the element matrices 

9.5.1 Survey 

The parallelisation of finite element codes has been a subject of great interest 

due to the number-crunching aspect of the method. This method is composed 

of three steps, namely the element formation and equation assembly, the solution 

for generalised displacements and determination of general stresses6. In classical 

linear analysis the solution is what takes most of the time and early studies have 

concentrated on the investigation of parallel solvers. More recently, the use of the 

method in nonlinear analysis has lead to the development of parallel algorithms 

for the element formation as this becomes the longest task to perform. 

General references on linear parallel solvers can be found in chapter seven. A 

number of authors have investigated linear and nonlinear solvers in the context 

of the finite element method. Ideas that have emerged concern substructuring 

methods and domain decomposition. 

Farhat6 has developed an automatic finite element domain decomposer which 

has been implemented in FORTRAN on both shared and distributed memory 

machines. His idea is to help researchers develop parallel algorithms by providing 

an automatic way of dividing any regular of irregular two or three dimensional finite 

element mesh into a number of subdomains directly mapped onto the processors. 

223 



Chapter 9: Finite element formulation 

The algorithm produces a balanced division where either the number of elements 

or the number of degrees of freedom is balanced between the processors and the 

number of interface nodes is minimised. This allows a good load balancing and a 

minimisation of communications. 

The domain decomposition technique has been used by Mandel 7 in the p

version ofthe finite element method. The p-version consists of considering elements 

with an increased number of nodes and an increased size. The number of unknowns 

involved is then very high, especially for three dimensions, direct methods for 

obtaining the solution of linear equations cannot be used due to the fill-in effect of 

such techniques. 

Mandel has used the preconditioned Conjugate Gradient method to solve such 

systems. It is an iterative scheme based on the Conjugate Gradient method where 

an approximate solver, the preconditioner, is invoked at each step. The method is 

applied to the three-dimensional p-version finite element method where each ele

ment is treated as a subdomain. The condition number of the matrices is evaluated 

and the influence of the element ratios studied. 

Mandel also did some work on iterative solvers by substructuring for the p

version finite element method8 which is similar to the work describe above except 

that the algorithms are written in a slightly different form. 

Schafer has investigated parallel algorithms for the numerical solution of in

compressible finite element elasticity problems9. These problems are related to 

nonlinear elasticity theory whose discretisation by finite element technique laeds 

to very large systems of nonlinear of equations solved with an augmented La

grangian technique. This enables the nonlinear system to be transformed into a 

set of highly parallelised subproblems. 

At each step three large systems of linear symmetric positive definite systems 

and many small nonlinear systems have to be solved. The large systems are such 

that the matrices remain the same during the whole iteration. A pre-conditioned 

parallel Conjugate Gradient method is used. The small systems are formed com

pletely independently for each element and the solutions can therefore be fully 

224 



Chapter 9: Finite element formulation 

parallelised using a Newton-Raphson method for each system. The authors com

ments on the fact that a 'direct numerical solution of this system, for example 

with the Newton-Raphson method, cannot be carried out efficiently, because in 

practical problems the number of unknowns is very large and the sparse linear 

systems, which have to be solved in each step, are very poorly conditioned'. 

Miles and Havard10 have experimented with parallel implementation of multi

frontal technique in solving fluid mechanical finite element systems. The frontal 

scheme is a modified Gauss elimination for solving systems of linear equations. 

Traditionally, the assembly of the system matrix for finite element models is fully 

carried out before the solver is invoked. In the frontal scheme, the elimination of 

the unknowns start as soon ·as one row of the system becomes available. The back

ward substitution is subsequently performed. In order to maintain the accuracy a 

pivoting scheme is also used where the elimination on the equations happens after 

several rows have been assembled and the largest pivot for these rows is found. 

The multifrontal technique is similar to the frontal scheme except for the as

sembly of the system matrix and the simultaneous elimination starting at various 

places of the mesh rather than only one. The special case of the fusion of two or 

more fronts has then to be considered. In the parallel implementation, the mesh 

is split up into substructures assigned to processors and each processor carries out 

a frontal solution. The implementation is carried out in OCCAM as at the time 

the work was carried out only OCCAM had parallel constructs available. 

9.5.2 Implementation 

There are two main tasks in the program which take most of the running time: 

the formation of the element matrices and the solution of the system of linear 

equations. Rough timing indicates that the formation of the element matrices takes 

at least 80% of the total time of the inner loop, which means that parallelising this 

part of the program should yield good speed-ups. 

The parallelisation of the formation of the element matrices is simple as it 

involves executing a loop in parallel, which is the simplest possible parallelisation. 

The idea is that each element matrix is formed in parallel on a slave process and 

that a main process is in charge of distributing the necessary data at the beginning, 

225 



Chapter 9: Finite element formulation 

of collecting the element matrices as they are calculated and of assembling them 

in the system matrix. This is shown in Figure 9.29. 

In order to simplify and unify the procedure, both the element matrix and 

the element right hand side vector have been concatenated in one global element 

matrix of size 11 x 12 where the last column contains the right hand side vector for 

that element. It means that both quantities can easily be communicated together. 

E = element number 

E 1-5 
SLAVE J 

E6-IO 
SLAVE2 

MAIN 

4 8 12 16 ..... 73 • 
3 7 11 15 ..... 72 • 
2 6 10 14 ..... 71 

5 9 13 ••••• 70 E69-73 
SLAVEn 

Figure 9.29: Parallel evaluation of the element matrices 

The processes are arranged in a processor farm configuration where all the 

slave processes execute the same instructions on different data. 

The communication is simple. It involves, for p processes, p main-slave process 

communications at the beginning and totels slave-main process communications 

during the calculations. 

The data concerning the mesh attributes and the flow specifications has to be 

distributed. Each slave process is assigned with the calculation of k consecutive 

elements where k = totelsfp. An example is shown in Figure 9.29. 

The evaluation of the efficiency of the parallelisation of the formation of the 

element matrices consists of comparing the time it takes in the serial approach and 

the time when executed in parallel. A 'theoretical' efficiency, which would consist 

226 



Chapter 9: Finite element formulation 

of comparing the time it takes for the parallel program to run on one and then on 

p processes, is of little interested here since it would not show the real benefit of 

running the program in parallel. The efficiency is thus: 

EJJ = Tserial 1 . 
Tp P 

(9.60) 

This correspond to the efficiency E.!J2 defined in the chapter on parallel solvers. 

9.5.3 Tests and conclusions 

The efficiencies have been obtained for three types of spillways as shown in 

Figure 9.30. 

Figure 9.30: Spillways used for test of the parallel implementation 

The efficiencies in percent (%) for these three spillways are given in Table 9.1. 

The values for the efficiencies have been obtained for 4, 8, 12 and 16 processors. 

The results are excellent. This comes from the fact that all the calculations are 

totally independent from one another, which implies a very small proportion of 

communications compared to calculations. 

A number of lower efficiencies (92%, 87% and 75%) appear in Table 9.1 for 

spillways Band C and 12 and 16 processors. When examining how the elements are 

distributed amongst the processors, these lower efficiencies correspond to the case 

when the number of elements does not divide exactly by the number of processors. 

227 



Chapter 9: Finite element formulation 

Number of processors Spillway type 

A B c 
4 99.76 99.61 99.48 

(9) (12) (14) 

8 90.21 98.25 98.38 

( 4.5) (6) (7) 

12 96.98 97.13 92.51 

(3) (4) ( 4.66) 

16 75.15 95.24 87.02 

(2.25) (3) (3.5) 

Table 9.1: Efficiencies {in %) and ratios (number of elements/number of processors) 

Therefore, some of the processors have more work to do than others (bad load 

balancing). Even in these cases, the efficiencies are very high. 

The two schemes (a) and (b) described in chapter 7 on the solvers and shown 

in Figure 7.32 have been tested for 4 processors on the spillway problems. This 

is when the main process is either mapped on its own on a processor or mapped 

together with one of the slave process on a processor. The results are shown in 

Table 9.2. Similar conclusions to that drawn from the solver program can be 

deducted here. The scheme b is more efficient. The results shown in Table 9.1 

were obtained using the scheme b. 

Spillway type Scheme a Scheme b 

A 80.35 99.76 

B 80.27 99.61 

c 80.25 99.48 

Table 9.2: Comparative Efficiencies {in %) of scheme a and b 

The next chapter concentrates on the testing the program and discusses results. 

228 



Chapter 9: Finite element formulation 

References 

1. Bettess P. and Bettess J.A., 'Analysis of Free Surface Flows using Isoparametric Finite 
Elements', International Journal for Numerical Methods in Engineering, 19, pp 1675-1689, 
1983. 

2. Dixon L.C.W., Nonlinear Optimisation, The English Universities press, 1972. 

3. Burden R.L and Faires J.D., Numerical Analysis, third edition, pp 27-78, 1985. 

4. Fletcher R., Practical Methods of Optimization, Second edition, John Wiley & Sons, 1987. 

5. Cheney W. and Kincaid D., Numerical Mathematics and Computing, second edition, Brooks/ 
Cole Publishing Company, pp 192-200. 1985. 

6. Farhat C., 'A Simple and Efficient Automatic FEM Domain Decomposer', Computers and 
Structures, 28, Iss 5, pp 57~602, 1988. 

7. Mandel J., A Domain Decomposition Method for the p-version Finite Elements in Three 
Dimensions, available from the author at the Computational Mathematics Group, University 
of Colorado at Denver, 1200 Larimer Street, Denver, CO 80204, USA. 

8. Mandel J., Iterative Solvers by Substructuring for the p-version Finite Element method, 
available from the author at the Computational Mathematics Group, University of Colorado 
at Denver, 1200 Larimer Street, Denver, CO 80204, USA. 

9. Scha.£er M., 'Parallel Algorithms for the Numerical Solution of Incompressible Finite Elas
ticity Problems', SIAM Journal of Statistical Computations, 12, Iss 2, pp247-259, 1991. 

10. Miles R.G. and Havard S.P., 'Multifronts and Transputer Networks for Solving Fluid Me
chanical Finite Element Systems', International Journal for Numerical Methods in Fluids, 
9, pp 731-740, 1989. 

229 



Chapter X 

Tests and conclusions 

This chapter is concerned with the testing of the free surface program described 

in the previous section. A number of difficulties have arisen due to the nonlinear 

nature of the problem. The main point is that there is no literature to which 

reference can be made concerning the correctness of the various elements of the 

program and that when testing the results their values are not known a priori. 

The major difficulty is in testing the element matrices since they are obtained in a 

novel way. Another problem is related to the solution of the system of linear and 

nonlinear equations in the context of the finite element method. 

In the light of the results obtained from the tests for the correctness of the ele

ment matrices and of the solvers some further investigations may also be necessary 

at theory level to check that the correct boundary conditions are applied and the 

finite element approximation does not introduce too high an inaccuracy. 

This chapter is organised in three main sections. Firstly, the tests carried out to 

check the element matrices are described. Secondly, the evaluation of the accuracy 

of the solvers used is presented. Lastly, some indications on further investigations 

and developments are indicated. 

1 Tests of the element matrices 

The tests on the element matrices can be divided in two categories: the direct 

and indirect tests. The direct tests are carried out on the numerical values held in 

the element matrices whereas the indirect tests consist of running the program on 

simple test spillways for which the answer is known in advance . 

. 1 Direct tests 

The first test carried out is related to the existence of an alternative method for 

generating the element matrices. The original ALGOL program written by Peter 

230 



Chapter 10: Tests and conclusions 

and Jackie Bettess1 has been run and the numerical values for the element matrices 

have been compared to those obtained from the FORTRAN code automatically 

generated by the REDUCE program. The test consists of two steps. Considering a 

one element mesh as shown in Figure 10.1, the contribution to the element matrix 

of the volume term rrkl and of the surface term rrk2 have been compared between 

the two methods. 

9 10 11 
• • • 

7~-------------5 
6 

8 
4 

1 2 3 

Figure 10.1: Check on a one-element mesh 

The method used in the original ALGOL program is based on a Taylor ex

pansion series of the nonlinear terms of the functional and the evaluation of the 

derivatives from the series. All the calculations have been carried out by hand by 

the authors and checked several times, also by hand. The code had to be run on 

the University of Bath's mainframe since the ALGOL compiler was not available 

on the mainframe of the University of Durham. While testing a few mistakes were 

found in the ALGOL which were corrected. 

The two methods give the same numerical answers, within the tolerance due 

to rounding errors. Since these are two independent ways of obtaining the element 

matrices, the chances that the element matrices may be correct are reasonably 

high. Nevertheless, this is not sufficient to conclude absolute correctness. 

The element matrix can be decomposed in two parts: the 8 x 8 section which 

corresponds to the 1jJ unknowns only and the rest which involves the 1jJ and b 

unknowns (see equation 9.44). The problem of solving the governing equations 

can be transformed in an ordinary potential solving problem if the surface is fixed. 

231 



Chapter 10: Tests and conclusions 

Indeed, the governing equations are reduced to the Laplace equation with only the 

boundary conditions that the nodes on the bed and on the free surface are fixed. 

This means that the domain of study n is not variable any more and that all the 

b values are fixed and equal to zero. The solution of the Laplace equation is easily 

obtained since it corresponds to solving a system of linear equations. 

The element matrix has been formed for this test problem and the solution 

obtained for the 1/J values has been found correct. The element, the boundary 

conditions and the solution obtained are shown in Figure 10.2. 

set to 0 

""7 1/ls set to a 

1/14 solution = Q/2 

1/11 set to 0 

Figure 10.2: test of the element matrix in a potential formulation 

Following similar testing method, a one-element mesh as shown in Figure 10.1 

can be set up so that the two outside surface nodes, number 9 and 11, are fixed. 

The entry in the system matrix for the term (10,10) which corresponds to the 

movement of the middle surface node should then be zero since the surface is not 

expected to move, as shown in Figure 10.3. 

Another test on this one-element mesh consists of singling out symmetries in 

the element matrix from the symmetries in the physical element. This only gives 

a test of consistency since the actual values are not checked. For a square element, 

denoting the element matrix ELK the following symmetries should appear: 

232 



Chapter 10: Tests and conclusions 

set to 0 solution= 0 set to 0 

• 

Figure 10.3: Check of the term {10,10} when surface should be horizontal 

ELK(9,9) 

ELK(9,5) 

ELK(9,7) 

ELK(9,6) 

ELK(10,7) 

ELK(10,9) -

ELK(ll,ll) 

ELK(11,7) 

ELK(11,5) 

ELK(11,6) 

ELK(10,5) 

ELK(10,11) 

This has been checked successfully. A last test on the element matrix has been 

carried out which concerns the conservation of the element matrices when the 

element is scaled up. The idea is that the fluid in the simple square one-element 

mesh is dominated by the Froude number. This number is defined as follows: 

v 
Froude number = J9i1, (10.1) 

where Vis the velocity of the fluid, g is the acceleration due to the gravity and dis 

the depth of water. When scaling up the element, for example from dimensions 1:1 

enlarging it to dimensions 2:2, if the Froude number is kept constant by altering 

the gravity the new element matrix obtained should be identical to the old one. 

The velocity of the fluid is kept constant, so that the properties of the fluid are 

not altered. For the Froude number to remain constant the gravity has to be 

halved. Indeed, denoting the original element attributes with the index 1 and the 

new enlarged element attributes with the index 2, as shown in Figure 10.4, the 

following equations hold: 
V1 v2 

v'9J(I1 - v'92fii.' (10.2) 

233 



Chapter 10: Tests and conclusions 

where 

(10.3) 

For the velocities to remain the same, the 1/J values in the element must be scaled 

up too. This can be seen from the definition of the velocity for a straight edges 

element: 

Q= Vd, (10.4) 

where Q is the discharge of the flow and is also the values of the streamfunction 

on the surface, since Q = 'If; on the surface is a boundary condition of the problem. 

If d is multiplied by two, V being constant, Q has to be multiplied by two. This 

means that the 'If; values in the scaled up element are doubled. This is shown in 

Figure 10.4. 
Scaled up elemenl 

original e/emenl 2.0 

··o 1/la20 
1.0 

:::r_. 
y, .. 1o 

1/1..0 

0.0 0.5 1.0 o.o 

0.0 1.0 2.0 

0=20 0=40 

ga1 g..0.5 

V=20 V=20 

Figure 10.4: Scaled up element and parameters 

The test has been carried out for 91 =1 and 92=0.5 and the matrices were found 

to be identical. 

