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Preface 

Characteristic of today's scientific research is the use of digital computers as a mod­
elling tool. For example, the effect of changing plant operations on the refinery process 
can be evaluated without on-site experiments. Another example is the simulation of 
fluid dynamics in a reactor. 

A common characteristic of complex models is their huge demand on computational 
resources. Many problems are time and memory bound, and therefore require pow­
erful computer systems. A diverse range of uni-processor systems is available, but 
it is generally felt that these uni-processor systems obstruct the realisation of larger 
models or faster solution times. Indeed, multi-processor systems are already used for 
many scientific computations. 

Processing elements are more and more integrated on a single piece of silicon and 
allow for building system boards containing several processors. These system boards 
can be assembled to form a large multi-processor system. From a programming point 
of view, it desirable that such a system consists of well-balanced processing elements 
such as transputers. 

The interactions between processors of such a system are carried out exclusively on 
the basis of message exchanging. The alternative is to have shared memory among 
the processors, but then the multi-processor system's size is bounded by the size of 
the shared memory. Distributed-memory systems overcome this barrier, since each 
processor has it own memory and interaction is via message passing. On the other 
hand, this kind of interaction can be very complex. 

The use of multi-processor systems with a large distributed memory raises an impor­
tant and practical question: "How do we program them?". 

Perhaps this can be done by designing a compiler capable of extracting parallelism 
from a program. In our opinion, this is a tremendous task with many pitfalls. A 
more natural answer to this question is to design a para.Ile! program for the target 
system. Such a program is difficult to design, since many complex program concerns 
have to be taken into account. Nevertheless, a strict design discipline like the one 
proposed in this thesis can be used to overcome this barrier. Our goal is to provide 
a formal method, which facilitates the design of parallel programs by seperating 
communication from computation issues. 
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Chapter 0 

Introduction 

The word parallelism originates from the Greek word 7rap6),).Tf>.oc;. It is a contraction 
of 7rapa, meaning side by side, and a>.>.T/>.oc;, meaning one another. The spirit of this 
ancient Greek word breathes harmony (side by side) and similarity (one another). 

A parallel program can be considered as a number of harmoniously cooperating pro­
cesses with similar structures. The processes work towards a common goal and they 
usually interact with each other by exchanging messages. The processes we have in 
mind are imperative programs - prescriptions of statement sequences in some formal 
language. 

A parallel program may involve many processes with complex interactions. It is 
generally felt that the high degree of complexity of a parallel program obstructs its 
development. 

In this thesis, we discuss a design method for parallel programs. Our aim is to give 
some basic guidelines that enable us to master the complexity of parallel programs. 
This results in a parallel-programming method that is built on top of the formal 
methods for sequential program construction, which have been shown to be very suc­
cesful. Formal methods and sound engineering principles, like separation of concerns, 
are indispensable in parallel program construction. In the following, we informally 
explain our method. 

Central in this thesis is the notion of a parameterised process. A parameterised 
process is much like a procedure or a subroutine in sequential programming. The 
difference is that, instead of having only one instantiation in a sequential program 
(a single call), we have many instantiations in a parallel program. Indeed, the par­
allel program is obtained by instantiating p processes from one single parameterised 
process. In this way, processes with similar structures are obtained. 

There are more analogies with sequential programming. The design of a parame­
terised process closely resembles the design of a sequential program. A parallel pro­
gram is specified using functional specifications just as in sequential programming. 
Such a specification forms the starting point for a parallel program derivation, i.e., 
a formal construction of parameterised processes constituting a parallel program. In 



order to achieve this, we use parameterised invariants and other formal methods in 
the spirit of [13]. 

A parameterised process is further refined into a sequence of ordinary sequential 
programs0 and communication processes. In this way, a parallel program is decom­
posed into layers of process instances. 

Example 0.0 

s.o :: S.l :: S.2 :: 

Lo So.O So.1 So.2 
L1 Co.O ; Co.l ; Co.2 
Lz S1.0 ; S1.l 

' 
S1.2 

L3 ; C1.0 ; C1.l ; C1.2 

Figure 0.0: Schematic of a parallel program decomposed into layers 

In Figure 0.0, a parallel program consisting of 3 instances of parameterised process 
S is shown. Each process S.q, 0 ::::; q < 3, is vertically decomposed into a sequence 
of 4 processes, namely S0 .q, C0 .q, S1 .q, and C1.q. Parameterised processes So and 
S1 are sequential programs. Parameterised processes C0 and C1 are communication 
processes. 

Another way to look at the parallel program is by its decomposition into the layers: 
Lo ; L1 ; L2 ; • Each layer consists of instances of the same parameterised process. 
Communication can only take place between communication processes in the same 
layer, for example, between the processes C0 .0, C0 .1 and Co.2 in layer L1 • D 

Each layer consists of either communicating processes or cooperating programs, which 
are obtained from a parameterised process again. 

This strict separation of concerns in the design of a parallel program has several 
advantages: 

• A clear specification of each individual parameterised process can be given. 

• The type of interaction between processes is limited, since a parameterised 
process is either an ordinary sequential program or a communication process. 
This facilitates the correctness proof of the parallel program. 

The design of a communication process benefits from this approach, because its sep­
arate role becomes much clearer. For instance, it is relatively easy to analyse the 

0We prefer to speak of sequential programs instead of sequential processes. since a process has 
always an interaction with its outside world. For the same reason, we prefer the word communication 
process above communication program. The entity that combines both a sequential program and a 
communication process is a process again. 
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influence of communication networks on the parallel program's complexity, and to 
consider alternative implementations for the communication processes. 

Interaction between processes is either by message passing, which always takes place 
between processes within the same layer, or via local variables. The latter form 
of 'communication' crosses the boundary of the layers, and is similar to parameter 
passing in sequential programming. Each column in Figure 0.0 should be considered 
as one unit. An implementation of a parallel program on a multi-processor system 
simply means assigning each unit to a processor. 

An efficient parallel program is guaranteed if we distribute the work and the number 
of communications evenly across the layers. A sequence of layers, 1 0 ; 1 1 ; L 2 ; ••• , 

consisting of only sequential programs form a 'thick' computational layer. The work 
in such a layer should be distributed evenly across the parameterised processes of 
the parallel program. Cooperation, which addresses exchange or computations of 
global data, takes place in a communication layer. Preferably, such a layer should 
be 'thin', which can be achieved by avoiding communications as much as possible. If 
it is impossible to avoid communication we strive for spreading the communications 
across the instances in a communication layer. This clearly depends on the chosen 
communication network. 

In this thesis several examples are given of parallel programs that are structured 
by their decomposition into layers. Included are non-trivial examples for segment 
problems, dense symmetric-system solving and sparse Cholesky factorisation. In each 
of the derivations we indicate the influence of the chosen communication network and 
the data distribution. 

From our experience with parallel program construction on a medium-sized multi­
processor system ( 400 transputers ), we have found that the proposed method yields 
practical parallel programs, which can have high efficiencies [4]. 

Outline of the thesis 

This thesis consists of seven chapters, which are numbered consecutively. The rec­
ommended order of reading is the sequence: 

0 ; 1 ; 2 ; par 3 , 4 rap ; 5 ; 6 , 

where everything between par and rap can be read in arbitrary order. 

Chapter 1 discusses several aspects of parallel programs. We state the skeleton of 
our design method, which is based on the use of parameterised invariants and our 
knowledge of sequential programming. Small examples are given to clarify our point 
of view. At the end of this chapter we give a derivation of a parallel program. 

Chapter 2 discusses simple distributions of arrays and matrices together with two 
examples of making new distributions. The properties of distributions largely deter­
mine the efficiency of a parallel program. We study the properties of distributions in 



order to obtain a better understanding of their role in parallel programs. 

In Chapter 3, the proposed parallel programming techniques are applied to a class of 
segment problems. In this model problem, all ingredients of parallel program design 
are encountered. We start with deriving decomposition rules, and this eventually 
leads to the formulation of a parallel program scheme. The resulting techniques can 
also be applied to problems which closely resemble the model problem. 

In Chapter 4, we derive a parallel program for the solution of a special class of 
symmetric systems. Parallel programs are given for the Cholesky factorisation and 
triangular system solving of a dense matrix. The parallel programs use a Cartesian 
distribution, which are very useful in matrix computations. It is demonstrated that 
it is feasible to strive for a separation between load balance and communication 
requirements. Some experimental comparison results are given as well. 

Chapter 5 has a different character than the preceding chapters. A sparse parallel 
Cholesky factorisation program is obtained on the basis of the work of Chapter 4. 
The resulting algorithms are believed to be new, and can be used as building blocks 
for many algorithms that need the solution of a sparse symmetric positive-definite 
system. Timing~results for the parallel programs are also given. 

Chapter 6 is the closing chapter of this thesis. 

Notation 

The notation for quantifications slightly differs from what is used in mathematics. 
The general format is: 

(Gk:Q:E), 

where 8 is a quantifier, for instance, I:, max,';/, etc., k is a list of bound variables, Q 
is a predicate describing the domain of the bound variables, and E is an expression. 
The base type of the bound variables is usually the set of integers. 

Sets are denoted in a similar way as quantifications. The notation 

V {i,j: i 2 + j 2 = a2
: (i,j)} 

specifies the set V of all integer pairs which lie on a circle around the origin with 
radius a. The cardinality of a set V is denoted by I V I · 
Function application is denoted by a dot (.) . It has the highest binding power and 
associates from right to left. Whenever confusion is possible a pair of parentheses has 
been added. The integer operations division and remainder use the symbols/ and \, 
respectively. 

The program derivations and proofs are recorded in the following notational style due 
to W.F.H. Feijen: 



EO 
= {hint why EO El} 

El 
> { hint why El ;:::: E2 } 

E2 

where 0 ~ i < 3, are expressions. In this way, a derivation of EO ;:::: E2 is recorded 
via an intermediate expression El. A hint of the form EO = El is an indication of 
how to obtain in a small number of steps the equality between expression EO and 
El. The hint "calculus" refers to common arithmetical rules. 





Chapter 1 

Design Methodology 

The aim of this chapter is to describe in a nutshell a number of important concerns 
with respect to parallel programs. We briefly discuss in order of appearance: aspects 
of parallel program construction, program notation, proof rules, communication pro­
cesses, time complexity, and the parseq rule. The discussion is tailored to our needs. 
Here, the main purpose is to set out the lines of thought for playing the game called 
parallel programming. To exemplify this game we give a derivation of a parallel 
program computing all partial combines. 

1.0 Aspects of parallel program construction 

1.0.0 Functional specifications 

It is quite common in sequential programming to use the Hoare-triple [40] 

{Q} S {R} 

to denote a formal specification. This notation expresses that if program S starts in 
a state described by predicate Q and the program terminates, then upon completion 
predicate R is satisfied. Hoare-triples have been adequate in sequential program 
construction, and they can be extended to specify parallel programs as follows. Both 
pre- and postcondition, Q and R, are split up as the conjunction of p, p > 0, local 
pre- and postconditions, and a process is associated with each such pair. Specifically, 
the triple 

{Q.q} S.q {R.q} 

is the functional specification of process S.q, 0 ~ q < p, where S is a parameterised 
process. In this way, only one single parameterisecl specification is given instead of p 
specifications. 

7 



A parameterised specification usually contains some local variables representing a 
part of a distributed data object, for example, an array or a graph. The processes 
of the parallel program perform operations on such a data object. Therefore, the 
parameters of a specification are q, p and a data distribution D. Many choices are 
possible for D, each of them having an impact on the complexity of the parallel 
program. It is assumed that variables representing distributed data are partitioned 
across the p processes. There is no shared memory. 

For manipulating a parameterised specification, it is necessary to have the data dis­
tribution be parameterised as well. In Chapter 2 some data distributions arc studied 
in more detail. An example of a parameterised specification is given next. 

Example 1.0 (sum, specification) Given are p processes and an array f of length n 
distributed across all processes. The problem is to determine a parameterised process 
S that records in each process the sum of all array elements of f. The functional 
specification reads: 

I[ p, n: int: 
f(i: 0::; i < n): array of int: 
{O < p:::; n} 
par q : 0 :::; q < p : 

rap 
JI . 

I[ w: int; 
{Q.q:O<n} 
S.q 
{R.q: w = (I;i: O::; i < n: f(i))} 

JI 

The parallel program is formed by p instances of S, namely all 8.q, 0 ::; q < p. In the 
notation, parallel composition is expressed by par rap. The brackets "I[" and ".II" are 
scope brackets and are used to delimit the extent (or scope) of a variable-declaration. 
Note that for p = 1 we have a specification of a sequential program. D 

1.0.1 Invariants 

The approach we follow to obtain a parameterised process S from a functional spec­
ification is similar to the methods used in sequential programming [13, 33]. These 
methods obtain from a specification an invariant in a ca.lculational style. Several 
standard techniques are applicable to finding a suitable invariant. The programs are 
derived by calculating the necessary conditions to maintain the invariant. In a deriva­
tion, one often identifies subproblems that are easier to deal with than the original 
problem. This process of refinement is repeated until it becomes trivial to design a 
program text that meets its specification. 
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Our approach differs from others [9, 10, 70] in that the invariants are also parame­
terised as in [75]. This is a natural consequence of introducing parameterised speci­
fications. There is no need to define a theory about parallel programs. Indeed, the 
main advantage of this approach is that we reuse sequential programming techniques. 

In our approach, a programmer has to concentrate on a parameterised specification 
and has to obtain a parameterised invariant. This can be done, for example, by taking 
the data distribution into account. The aim is to rewrite the pre- and postcondition in 
such a way that one can identify local and global specifications. A local specification, 
referring to data that is local to a process, can be satisfied by a sequential program. 
A global specification requires some form of coordination between the processes, 
i.e., several processes have to interact with each other via message exchanging in 
order to satisfy the specification. It is exactly the latter concern that makes parallel 
programming difficult. 

Example 1.1 (sum, outline) Take the specification of the previous example. Let 
O.q be the set of indices of array elements of f that are assigned to process q. As 
a first step towards an invariant, two subproblems are identified: recording the sum 
of all array elements locally in a variable v, and summing these accumulated values 
globally. This can be derived by rewriting the global sum in R.q as: 

(2: i: 0 Si< n: f(i)) 
{ rewrite range } 

(l: q: 0 $ q < p: (l:i: i E 0.q: f(i))) 
= { introduction lsum } 

(l: q : 0 :S q < p : lsum.q) , 

where 
lsum.q (l: i: i E 0.q: f(i)) , for all q: 0 :$ q < p. 

In this way, two subproblems SO.q and Sl.q, with local postconditions RO.q and Rl.q 
respectively, are identified (cf. Figure 1.0). 

S.q :: 
I[ v: int; 

11 

SO.q 
{RO.q: v lsum.q} 
; Sl.q 
{ Rl.q : w q : 0 S q < p : lsmn.q)} 

Figure 1.0: Outline of parameterised process S for the sum problem 

For process SO.q it is easy to obtain an invariant. Process Sl.q requires a global 
communication process, which will be discussed in Section 1.4. 0 



1.0.2 Correctness 

The programs we intend to make should be correct by construction. So, correctness 
of parallel programs addresses correctness of applying the construction rules. 

In non-communicating parts of a parameterised process we have only assertions and 
statement lists. The correctness can be proven by using assertions and proof rules 
based on the wp calculus [13, 15]. For instance, termination of loops, is proven in the 
usual way by a variant function which decreases in every iteration of the loop and is 
bounded from below. 

Unfortunately, parallel programs interact with each other, thus complicating correct­
ness rules considerably. The only interaction we allow is communication based on 
message passing. Processes send and receive values (messages) along channels. The 
part of a process instance that contains these communication statements is called a 
communication (sub) process. 

Proof rules for communication statements are given in Section 1.2. An explicit as­
sertion is made before the sending of a value, and an explicit assertion is made after 
the receipt of a value. The assertions about the communicated values are expressed 
in terms of global (constant) expressions. In this way interference of proofs, as en­
countered in the Owicki-Gries theory [64, 65], is avoided. This leaves us with the 
obligation to prove the correctness of a communication process using the proof rules. 
Such a proof in its full length can be quite cumbersome. 

Usually the functionality of a communication process is a very simple one. It is 
sufficient, therefore, to study some frequently used communication processes and 
their implementation on communication networks (see Section 1.3). In this way, 
problems like deadlock and starvation are avoided, since it is assumed that correct 
implementations of communication processes can be given. 

The communication processes are parameterised as well, and they can be specified 
in isolation. This not only facilitates the conectness proof, but also allows for a 
single correctness proof. In addition to this, a strong restriction is posed on the pro­
cess instances of a para.meterised communication process. All communications occur 
between instances of the same parameterised process. Such a process is called commu­
nication closed. Therefore, one can think of a parallel program as being decomposed 
into layers. Each layer either is a sequential statement list or contains communication 
statements. Layers can be syntactically separated by semicolons, and are specified 
by pre- and postconditions. 

Example 1.2 A parameterised process S might be decomposed into 

S.q :: 
SO.q 

; CO.q 
; Sl.q 

where SO.q and Sl.q are sequential programs a.nd CO.q 1s a communication pro-



cess. SO.q may be a complex program; the process instances of SO form a layer and 
have parameterised preconditions and postconditions. The communicating processes 
instances CO.q also form a layer. It is possible that each process Sl.q is further 
decomposed into, for example: 

Sl.q :: 
do B.q 
__, S2.q 

; Cl.q 
; S3.q 

od 

where B.q is a guard (a boolean expression in terms of local variables of process q), 
S2.q and S3.q are sequential programs, and Cl.q is a communication process. In 
the do-loop the layers formed by the processes S2.q, Cl.q, and S3.q, are identified. 
It is possible that each process instance Sl.q is executing in a different layer, but 
logically SI is decomposed into layers whose correctness proofs are given separately. 
The correctness of the loop in Sl is partially proven by: 

{P.q A B.q} S2.q; Cl.q; S3.q {P.q} 

for an invariant P.q of Sl .q . D 

The term layer in the context of parallel programs was first introduced in [20]. In their 
terminology a layer of mutually communicating processes is called a communication­
closed layer. In [20] the layers were only used to verify correctness of parallel pro­
grams. In this monograph we use the layer concept as part of the design methodology. 
The programmer is, of course, responsible for the formulation of logical layers. 

So much for the design aspects of parallel programs. In the sequel we shall omit the 
parameters p and 1) in parameterised formulas (specifications, invariants), and the 
range 0 S. q < p for process numbers. 

1.1 Program notation 

The program notation used is based on Dijkstra's guarded command language and 
is described in [13, 15]. Examples of sequential programs written in the guarded 
command language can be found in [14, 46]. 

In the programs we have declarations of variables in a Pascal-like style, extended with 
local scope rules. The symbols I[ x ... II delimits the scope of variable x. Variables 
have usually type 'int' or 'real'. An array f of length n with base type 'real' is declared 
as "f ( i : 0 :::; i < n): array of real". The programs have the following constructs: 



abort 

skip 

x := e 

SO ; SI 

if BO --t SO ~ Bl --t SI fi 

do BO --t SO 11 Bl --t SI od 

stop forever 

do nothing 

assignment 

sequential composition 

alternative construct 

repetition. 

The if and do-statements use boolean expressions BO and Bl, called guards. If 
any guard in an if-statement evaluates to true the corresponding alternative is cho­
sen; if all evaluate to false the statement is equivalent to skip. In a do-statement 
guards evaluating to true and their corresponding alternatives are chosen repeatedly; 
if all evaluate to false the statement is equivalent to skip. We allow more than two 
alternatives. 

As an extension to Dijkstra's notation we introduce the for all-statement: 

for all i : i E set : S.i Ila rof arbitrary order. 

This statement denotes sequential composition in some arbitrary order of statements 
S.i, one for each value i in the set. If the set is empty the for all-statement is 
equivalent to skip. Note that the variable i in the range of for all is a bound variable. 
Sometimes more than one bound variable appears in a range, thus specifying a nested 
repetition. 

Example 1.3 (sum, SO.q) The statement list 

assigns to v the sum of all array elements f that are local in process q. ( 0 .q gives 
for each process q the set of local array indices off.) This statement list implements 
process SO.q of Example 1.1. D 

Parallel composition is denoted by 

par q : 0 :5 q < p : S.q rap parallel composition. 

We allow different ranges in the par-statement and different process identifications. 
The par-statement terminates if all of its constituent processes terminate. 

Example 1.4 The statement list 

par s, t : 0 :5 s < M /\ 0 ::::; t < N : S.s.t rap , 

with p = M * N, specifies the parallel composition of p processes S.s.t each identified 
by an ordered pair (s, t), 0 s < M and 0 :5 t < N. D 



The notation 
par SO , SI rap 

denotes the parallel composition of two processes SO and SI, and is used in commu­
nication processes to express simultaneous execution. 

Communication is expressed by the statements: 

rle output to process r the value of expression e 

s?x input from process s of a value, which is assigned to x. 

Since all processes are identified by process numbers, two processes 1· and s performing 
s :: r! and r :: s? define a channel in the CSP meaning [42], namely from process s to 
process r. Such a channel is shared between two processes, and its direction is from 
sender to receiver. Every output statement is matched by a unique input statement 
and vice versa. We have not used names to denote channels between processes, since 
it is always clear in the programs which process is sending (outputting) and which 
process is receiving (inputting). Process numbers can be used in expressions in order 
to identify a channel. 

Example 1.5 The statement 

(q + 1)!10 , for a process q, 

denotes that process q sends the value 10 to process q + 1. The expression ( q + 1) is 
called a channel expression. D 

The underlying communication mechanism can be synchronous (like in CSP) or asyn­
chronous. For the latter it is required that messages (values) sent by a process always 
arrive, in arbitrary time, at the receiving process, without duplication, and in the 
same order they were sent. 

The parallel programs presented in this monograph do not use communication chan­
nels, like a probe [6I] or the ALT construct of occam [4:J], in guards. Such a construct 
is difficult to capture in a simple proof rule for communication. 

1.2 Proof rules 

A weak correctness proof of a parallel program, i.e., in the absence of deadlock, relies 
on the annotated program and the use of proof rules. An annotated program uses as­
sertions before and after the program (corresponding to the functional specification), 
and between its statements. Such an assertion, or Hoare-triple, 

{Q}S{R}, 

is valid if it is either an axiom, or it is obtained by applying an inference rule. 



An example of an axiom is the assignment axiom: 

{R (x := e)} x := e {R} , 

The notation R (x e) refers to predicate R with all free occurrences of x replaced 
by expression e. 

An inference rule of the form: 

B 

where A, B, and Care predicates, states that if A and Bare proved then C may be 
concluded. An example of an inference rule is the rule of consequence from sequential 
programming: 

Q:::;. Q', {Q'} S {R'}, R':::;. R 
{Q} S {R} 

stating that a precondition may always be strengthened and a postcondition may be 
weakened. 

The axioms and inference rules form the set of proof rules. The parallel programs 
we consider all terminate, and consist of sequential statements taken from Dijkstra's 
language and statements for expressing parallelism and communication. For the 
sequential statements the proof rules from [i:J, :3:3] are used. It is assumed that the 
corresponding axioms and inference rules for the program constructs like ; , x e, 
etc., are known. 

Additionally, we have the following proof rule for the par-statement [41, 65]: 

Definition 1.6 (par rule) 

(V i : 0 ::; i < p : { Q. i} S. i { R. i}) 
{(Vi: 0::; i < p: Q.i)} par q: 0::; q < Jl: S.q rap {(Vi: 0::; i < p: R.i)} 

0 

The precondition of the par-statement is the conjunction of all preconditions of each 
process S.q. A similar remark holds for the postcondition. The state spaces of the 
processes are disjoint, since each process has its own set of local variables. Execution 
of one process, therefore, cannot alter the state of another process, except when 
communication occurs. Communication is done by message passing; proof rules are 
given elsewhere. 

The par rule states that if we manage to design a parameterised process S.q, with 
corresponding pre- and postcondition, then we lrnve designed the parallel program. 

A derivation of a parallel program can be started in two different ways. The most 
natural way is to start from a local postcondition and closing the gap between pre­
and postcondition by refinement. Sequentia1 programming techniques can be used for 
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refining. Another way is the formulation of global invariants, i.e., an invariant about 
the distributed data object as a whole. Global iuvariants serve as an intermediate 
step towards local invariants. We will see an example of the latter in Section 1.5. 

The input statement uses the following axiom: 

Definition 1. 7 (input axiom) 

r :: {true} s?x {M.x}, 

where Af.x is a predicate in terms of local variable x of process r and its process 
number. s is the process number of the sending process. D 

The axiom is adapted from [51] and states that anything can be concluded after 
the receipt of a value. At first sight, this may be a rather strong conclusion, but 
if we consider the input axiom in isolation then, with only one process running, an 
input statement deadlocks and any predicate M.x may be assumed to be true upon 
termination. 

The next inference rule is similar to the rule of satisfaction in [51]. It relates the 
postcondition of an input statement in a process r to the precondition of the matching 
output statement in process s. 

Definition 1.8 (?!-rule) 

r :: {true} s?:r {M.x} 
s :: {M.x (x := e)} r!e {M.x (x := e)} 

where M.x is a predicate in terms of the local variable x of process r and its process 
number, and e is a local expression of process s. Furthermore, the communication 
statements in s and r match. D 

The motivation for the ?!-rule is the following. In the design of a communication 
process we have available the postcondition of a receiving process r, and in particular, 
an assertion lvf.x about the, to be, communicated value x. The precondition of the 
matching sending process s is easily obtained by substitution. The sending of a value 
does not change the state space of the sending process s. Unlike in [51], no assertions 
are made about the global state space. Indeed, the proof rule presented here is rather 
weak, since it makes only assertions about the communicated value. For our purposes, 
however, it suffices, and it is also applicable to asynchronous communication. 

Example 1.9 An application of the ?!-rule is given next. Take M.x = odd.x and 
e = y + 1 in Definition 1.8. The precondition of the sending process becomes: 

M.x (x := e) 
{ definitions M.x, e } 

odd.x (x y + 1) 
{ substitution } 

odd.(y + 1) 
{ calculus} 

even.y. 



From this example we see that communication is like a distributed assignment x := e. 
The right-hand side of x e is evaluated by process s, and the result is communicated 
to process r. Process r assigns the received message to variable x. Note that x is a 
local variable of process r. D 

It is allowed to have process numbers in the expressions e and A1.x . 

Example 1.10 Consider a parallel program with two parameterised processes S.q, 
0 :Sq< 2, i.e., par S.O, S.1 rap, and 

{ 0 :5 q < 2 /\ B.q} 
par {B.q} (1 q)!q {B.q}, {B.q} (1- q)?x {M.x.q} rap 
{B.q /\ M.x.q} 

JI . 

Figure 1.1: Outline of two parallel processes with q = 0 or q = 1 

In the assertions, predicate M.x.q equals x = 1 q. To use the communication 
rules we have to identify the matching communications. In this case, there are two 
matching communications, namely 

l -q :: 

q :: 

{B.(1 - q)} q?x {i\Lr.(1 - q)} 
{B.q} (1 q)!q {B.q}. 

Applying the ?!-rule for r = 1 - q and s = q, 0 :S q < 2, we obtain for B.q the 
following parameterised proof: 

M.x.(1 - q) (x e) 
{ definitions M.x.(1 q), e } 

x q(x q) 
{ substitution } 

true 

B.q. 

Hence, the precondition is true. D 

The communication rules are not applied as strictly as suggested. In general, we 
indicate their use in the correctness proof of a communication process. The assertions 
in communication processes are annotated according to the ?!-rule. This means that 
a postcondition is given for the receiving process after an input statement (?), and a 
precondition is given for the sending process just before its output statement (!). 



1.3 Communication processes 

Consider the following specification of a parameterised communication process. 

Example 1.11 (broadcast) Lets be a process number and X be a value. 

{qfsVx=X} 
C.q 
{x = X} 

In C, a value X from process s is sent to all other processes. Such a functionality is 
called a broadcast. Variations are multiple senders {multi broadcast) or only a subset 
of the processes as receivers. D 

The specification of a communication process like a broadcast is relatively simple, its 
implementation is not. The reason is that additional assumptions have to be made 
about the channels that are used during the broadcast. This restriction stems from 
the physical limitations a processor network has. In an implementation, processes 
are assigned to processors, and channels to paths of communication wires connecting 
processors. Needless to say that this burdens the programmer, and complicates the 
task of algorithm design, since size and processor topology have to be taken into 
account. 

A parallel program can be considered [60] as an undirected graph with processes 
as nodes. Each edge represents two communication channels of opposite direction 
(an edge indicates the possibility to communicate directly between two processes). 
Additionally, it is often required that such a "computation graph" is connected and 
may vary in structure during the computation. On the other hand, a processor 
network can be considered as a fixed "implementation graph" representing a multi­
processor system. Mappings between these graphs have been studied by others [7, 
39], and in this monograph we do not consider the mapping problem. Instead, we 
briefly discuss some simple communication networks [77], and forget about processor 
networks. 

It is possible to write communication processes independent of any process topology 
by using spanning trees as demonstrated in [58]. Still, it is desirable to consider 
different kinds of communication networks, since they have a certain impact on the 
time complexity of the parallel program. Isolated specifications for communication 
processes allow for alternative realisations. In this way, it is possible to analyse the 
influence of communication networks on the communication processes. 

1.3.0 Some simple communication networks 

The simplest connected communication network one can think of is a tree of p nodes. 
The degree of a node in a network (graph) is the number of neighbours of the node. 
Trees with nodes of degree at most 2 can be obtained be arranging nodes as a chain, 



also called linear array. In a chain network of p processes, two processes s and t, 
0 ~ s, t < p, are neighbours iff I s - t L 

An important measure for the number of communication steps is the length of a 
longest path, i.e., the maximal number of edges on a path. A chain has a longest 
path of length p - L A tree with shortest-possible longest path is the star network 
of p nodes. The path length is at most 2: one node has degree p 1 and the other 
nodes 0 (if present) have degree 1 . 

A balanced binary tree (every non-leaf ha.<; two neighbours) consists of 2k 1 nodes, 
k > 0, of which 2k-t are leaves. A balanced binary tree has a longest path to the 
root of length k - 1. 

A simple cyclic communication network is the ring of p nodes, which can be obtained 
by adding an edge between nodes 0 and p - 1 in the chain network. The length of a 
longest path in a ring is p/2. 

New communication networks can be obtained by taking the Cartesian product of 
graphs [36]. For example, an M by N mesh, M, N > 0, is the Cartesian product of 
two chains of length M and N. A torus or toroid is the Cartesian product of two 
ring networks. 

A binary hypercube of dimension n has 2n vertices and is obtained by the Cartesian 
product of n chains of length 2. In general, the k-ary n-cube (the case k 2 is 
usually called hypercube), is characterised by l.:n vertices, each vertex having an n­
digit radix-k address and an edge iff two vertices differ in their addresses by 1 in only 
one digit. 

Many of the simple communication networks mentioned before can be emulated on 
a binary hypercube [7]. 

Finally, we have the complete network in which every two processes can communicate 
directly by their channel. 

1.4 Time complexity of parallel programs 

The time complexity of a parallel program is an estimate of the time it takes to 
execution the program's computation. It is desirable to quantify the time complexity 
of a parallel program in a mathematical formula. Sucl1 a formula relates the execution 
time of a parallel program to the size of the input n and the number of processes p. 

A process can compute, can communicate, or, in the absence of these main activities, 
can be idle. Each activity contributes to the time complexity of a parallel program. 
We introduce two measures: the computation complexity and the communication 
complexity, each including (a part of) idling. The role of each of these complexities 
will be discussed in turn. We start with the latter. 

0 A node of degree 1 in a tree is called a leaf. 
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The communication complexity, denoted by Tc.p.n, is determined by counting the 
number of communication steps needed to complete the communication process. A 
communication step is the communication of a value to a neighbouring process. The 
communication network can allow for a number of communication steps to take place 
in parallel. This means that Tc.p.n is at most the total number of communications. 

The communication complexity is also determined by the number of values (messages) 
to communicate and the size of a message. We assume that all messages have uniform 
size. 

Example 1.12 (broadcast) A broadcast can be implemented on a chain according 
to Figure 1.2. 

C.q :: 
{O:Ss<p} 
{q:/:sVx=X} 

if q < s -> ( q + 1)? x ~ s < q -> ( q - 1 ) ? x f i { x x} 
;par ifO<q'.Ss->(q l)!xfi 

'ifs:::: q < p - 1-> (q + l)b' fi 

Figure 1.2: Implementation of a broadcast on a chain 

The correctness of this communication process can be proven by induction on the 
number of processes p and using proof rules. 

The number of communication steps needed to complete the broadcast for a chain 
is at most p - 1, since the longest path has length p - 1 for s 0. Clearly, this is a 
worst-case scenario; the average path length is: 

1 * (I: s : 0 :::: s < p : s max (p - 1 - s)) , 
p 

which is approximately (3*p)/4, and this can also be achieved without the parallelism 
in the sending process s = q. Note that in a broadcast process where a value is 
sent from one process to only one other process the average path length becomes 
approximately p/3. A broadcast process on a hypercube takes logp steps. 0 

Example 1.13 (sum, Sl.q) Consider the specification of communication process 
Sl.q for the sum problem (see Example 1.1 ). It is necessary to add all local lsum 
values. This can be done by using a tree in which these values are collected and added 
from the leaves towards the root. The root, process 0, will broadcast the global sum 
to all processes. We use a tree with minimal longest-path length. 

For each process q we define the functions f ather.q and children.q by: 

f ather.q 

children.q 

(q - 1 )/2 if q > 0 otherwise 0, 

{i:(i 2*q+1Vi=2q+2)/\i<p:i}. 



Process 0 is the root, i.e., f ather.q q holds for q = 0. The program text for Sl.q is 
given in Figure 1.3. In the assertions we use function Tree. Tree.r gives the set of 
all processes in the subtree rooted at process r. A formal definition is: 

Tree.r = { r} V (U k : k E children.r : Tree.k) . 

For simplicity reasons, an array x is declared in every process recording intermediate 
results. (In a actual implementation each process needs at most two variables.) 

The communication complexity Tc.p.n of this process is O(logp), since we use a tree 
with minimal longest-path length llog2 pj. Had we chosen to implement process Sl.q 
on a chain network then the complexity would become O(p). D 

Sl.q :: 
I[ x(O ::; i < p - 1 ): array of int; 

par r: r E children.q: 
r?x(r) 

JI 

{x(r) O::: k: k E Tree.r: lsum.k)} 
rap 

; w :=v 
{w = lsum.q} 
; for all r: r E children.q: w := w + ;i:(r) Ila rof 
{w = (L: k: k E Tree.q: lsum.k)} 
; if f ather.q -::f:. q-+ father.q ! w 

; f ather.q '? w 
{w = (L: q: 0 $ q < p: l.mm.q)} 

fi 
{ w = (L: q : 0 $ q < p : lsum.q)} 
; for all r : r E children.q : r ! w Ila rof 

Figure 1.3: Outline of each communication process 81.q for the sum problem. The 
communication network used is a tree. 

From the last two examples we learn that the chosen communication network heavily 
influences the time complexity of communication processes, and hence the overall time 
complexity. This is not always the case, since it can happen that the communication 
complexity is entirely determined by the number of messages, or is dominated by the 
amount of work per process. 

Example 1.14 (pipe-lining) Given is a broadcast process that instead of one value 
broadcasts n values. Such a situation happens when it is necessary to broadcast an 
array of n elements. We assume that n is much larger than p ( n ~ p > 1). The 
time complexity of such a broadcast process on a chain network is 

Tc-p.n = n + p 2 

using a technique called pipe-lining. 
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The program is obtained by repeatedly performing, for each array element, the broad­
cast program C (cf. Figure 1.2). 

The time complexity consists of two terms. The first term indicates the number 
of communications n. The second term is recovered for n = 1 and indicates the 
length p - 1 of the pipe, which is at most the length of the longest path in the 
communication network. This is usually called the start-up time of the pipe, since it 
equals the number of steps to send a message along the pipe. For large n ~ p, Tc.p.n 
is approximately n on any communication network. 

The communication complexity of this problem is entirely determined by the number 
of values to communicate, and not by the communication network. 0 

Example 1.15 The communication complexity becomes less important when so­
called surface/volume effects play a role. Imagine a computation on the pixels of a 
two-dimensional picture [21], where each pixel uses information from all its nearest­
neighbour pixels. 

The picture can be represented by an n by n matrix of values, one for each pixel. A 
natural way of distributing a square matrix is by using a JP by >JP mesh of processes 
(assuming pis square). Each process in the mesh is responsible for a pixel submatrix. 

This leads to a parallel program with communication complexity 0( ,fl), since it is 
determined by number of the pixels on the borders of each submatrix. The amount of 
work per process is O(~ ), since computations are done for all pixels in a submatrix. 

It is clear that for n large compared to >JP the amount of work per process dominates 
the communication complexity. The network hardly influences the total program's 
complexity. 0 

The computation complexity of a sequential program is usually determined by count­
ing the number of elementary operations (assuming every elementary operation takes 
the same amount of time and ignoring overhead). In the parallel case this is not an 
adequate model, since operations can overlap. 

As previously motivated, we construct our programs in logical layers and each layer is 
either a sequential program or a communication process. Synchronisation is enforced 
naturally between a sequential program and a communication process if we assume 
synchronous communication. 

The time complexity of a sequential program layer is determined by the slowest 
process instance in that layer. Usually, the slowest process has to perform most 
operations. Therefore, it is meaningful to count operations and to compare the 
minimum number of operations in a process with the maximal number. The time 
complexity of a communicating layer is determined by the communication complexity. 

The time complexity of the parallel program is obtained by summing the time com­
plexities of each layer. In this way, we obtain an upper bound on the time complexity 
of the parallel program. If we ensure (and we will!) that the program layers are well 
balanced then this upper bound is a good estimate for the actual time complexity. 



There is, however, a problem with asynchronous communication which allows for 
overlapping of computations and communications within a process. This combination 
is difficult to capture in complexity results. For this reason, the complexity results 
are only valid for synchronously communicating processes. 

We wish to relate the communication and the computation complexity, and express 
the time complexity of a parallel program in formulas. For that purpose we define 
the quantity a. 

Definition 1.16 (a, tc, tr) The communication-to-computation ratio a is defined by: 

fc 
a-­

- tr' 

where tr is the time required to do a single elementary operation (an addition or 
multiplication), and tc is the time required to communicate a single value of fixed 
size (an integer or a real). D 

The values for a range from 0.5 for VLSI [2], about 4.5 for transputers [4], to about 
150-750 for the current generation hypercube machines [18]. The time complexity of 
a parallel program is given by T.p.n. 

Summarising: 

Definition 1.17 (T.p.n, Tr.p.n, Tc.p.n) 

T.p.n Tr.p.n +a* Tc.p.n, 

Tr.p.n the computation complexity 

1~.p.n = the communication complexity 

The communication complexity is obtained assuming synchronous communication. 
0 

Note that the actual time spent by the parallel program is at most T.p.n *tr. Some­
times we say that the time complexity is 0(;1:) meaning T.p.n = O(x) where 0 
denotes Landau's 0 symbol. 

Example 1.18 (sum, complexity) In the sum problem, two layers are identified. 
The first layer is formed by all process instances S.q, which are sequential programs. 
The second layer is formed by the communicating instances 81.q. 

The time .complexity of SO.q is: 

Tr.p.n =(max q: 0 ::Sq < p: I O.q I -1) . 

This suggests to distribute the n array elements evenly across p processes, and hence 

Tr,p.n = (n + p 1)/p - 1 . 

The communication complexity of Sl.q is: 



where l is the length of the longest path (to the root) in the tree, i.e., l l log2 p J. 
Explanation: each non-leaf performs at most two additions (its local lsum plus two 
received values) and communication takes two a time units (for simplicity, we charge 
a time units for a parallel communication). 

The time complexity of the parallel program for the sum problem on a balanced tree 
with longest path l becomes: 

T.p.n = (n + p- I)/p + 2 *(a+ 1) * l - 1 . 

Note that this formula is correct for p 1 (l 0). D 

Two other important notions in parallel time complexity are speed-up and efficiency. 

Definition 1.19 (speed-up) The speed-up S.p.n of a parnllel program on a problem 
X of size n is defined by 

S.p.n 
T.p.n' 

where Tseq·n denotes the complexity of the best known sequential algorithm for prob­
lem X on the same platform. 0 

Speed-up is a measure for comparing the solution time of a certain problem with a 
fixed size solved in two different ways (as opposed to [3.5]). The aim is to be able 
to state how a parallel algorithm performs compared to its sequential brother. It 
is not always an easy task to obtain complexity formulas for parallel and sequential 
algorithms. Therefore, it is sometimes necessary to verify the parallel time complexity 
and speed-ups experimentally. 

A fair comparison requires that both the sequential and the parallel algorithm use the 
same platform, i.e., identical software and hardware. Such experiments are in practice 
often impossible due to the absence of efficient sequential and parallel compilers. 
Instead the sequential program obtained from the parallel program for the case p = 1 
is used, and Tseq·n is approximated by 1}.l.n. Therefore, speed-up results should 
always be interpreted with a critical eye. 

Related to speed-up is efficiency E.p.n, a measure for the degree of utilisation of the 
processes of a parallel program. 

Definition 1.20 (efficiency) The efficiency E.p.n is defined by: 

E.p.n 

0 

S.p.n 

p 

Efficiency is a number between 0 and 1 if we admit that the speed-up S.p.n is at most 
p. 

Example 1.21 (sum, efficiency) From the time complexity T.p.n for the sum 
problem, and the sequential time complexity TseqJ< = n - 1, we can compute the 
efficiency of the parallel program. 

E.p.n (l + 2 * , for n > l , 



where l = llog2 p J. 
From the last formula we learn that an efficiency of at least 50 % is guaranteed when 
the problem size per process ( ~ ; ) is greater than 2 * (a + 1) * l. D 

It is, in general, difficult to obtain high efficiencies for a large range of values for 
p. Usually, the lower order terms in the complexity results cannot be neglected for 
small values of p. Blowing up the problem size while fixing the number of processes 
often yields high efficiencies, but this approach is not always feasible for practical 
problems. 

1.5 Combines and partial combines 

As a first example of the use of parameterised invariants we give a derivation of a 
combine process. It often happens that in a parallel program a global sum or a global 
maximum of p values has to be computed. Such an operation is called a combine. 
By grouping the different values in a tree-like fashion (recursive doubling) one can 
efficiently compute such a combine [49]. Sometimes it is required to compute all 
partial combines1, for example, all begin sums [12]. A specification of the latter is 
as follows: 

where 

I[ k, p: int; 
f(i : 0 :5 i < p): array of int; 

{O :5 k !\ p = 2k} 
par q : 0 :5 q < p : 

rap 

JI . 

I[ m: int; 
S.q 
{R.q : m = M.O.(q + l)} 

JI 

M.a.b = (0 i: a :5 i < b: .f(i)). 

We assume that integer array f is distributed by assigning element f ( q) to process 
q (the identity distribution). The operator 0 is associative, so any term in M.a.b, 
a < b, may be split off. Examples of 0 are: 

x0y=x+y 

x 0y x max y 

global sum 

global maximum . 

A variation of this problem is, for example, all partial end combines lYJ.q.p. Note that 
value M.O.p is the global combine. 

1This problem is also known as the parallel prefix problem [50]. 
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Our aim is to give a derivation of a partial combine process which has logarithmic 
time complexity. We start the derivation by first obtaining a global postcondition R' 
from the local ones. 

R': (\lq:O::;q<p:mg=M.0.(q+l)). 

The notation mg refers to variable m of process q. The hidden constant k in p = 2k 
suggests an induction, and by replacing k by a variable t we obtain a global invariant 
P'. 

P' : (V q: 0::::; q < 21
: mg= M.0.(q + 1)) /\ 0::::; t::::; k. 

Here, we assume that t is global for all processes. 

Note that P' is easily satisfied if we set m of process 0 to f (0) and t = 0. Furthermore, 
P' implies the postcondition if t = k. Progress is made by increasing t, and t can be 
seen as a global clock. From P' we get the local invariants P.q . 

P.q PO.q /\ Pl.q 

PO.q 0::::; t::::; k 

Pl.q 0::::; q < 21
:::;. m = 1\11.0.(q + 1). 

Via a global postcondition we ended with a. local invariant. We also could have 
obtained the local invariant P.q directly by introducing variable t immediately as 
a local variable. Nevertheless, a choice is made here in the derivation. It depends 
on the problem at hand whether the derivation is started with a global or with a 
local postcondition. Often one starts with a specification for a sequential program. 
Therefore, it is natural to massage the postcondition in such a way that one easily 
obtains local invariants from it. This can be done by ta.king the data distribution 
into account. 

We continue with the partial combine problem. Consider Pl.q (t := t + 1 ), i.e., Pl 
with t replaced by t + 1. 

Pl.q(t:=t+l) 
{definition Pl.q (t := t + 1) } 

0::::; q < 21+1 
:::;. m = M.O.(q + 1) 

{ definition Pl, range splitting} 
Pl.q /\ (21

::::; q < 21+1 :::;. m = M.0.(q + 1)). 

Pl.q (t := t + 1) equals Pl.q for 0::::; q < 21 
; only processes q in the range 21 

::::; q < 
21+1 have to compute M.0.(q + 1). For a process q, with 21

::::; q < 21+1
, we have 

m = M.0.(q + 1) 
{ definition M } 

m = (8 i: 0::::; i < q + 1: J(i)) 
{ 21 

::::; q < 21+1
, range splitting } 

m = (8 i: 0::::; i < q- 21 +1: J(i)) 8 (8 i: q- 21 +1::::; i < q + 1: J(i)) 
{ definition M } 

m = M.O.(q - 21 + 1) 8 M.(q - 21 +l).(q+1). 



Here, we used the property 

(*) M.a.c M.a.b('.) M.b.c, 0 $a< b < c $ p, 

for the particular choice a 0, b = q-2t+ 1, and c = q+ 1. The value of M.O.(q-2t+ 1) 
is, on account of PO, known in process (q - 21

). The value of M.(q 2t + l).(q + 1) 
is, however, unknown. This suggests to strengthen P with invariant P2 in which the 
value of M.( q - 2t + 1 ).( q + 1) is recorded in m for all processes q with q ?'. 2t. 

P.q PO.q A Pl.q A P2.q 

P2.q : 2t <;, q =? m M.(q - 21 +l).(q+1). 

Upon initialisation m M.(q-2°+1).(q+l) = f(q) for q > 0, and m M.0.l f(O) 
for q 0 needs to hold. Consider P2.q ( t := t + 1). 

P2.q (t t + 1) 
{ definition P2.q ( t := t + 1) } 

2t+i $ q =? m = M.(q - 2t+1 +l).(q+1) 
{ definition M, range splitting } 

21+1 $ q =? m M.(q - 2t+1 + l).(q - 21 + 1) M.(q - 21 + l).(q + 1). 

Again we used property(*) but with different a, b, and c. Term M.(q-21 +l).(q+1) 
is known on account of P2. Term M.(q - 21+1 + l).(q - 21 +1) is known in process 
( q - 21). Note that for Pl the range 21 $ q < 21+1 in P2 is sufficient, but when 
maintaining P2 one needs to enlarge the range to 21 $ q < p. We used in this 
derivation a splitting rule expressed by property ( * ). 

It is now clear what needs to be done. There are three kind of processes: each process 
q with 0 $ q < 2t has trivially restored Pl and P2, each process q with 21 $ q < 21+ 1 

has to restore Pl with a proper value of process (q - 21
), and finally each process q 

with 21+1 $ q < 2k has to restore P2 with a proper value of process ( q-21
). Therefore, 

in iteration t, process q should engage in the receiving from process (q 2t) and in 
the sending to process ( q + 21

) if they exist. The resulting communication process is 
given in Figure 1.4. 

In the annotated program Af.q.t is shorthand for Af.(q - 21 +1).(q+1) if q?: 21
, and 

for M.O.(q + 1) otherwise. 

The time complexity of the combine program is O(k) O(logp), because in each 
iteration at most two communications and at most one C'.:l operation take place in a 
process. The total number of communications is: 

since there are 2k - 21 senders (and hence, receivers) in iteration t. 

The program can be generalised to arbitrary p, not necessarily a power of two. The 
efficiency of the program is low, 

E.p.n = 0( 10~P) , 



COMBINES AND PARTIAL COMBINES 

S.q :: 
![ m, t, x: int: 

JI 

t := 0 ; m := f(q) 
{P.q} 
; dot# k--+ 

if q < 2t--+ {m = Al.q.t} (q + 2t)!m 
~ 2t ::; q < 2k 2t -.--+ 

{m = M.q.t} 
par (q - 21)?x , (q + 21)!m rap 

{x = M.(q - 21).t} 
; m :=mGx 

2k - 2t :::;: q < 2k -.--+ 

(q-21 )?x 
• . t • 

{x = Af.(q- 2 ).t /\ m = M.q.t} 
; m :=mGx 

fi 
;t:=t+l{P.q} 

od 

Figure 1.4: Outline of each process S.q for the partial combine problem 

and can be improved to 0(1) using the techniques of [49]. 
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The communication network used for the combine problem is a graph consisting of p 

nodes; node q is connected by an edge to nodes q + 21 for all t for which they exist. 
For n = 16, k = 3, the communication network is given in Figure 1.5. This network 
can be mapped on a binary hypercube as follows [48]. 

Figure 1.5: Communication network for partial combines using 16 processes 

Let [q] denote the binary representation of natural number q, #[q] is the number of 
l's in [q], and* is taking bitwise exclusive-or, for example [3] * (6] = 011*110 101. 
Define the map g by g.q [q] * [q/2], then the following holds (without proof): 

#(g.q*g.(q+ 21)) = { 21 if ht 0. for all q,t: 0:::;: q+2t < 2k. 
ot erw1se 



This means that g maps two neighbouring nodes q and q + 21 in the communication 
network on two binary nodes in the hypercube which differ only in one position if 
t = 0 and in two positions if t > 0. Hence, in the terminology of [39] each edge of the 
communication network is mapped onto a path of length 1 or 2 in the hypercube. An 
example mapping is given in Figure 1.6. 

0 1 2 3 

7 6 5 4 

8 9 10 11 

5 14 13 12 

Figure 1.6: Mapping of the graph of Figure 1.5 onto a hypercube of 16 processes. 
The numbers are integer representation of the images g.q. Each edge in the original 
graph is mapped onto a path of length at most 2. 

In conclusion, all partial combines can be effectively computed on a hypercube by a 
communication process with a time complexity of O(logp). 

1.6 The parseq rule 

In this section we discuss a rule that lies at the heart of our design method; it 
stems from distributed protocol construction and verification. The observation made 
is that the logical structure of a protocol can often be described as a sequential 
composition of a number of parallel tasks each corresponding to a phase from the 
protocol. Examples are the PIF protocol described by [74], the distributed weighted­
spanning-tree algorithm of Gallager, Humblet and Spira [22], and the shortest-path 
algorithm of [8]. 

This observation equally applies to parallel program construction and verification, and 
was as such first recognised by Elrad and Francez in [20]. They demonstrated that a 
parallel program can be decomposed into so-called communication-closed layers, i.e., 
communication between processes belonging to different layers does not occur. They 
considered a parallel program S (casting their definitions in our notation) 

S :: par q : 0 ::;'. q < p: S'.q rap 

in which every process S.q can be represented as 

S.q :: So.q ; ... ; Sr1-1.q. 



THE parseq RlJLE 29 

The S;.q's consist of simple statements: skip, assignment, and communication. Intro­
duction of redundant skip statements allows for d, the depth of the decomposition, 
to be uniform over all processes S.q. 

A layer of S, denoted by Lh 0 :5 j < d, consists of 

Lj :: par q: 0 :5 q < p: Si.q rap . 

A layer is called communication closed iff communication actions taking place in that 
layer do not cross the boundary of the layer. Stated differently: any ! in a layer 
matches with a ? in the same layer and vice versa.. The decomposition of S into 
layers is 

S ·· Lo ; 11 ; ... ; Ld-1 . 