This collection of tests carried out on the element matrices indicates that there 

is a reasonable probability for them to be correct. Nevertheless, this is not sufficient 

and more tests have been developed. 

10.1.2 Indirect tests 

All the indirect tests have been carried out on a special case of spillway: the 

flat channel, as shown in Figure 10.5. 

234 



Free surface 

Flow "' 
/ 

Bed 

Chapter 10: Tests and conclusions 

Figure 10.5: Flat channel geometry 

The element matrices liave been formed and assembled into the system matrix. 

The solution of the nonlinear equations has been found using the Newton method. 

The graphics routines have been used to display the resulting shape of the free 

surface and the streamlines of equal '1/J values. 

The first obvious test is to check that the flat channel remains unchanged if 

no disturbance is applied. This means that the free surface should not move and 

that the streamfunction values should also be unchanged. This result should be 

obtained at the first step in the Newton iteration and further steps should not 

bring any further changes. The algorithm for this test is shown below: 

Initialise b=O and linearly distribute '1/J 

for k=l to totels do 

form gk and G k 

assemble into system matrix and right hand side vector 

apply constraints 

solve for ~x= (8'1/J1,8'1/J2, ... ,8b1,8b2 .. . ) 

Check that ~x=O within rounding errors tolerance 

The second test is an extension of the test carried out on the element matrix 

where the problem is reduced to a potential problem by constraining the free 

surface. Three types of mesh have been tested: two, four and eight-element meshes 

as shown in Figure 10.6. 

The b variables have been constrained so that the surface cannot move. The 

235 



1 2 
Chapter 10: Tests and conclusions 

two-element mesh 

I 

2 l 4 
I 
I 
I 

-------~--------' I 
1 l 3 

I 
I 
I 
I 

four-element mesh 

I 

2 ! 4 6 8 
I I 
I I I 
I I I 

-------~-------~-------~-------1 I I 
I I I 

1 l 3 l 5 l 7 
I I I 
I I I 
I I I 
I I I 

eight-element mesh 

Figure 10.6:Meshes for potential problems 

1/J variables have been constrained on the bed and on the surface and left free 

everywhere else. The unknown 1/J values should therefore distribute themselves 

linearly between the fixed value on the bed and the fixed value on the surface. An 

example of such a test for the eight-element mesh is shown in Figure 10.7. 

b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0 b9=0 
• • • • • • • • • 

I I I 

2 ~ 4 ~ 6 ~ 8 
I I I 
I I I 
I I I 

-------e-------~-------e-------~-------e-------~---------------
1 I I 

1 I 3 I 5 I 7 

' ' ' I I I 

1 1 I 

Solution: 

Figure 10.7: Constraints and results for the 8-element mesh 

1/Ja = 0/4 

1/Jb = 0/2 

1/Jc = 30/4 

Less trivial tests have subsequently been carried out. The first series consists 

of disturbing the free surface in a way that its behaviour can be predicted. If, 

as a starting point, the surface is mostly flat except a few nodes which are either 

pulled above the flat level or pushed below the flat level, the surface is expected 

to converge back to the flat level. This is illustrated in Figure 10.8. 

A series of tests has been carried out where a simple six-element mesh is used 

(see Figure 10.8) and the nodes on the surface are disturbed above and below the 

236 



I 
I 
I 
I 2 1 I : #-###r-----

-------~--# I ---
1 : 3 : 5 

I I 

Surface nodes "pulled" 

Chapter 10: Tests and conclusions 

2 : 
I 

--------t---1 : 3-----~#### 
I I 

Surface nodes "pushed" 

Figure 10.8: Disturbances of the free surface in a fiat channel 

original level. Plots of the 'convergence pattern have been obtained for both slow 

and fast fluids. The distinction between the two types of fluid is important as the 

behaviour is different in each case. 

A slow fluid is a fluid for which the Froude number is smaller than one and a 

fast fluid has a Froude number greater than one. A fluid with a Froude number of 

one is called critical fluid. The plots for both fluids can be seen in Figure 10.9 and 

10.10. 

The divergence zones in Figures 10.9 and 10.10 correspond to values of d for 

which the program does not converge back to the flat level. The program either 

diverges, which means that the mesh is distorted so much that after a few iterations 

the finite element model is not valid anymore (flipped over elements, see Figure 

9.4) and the mesh collapses towards the infinity. 

The main conclusions that can be drawn from the plots is that the fast flow, 

called supercritical flow, is more stable and that the slow flow, called subcritical, is 

more sensitive to disturbances. Both flows converge within a few iterations, even 

with a small tolerance of 10-6 (coefficient rat from equation 9.59). 

237 



\ ... 
1.3 

Chapter 10: Tests a.nd conclusions 

V: l.~m{S. 

a.= ~.z. 

f • O·'b6 

E ~ 213 

Tv~.: lo- 6 

Figure 10.9: Plot of the convergence pattern for a slow fluid modelled with a 6-element mesh 

d 

3 
z., 
2!1 
z.J 
2.(; 

zs 

'IJ = 3·o rn/~ 

G.: l6.o 

F = I g 

E' = s. z' 

Figure 10.10: Plot of the convergence pattern for a fast fluid modelled with a 6-element mesh 

238 



Chapter 10: Tests and conclusions 

The supercritical flow converges for values of d down to zero which means it 

can recover from a situation where the surface nodes are pushed right down to the 

level of the nodes on the bed. The divergence zone for values of d greater than 2.9 

can be explained by noting that when the nodes on the surface are pulled above 

the flat level, the path of the convergence goes via a position where the nodes are 

pushed back down towards the bed. When the top node is pulled by a value 2.9, 

the first step in the convergence pushed it down to the level of the bed. Therefore 

for values greater than 2.9 the top node would be pushed below the level of the bed, 

which would cause some of the elements to flip over and the finite element model 

to become invalid. The results for the supercritical flow suggest that convergence 

is obtained for all cases when the integrity of the finite element model is retained. 

The subcritical flow is more instable and the convergence domain is much 

smaller. Although the plot shows values of d greater than 2.13, which corresponds 

the energy level, it is unrealistic to try to force the flow above this level. This has 

been done for the purpose of studying the convergence pattern only. 

Another simple test consists of pushing or pulling a node at one end of the 

mesh and checking that the surface level follows down or up to that new level. 

This is illustrated in Figure 10.11. 

Disturbance 
/f' ---7 --
f-------------, ------ 1--------------------------

Original flow Flow after disturbance 

Figure 10.11: Disturbance of the edge of the mesh in flat channel 

The flow behaves as expected for values of d ranging from -0.4 to 0.8. Outside 

these values divergence occurs. 

239 



Chapter 10: Tests and conclusions 

Lastly, a special case of spillway has been tested which consists of a flat channel 

with a symmetric bump of variable size introduced in the middle of the bed, as 

shown in Figure 10.12. 

Figure 10.12: Bump on the bed in a flat channel 

The advantage of testing this type of spillway is that the flow remains either 

mainly subcritical or supercritical since the bump only introduces a local distur

bance. Because of the simple geometry of the problem, the theoretical value for 

the water level above the top of the bump can also be worked out which is an ef

fective way of checking the results. In the remainder of this section the theoretical 

equations are derived and the results obtained presented. 

In order to avoid any problems with the shape of the bump a smooth rounded 

bump was chosen. This should ensure that no singularities are introduced in the 

problem and that a steady state solution exists. The shape of the bump has been 

generated using a cubic polynomial interpolation for half of the bump, which has 

then been extended to the other half using a symmetry. This is shown in Figure 

10.13. 

The basic equations for the half bump are: 

ax3 + bx2 + ex + d = y 

3ax2 + 2bx + c = y1
, 

240 

(10.5) 



Chapter 10: Tests and conclusions 

Cubic interpolation 

Figure 10.13: Geometry of the bump 

with the conditions that: · 

For x = 0 

For x = 6 

This gives the following equation: 

y=h 

y=O 

and 

and 

1 1 
y = (-x3

- -x2 + l)h. 
108 12 

y' = 0 

y' = 0. 
{10.6) 

{10.7) 

A number of meshes and flows have been tested. At first, the meshes attempted 

were too short and the results obtained incorrect because the surface could not 

move to its correct final position, being restricted on either sides by the fixed 

nodes. This is illustrated in Figure 10.14. 

Real surface __ ----------------------------------------------------------------------
--------------

Fixed point ~ 
Surface obtained because of constraints 

Figure 10.14: Influence of the length of the mesh 

241 



Chapter 10: Tests and conclusions 

After a few attempts, it was found that a length of 48 units was long enough to 

correctly model the flow around the bump. This mesh has then been divided into 

elements in three different ways. Square and rectangular elements of dimensions 

ratios of 1:2 and 1:4 have been attempted. This is shown in Figure 10.15. 

i 
I 

I I I I I I I I I I I 

---~---~---~---~---~---~---~---~---~---~---~---
I I I I I I I I I I 
1 il I I I I I I I I I 

I I I I I I I I I I 

I j ; 
I I I 
I I I I I 

-------~-------~-------T-------~-------~-------1 I I I I 
I I I I I 
I I I I I 

t---------------i--------~-------i----------------j 

square elements 

rectangular elements 

(ratio 1 :2) 

rectangular elements 

(ratio 1 :4) 

Figure 10.15: Finite element meshes of the flow around the bump 

Both subcritical and supercritical flows have been considered. 

The mean of checking the results relies on the use of the Bernoulli equation. As 

explained in the previous section, the Bernoulli equation holds along a streamline. 

Considering the streamline formed by the free surface the Bernoulli equation can 

be applied so that: 

v,2 v;2 
-

1 + d1 = - 2 + d2 =constant = E, 
2g 2g 

(10.8) 

where V1 and d1 are the velocity and depth of the flow on the surface at the inlet 

and V2 and d2 are the velocity and the depth of the flow above the top of the 

bump. This is shown in Figure 10.16. 

The velocity and the distance d1 at the inlet are known. The velocity on 

the surface above the crest of the bump can be calculated from the values of the 

streamfunction around that point. The velocity is not necessarily tangent to the 

surface therefore the norm of the velocity vector is used in the formula. The 

distance d2 is given by the shape of the surface above the bump when convergence 

is reached. The error can therefore be defined as the difference between the value 

242 



$\ow 

~~r-

Chapter 10: Tests and conclusions 

) 

Figure 10.16: Velocities and depths definition 

of E, the energy level, calc~lated at the inlet and the value obtained on the surface 

above the top of the bump. 

Knowledge about this type of spillway2 indicates that the subcritical fluid has 

its surface curving inwards (towards the bed) when going over the bump and that 

the supercritical flow has its surface curving outward, forming a bump similar to 

that of the bed. This is shown in Figure 10.17 

~~ ~ 1--,-----,1 lr--r-1 """""T--rl 1--r-1 -.--rl I _,-YTif ""!-§ I I I I I I I I Ll 
Figure 10.17: Behaviour of slow and fiat fluids above a bump 

The results for a supercritical flow, with Vi = 12, are shown in Figure 10.18. 

The results agree well with the theory. For bumps of size up to 2.0 convergence 

was observed and good agreement was also found. Such bumps are large compared 

to the depth of the fluid and some non steady states solutions have developed for 

243 



Chapter 10: Tests and conclusions 

Bump size 0.4 0.8 1.2 

number of elements 

12 elements 10.3333 10.3288 10.3261 

(0.059% (0.10%) (0.12%) 

24 elements 10.3252 10.3145 10.3074 

(0.13%) (0.24%) (0.30%) 

48 elements 10.3199 10.2956 10.2965 

(0.18%) (0.42%) (0.41%) 

Theoretical energy level E = 122 f2g + 3 = 10.3394 

Figure 10.18: Calculated energy level and errors in % 

larger size of bumps like waves on the surface. Divergence has also been observed 

for large bumps. This can either be a problem linked to the convergence pattern 

of the Newton method or to a physical instability such as a hydraulic jump. To 

remain within the assumptions of the model developed the size of the bumps should 

be kept small in relation to the depth of the water at the inlet. 

A fast fluid with V1 = 8 has also been successfully checked. Similar tests have 

been carried out on a subcritical flow too. The results in this case, however, are 

more difficult to check since the actual movement of the surface is hardly visible. 

For example, for a bump of 0.6 the surface curves inwards by a quantity 0.01 which 

is very small. The results have been checked in a similar way to those for the fast 

fluid but the imprecision is higher since the displacements are so small. 

The next step in the testing process has been to try a real spillway shape. This 

is discussed in the next section along with the additional tests carried out. 

10.2 Tests on the spillways 

Two types of spillway have been considered: gated and ungated spillways. The 

details of the data related to these spillways can be found in the previous chapter. 

In testing real spillways, the problem is complicated by the fact that the discharge 

Q is not known in advance. It is also important to test realistic spillways so that 

244 



Chapter 10: Tests and conclusions 

the approximation used models the fluid correctly. 

The spillway shape tested here have been taken from previous studies on the 

original ALGOL program3 based on standard spillway shapes recommended by the 

U.S. Army Engineer Water-Ways Experiment Station. Because of lack of time, no 

attempt has been made to investigate other spillways, although this is something 

which should be done. The process of testing many spillways would take time 

considering the amount of information that there is to examine: shape of the free 

surface, conditions of convergence, values of Q bringing convergence, accuracy ... 

etc. In this work we have restricted ourselves to the test of two shapes: one spillway 

with a vertical upstream slope and the other one with a 45° upstream slope. The 

spillway shapes and the finite element meshes associated when no gate is present 

are shown in Figures 10.19 and 10.20. 

Figure 10.19: Mesh for a spillway with a vertical upstream slope 

245 



Chapter 10: Tests and conclusions 

Figure 10.20: Mesh for a spillway with a 4SO upstream slope 

The choice of the initial value of Q is made around the predicted value obtained 

from the computation using the coefficient of discharge. The iterations on Q have 

been carried out by hand. The free surface shape is graphically displayed and the 

convergence ratio rat is also examined. 

The chance of finding the correct value of Q the first time is small therefore 

most of the time convergence is sought with an incorrect value of Q. Previous 

studies1 have shown that waves may develop on the free surface to account for the 

discrepancy in the value of Q. Such waves were observed. Convergence of this 

type can be seen in Figures 10.21, 10.22 and 10.23. 

The two first Figures show the convergence for values of Q above and below 

the value of Q giving smooth surface, which is itself shown in the last Figure. 

246 



Chapter 10: Tests and conclusions 

Figur.e 10.21: Convergence for Q=12.5 

Figure 10.22: Convergence for Q=12.0 

Figure 10.23: Convergence for Q=12.28 

247 



Chapter 10: Tests and conclusions 

Good convergence has been obtained for the gated spillways. Some results are 

shown in Figures 10.24 and 10.25. The gate seems to help stabilise the model by 

bringing some extra constraints. The gate divide the flow in two parts: subcritical 

and supercritical regions. The critical region is reduced to the section of the 

water flowing beneath the gate. This region, which is the difficult part of the 

flow to model, is therefore limited which may explain the good results obtained in 

comparison to the non-gated spillways. 

Figure 10.24: Convergence for Q=3.2 

248 



Chapter 10: Tests and conclusions 

Figure 10.25: Convergence for Q=4.5 

For non-gated problems convergence has been obtained but some problems 

have also appeared. An interesting observation in this case is that the instabilities 

come from the upstream part of the mesh where the flow is slow. When divergence 

occurs it is mostly induced by the nodes on the surface lying before and above the 

crest. The downstream part of the mesh is always very stable and of the expected 

shape. This is a similar behaviour to that observed in the simple tests on the 

element matrices. In the test with a mesh of 6 elements where nodes were pulled 

or pushed around the flat stable level, the subcritical flows had a small range of 

convergence whereas the supercritical flows were very stable. Some examples of 

convergence and divergence for non-gated spillways are shown in Figures 10.26, 

10.27 and 10.28. 

Another type of behaviour has been observed in which the model does not 

converge or diverge but oscillates between two or several free surface shapes. These 

249 



Chapter 10: Tests and conclusions 

Figure 10.26: Surface after 16 iterations, for Q=12.9 

Figure 10.27: Same as Figure 10.~, after 18 iterations 

Figure 10.28: Surface for Q=12.28, at the divergence point 

250 



Chapter 10: Tests and conclusions 

shapes tend to exhibit waves which may indicate a non-steady state solution. 

In view of these problems, the question of testing the solvers used arose. This 

is described in the next section. 