The decomposition is called safe iff all layers are communication closed. 

Elrad and Francez's main result is: 

A distributed program is equivalent to any of its safe decompositions into 
layers. 

This is proven by induction on d, the depth of the decomposition, but unfortunately 
the step 

Ld-l ; Ld "is equivalent to" par q : 0 :5 q < p: 

is unproven. For p = 2 this boils done to: 

Definition 1.22 (parseq rule) Given are four terminating processes S;.j, 0 :5 i,j < 
2, which have as only interactions: 

Each Si.O can interact via communication with Si.I. 

Each 50 .i can interact via shared variables with 

it holds that 

0 

par 50 .0 , 50 . I rap ; par S1 .0 , 51 . I rap 
"is equivalent to" 
par 50 .0; S1.0, So.I ; 5 1.l rap. 

This rule is called the parseq rule. The rule mentions the equivalence between two 
program fragments, which are called the left-hand composition and the right-hand 
composition. Two programs are considered equivalent if their pre- and postconditions 
are the same. In the parseq rule there are four processes that play a role; all four 
are composed in two different ways. 



From the point of view of a single process S;.j both the left-hand side composi­
tion and the right-hand composition in the parseq rule define the same sequence 
of computations in S; .j. A similar remark holds for the processes 80 .0 ; 8 1 .0 and 
80 .l ; S1.1. Hence "is equivalent to" means that each program 8;.j and 80.j ; 81.j 
when started in a state described by the precondition, reaches a state described by 
the postcondition. The sequence of possible computations is the same, but the order 
in which they happen may differ. For example, in the right-hand composition process 
S1.0 can already start after termination of process S0 .0. In the left-hand composition 
process S1 .0 can only start after termination of both S0 .0 and S0 .1. This behaviour 
can be observed only by an external observer; it cannot be observed by process 81 .0 
itself, since there is no interaction via communications between process 80 .0 and S0 .l. 
Operationally speaking, the parseq rule states that global synchronisation can be 
removed at the expense of strict interaction rules. The order of computations in the 
processes can be expressed formally in trace theory [69]. Trace theory also allows the 
parseq rule to be restated and proved, as has been shown by J .J. Lukkien. Other 
proofs of the parseq rule are based on temporal logic [7 4]. 

Our interest in this rule is that we believe to reflect the way we construct parallel 
programs. Our parallel programs consist of p instances of a single parameterised 
process. Such a process is designed by refining it into a sequence of sequential pro­
grams or communication processes. All instances of a parameterised process in this 
sequence form a layer, and the layers are syntactically separated by semicolons. The 
parameterised processes b,elonging to each layer are specified by preconditions and 
postconditions, and can be studied in isolation. This strict design principle still al­
lows us to design efficient parallel programs, since the parseq rule shows a way out 
from a strict synchronisation between layers. 

Example 1.23 (PIF) In the PIF protocol there is a tree of processes, and the root 
(process) informs all other processes about a message m. The root has to be informed 
that all other processes have received m. We can identify two phases in the program. 
In the first phase, a global broadcast of message m from the root to all the other 
processes takes place, in the same way as in the communication process for the sum 
problem (see Figure 1.3). In the second phase, a communication process is started 
which informs the root about global receipt of m. By designing two parameterised 
communication processes for each phase we can implement the PIF protocol in a 
sequential programming style. We thus obtain a layered parallel program. In the 
execution of the parallel program it might well happen that a process starts with 
the second phase while other processes are still in the first phase. Nevertheless, each 
process will interact only with processes executing in the same phase. D 

1.7 Summary 

We described in this chapter the main ingredients of parallel program design. Our 
method can be roughly summarised as follows. 



• Functional specification. 
Aim: Formulation of a parameterised functional specification from an ordinary 
sequential specification. Introduction of p processes, each process is assigned a 
part of the work involved. 

=.>=== How to split up the specification into p loca.l ones. Is a data distribu­
tion given, or part of the problem? Can we postpone the choice of distribution? 

• Invariants. 
Obtain from a local specification of a parameterised process a param­

eterised invariant. Introduce subproblems by using the layer concept. Give 
parameterised specifications of each layer. Design sequential programs for the 
non-communicating parts of a layer using standard techniques. 

=.>=== Can we discriminate easily the functionality of communication pro­
cesses? Avoidance of communication processes. 

• Communication processes. 
Obtain a local specification of a communication process. Formulate the 

communication requirements in a communication-network independent way. 

~""""""""'"'""""How can we realise the communication processes on different com­
munication networks? What is the impact of the communication networks on 
the total time complexity? 

• Distribution of data or work. 
Minimise the number of steps to complete the parallel program. For 

example, balance the load as best as possible across the p processes. 

-""'-"=~=Are alternative distributions possible? Can we determine the commu­
nication complexity, and the influence of the distribution on the communication 
requirements? Is it possible to avoid structural load imbalances? 

• Complexity 
To determine a complexity formula in the size of the input and the number 

of processes used. 

Concerns: Are we able to give the complexity of alternative solutions? Are the 
final algorithms scalable, can high speed-up results be obtained and is there 
experimental evidence? 

In the remainder of this monograph we will follow this method. It is our primary 
concern to obtain a correct parallel program by using a decomposition of the program 
into layers of parameterised processes. By studying possible data distributions for 
the problem involved, we can analyse the work load distribution with the aim of 
obtaining efficient programs. Data distributions are the topic of the next chapter. 





Chapter 2 

Distributions 

In this chapter, we consider simple distributions of arrays and matrices. The purpose 
of this study is to focus on the work-load properties of these distributions. Further­
more, the impact of distributions on the number of communications is discussed. 

2.0 Introduction 

The parallel programs we consider use distributed data objects, like arrays or graphs. 
Each part of a data object is assigned to a unique process. In a parallel program, 
processes can independently perform operations on their local data until global infor­
mation is needed such as, for instance, the valne of a global sum. The communication 
processes are responsible for combining and collecting global information via message 
passing. Processes send messages along channels, and a message can only be deliv­
ered when the receiving process is ready. This causes synchronisation points in the 
parallel program, which usually lead to waiting times. As a consequence, the parallel 
program will have a lower efficiency. 

One of the targets of parallel programming is to obtain programs with a high speed­
up. In other words: the more processes there are, each executing on a different 
processor, the faster the parallel program should run for a certain input. The impact 
of distributions on the time complexity of a parallel program is therefore an important 
issue. 

In this chapter we primarily want to focus on simple static distributions and their 
properties. The general mapping problem is not considered. 

A static distribution assigns parts of a data object (an element) to a process; the as­
signment does not change during the execution of the program. Important properties 
of static distributions are: the number of elements that are assigned to a process and 
the distribution of elements across the processes. On the basis of these properties, 
we can compare distributions and quantify the influence of distributions on the work 
load in a parallel program. 
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(Representation details of distributed data will not be addressed. An efficient repre­
sentation depends on the operations to be performed; this is not the issue here.) 

From simple distributions we can make new distributions by composition and Carte­
sian product (see Sections 2.2 and 2.3). It turns out that both kinds of distribution 
have similar properties. 

Distributions also determine which values have to be communicated in a process. It 
is desirable to count the number of communications for a given distribution. For 
that purpose a counting technique is presented in Section 2.4. The advantage of 
this technique is that alternative distributions can be judged on their communication 
overhead. In an actual parallel program, we strive for spreading the communications 
across the processes, since in this way we can reduce the communication complexity. 

To end this section we want to stress the double role of distributions in parallel 
programs. The main role is to distribute the work across the processes in such a way 
that the completion time of the parallel program is minimised. This can be done, 
for example, by avoiding structural load imbalances. The other role of distributions 
is their influence on the number of communications in a parallel program. This 
double role can be more easily identified when there is a clear distinction between 
communication processes and non-communicating programs, as is the case in all our 
parallel programs. 

2.1 One-dimensional distributions 

This section discusses a number of frequently used distributions of arrays together 
with their properties. In the following, the notation K is used to denote the set 
{O ... I< 1}, I< 2'. 0. 

Definition 2.0 (distribution) V = (8, A, B) is called a distribution if A and B a:re 
finite sets, and 8 is a mapping from A to B. D 

The domain A and range B of 8 are mentioned explicitly. Set A specifies the set 
of data objects of interest; set B specifies the set of processes, which is usually p. 
Since the distributions are static, it is possible that there are more processes than 
data objects to perform work on. Such a situation often occurs at the end of a 
computation, when some processes have already terminated. 

The distribution of an array f of length n across p processes can be specified by the 
triple (8, n, p). The data object of interest is an array of which the array elements 
are identified by their index set n. The function 8 assigns each array index i E n 
(and its corresponding array element J(i)) to a process number from set p. 

Well-known ways of distributing an array are: every element to one unique process 
(identity), assigning p equally-sized consecutive array segments (linear, consecutive 
storage) and assigning elements cyclically (wrap, cyclic storage) [44]. 



0NE-DIMENSIONAJ, DISTRIBUTIONS 

Example 2.1 (identity, linear, wrap) 

identity 

linear 

wrap 

( (,\i ·i),p,p)' 

( (.\i · i/(n/p) ),n,p), provided that pin, 

( (.\i · i\p), n, p) . 

The lambda notation is used in the definition of a distribution function. D 
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We have the freedom to permute the process numbers. This is not essential for our 
purposes, since properties of distributions, like the maximal number of data objects 
assigned to a process, are invariant under such a permutation. 

Definition 2.2 (equality of distributions) 

(80,n,p) = (81,n,p) 7r : r. a permutation on p : 80 = 7r o 81) , 

where o denotes composition. D 

In the following example, it is shown that a permutation on the set of data objects 
can cause two distributions to become equal. 

Example 2.3 Consider the linear and wrazJ distribution of an array, and define 
the permutation <T on n by: 

<T (.\i · (i\m) * p + i/m), where m = n/p, 

then 

holds. D 

Permuting the set of data objects before applying a distribution function effectively 
means picking another distribution. 

In the definition of linear distribution of Example 2.1, the restriction pin was im­
posed. A general linear function can be obtained as follows. 

Example 2.4 (linear) For a linear distribution, the remaining n \p indices of an 
array of length n can be distributed by assigning the first n \p processes one array 
element extra. Formally, the distribution function becomes: 

linear (8, n, p), 
(.\i · i/(m + 1) max (i - n\p)/m ), and m n/p. 

Note that if pin then the distribution function for linear is recovered, since i/m ~ 
i/(m + 1) for all i ~ 0. The formula for this general linear distribution is very 
compact. D 

In the following definition, distributions are used in determining the sets of local 
variables assigned to a process. 



Definition 2.5 (owns) Given is a distribution ( 6, n, p). The set of elements n 
assigned to process q, 0 :::; q < p, is given by O.q (pronounced "owns"): 

O.q = {i: i En/\ 6.i = q: i}. 

0 

The notation 0 6.q refers to the set O.q with a specific function 6 in mind. Usually, 
the sets O.q are used to define a distribution. The sets O.q form a partition of n. 

Example 2.6 (£) Another characterisation of the general linear function is as 
follows: 

olinear.q = {i: i.q:::; i < £.(q + 1): i} ' 

where 
i = (>.q · q * (n/p) + q min (n\p)} . 

0 

Each process has a number of array elements assigned to it. Each array element, or 
part of a data object in general, has an associated number of operations to perform 
on it. Counting the cardinalities of the sets O.q is therefore meaningful in time­
complexity analysis. In this way, a good indication of the amount of work per process 
is obtained. Often, we are interested in the maximal number of data objects that is 
assigned to a process, because it usually determines the time complexity of a parallel 
program. (This assumption holds only if the amount of work per data object is 
constant.) 

Definition 2.7 (Ma) The maximum number of data objects assigned to a process 
for a distribution ( 6, n, p) is defined by 

Ma(8) =(max q: 0:::; q < p: I 0°.q I) . 

0 

Example 2.8 (Ma( linear) Ma( wrap)) For the array distributions linear and 
wrap the following holds: 

q)/p . 

The cardinalities for linear can be obtained using the f function (Example 2.6). The 
cardinalities for the wrap distribution are obtained from: 

I owrap.q I 
{ definition } 

I {i: o:::; i < n A i\p = q: i} I 
{ calculus, range splitting } 

I {i: 0:::; i < (n/p) * p /\ i\p q: i} I+ I {i: (n/p) * p:::; i < n /\ i\p = q: i} I 
= { calculus } 

n Ip + I { i : 0 ~ i < n \p /\ i q : i} I 
{ calculus } 

(n+p-1-q)/p 



The cardinalities of the O.q's are the same for the lfoear and wrap distributions. 
Both distributions assign a maximal number of elements to process 0: 

Ma( linear)= Ma( wrap)= (n + p 1)/p. 

Hence, if the time complexity of a parallel program is determined entirely by the 
cardinalities of one of these distributions, then there is no difference between linear 
and wrap. D 

A measure of the load imbalance is the difference between the maximum number of 
elements assigned to a process and the minimum number of elements assigned to a 
process. If this measure is bounded by a natural number w for a given distribution 
then we call this distribution w-balanced. Of course, we are only interested in small 
values of w. 

Definition 2.9 (w-balanced) A distribution (8,n,p) is called w-balanced, w 2 0, 
iff 

where 

D 

Ma(8) 

Mi( Ii) 

Ma(8) Mi(8) :S w, 

(max q: 0:Sq<p:108 .ql) 
(min q: 0 :Sq< 11: 105.ql) . 

A w-balanced distribution ensures that the differences in the work-load distribution 
between processes are bounded by w. If this number is small then we have ensured 
a good load balance. A distribution is called homogeneous if w = 1 [39] and perfect 
if w = 0. A perfect distribution is also homogeneous. It is clear that a perfect 
distribution is only achieved when pin, and this is iu general not the case. Examples of 
homogeneous distributions are the already-mentioned linear and wrap distributions. 

Example 2.10 (reflection) An example of a non-homogeneous distribution is 

( 8, n, p ), with Ii (Ai. { i\p 
p-1 

if (i/p)\2 = 0 
i\p otherwise ) · 

This distribution is called reflection. It is w-balanced with w 2. D 

For a certain class of computations the wrap distribution is a good candidate. To 
demonstrate this consider the following example. 

Example 2.11 Given is a parallel program consisting of n steps. In step k, 
0 $; k < n, computations are done only for the first k elements of the program's 
arrays (all arrays have length n and are distributed in the same way). Each array 
element requires a constant number of elementary operations. The ma.ximal number 
of computations in step k in a process for any array distribution (Ii, n, p) is bounded 
from below by: 

(max q : o :::: q < P : Io" .q n k D 2 ( k: + P - 1) IP . 

This follows from: 



P* (max q: 0::; q < p: IO.qn k)I) 
2:'. { calculus } 

o:::: q : o ::; q < p : 10.q n kl) 
{ 0 .q forms a partition of k } 

j(u q: o ::; q < p: O.q n k)I 
{ calculus} 

k. 

The lower bound is attained by the wrap distribution (see Example 2.8, with n 
replaced by k). Hence, combining the results gives, for all 8: 

(max q: 0:::; q < p: 105.q n kl) 2: (max q: 0::; (j < p: 1owrap.q n kl) . 

Or in words: at any step in such a parallel program, the maximum number of com­
putations in a process for any distribution is at least the maximum number of com­
putations in a process when using the wrap distribution. 

If all processes synchronise at every step then the maximum number of computations 
performed by a process determines the computation time of a step. The work load is 
homogeneously distributed in every step for a wrap distribution. Therefore, we can 
conclude that for this class of computations the wrap distribution is a good candidate 
(which does not exclude the existence of other distributions with similar properties). 

If the computations can overlap in different steps, i.e., a process can start step k + 1 
immediately after finishing step k, then the total load imbalance when using the wrap 
distribution is O(n). This result can be obtained by comparing the minimum and 
maximum over all q of the expressions: 

(2:::: k: o:::; k < n: I owrap.q n k D 
{ Example 2.8 (n k) } 

(L: k : o ::; k < n : ( k + P - i - q) IP) 
{ calculus } 

(n * (n - 1))/(2 * p) + O((n * (p - 1 - q))/p .) 

The total amount of work is O(n2
) and (ideally) per process O(~) (assuming that 

p ::; n ). This means that for overlapping computations the wrap distribution has 
good characteristics, since the load imbalance is at most the amount of work per 
process. 

Note that a similar argument holds for parallel programs that perform computations 
on the last n k array elements. Or, even more general, for programs that perform 
computations for different consecutive parts of arrays. D 

2.2 Composition of distributions 

Distribution functions can be composed to obtain new dist.ribut.ions. 
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Example 2.12 A distribution called wrap-of-linear can be obtained as follows. 
Take linear= (tJlinea•,n,m), min, and wrap (8wrap,m,p) then 

wrapolinear=( (,\i·(i/(n/m))\p),n,p). 

For m = n the wrap distribution is obtained and for m = p the linear distribution. 
For simplicity, we require min; a similar formula can be given for the generalised 
linear distribution. 0 

Definition 2.13 (composition of distributions) The composition of two distri­
butions VO= (80, m, M), VI = (8I, n, N), with M = n is defined by: 

VI oVO = (81080,m.N). 

0 

Other examples of composition are the variations linear-of-wrap, or linear-of-linear. 
Composition allows for making complex distributions. The properties of a composed 
distribution can be obtained from the properties of its constituents. 

Example 2.14 Consider wrap o linear of Example 2.12. The number of elements 
assigned to a process q, I owrapolinea'.q 1, can be obtained by counting: 

I { · · Q < · 8wrap · Q < · c/inear · · ·} I z,J: _z<m/\ .1=q/\ _J<n/\u .J=i:J 

This expression can be rewritten to 

i : 0 :S i < m /\ i\p q : + 1) - f.i) ' 

which is form In equal to~* (m + p - 1 - q)/p. This distribution is~ balanced if 
m\p > 0, otherwise it is perfect. D 

Composition of distributions does not always preserve homogeneity. 

Example 2.15 Take the composition of two generalised linear functions, with n 
12,M = m = 5,N 3, thus 80: {O .. . 11}--+ {0 ... 4} and 81: {0 ... 4}--+ {0 ... 3}. 
Then the result of VO is: 

and Vl o VO results in: 

0 1 2 3 4 5 6 7 8 9 10 11 . "---""" '-.,.--' .._,.,_,, .._,.,_,, '--v--' ' 

01234567891011. 
'----..----' ..._,__, '--v--' 

Here 9 10 denotes the process that contains elements 9 and 10. D .._,_, 
What can be said of 1081080.ql for two homogeneous distributions VO= (80,m,M), 
VI = (81, n, N), with M n '! Clearly the maximum number of elements assigned 
is at most Ma(80) * Ma(81) : 

Ma(81o150) = 1\fo(i50) * Ma(81) = (m + M 1)/.M * (n + N -1)/N, 



and the minimum number assigned is at least Mi( 50) * Af i( 51) : 

Mi(5l o 50) = Mi(50) * Mi(5l) ni/Af * n/N. 

Thus we arrive at the following result. 

For homogeneous distributions DO = ( 50, m, M), Vl = ( 51, n, N), M = n: 

Mi(5l) * Mi(50) :S: 1051060.ql :S: Ma( bl)* Ma(50). 

The distribution V1 o DO is w-balanced with 

w l.n.N * (m/M) + l.m.M * (n/JV) + (1.m.M) * (l.n.N), 

where the function l.a.b yields 1 if a\b > 0 and 0 otherwise. 

Practical applications of composed distributions are, for example, parallel programs 
using different data distributions. By introducing a pa.rameter like m in wrap-of­
linear, it is possible to trade off the load bala.nce for each individual part and to 
avoid expensive redistributions during a computation. 

On the other hand, these distributions often yield complex expressions and are there­
fore not very well suited in program derivations. In thf' next section, we encounter 
another way of making new distributions. 

2.3 Cartesian distributions 

Distributions of multi-dimensional arrays can be modeled by Cartesian distributions. 
We will consider arrays of arrays, or matrices. Tn the following, it assumed that an 
m by n matrix is distributed across p processes. 

Definition 2.16 (Cartesian distribution) The Cartesian product of two array 
distributions VO= (50,m,M), Vl = (51,n,N), is defined by: 

VO x VI (50 x 51,m x n,M x N). 

Where the function 50 x 51 assigns to every index pair a pair of process numbers. 
Formally, 

bO x bl (>..i,j · (50.i,51.j)). 

0 

The Cartesian product of two one-dimensional distributions uses a process pair as 
identification for a process. In order to obtain a process number an additional map­
ping f3 : M x N ___., p, p M * N, must be applied. The function f3 is a bijection, 
which identifies a pair of process numbers with a. process number in p. We often omit 
a suitable /3 and use an integer pair as process identification in programs with matrix 
distributions. 
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Cartesian distributions of matrices can be obtained by distributing the rows of the 
matrix independently from the columns. The most commonly used matrix distri­
butions are Cartesian. The set of elements assigned to each process by a Cartesian 
distribution 'DO x 'Dl of an m by n matrix can be defined in a similar as in Defini­
tion 2.5. It has the following property: 

060x61.(s, t) = 060.s x on.t' 

with 0 :::; s < M and 0 :::; t < N. 

In our opinion, non-Cartesian distributions are often more difficult to program due 
to the absence of a "splitting-rule" like the one above. Cartesian distributions give 
us the freedom to consider the rows and columns as entire identities. Since pis fixed, 
we can consider all decompositions of M and N such that p = M * N holds. This 
gives an additional degree of freedom in the derivations. 

Consider two homogeneous distributions 'DO and 'Dl. Similar results hold for the 
Cartesian distribution 'DO x 'Dl as for composition, for instance, 

Mi(80) * Mi(81) :S I060 x51 .(s, t)i :S Ma(80) * Ma(81) , 

with Mi and Ma as defined in the previous section. 

Cartesian distributions are easier to handle in program derivations than composite 
distributions. Their usage is discussed in Chapter 4. ln the following example we 
give some frequently-used Cartesian distributions. 

Example 2.17 (Cartesian distributions) Let p = M * N and consider the fol­
lowing Cartesian distributions: 

linear2 

row 
col 
wrap2 

wrairrow 
wraircol 

= (81inear m M) X (olinear n N) with M = N 
' ' ' ' . = linear2 with N = 1. 

= linear2 with M = 1. 
= (8wrap,m,M) X (8wrap,n,N) with J'vf = 1\T. 
= wrap2 with N = 1. 
= wrap2 with M = 1. 

These six distributions are visualised in Figure 2.0. The wrap2 is introduced in [75] 
as the grid distribution. The linear2 with M = N is called block distribution. 

0 

2.4 Counting communications 

Another aspect of distributions is their impact on the number of communications. 
During a computation processes need values which a.re not available locally, i.e., values 
which have been assigned to different processes, and hence have to be communicated. 
The distribution determines the total number of communications. Minimisation of 
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Figure 2.0: Six distributions: linear2 = bloc/..:, row, col (top), wrap2 grid, 
wrap-row and wrap-col (bottom). The grey-shading of a matrix element denotes 
the process to which the element has been assigned (11 = 4, rn n = 8). 

this number may lead to a low communication overhead. It is also important that 
the communications are spread evenly across the processes in such a way that many 
communications take place in pa.railel. The latter can only be achieved if the commu­
nication network offers enough freedom to implement the communication processes 
efficiently. 

Given a program's postcondition and a distributioH we can count the total number 
of communications. The program's postcondition is split in p local postconditions 
according to the distribution used. With every loca.I postcondition a process is as­
sociated that will establish it. If it is assumed that every datum is assigned to one 
unique process then the total number of postconditions that refer to a particular 
datum is a measure of the number of communicatio1rn of that datum. However, it 
may happen that a subexpression containing several data occurs in different post­
conditions. One process can compute such a. subexpression and store the result in a 
variable, which is communicated to the other proce::;ses. In this way, communication 
is reduced. In order to have a. meaningful interpretation of the counting technique 
we present here, we exclude the previously mentioned case. 

We introduce for every datum e the quantity Nocc. e, 

Nocc.e = the number of local postconditions in which e occurs . 

Since every e is assigned to a process it needs only to be communicated to Nace. e 
other processes. By summing over all ewe obtain the total number of communications 
1Vcom, 

Ncom = (2:: e :: Nocc.e - 1 ) . 



The value of Ncom is only determined by the way the program's postcondition is 
split up and the distribution used. The communication complexity Tc.p.n is bounded 
from below by ( Ncom + p 1) / p if a process can perform only one communication 
action at each moment. 

This technique of counting communications allows us to compare distributions on 
the basis of their communication overhead. It is not always possible to count Ncom 
from a postcondition due to common subexpressions. For example, in computing all 
partial sums of a given array there are several subexpressions, namely, the partial 
sum of the first i elements is part of the partial sum of the first j, for 0 :S i < j. The 
applicability of the technique clearly depends on the problem at hand. Nevertheless, 
the results that can be obtained are independent of any communication network. To 
illustrate this technique we give an example. 

Example 2.18 Given two matrices a and b, of dimensions m x o, and o x n, 
respectively. The problem is to compute matrix c, m x n, satisfying postcondition R, 

R : c ab. 

We use a Cartesian distribution DO x Dl for the matrix c, and introduce p M * N 
processes; each process is identified by an ordered pair ( s, t), 0 :S s < M, 0 :S: t < N. 
The local postcondition R.s.t of process (s, t) becomes: 

R.s.t: ('r:/i,j 0 :S: i < m /\ 0 :S j < n /\ bO.i s /\ fil.j t 

c(i,j) = (L: k: 0 :S: k < o: a(i, k) * b(k,j) )) . 

Note that 
('r:/ s, t: 0 :S: s < M /\ 0 :St< N: R.s.t):::} R. 

In order to count the number of communications, we introduce quantities Nocc.a(i, k) 
and Nocc.b(k,j). 

Nocc.a(i, k) 
= 

I {s,t: 0 :S s < M /\ 0 :5 t < N /\ fiO.i = s /\ j :: 51.j = t): (s,t)} I . 

Additionally, we require surjectivity of bl. 

Hence, 

Nocc.a(i, k) 
= { definition Nocc, bl surjective } 

I {s, t: 0 :S s < M /\ 0 :S: t < N /\ bO.i = s /\true: (s, t)} I 
{ calculus } 

N*l{s:O:Ss<M/\fiO.i s:s}I 
{ bO is a function } 

N. 



And in a similar way we obtain: 

Nocc.b(k,j) = 1Vf . 

if 80 is surjective. 

Summing over all a(i, k) and b(k,j) gives the total number of communications Ncom: 

Ncom 
{ definition Ncom } 

(I: i, k: 0 Si< mt\ 0 S k < o: Nocc.a(i, k) l )+ 
(2: k,j: 0 S k < o t\ 0 S j < n: Nocc.b(k,j) - l ) 

{ calculus} 
o*(m*(N-l)+n*(M-1)). 

Hence, the total number of communications Ncom for a matrix multiplication is: 

Ncom = o * ( m * ( N - 1) + n * ( M - 1)) , 

using any surjective Cartesian distribution VO x Vl of the m x n matrix c. 

A number of observations can be made. For M N = p = l, Ncom = 0 and 
no communications are necessary. Furthermore, Ncom is independent of particular 
choices for 80 and 81. Since for any problem m, n, o and pare fixed we can determine 
Mand N, p M * N, such that Ncom is minima.l. Tliere are at lea.st two such pairs 
namely (1,p) and (p, 1). Clearly all possible values (M, 1V) a.re integer points on the 
hyperbola p = M * N, 1 S. M, N S. p, and the values of Ncom for fixed m, n, and 
o, lie on the line with a slope dependent on ~· Hence. the minima.I value for Ncom 
depends on the ratio '; and in particular for m = n, Ncom has a minimal value if p 
is a square. The latter has also been observed in [21]. 0 

2.5 Final remarks 

In this chapter, we discussed static distributions of arrays and matrices. New complex 
distributions can be obtained by composition and Cartesian product. The proper­
ties of these newly-formed distributions often ailow more freedom in exploiting the 
properties of their constituents. For example, Cartesian distributions have the prop­
erty to consider rows and columns as entire units distributed across .M ensembles 
of N processes, respectively. Additionally, M and N may vary under the constraint 
p M * N. On the other hand, composite distributions usua.lly trade off its con­
stituent properties, as is the case in the wrap o linear distribution (Example 2.12). 

Quantities like the sizes of the set elements assigned to a process allow for a com­
parison of the load-balancing properties of distributions. These counting techniques 
are very powerful in complexity analysis of parallel programs. A demonstration of 
these techniques has been given in Example 2.11, where it has been shown that the 



wrap distribution is to be preferred over any other distribution for a class of par­
allel programs. The load-balancing properties of Cartesian distributions are easily 
derived from their constituents. In this context, Cartesian distributions are easier to 
deal with than composite distributions. Important measures of load balance are the 
maximum and minimal number of elements assigned to a process, and the difference 
between these two numbers (w-balancedness). 

Distributions also have a certain impact on the total number of communications. 
Counting communications (another counting technique), enables evaluation of dif­
ferent distributions. The results obtained are independent of any communication 
network, and applying this technique usually results in a lower bound on the commu­
nication complexity. As discussed in Section 2A some requirements have to be met. 
Counting the total number of communications in a parallel program gives insight 
but it is not the only aspect. For instance, the of communications across the 
processes also has to be taken into account. 

Another aspect which has not been addressed is the problem of distributed data rep­
resentation. Since data is distributed across processes, each process has to represent 
its local parts in a data structure. An efficient representation depends, of course, on 
the operations to be performed. For the local parts of arrays and matrices simple pa­
rameterised data structures can be obtained in the form of local arrays and matrices. 
In general, attention to representations should be given only at the implementation 
level. 

The role of distributions is an important one in parallel programming. Although our 
primary concern is to obtain a correctly behaving parameterised parallel program, 
we cannot ignore possible choices for the distribution of data. In practice, we often 
obtain hints about candidate distributions in a parallel program derivation. Examples 
of program derivations are given in the next two chapters. 





Chapter 3 

Parallel Segment Computations 

A large example of the use of parameterised invariants is given. The target is to 
obtain a parallel program for a class of segment problems. Suitable distributions for 
the program are found during the derivations. 

3.0 Introduction 

We quote from [45]: 

Segment problems were originally invented at tin Eindhoven University to 
serve as exercises and exams in programming courses. 

A segment problem usually refers to a computation of a function defined on consec­
utive parts of an array. Well-known segment problems are the longest plateau and 
the maximal segment sum [33, 34]. 

In this chapter, a class of segment problems is considered that can be efficiently solved 
in parallel. One could argue that segment problems are artificial, and that there is 
little practical value in solving these problems in parallel. The derivation of parallel 
segment problems, however, demonstrates nicely the kind of difficulties encountered 
in parallel program design. Rather than just solving one or two segment problems, 
we outline a general parallel program scheme for the problem class. 

An essential step in the design is the explicit formulation of divide-and-conquer rules 
that express the relation between the computation on segment [a, c) and the compu­
tation on segments [a, b) and [b, c), where b is any interior point. It turns out that 
the application of the rules to the segments and the parnllel program scheme itself 
are conveniently expressed by the same operator 

The resulting parallel program scheme consists of a computation and a communi­
cation phase. This distinction yields a simple specification of the communication 
requirements, thus allowing alternative designs for the communication processes to 
be discussed. 
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The remainder of this chapter is organised as follows. In Section 3.1, the functional 
specification of a class of segment problems is given and a running example is in­
troduced. Section 3.2 discusses a divide-and-conquer technique that is applicable to 
this class. In Section 3.3, a general parallel program scheme based on the divide­
and-conquer rules is given. The complexity of the resulting programs is discussed 
in Section 3.4, with special attention to the communication processes. Section 3.5 
shows how a related problem can be solved with a similar time complexity. Some 
final remarks are given in Section 3.6. 

3.1 The functional specification 

The class of segment problems of interest is specified by: 

Where 

I[ p,n: int; 
f(i: 0:::; i < n): array of int; 

{O<p'.Sn} 
par q : 0 :::; q < p : 

rap 

II· 

I[ m: int; 
S.q 
{R.q: q-:f-p-lVm=M.O.n} 

II 

M.a.b = (0 i,j: a:::; i:::; j:::; b: F.i.j). 

@ is a binary, associative, commutative and idempotent operator on a set and F is 
a function of the segments of f to that set. Segments of f are denoted by [i,j), 
where 0 :::; i :::; j :::; n; F.i.j denotes F applied to [i,j); F.i.i refers to the empty 
segment. Due to the commutativity and associativity of @, any term may be split 
off from the quantification. The additional restriction that 0 is idempotent is made 
only for the sake of simplicity: in the following similar formulas can be obtained for 
a non-idempotent operator. 

The parameterised process to be designed is S.q, and the parallel program consists of p 
processes instances obtained from S. All possible choices for the number of processes 
p between 1 and n are allowed. It has been left unspecified which distribution of the 
array f to choose, but it is the intention to obtain an efficient parallel program by 
ensuring a good load balance and low communication overhead. 

In the functional specification, it is stated that process p - 1 should provide the final 
answer, i.e., the value of M.0.n. This is not an essential restriction, as it is always 
possible to communicate the final answer to other processes. 
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Throughout this chapter the computation of the maximal segment sum is used as an 
example ([34] discusses the variant minimum-sum section). 

Example 3.0 Casting the maximal segment sum problem into our notation 
® = max, and for F.i.j and M.a.b: 

D 

F.i.j 

M.a.b 

(L: h: is:; h < j : f(h)) 

(max i,j: a Si:::; j::; b: F.i.j) . 

3.2 Divide-and-conquer rules 

From the functional specification we obtain in three steps a set of divide-and-conquer 
rules that form the base of a parallel program scheme. First we consider the expression 
Af.a.c for a S c. It turns out that Af.a.c can be expressed in M.a.b, M.b.c, with ban 
interior point, and a continuation part specified later. The second step is to obtain a 
divide-and-conquer rule for this continuation part, which will he feasible if additional 
requirements are met. The third step is the formulation of an operator 0 on four­
tuples, which expresses all the computations of conc<~rn. The latter formulation is 
used in the next section to define a parallel program scheme. 

From the definition of 1~1.a.c, for 0 S a S b S c S n, we derive the following rule: 

M.a.c 
{ definition Af } 

(® i,j: as is j Sc: F.i.j) 
{ rewrite the range } 

( ® i, j : a S i ::; j $ b V b 5:. i S j 5:. c Va S i S b 5:. j $ c : F.i.j) 
{ range splitting, ® is idempotent, definition NI } 

Af.a.b® (0 i,j: a$ i $ b S j Sc: F.i.j) M.b.c. 

Now, the computation of .M.a.c referring to [a, c) is expressed in terms of 
computations for the segments [a, b) and [b, c), with b an interior point satisfying 
a S b $ c, and a so-called continuation part: a computation on segments which 
crosses boundary b. Note that the expressions for M.a.b and M.b.c are local, in 
the sense that they only refer to [a,b) and [b,c), respectively. For the continuation 
part, the expression is still global, but it will appear feasible to divide it into local 
subexpressions if some requirements are satisfied. 

Requirements. 

(0) F is decomposable, i.e., there is a binary associative operator EB such that 

(V i,j, k: 0 $ i $ k S j $ n: F.i.j = F.i.k EB F.k.j). 



(1) The following two distributivity laws hold: 

for all x, y, z. 

(zEBx)®(zEBy) 

(xEBz)®(yEBz) 

From the first requirement it is deduced that 

zEB(x®y) 

(x®y)EBz, 

F.i.i =unit( EB) for all i: 0 S: i $ n. 

Each distributivity law can be obtained from the other if operator EB is commutative. 

Requirement (0) can be weakened by demanding a decomposability of the form 
F.i.j = HO.i.k EB Hl.k.j instead. 

Generally, it is necessary to have some form of decomposability together with dis­
tributivity laws in order to rewrite the expression for the continuation part into local 
subexpressions. The precise conditions that allow such a rewriting, and classifications 
of decomposability, is a subject on its own; it is not discussed here. Our interest is a 
derivation of a parallel segment problem, and for convenience, we consider a model 
problem based on only one form of decomposability. 

For the continuation part the following divide-and-conquer rule is obtained: 

i, j : a S: i S: b s; j S: c : F.i.j) 
{ see requirement (0): F decomposable } 

(® i,j: a S: i S: b S: j S: c: F.i.bEB F.b.j) 
= { calculus } 

i: a S: i $ b: (® j: b $ j S: c: F.i.bEB F.b.j)) 
{see requirement (1): distributivity, calculus} 

(® i: a S: i S: b: F.i.b) EB(® j: b S: j :$ c: F.b.j) 
{ definition Tl and Hd } 

Tl.a.bEB Hd.b.c, 

where 

Tl.a.b 

Hd.a.b 

(® i: a:$ i :$ b: F.i.b) 

( ® i : a :$ i ::; b: F.a.i) . 

Af.a.c can thus be computed from the local expressions M .. a.b, 1\4.b.c, Tl.a.b and 
Hd.b.c, if the requirements above are met. Divide-and-conquer rules for Tl.a.c and 
Hd.a.c can also be obtained: 

Tl.a.c 
{ definition Tl } 

(® i: a S: i Sc: F.i.c) 
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{ rewrite the range } 
(0 i: a::::; i::::; bV b::::; i::::; c: F.i.c) 

{ range splitting, 0 is idempotent, definition Tl } 
(0 i: a::::; i :S: b: F.i.c) 0 Tl.b.c 

{ requirement (0), F decomposable } 
(0 i: a::::; i::::; b: F.i.b EB F.b.c) 0 Tl.b.c 

{ requirement (1 ), distributivity, definition Tl } 
(Tl.a.bEB F.b.c) 0 Tl.b.c. 

A rule for Hd.a.c is obtained in the same way. 

Summarising: 

M.a.c 

Tl.a.c 

Hd.a.c 

F.a.c 

F.a.a 

M.a.b0 (Tl.a.bEB Hd.b.c) 0 M.b.c 

(Tl.a.bEB F.b.c) 0 Tl.b.c 

Hd.a.b0 (F.a.bEB Hd.b.c) 

F.a.b EB F.b.c 

unit(EB) . 

For all a, b, c : 0 ::::; a ::::; b ::::; c ::::; n. 

An alternative formulation is as follows. Define V.a.b by: 

V.a.b = (M.a.b, Tl.a.b, Hd.a.b, F.a.b) , 

then the divide-and-conquer rules can be restated as: 

V.a.c = V.a.b 8 V.b.c , 

where operator 8 is defined by: 

(sO, tO, uO, vO) 8 (sl, tl, ul, vl) 

(sO 0 (tO EB ul) 0 sl, (tO EB vl) 0 tl, uO 0 (vO EB ul), vO EB vl) . 
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In this definition, M.O.n can be obtained by taking the first component of four-tuple 
V.O.n. 

In the next section, it will become clear that operator 1:;) allows for a simple for­
mulation of the parallel program scheme. We end this section by returning to the 
example. 

Example 3.1 In order to apply the divide-and-conquer rules to the maximal seg­
ment sum problem we only need to check if the requirements are met. Indeed, oper­
ator 0 =max is associative, commutative and idempotent, the function F.i.j: 

F.i.j =(I: h: i::::; h < j: f(h)) 

is decomposable, because F.i.j = F.i.k + F.k.j, for i ::::; k ::::; j, and hence we can use 
for EB = +. Furthermore, + distributes over max: 

(x max y) + z = (x + z) max (y + z), for integer x,y,z. 

D 



3.3 The parallel program scheme 

The divide-and-conquer rules suggest splitting array f into p segments and distribut­
ing these segments across p processes. Such a distribution can be modelled by a 
function f satisfying£ : [O,p + 1) --> [O, n + 1 ), t'.O = 0, f.p n, and f increasing. For 
convenience, we choose to assign segment [t'.q, f.(q+ 1)) off to process q. This is not 
a severe restriction, since it is always possible to renumber the process identifications. 

In the previous section, it is shown that V.O.n can be expressed using 8; this gives 
the following quantification: 

V.O.n = (8 q: 0'.Sq<p:V.t.q.€.(q+1)). 

Process q can compute V.f.q .f.( q+ 1) without interactiou with olher processes, because 
only values local to process q are involved. There are many orderings in which the 
operator 8 can be applied to obtain V.O.n (and hence 111.0.n). For convenience, 
we choose to evaluate V.O.n in order of increa.sing process number. An outline of 
parameterised process S.q is given in Figure 3.0. 

S.q :: 
I[ x, xs: (int,int,int,int ); 

JI 

SO.q 
{x = V.l.q.l.(q+ l)} 
; Sl.q 
{xs = V.O.t'.q} 
; 52.q 
{q f- p 1 V rn M.O.n} 

Figure 3.0: Program text for S.q 

We briefly sketch each process in turn. 

SO.q is just a sequential process; its invariant PO.q is: 

PO.q : x = V.t'.q.k /\ t'.q '.S k :S t.(q + 1). 

The resulting program for SO.q is a loop, and application of the divide-and-conquer 
rules with a = l.q, b k, and c = k + 1 gives: 

V.a.(k + 1) = V.a.k V.k.(k + 1), 

for all a,k,q, with a f.q,£.q :S k < f.(q + l). 

An explicit formulation for V.a.(k + 1) (without can be obtained by using the 
distributivity laws and the properties: 

Il'1.k.(k + 1) Tl.k.(k + 1) = Hd.k.(k + 1) = F.k.(k + 1) e, 

where e =unit( EB). For example, 



COMPLEXITY 

M.a.(k + 1) 
{ definition } 

M.a.k 0 (Tl.a.k EB Hd.k.(k + 1)) 0 M.k.(k + 1) 
= {definition Hd.k.(k + 1), M.k.(k + 1), e =unit( EB) } 

M.a.k 0 (Tl.a.k EB (F.k.(k + 1) 0 e)) 0 (e EB (F.k.(k + 1) 0 e)) 
= { distributivity laws } 

M.a.k 0 ((Tl.a.k 0 e) EB (F.k.(k + 1) 0 e)) 
{ distributivity laws } 

M.a.k 0 (Tl.a.k EB F.k.(k + 1)) 0 e. 

In a similar way, the following formula for Tl.a.(k + 1) is obtained. 

Tl.a.(k + 1) = (Tl.a.k EB F.k.(k + 1)) 0 e. 

Combining the last two results gives: 

M.a.(k + 1) = M.a.k 0 Tl.a.(k+ 1). 
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Establishing the postcondition of Sl .q is only possible via communication; hence, 
assumptions have to be made about the communication network. One way is by 
using a chain network. In a chain, each process q, 0 < q, receives from process 
q - 1 the value of V.0.£.q and computes V.0.£.( q + 1) from the received value and 
V.£.q.£.(q + 1). 

The program for S2.q is a simple one: process p - 1 computes M.O.n by taking the 
first component of four-tuple V.0.£.p = xs 8 x, the other processes perform skip. 

In an actual implementation, operator 8 on four-tuples has to be worked out. Of 
course, this can be done by introducing four additional variables. 

Example 3.2 For the maximal segment sum problem we obtain the following pro­
gram based on a chain communication network (cf. Figure 3.1 ). The rules have been 
further simplified by using f(k) = F.k.(k + 1). 

As can be seen from the program, the values of Hd.O.e.q and F.o.e.q are not computed, 
since they are not necessary for the computation of 111.a.c with a = 0, c = £.p = n in 
process q = p - 1 (the boundary is b = £.q). This is caused by the fact that we have 
chosen a specific order, namely in order of increasing process number, to evaluate 
V.O.n (and hence M.O.n). The resulting program is slightly optimised by combining 
the guards of SI .q and S2.q in one program. 

Note that for p = 1 a sequential program is obtained, which resembles very much 
the sequential solution for the maximal segment sum problem. It differs only in the 
extra computations of c = Hd.£.q.£.(q + 1) and d = F.C.q.e.(q + 1). D 

3.4 Complexity 

The time complexity of the general parallel program is found by adding the time 
complexities of the parts SO.q, Sl.q, and S2.q (cf. Figure 3.0). We assume that all 



S.q :: 
I[ k, a, b, c, d, as, bs: int; 

k, a, b, c, d := e.q, 0, 0, 0, 0 
{PO.q: (a, b,c, d) = V.e.q.k /\ e.q :S k S l.(q + l)} 
;do k:fl.(q+I) 

od 

-+ {PO.q /\ k < e.(q + l)} 
b := (b + f(k)) max 0 

; a:= a max b 
; c := c max (d + (f(k) max 0)) 
; d d + f(k) 
; k k + 1 
{PO.q} 

{(a,b,c,d) = (V.l.q.l.(q+ 1)} 
; if q = 0 -+ as, bs := 0, 0 

II q > 0-+ (q l)?as,bs 
fi 

{(as, bs) (M.0.l.q, Tl.O.l.q)} 
; if q p - 1 -+ m :=as max (bs + c} max a 

~ q<p-1-+ 

fi 

as :=as max (bs + c) max a 
; bs ( bs + d) max b 
{(as,bs) = (M.0.£.(q + 1), Tl.O.t.(q + l))} 
; (q+ I)!as,bs 

Figure 3.1: Program text for the maximal segment sum problem using a chain com­
munication network 

processes synchronise on each semicolon separating the pa.rts, and that it takes 0(1) 
time to evaluate F.k.(k+ 1) for any k. 

Each process instance SO.q performs a loop with f.(q + 1) - f.q steps, and ev­
ery step takes 0(1) time. Hence, the time complexity of process instance SO.q is 
O(l.(q + 1) l.q). 

Parameterised process SO depends on the data distribution specified by l. A good 
load balance is ensured if each process instance SO.q has the same amount of work 
to do. This suggests taking the linear distribution function for l (see Chapter 2): 

e =(.A q. q * (n/p) + q min (n\p)) . 

This yields O(~) for the time complexity Tr.p.n of 80.q a.nd 0(1) for the load imbal­
ance. 

The communication complexity Tc.p.n of communica.tion process Sl.q for a chain 
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is O(p). Each process (except process 0) receives four values from its predecessor, 
performs some operations, and sends four values to its successor (except process p-1 ). 

The time complexity of S2.q is 0(1). 

The resulting time complexity T.p.n of the parallel program scheme assuming a chain 
communication network and a linear distribution is: 

T.p.n Tr.p.n +a* Tc.p.n o(;) + O(p) . 

Note that the first term is dominant if p 5 fo. 

Reconsider the specification of communication process Sl.q: 

{x V.f..q.£.(q + l)} 
Sl.q 
{ Rl.q : XS = lf.0.i.q} 

This specification was introduced to compute V.O.n (and hence M.O.n) in process 
p - 1, but the specification is too strong for computing m M.O.n. We can suffice 
with a weaker postcondition Rl'.q specifying that only process p - 1 needs to have 
V.O.n. 

Rl' .q : q # p - 1 V xs = V.O.n . 

Now, Rl'.q can be established by computing a global combine (see Chapter 1, Sec­
tion 1.5). The combine consists of p terms, ea.ch term of the form V.£.q.£.(q + 1). 
The resulting communication process is easily implemented on a hypercube network 
when pis a power of two, or on a tree, and has a. time complexity of O(logp). 

The time complexity of the parallel program scheme assuming a. binary hypercube 
communication network and a linear distribution is: 

T.p.n O(;) + O(logp) . 

Note that for 1' = n the time complexity T.p.n becomes O(log p ). 

3.5 All-prefixes problem 

In previous sections, we have considered a general parallel program scheme that 
computes the value A1.0.n. Here, a generalisation is made to record in an array g 
for each i, with 0 5 i < n, the value of M.O.i (the arrays f and g use both the 
linear distribution). We refer to this related problem as the all-prefixes problem. It 
is shown that this problem can be solved with a small modification to the general 
parallel program scheme. 

The local postcondition R' .q becomes: 

R'.q : ('v' i: £.q 5 i < £.(q + 1) : g(i) = Af.O.i) . 

A divide-and-conquer rule is easily obtained; for all i. with e.q 5 i < £.(q + 1) : 



M.O.i 
= { l.q ~ i, property M} 

M.O.l.q ® (Tl.O.l.q ffi Hd.l.q.i) ® M.l.q.i . 

The all-prefixes problem can be solved if the values of M.O.l.q and Tl.O.l.q are com­
puted a priori. Fortunately, they can be obtained from V.O.l.q in process q itself! 
This leads to the following solution S'.q for the all-prefixes problem (with the same 
SO, Sl as in Figure 3.0): 

S'.q :: 
I[ x, xs: (int,int,int,int ); 

:II 

SO.q 
{x = V.l.q.l.(q + l)} 
; Sl.q 
{XS = V.O.l.q} 
; S2'.q 
{R'.q} 

Figure 3.2: Program text for S'.q 

Process S2'.q replaces 82.q. In the program text (cf. Figure 3.3), the notation x[j] is 
used to select the jlh component of four-tuple x. 

S2'.q :: 
I[ k,y: int; 

.II 

k, y := l.q, ( e, e, e, e) {y = v.e.q.k} 
; do k =f l.( q + 1) 

--+ {y = V.l.q.k} 
{y[O] = M.l.q.k /\ y[2] = Hd.l.q.k} 
{ xs[O] M.O.t.q /\ xs[l] = Tl .O.l.q} 
; g(k) xs[O] ® (xsll] ffi y[2])@ y[O] 
; y := y 8V.k.(k+1) 
; k := k + 1 

od 

Figure 3.3: Program text of S2'.q for the all-prefixes problem 

The time complexity of the parts SO.q and S2'.q is O(~). The time complexity of 
part Sl.q again depends on the network used. For a chain network the resulting time 
complexity of the all-prefixes problem is o(;) + O(p). 

Process Sl.q computes a partial combine, and is in structure similar to computing 
partial sums. It is possible to give a communication process for Sl.q (see Section 1.5), 
with a time complexity of O(logp). 
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3.6 Final remarks 

In this chapter, we have presented a parallel program scheme for a class of segment 
problems. An instance of this class is the maximal segment sum problem. Parallel 
program schemes can be derived in a similar way for segment problems defined only 
for non-empty segments, with non-idempotent operators, and with different decom­
positions of F. 

The crux of these parallel programs is that global expressions defined on a segment 
[a,c) can be rewritten in terms of local expressions defined on [a,b) and [b,c) for 
a :S b :S c and an operator 0. The local expressions can be evaluated by a single 
process if we assign consecutive segments to processes. 

The general definition in Section 3.3 of£, LO 0, £.p = n, and£ is increasing, specifies 
such a distribution. Here, we have used the general linear distribution because of its 
load balancing property. 

The divide-and-conquer rules specify how local expressions, each computed indepen­
dently by all processes, can be combined into a global expression. Some communi­
cation will be necessary to achieve this, and additional assumptions about a com­
munication network have to be made. This allows communication processes to be 
designed in several ways depending on the assumed communication network, thereby 
influencing the resulting time complexity. 

For the problem class considered here, the time complexity on a chain network is 
o(;;) + O(p) and on a binary hypercube network it is O(~) + O(logp). The re­
lated problem of all prefixes can be solved in a similar way and yields similar time 
complexities. 

The technique we outlined is not limited to the class of segment problems presented. 
For example, it is also possible to consider segments which satisfy an additional 
property. Formally, an additional predicate X in the range of M holds, and the 
definition of Af reads: 

M.a.b i,j: a :Sis j $bl\ X.i.j: F.i.j). 

Again, the computation of Af.a.c can be expressed in terms of segments [a, b) and 
[b, c), a :S b S c, and a continuation part. Further massaging of the expressions for 
the continuation part is necessary in order to obtain local subexpressions. A general 
program scheme is difficult to specify, since it depends very much on the form of 
predicate X and operator ®· 

Assume, for instance, that predicate X can be rewritten as: 

X.i.j X.i.k /\ X.k.j /\ Y.k, for integer i $ k S j and predicate Y . 

In this form, the expression for the continuation part. is given by: 

i,j: a :Si :S b ~ j Sc/\ X.i.j : F.i.j) , 



and can be computed from: 

( ® i: a ::::; i ::::; b I\ X.i.b: F.i.b) ffi ( ® j : b::::; j ::::; c I\ X.b.j : F.b.j) 

if Y.b holds. 