10.2.1 Tests on the nonlinear solver 

The tests on the nonlinear solver have consisted of enhancing the Newton 

method by introducing the steepest descent technique as a means of obtaining the 

initial guess for Newton (see previous chapter) and refining Newton with a line 

search algorithm. First the tests have been carried out on flat channel problems 

to obtain experimentally t.he parameters for switching from the steepest descent 

method to the Newton method. Better convergence has been observed on these 

problems where the steepest descent method enabled convergence to occur when 

the Newton method on its own diverged, especially in the case when surface nodes 

were pulled far away above the flat level. 

When the line search was introduced a peculiar behaviour appeared. As ex

plained in the previous chapter, the line search method is capable of finding a 

minimum along the direction of search chosen, even if this minimum lies at infin

ity. While testing the line search algorithm some erratic behaviour was observed. 

Subsequently, a plot of the values of the functional along the direction of search 

which induced this behaviour was obtained. An outline of such a plot is given in 

Figure 10.29. 

This plot shows the values of then-dimensional ( n=totnods+totsnd) functional 

II taken along a one dimensional line defined by the n-dimensional vector ~x of 

the direction of search. 

The plot shows a central region, of parabolic shape for which a local minimum 

exists, and a series of outer regions of tangent shape (tangent=sin/cos). Inves

tigations have shown that the further from the solution the plot is obtained the 

sharper the central parabola zone is and the line search algorithms tends to go 

out of the central zone and converged towards minus infinity. When closer to the 

solution the central zone becomes very flat and the line search converged towards 

the minimum of the parabola. 

251 



Chapter 10: Tests and conclusions 

n (functional) 

I 

parabolic one 

outer zones outer zones 

Figure 10.29: Plot of the functional in the direction of search 

This may indicate that a minimum of the functional was not necessarily a so

lution of the problem. Furthermore, the repetition of the same shape in the outer 

region could come from the finite element approximation. Indeed, the discretised 

equation for the functional contains the inverse of the jacobian matrix. The jaco

bian matrix being a linear function of the b, the inverse is therefore a function of 

1/ P( b) where P is a polynomial function of b. This is a function singular around 

the zeros of the polynomial P which could correspond on the plot to the singular 

points between the tangent shapes of the outer regions. 

No definite conclusions have been drawn from this result apart from the fact 

that the finite element method might incur some singularities which have to be 

avoided as they do not correspond to feasible solutions. 

10.2.2 Tests on the linear solver 

Some simple tests for assessing the accuracy of the linear solver have been 

carried out. They mainly focus on obtaining the condition number which indicates 

how sensitive the system is to small variations. This can formally be expressed as: 

(10.9) 

where K is the condition number of the system matrix A. There are various ways 

of evaluating the condition number. Whichever method is used the value of K 

252 



Chapter 10: Tests and conclusions 

will be obtained with an error smce the calculation involves at some stage the 

computation of Ax which is likely to be inexact if the matrix is ill-conditioned. It 

is therefore necessary to find some error bounds on the condition number to obtain 

an accurate evaluation. 

The method chosen for obtaining K is based on the use of the eigenvalues of 

A4•5 . A simple algorithm enables us to find K together with an error bound on 

the lowest eigenvalue which is the critical value. Indeed, the condition number can 

be defined in terms of the eigenvalues as: 

K-~ 
-I As I' (10.10) 

where AL is the largest eigenvalue of the matrix A and AS is the smallest eigen

value. The condition number can take very large values when AS is in the vicinity 

of zero. Large condition numbers indicate high sensitivity to small variations in b 

when calculating x, which means that in extreme cases the solution to the system 

can be totally wrong. 

The calculation of AL and As can be carried out using two simple iterative 

algorithms: the power method and the inverse power method. Starting from an 

initial guessed value Ao the smallest eigenvalue is obtained by solving AA1 = Ao 

for AI, normalising Al (Al=.Xl/I.Xll), solving A.\2 = Al for A2 ... etc. The value An 

tends to 1/ As. Similarly, the largest eigenvalue is obtained by iterative calculation 

of AAi = Ai+l for Ai+l, and normalisation of Ai+l· When the algorithm converges, 

AL is obtained. 

The error on the eigenvalues can be calculated as follows4•5. Let A and q be the 

approximations to the eigenvalue and the eigenvector. If these values are exactly 

the eigenvalue and eigenvector the following relation holds: 

Aq- Aq = 0. (10.11) 

When A and q are approximations to the real values, a residual r is appears in 

equation (10.11) such as: 

Aq- Aq = r. 

253 

(10.12) 



Chapter 10: Tests and conclusions 

It can be shown that this residual gives a measure of the error bounds on the 

eigenvalues. This is expressed as: 

min(Ai- ,\)~II r II, (10.13) 

where Ai is the ith eigenvalue. 

The smallest condition numbers obtained for spillways when convergence oc

curred are in the region of 1000. They can increase well above this value up to 

12000 and more when divergence happens. A typical error on A£ would be 1.0 for 

A£=100 which is reasonable. More worrying is the error for As which could be 1.5 

for As=0.9. This indicates that AS could be zero, which would make the condition 

number infinite. In order to assess whether this had an effect on the accuracy of 

the solution two tests have been carried out. 

The residual r on the solution has been calculated. When the solution is 

obtained, the expression Ax - b = r is evaluated. If I r I is zero or very small it 

is unlikely that the result is incorrect. Otherwise the solution can be corrected by 

subtracting from x the value x' obtained as the solution of the system Ax' = r. 

The values of the residual found were in the range 10-10 to 10-14, which are very 

small and indicate that the solution is likely to be accurate. 

In order to ensure that the system of linear equations is properly solved a dif

ferent solver has also been used which implements a pivoting scheme using partial 

pivoting around the largest pivot in a column. The results from both this solver 

and our original solver have been compared. If the matrix was ill-conditioned a 

discrepancy in the solution should have be detected, but the results were found to 

be identical. 

10.3 Conclusions 

The program developed converges well in cases when the discharge of the flow 

is known in advance, such as in flat channel problems. Good convergence is also 

observed for gated spillways where the critical part of the flow is short and con

strained. 

254 



Chapter 10: Tests and conclusions 

For non-gated spillway cases where the discharge is unknown divergence has 

been observed. Subsequently tests on the validity of the formation of the element 

matrices using REDUCE and the accuracy of the solvers used have been carried 

out. The results of these tests indicate good confidence in the code developed 

although no definite conclusions were drawn for the element matrices. 

It is suspected that the source of the instabilities in the non-gated problems 

partly comes from the fact that the discharge is unknown. Further developments 

should therefore include the design of an automatic scheme for obtaining Q. Such 

a technique could be based on the introduction of Q as a variable in the functional 

formulation, expressing any dependency relation between the '1/J's, the b's and Q, 

reformulating the element matrices in terms of the new independent variables and 

solving simultaneously for the free surface shape and the discharge. This should 

be easy and quick to implement since REDUCE would help with the analytical 

calculations. 

Several facts indicate that the previous scheme could solve some the conver

gence problems. Firstly, most of the recent papers published on this topic include 

schemes where Q is found as part of the solution and the results obtained are good. 

Secondly, when the flat channel problems were tested, it was observed that if the 

value of Q was not given with enough accuracy, typically less than three figures 

after the decimal point, it affected the convergence pattern. This may indicate 

that the flow is very sensitive to the value of Q. Therefore an iterative scheme to 

find Q, as implemented here, may not work. 

The speed-ups obtained when parallelising the formation of the element ma

trices are very promising. This implies that much finer meshes may be considered 

without incurring unreasonable delays. The user should therefore be able to visu

alise on the screen the free surface shape at each step in the calculations with a 

minimal delay. The program could be used advantageously by engineers investi

gating spillway shapes for a particular flow problem. 

255 



Chapter 10: Tests and conclusions 

References 

1. Bet tess P. and Bet tess J .A., 'Analysis of Free Surface Flows using lsoparametric Finite 
Elements', Interna.tional Journal for Numerical Methods in Engineering, 19, pp 1675-1689, 
1983. 

2. Sellin R.H.J, Flow in channels, Macmillan St. Martins's press, 1969. 

3. Doon M.K.B.M., 'Determination of flow profile over spillway using Finite Elements', Thesis 
BSC, University of Wales, Swansea, 1983. 

4. Jennings A., Matrix Computation jo1· Engineers and Scientists, John Wiley & Sons, 1977. 

5. Bathe K., Finite Element procedures in Engineering Analysis, Prentice-Hall Inc., 1982. 

256 



Appendix A 

Reduce code to generate two dimensional Serendipity shape functions and map

ping functions. 

257 



OFF ECHO ;OFF OUTPUT ; 
PROCEDURE MFS2 (MIN, UPL); 
COMMENT 
Procedure Mapping Function Serendipity 2 dimensional 

PURPOSE : Calculates the 2 dimensional Serendipity Mapping Functions and 
outputs them and their derivatives as a FORTRAN program. 

ARGUMENTS IN : 
Explicit MIN 

UPL 
Implicit LGSF 

LGMF 
LC2D 
INFI 
H 

Lowest degree wanted for the mapping functions.(min=2) 
Highest degree wanted for the mapping functions.(max=4) 
contains the 1 dimensional Lagrange polynomials. 
contains the 1 dimensional mapped Lagrange polynomials. 
Contains the node numbers for 2D Serendipity elements. 
Contains the infinite directions (=0 if finite, =1 else) 
Will hold the mapping functions (For nodes at infinity, 
mapping functions are set to zero). 

WCOORD Will hold the coordinate system. 

·········································································••••: BEGIN 
ARRAY COORD(2),BILIN(2),0RD(2),NUME(2,2); 
COMMENT 

Set parameters for FORTRAN output 

NUME (1,0) := 1 ; NUKE (0,1) := 2 
NUKERO := NUME (INFI(1),INFI(2)) ; 
TAG1 := NUKERD 
WCOORD(O) := 2 
NDER := 2 ; 
COMMENT 

TAG2 := S 
WCOORD(1) := II 

NUKE (1,1) := 4 

WCOORD(2) := ET 

Calculates 2D serendipity mapping functions 

FOR NB := MIN : UPL DO 
<< NMF := NB - 1 ; 

NODES := 4•NMF 
INDJ := 1 ; 
COMMENT 

For each corner of the square 

FOR J := 1 : 2 DO 
« INDI := 1 ; 

FOR I := 1 : 2 DO 
<< BILIN(1) := I ; BILIN(2) := J ; 

COORD(1) := INDI COORD(2) := INDJ 
NBNODE := LC2D(NMF,INDI,INDJ) 
M(NBNODE) := 1 ; 
FOR IND := 1 : 2 DO 
<< IF INFI(IND) 0 THEN M(NBNODE) := M(NBNODE) 

•SUB(VAR1=WCOORD(IND),LGSF(l,BILIN(IND))) 
ELSE 
<<IF COORD(IND) NB THEN M(NBNODE) := 0 

ELSE M(NBNODE) := H(NBNODE)• 
SUB(VARl=WCOORD(IND),LGMF(l,BILIN(IND))) >> >>; 

INDI := NB >> ; INDJ := NB >> ; 
COMMENT 

If nodes between corners 

IF NB > 2 THEN 
« INDJ := 1 ; 

FOR J := 1 : 2 DO 

258 

Appendix A 



« 
COMMENT 

For each node betveen corners, first along the a and d edges, 
second along the c and b edges vhere 

xccccccccccx 
d 2 b 
d 1 2 b 

x=corner 
a,b,c,d=edges 

d 1 b 1, 2=1st and 2nd time the loop is run 
xaaaaaaaaa x 

FOR I := 2 : NMF DO 
<< ORD(1) := NMF 

BILIN(1) := I 
COORD(1) := I 
IND1 := 1 

ORD(2) := 1 
BILIN(2) ·= J 
COORD(2) := INDJ 

NBNODE := LC2D(NMF,I,INDJ) 
M(NBNODE) := 1 ; 
FOR IND := 1 : 2 DO 
<< IF INFI(IND) = 0 THEN M(NBNODE) := M(NBNODE)• 

SUB(VAR1=WCOORD(IND),LGSF(ORD(IND),BILIN(IND))) 
ELSE 
<<IF COORD(IND) = NB THEN M(NBNODE) := 0 

ELSE M(NBNODE) := H(NBNODE)• 
SUB(VARl=WCOORD(IND),LGMF(ORD(IND),BILIN(IND))) >> >>; 

COMMENT 
For the current node (edge a or c) alteration of the corner 
nodes 

FOR L : = 1 STEP NMF UNTIL NB DO 
<< NVERT := LC2D(NMF,L,INDJ) 

IF M(NVERT) NEQ 0 THEN 
<<IF INFI(IND1) = 0 THEN SCALE := 1-ABS(L-I)/NMF 

ELSE SCALE := 1/(1-ABS(L-I)/NMF) >>; 
M(NVERT) := M(NVERT) - SCALE•M(NBNODE) >> ; 

ORD(1) := 1; ORD(2) := NMF 
COORD(!) := INDJ COORD(2) := I 
BILIN(1) := J ; BILIN(2) := I 
IND1 := 2 
NBNODE := LC2D(NMF,INDJ,I) 
H(NBNODE) : = 1 ; 
FOR IND := 1 : 2 DO 
<< IF INFI(IND) 0 THEN M(NBNODE) := M(NBNODE)• 

SUB(VAR1=WCOORD(IND),LGSF(ORD(IND),BILIN(IND))) 
ELSE 
<<IF COORD(IND) = NB THEN M(NBNODE) := 0 

ELSE M(NBNODE) := M(NBNODE)• 
SUB(VAR1=WCOORD(IND),LGMF(ORD(IND),BILIN(IND))) >> >>; 

COMMENT 
For the current node (edge b or d) alteration of the corner 
nodes 

FOR L := 1 STEP NMF UNTIL NB DO 
<< NVERT := LC2D(NMF,INDJ,L) 

IF M(NVERT) NEQ 0 THEN 
<<IF INFI(IND1) = 0 THEN SCALE := 1-ABS(L-I)/NMF 

ELSE SCALE := 1/(1-ABS(L-I)/NMF) >> 
M(NVERT) := H(NVERT) - SCALE•M(NBNODE) >> >> 

INDJ := NB >> >> ; 
WRTMF (TAG1,NDER,TAG2,NODES,NB) >>; END ; 

259 

Appendix A 



Appendix B 

Reduce code to generate FORTRAN code from the REDUCE expressions, 

using GENTRAN. 

260 



OFF ECHO ; OFF OUTPUT ; 
LOAD GENTRAN ; ON GENDECS ; ON PERIOD ; 
PROCEDURE WRTMF (TAG1,NDER,TAG2,NODES,NB) 
COMMENT 
Procedure WRiTe Mapping Function 

PURPOSE : Outputs the Mapping Functions and Mapping Function Derivatives 
as a FORTRAN program. It uses the translator GENTRAN (from 
REDUCE to FORTRAN). The Mapping function derivatives are 
calculated and translated all at once. 

ARGUMENTS IN : 
Explicit TAGl Second digit of the subroutine name. Denotes the infinite 

directions (l=XI, 2=ET, 3=ZE, 4=1I-ET, S=ET-ZE, 6=XI-ZE, 
7=XI-ET-ZE) 

NDER Third digit of the subroutine name. Number of spacial. 
directions. 

TAG2 

NODES 
NB 

Fourth digit of the subroutine name. Tag which indicates 
the kind of function, L for Lagrange or S for Serendipity. 
Total number:" of nodes in an element. 
Fifth digit of the subroutine name. Number of nodes per 1 
dimensional direction. 

Implicit WCOORD Contains the coordinate system. 
M Contains the mapping functions . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
BEGIN 

COMMENT 
Write the SUBROUTINE statment 

GENTRAN « LITERAL TAB!*, "SUBROUTINE K", EVAL(TAGl) ,EVAL(NDER) ,EVAL(TAG2), 
EVAL(NB)," (",EVAL(WCOORD{l)), ", ",EVAL(WCOORD(2)) »; 

IF WCOORD(O) = 3 THEN 
GE.NTRAN « LITERAL ", ",EVAL(WCOORD(3)) » ; 

GENTRAN « LITERAL ", MF, MFDL, IKFDL)", CR! * »; 
COMMENT 

Write the comments 

IF TAG2 = L THEN 
TYPENAKE := "Lagrangian" 

IF TAG2 = S THEN 
TYPE.NAKE : = "Serendipity" ; 

GENTRAN << LITERAL 
"C ***Subroutine Mapping function ",EVAL(TAGl)," 
EVAL(NDER)," dimensional ",EVAL(TYPENAKE)," " 
EVAL(NB)," nodes",CR!*, 

''C -----------------------------'', 

.. . . 