Clearly, if Y.b does not hold there is no continuation part contributing to the com­
putation of M.a.c. 

An example of a segment problem using predicates X and Y is the longest plateau 
problem [33]. 

In general, massaging the continuation part is a cumbersome process. A non-trivial 
problem is given in [56] where a parallel program is considered for the maximal length 
of any rightmost segment. 

We have tried to obtain parallel programs for many of these segment problems using 
the same technique with slight modifications. Sometimes, it was necessary to rewrite 
the specification in such a way that it falls in the desired problem class. For instance, 
the maximal segment product (66] does not satisfy the requirements of the problem 
class outlined here. For this problem, however, it is feasible to split the problem in 
two subproblems, each satisfying the requirements. 

The resulting parallel programs consist quite often of several computation and com­
munication phases. For the computation phase, it is relatively easy to obtain parame­
terised processes, since we can reuse the techniques from sequential programming. For 
the communication phase, simple communication networks are sufficient. Essential 
in all derivations is the formulation of parameterised invariants, and the separation 
between the computation and communication phases. 



Chapter 4 

Parallel Symmetric-System 
Solving 

Parallel algorithms for dense Cholesky factorisation and triangular system solving are 
developed here. The parallel Cholesky factorisation algorithm uses a Cartesian matrix 
distribution. For this algorithm, an analysis of the communication requirements 
and the work load is presented. It is shown that the grid distribution is a good 
candidate distribution, which is confirmed by timing-experiments on a 400 multi­
processor system. The triangular system solver is based on the grid distribution as 
well. 

4.0 Introduction 

The solution of linear systems of equa.tions is of fundamental importance in large­
scale scientific computations. The development of efficient computer algorithms for 
this type of computations has become a major research topic since the beginning 
of the age of electronic computing. Indeed, the Atanasoff-Berry computer [59, 62] 
solved a linear system of up to 30 equations. 

A special class of linear systems is that of the symmetric positive-definite systems 
(s.p.d. systems). These systems arise in many areas such as: power-network problems, 
discretisations of partial differential equations, a.nd linear programming. 

Characteristic of this class of linear equations is that the corresponding matrix is 
symmetric and positive-definite, which is equivalent to all eigenvalues of the matrix 
being positive [32]. The symmetry can be exploited to halve the computational effort 
to solve the equations. 

The standard procedure to obtain a solution of a s.p.cl. system 

Ax= b, 

where A is a given n by n s.p.d. matrix, bis the given right.-11ilnd side vector of length 
n, x is the unknown solution vector of length n, is as follows. 
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• Factorise A using Cholesky's method [76]: 

A= LL1
, 

where L is a lower triangular n by n matrix ( L 1 is the transpose of L). 

• Solve the two corresponding triangular systems: 

The factorisation is unique if the diagonal elements of L are taken to be positive. 
The Cholesky method uses numerically stable diagonal elements for pivoting; there 
is no need for a pivot search like in LU decomposition [:32]. 

In this chapter, we are interested in the (formal) development of an efficient parallel 
system solver implementing the solution procedure as outlined above. The construc­
tion of such a parallel solver will be based on parameterised invariants as discussed 
in the previous chapters. Other symmetric-system solving methods [32], for example 
iterative solvers, fall beyond the scope of this chapter and are not considered. 

The Cholesky factorisation involves ~
3 + O(n2

) elementary operations. This is, com­
pared to 2 * n 2 + 0( n) elementary operations required for the solution of the resulting 
triangular systems, the bulk of the work done. Parallelisation of only the Cholesky 
factorisation, however, can cause the triangular system solving part to become a 
bottleneck. To prevent this, parallel algorithms for both Cholesky factorisation and 
triangular system solving have been developed. 

Most parallel algorithms for symmetric-system solving a.re based on either a row or 
column distribution of the matrix L [23, 27, 52]. Here, we derive a general parallel 
program scheme for the Cholesky factorisation, which can be instantiated with, for 
example, the block, row, col, wrap-row or wrap-col distribution. This scheme is 
used to obtain a new grid-based parallel program for the Cholesky factorisation. 
The resulting program has good load-balancing properties and a low communication 
overhead. 

An outline of this chapter is as follows. The parallel program scheme for Cholesky 
factorisation uses a Cartesian distribution of the matrix L, and is obtained in Sec­
tion 4.1. The communication requirements and the load-balancing properties are 
further analysed in Subsections 4.1.l and 4.1.2. It is argued that the grid distri­
bution is a good candidate distribution for the para.Ile! Cholesky factorisation (this 
has been shown in the context of LU decomposition [.5]; see [7.5] for a derivation). 
Timing-experiments on 400 transputers are given in Subsection 4.1.3. These exper­
iments compare three different parallel Cholesky factorisation programs based on 
the grid, wrap-column and block distribution (Example 2.17), respectively. In Sec­
tion 4.2, a derivation is given of a triangular solver assuming the grid distribution 
of L. In this way, a truly parallel symmetric-system solver is obtained that uses the 
same distribution. In Section 4.3, we summarise what we have achieved. 
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4.1 Parallel Cholesky factorisation 

Given is an n by n s. p.d. matrix A. Our task is to design a parallel algorithm 
consisting of p processes, which computes a lower triangular matrix L satisfying 

From postcondition R and using the symmetry of A we find: 

(V i, j : 0 :::; j :S i < n : A(i, j) 0::: h : 0 :S h < n : L( i, h) * L(j, h)) . 

The contribution of the terms L(j, h) is 0 for h > j, because L is lower triangular. 
Splitting all terms in the summation with h j and h > j gives, after some calculus, 
a reformulated postcondition R: 

R : (V i,j: 0 :S j :::_:: i < n: L(i,j) * L(j,j) sum.i.j.j), 

where for all a, b, c, 0 :S a, b < n, 0 :::; c :::; n: 

sum.a.b.c= A(a,b) O:: h: 0:::; h < c: L(a,h) * L(b,h)). 

The value of sum.i.j.j is determined by the first j columns of L. This indicates a 
sequential solution: compute the elements of L column-wise starting with the first 
column. 

We propose to distribute L across p = 1\1 * N processes using a Cartesian distribution 
'DO x 'Dl, 'DO (60,n,M) and 'Dl = (61,n,N). Each process is identified by an 
ordered pair (s, t), 0 :::; s < M and 0 :S t < N. One can think of the processes to be 
arranged as NJ process row ensembles of N processes each. Or, alternatively, as N 
process column ensembles of M processes each (cf. Figure 4.0). The distribution 'DO 
specifies how the n rows of a matrix are assigned to Al process row ensembles; 'Dl 
specifies how then columns of a matrix are assigned to N process column ensembles. 

A Cartesian distribution may specify that a process gets a part of the zero upper 
triangle of L. For example, the block distribution assigns zero matrix elements to 
each process (s, t) with s < t. This is not a restriction, because a process that is 
assigned only elements from the zero upper triangular of L is not performing any 
useful computations and can be ignored. 

In the following, we shall omit the ranges on s and t unless stated otherwise. The 
notation local.i.j is shorthand for: 

local.i.j (i,j) E 06oxs1.(s, t) 

0 :::; i < n /\ 60.i = s /\ 0 :S j < n /\ 61.j = t . 

Predicate local.i.j holds if index pair (i,j) and a correspond1ng matrix element are 
assigned to process (s, t). A parameterised postc011dition R.s.t is: 

R.8.t : (V i,j: local.i.j /\ i;::: j: L(i,j) * L(j,j) = 8urn.i.j.j). 
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(0, 0) (0, 1) (0, 2) 

• • • 
(1, 0) (1, 1) ( 1, 2) 

• • • 
(2, 0) (2, 1) (2, 2) 

• • • 
Figure 4.0: A Cartesian distribution of a 6 by 6 lower triangular matrix L across 9 
processes is depicted. The fifth row of the matrix L is distributed across the second 
process row (1, t), 0 ::::; t < 3. The grey-scales denote the assignments of matrix 
elements to processes: L(4,0) is assigned to process (1,0); £(4,1) to process (1,1); 
£(4,2) to process (1,2), and so forth. 

This parameterised postcondition is the starting point for the derivation of a par­
allel Cholesky factorisation program scheme, which is given in the next subsection. 
The communication behaviour and load-balancing properties of the resulting parallel 
program scheme are discussed in the second and third subsection. 

4.1.0 A derivation 

We present a formal derivation of a parallel program scheme for the Cholesky factori­
sation. It turns out that it is possible to specify communication processes separately, 
and to parameterise the resulting programs in the Cartesian distribution DO x 'Dl. 
The derivation itself is rather smooth: after having formulated the parameterised 
invariants, it is relatively easy to obtain the program text for the processes. 

The local postcondition R.s.t is used to formulate a parameterised invariant P.s.t. 
A local variable k is introduced in every process, and it is assumed that all processes 
have the same value of k. Inspired by a. sequential solution (column-wise computation 
order) we propose: 

P.s.t 

PO.s.t 

Pl.s.t 

PO.s.t /\ Pl.s.t 

0::::; k::::; n 

(V i,j: local.i.j /\ j < k /\ i :::0: j: L(i,j) * L(j,j) = sum.i.j.j). 

Setting k to 0 establishes invariant P.s.t; the resulting program contains a loop with 
k =f. n as guard. Invariant Pl expresses that the first k columns of L have been 
computed. 
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Progress is made by incrementing k; its effect on Pl is: 

Pl.s.t (k := k + 1) 
{ definition Pl, substitution } 

(V i,j: local.i.j A j < k + 1 Ai~ j: L(i,j) * L(j,j) = sum.i.j.j) 
{ range splitting j k, definition local.i.j, definition Pl } 

Pl.s.t A ( 61.k =f. t V 
(Vi : k :$ i < n A 60.i = s: L(i, k) * L(k, k) sum.i.k.k)). 

From this little calculation we conclude that invariant Pl needs only to be restored 
by the ]t,.f processes (s,61.k). The values of L(k,k) and sum.i.k.k, k :$ i < n, 
have to be computed before L(i, k), k < i < n, can be computed. The value of 
L(k, k) is only available in process (60.k,61.k); therefore, some communications are 
needed. The values of sum.i.k.k are recorded by variables in order to avoid excessive 
communications of elements of L. This is not sufficient, because in step k + 1 the 
values of sum.i.(k + l).(k + 1) are needed as well. Hence, an n by n matrix Xis 
introduced, which stores in X(i,j) partial sum smn.i.j.k. This is expressed by P2: 

P.s.l 

P2.s.t 

PO.s.t A Pl .s.t A P2.s.t 

(V i,j: local.i.j A k :$ j Ai~ j: X(i,j) = sum.i.j.k). 

P2 is initialised by setting k to zero and X to A (only for the lower triangular pant). 
Consequently, A has the same distribution as L. 

The parallel program is the parallel composition of p = M * N instances of parame­
terised process S, which is outlined in Figure 4.1. 

S.s.t :: 
I[ X(i,j: 0 :$ i,j < n): array of real; I.·: int; 

k := 0 
; for all i,j: local.i.j Ai~ j: X(i,j) := A(i,j) Ila rof 
{P.s.t} 
; do k =f. n -; 

Restore? 1. s. t 
; RestoreP2.s.t 

Figure 4.1: Outline of each parameterised process S 

This leaves us with the obligation to design RestorePl and RestoreP2. We start with 
the former (cf. Figure 4. 2). If P2 holds all processes ( s, 61. k) can compute an L( i, k) 
from the values L(k,k) and X(i,k) = surn.i.k.k. The value of L(k,k) is computed 
by process (60.k,61.k) from X(k, k), and is communicated by the processes CO.s. 
Communication process CO.s delivers to all processes 61.k) a copy of L(k, k). 



RestorePl.s.t :: 
I[ h: real; 

if 80.k s /\ 81.k = t 
-t {X(k,k) = sum.k.k.k} 

L(k, k) := jX(k, k:) 
{L(k,k) 2 = sum.k.k.k} 
; h L(k,k) 
{h = L(k, k)} 
; CO.s 

IJ 80.k # s /\ 81.k = t -t CO.s {h = L(t.,, k)} 
fi 

; if 81.k = t 

JI 

Consider P2.s.t (k 

P2.s.t (k := k + 1) 

-t {h = L(k, k)} 

fi 

for all i : k + 1 :S i < n /\ 80.i = s : 
{X(i,k) = sum.i.k.k} 
L(i,k) X(i,k)/h 
{L(i, k) * L(k, k) = swn.i.k.k} 

Ila rof 

Figure 4.2: Program text for RestoreP I 

k + 1): 

{ definition P2, substitution } 
(V i,j: local.i.j /\ k + 1 $ j /\ i 2: j: X(i,j) sum.i.j.(k + 1)) 

{ definition sum, calculus } 
(V i,j: local.i.j /\ k + 1:::;; j /\ i 2: j: .Y(i,j) smn.i.j.k ~ L(i, k) * L(j, k)) . 

This calculation reveals that X(i,j) needs the values of L(i, A') and L(j, k) for appro­
priate i and j. Hence, the restoration procedure for P-2 is a simple one: communicate 
the necessary values of L to each process (s, t) and update X (cf. Figure 4.3). The 
communication of the appropriate values of L(i, k) a.ud L(j, k) is done by two commu­
nication processes Cl.s.t and C2.s.t, which use two arrays c and d to store received 
values. 

If the statement lists of the processes are combined several optimisations are feasible, 
such as integration of guards and removal of matrix X. The latter can be replaced by 
L, since partial sums are only maintained for matrix element1:1 X(i,j), k $ j :Si< n. 
Besides the implementations of parameterised comrnuuication processes CO, CI, and 
C2, we have obtained the complete structure of the parallel program. 

The resulting program. is a dense parallel submatrix-Cholesky (an overview is given 
in [37]). Submatrix-Cholesky uses two basic operations: cdiv and cmod. The cdiv.k 
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RestoreP2.s.t :: 
I[ c, d(i: 0::; i < n): array of real; 

if 81.k = t 
~for all i: k+l::; i < nA80.i= s :c(i) :=L(i,k) Ila rof 
fi 

{ 81.k # t V (\ii: k + 1 ::; i < n A 80.i = s: c(i) = L(i, k))} 
; Cl.s.t 
{(\ii: k+ 1::; i < nA80.i = s: c(i) = L(i,k))} 
; C2.s.t 
{(\i j: k+l $.j < nA81.j =t :d(j) = L(j,k))} 
; for all i,j : local.i.j A k + 1 $_ j Ai 2: j : 

X(i,j) := X(i,j) - c(i) * d(j) 

Figure 4.3: Program text for RestoreP2 
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operation scales the kth column of L by an appmpriate factor. The cmod.j.k opera­
tion modifies column j of L by adding a suitable multiple of column k to it (a saxp:y ). 
In the submatrix-Cholesky, each newly computed column A1 of L is used to modify 1all 
columns j, with k < j. The parallel versions of cdiv.k and all cmod.j.k, with k <d, 
correspond precisely with the parameterised processes RestorePl and RestoreP2. 

4.1.1 The communication processes 

Three communication processes have been specified in the derivation. Here, each 
process is discussed in turn. Step k is fixed. 

The specification of process CO.s.t reads: 

{ 80.k # s v 81.k f::t v h L( k, k)} 
CO.s.t 
{81.k#tVh L(k,k)} 

A broadcast is specified of value L( k, k) from process (SO.A~, 81.k) to the M 1 pro­
cesses (s,81.k), 0::; s <MA s # 80.k. For M = 1, no such broadcast process is 
needed. Broadcasts can be easily implemented on many networks (see Section 1.3), 
but are expensive and should be avoided whenever possible. 

The specification of communication process Cl.s.t reads: 



It is specified that each process should obtain certain matrix elements from column k 
of L, which is distributed across M processes ( s, 81.k ). More specifically, each process 
( s, t) needs exactly the values of array c that are available in process ( s, 81.k ). This 
results in a communication process consisting of Af independent broadcasts of array 
parts, each broadcast to an ensemble of N 1 processes. 

The specification of C2.s.t reads: 

{(Vi: k + 1 $ i < n /\ 80.i = s: c(i) = L(i, k))} 
C2.s.t 
{(V j: k+ 1 $ j < n /\81.j t: d(j) = L(j,k))} 

Again, a communication process is needed using broadcasts. Process (s, t) needs ma­
trix elements of column k of L specified by 81 and k. Unfortunately, the distribution of 
column k is specified by 80 and k. This means that a redistribution should take place. 
In the worst case the time complexity of a redistribution in step k is O(n - k l), 
for example, when M = 1 (a column distribution) or N = 1 (a row distribution). 
The overall worst-case time complexity is then O(n2

). This is undesirable since it 
equals the time complexity of a sequential triangular system solver. 

A redistribution can be avoided if 80 = 81 and M N. In this case, communication 
process C2 can be implemented efficiently by M independent broadcasts: each process 
(t, t) broadcasts its local part of array c to the column processes (s, t), s -:ft. (This 
is also the maximal parallelism we can expect, because column k of L is distributed 
across Af processes.) 

In conclusion, a candidate distribution should satisfy 80 = 81 and M N, otherwise 
a redistribution is necessary. 

4.1.2 Candidate distributions 

In this subsection, an analysis is given of the work load distribution of a process 
in step k. This gives an accurate expression, which is parameterised in the process 
number, step k, and the Cartesian distribution 'DO x 'Dl. This expression is estimated 
for the particular choice 'DO 'Dl, and it is argued that the grid distribution is a 
good candidate. We now present the analysis. 

The parallel program consists of n steps with in each step some computations and 
communications. In step k, 0 $ k < n, the bulk of the computations are done by 
all processes in the update part of RestoreP2; some extra computations are done by 
processes (s, 81.k) in RestorePl. It is assumed that all elementary operations, like 
subtraction, and multiplication (square roots are not counted), take the same amount 
of time. The computational load in step k of process (s, t), W.s.t.k, is obtained by 
counting the number of elementary operations. 

W.s.t.k = 2 *(I: j: j E 0 51 .t n H.(k + 1): I 0 60 .s n H.j I) 
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{ 
I O'°.s n H.(k + 1) I if Sl.k t 

+ 0 otherwise 

H.a denotes the set {i: a .:Si< n: i}, for 0 ::; a ::; n. 

Explanation: The first term counts the number of subtractions and multiplications 
in the update part of RestoreP2 (Figure 4.3). The second term is the number of 
divisions in RestorePI (Figure 4.2) and counts only if Sl.k t. 

Ideally, the computational load W.s.t.k should be same for every process, because 
idle time is then 0 for every process. Good choices for VO and Vl minimise the idle 
time as much as possible. Therefore, we consider the maximum number of operations 
to be performed by any process in a step. This is not a strong restriction, since in 
every step communication and synchronisation take place regardless of the chosen 
distribution. 

From W.s.t.k we can determine the computation complexity Tr.p.n (p M * N): 

Tr.p.n = (2::; k: 0 :<;; k < n: (max .s, t :: vVs.U~)). 

It is possible to evaluate the expression above for pa.rticular distributions, but a closed 
formula for arbitrary distributions is unlikely to be obtained. In the following, we 
analyse expression W.s.t.k for VO Vl. Previously, we showed that in this case 
redistribution is avoided. It is assumed that n ;;;}:> p, and every process (s, t) has still 
a part of the matrix to be factorised. This assumption is not vali<l at the end qf the 
factorisation process. 

One can obtain the next result: 

W.s.t.k + W.t.s.k 

2* I 0 80 .sn H.(k + 1) I* I 0 81 .tn H.(k + 1) I' for all VO= VI 

The proof is tedious and can be obtained by changing the summation order in the 
definition of W. The ~ in the formula means that equality holds for processes 
(s, t) with s # t, s =f. SO.k, and t =f. fil.k, otherwise it. is a lower bound. The 
0(1080 .s n H.(k + 1) I) and 0(1081 .t n H.(k + 1) IJ t.enns are neglected, because 
n~ p. 

Using this result, we derive: for all s, t, k, VO Vl, implying p = 114 2
: 

2 * (max s, t :: W..s.t.k) 
> { calculus } 

W.s.t.k + W.t.s.k 
~ { see above } 

2* I 0 80 .s n H.(k + 1) I* I 0°t.t n H.(k + 1) I 

Hence, 



(max s, t :: W.s.t.k) 
> 

(max s, t :: I 0 50 .s n H.(k + 1) I* I 0 81 .t n H.(k +I) I) . 

The last expression can be further reduced: 

(max s, t :: I 0 50 .s n H.(k + 1) I* I 0 51 .t n H.(k + 1) I) 
{ calculus, all counts are non-negative } 

(max s :: I 0 80
·• n H.(k + 1) I)* (max t ::I oolt n H.(k + 1) I) 

> { Example 2.11 } 
(max s :: I ogrid.s n H.(k + 1) I)* (max t :: I ogrid.t n H.(k +I) I) 

= { calculus } 
((n-k-l+M l)/M)2

• 

Thus, we arrive at the following result. 

(max s,t :: W.s.t.k) ~ ((n k- l + M - I)j,~f)2 , for 'DO= 'DI. 

The lower bound is attained for 'DO = 'DI =wrap. In words: in every step k, there is 
a process involving at least ((n k - I+ M - I)/M) 2 operations on its local part of 
then - k - 1 by n - k - I triangular submatrix X, for eve1'y Cartesian distribution 
that assigns rows the same way as columns. 

The time complexity of the grid-based submatrix-Cholesky is: 

3 
n 0( n2) 

3*p + .fi5 . 

The time complexity of the wrap-column-based submatrix-Cholesky is: 

3 n 2 + O(n ) . 
3*p 

These results can be obtained from a precise count of the expression W.s.t.k for each 
distribution. Most parallel Cholesky factorisation algorithms use the wrap-column 
distribution, see for example [27]. This distribution has two disadvantages: a non­
scalable quadratic term in both the communication and computation complexity. 

From these arguments we conclude that the grid wrap2 distribution is a suitable 
candidate for ensuring load balance and avoiding redistribution in the communication 
processes. 

4.1.3 Experiments 

A number of experiments were performed on a 400 transputer network. Three im­
plementations based on the parallel Cholesky factorisation scheme were obtained by 
using the distributions grid, wrap-column, and block. Each implementation was 



recoded in order to make use of distribution specific properties. For example, no 
communication processes CO and Cl are needed for the wrap-column distribution. 

In the following, we give timing-results of two experiments. In both experiments, the 
programs are called grid, wrap and block according to distribution used. The purpose 
of these experiments is to compare the performance of the different programs. The 
absolute performance, and related speed-up, is not investigated. 

The programs execute on a square 20 by 20 mesh of transputers; process (s, t) is 
mapped one-to-one to processor (transputer) (s, t) in the mesh. The programs are 
implemented in transputer Pascal [57], and all computations are done in single pre­
cision (32-bit). The communication processes use directly the communication links 
of each processor in the mesh. 

In the first experiment, we measured the execution time of the different parallel 
Cholesky factorisation programs on 400 processors using different matrices sizes. The 
dimensions of the matrix A range from 400 up to 1200 with steps of 200. For ease 
of comparison, the timings of block are corrected with a factor A~~,~-~f ~ (M = 
20,p M 2

) in order to get a time estimate for the program on 400 processors. The 
reason is that the block distribution of a lower triangular matrix assigns no matrix 
elements to processes (.s, t) with .s < t. This results in a computation with effectively 
only (M2 + M)/2 = 210 processors involved. The correction with a factor for the 
block program blurs the comparison. Fair compa.rison of different implementations 
is, indeed, a difficult task. 

n grid wrap block 
400 0.6 2.0 1.0 
600 1.3 4.6 •) ~ -·' 
800 2.6 8.4 5.6 

. 1000 4.6 13.7 10.:3 
I 1200 7.:3 20.4 16.9 

Table 4.0: Execution times (in seconds) of three parallel Cholesky factorisation pro­
grams, grid, wrap and block, on a square mesh of 400 transputers 

From Table 4.0 can be concluded that the grid program is superior to the wrap 
and block program by at least a factor of two in speed. The differences between the 
numbers can be understood by considering the time complexities of the programs 
grid, wrap, and block: 

n3 0( "2 ) ~ 0( 2) . n3 0( "2 ) 

3*p+ 'v'fi' 3*p+ n 'p+ v'f>' 

respectively. The grid and wrap distribution yield the same first-order term in the 
complexity results. Surprisingly, the first-order term in the complexity results for the 
block distribution is three times larger, due to load imbalance. The block distribution 

approximately square submatrices of L t,> processes. Until the end of the 
Cholesky factorisation, there is a process that has to perform updates for its local 



submatrix, thus causing a large load imbalance. In contrast to a grid-based program 
in which each process performs updates for a triangular submatrix whose dimensions 
decrease in every step. 

There is at least a factor of two difference in the timing-results for grid and wrap. 
This is mainly due to the dominance of the second-order term in the complexity 
results for wrap. Another fact that contributes is the small number of columns (1-3) 
assigned to each process in the wrap program. This limits the range of applicability 
for the wrap program to p <t:: n. 

The block program shows in these experiments a competitive behaviour with the 
wrap program. This is only polish if we consider the results of second experiment in 
which the size of matrix A is increased. 

n grid wrap block 

1500 13.6 34.6 :3:3.:3 
2000 29.4 66.5 75.I 
2500 54.3 111.7 141.2 
3000 90.l 171.9 237.5 

Table 4.1: Execution times (in seconds) of the three parallel Cholesky factorisation 
programs for large matrix sizes 

grid 0 
'¥ ~ 

100 wrap+ 
q:i 0 

block D 0 
fE 0 

i5 di 0 
time (s) lO 5 0 

+ 0 
+ 0 0 

0 0 l 0 j 

0.1 
400 1000 3000 

matrix dimension ( n) 

Figure 4.4: Log-log plot of all timing-results on a squa.re mesh of 400 transputers 

From Table 4.1 can be concluded that grid maintains its superiority. The differences 
in the timings between grid and wrap are smaller with increasing matrix sizes. We 
also find that, for n ~ 2000, block becomes slower than wrap. Asymptotically, it is 
expected that timing-results for the grid and wrap converge, since they have same 
first-order term in the complexity results; for the block it is expected that it will lie 
a factor of three higher. This is indeed observed. 