''-----------------------------------------'' , CR!• , 
"C PURPOSE : ", CR!• , 
"C Forms element mapping function and derivative", 
CR!• ,"C" , CR!• ,"C ARGUMENTS IN " , CR!•,"C",CR!*, 
"C ",EVAL(WCOORD(l)) ," First co-ordinate.",CR!•, 
"C ",EVAL(WCOORD(2)) ," : Second co-ordinate." ,CR!•»; 

IF WCOORD(O) 3 THEN 
GENTRAN « LITERAL "C 

GE.NTRAN << LITERAL 
"C",TAB!•," 

",EVAL(IICOORD(3)), 
Third co-ordinate.",CR!• >> 

"IMFDL : 1st dimension of mapping function derivative array.", 
CR!•,"C",CR!•, 

261 

Appendix B 



"C ARGUMENTS OUT ",CR!•,"C",CR!•, 
"C MF : Mapping function array.",CR!•, 

" . "C 
"MFDL 
CR!•,"C 

Array of mapping function derivatives vith respect " 
to local co-ordinates.",CR!•, 

''C'',CR!•,''C *****************************'', 
"**********************•******************",CR!*,"C" ,CR!• >>; 

COMMENT 
Write the type declarations 

IF WCOORD(O) = 2 THEN 
« GENTRAN 

« DECLARE 
<< MF(!•),MFDL(IMFDL,!•) 

IMFDL 
MF,MFDL,EVAL(WCODRD(l)),EVAL(WCDORD(2)) 

DIMENSION ; 
INTEGER 
DOUBLE! PRECISION >>; 

LITERAL "C",CR!•,"C••• Define the local variables",CR!•,"C", 
CR!• » »; 

IF WCDORD(O) = 3 THEN 
« GENTRAN 

« DECLARE 
<< MF(!•),MFDL(IMFDL,!•) 

IMFDL 
MF,MFDL,EVAL(WCODRD(l)),EVAL(WCOORD(2)) 
EVAL (WCOORD (3)) 

DIMENSION ; 
INTEGER ; 
DOUBLE! PRECISION 
DOUBLE! PRECISION >>; 

LITERAL "C",CR!•,"C••• Define the local variables",CR!•,"C", 
CR!• » »; 

COMMENT 
Call optimization algorithm, outputs the arrays VAR of temporary 
variables and R of common sub-expressions. 

DPTMF (MAX); 
FOR IND := 1 
« GENTRAN « 
COMMENT 

MAX DO 
EVAL(VAR(IND)) 

Write the mapping functions 

:=: R(IND) » » 

GENTRAN <<LITERAL "C",CR!•,"C••• Form the element mapping functions", 
CR!•,"C",CR!• >> 

FOR IND := 
« GENTRAN 
COMMENT 

: NODES DO 
<< MF(IND) ::=: M (IND) >> >> 

Write the mapping functions derivatives 

GENTRAN « LITERAL "C", CR! •, "C•••Form the mapping function derivatives", 
CR!•,"C",CR!• >> ; 

FOR IND1 := 1 : NDER DO 
<< FOR IND2 := 1 : NODES DO 

<< GENTRAN << MFDL (IND1,IND2) ::=: DF( M(IND2) , WCDDRD(IND1)) 
» »; 

COMMENT 
Write the end statements 

GENTRAN << LITERAL "C" ,CR!•, TAB! •, "RETURN" ,CR!•, TAB! •, "END" ,CR! • >> 
END ; END 

262 

Appendix B 



Appendix C 

Generated FORTRAN code for two and three dimensional quadratic mapping 

functions of type 1. 

263 



SUBROUTINE M12S3 (XI, ET, MF, MFDL, IMFDL) 
C *** Subroutine Mapping function 1 ,2 dimensional Serendipity 3 nodes 

c ----------------------------------------------------------------------
c PURPOSE : 
c 
c 

Forms element mapping function and derivative 

C ARGUMENTS IN 
c 

XI 
ET 

First co-ordinate. 
Second co-ordinate. 

c 
c 
c 
c 

IMFDL 1st dimension of mapping function derivative array. 

C ARGUMENTS OUT 
c 
c 
c 
c 
c 

liP 
MFDL 

Mapping function array. 
Array of mapping function derivatives vith respect 
to local co-ordinates. 

c ********************************************************************** 
c 

INTEGER IMFDL 
DOUBLE PRECISION MF(•),MFDL(IKFDL,•),XI,ET 

c 
C••• Define the local variables 
c 

DOUBLE PRECISION Tl,T2,T3,T4,T5,T6,T7,T8,T9,T10 
Tl=ET+l. OOOOOOEO 
T2=ET+l.OOOOOOEO+XI 
T3=ET-l.OOOOOOEO 
T4=XI-l.OOOOOOEO 
T6=XI +1. OOOOOOEO 
T6=XI+l.OOOOOOEO-ET 
T7=ET+2.000000EO 
T8=ET-2.000000EO 
T9=2.000000EO•ET+XI 
T10=2.000000EO•ET-XI 

c 
C••• Form the element mapping functions 
c 

c 

MF(1)=-(T3•T2)/(T4) 
MF(2)=T3*T5/(2.000000EO•T4) 
KF(3)=0 
MF(4)=0 
MF(6)=0 
MF(6)=-(T6•Tl)/(2.000000EO•T4) 
KF(7)=T6•T1/(T4) 
MF(8)=2.000000EO•T3•Tl/(T4) 

C•••Form the mapping function derivatives 
c 

KFDL(l,l)=T3•T7/(T4••2) 
MFDL(1,2)=-T3/(T4••2) 
MFDL(1,3)=0 
MFDL(1,4)=0 
MFDL(1,6)aO 
MFDL(1,6)aT1/(T4••2) 
MFDL(1,7)=Tl•T8/(T4••2) 
KFDL(1,8)a-(2.000000EO•T3•T1)/(T4••2) 
MFDL(2,1)=-T9/(T4) 
MFDL(2,2)=T5/(2.000000EO•T4) 
MFDL(2,3)=0 
MFDL(2,4)=0 

264 

Appendix C 



c 

MFDL(2,6)=0. 
MFDL(2,6)=-T6/(2.000000EO•T4) 
MFDL(2,7)=-T10/(T4) 
MFDL(2,8)=4.000000EO•ET/(T4) 

RETURN 
END 
SUBROUTINE M13S3 (XI, ET, ZE, MF, MFDL, IMFDL) 

C ••• Subroutine Mapping function 1 ,3 dimensional Serendipity 3 nodes 

c ----------------------------------------------------------------------
c PURPOSE 
c Forms element mapping function and derivative 
c 
C ARGUMENTS IN 
c 

XI 
ET 

First co-ordinate. 
Second co-ordinate. 
Third co-ordinate. 

c 
c 
c 
c 
c 

ZE 
IMFDL 1st dimension of mapping function derivative array. 

C ARGUMENTS OUT 
c 
c 
c 
c 
c 

MF 
MFDL 

Mapping function array. 
Array of mapping function derivatives vith respect 
to local co-ordinates. 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

INTEGER IMFDL 
DOUBLE PRECISION KF(•),MFDL(IMFDL,•),XI,ET,ZE 

c 
C••• Define the local variables 
c 

DOUBLE PRECISION Tl,T3,T7,T8,T9,T10,Tll,T12,T13,Tl4,T16,T16,T17, 
. T18,T19,T20,T21,T6,T22,T2,T4,T6 

c 

Tl=ET+XI+ZE+2.000000EO 
T2=ET-l.OOOOOOEO 
T3=ZE-l.OOOOOOEO 
T4=XI-l.OOOOOOEO 
T6=XI+l.OOOOOOEO 
T6=ET+l.OOOOOOEO 
T7=ET-XI-ZE-2.000000EO 
TB=ZE+l.OOOOOOEO 
T9=ET+XI-ZE+2.000000EO 
T10=ET-XI+ZE-2.000000EO 
T11=ET+ZE+3.000000EO 
T12=ET-ZE-3.000000EO 
T13=ET-ZE+3.000000EO 
T14=ET+ZE-3.000000EO 
T16=2.000000EO•ET+XI+ZE+l.OOOOOOEO 
T16=2.000000EO•ET-XI-ZE-l.OOOOOOEO 
T17=2.000000EO•ET+XI-ZE+l.OOOOOOEO 
T18=2.000000EO•ET-XI+ZE-1.000000EO 
T19•ET+XI+2.000000EO•ZE+l.OOOOOOEO 
T20=ET-XI-(2.000000EO•ZE)-l.OOOOOOEO 
T21=ET+XI-(2.000000EO•ZE)+l.OOOOOOEO 
T22=ET-XI+2.000000EO•ZE-l.OOOOOOEO 

C••• Form the element mapping functions 
c 

MF(l)=T3•T2•T1/(2.000000EO•T4) 
MF(2)=-(T3•T2•T6)/(4.000000EO•T4) 

265 

Appendix C 



c 

HF(3)=0 
MF(4)=0 
HF(5)=0 
HF(6)=T3•T6•T5/(4.000000EO•T4) 
HF(7)=T3•T6•T7/(2.000000EO•T4) 
HF(8)=-(T3•T6•T2)/(T4) 
HF(9)=-(T3•T2•T8)/(T4) 
MF(10)=0 
HF(11)=0 
HF(12)=T3•T6•T8/(T4) 
HF(13)=-(T2•T9•T8)/(2.000000EO•T4) 
MF(14)=T2•T6•T8/(4.000000EO•T4) 
HF(16)=0 
KP(16)=0 
HP(17)=0 
HF-(18)=-(T6•T5•T8)/(4.000000EO•T4) 
HF(19)=-(T6•TlO•T8)/(2.000000EO•T4) 
HF(20)=T6•T2•T8/(T4) 

C•••Form the mapping function derivatives 
c 

MFDL(1,1)=-(T3•T2•T11)/(2.000000EO•T4••2) 
HFDL(1,2)=T3•T2/(2.000000EO•T4••2) 
MFDL(1,3)=0 
HFDL(1,4)=0 
HFDL(1,6)=0 
HFDL(1,6)=-(T3•T6)/(2.000000EO•T4••2) 
HFDL(1,7)=-(T3•T6•T12)/(2.000000EO•T4••2) 
HFDL(1,8)=T3•T6•T2/(T4••2) 
HFDL(1,9)=T3•T2•T8/(T4••2) 
HFDL(1,10)=0 
HFDL(1,11)=0 
HFDL(1,12)=-(T3•T6•T8)/(T4••2) 
HFDL(1,13)=T2•T13•T8/(2.000000EO•T4••2) 
HFDL(1,14)=-(T2•T8)/(2.000000EO•T4••2) 
MPDL(1,15)=0 
HFDL(1,16)=0 
HFDL(1,17)=0 
HFDL(1,18)=T6•T8/(2.000000EO•T4••2) 
KPDL(1,19)=T6•T14•T8/(2.000000EO•T4••2) 
KPDL(1,20)=-(T6•T2•TB)/(T4••2) 
HFDL(2,1)=T3•T16/(2.000000EO•T4) 
HFDL(2,2)=-(T3•T6)/(4.000000EO•T4) 
KPDL(2,3)=0 
KPDL(2,4)=0 
KPDL(2,5)=0 
HFDL(2,6)=T3•T5/(4.000000EO•T4) 
KPDL(2,7)=T3•T16/(2.000000EO•T4) 
HFDL(2,8)=-(2.000000EO•T3•ET)/(T4) 
HFDL(2,9)=-(T3•TB)/(T4) 
KFDL(2,10)=0 
HFDL(2,11)=0 
HFDL(2,12)=T3•T8/(T4) 
HFDL(2,13)=-(T8•T17)/(2.000000EO•T4) 
MPDL(2,14)=T6•TB/(4.000000EO•T4) 
HFDL(2,16)=0 
HFDL(2,16)=0 
HFDL(2,17)=0 
HFDL(2,18)=-(T6•TB)/(4.000000EO•T4) 
HFDL(2,19)=-(T1B•TB)/(2.000000EO•T4) 
HFDL(2,20)=2.000000EO•ET•T8/(T4) 
HFDL(3,1)=T19•T2/(2.000000EO•T4) 

Appendix C 

266 



c 

MFDL(3,2)=-(T2•T5)/(4.000000EO•T4) 
MFDL(3,3)=0 
MFDL(3,4)=0 
MFDL(3,5)=0 
MFDL(3,6)=T6•T5/(4.000000EO•T4) 
MFDL(3,7)=T6•T20/(2.000000EO•T4) 
MFDL(3,8)=-(T6•T2)/(T4) 
MFDL(3,9)=-(2.000000EO•T2•ZE)/(T4) 
MFDL(3,10)=0 
MFDL(3,11)=0 
MFDL(3,12)=2.000000EO•T6•ZE/(T4) 
MFDL(3,13)=-(T2•T21)/(2.000000EO•T4) 
MFDL(3,14)=T2•T5/(4.000000EO•T4) 
MFDL(3,15)=0 
MFDL(3,16)=0 
MFDL(3, 17)=0 
MFDL(3,18)=-(T6•T5)/(4.000000EO•T4) 
MFDL(3,19)=-(T6•T22)/(2.000000EO•T4) 
MFDL(3,20)=T6•T2/(T4) 

RETURN 
END 

Appendix C 

267 



Appendix D 

REDUCE program to generate bending element matrices. 

268 



OFF OUTPUT;OFF ECHO; OUT "HERM.OUT"; 
COMMENT *** Definition of the procedure to write out the subroutine 

*** statement and the subroutine header of comments lD CASE; 
PROCEDURE WRITEELl(TYPE,NAME,ELNAME,NlDIM); 
BEGIN 

IF TYPE=1 THEN «WRITE " 
ELSE IF TYPE=2 THEN «WRITE " 
ELSE IF TYPE=3 THEN «WRITE " 
WRITE "C"; 

.n • . . 

SUBROUTINE CALELM (A,ELM,IELM,RHO)"» 
SUBROUTINE CALELG (A,ELG,IELG,SIGMA)"» 
SUBROUTINE CALELK (A,EI,ELK,IELK)"»; 

WRITE "C PURPOSE 
WRITE "C 
WRITE "C 

Forms the ",NAME," matrix for the "; 
",NlDIM,"-noded one dimensional elements."; 

WRITE "C"; 
WRITE "C *********************************************************"; 
WRITE "C"; 
WRITE" INTEGER 

IF TYPE= 1 THEN «WRITE " 
ELSE IF TYPE=2 THEN «WRITE " 
ELSE IF TYPE=3 THEN «WRITE " 
WRITE " DIMENSION 

I",ELNAME; 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 

A,ELM,RHO">> 
A ,ELG,SIGMA"» 
A,EI,ELK">>; 

",ELNAME,"(I",ELNAME,",*)"; 
WRITE "C"; 
WRITEEL3(TYPE,2•N); 
WRITE "C"; WRITE " RETURN"; WRITE " END" 

END; 
COMMENT *** Definition of the procedure to write out the subroutine 

*** statement and the subroutine header of comments 2D CASE; 
PROCEDURE WRITEEL2 (TYPE,NAME,ELNAME,N); 
BEGIN 

IF TYPE=l THEN «WRITE " 
ELSE IF TYPE=2 THEN «WRITE " 

ELSE IF TYPE=3 THEN «WRITE " 

WRITE "C"; ... . 

SUBROUTINE CALELM (A,B,ELK,IELM,RHO)"» 
SUBROUTINE CALELG (A,B,ELG,IELG,", 

"SIGMAX,SIGKAY,", 
"THOll)" >> 

SUBROUTINE CALELK (A,B,DX,DY,DXY,Dl,", 
"ELK,IELK)">>; 

WRITE "C PURPOSE 
WRITE "C 
WRITE "C 

Forms the ",NAME," matrix for the "; 
",N,"-noded two dimensional elements."; 

WRITE "C"; 
WRITE "C· ***************************************•*****************"; 
WRITE "C"; 
WRITE " INTEGER 

IF TYPE=l THEN «WRITE " 
ELSE IF TYPE=2 THEN «WRITE " 

ELSE IF TYPE=3 THEN «WRITE " 

WRITE " DIMENSION 
WRITE "C"; 
WRITEEL3(TYPE,4•N); 

I",ELNAME; 
DOUBLE PRECISION A,B,ELM,RHO" » 
DOUBLE PRECISION A,B,ELG,SIGMAX,", 

"SIGKAY,THOXY" » 
DOUBLE PRECISION A,B,DX,DY,DXY,Dl,", 

"ELK">>; 
",ELNAME,"(I",ELNAKE,",*)"; 

WRITE "C"; WRITE " RETURN"; WRITE " END"; 
END; 
COMMENT *** Definition of the procedure to write out the element matrices; 
PROCEDURE WRITEEL3 (TYPE,LIKIT); 
BEGIN 

IF TYPE=l THEN <<FOR I:=l:LIMIT DO 
<<FOR J:=l:I DO 

«WRITE " ELM(",I,",",J,") = ",EELM(I,J) >> 
» » 

ELSE IF TYPE=2 THEN <<FOR I:=l:LIKIT DO 
<<FOR J:=l:I DO 

<<WRITE" ELG(",I,",",J,") = ",EELG(I,J) >> 

269 

Appendix D 



» » 
ELSE IF TYPE=3 THEN <<FOR I:=1:LIMIT DO 

<<FOR J:=1:I DO 

END; 

«WRITE " 
» »; 

ELK(",I,",",J,") 

COMMENT ••• Definition of the elements sizes. 
••• N is the total number of nodes 
••• N1DIM is the number of nodes in each dimension 
••• DIM is the number of dimensions; 

N:=4; N1DIM:=2; DIM:=2; 
COMMENT ••• Variables declarations; 
ARRAY XX(N),COORD(2); 
MATRIX BERM(1,2•N1DIM),DHERM(1,2•N1DIM),D2HERM(1,2•N1DIM); 
MATRIX BERMXY(1,4•N),DHERMIY(2,4•N),D2BERMXY(3,4•N); 
MATRIX D(3,3),G(2,2); 
OPERA TOR INT1 , INT2; 
COMMENT ••• Definition of the integration operator; 
FOR ALL F,U,L LET INTl(F,U) = INT(F,U), 

",EELK(I,J) » 

INT2(F,U,L)· = SUB(U=L,INT1(F,U))-SUB(U=O,INT1(F,U)); 
COMMENT ••• Initialisation& of the nodes co-ordinates in one dimension; 
FOR I:=1:N1DIM DO <<II(I) := L•(I-1)/(N1DIM-1) >>; 
COMMENT ••• Initialisation of the constants of the problem; 
IF DIM=2 THEN<< COORD(1):=X; COORD(2):=Y; 

G(1,1):= SIGMAX; G(1,2):= THOXY; 
G(2,1):= THOXY; G(2,2):= SIGMAY; 
D(1,1):= DX; D(1,2):= D1; D(1,3):= 0 ; 
D(2,1):= D1; D(2,2):= DY; D(2,3):= 0 ; 
D(3,1):= 0 ; D(3,2):= 0 ; D(3,3):= DIY>> ; 

COMMENT ••• Calculation of the one dimensional Hermite polynomials; 
FOR I:=1:N1DIM DO 
<<LL :=1; AA :=0; 

FOR J:=1:N1DIM DO 
<<IF I NEQ J THEN 

<<LL := LL•(X-IX(J))/(IX(I)-XI(J)) 
AA := AA + 1/(XX(I)-IX(J)) >> 

»: 
AA := -2• u BB := 1-AA•II(I); 
BERM (1,2•I-1) := (AA•I+BB) • LL • LL ; 
BERM (1,2•I) := (X-II(I)) • LL • LL ; 
IF DIM=1 THEN « DHERM (1,2•I-1) := DF 

DRERM (1,2•I) := DF 
D2RERM (1,2•I-1) := DF 
D2BERM (1,2•I) := DF 

»: 

(BERM (1,2•I-1),X); 
(BERM (1,2•I),X); 
(DRERM(1,2•I-1),X); 
(DBERM(1,2•I),X) >> 

COMMENT ••• Calculation of the two dimensional Hermite polynomials; 
IF DIM=2 THEN << K1:=0; 

FOR II:=O:N1DIM-1 DO 
«ADI:=2•II; 

FOR JJ:=O:N1DIM-1 DO 
«ADJ := 2•JJ; 

FOR I:=1:2 DO 
«K3:= I+ADI; 

FOR J:=1:2 DO 
«K2 := J+ADJ; 

Kl := Kl+l; 
BERMXY(l,Kl) := SUB(L=A,RERM(1,K2))• 

SUB(l=Y,SUB(L=B,BERM(l,K3))); 

:= DF (BERMXY(l,K1),COORD(K)); 
FOR K:=1:2 DO 
«DHERMXY(K,Kl) 

D2BERMXY(K,K1) := 
D2BERMXY(3,K1) := 

DF (DHERMXY(K,K1),COORD(K)) >> 
DF (BERMXY(l,K1),COORD(1), 

270 

Appendix D 



COORD(2)) 
>> » >> >> >>; 
COMMENT ••• Svitch to FORTRAN mode; 
ON FORT;OFF PERIOD; 
COMMENT ••• Calculate and output as FORTRAN code all the element matrices; 
FOR TYPE:=1:3 DO 
<< IF TYPE=l THEN 

«ELNAHE:=ELM; NAME="mass" 
IF DIM=l THEN « EELM := TP(BERM) •BERM ; 

ELSE 

FOR I:=1:2•N DO <<FOR J:=l:I DO 
<<EELM(I,J):=RHO • SUB(L=A,INT2(EELM(I,J),X,L) 

» »; 
WRITEEL1(TYPE,NAME,ELNAME,N1DIM) >> 

«EELM := RHO • TP(BERMXY) •HERMIT 
FOR I:=1:4•N DO <<FOR J:=1:I DO 

<<EELM(I,J):=INT2( INT2(EELM(I,J),Y,B) , X,A) >> >>; 
WRITEEL2(TYPE,NAHE,ELNAME,N) >> >> 

ELSE IF TYPE=2 THEN 
« ELNAME:=ELG; NAHE="geomet:ric stiffness" ; 

IF DIM=1 THEN <<EELG := TP(DBERM) •DHERM ; 

ELSE 

FOR I:=1:2•N DO <<FOR J:=1:I DO 
<< EELG(I,J):=SIGMA•SUB(L=A,INT2(EELG(I,J),X,L) 

» »; 
WRITEEL1(TYPE,NAME,ELNAME,N1DIM) >> 

<<EELG := TP(DBERMXY)• G •DHERMXY ; 
FOR I:=1:4•N DO <<FOR J:=l:I DO 

<<EELG(I,J):=INT2( INT2(EELG(I,J),Y,B) , X,A) >> >>; 
WRITEEL2(TYPE,NAME,ELNAME,N) >> >> 

ELSE IF TYPE=3 THEN 
« ELNAME:=ELK; NAME="stiffness" ; 

» » 
END; 

IF DIM=l THEN <<EELK := TP(D2HERM) •D2BERM ; 
FOR I:=1:2•N DO <<FOR J:=l:I DO 

ELSE 

<< EELK(I,J):=EI •SUB(L=A,INT2(EELK(I,J),X,L) 
» »; 

WRITEELl(TYPE,NAME,ELNAME,NlDIM) >> 
<<EELK := TP(D2HERMXY)• D •D2BERMXY ; 

FOR I:=1:4•N DO <<FOR J:=l:I DO 
<<EELK(I,J):=INT2( INT2(EELK(I,J),Y,B) , X,A) >> >>; 

WRITEEL2(TYPE,NAME,ELNAME,N) >> 

271 

Appendix D 



Appendix E 

Modified REDUCE program to generate bending element matrices. 

272 



OFF OUTPUT; OPP ECHO; OUT "BERM. OUT"; 
COMMENT ••• Definition of the procedure to vrite out the subroutine 

••• statement and the subroutine header of comments -- lD CASE; 
PROCEDURE WELEMl(TYPE,NAME,ELNAME,NlDIM); 
BEGIN 

IF TYPE=l TIIEH «WRITE " 
ELSE IF TYPE=2 THEN «WRITE " 
ELSE IF TYPE=3 THEN «WRITE " 
WRITE "C"; 
WRITE "C PURPOSE :"; 

SUBROUTINE CALELM (A,ELM,IELK,RBO)"» 
SUBROUTINE CALELG (A,ELG,IELG,SIGMA)"» 
SUBROUTINE CALELK (A,EI,ELK,IELK)"»; 

WRITE "C Forms the ",NAME," matrix for the "; 
WRITE "C ",NlDIM,"-noded one dimensional elements."; 
WRITE "C"; 
WRITE 11C *********************************************************"; 
WRITE "C"; 
WRITE " INTEGER 

IF TYPE=l THEN «WRITE " 
ELSE IF TYPE=2 THEN «WRITE " 
ELSE IF TYPE=3 THEN «WRITE " 
WRITE " DIMENSION 
WRITE "C"; 

END; 

I",ELNAME; 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 

A,ELM,RBO">> 
A,ELG,SIGMA">> 
A,EI,ELK">>; 

",ELNAME,"(I",ELNAME,",*)"; 

COMMENT ••• Definition of the procedure to vrite out the subroutine 
••• statement and the subroutine header of comments 2D CASE; 

PROCEDURE WELEM2 (TYPE,NAME,ELNAME,N); 
BEGIN 

IF TYPE=l THEN «WRITE " 
ELSE IF TYPE=2 THEN «WRITE " 

ELSE IF TYPE=3 THEN «WRITE " 

llRITE "C"; 
llRITE "C PURPOSE "; 

SUBROUTINE CALELM (A,B,ELM,IELM,RBO)"» 
SUBROUTINE CALELG (A,B,ELG,IELG,", 

"SIGMAX,SIGMAY,", 
"THOIY)" >> 

SUBROUTINE CALELK (A,B,DI,DY,DIY,Dl,", 
"ELK,IELK)"»; 

WRITE "C Forms the " , NAME," matrix for the "; 
WRITE "C ",N,"-noded tvo dimensional elements."; 
WRITE "C"; 
llRITE "C *********************************************************"; 
llRITE "C"; 
WRITE " INTEGER 

IF TYPE=l THEN «WRITE " 
ELSE IF TYPE=2 THEN <<WRITE " 

ELSE IF TYPE=3 THEN «WRITE " 

WRITE " 
WRITE "C"; 

END; 

DIMENSION 

I",ELNAME; 
DOUBLE PRECISION A,B,ELM,RBO" » 
DOUBLE PRECISION A,B,ELG,SIGMAX,", 

"SIGMAY,THOXY" » 
DOUBLE PRECISION A,B,DI,DY,DXY,Dl,", 

"ELK">>; 
",ELNAME,"(I",ELNAME,",•)"; 

COMMENT ••• Definition of the procedure to calculate the tvo dimensional 
••• Hermite Polynomials; 

PROCEDURE CHEMIY (TYPE,NlDIM); 
BEGIN 

IND := 0; 
FOR J:=l:NlDIM DO 
<<FOR I:=l:NlDIM DO 

«IND := IHD+l; 
INDI(l) := 2•I-1; 
INDJ(l) := 2•J-1; 
FOR JJ:=t:2 DO 
«FOR II:=1:2 DO 

INDI(2) : = 2•1; 
INDJ(2) := 2•J; 

<< IF TYPE=l THEN 
<<HERMIY(IND,2•JJ+II-2) := SUB(L=A,HERM(l,INDI(II)))• 

273 

Appendix E 



SUB(X=Y,SUB(L=B,BERM(l,INDJ(JJ)))) >> 
ELSE IF TYPE=2 THEN 

«BERMXY(IND,2•JJ+II-2) := SUB(L=A,BERM(2,INDI(II)))• 
SUB(X=Y,SUB(L=B,BERM(l,INDJ(JJ)))); 

BERMXY(IND,2•JJ+II-2+4) := SUB(L=A,BERM(l,INDI(II)))• 
SUB(X=Y,SUB(L=B,BERM(2,INDJ(JJ)))) >> 

ELSE IF TYPE=3 THEN 
<<BERMXY(IND,2•JJ+II-2) := SUB(L=A,BERM(3,INDI(II)))• 

SUB(X=Y,SUB(L=B,HERH(1,INDJ(JJ)))); 
HERHXY(IND,2•JJ+II-2+4) := SUB(L=A,BERM(1,INDI(II)))• 

SUB(X=Y,SUB(L=B,BERM(3,INDJ(JJ)))); 
BERMXY(IND,2•JJ+II-2+8) := SUB(L=A,BERM(2,INDI(II)))• 

SUB(I=Y,SUB(L=B,BERM(2,INDJ(JJ)))) >> 
» » » >>; 
END; 
COMMENT .o• Definition of the procedure which calculates the element 

••• matrices, integrates them and output them as FORTRAN routines 
••• (only half of the matrices are dealt with as they are 
••• symmetrical) 1D CASE 

PROCEDURE CWEL1 (TYPE,N); 
BEGIN 

FOR I:=1:2•N 00 
<<FOR J:=I:2•N DO 

<<IF TYPE=l THEN 
<<EL := RHO•SUB(L=A,BERM(1,I))•SUB(L=A,HERM(1,J)); 

EL := INT2(EL,I,A); 
WRITE" ELM(",I,",",J,") = ",EL >> 

ELSE IF TYPE=2 THEN 
<<EL := SIGMA•SUB(L=A,HERM(2,I))•SUB(L=A,BERM(2,J)); 

EL := INT2(EL,X,A); 
WRITE" ELG(",I,",",J,") = ",EL >> 

ELSE IF TYPE=3 THEN 
<<EL := EI•SUB(L=A,HERM(3,I))•SUB(L=A,BERM(3,J)); 

EL := INT2(EL,I,A); 

» »; 
END; 

WRITE" ELK(",I,",",J,") = ",EL >> 

COMMENT ••• Definition of the procedure which calculates the element 
••• matrices, integrates them and output them as FORTRAN routines 
••• (only half of the matrices are dealt with as they are 
••• symmetrical) 2D CASE; 

PROCEDURE CWEL2 (TYPE,N); 
BEGIN 

FOR I:=t:N DO 
«FOR J:=I:N DO 

«FOR II:=1:4 DO 
<<IF I=J THEN LIMIT:=II ELSE LIMIT:=1; 

FOR JJ:=LIMIT:4 DO 
«IF TYPE=l THEN 

<<EL := RHO•HERMIY(I,II)•BERMIY(J,JJ); 
EL := INT2(INT2(EL,Y,B),X,A); 
WRITE" ELM(",II+4•(I-1),",",JJ+4•(J-1),") = ",EL >> 

ELSE IF TYPE=2 THEN 
<<EL := SIGMAX • BERMXY(I,II) • BERMIY(J,JJ)+ 

SIGMAY • BERMXY(I,II+4) • HERMXY(J,JJ+4)+ 
TAUXY • BERMXY(I,II) • HERMXY(J,JJ+4)+ 
TAUXY • HERMIY(I,II+4) • HERMIY(J,JJ); 

EL := INT2(INT2(EL,Y,B),X,A); 
WRITE" ELG(",II+4•(I-1),",",JJ+4•(J-1),") ",EL >> 

ELSE IF TYPE=3 THEN 
<<EL := DX • HERMXY(I,II) • BERMXY(J,JJ)+ 

DY • BERMXY(I,II+4) • BERMXY(J,JJ+4)+ 

274 

Appendix E 



DIY • BERMIY(I,II+S) • BERMIY(J,JJ+8)+ 
D1 • BERMIY(I,II+4) • BERKIY(J,JJ)+ 
D1 • HERKIY(I,II) • HERKIY(J,JJ+4); 

EL := INT2(INT2(EL,Y,B),I,A); 
EL := SUB(DX=D,EL); 
EL := SUB(DY=D,EL); 
EL ·= SUB(D1=NU•D,EL); 
EL := SUB(DXY=2•(1-NU)•D,EL); 
WRITE " 

» » » »; 
ELK(" ,II+4• (I-1),"," ,JJ+4•(J-1), ") 

END; 

COMMENT ••• Definition of the element sizes. 
••• N is the total number of nodes 
••• NlDIK is the number of nodes in each dimension 
••• DIM is the number of dimensions (1 or 2); 

N:=4; N1DIM:=2; DIM:=2; 
COMMENT ••• Variables declarations; 
ARRAY II(N),INDI(2),INDJ(2); 
MATRIX HERM(3,2•H1DIM) ,HERMIY(,N,12); 
OPERATOR INT1,INT2; 
COMMENT ••• Definition of the integration operator; 
FOR ALL P,U,L LET INTl(F,U) INT(P,U), 

",EL >> 

INT2(P,U,L) = SUB(U=L,INT1(P,U))-SUB(U=O,INT1(P,U)); 
COMMENT ••• Initialisation& of the nodes co-ordinates in one dimension; 
FOR I:=1:N1DIM DO <<II(I):=L•(I-1)/(NlDIK-1)>>; 
COMMENT ••• Calculation of the one dimensional Hermite polynomials; 
FOR I:=1:N1DIM DO 
<<LL :=1; AA :=0; 

FOR J:=l:N1DIM DO 
IF I NEQ J THEN 

«LL := LL•(X-II(J))/(II(I)-II(J)) 
AA := -2• AA; BB := 1-AA•IX(I); 
HERK(1,2•I-1) := ( AA•X+BB ) • LL • LL 
BERM(1,2•I) := ( 1-IX(I) ) • LL • LL 

AA := AA + 1/(II(I)-II(J)) >>; 

DF(HERM(2,2•I-1),1); 
:= DP(HERM(2,2•I),I) 

HERM(2,2•I-1) := DP( HERM(1,2•I-1),1);HERM(3,2•I-1) := 
HERM(2,2•I) := DP( HERM(1,2•I),I); BERM(3,2•I) 

»; 

COMMENT ••• Svi tch to FORTRAN mode ; 
ON PORT; OFF PERIOD; 
COMMENT ••• Calculate and output as FORTRAN code all the element matrices; 
FOR TYPE:=1:3 DO 
« IF TYPE=1 THEN « ELHAHE:=ELK; HAKE:="mass" » 

ELSE IF TYPE=2 THEN « ELNAKE:=ELG; NAKE:="geometric stiffness" » 
ELSE IF TYPE=3 THEN « ELNAKE:=ELK; NAKE:="stiffness" »; 

IF DIK=1 THEN<< WELEK1(TYPE,NAKE,ELNAKE,N1DIK); 

ELSE 

WRITE " 
WRITE " 

»: 
END; 

CWEL1(TYPE,N1DIK) >> 

<< WELEK2(TYPE,NAKE,ELNAME,N); 
CHEKXY(TYPE,N1DIH) 
CWEL2(TYPE,H) >>; 

RETURN"; 
END 

275 

Appendix E 



Appendix F 

Generated FORTRAN code for the stiffness matrix in one and two dimensions. 