In Figure 4.4, the timing-results of both experiments are combined into one single 
plot. 
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4.2 Parallel triangular system solving 

The solution of the triangular system 

Lx = b 

is sequentially an easy task due to the triangularity of L. In the parallel case the 
situation is different, because of the restriction that x(j) can only be solved if all x( i), 
0 :::; i < j, are computed. In the past many efforts have been spent in developing 
efficient parallel triangular system solvers based on either a row or a column distri­
bution of the matrix [19, 38, 52]. Here, we present a formal derivation of a parallel 
grid-based triangular system solver, which is named the QWERTY algorithm. This 
solver can be used in combination with a parallel grid-based Cholesky factorisation 
algorithm to form a powerful symmetric-system solver. 

The motivation for giving a derivation of the Q\VEHTY algorithm was to add a 
formal correctness proof to the algorithm presented by R.H. Bisseling in 1988 at the 
Shell Conference on Parallel Computing in Amsterdam. A detailed explanation of 
this algorithm and timing-experiments on transputer meshes have been presented in 
[6]. 

At the time, we felt that a formal derivation of the QWERTY algorithm would be a 
challenging test-case for the use of parameterised invariants. This is essentially what 
is presented in [55], and is here in adapted form. 

An outline of this section is as follows. In the first subsection a derivation using 
parameterised invariants is given. In the second subsection the complexity of the 
triangular system solver on a complete network is discussed. 

4.2.0 A derivation 

The problem is: 
R : Lx = b, 

where Lis an n by n lower triangular matrix distributed across p M * N processes 
with M N using the grid distribution. For the sake of simplicity we assume 
n\lvf = 0. The vectors x and b of length n are distributed like the main diagonal of 
L, process (s,s) is assigned all x(i) and b(i) with i\M = s. 

As in the previous sections, postcondition R forms the starting point for obtaining 
parameterised invariants. 

The postcondition is rewritten using the lower triangularity of L: 

R : (\:/ i: 0:::; i < n: L(i,i) * x(i) = b(i) - sum.i), 

where 
sum.i = (I: j : 0 :::; j < i : 



For convenience, we assume that L(i, i) = 1, for all i : 0 :=:; i < n. This avoids 
expressions L(i, i) * x(i) in the derivation. From postcondition R': 

!( : (V i : 0 :=:; i < n : x( i) = b(i) - sum.i) , 

we can easily satisfy postcondition R by dividing each x(i) by L(i, i). 

The derivation is continued from postcondition R'. The parameterised postcondition 
R.s.t is (taking the distribution of x and b into account): 

R.s.t ; s -:f. t V (Vi: 0 :=:; i < n /\ i\M = s: x(i) b(i) - sum.i). 

Generalising the parameterised postcondition gives a parameterised invariant. We 
propose two invariants: PO and Pl. 

PO.s.t 

Pl.s.t 

0 ::; k ::; n /\ k\M = 0 

s -:f. t V (V i : 0 ::; i < k /\ i\M = s : x( i) b( i) sum.i) . 

Pl is derived from R by replacing constant n by variable k, which is local to process 
( s, t ). As a consequence of PO, process ( s, t) contains a loop with initialisation k := 0, 
guard k -:f. n, and increment k + M. The rabbit that pops up out of the hat is the 
step size M instead of the usual increment by one. This is, indeed, a key point in the 
construction of the parallel triangular solver, and can be understood if we carry the 
derivation a bit further. 

Consider Pl.s.t (k k + M) : 

Pl.s.t (k k + M) 
{ definition Pl, substitution } 

s-:f.tV(Vi:O:=;i<k+iH/\i\M s:x(i) b(i)-sum.i) 
{ range splitting, i = k + s, k\M 0 } 

s -:f. t V ( (Vi: 0 :$ i < k /\ i\M = s: x(i) = b(i) - sum.i) /\ 
x(k+s)=b(k+s) sum.(k+s)) 

{ calculus, definition Pl } 
PI.s.t t\ (s -:f. t V x(k + s) = b(k + s) sum.(k + s)) . 

The value x( k + s) has to be calculated by process ( s, t) with s = t. The term 
sum. ( k + s) can be expressed as a sum of partial sums psum, such that each partial 
sum contains only elements of L that are local to process ( s, t ); this obviates the need 
to communicate elements of L during the computation of a partial sum. Of course, 
each partial sum itself has to be added globally, i.e., via a communication process. 
The construction of the algorithm is driven by avoiding communication of matrix 
elements of L as much as possible. 

Rewriting sum.(k + s) gives: 

sum.(k+s) 
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{ definition } 
(2:::; i: 0 :Si< k + s: L(k + s, i) * x(i)) 

{ calculus} 
(I: t: 0 :S t < M : (I: j : 0 :S j < k + s A j\M = t: L( k + s,j) * x(j))) 

{ range splitting t < s and t ;::: s } 
(I: t: 0 :St< s: (I: j: 0 :S j < k + s A j\M = t: L(k + s,j) * x(j))) + 
(I: t: s :St< M: j: 0 :S j < k + s A j\M t: L(k + s,j) * x(j))) 

{ calculus, definition psum } 
(I: t : 0 :S t < s : psum.k.t.(k + s) + L(k + s, k + t) * x(k + t)) + 
(I: t: s :St< M: psum.k.t.(k + s)) , 

where for all a,r,i with 0 :Sa :S n, 0 :S i < n, and 0 :Sr < JV/ : 

psum.a.r.i (I: j: 0 :S j <a A j\Af r: L(i,j) * x(j)) . 
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In this form, the sequential order between the values x( k + s) becomes clearly visible. 
The value of x(k+s) can be computed from sum.( k+s) which itself can be computed 
from a number of psum values and all x(k + t) with t < s. The idea is to compute 
the values of psum locally by each process and combine them in a communication 
process in order to compute sum.(k + s). The partial sum psum.k.t.(k + s) contains 
matrix elements L( k + s, j), with 0 :S j < k A j\M = t, that are local in process 
(s, t). In step k, the values of x(j), with j < k are known, and hence psum.k.t.(k + s) 
can be computed. The products L(k + s,k + t) * x(k + t), t < s, in the summation 
can only be computed if the values x(j), k :S j < k + s, are available, i.e., when all 
invariants Pl .(j\M).(j\M) ( k := k + M) hold. It is clear that Pl .s.s ca.n be restored 
in the order s 0, 1, ... , M - 1. As we will see later, a.n ordering on the invariants 
can be given formally using a ranking function. 

The computation of psum can be kept invariant by introducing in each process a 
variable w. Suggesting an invariant of the form: 

P21.s.t : w = psum.k.t.(k + s). 

It can be concluded from P2'.s.t (k := k+ M) that a single variable w is not sufficient. 
Therefore, in each process an array of variables w is introduced, which maintains for 
each row i, with i ?: k + s, a partial sum psum. This is expressed by P2 °: 

P2.s.t : (Vi: k + s :Si < n A i\M s: w(i, t) = psum.k.t.i) . 

For notational purposes we introduce an extra index t in w; this allows us to make 
a distinction between the local variables w in different processes. As a consequence, 
w can be seen as a large n by M matrix distributed according to (wrap, n, M) x 
(identity, M,M). 

An outline of the QWERTY algorithm is given in Figure 4.5. In the program text 
array w is set to zero; a loop is shown calling the parameterised processes RestorePI 
and RestoreP2. 

P2 is weaker than presented in the original paper [55] and was suggested by [24]. 



4 . 

S.s.t :: 
I[ w( i, t : 0 ::::: i < n, 0 ::::: t < M): m<1trix of real; k: int; 

JI 

k := 0 
; for all i: 0 :':::'. i < n /\ i\M = s : w(i, t) := 0 Ila rof 
{P.s.t: PO.s.t /\ Pl.s.t /\ P2.s.t} 
; do k # n---+ 

RestorePl.s.t {Pl.s.t (k k + M)} 
; RestoreP2.s.t {P2.s.t (k k + M)} 
; k := k + M {P.s.t} 

od 

Figure 4.5: Outline of each parameterised process 8.s.t of QWERTY 

Parameterised process RestorePl has the following specification: 

{ PO.s.t /\ Pl.s.t /\ P2.s.t} 
{w(k + s, t) = psum.k.t.(k + s)} 
RestorePl.s.t 
{s oJ t V x(k + s) = b(k + s) - smn.(k + s)} 
{Pl.s.t (k := k + M)} 

The program text for RestorePl is easily obtained by using the derived rule for 
sum.(k + s): 

sum.(k + s) 

(I: t: 0::::: t < s: psum.k.t.(k + s) + L(k + s, k + t) * x(k + t)) + 
(I: t: s::::: t < M: psum.k.t.(k + s)) . 

The diagonal processes ( s, s) will each compute x( k + s) from sum.( k + s) as follows. 
The processes (s,t) withs< t communicate their psmn.k.t.(k+ s) to process (s,s). 
The processes (s, t) withs> t have to obtain first the value of x(k + t) from process 
(t, t) before they can communicate the value of psum.k.t.( k+s )+ L( k+s, k+t)*x( k+t) 
to process ( s, s ). The program text for this complicated communication process is 
given in Figure 4.6. It is assumed that all communication is done using a complete 
communication network. In the program text an array a is used to store received 
messages. Now, we focus on RestoreP2. Consider P2.s.t (k := k + M) : 

P2.s.t (k := k + M) 
= { substitution } 

('Vi: k + s + M ::::: i < n /\ i\Af = s: w(i, t) = pswn.(k + M).t.i) 
{ definition psum, calculus } 

('Vi: k + s + M::::: i < n /\ i\M = s: w(i, t) = psmn.k.t.i + L(i, k + t) * x(k + t)). 
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P2 can easily be restored using the value of x(k + t). For processes (s, t) withs> t, 
the value of x(k + t) is available in local variable y on account of RestorePl. For 
processes (s,t) withs< t, the value of x(k + t) is communicated by process (t,t). 
The resulting program is given in Figure 4. 7. 

RestorePl:: 
I[ a(i: 0 :S i < M): array of real; y: real; 

ifs< t ~ {w(k + s, t) = psum.k.t.(k + s)} (s, s)!w(k + s, t) 
~ s=t~ paru:t<u<M: 

fi 
JI 

(s, u)?a(u) 
{a(u) =psum.k.~L.(k+s)} 

rap 
; par u : 0 :S u < t : 

(s,u)?a(u) 
{a(u) psum.k.u.(k+s)+L(k+s,k+u)*x(k+u)} 

rap 
; a(t) := w(k + s, t) 
{a(t) = psum.k.t.(k + s)} 
;x(k+s):=b(k+s) 
; for all u : 0 :S u < M : x( k + s) := x( A: + s) - a( u) Ila rof 
{x(k + s) = b(k + s) sum.(k + s)} 
; par u: s < u < M: (u,t)!x(k+ s) rap 

s > t ~ ( t, t)?y 
{y = x(k + t) /\ w(k + s, t) psum.k.t.(k + s)} 
; (s,s)!w(k+s,t)+L(k+s,k+t)*Y 

Figure 4.6: Program text for RestorePl 

RestoreP2:: 
ifs< t ~ (t,t)?y {y x(k+t)} 
~ s=t~ y:=x(k+t) 

{y=x(k+t)} 
; par u: 0 :S. u < s: (tt,t)!y rap 

fi 
{y = x(k + t)} 
; for all i : k + s + M :S. i < n /\ i\M = s : 

w(i, t) := w(i, t) + L(i, k + t) * y 
Ila rof 

Figure 4.7: Program text for RestorcP2 



The restoration procedures for invariants Pl.s.s and P2.s.t are based on the deriva­
tions of Pl.s.s (k k + M) and P2.s.t (k := k + M) (the invariants PO.s.t and 
Pl.s.t, with s #- t, are trivially maintained). Since the restoration procedure of an 
invariant assumes the validity of other invariants (with different s, t, and k), it is not 
a priori clear that there exists an order in which the invariants can be established. 
The situation in which there is no such order is called computational deadlock, to 
be distinguished from communication deadlock, which may occur in an actual im­
plementation. In the following, we define a ranking function on the invariants; its 
existence encapsulates the absence of computational deadlock. Before giving such a 
ranking function, we define some notions. 

Definition 4.0 (Inv) The finite set of invariants Inv is given by: 

Inv= {s,k:O:Ss<M/\O:Sk:Sn/\k\M=O:(l,s,s,k)}U 

{ s, t, k : 0 S s, t < M /\ 0 :S k :S n f\ k\1\f = 0 : (2, s, t, k)} . 

There is an obvious one-to-one correspondence between the four-tuples of set Inv 
and invariants Pl.s.s and P2.s.t in step k. D 

Definition 4.1 (-<) We define a relation -< on Inv x Inv with the following 
meaning: 

IO -< Il := JO must hold before 11 can hold , 

for all JO #- Il E Inv. 

The definition of the above relation is meaningful, because of the correspondence 
between Inv and the parameterised invariants Pl and P2. D 

Definition 4.2 ( ~) ~ is the transitive non-reflexive closure of -<. D 

The elements of the relation -< are: 

(l,s,s,k) -< (1,s,s,k+.M) 

(2,s,t,k) -< (2, s, t, k + lvl) 

(l,t,t,k) -< (2,s, t, k + M) 

(2, s, t, k) -< (1,s,s,k+M) 

(1, t, t, k + M) -< (1,s,s,k+kl) fort< s 

for all s, t, k : 0 :S s, t < lvl f\ 0 :S k < n /\ k\M = 0. 

This follows from the derivation. The first four definitions of the elements of -< are 
fairly standard. The fifth one follows from the rewrite rule from sum.(k + s) (see 
page 74). 

Initially, all invariants Pl.s.t (k) and P2.s.t (k) with k 0 hold, i.e., are established. 
If a path in Inv is followed, starting from the initial invariants, then we do not wish 
to encounter cycles, since this implies that it is impossible to find an order in which 
the invariants can be maintained. Computational deadlock occurs if such an order 
does not exist. 
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Definition 4.3 (No computational deadlock) 

D 

No computational deadlock 

(Inv, .:!< ) is irreflexive 
{ definition irreflexive } 

+ ('r/ I: IE Inv: •(/-< /)). 
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One way to proof irreflexivity in a relational system (Inv, ~) is by showing the 

existence of a so-called ranking function. Actually, we have to prove that (Inv, ~) 
is a strict order (11 ], i.e., a relational system that is transitive and irreflexive. 

Definition 4.4 (ranking function) A ranking function r is a function from Inv 
to the natural numbers such that: 

+ ('r/ IO, Il: IO, /1 E Inv/\ IO-< Il: r.JO < 1-.Il) . 

D 

For the QWERTY algorithm, the following ranking function r can be given. 

r.(1,s,s,k) 2*k+2*s+l 

r.(2,s,t,k) = 2*k+2*s+2. 

It can easily be verified that r.IO < r.ll, for all IO, Il E Inv with IO-< Il. !!lliis 
proves that r is indeed a ranking function. 

The problem of computational deadlock has not been addressed before, since it has 
been relatively easy to find an order in which the invariants can be restored. In the 
QWERTY algorithm, the situation is different. In order to demonstrate absence of 
computational deadlock, we used ranking functions. Of course, this technique can be 
applied to other problems. 

4.2.1 Complexity of the triangular solver 

The QWERTY algorithm is derived under the assumption of a complete network for 
the communication processes. It is assumed that communication takes a time units, 
and communications within a par-statement are counted as a single communication. 

The complexity of the parallel program is obtained by summing the complexities of 
processes RestorePl and RestoreP2 in each step k. 

We start with the latter. The bulk of the computational work in step k is in the 
for all-statement of RestoreP2 (cf. Figure 4. 7): 

2* I {i: k + s + M :5 i < n /\ i\M = s: i} I 
{ calculus } 

2* ((n - k)/M 1). 



The resulting communication complexity is 1, since one single value is broadcasted 
in parallel. The total complexity for RestoreP2 is: 

Tp2.M.n.k 2 * ((n - k)/M 1) +a . 

The time complexity of RestorePl is obtained by a careful analysis of the critical 
path of the data flow. In order to obtain a low complexity, the program should be 
transformed by rewriting the program text of RestorePl for processes (s, t) withs= t 
(cf. Figure 4.6). 

The resulting implementation of RestorePl consists of two phases: 

In the first phase, all processes (s,t) withs:::; tare active. The processes (s,s) 
perform the initialisation x( k + s) := b( k + s). The processes ( s, t), with s < t, send 
their value of w in parallel to process (s, s) in a time. These values and the local 
value of w of process (s,s) are subtracted from x(k + s) in at most M time units. 
The total complexity of the first phase of RestorePl in step k is M +a. 

In the second phase, all processes (s, t) with s ;::: t are active. Each active process 
column (s, t), withs > t, receives the value of x(k + t) in time a, which can be used 
to compute w(k + s, t) + L(k + s, k + t) *yin two time units. The value of the last 
expression is received in a(t) by process (s, s) in time a, which immediately subtracts 
a(t) from x(k + s) in one time unit (instead of first collecting the values and then 
subtracting, which would cause a delay along the critical path of the data flow). 

The critical path of second phase is the data flow from process (0, 0), to (1, 0), to (1, 1 ), 
... , to (J\1 -1,M - 1). A process (s,s) on this path receives a value from process 
( s, s -1 ), subtracts it from the current value of x(k + s ), and sends x( k + s) to process 
( s + 1, s) (and to the other processes in the same active process column). This process 
in turn uses the received value to compute w(k + s, s + 1) + L(k + s, k + s + 1) * y, 
which is sent to process (s + 1, s + 1). The time of the critical path is at most 
3 * (M - 1) + 2 * (M - 1) * a, and this is the complexity of the second phase of 
RestorePl. 

Adding the time complexities of the first and second phase in RestorePl gives: 

TPI .M.n.k = 4 * M 3 + (2 * M 1) *a . 

The total time complexity for the QWERTY algorithm is: 

T.p.n 
{ definition } 

(2: k: 0 :S k < n /\ k\M = 0: Tp1 .M.n.k + Tp2.l'v1.n.k:) 
{ definition 1'p1 and TP2, calculus } 

(2: k: 0:::; k < n /\ k\M = 0: 2 * ((n - k)/M) + 4 * JVJ - 5 + 2 * ,i\:1* a) 
= { calculus, p = M 2 

} 

~ - 4 * + (2 *a+ 4) * n. 



The results are valid on a complete network (p > 1). Similar counts can be obtained 
for a square mesh communication network; this has also been verified experimentally 
[6]. 

4.3 Final remarks 

In this chapter, we demonstrated the use of parameterised invariants on a non­
trivial problem: a parallel symmetric-system solver. The solver consists of two parts: 
Cholesky factorisation and triangular system solving. 

We showed that a parallel Cholesky factorisation algorithm can be derived formally 
using a Cartesian matrix distribution. Communication and computation aspects are 
easily separated in the derivation. This allows us to analyse work load distribution 
and communication overhead. 

It has been argued that the wrap2 grid distribution is a good candidate distribution 
for the Cholesky factorisation. This is confirmed by experiments on a 400 multi­
processor system. The grid distribution is used in the precondition of the parallel 
triangular system solver, which is named the QWERTY algorithm. 

Some lessons have been learned from the QWERTY derivation: 

• Avoidance of communication of matrix elements is the driving force behind 
the derivation. In general, avoidance of communication is a basic principle in 
parallel program construction. 

• Typical distribution properties, like a step size of Af in a loop, are surprising 
in a derivation. In that sense, derivations are a trial and error process. In a 
presentation, like the one here, the trials are usually omitted. 

• The standard way of constructing sequential algorithms is: introduce an in­
variant, some calculus, and then strengthen the invariant by new ones, etc. In 
the parallel case, this may pose a problem, since invariants are parameterised. 
Many more orderings between invariants play a role, thus complicating the 
correctness concerns quite a bit. In the QWERTY derivation, the concept of 
computational deadlock is encountered, and a non-standard ordering between 
the parameterised invariants is needed. Ranking functions are necessary to 
proof absence of computational deadlock. 

The QWERTY derivation results in a parallel program with a low complexity and 
an asymptotically maximal speed-up. Hence, triangular system solving is not the 
bottleneck in a parallel symmetric-system solver. The complexity of such a solver is 
dominated by the complexity of a parallel grid-based Cholesky factorisation program, 
which is: 

3 

T.p.n = 3n + 0( n~) . * p vP 

The grid distribution is the key to a highly efficient parallel symmetric-system solver. 
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Chapter 5 

Parallel Sparse Cholesky 
Factorisation 

Two parallel algorithms are presented for the Cholesky factorisation of a sparse ma­
trix. Both algorithms are based on a submatrix-Cholesky algorithm using the grid 
distribution for the non-zeros of the matrix. The fastest version uses multiple-rank 
updates. In this way, natural parallelism is exploited, which can be obtained by pre­
permuting the matrix according to a layered-defoliation strategy of the corresponding 
elimination tree. 

5.0 Introduction 

There are many definitions of a sparse matrix. One is [73]: 

A matrix is called sparse if the overwhelming majority of matrix elements 
are zero. 

Another one is [16]: 

Generally, we say that a matrix is sparse if there is an advantage in 

exploiting its zeros. 

Most practical problems involve sparse matrices, for instance, the calculation of stiff­
ness properties of buildings and the optimisation of refinery and scheduling opera­
tions. Sparse matrices do not only occur in numerical mathematics, but also in graph 
theory [36] and many other fields. 

A large class of sparse matrix problems requires the solution of a sparse linear system 
of equations. Exploiting sparsity in such a system typically results in a considerable 
reduction of memory requirements and computation time. Zero matrix elements 
need not to be stored and floating-point operations involving them are usually made 
redundant. 
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Here, we develop new parallel algorithm for the Cholesky factorisation of a sparse 
symmetric positive-definite matrix A. The Cholesky factorisation A = L V, where 
L is a lower n by n triangular matrix, forms a key component in a parallel linear 
programming solver [3]. 

In our opinion, the parallelisation of sparse algorithms is a challenging activity. The 
challenge lies in the conflicting nature of sparse algorithms that can be summarised 
by the statement: 'a lot of little work'. Sparse algorithms try to avoid unnecessary 
work, but the total amount of work can be high, thus making it worthwhile to speed 
up the computation by parallelisation. 

The remainder of this chapter is organised as follows. In Section 5.1, we give some 
background on sparse Cholesky factorisation; for an extensive treatment see [16, 29]. 
In Section 5.2, we briefly review parallel Cholesky factorisation algorithms. In Sub­
section 5.3.0, the properties of the grid distribution with respect to sparse Cholesky 
factorisation are discussed. Subsection 5.3.l presents a parallel sparse Cholesky al­
gorithm. A complexity analysis is given in Subsection 5.3.2. Timing results for the 
parallel rank-1 algorithm are given in Subsection 5.3.3. Section 5.4 describes an im­
provement of this algorithm by performing multiple-rank updates, which are obtained 
by a layered-defoliation strategy of the elimination tree. These subjects are discussed 
in Subsections 5.4.0, 5.4.1, and 5.4.2. Timing results for the parallel multiple-rank 
update algorithm are given in Subsection 5.4.4. Section 5 .. 5 summarises our contri­
bution. 

A final remark is made about the presentation in this chapter. In contrast to the 
previous chapters, the emphasis will not be on a formal derivation, but on the final 
algorithms. However, the formally derived algorithm for parallel dense Cholesky 
factorisation (see Chapter 4) is used as a basis for the sparse algorithms. 

5.1 Background 

An important difference between sparse and dense Cholesky factorisation algorithms 
is the role of zero matrix elements, which are numerous in the sparse case. During a 
sparse factorisation of A most zero matrix elements of A are also zero in the Cholesky 
factor L, i.e., only some zero matrix elements in A become non-zero in L. The number 
of non-zeros in the Cholesky factor, the fill, determines the computation complexity 
[29]. The fill can be influenced by symmetrically permuting rows and columns of A. 
Mathematically, the following systems are equivalent: 

Ax 
PAPty 

b 

Pb and P 1 y = x, 

where P is an n by n permutation matrix. The non-zero patterns of the Cholesky 
factors of A and PA Pt may differ considerably (cf. Figures 5.0 and 5.1). Often, P 
can be chosen such that the Cholesky factor of P AP1 has less fill than the Cholesky 



factor of A. Dense Cholesky factorisation algorithms lack this degree of freedom; the 
computation complexity is independent of any choice for P. 

0 x x 
1 x x x x 
2 x x x x 
3 x x x x 
4 x x x x 
5 x x x x x x 
6 x x x x x x 
7 x x x x x 
8 x x x x x x 
9 x x x x 
10 x x x x 
11 x x x x 
12 x x x x 

Figure 5.0: The non-zero pattern of a 13 by 13 matrix A (left) and its Cholesky factor 
L (right) are displayed (only the lower half of a symmetric matrix is shown). A x 
indicates the presence of a non-zero; a · the presence of a created non-zero. In the 
Cholesky factor 47 non-zeros are created. 

0 x x 
1 x x 
2 x x 
3 x x 
4 x x 
5 x x 
6 x x 
7 x x 
8 x x x x x x x x 
9 x x x x x x x x 
10 x x x x 
11 x x x x 
12 x x x x x 

Figure 5.1: The non-zero pattern of a 13 by 13 matrix A (left) and its Cholesky 
factor L (right) are displayed. A is obtained by symmetrically permuting the rows 
and columns of A (see Figure 5.0), i.e., A PA pt for a suitable permutation matrix 
P. Observe that the fill is much less: only 5 non-zeros are created in the Cholesky 
factor L 

The problem of finding a permutation matrix P such that the number of non-zeros 
in L is minimal is known as the minimum-fill reordering problem, and has been 
proved to be NP-complete [78]. In the past decade, however, two heuristics, namely 
the minimum degree algorithm and nested dissectiou [2fi] have be<~n shown to be 
very effective in reducing the fill. Notably, the minimum degree algorithm and its 



improvements (see [30] for a review) yield, in general, a 'good' ordering for a large 
class of symmetric positive-definite matrices. The nested dissection ordering is less 
general, but it is quite effective for the class of matrices arising from discretisations 
of partial differential equations on rectangular grids and L-shaped domains. Pre­
ordering steps like the minimum degree algorithm take only a small fraction of the 
time compared to the actual Cholesky factorisation. 