276 



SUBROUTINE CALELK (A,EI,ELK,IELK) 
c 
C PURPOSE 
c 
c 
c 

Forms the stiffness matrix for the 
2-noded one dimensional elements. 

c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

c 

c 

c 

INTEGER 
DOUBLE PRECISION 
DIMENSION 

!ELK 
A,EI,ELK 
ELK(IELK,•) 

ELK(l,l) 
ELK(2,1) = 
ELK(2,2) 

(12•EI)/A••3 
(6•EI) I A*•2 
(4•EI)/A 

ELK(3,1) = -(12•EI)/A••3 
ELK(3,2) -(6•EI)/A••2 
ELK(3,3) = 
ELK(4,1) 
ELK(4,2) = 
ELK(4,3) 
ELK(4,4) 

RETURN 
END 

(12•EI)/A••3 
(6•EI)/A••2 
(2•EI)/A 
-(6•EI)/A••2 
(4•EI)/A 

SUBROUTINE CALELK (A,B,DX,DY,DXY,Dl,ELK,IELK) 

C PURPOSE 
c Forms the stiffness matrix for the 

2-noded tvo dimensional elements. c 
c 
c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

INTEGER 
DOUBLE PRECISION 

DIMENSION 
c 

!ELK 
A,B,DX,DY,DXY,D1,ELK,TEMP1,TEKP2,TEMP3,TEMP4, 
TEMP6,TEMP6,TEHP7,TEHP8,TEMP9,TEKP10,TEMP11, 
TEMP12,TEMP13 
ELK(IELK,•) 

C••• Definition of the temporary variables 
c 

c 

TEMPt = A••4•DY 
TEMP2 = A••2•B••2•DXY 
TEMP3 = A••2•B••2•D1 
TEMP4 = B••4•DX 
TEMP6 = A*B 
TEMP6 = TEMP6•A 
TEMP7 = TEMP6•B 
TEMPS = TEHP6•A•B 
TEKP9 = TEHP6•A••2 
TEKPlO = TEMP8•A 
TEMP11 = TEMP6•B••2 
TEHP12 = TEMPS•B 
TEKP13 = TEHPS•A•B 

ELK(l,l) = (12•(66•TEKP1+21•TEMP2+42•TEHP3+66•TEHP4))/(176•TEMP13) 
ELK(2,1) = (110•TEKP1+21•TEHP2+262•TEHP3+390•TEMP4)/(176•TEMP12) 
ELK(2,2) = (4•(6•TEHP1+7•TEMP2+14•TEHP3+66•TEMP4))/{176•TEHP11) 
ELK(3,1) = (390•TEMP1+21•TEKP2+262•TEHP3+110•TEMP4)/(176•TEKP10) 
ELK(3,2) = (220•TEKP1+7•TEHP2+864•TEHP3+220•TEHP4)/(700•TEHP8) 
ELK(3,3) = (4•(66•TEHP1+7•TEMP2+14•TEHP3+6•TEHP4))/(176•TEHP9) 
ELK(4,1) = (220•TEHP1+7•TEHP2+164•TEHP3+220•TEHP4)/(700•TEHP8) 

277 

Appendix F 



ELK(4,2) (30•TEMP1+7•TEMP2+84•TEMP3+110•TEKP4)/(626•TEMP7) 
ELK(4,3) = (110•TEMP1+7•TEMP2+84•TEMP3+30•TEKP4)/(626•TEHP6) 
ELK(4,4) (4•(16•TEMP1+7•TEMP2+14•TEKP3+16•TEKP4))/(1676•TEMP6) 
ELK(6,1) = (6•(46•TEMP1-42•TEMP2-84•TEHP3-130•TEKP4))/(176•TEKP13) 
ELK(6,2) = (66•TEHP1-21•TEHP2-42•TEMP3-390•TEHP4)/(176•TEMP12) 
ELK(6,3) = (136•TEHP1-21•TEHP2-262•TEHP3-110•TEHP4)/(176•TEKPtO) 
ELK(6,4) = (130•TEMP1-7•TEHP2-84•TEMP3-220•TEMP4)/(700•TEMP8) 
ELK(6,6) (12•(66•TEMP1+21•TEHP2+42•TEMP3+66•TEMP4))/(176•TEHP13) 
ELK(6,1) = -(66•TEHP1-21•TEMP2-42•TEHP3-390•TEKP4)/(176•TEMP12) 
ELK(6,2) = -(16•TEMP1+7•TEKP2+14•TEHP3-130•TEMP4)/(176•TEMP11) 
ELK(6,3) -(130•TEKP1-7•TEHP2-84•TEHP3-220•TEMP4)/(700•TEMP8) 
ELK(6,4) = -(90•TEMP1+7•TEKP2+84•TEKP3-220•TEKP4)/(2100•TEMP7) 
ELK(6,6) -(110•TEMP1+21•TEKP2+262•TEKP3+390•TEMP4)/(176•TEHP12) 
ELK(6,6) (4•(6•TEKP1+7•TEHP2+14•TEKP3+66•TEKP4))/(176•TEKP11) 
ELK(7,1) (136•TEMP1-21•TEKP2-262•TEKP3-110•TEMP4)/(176•TEHP10) 
ELK(7,2) = (130•TEKP1-7•TEKP2-B4•TEMP3-220•TEKP4)/(700•TEKPB) 
ELK(7,3) (2•(46•TEHP1-14•TEKP2-2B•TEKP3-10•TEKP4))/(176•TEKP9) 
ELK(7,4) (66•TEKP1-7•TEMP2-14•TEMP3-30•TEKP4)/(626•TEKP6) 
ELK(7,6) (390•TEKP1+21•TEKP2+262•TEMP3+110•TEKP4)/(176•TEMP10) 
ELK(7,6) -(220•TEKP1+7~TEKP2+864•TEMP3+220•TEKP4)/(700•TEKPB) 

ELK(7,7) (4•(66•TEKP1+7•TEKP2+14•TEMP3+6•TEMP4))/(176•TEHP9) 
ELK(B,l) -(130•TEMP1-7•TEKP2-84•TEKP3-220•TEMP4)/(700•TEHP8) 
ELK(8,2) = -(90•TEMP1+7•TEKP2+84•TEMP3-220•TEKP4)/(2100•TEMP7) 
ELK(8,3) = -(66•TEKP1-7•TEKP2-14•TEMP3-30•TEKP4)/(626•TEKP6) 
ELK(8,4) = -(46•TEMP1+7•TEKP2+14•TEKP3-30•TEKP4)/(1676•TEHP6) 
ELK(8,6) -(220•TEMP1+7•TEMP2+164•TEKP3+220•TEHP4)/(700•TEMP8) 
ELK(8,6) (30•TEKP1+7•TEMP2+84•TEMP3+110•TEHP4)/(626•TEMP7) 
ELK(8,7) -(110•TEKP1+7•TEMP2+84•TEMP3+30•TEKP4)/(626•TEMP6) 
ELK(B,B) (4•(16•TEKP1+7•TEKP2+14•TEMP3+16•TEMP4))/(1676•TEHP6) 
ELK(9,1) -(6•(130•TEMP1+42•TEMP2+84•TEMP3-46•TEMP4))/(176• 

ELK(9,2) 
ELK(9,3) 
ELK(9,4) 
ELK(9,6) 

ELK(9,6) = 
ELK(9,7) 
ELK(9,8) 
ELK(9,9) 
ELK(10,1) 
ELK(10,2) 

TEKP13) 
-(110•TEMP1+21•TEMP2+262•TEMP3-136•TEKP4)/(176•TEMP12) 
-(390•TEHP1+21•TEMP2+42•TEMP3-66•TEHP4)/(176•TEKP10) 
-(220•TEMP1+7•TEHP2+84•TEKP3-130•TEKP4)/(700•TEMP8) 
-(18•(16•TEKP1-14•TEMP2-28•TEMP3+16•TEMP4))/(176• 

TEMP13) 
(66•TEMP1-21•TEKP2-42•TEMP3+136•TEKP4)/(176•TEHP12) 
-(136•TEHP1-21•TEMP2-42•TEKP3+66•TEMP4)/(176•TEMP10) 
(130•TEHP1-7•TEHP2-14•TEHP3+130•TEMP4)/(700•TEKP8) 
(12•(66•TEKP1+21•TEHP2+42•TEKP3+66•TEHP4))/(176•TEHP13) 
-(110•TEHP1+21•TEHP2+262•TEHP3-136•TEMP4)/(176•TEMP12) 

= -(2•(10•TEHP1+14•TEMP2+28•TEHP3-46•TEMP4))/(176• 
TEHP11) 

ELK(10,3) = -(220•TEMP1+7•TEMP2+84•TEMP3-130•TEKP4)/(700•TEKP8) 
ELK(10,4) -(30•TEMP1+7•TEHP2+14•TEMP3-66•TEKP4)/(626•TEHP7) 
ELK(10,6) -(66•TEMP1-21•TEKP2-42•TEMP3+136•TEMP4)/(176•TEHP12) 
ELK(10,6) (16•TEMP1+7•TEMP2+14•TEMP3+46•TEKP4)/(176•TEMP11) 
ELK(10,7) -(130•TEKP1-7•TEMP2-14•TEHP3+130•TEMP4)/(700•TEMP8) 
ELK(10,8) (90•TEKP1+7•TEHP2+14•TEKP3+130•TEKP4)/(2100•TEMP7) 
ELK(10,9) (110•TEMP1+21•TEMP2+262•TEMP3+390•TEHP4)/(176•TEKP12) 
ELK(10,10) = (4•(6•TEMP1+7•TEMP2+14•TEMP3+66•TEMP4))/(176•TEMP11) 
ELK(11,1) (390•TEMP1+21•TEKP2+42•TEMP3-66•TEKP4)/(176•TEKP10) 
ELK(11,2) = (220•TEMP1+7•TEMP2+84•TEMP3-130•TEMP4)/(700•TEMP8) 
ELK(11,3) (130•TEHP1-7•TEMP2-14•TEMP3-16•TEMP4)/(176•TEMP9) 
ELK(11,4) (220•TEMP1-7•TEKP2-84•TEKP3-90•TEKP4)/(2100•TEMP6) 
ELK(11,6) (136•TEMP1~21•TEMP2-42•TEHP3+66•TEMP4)/(176•TEKP10) 

ELK(11,6) = -(130•TEHP1-7•TEKP2-14•TEMP3+130•TEMP4)/(700•TEMPB) 
ELK(11,7) (46•TEMP1+7•TEMP2+14•TEMP3+16•TEMP4)/(176•TEKP9) 
ELK(11,8) = -(130•TEKP1+7•TEMP2+14•TEMP3+90•TEHP4)/(2100•TEMP6) 
ELK(11,9) = -(390•TEKP1+21•TEMP2+262•TEMP3+110•TEMP4)/(176•TEMP10) 
ELK(11,10) -(220•TEMP1+7•TEMP2+864•TEKP3+220•TEHP4)/(700•TEMP8) 
ELK(11,11) = (4•(66•TEMP1+7•TEHP2+14•TEHP3+6•TEKP4))/(176•TEMP9) 

278 



ELK(12,1) =·(220•TEMP1+7•TEMP2+84•TEMP3-130•TEHP4)/(700•TEMP8) 
ELK(12,2) = (30•TEMP1+7•TEMP2+14•TEMP3-66•TEMP4)/(626•TEMP7) 
ELK(12,3) (220•TEMP1-7•TEMP2-84•TEMP3-90•TEMP4)/(2100•TEHP6) 
ELK(12,4) = (30•TEMP1-7•TEMP2-14•TEMP3-46•TEMP4)/(1676•TEMP6) 
ELK(12,6) (130•TEMP1-7•TEMP2-14•TEMP3+130•TEMP4)/(700•TEMP8) 
ELK(12,6) = -(90•TEMP1+7•TEMP2+14•TEMP3+130•TEMP4)/(2100•TEMP7) 
ELK(12,7) (130•TEMP1+7•TEMP2+14•TEMP3+90•TEMP4)/(2100•TEMP6) 
ELK(12,8) = -(90•TEMP1-7•TEMP2-14•TEMP3+90•TEMP4)/(6300•TEMP5) 
ELK(12,9) = -(220•TEMP1+7•TEMP2+164•TEHP3+220•TEMP4)/(700•TEMP8) 
ELK(12,10) -(30•TEMP1+7•TEMP2+84•TEMP3+110•TEMP4)/(626•TEMP7) 
ELK(12,11) = (110•TEMP1+7•TEMP2+84•TEMP3+30•TEMP4)/(626•TEHP6) 
ELK(12,12) = (4•(16•TEMP1+7•TEMP2+14•TEMP3+16•TEMP4))/(1676•TEMP6) 
ELK(13,1) -(18•(16•TEHP1-14•TEMP2-28•TEMP3+16•TEMP4))/(176• 

TEMP13) 
ELK(13,2) -(66•TEMP1-21•TEMP2-42•TEMP3+136•TEMP4)/(176•TEMP12) 
ELK(13,3) -(136•TEMP1-21*TEMP2-42•TEMP3+66•TEMP4)/(176•TEMP10) 
ELK(13,4) = -(130•TEMP1-7•TEMP2-14•TEMP3+130•TEMP4)/(700•TEMP8) 
ELK(13,6) = -(6•(130•TEMP1+42•TEMP2+84•TEMP3-46•TEMP4))/(176• 

ELK(13,6) = 
ELK(13,7) 
ELK(13,8) 
ELK(13,9) = 

ELK(13,10) 
ELK(13,11) 

TEMP13) 
(110•TEMP1+21~TEMP2+262•TEMP3-136•TEMP4)/(176•TEMP12) 

-(390•TEMP1+21•TEMP2+42•TEMP3-66•TEMP4)/(176•TEMP10) 
(220•TEMP1+7•TEMP2+84•TEMP3-130•TEMP4)/(700•TEMP8) 
(6•(46•TEMP1-42•TEMP2-84•TEMP3-130•TEMP4))/(176• 
TEMP13) 
(66•TEMP1-21•TEMP2-42•TEMP3-390•TEMP4)/(176•TEMP12) 
-(136•TEMP1-21•TEMP2-262•TEMP3-110•TEMP4)/(176• 

TEMP10) 
ELK(13,12) -(130•TEMP1-7•TEMP2-84•TEMP3-220•TEMP4)/(700•TEMP8) 
ELK(13,13) = (12•(66•TEMP1+21•TEMP2+42•TEMP3+66•TEMP4))/(176• 

TEMP13) 
ELK(14,1) = 
ELK(14,2) 
ELK(14,3) 
ELK(14,4) 
ELK(14,6) = 

(66•TEMP1-21•TEMP2-42•TEMP3+136•TEMP4)/(176•TEMP12) 
(16•TEMP1+7•TEMP2+14•TEMP3+46•TEMP4)/(176•TEHP11) 
(130•TEMP1-7•TEMP2-14•TEMP3+130•TEMP4)/(700•TEMP8) 
(90•TEMP1+7•TEMP2+14•TEMP3+130•TEMP4)/(2100•TEMP7) 
(110•TEMP1+21•TEMP2+262•TEMP3-136•TEMP4)/(176•TEMP12) 

ELK(14,6) 

ELK(14, 7) 

ELK(14,8) 
ELK(14,9) 
ELK(14,10) 
ELK(14,11) 
ELK(14,12) 
ELK(14,13) 

-(2•(10•TEMP1+14•TEMP2+28•TEMP3-46•TEMP4))/(176• 
TEMP11) 

(220•TEMP1+7•TEMP2+84•TEMP3-130•TEMP4)/(700•TEMP8) 
= -(30•TEHP1+7•TEMP2+14•TEMP3-66•TEMP4)/(626•TEMP7) 
= -(66•TEHP1-21•TEMP2-42•TEHP3-390•TEMP4)/(176•TEMP12) 

-(16•TEMP1+7•TEMP2+14•TEMP3-130•TEMP4)/(176•TEMP11) 
= (130•TEMP1-7•TEMP2-84•TEMP3-220•TEMP4)/(700•TEMP8) 
= (90•TEMP1+7•TEMP2+84•TEMP3-220•TEMP4)/(2100•TEMP7) 

-(110•TEKP1+21•TEMP2+262•TEKP3+390•TEMP4)/(176• 
TEKP12) 

(4•(6•TEMP1+7•TEMP2+14•TEMP3+66•TEKP4))/(176•TEMP11) 
(136•TEMP1-21•TEMP2-42•TEMP3+66•TEHP4)/(176•TEMP10) 
(130•TEMP1-7•TEMP2-14•TEMP3+130•TEMP4)/(700•TEMP8) 
(46•TEMP1+7•TEMP2+14•TEMP3+16•TEHP4)/(176•TEMP9) 
(130•TEMP1+7•TEMP2+14•TEMP3+90•TEMP4)/(2100•TEMP6) 
(390•TEHP1+21•TEMP2+42•TEMP3-66•TEMP4)/(176•TEMP10) 
-(220•TEMP1+7•TEMP2+84•TEMP3-130•TEMP4)/(700•TEMP8) 
(130•TEMP1-7•TEMP2-14•TEMP3-16•TEMP4)/(176•TEMP9) 
-(220•TEMP1-7•TEMP2-84•TEMP3-90•TEMP4)/(2100•TEMP6) 

ELK(14,14) 
ELK(16 ,1) 
ELK(16,2) 
ELK(16,3) = 
ELK(16,4) 
ELK(16,6) = 
ELK(16,6) 
ELK(16,7) = 
ELK(16,8) 
ELK(16,9) 
ELK(16,10) 
ELK(16 ,11) 
ELK(16,12) 
ELK(16,13) 

= -(136•TEMP1-21•TEMP2-262•TEMP3-110•TEMP4)/(176•TEHP10) 

ELK(16,14) 
ELK(16,16) 

-(130•TEMP1-7•TEMP2-84•TEMP3-220•TEMP4)/(700•TEKP8) 
(2•(46•TEMP1-14•TEMP2-28•TEMP3-10•TEMP4))/(176•TEMP9) 
(66•TEHP1-7•TEMP2-14•TEMP3-30•TEMP4)/(626•TEMP6) 
-(390•TEMP1+21•TEMP2+262•TEHP3+110•TEMP4)/(176• 

TEMP10) 
(220•TEMP1+7•TEMP2+864•TEMP3+220•TEMP4)/(700•TEMP8) 
(4•(66•TEMP1+7•TEMP2+14•TEMP3+6•TEMP4))/(176•TEMP9) 

279 

Appendix F 



c 

ELK(16 ,1) - ( 130HEMP1-7•TEMP2-14•TEMP3+130•TEMP4) I (700•TEMP8) 
ELK(16,2) -(90•TEMP1+7•TEMP2+14•TEMP3+130•TEHP4)/(2100•TEMP7) 
ELK(16,3) -(130•TEMP1+7~TEKP2+14•TEMP3+90•TEMP4)/(2100•TEHP6) 

ELK(16,4) -(90•TEHP1-7*TEHP2-14•TEMP3+90•TEMP4)/(6300•TEHP6) 
ELK(16,6) = -(220•TEMP1+7•TEMP2+84•TEMP3-130•TEHP4)/(700•TEKP8) 
ELK(16,6) = (30•TEKP1+7•TEMP2+14•TEMP3-66•TEKP4)/(626•TEMP7) 
ELK(16,7) = -(220•TEHP1-7•TEHP2-84•TEHP3-90•TEMP4)/(2100•TEKP6) 
ELK(16,8) = (30•TEKP1-7•TEKP2-14•TEKP3-46•TEKP4)/(1676•TEMP6) 
ELK(16,9) (130•TEHP1-7•TEHP2-84•TEHP3-220•TEHP4)/(700•TEMP8) 
ELK(16,10) (90•TEMP1+7•TEMP2+84•TEMP3-220•TEMP4)/(2100•TEHP7) 
ELK(16,11) -(66•TEHP1-7•TEHP2-14*TEMP3-30•TEMP4)/(626•TEHP6) 
ELK(16,12) -(46•TEHP1+7•TEHP2+14•TEHP3-30•TEHP4)/(1676•TEMP6) 
ELK(16,13) (220•TEMP1+7•TEKP2+164•TEKP3+220•TEKP4)/(700•TEMP8) 
ELK(16,14) -(30•TEHP1+7•TEKP2+84•TEHP3+110*TEHP4)/(626•TEHP7) 
ELK(16,16) -(110•TEMP1+7•TEHP2+84•TEMP3+30•TEHP4)/(626•TEHP6) 
ELK(16 ,16) = (4• (16•TEHP1+.7•TEHP2+14•TEKP3+16•TEMP4)) /(1676•TEKP6) 

RETURN 
END 

280 

Appendix F 



References 

Abate T., 'Engines power business towards the chequered flag', Computing, pp 22-23, 13 
december 1990. 

Aho, Hopcroft and Ullman, The Design and Analysis of Computer Algorithms, Addison
Wesley, 1974. 

Aitchison J .M., 'A variable finite element method for the calculation of flow over a weir', 
RL-79-069, Rutherford Laboratory, 1979. 

Akin J.E., Finite Element Analysis for Undergraduates, Academic press, 1986. 

Almasi G.S. and Gottlieb A., Highly Parallel Computing, The Benjamin/Cummings Pub
lishing Company Inc, 1989. 

Amano H., Boku T. and ,Kudoh T., '(SM)2-II: A Large-Scale Multiprocessor for Sparse 
Matrix Calculations', IEEE Transactions on Computers, 39, Iss 7, pp 889-905, July 1990. 

Anderson D.L. and Ungless R.L., 'Infinite finite elements', Int. Symp. Innovative Num. 
Anal. Appl. Eng. Sci., France, 1977. 

* Applegarth I. and Barbier C., 'A Parallel Equation Solver for Unsymmetric Systems of 
Linear Equations', to be submitted for publication. 

* Barbier C., 'Automatic generation of bending element matrices for finite element method 
using REDUCE', to appear in Engineering Computation 

* Barbier C., Bettess P. and Bettess J.A, 'Automatic Generation of Mapping Functions for 
Infinite Elements using REDUCE', submitted for publication in the Journal of Symbolic 
Computation 

* Barbier C., Clark P.J, Bettess P. and Bettess J.A, 'Automatic generation of shape functions 
for finite element analysis using REDUCE', Engineering Computation, 7, pp 349--358, Dec. 
1990. 

Bardnell N.S., 'The application of Symbolic Computing to the Hierarchical Finite Element 
Method', International Journal for Numerical Methods in Engineering, 28, Iss 5, pp 1181-
1204, 1989. 

Bathe K., Finite Element procedures in Engineering Analysis, Prentice-Hall Inc .. 1982. 

Beer G. and Meek J.L., 'Infinite domain elements', International Journal fo1· Numerical 
Methods in Engineering, 17(1), pp 43-52, 1981. 

Bertsekas D.P. and Tsitsiklis J.N., 'Some Aspects of Parallel and Distributed Iterative Al
gorithms- A Survey', Automatica. 27, Iss 1, pp 3-21. 1991. 

Bet tess P. and Bettess J .A.' Analysis offree surface flows using isoparametric finite elements', 
International Journal for Numerical Methods in Engineering, 19, pp 1675-1689, 1983. 

Bettess P. and Bettess .T.A., 'Automatic Generation of Shape Function Routines', Paper 
S20 in Numerical Techniques for Engineering and Design, Proceedings of the International 
Conference on Numerical Methods in Engineering: Theory and Applications, NUMETA '87, 
Swansea, Vol. II, Matinus Nijhoff. Dordrecht, 1987. 

Bet tess P. and Bet tess J .A .. 'A profile matrix solver with built-in constraint facility', Engi
neering Comptttations. 3. Iss 3, pp 209--21G. September 1986. 

281 



Betts P.L., 'A variational principle in terms of stream function for free-surface flows and its 
application to the finite element method', Computers and fluids, 7, pp 145-153, 1979. 

Bogner F.K, Fox R.L and Schmit L.A., 'The generation of interelement- compatible stiffness 
and mass matrices by the use of interpolation formulre', Proceedings of the Conference on 
Matrix Methods in Structural Mechanics, Air Force Institute of Technology, Wright Patterson 
A.F Base, Ohio, USA, October 1965. 

Bond E. et al, 'FORMAC an Experimental Formula Manipulation Compiler', Proceedings of 
the 19th ACM Conference, pp K2.1-1-K2.1-18, 1964. 

Brown W.S., 'The ALPAK System for Nonnumerical Algebra on a Digital Computer- I: 
Polynomials in Several Variables and Truncated Power Series with Polynomial Coefficients', 
Bell Systems Truncated Journal, 42, pp 2081-2119; -1963. 

Buchberger B., Collins G.E. and Loos R., Computer Algebra: Symbolic and Algebraic Com
putation, Computing supplementum 4, Springer-Verlag, 1982. 

Burden R.L. and Faires J.O., Numerical Analysis, third edition, Prindle, Weber and Schmidt 
publishers, 1985. 

Calmet J., 'Computer Algebra Applications', Computer Algebra : Symbolic and Algebraic 
Computation, Computing supplementum 4, edited by Buchberger B., Collins G.E. and Laos 
R., pp 245-258, Springer-Verlag, 1982. 

Cassidy J.J., 'Irrotational flow over spillways of finite height', J. Engrg. Mech. Div ... ASCE, 
91, Iss 6, pp 155-173, 1965. 

Cheney W. and Kincaid D., Numerical Mathematics and Computing, second edition, Brooks/ 
Cole Publishing Company, 1985. 

Clark. P.J., 'The Vibration of a Stiffened Panel: Analysis by means of an Orthotropic Plate 
Conforming Finite Element', MSc Marine Technology, The University of Newcastle-upon
Tyne, September 1982. 

Cohen J., 'Symbolic and Numerical Computer Analysis of the Combined Local and Overall 
Buckling of Rectangular Thin-Walled Columns', Computer Methods in Applied Mechanic.~ 
and Engineering, 7, Jan. 1976. 

Computer Algebra Support Officer, Computing Laboratory, University of Liverpool, P.O. 
Box 147, Liverpool, L69 3BX. Tel: 051-794 3755. Email: Algebra@ uk.ac.liverpool. 

Computer Weekly, weekly publication, Quadrant House, The Quadrant, Sutton, Surrey, SM2 
5AS, UK. 

Computing, weekly publication, VNU House, 32-34 Broadwick street. London, W1A 2HG. 
UK. 

Computing Surface, CS Tools for SunOS documentation, edition 83 - 009 AOO- 02.02, two 
volumes, available from Meiko Limited. 

Courant R. and Hilbert D., Methods of Mathematical Physics, Vol. 1, Wiley-lnterscience, 
New-York, 1953. 

Courant R., 'Variational methods for the solution of problems of equilibrium and vibration', 
Bulletin of American Methematical Society, 49, pp 1-23, 1943. 

Craeger W.P., Engineering of masonary dams, John Wiley publisher, New York, 1929. 

282 



Crespo DaSilva and Marcela R.M., 'The Role of Computerized Symbolic Manipulation in 
Rotorcraft Dynamics Analysis', Computer and Mathematics with Applications, 12A, Iss 1., 
pp 161-172, 1986. 

CS Tools, A technical overview and A programmer's introduction to SUN- CS Tools, Meiko 
Limited (Ref 30). 

Davenport J.H., Siret Y. and Tournier E., Computer Algebra : Systems and Algorithms for 
Algebraic Computation, Academic Press, 1988. 

Davis C.V., Handbook of applied hydraulics, McGraw-Hill, New York, second edition, 1952. 

Derive is available from Soft Warehouse Inc., 3615 Harding Avenue, Suite 505, Honolulu, 
Hawaii 96816, USA. 

Desai C.S and Abel J.F, Introduction to the Finite Element Method (a numerical method for 
engineering analysis), Van Nostrand Reinhold Company, 1972. 

Dias F., Keller J.B. and Vanden-Broeck J., 'Flows over rectangular weirs', Physics of Fluids, 
31, Iss 8, pp 2071-2076, 1988. 

Diersch H, Schirmer A. and Busch K., 'Analysis of Flows with Initially Unknown Discharge', 
Journal of the Hydraulic Di·uision, 103, pp 213-232, 1977. 

Dixon L.C.W., Nonlinear Optimisation, The English Universities press, 1972. 

Doon M.K.B.M., 'Determination of flow profile over spillway using Finite Elements', Thesis 
BSC, University of Wales, Swansea, 1983. 

Dubbey J.M., The mathematical work of Charles Babbage, Cambridge University Press, 
1978. 

Edinburgh Parallel Computing Centre, the King's Building, Mayfield road, Edinburgh, EH9 
3JZ, UK. 

Encore Computer Corporation, PO Box 409148, Fort Lauderdale, Florida, 3334Q-9148, USA. 

Farhat C., 'A Simple and Efficient Automatic FEM Domain Decomposer', Computers and 
Structures, 28, Iss 5, pp 579-602, 1988. 

Farhat C. and Wilson E., 'A Parallel Active Column Equation Solver', Computers and 
Structures, 28, Iss 2, pp 289-304, 1988. 

Filho J.S.R.A, 'The Use of Transputer Based Computers in Finite Element Calculations', 
PhD thesis, University of Wales, University College of Swansea, Department of Civil Engi
neering, September 1989. 

Fletcher R., Practical Methods of Optimization, Second edition, John Wiley & Sons. 1987. 

Flynn M.F, 'Some Computer organisations and their effectiveness', IEEE Trans. Compt. 
C-21, pp 948-960, 1972. 

Forbes L.K., 'Critical free-surface flow over a semi-circular obstruction', Journal of Engi
neering Mathematics, 22, pp 3-13, 1988. 

Forbes L.K., 'Two-layer critical free-surface flow over a semi-circular obstruction', Journal 
of Engineering Mathematics, 23, pp 325-342. 1989. 

Forbes L.K., 'An Algorithm for 3-Dimensional Free-Surface Problems in Hydrodynamics', 
Journal of Computational Physics, 82, pp33Q-347. 1989. 

Foster I. and Taylor S., STRAND: New Concepts in Parallel Programming, Prentice Hall. 

283 



Gajsk.i D.D. ~nd Peir J., 'Comparison of five multiprocessor systems', Parallel Computing 
2, pp 265-282, 1985. 

Gallivan K.A., Plemmons R.J. and Sameh A.H., 'Parallel Algorithms for Dense Linear Al
gebra Computations', SIAM Re·uiew, 32, Iss 1, pp 54-135, March 1990. 