The Cholesky factorisation can be modelled using graph theory. 

Definition 5.0 (G(A)) The graph G(A) (V, E) belonging to a symmetric n by 
n matrix A has the set l/ = { i : 0 :5 i < n : i} as vertices. The set of edges is 
E = {i,j: i,j EV/\ A(i,j) -:f 0: {i,j} }. D 

The following holds: 

(Vi,j: 0 :5 i,j < n/\ {i,j} !/; E: A(i,j) = 0). 

The set E identifies the non-zeros of A. For convenience, we shall use the notation 
A(i,j) -:f 0 for {i,j} EE. An example is given in Figure 5.2. 

6 2 

...... 9~--3~--1•0~--1a-...;.--i•:o 

s 7 --------
11 

10 

Figure 5.2: The graphs of A and A of Figures 5.0 and 5.1 are depicted (self-loops are 
not drawn). They are the same except for the labeling of the vertices. The minimum­
fill reordering problem can be restated as: find a labeling of the vertices of A such 
that its Cholesky factor has a minimal fill. 

The sparsity pattern of the Cholesky factor L of a matrix A can be determined 
entirely from the graph G( A). The basic equation is: 

L(i,j) # 0 := A(i,j) -:f OV (3 k: 0 S k < j: L(i,k) -:f O/\L(j,k) -:f 0), 

for all 0 S j S i < n. 

This result can be obtained using postcondition R of Chapter 4 (page 61 ). The 
equation above states that a matrix element L(i,j), i '2'.: j, is a non-zero if either 
A(i,j) is a non-zero or L(i,j) is created by a pair of non-zeros L(i,k) and L(j,k) 
with 0 S k < j. In terms of graph G(A), L(i,j) is a non-zero if there is a path in 
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G(A) from vertex i to vertex j with all internal vertices strictly less than i min j, 
notation i,..., j. Note that by definition {i,j} E E implies i,..., j. A path of length t 
in a graph (V:, E) is a sequence of vertices n1, 0 :::;: l :::;: t, such that: for all l, with 
0 :::;: l < t, { n1, n1+1} E E holds. An internal vertex of a path n0 ... nt is a vertex n 1 
with 0 < l < t. 
Thus, the graph G(L) (V,EA) of the Cholesky factor L of A can be characterised 
by: 

EA = { i, j : 0 "5. j "5. i < n /\ i ,...,, j : { i, j}} . 

Example 5.1 Consider the graph of A of Figure 5.2. The path 12, 2, 8, 4, 10, has 
all internal vertices < 10, hence 12 ,._, 10 holds, and L(l2, 10) is a non-zero. D 

The sparsity pattern of L can be computed efficiently in O(IEAI) [29]. In the remain­
der of this chapter, we assume that the matrix A is reordered using a fill-reducing 
heuristic. Furthermore, the sparsity pattern of its Cholesky factor Lis known a priori. 

5.2 Review 

In this section, a short review is given of the literature on paraild sparse Cholesky 
algorithms intended for distributed-memory machines. The major differences between 
the various approaches are discussed (see .[37J for a general review on this subject). 

Most sequential and parallel Cholesky factOJr:i:sabolll. algorithms are column-oriented 
and can be classified [37] as either ooiumJJJ:-Ohoiesky or subma.trix-Cholesky. (Row­
Cholesky is rarely considered.) The differences between both types of algorithms 
stem from the order in which computations are performed. 

In a sequential dense column-Cholesky, columns are computed one by one, and each 
newly computed column k, 0 $ k < n, is modified by all previous columns j, 0 :::;: 
j < k. In a sparse column-Cholesky, each column k is only modified by columns j 
such that L(k,j) =j:. 0. 

The columns in a sequential submatrix-Cholesky are also computed one by one, but 
each newly computed column k: is used to modify all columns j, 0 $ k < j < n. In a 
sparse version, each column k modifies only columns j such that L(j, k) =j:. 0. 

The terms left-looking algorithm and right-looking algorithm are sometimes used to 
distinguish column-Cholesky and submatrix-Cholesky, respectively (cf. Figure 5.3). 

Almost all known parallel algorithms for the Cholesky factorisation of a sparse matrix 
are based on a column distribution° of the Cholesky factor. One of the first-published 
parallel implementations was a sparse submatrix-Cholesky [28] on a distributed­
memory multi-processor system. This algorithm, known as the fan-out algorithm, 
uses elimination trees [68] and an arbitrary mapping of the columns to processors. 

0 A column distribution assigns entire columns to processors. 
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Figure 5.3: Snapshot of sequential column-Cholesky (left) and submatrix-Cholesky 
(right) for a 9 x 9 matrix. In both cases, the first 4 columns of the Cholesky factor 
have been computed. In the column-Cholesky, column 4 needs to be modified by 
the columns which are determined by the non-zeros of row 4, i.e., columns 1 and 3 
as indicated by the arrows. As a consequence of this modifications, non-zeros are 
created in column 4. In the submatrix-Cholesky, column 4 is used to modify the 
columns which are determined by the non-zeros of column 4, i.e., columns 5, 7 and 
8. Observe that, as a consequence of the modifications, non-zeros are created. 

The fan-out algorithm and its improvements are inferior to the fan-in algorithm, 
which is a parallel column-Cholesky [O, l]. The fan-in algorithms use either a pure 
column-mapping or the so-called subtree-to-subcube mapping [31]. The latter map­
ping uses elimination trees and works well for matrices associated with the k x k 
regular grid, but is difficult to generalise to more irregulaJ' problems [37]. 

Fan-in algorithms reduce communication overhead much better than fan-out algo­
rithms, for example, by combining several messages into one message. This does 
not necessarily mean that fan-out algorithms using different data distributions, i.e., 
non-column distributions, are inferior too. In the following, we present a parallel 
submatrix-Cholesky algorithm (fan-out) based on the grid distribution. In Subsec­
tion 5.3.2 we demonstrate that the grid distribution reduces the number of commu­
nications compared to a column-based distribution. Thus, a grid-based submatrix­
Cholesky can compete with column-based fan-in algorithms. 

5.3 A parallel algorithm based on rank-1 updates 

In the parallel program scheme of Chapter 4, the major source of parallelism comes 
from the cmod operations (RestoreP2, page 65 ). We showed that the grid distribution 
of a dense matrix L results in an even distribution of the cmod operations. Moreover, 
the grid distribution avoids redistribution and consequently, the total number of 
communications is reduced. It is natural to use a grid distribution for a sparse 
matrix as well. From the previous review, it can be concluded that this is usually 
not done. Therefore, the grid distribution for a parallel sparse submatrix-Cholesky 
is discussed first. 
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5.3.0 Why grid? 

In order to answer this question, some general observations are made. One such 
observation is: The minimum degree algorithm tends to produce blocks of non-zeros 
in the Cholesky factor. This is in general true, since it has been observed that groups 
of consecutive columns often share the same non-zero pattern ('supernodes') [63]. 

As discussed in Chapter 2, the two issues of distributions are load balancing and 
communication overhead. In a submatrix-Cholesky, work is done for some non-zeros 
from the active submatrix. The active submatrix in step k, 0 ':S k < n, is defined as 
the square submatrix of size n k starting in diagonal element L(k, k). 

In a parallel submatrix-Cholesky, the work-load per process is determined by the 
distribution of the non-zeros in each active submatrix across the processes. The total 
number of communications in the algorithm is determined by the number of non-zeros 
a process has to send to another process during the computation. 

The following observations are made. 

• The grid distribution ensures an even distribution of the rows and columns 
of each active submatrix. This does not guarantee that the number of non­
zeros in each active submatrix is evenly distributed across the processes, but 
at least structural load imbalance is avoided. This is in contrast to the black 
distribution, which causes a large load imbalance. Note that the column-wrap 
distribution also ensures an even distribution of the rows and columns of each 
active submatrix. 

Often, at the end of a sparse factorisation algorithm, some large dense subma­
trices have to be factored. In Chapter 4, it has been demonstrated that the 
grid distribution is preferred for a dense factorisation. 

• The grid distribution scatters each rectangula1· block of non-zeros across the 
processes. This scatter property has been observed by [73]. If the sizes of blocks 
of non-zeros are large compared to M (M2 is the total number of processes), 
then it is expected that the non-zeros in the rectangular block are distributed 
evenly across the processes. 

• The minimum degree algorithm tends to produce blocks of non-zeros in the 
Cholesky factor. This means that the grid distribution is expected to achieve 
a good load balance with pre-ordered matrices. 

• If it is necessary to replicate a grid-distributed column then this can be im­
plemented efficiently. Each column is distributed across M processes, hence 
replicating a column to all process columns can be done by M simultaneous 
broadcasts. 

If the non-zeros in a column are part of a rectangular non-zero block then it 
is expected that the non-zeros are evenly distribut,ed across a process column, 



thus spreading the communications across the processes. Similar arguments 
hold for a grid-distributed row. 

This is in contrast to a pure column-based distribution, which assigns an entire 
column to a process. A replication of a column requires all the non-zeros of it 
to be communicated from one process to all other processes. As a consequence, 
the communications are not spread. 

In Subsection 5.3.2, we obtain an upper bound for the number of communica­
tions when using a grid distribution for the Cholesky factor. It is shown that 
the grid distribution reduces the number of communications with a factor of 
..jP compared to column distributions. 

5.3.l A parallel sparse submatrix-Cholesky algorithm 

The non-zeros of L are assigned to processes according to grid distribution (cf. Fig­
ure 5.4): 

(V i,j 0 "5 j "5 i < n /\ L(i,j) f 0 
L(i,j) is assigned to process (i\M,j\M)) . 

..... . ·-:m.J 
~ .... 

' ".V • 

Figure 5.4: The grid distribution of the non-zero pattern of a 25 by 25 sparse Cholesky 
matrix across 4 processes is displayed. The processes are identified by different grey­
shadings. This matrix is obtained from the linear programming problem 'afiro', which 
is in the NETLIB library [25, 3]. The matrix has been pre-ordered in order to limit 
fill. 
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The parallel program for sparse submatrix-Cholesky is obtained from the general 
parallel program scheme for dense Cholesky (see Chapter 4) by instantiating it with 
the grid distribution and exploiting sparsity. 

The outline of each parameterised process ( s, t) is similar as in the dense case (cf. Fig­
ure 4.1). The sparsity is exploited, for instance, in the initialisation, which sets L to 
A for the non-zeros of A only. Each parameterised process (s, t) consists of a loop 
in which RestorePl and RestoreP2 are called one after the other. An outline of the 
sparse version for RestorePl is given in Figure 5.5. 

In the annotations, predicate sum.a.b.c is used (see page 61 for its definition). 

RestorePl.s.t :: 
I[ h: real; 

II 

if s = t /\ k\M 
~ {L(k,k) sum.k.k.k} 

L(k,k) := ~L(k,k) 
{L(k,k) 2 = sum.k.k.k} 
; h := L(k,k) 
{h = L(k, k)} 
; CO.s 

~ s # t /\ k\kl = t ~ CO.s {h L(k,k)} 
fi 

; if k\M = t 
~ {h = L(k, k)} 

for all i: k + l S:: i < n /\ i\M .s /\ L(i, k) 10: 
{L(i, k) sum.i.k.k} 
L(i, k) := L(i, k)/h 
{L(i,k)*L(k,k) sum.i.k.k} 

Ila rof 
fi 

Figure 5.5: Program text for RestorePl in the grid-based submatrix-Cholesky. k is 
the step counter. 

The program text for a sparse version of RestoreP2 is sketched in Figure 5.6. Arrays 
c and d are used to store communicated matrix elements, and they are implicitly 
initialised by setting all local component of the arrays to zero. The nested for all­
statement uses the predicates c(i) 1 0 and d(j) 1 0. This is meaningful, since the 
non-zero values in each array c in process (s, t) are copies of the non-zeros L(i, k) 
with i\M = s. A similar remark holds for array d. 

The resulting parallel Cholesky algorithm is called a single-rank update algorithm, 
since in the inner loop a vector addition (saxpy) is performed. 

The specifications of the communication processes CO, CI and C2 resemble their 



RestoreP2.s.t :: 
I[ c,d(i: 0 S. i < n): array of real; 

if k\M = t 
___,. for all i: k + 1 S. i < n /\ i\M s /\ L(i, k) # 0: 

c(i) := L(i, k) 
Ila rof 

fi 
{ k \ M # t V (V i : k + 1 S. i < n /\ i \ M = s /\ c( i) # 0 : c( i) L ( i, k))} 
; Cl.s.t 
{(Vi: k+ 1 S. i < n/\ i\M = s/\c(i) # 0: c(i) = L(i,k))} 
; C2.s.t 
{(Vj:k+lS.j<n/\j\M t/\d(j)-:f.O:d(j) L(j,k))} 
; for all j : j\M = t /\ k + 1 S. j < n /\ d(j) # 0 : 

for all i : i\M = s /\ j S. i < n /\ c( i) # 0 : 
• L(i,j) := L(i,j) - c(i) * d(j) 

I 

Ila rof 
Ila rof 

JI 

Figure 5.6: Program text for RestoreP2 in a grid-based submatrix-Cholesky 

dense counterparts. For this reason, we omit the formal specifications and give only 
an informal list of the communication requirements. 

• CO.s.t: This communication process broadcasts the value of L(k, k) from pro­
cess (k\M, k\M) to each process (s, k\M), 0 S. s < M. 

• Cl.s.t: This communication process replicates the non-zero values of L's kth 
column across process columns. This can be done efficiently by letting each 
process (s, k\M) broadcast its non-zeros L(i, k) to each process (s, t) in the 
same process row. 

• C2.s.t: This communication process replicates the non-zero values of L's kth 
column across process rows. This can be done efficiently by letting each diagonal 
process (t, t) broadcast the non-zero values of c, received by Cl.t.t, to each 
process (s, t) in the same process column. 

The communication processes can be slightly optimised at the end of the factorisation 
process, but for simplicity we omit these optimisations. 

5.3.2 Complexity analysis 

In this subsection, a complexity analysis is given for the parallel sparse submatrix­
Cholesky. The complexity results are obtained under the following assumptions. 
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• Every column has the same number of non-zeros CL, CL < n. 

• Each process has cL/ M non-zeros of each column. 

From these assumptions can be deduced that the non-zeros are distributed evenly over 
the processes. Although these assumptions are somewhat unrealistic, the results are 
still meaningful. Constant CL can be looked upon as the average number of non-zeros, 
and an even spread is more or less guaranteed when M < CL. 

First, the complexity Tp1 of RestorePl in step k is discussed. Process CO.s imple­
ments a broadcast of L( k, k) which takes at most M 1 communications. It takes 
at most CL/ M divisions to complete RestorePl, since every column has the same 
number of non-zeros. This gives a total complexity: 

Tp1 .M.n.k = O(cL/M +a* M). 

The complexity of RestoreP2 is obtained as follows. The two broadcasts of column 
k by communication processes Cl.s.t and C2.s.t each have a complexity of cL/1\f + 
lvf 2, since at most CL/ M elements have to be communicated to at most M 1 
processes and pipe-lining can be used (see page 20). All communication streams can 
operate simultaneously. The inner for all-statement consists of at most cL/ M update 
operations L(i,j) := L(i,j) c(i) * d(j). Each process performs this inner loop at 
most cL/M times, hence the complexity of RestoreP2 in step k becomes: 

Tp2.M.n.k 0(2f +a* (cr,/M + llJ)) . 

The total complexity of the parallel sparse submatrix-Cholesky is: 

T.p.n 
{ definition } 

(I:; k: 0::::; k < n: .M.n.k + Tp2.M.n.k) 
{ definitions Tp1 and Tp2, calculus, M = JP } 

0( n * 2f +a* n * 7i; +a* n * JP) . 

A number of observations can be made. If CL 2 is of the same order of magnitude asp 
then the second and the third order terms become dominant. The lower order terms 
merely represent communication cost, which can be quite high for large values of a. 

In the following, an upper bound is obtained for the total number of communica­
tions Ncomgrid for the grid-based submatrix-Cholesky. Consider a column k of the 
Cholesky factor. Let CJ,.k be the number of non-zeros in column k below the diag­
onal. Due to the grid distribution, column k is distributed across process column 
k\1\1. Suppose, furthermore, that each process (s, k\Ivl) has local.k.s non-zeros from 
column k below the diagonal. The following holds obviously: 

CL.k =(I:; s: 0::; .s < M: local.k . .s). 

The number of communications associated with column k is: 



(L: s: 0:::; s < M: 2 * (M -1) * local.k.s) + M -1 
{ calculus, definition C£.k } 

(M-1)*(2*C£.k+l). 

Explanation: diagonal element L(k, k) is sent to at most M 1 processes; each 
process (s,k\M) broadcasts local.k.s non-zeros to at most M 1 other processes 
using communication process Cl.s.t; each process (s, s) broadcasts local.k.s non­
zeros to at most M 1 other processes using C2.s.t. 

Hence, the total number of communications Ncomgrid for the grid- based submatrix­
Cholesky is: 

= 

Ncomgrid 

(L: k: 0:::; k < n: (M - 1) * (2 *CL.k + 1)) 
{ calculus, nzL = (L: k :: C£.k + 1) } 

(M - 1) * (2* nzL - n) , 

where nzL gives the total number of non-zeros in the Cholesky factor L. Using the 
relation p = M 2 gives: 

Ncom9rid = (VP 1) * (2 * nzL - n) . 

Theoretical results for the complexity of sparse pamllel algorithms are scarce. One 
such a result is given in [31]. There, communication results are given for matrices 
A of size k' x k' associated with regular grid of dimension s :? 2. The parallel 
algorithms used are fan-in algorithms based on a wrap column-distribution (wrap­
around task assignment) and the subtree-to-subcube mapping. For convenience, we 
restrict ourselves to s = 1. 

Consider the matrix A belonging to the k x k regular grid that is pre-ordered by 
nested dissection. The total number of communications to factor matrix A is [31]: 

Ncomwrap = O(p * k2 * logk) 

for the wrap column-distribution, and 

Ncornsub = G(p * k2) 

for the subtree-to-subcube mapping. Moreover, the result for the latter is asymptot­
ically optimal, and the each process has 0(k2) communications to perform. 

It is well known that nzL is 0( k 2 *log k) [26], thus: 

Ncom9 rid 0( VP * k2 * log k) . 
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The grid distribution reduces the total number of communications by a factor of ,/P 
compared to the wrap distribution. Furthermore, the grid distribution has an order 
of magnitude fewer communications compared to the subtree-to-subcube mapping if 

Only for values of k such that k » p the subtree-to-subcube mapping has fewer 
communications, but then communication time is not dominant anymore (the number 
of computations of the k x k regular grid is 0( k3

) [26], hence a well-balanced parallel 
program has 0( ~) computations to perform in each process). 

p 

The reduction in communication volume of the grid distribution has also been ob­
served by [67] and [73]. 

5.3.3 Experiments 

In this subsection, we present timing results of an implementation of the parallel 
sparse submatrix-Cholesky sketched previously. The input set of symmetric positive­
definite matrices is obtained from the Harwell-Boeing library [17]. The matrices 
originate from different problem fields as indicated in Table 5.0. The problem sizes are 
modest, ranging from symmetric systems with 1072 unknowns up to 10000 unknowns. 

Name n nzA nzr, description 
canl072 1072 6758 28307 airplane structure 

bcspwr09 1723 4117 7252 power network 
lshpl882 1882 7393 80859 L-shaped grid 
lshp3466 3466 13681 183123 L-shaped grid 

gr6464 4096 20098 102879 square grid 

I bcspwrlO .5300 . 13571 28306 power network USA 
grl00100 10000 ! 49402 298946 square grid : 

Table 5.0: The test set of Harwell-Boeing matrices. The problems gr6464 and 
gr! 00100 are not in the library; they represent the k x k regular grid for k = 64 
and k = 100. n gives the dimension of the matrix, nzA and nzL give the number of 
non-zeros in A and L, respectively. 

The matrices are pre-ordered using a minimum degree algorithm in order to reduce 
the fill. From Table .5.0 it can be seen that some problems have a large fill in the 
Cholesky factor. For example, the matrix of problem grlOOlOO contains initially only 
49402 non-zeros; its Cholesky factor contains 298946 non-zeros. The Cholesky factor 
may still be considered sparse since only 0.6 % of the total number of matrix elements 
are non-zero. 

In Table 5.1, timing results are given for the sparse parallel submatrix-Cholesky 
algorithm on 4~256 transputers. The multi-processor system is an FT400-Parsytec 



Name 1 4 16 64 256 ! 

• canl072 15.81 5.62 2.45 1.31 0.88 
bcspwr09 1.53 1.12 0.9.5 0.85 0.80 
lshp1882 63.77 20.5 7.89 3.60 2.08 
lshp3466 167.1 52.33 19.04 8.23 4.48 

gr6464 55.64 19.34 8.47 4.52 3.15 
I bcspwrlO 6.50 4.18 3.27 2.75 2.49 I 

grlOOlOO 212.03 - 27.43 13.57 8.75 

Table 5.1: Timing results for the Harwell-Boeing problems on 1, 4, 16, 64, and 256 
transputers (time in seconds). 

machine consisting of 400 transputers, each having 2 Mbyte memory, arranged in 
a square-mesh communication network. Timing results for the p = 1 version are 
obtained on a different transputer with a 16 Mbyte memory. All computations are 
done in double-precision arithmetic (64 bits), and the program is coded in the parallel 
language Occam 2 [43]. No results for p = 4 on the gr100100 problem could be 
obtained due to memory limitations. As can be seen from the table, the execution 
times decrease with the number of processors. In principle, an increase by a factor of 
two in the number of processors can result in a similar speed-up of the computation. 
In practice, the gains are much less. For the problems bcspwr09 and bcspwrlO the 
execution times are only reduced by a small factor. The largest gains are obtained 
with small numbers of processors. For example, gr6464 decreases from 55.64 seconds 
on 1 processor to 4.52 on 64 processors. The highest speed-up is obtained for the 
lshp3466 problem, namely 37 on 256 processors. 

The problems taken for the Harwell-Boeing library are relatively small, which results 
in the execution times for most problems being bounded by communication time (the 
O(a * n * ~) term in the complexity results). This can clearly be seen in Table 5.2 
where the number of transputers is further increased to 400. Saturation in the exe­
cution times occurs, and for most problems the execution times even increase, which 
is caused by the third-order term 0( a * n * y'p) in the complexity formula. 

Name 256 400 ! 
can1072 0.68 0.73 

bcspwr09 0.25 0.27 
lshpl882 1.76 I 1.79 
lshp3466 3.89 i 3.68 

gr6464 2.12 2.09 
bcspwrlO 0.80 0.821 
grlOOl 00 5.74 5.62 

Table 5.2: Timing results for the Harwell-Boeing problems on 256 and 400 transputers 
(time in seconds). 

Timing results for some farger problems originating from linear programming prob-
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Imes have been given in [3]. There, it is shown that for these larger problems the 
execution times are considerably reduced even on 400 transputers. 

In conclusion, for a modest number of processors, say up to 64, a large decrease 
in the execution times of the Harwell-Boeing problems is found for the grid-based 
submatrix-Cholesky. Increasing the number of processors leads to a saturation in 
the timing results or even an increase in time. This is mainly due to the dominance 
of the number of communications. It is expected that the scaling behaviour of the 
algorithm is much better for problems with a high number of average non-zeros per 
row/ column (compared to JP). 
As a comparison, we include in Table 5.3 timing results reported for the problem 
gr6363 on an Intel iPSC multi-processor system (p = 16) [30]. 

Name wrap subtree llfcornwrap 

gr6363 62.34 42.17 1219769 

Table 5.3: Timing results taken from [30] on 16 processors of the Intel iPSC. In the 
columns wrap and subtree, the execution times are reported for the two parallel fan­
in Cholesky programs using a wrap-column distribution and the subtree-to-subcube 
mapping, respectively. In the columns Ncomwrap and Ncom'"'b the number of com­
munications are reported. The execution times can not be compared, since different 
architectures and programming languages are used. The number of communications, 
however, can be compared: for the similar problem gr64M we find Ncomgrid is at 
most 604986 (using the upper bound for Ncomgrid on page 92). 

5.4 A parallel multiple-rank update algorithm 

The parallel sparse Gholesky factorisation algorithm of the previous section computes 
columns one by one, in order of increasing column number. The parallelism comes 
entirely from the distribution of data. In general, the Cholesky factorisation of a 
sparse matrix may use an additional source of parallelism. Many columns of the 
matrix L may be computed in parallel, these columns are independent, since the 
matrix is sparse. 

This can be used to combine several single-rank updates into one multiple-rank up­
date. Instead of computing columns one by one, a batch of columns can be computed 
in a single step. Communications can be also combined in large batches, thereby de­
creasing various communication overheads. Communication is pipe-lined; an increase 
in the number of values to be communicated along a pipe results in an improvement 
of the overall efficiency, since the startup time of the pipe becomes less important. 
Large batches of computations and communications also decrease the number of syn­
chronisations, and improve the load balance. 

In the following, we indicate how the use 'natural' parallelism in the parallel sparse 
submatrix-Cholesky. Before doing so, we discuss first elimination trees. 



5.4.0 Elimination trees 

The dependencies between the columns are captured by the directed elimination 
graph T( A) = (V, E) associated with the Cholesky factor L of A, which is defined as 
follows. 

Definition 5.2 (Elimination graph) The elimination graph T(A) (V, EL) as­
sociated with the Cholesky factor L of A has the same vertex set as G(A). The set 
of directed edges is 

EL= {j, k: k (min i: j < i < n /\ L(i,j) =f. 0: i): (j, k)} . 

By convention, min 0 = +oo. D 

Clearly, if (j, k) E EL and (j, k1
) E EL then k k' holds. In general, graph T(A) 

is a forest. For simplicity, we assume that the graph is a tree, the elimination tree 
[53, 68]; it has a root n - 1 and all its edges are directed towards the root. 

" 
2l 

21 

Figure 5.7: The elimination tree T(A) of the NETLIB problem afiro (see Figure 5.4) 
is given here. The edges are depicted undirected. The interpretation of an edge (j, k), 
with j < k, in the elimination tree is that the computation of column j must precede 
the computation of column k. Note that n l (=24 in this case) is the root. 