Gates B.L., GENTRAN user's Manual, REDUCE version, Information Sciences Depart
ment, The RAND Corporation, P.O box 2138, 1700 Main Street, Santa Monica, CA 90406-
2138, U.S.A. 

Gehani N., ADA, Concurrent Programming, Prentice Hall, 1984. 

Geist G.A. and Romine C.H., 'LU Factorisation on Distributed-Memory Multiprocessors', 
Proceedings of the third SIAM Conference on Parallel processing for Scientific Computing, 
pp 15-18, Los Angeles, California, USA, December 1987. 

Gerald C.F. and Wheatley P.O., Applied Numerical Analysis, third edition, Addison-Wesley 
Publishing Company, 1984. 

Godden W.G., Numerical4nalysis of Beam and Column Structures, Prentice-Hall Inc.,1965. 

Grigorev F.N and Kistlerov V.L, 'Computer Algebra Methods used in Analysing the Stability 
of Linear Dynamic Systems', Automation and Remote Control USSR, 50, Iss 7, pp 925-988, 
1989. 

Harp G., Transputer Applications, Pitman ed., p5, 1989. 

Harper D., 'A Guide to Computer Algebra Systems', Computer Algebra Support Project, 
University of Liverpool, P.O Box 147, Liverpool, L69 3BX, fourth edition, March 1990. 

Hearn A.C., REDUCE User's Manual, RAND Publication CP78, Rev. 7/87, July 1987. 

Henderson H.C., Kok M. and De Koning W.L., 'Computer-aided spillway design using the 
boundary element method and non-linear programming', International Journal of Numerical 
Methods in Fluids, 13, pp 625-641, 1991. 

Hoare C.A.R., 'Communication Sequential Process', Communication of ACM, 21, (8), Au
gust 1978. 

Hockney R.W. and Jesshope C.R, Parallel Computers 2: Architecture, programming and 
Algorithms, ed. Adam Hilger, 1988. 

Hodgkinson D., 'The use of Computer Algebra in teaching', !USC Workshop on Algebraic 
Computing, University of Liverpool, 4-5 July 1989. 

Hord R.M., The flliac-IV: The fir.~t Supercomputer, Computer Science Press, 1982. 

Hosack J.M, 'A guide to Computer Algebra Systems', The College Mathematics Journal, 
17,5, pp 434-441, 1986. 

van Hulzen J.A., 'Computer Algebra Systems', Computer Algebra: Symbolic and Algebraic 
Computation, Computing supplementum 4, edited by Buchberger B., Collins G.E. and Loos 
R., pp 221-243, Springer-Verlag, 1982. 

INMOS Limited, OCCAM 2 Reference Manual, Prentice Hall, 1988. 

Ikegawa M. and Washizu K., 'Finite element method applied to analysis of flow over a 
spillway crest', International Journal for Numerical Methods in Engineering, 6, pp 179-189, 
1973. 

Ioakimidis N .I, 'Symbolic Computation - A Powerful Method for the Solution of Crack 
Problems in Fracture Mechanics', International Journal of Fracture, 43, Iss 3, pp &39-&42, 
1990. 

284 



Jennings A., Matrix Computation for Engineers and Scientists, John Wiley & Sons, 1977. 

Jennings A., 'Solution of variable band-width partial differential equations', Computer . .1., 
15, p 446, 1971. 

Jensen J. and Nionlson F., 'Symbolic and Algebraic Manipulation Languages and their 
Applications in Mechanics', Structural Mechanics Software Series, Volume 1, Editors Perrone 
N. and Pilkey W., University Press of Virginia, Charlottesville. 

Kahrimanian H.G. and Nolan J., Analytic Differentiation by a Digital Computer, MA thesis, 
Temple Univ. Phil., PA. and Math. Dept., M.I.T Cambridge, Mass., 1953. 

Kidger D.J, 'The 14 node brick element', Proceedings of the second annual Robert J. Melosh 
Medal Paper competition, Duke University, N.C., March 1990, to be published in a special 
issue of Finite Elements in Analysis and Design. 

King A.C. and Bloor M.I.G., 'Free-surface flow of a stream obstructed by an arbitrary bed 
topography', Quaterly Journal of Mechanics and Applied Mathematics, 43, Iss 1., pp 87-106, 
1990. 

Kuck D.J, The structure of Computers and Computations, John Wiley publishing, 1978. 

Kuhn R.H. and Padua D.A, Tutorial on Parallel Processing, IEEE Computer Society pub
lication, 1981. 

Kumar P., International .Journal for Numerical Methods in Engineering, 20, pp 1173-1174, 
1984. 

Ladefoged T., 'Triangular Ring Element with Analytic Expressions for Stiffness and Mass 
Matrix', Computer Methods in Applied Mechanics and Engineering, 61, pp 171-187, North
Holland. 1988. 

Lee X.G. and Dasgupta G., 'Analysis of Structural Variability with Computer Algebra', 
Journal of Engineering Mechanics-ASCE, 114, Iss 1, pp 161-171. 1988. 

Leier W., 'Linda meets UNIX', Application of Transputers, Proceedings of the First Inter
national Conference on Appl·ication of Transputers, Liverpool, UK. 23-25 August 1989. 

Lengauer C. 'Systolic Design', Edinburgh Parallel Computing Centre annual Seminar: Ab
stracts, 23rd September 1991. 

Levi I.M., 'Symbolic Algebra by Computer- Applications to Structural Mechanics', AIAA, 
12th Structure, Structural Dynamics and Materials Conference, Anaheim, California, 19-21 
April, 1971. 

Li W., Xie Q. and Chen C.J., 'Finite Analytic Solution of Flow over Spillways', Journal of 
Engineering Mechanics, 115, Iss 12, pp 2635-2648, 1989. 

Lin A. and Zhang H., 'A new Parallel Algorithm for Linear Triangular Systems', Proceedings 
of the third SIAM Conference on Parallel processing for Scientific Computing, pp 36-39, Los 
Angeles, California, USA, December 1987. 

Livesley R.K., Matrix Methods of Structural Analysis, Pergamon press, 1964. 

Loos R., 'Introduction', Computer Algebra : Symbolic and Algebraic Computation, Comput
ing supplementum 4, Springer-Verlag, pp 1-10. 1982. 

Luke J.C. "A variational principle for a fluid with a free surface', Journal of Fluid Mechanics, 
27, Iss 2, pp 395-397, 1967. 

Lynn P.P. and Hadid H.A., 'Infinite elements with 1/rn type decay', International Journal 
for Numerical Methods in Engineering. 17(3), pp 347-355, 1981. 

285 



Macsyma-Symbolics Ltd, St. John's Court, Easton St, High Wycombe, Bucks, HPll lJX, 
UK. 

Maeder R., Programming for Mathematica, Addison-Wesley, 1989. 

Mandel J., A Domain Decomposition Method for the p-·version Finite Elements in Three 
Dimensions, available from the author at the Computational Mathematics Group, University 
of Colorado at Denver, 1200 Larimer Street, Denver, CO 80204, USA. 

Mandel J., Iterat·ive Solvers by Substructuring for the p-·version Finite Element method, 
available from the author at the Computational Mathematics Group, University of Colorado 
at Denver, 1200 Larimer Street, Denver, CO 80204, USA. 

Markland E., 'Calculation of flow at a free overfall by relaxation method', Proc. lnst. Civ. 
Engrs., 31, pp 71-78, 1965. 

Marques J.M.M.C. and Owen D.R.J., 'Infinite elements in quasi-static materially non-linear 
problems', Computers and Structures, to be published. 

Martin H.C and Carey G.F·, Introduction to Finite Element Analysis, Theory and application, 
McGraw-Hill Book Company, 1973. 

Massey B.S., Mechanics of Fluids, Second edition, Van Nostrand Reinhold Company, Lon
don, 1970. 

Mathematica is available from Wolfram Research Inc., PO Box 6059, Champaign, 61821, 
USA. 

McMinn S.J., Matrices for structural analysis, 1962. 

Meiko computing surface, available from Meiko Limited, 650 Aztec west, Bristol, BS12 4SD, 
UK. 

Menabrea L.F, Sketch of the analytical engine invented by Charles Babbage, ESP. Bib
liotbeque Universelle de Geneve, 82, 1842. 

Miles R.G. and Havard S.P., 'Multifronts and Transputer Networks for Solving Fluid Me
chanical Finite Element Systems', International Journal for Numerical Methods in Fluids, 
9, pp 731-740, 1989. 

MuMath is available from Soft Warehouse Inc., 3615 Harding Avenue, Suite 505, Honolulu, 
Hawaii 96816, USA. 

Neesham C., 'Hi-tech wheathercocks help to save the planet', Computing, pp 16--17, 19 july 
1990. 

Nishioka T. and Takemoto Y., 'Moving Finite Element Method Aided by Computerized 
Symbolic Manipulation and its Application to Dynamic Fracture Simulation', JSME In
ternational Journal Series !-solid Mechanics Strength of Materials, 32. Iss 3, pp 403-410. 
1989. 

Noor A.K and Andersen C.M., 'Computerized Symbolic Manipulation in Nonlinear Finite 
Element Analysis', Computers and Structures, 13, pp 379--403, June 1981. 

Parallel FORTRAN user guide, 3L Ltd, Peel House. Ladywell. Livingston. EH54 6AG, UK, 
1988. 

Pease D., Ghafoor A .. Ahmad I., Andrews D.L., Foudil-Bey K., Karpinski T.E., Mikki M.A. 
and Zerrouki M .. 'PAWS: A Performance Evaluation Tool for Parallel Computing Systems', 
Computer. 24, Iss 1. pp 18-29, January 1991. 

286 



Pedersen P. and Megahed M.M., 'Axisymmetric Element Analysis using Analytical Com
puting', Computers and Structure.~, 5, pp 241-247, 1975. 

Pedersen P., 'On Computer-Aided Analytic Element Analysis and the Similarities of Tetra
hedron Elements', International Journal for Numerical Methods in Engineering, 11, pp 
61-622, 1977. 

Pissanetzky S., 'A Simple Infinite Element', COMPEL, Boole Press, to be published. 

Pissanetzky S., 'An infinite element and a formula for numerical quadrature over an infinite 
interval', International Journal for Numerical Methods in Engineering, 19, pp 913-928, 1983. 

Przemieniecki .J.S., Theory of matrix structural analysis, McGraw-Hill Book Company, 1968. 

REDUCE is available from the RAND Corporation, 1700 Main Street, Santa Monica, CA, 
90406-2138, USA. 

Rao S.S., The Finite Element Method in Engineering, Second Edition, Pergamon Press, 
1989. 

Rayna G., REDUCE- Sbftware for Algebraic Computation, Springer, 1987. 

SCAFI'91, Studies in Computer Algebra for Industry, 10-11 December 1991, Computer Al
gebra Amsterdam (CAN), Amsterdam, The Netherlands. 

SENAC - A Software Environment for Numeric and Algebraic Computation, developed 
by the Mathematical Software Team, University of Waika.to, New Zealand, distributed in 
Europe by the University of London Computer Centre, 20 Guilford Street, London, WC1N 
lDZ. 

SERC/DTI Transputer Initiative Mailshot, !NMOS News Release, p 17, May 1991. 

SIGSAM-ACM, Special Interest Group in Symbolic and Algebraic Manipulation, 11 Wesr 
42nd. St., NY 10036. U.S.A. 

SMP-Inference Corporation, 5300 West Central Building, Los Angeles, CA 90045, USA. 

Schafer M., 'Parallel Algorithms for the Numerical Solution of Incompressible Finite Elas
ticity Problems', SIAM Journal of Statistical Computations, 12, Iss 2, pp247-259, 1991. 

Scratchpad is available from IBM Research Division. T.J. Watson Research Center, P.O. 
Box 218, Yorktown Heights, Ny 10598, USA. 

Sellin R.H.J, Flow in channels, Macmillan St. Martins's press, 1969. 

Sharp J.A, An introduction to Distributed and Parallel Processing, Blackwell Scientific pub
lications, 1987. 

Shore J.E., 'Second thoughts on parallel processing', Computers and ElectTical Engineering, 
1, (1), pp 95-109, 1973. 

Sims C.S., Abstract Algebra : A Computational Approach, Wiley, 1984. 

Smith I.M., 'Are there any new elements". The finite element method in the 1990's, Editors 
Oii.ate E., Periaux J. and Samuelsson A., Cimne Barcelona, pp 109--118, 1991. 

Southwell R. V. and Vaisey G., 'Relaxation methods applied to engineering problems. XII. 
Fluid motions characterised by 'free· stream-lines', Phil. Trans. Roy. Soc., Land, 240 A, 
pp 117-160. 1946. 

Stein D., Ada. A Life and a Legacy, The MIT Press. 1985. 

TMB08 installation and ·u.~er manual, available form Transtech Devices Limited. 

287 



Transputer- manufactured by INMOS Limited, member of the SGS-Thomson Microelec
tronics Group, 1000 Aztec West, Almondsbury, Bristol, BS12 4SQ, UK. 

Transputer Developem.ent System, second edition, INMOS Ltd, Prentice Hall, 1990. 

Transtech Devices Limited, Unit 17, Wye industrial estate, London road, High Wycombe, 
Bucks., HPll 1LH, UK. 

Treleaven P., 'Control-Driven Data-Driven and Demand-Driven Computer Architecture (ab
stract)', Parallel Computing 2, 1985. 

Trew A. and Wilson G., Past, Present. Parallel: A Survey of Available Parallel Computing 
Systems, Springer-Verlag, 1991. 

USBR, Design of small dams, US Government Printing Office, Washington, 1973. 

Ungless R.L., An infinite finite element, M ASc Thesis, University of British Columbia, 1973. 

Varoglu E. and Finn W.D.L, 'Variable domain finite element analysis of free surface gravity 
flow', Computers andftuids, 6, pp 103-114, 1978. 

van der Waerden B.L., Modern Algebra, Frederick Ungar, 1953. 

Wang P.S., Chang T.Y.P and van Hulzen J.A., 'Code generation and optimization for finite 
element analysis', Proc. EUROSAM '84, London, pp 237-247, 9-11 July 1984. 

Wang P.S., Tan H., Saleeb A. and Chang T.Y., 'Code generation for hybrid mixed mode for
mulation in finite element analysis', ACM SYMSAC'86 Conference, University of Waterloo, 
Canada, 21-23 July. 

Wang P.S., 'FINGER : a symbolic system for automatic generation of numerical programs 
in finite element analysis', Journal for Symbolic Computation, 2, pp 305-316, 1986. 

Waterloo Maple Software Inc., 160 Columbia Street, W., Waterloo, Ontario, Canada, N2L 
3L3. 

Williams J.M., 'An integral equation method for the computation of progressive gravity 
waves of finite height', HRS Report INT 136, 1974. 

Winston P.H. and Horn B.K.P., LISP, Addison-Wesley publishing Company, 1981. 

Wooff C. and Hodgkinson D., muMATH: A Microcomputer Algebra System, Academic Press, 
1987. 

Yagawa G., Ye G.W and Yoshimura S., 'A Numerical Integration Scheme for Finite Element 
Method based on Symbolic Manipulation', International Journal for Numerical Methods in 
Engineering, 29, Iss 7. pp 1539-1549, 1990. 

Yu D.C. and Wang H .. 'A New Approach to the Forward and Backward Substitutions of 
Parallel Solution of Sparse Linear Equations - Based on Dataflow Architecture', IEEE 
Transactions on Power System.~, 5, Iss 2, pp 621-627, May 1990. 

Yu D.C. and Wang H .. 'A New Parallel LU Decomposition Method', IEEE Transactions on 
Power Systems, 5, Iss 1, pp 303-310. February 1990. 

Zienkiewicz O.C and Cheung Y.K, The Finite Element Method in Structural and Continum 
Mechanics, McGraw-Hill, London, 1967. 

Zienkiewicz O.C, The Finite Element Method, 3rd edn, McGraw-Hill, 1977. 

Zienkiewicz O.C., Bettess P .. Chiam T.C. and Emson C., 'Numerical methods for unbounded 
field problems and a new infinite element formulation', ASME. AMD, 46, pp 115-148. New 
York, 1981. 

288 



Zienkiewicz O.C .. Emson C. and Bettess P., 'A novel boundary infinite element'. lnt.J. Num. 
Meth. Eng., i9, pp 393-404, 1983. 

289 