The elimination tree T(A) can he computed efficiently as part of the pre-ordering of 
A (and L ), because it only depends upon the sparsity structure of L. An example of 
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an elimination tree is given in Figure 5.7. For a review of the use of elimination trees 
in Cholesky factorisation, see [54]. 

5.4.1 Layered-defoliation strategy 

Two columns j and k, with j < k, are said to be independent if column j is not needed 
to compute column k. This is equivalent to L(k,j) is a zero element. (Column k 
needs only the columns which are determined by the non-zeros in row k.) Independent 
columns can be computed in parallel, i.e., the order in which they are computed is 
immaterial. 

Consider two vertices j and k, j < k, in elimination tree T(A). Let T.k be the set of 
vertices of the subtree rooted at vertex k. The following holds: 

(*) L(k,j)-f:O'*jET.k. 

This can be proved easily by induction to the 'distance' k: J. 

If k - j = 1 then (j, k) E hence j E T.k. If k - j > 1 then let k' be the smallest 
number such that j < k'::::; k and L(k',j)-/: 0 holds. If k' = k then again (j, k) E 
hence j E T.k. In the other case, k' < k, L(k',j) -/: 0, and k' j < k - j holds, 
and by applying the induction hypothesis we conclude that j E T.k'. Furthermore, 
L(k, k')-/: 0 must hold, and by applying the induction hypothesis again, we conclude 
k' E T.k. Combining j E T.k' and k' E T.k gives j E T.k. 

The converse of ( *) states that every vertex j that is not a member of the subtree 
rooted at k is independent from k. Obviously, the leaves of the elimination tree 
are mutually independent, so that all the corresponding columns can be computed 
independently. (A generalisation is given in [54]). 

This suggests the strategy of layered defoliation of the elimination tree: compute all 
columns corresponding to the leaves of the tree, remove the leaves, and repeat this 
until the tree is empty. The leaves that are removed in each round form a layer of 
vertices in the elimination tree. Formally: 

Definition 5.3 (layered defoliation) Let JI be the number of vertices on the 
longest directed-path in elimination tree T(A) (V, EL)- The layers obtained by the 
layered defoliation strategy are: 

£.h {k:kEVl\O".k h:k},O<_S_h<ll, 

where a.k gives the Strahler number of vertex k in a tree. D 

Definition 5.4 (Strahler number) The Strahler number of a vertex kin a tree 
T( A) is defined by: 

O".k (max j: (j,k) EEL: a.j +I), 

and by convention max 0 0, i.e., the Strahler number of a leaf is zero. D 
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Example 5.5 Using the layered-defoliation strategy, we find for the elimination tree 
of Figure 5.7 the following 12 (H = 12) layers: {O, 1, 2, 3, 5, 9, 10, 11, 12, 17, 18, 
19, 20}, {4, 14}, {6}, {7}, {8}, {13}, {15}, {16}, {21}, {22}, {23} and {24}. In this 
example, a chain is obtained after removing the first two layers. No more parallelism 
is available, and each column has to be computed one by one. D 

Within a layer the order of computations are immaterial; it is only required that the 
layers are processed starting from the leaves to the root. Hence, the columns within 
each layer can be renumbered consecutively. This defines a permutation 7r, which can 
be computed by the program of Figure 5.8. 

I[ s, h: int; 7r(i: 0 :Si< n): array of int; 
s := 0 ; h := 0 

ll 

; doh =f. H--+ 

od 

for all i: i E £.h: 7r(i) := s + l{k: k E £.h /\ k < i: k}l lla rof 
; s := s + 1£.hl 
; h := h + 1 

Figure 5.8: Construction of a permutation vector 7r 

Many permutations are possible that number the vertices within a layer. The chosen 
permutation 7r has the property: if i < j then 7r(i) < 7r(j) for any two vertices i,j 
from the same layer. In this way, the relative order between vertices in the same layer 
is maintained. 

Permutation 7r is used to symmetrically permute the columns and rows of L (and A) 
such that the columns of each defoliation layer are numbered consecutively. In the 
following, it is assumed that A has already been permuted symmetrically using 7r. 

Actually, the layered-defoliation strategy defines a topological ordering on the elim­
ination tree. In a sequential algorithm, the fill and the corresponding number of 
operations is invariant under such an ordering [54]. 

The Cholesky factor L of A has a special block structure: it consists of consecutive 
blocks h, 0 :Sh< H, where block h contains the 1£.hl columns of layer £.h. Further­
more, the 1£.hl x 1£.hl submatrix on the main diagonal of L that falls in block h is 
a diagonal matrix. (This can be seen as follows: the existence of a non-zero element 
L(k,j) with j < kin the submatrix implies j E T.k, hence there is a path in the 
elimination tree from j E £.h to k E £.h, which contradicts the fact that k and j are 
in the same layer £.h.) An example of this block structure is given in Figure 5.9. 

5.4.2 Using layered defoliation 

Layered defoliation can be used to homogeneously distribute the independent com­
putations, and to combine computations and communications in batches. In the fol-
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lowing, we informally discuss the parallel submatrix-Cholesky based on multiple-rank 
updates. The matrix A has the special block structure, and is distributed according 
to the grid distribution. 

Figure 5.9: The grid distribution of the non-zero pattern of the permuted Cholesky 
factor of afiro (see Figure 5.4) across 4 processes is shown. The processes are identified 
by different grey-scales. The matrix is permuted according to the layered-defoliation 
strategy. The Cholesky factor has a special block structure: each block corresponds 
to one layer from the elimination tree. Only the diagonal submatrices of the first 
two layers are shown. The first layers consists of 13 columns, the second layer of 2 
columns. The remaining layers have only one column. 

The parallel multiple-rank update algorithm consists of a loop over the number of 
layers. In each step of the algorithm, the columns belonging to one layer are com­
puted, and they are used to update the remaining submatrix. This is done in three 
phases. 

In the first phase, the independent columns are computed by all processes. The grid 
distribution assigns each column to Al processes, and ensures that the non-zeros in 
each block corresponding to a layer are distributed evenly. 

In the second phase, all columns from one layer have to be replicated to all other 
process columns and rows, thus giving a large batch of communications. 

In the third phase, each process has a number of non-zeros belonging to all the 
columns from a layer. These non-zeros are used to update the remaining submatrix 
in one large batch of computations. This results in a multiple-rank update, instead 
of the single-rank update in the algorithm of Subsection 5.3.l 



5.4.3 The parallel multiple-rank update algorithm 

The layers are non-decreasing in size. This property can be used to compactly repre­
sent the information about the block structure of L, namely by two arrays multi and 
rank, each of length nrank. It is only necessary to record the different block sizes 
together with multiplicity of their occurrence: there are multi( r) consecutive blocks 
of rank(r) columns, for all r: 0 $ r < nrank. Clearly, the following relation holds: 

(2::: r: 0 $ r < nrank: multi(r) * rank(r)) = n 

Furthermore, rank is strictly decreasing, and rank(r) > 0, multi(r) > 0, 0 $ r < 
nrank. 

It is easy to show that: 

n 2:: (I: r: 0 $ r < nrank: rank(r)) 2:: (nrank * (nrank - 1))/2. 

Thus, nrank < V2'*n; so arrays rank and multi are not too large. 

For reasons of simplicity, we assume that multi(r) l, all blocks of matrix L 
have different sizes. The program text for the grid-based parallel submatrix-Cholesky 
using multiple updates is given in Figure 5.10. 

( s, t) :: 
j[ lo, r: int; 

11 

lo 0; T' := 0 
; do r j nrank ~ 

od 

{lo= (I: i: 0 $ i < r: rank(i)) /\ 0 :$ r :$ nrank} 
for all k: lo :S k <lo+ rank(r) /\ k\M = t: 

RestorePl.s.t (k) 
Ila rof 

{Qc.s.t} 
; C.s.t 
{Rc.s.t} 
; for all k : 0 :S k < rank( r) : 

for all j: j\lv! = t /\lo+ rank(r) :S j < n /\ d(j, k) j 0: 
for all i: i\M s /\ j :S i < n /\ c(i, k) j 0 : 

L(i,j) L(i,j) c(i, k) * d(j, k) 
Ila rof 

Ila rof 
Ila rof 

;lo lo+rank(r);r r+l 

Figure 5.10: Program text for the sparse multiple-rank update submatrix-Cholesky 
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The three phases of the program are clearly visible. The first phase consists of con­
secutive calls to RestorePl.s.t (k) of Figure 5.5. For clarity, the dependence on k is 
expressed explicitly. The second phase consists of a large batch of communications 
performed by communication process C.s.t with precondition Qc.s.t and postcondi­
tion Rc.s.t . This communication process uses two-dimensional arrays c and d, each 
storing the necessary communicated values. In an implementation, a large buffer 
is sufficient to represent c and d. The specification of C.s.t is not given formally, 
since it simply is a generalisation of Cl.s.t and C2.s.t of the single update algorithm. 
Precondition Qc.s.t states that locally the non-zero values of the columns k, with 
lo~ k < lo+ rank(r) and k\M t are available. Postcondition Rc.s.t states that 
each process (s, t) has in arrays c and d the appropriate non-zeros of the columns 
k, lo ~ k < lo+ rank(r). The third phase uses the arrays c and d to update the 
remaining submatrix in one large batch of computations. 

The resulting program is a generalisation of the single-raJ1k update algorithm, which 
can be recovered if we choose nrank 1, rank(O) 1, and multi(O) = n. 

A complexity analysis of the algorithm is not given here, since it is similar to the one 
given in Subsection 5.3.2. 

5.4.4 More experiments 

As in Subsection 5.3.3, the set of Harwell-Boeing matrices is taken for the timing 
experiments. The results for the multiple-rank update algorithm are obtained on the 
same hardware and software platform (cf. Table 5.4). The major difference between 

Name 4 16 64 
can1072 15.81 I 5.28 2.16 1.08 0.68 

bcspwr09 1.53 0.72 0.49 0.33 0.25 
lshp1882 63.77 20.0 7.20 3.19 1.76 
lshp3466 167.1 52.27 18.64 7.67 I 3.89 

gr6464 55.64 19.08 8.21 :3.89 2.12 

1 
bcspwrlO 6.50 2.97 1.87 1.20 0.80 
grlOOlOO 212.03 25.87 11.64 5.74 

Table 5A: Timing results for the Harwell-Boeing problems running the parallel 
multiple-rank update submatrix-Cholesky on 4, 16, 64, 2.56 transputers (time in sec­
onds). The timing results for the p = 1 version are obtained from the rank-1 update 
algorithm. 

Table 5.1 and this table is that the the parallel multiple-rank update algorithm is 
faster in all cases. The gains can be considerable, for example, bcspwrlO takes 2.49 
seconds in the single-update algorithm and only 0.80 seconds in the multiple-update 
version. This results in higher speed-up numbers: grl00100 increases its speed-up 
from 14 to 37 on 256 processors. The highest speed-up is obtained for problem 
lshp3466, namely 43 on 256 processors. It is remarkable that the gains increase rel-



atively more with the number of processors, for example, grlOOlOO decreases from 
13.57 to 11.64 seconds on 64 processors, and from 8.75 to 5.74 seconds on 256 pro­
cessors. This is mainly caused by the fact that the improved version decreases the 
term O{J.P * n) in the complexity results, which becomes more important with an 
increasing number of processors. From the timing results can be concluded that it is 
worthwhile to exploit 'natural' parallelism by using the layered-defoliation strategy. 
The additional overhead in re-ordering the matrix and the arrays rank and multi to 
record the block structure of L is small. 

5.5 Final remarks 

In this chapter, parallel algorithms for sparse Cholesky factorisation have been dis­
cussed. A parallel submatrix-Cholesky has been developed that uses the grid dis­
tribution of the non-zeros. It has been shown for a model problem that the grid 
distribution reduces the total number of communications by a factor of JP compared 
to any column-distribution. The resulting algorithm is obtained from the parallel 
program scheme for dense Cholesky factorisation in Chapter 4. Characteristic of the 
parallel algorithm is that it repeatedly performs rank-1 updates with newly computed 
columns. 

A generalisation of the rank-1 update algorithm is the multiple-rank update al­
gorithm, which combines several columns in each step of the computation. This 
algorithm is obtained by exploiting 'natural' parallelism in the form of indepen­
dent columns. These columns are easily discovered from the elimination tree of 
the Cholesky factor. A layered-defoliation strategy of this tree is used to define a 
renumbering that allows the independent columns to be homogeneously distributed 
across the processes. As a consequence of this strategy, the resulting matrix of the 
Cholesky factor has a special block structure. The grid distribution of such a ma­
trix ensures an even distribution of independent columns, and results in a parallel 
algorithm that combines communications and computat.ions in large batches. This 
gives a considerable reduction in the execution time of the Cholesky factorisation for 
problems taken from the Harwell-Boeing library. 

The multiple-rank update still allows for many improvements. For example, columns 
often have a similar non-zero structure and can be combined to form 'supernodes'. 
Updates with these supernodes can be implemented more efficiently. Communications 
of several columns combined in a supernode can be reduced by at most a factor of two, 
since it is only necessary to communicate the numerical values of the different columns 
and the non-zero structure (the row indices) of the supernode. Another improvement 
would be the exploitation of the assignment of columns in the layered-defoliation 
strategy. Columns in the same layer are now assigned to different process columns. 
It is also possible to assign columns in the same layer in such a way that operations 
can be performed entirely local. In this way, communication can be reduced. 



Chapter 6 

Epilogue 

6.0 Retrospect 

In this thesis we advocated a design method for parallel programs. The way we design 
parallel programs closely resembles sequential This is mainly due to 
the strict rules we force upon the 'structure' of a parallel program: 

• A parallel program consists of p instances of a parameterised process S. 

• S is further refined by using standard sequential programming techniques into 
a sequence of ordinary sequential programs and communication processes, each 
being a parameterised process again. 

• Instances of a parameterised communication process form a communication­
closed layer: communication takes place only between the 'same' process in­
stances. 

As a consequence of this structure, we can consider a parallel program to be de­
composed into layers. In the computation layer, work is distributed across the p 
processes, and each process performs computations on its set of local data. In the 
communication layer, the processes interact via message passing. 

The decomposition into layers facilitates the correctness concerns. Each layer is 
constructed by using parameterised invariants, and can be proven correct by applying 
proof rules. 

A communication layer has a separate specification usually with a simple function­
ality. Alternative implementations of the communication processes, which are based 
on different communication networks, can be analysed easily. 

Preferably, communication layers should be 'thin' and avoided whenever possible. 
The efficiency of a parallel program is largely determined by the data distribution 
used, which in tum determines the work-load distribution and the number of associ­
ated communications. 
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The role of distributions has been discussed in Chapter 2. There, we discussed static 
distributions of arrays and matrices, and two examples of making new distributions 
from old ones: composition and Cartesian product. In general, reducing the total 
number of communications and spreading communications evenly across processes 
results in the formation of 'thin' communication layers. 

On the other hand, computation layers should be 'thick' and well-balanced, thus 
reducing possible waiting times. 

An example of a parallel program solving a class of segment problems was given in 
Chapter 3. In the derivation, the postcondition was rewritten into local and global 
expressions. The local expressions resulted in computation layers, and the global 
expressions in communication layers. Divide-and-conquer rules were obtained that 
combine the local and global expressions. 

A larger example was given in Chapter 4, where parallel programs were obtained for 
dense Cholesky factorisation and triangular syster::1 solving. The Cholesky factori­
sation program uses Cartesian distributions, and it has been argued that the grid 
distribution has favourable properties. Timing-experiments confirm this claim. In 
the derivation for the triangular system solver a non-trivial communication process 
was obtained. Additionally, the concept of computational deadlock was discussed and 
the order between parameterised invariants was formalised by the use of a ranking 
function. Again, the resulting programs consist of a decomposition into layers. 

In Chapter 5 two new parallel algorithms were obtained for the sparse Cholesky fac­
torisation of a matrix. Both algorithms use the grid distrihution for the non-zeros 
of the matrix. The first algorithm is similar to dense submatrix-Cholesky: sparsity 
is only exploited in a trivial sense. The second algorithm exploits independent com­
putations, which are easily identified if the sparse matrix is pre-permuted using a 
layered-defoliation strategy of the elimination tree. This improved algorithm spreads 
the independent computations evenly across process columns and combines compu­
tations and communications in batches. Timing-experiments on 1-256 transputers 
have been given as well. The Harwell-Boeing matrices used in the experiments repre­
sent realistic problems. Although the programs have not been formally derived, the 
structure of the parallel programs reflects a decomposiLiou into layers. 

Our primary contribution has been to demonstrate that parallel programs can be 
constructed in a way which does not much differ from sequential programming. 

6.1 Applications and future work 

Many of the ideas found in this thesis have been applied, formally or informally, to the 
construction of KSLA's parallel linear algebra library. An example of a large parallel 
program (6500 lines of code) using this library is a parallel linear programming solver 
[3]. In [71] a parallel implementation of a direct fluid-flow simulator is reported, 
which uses a decomposition into layers. 
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Other examples of parallel program derivations based on parameterised invariants 
include dynamic programming [47] and sparse LU decomposition [72]. 

In our opinion, efficient parallel algorithms can be made with our method. Here, we 
restricted the presentation to only a few examples, but the limits of our method have 
been explored to some extent. For example, the number of processes can be increased 
until a so-called fine-grained parallel program is obtained. Of course, our method is 
applicable to fine-grained programs but it is our experience that the borders between 
the different kinds of layers then become fuzzier. Consequently, it is more difficult 
to give a work-load analysis. Implementations of parallel programs constructed with 
our method are targeted at powerful, multi-processor systems consisting of a modest 
number of processors - say 2-1024. 

In the future we are planning to enlarge the number of applications of our method. 
The problem fields we will focus on are sparse matrix computations and graph algo­
rithms. These are interesting problems because of their more irregular communication 
requirements and the challenges that lie in parallelising these problems. 
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Samenvatting 

De tijdsduur van een computerberekening kan worden bekort door gebruik te maken 
van een parallel computersysteem bestaande uit een vast aantal identieke processoren 
elk met een eigen lokaal geheugen. Elke processor kan gelijktijdig een onafhankelijk 
berekeningsdeel uitvoeren. Vaak is het noodzakelijk om deelberekeningen te com­
bineren, daarom worden er tussen de processoren berichten verstuurd via verbin­
dingskanalen. De zojuist geschetste parallelle computer beschikt dus over een groot 
verkaveld geheugen dat toegankelijk is door een communicatienetwerk. 

In dit proefschrift wordt een methode besproken om op gestructureerde wijze ef­
ficiente programma's te maken voor een parallelle computer met verkaveld geheugen. 
In het eerste hoofdstuk van het proefschrift wordt ingegaan op allerlei aspecten van 
de methode. Kort samengevat: een parallel programma bestaat uit p aanroepen 
van een enkel geparametriseerd programma. Zo'n programma is verder verfijnd in 
een concatenatie van gewone sequentiele programma's en communicerende processen, 
d.w.z. programmadelen die berichten versturen. De sequentiele programma's worden 
op formele wijze verkregen m.b.v. de invariantenmethode. De communicerende pro­
cessen bevatten communicatieacties en zijn verantwoordelijk voor de berekening en 
verspreiding van globale informatie. 

We eisen van een parallel programma dat het opgebouwd is uit afwisselende reken­
en communicatielagen. In een rekenlaag wordt door alle sequentiele programma's 
een onafhankelijke berekening uitgevoerd. In een communicatielaag vindt interactie 
plaats tussen de verschillende communicatieprocessen van het parallelle programma. 
De communicatieacties behorende bij een communicatielaag zijn gesloten, d.w.z. geen 
enkele communicatieactie geschiedt tussen twee verschillende communicatielagen. De 
communicatieprocessen van een laag kunnen afzonderlijk gespecificeerd worden, waar­
door het mogelijk is om alternatieve verwezenlijkingen van deze progra.mmadelen te 
bestuderen. 

Een efficient parallel programma wordt verkregen door de beoogde berekening even­
wichtig over de sequentiele programma's te verdelen en het aantal communicatiela­
gen zo klein mogelijk te houden. De verdeling van de berekening wordt grotendeels 
bepaald door de verdeling van de variabelen over het verkavelde geheugen. lmmers, 
voor de eindwaarde van elke variabele client men een aantal bewerkingen uit te voe­
ren. In het tweede hoofdstuk worden enige eenvoudige verdelingsfuncties voor rijen 
en matrices besproken. 
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In het derde hoofdstuk passen we de gepropageerde methode toe op een klasse van 
berekeningen met rijen. De verkregen parallelle programma's vertonen duidelijk een 
lagenstructuur; daardoor is het mogelijk om theoretische uitspraken te doen over de 
doeltreffendheid van de programma's. 

In het vierde hoofdstuk worden parallelle programma's behandeld die de oplossing 
berekenen van een symmetrisch positief-definiet systeem. De matrix van zo'n sys­
teem is dicht en de coefficienten worden verdeeld m.b.v. een Cartesische distribu­
tiefunctie. Vervolgens wordt het systeem opgelost door een ontbinding a la Cholesky, 
gevolgd door het oplossen van twee driehoeksstelsels. Er wordt een uitvoerige analyse 
gegeven van de werklastverdeling en de communicatieverplichtingen van het parallelle 
Cholesky factorisatie algoritme. De grid distributiefunctie, ook wel splinterafbeelding 
genoemd, heeft verreweg de beste eigenschappen, wat ook aangetoond is door een 
vergelijking met parallelle programma's die andere distributiefuncties gebruiken. De 
driehoeksoplosser wordt, gegeven de splinterafbeelding van de matrix, op eenvoudige 
wijze geconstrueerd volgens de spelregels van de programmeermethode. 

In het vijfde hoofdstuk wordt gekeken naar ijle symmetrische systemen, die zich ken­
merken door de aanwezigheid van grote aantallen nulcoefficienten. Twee parallelle 
Cholesky factorisatiealgoritmen worden behandeld, die elk de splinterafbeelding ge­
bruiken. De eerste algoritme is een rechtstreekse parallellisatie van een sequentieel 
submatrixalgoritme. De tweede algoritme is een verbetering <lie gebruikt maakt van 
onafhankelijke pivotelementen en van een snoeistrategie van <le eliminatieboom. De 
executietijden van beide algoritmen worden met elkaar vergeleken; daartoe worden 
er tijdswaarnemingen gedaan op problemen die afkomstig zijn uit de Harwell-Boeing 
collectie. 

De programmeermethode, zoals deze hier verdedigd wordt, is toegepast op voor­
beelden uit de praktijk. Gebleken is dat op deze wijze efficiente parallelle pro­
gramma's verkregen kunnen worden. 
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Stellingen 
bijbehorende bij het proefschrift 

A Design Method 
For 

Parallel Programs 

van 

L.D.J.C. Loyens 



0. Voor belangrijke lineaire algebra operaties zoals matrixvermenigvuldiging, LU­
decompositie, Cholesky factorisatie, QR-decompositie, en driehoekstelseloplos­
sen bestaan er efficiente parallelle algoritmen die gebruik maken van de grid 
distributie [10, 4, 2, 7, 5]. 

1. In een Cartesische productgraaf G x H geldt <lat de gemiddelde padlengte gelijk 
is aan de som van de gemiddelde padlengten in G en H respectievelijk. Met 
<lit gegeven kan op inzichtelijke en eenvoudige wijze, in tegenstelling tot [11], 
de gemiddelde padlengte in een binaire hyperkubus worden bepaald. 

2. De niet-Cartesische distributiefunctie (zie [1] voor def. distributiefunctie) 

(n2 ,M2
, (,\i,j. ((i + j/M)\M, (j + i/M)\M))) 

van een n bij n matrix heeft de eigenschap <lat elke rij en kolom van de ma­
trix evenredig wordt verdeeld over alle 1112 processen. Met deze distributie 
kan een parallel matrix-vector vermenigvuldigingsprogramma worden ontwor­
pen <lat een betere werklastverdeling heeft clan met een vierkante Cartesische 
distributie. 

3. Zij (V, <) een eindig transitief systeem. Dan geldt (zie [2] voor def. ranking 
function): 

(V, <)is irreflexief = (:Jr:: r is een ranking function op (V, <)) . 

4. Zij A de matrix behorende bij het regulier vierkant rooster met in iedere richting 
2k -1, k 2 1, roosterpunten die genummerd zijn volgens 'nested dissection' [6]. 
De snoeistrategie van de eliminatieboom van A kan op zeer compacte wijze 
beschreven worden door middel van de rijen multi en ran/.~ elk van de lengte 
nrank [3]. Er geldt: 

nrank = 2 * k - 1, 
rank( nrank - 1 - i) = 2i, 
multi(nrank - 1 - i) = 2k-(i+i)/2 - 1, 0::::; i < nrank. 

5. De parseq rege] [OJ vermijdt het gebruik van z.g. parallelle 'debuggers'. Boven­
dien is de p = 1 versie van een -met deze regel verkregen- parallel programma 
geschikt om te worden uitgevoerd op een sequentiele computer. 

6. De parallelle programmeertaal Occam [8] leent zich uitstekend tot het maken 
van lange programma's, maar is ongeschikt voor grote programma's. 



7. In de huidige ontwikkeling van processoren voor parallelle computersystemen 
wordt teveel nadruk gelegd op de Megafloppen per seconde en neemt de ver­
houding tussen communicatie- en rekentijd toe. Dit achten wij, met oog op de 
programmeerbaarheid, een ongewenste ontwikkeling. 

8. In de Griekse mythologie volbrengt Heracles de twaalf werken, waaronder het 
verslaan van de negenkoppige Hydra. Volgens [9] is, in het gevecht met de 
Hydra, elke strategie een winnende, m.a.w. Heracles kon niet verliezen! Hieruit 
concluderen wij <lat er hooguit elf echte werken waren. 

9. In een organisatiestructuur zou het beoordelen van minderen door meerderen 
ook omgekeerd moeten plaatsvinden. Zo wordt van alle beoordeelden de wijze 
van functioneren beter vastgesteld. 

10. Waar gehackt wordt vallen spaanders. 
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