

A design method for parallel programs

Citation for published version (APA):
Loyens, L. D. J. C. (1992). A design method for parallel programs. [Phd Thesis 2 (Research NOT TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR381947

DOI:
10.6100/IR381947

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR381947
https://doi.org/10.6100/IR381947
https://research.tue.nl/en/publications/3306ecd1-98e1-412d-8ad0-74869ffe1c90

A Design Method
For

Parallel Programs

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector :Vlagnificus,
prof. dr. J.H. van Lint,

voor een commissie aangewezen
door het College van Dekanen
in het openbaar te verdedigen

op dinsdag 22 september 1992 te 16.00 uur

door

Ludovicus Daniel Joseph Carolus Loyens

geboren te Maastricht

Dit proefschrift is goedgekeurd door
de promotoren

prof. dr. M. Rem
en
prof. dr. R.C. Backhouse

en de copromotor

dr. P.A.J. Hilbers.

I

The research reported in this thesis has been carried out at
Koninklijke/Shell-Laboratorium, Amsterdam
in collaboration with
Department of Mathematics and Computing Science,
Eindhoven University of Technology.

para Concha
e Qui co

Acknowledgements

Writing a PhD thesis about parallel programs did not cross my mind until I met
Hans van de Vorst. He and my former boss, Gerrit van Zee, convinced me to start
working on the 'formal' part of KSLA's Parallel Computing project in 1987.

Many things changed, Hans en Gerrit moved and so did many of my ex-colleagues, but
the Parallel Computing project kept on going and has been continuously supported
by Rob Bisseling, John Somers and myself. Klaas Esselink and Peter Hilbers joined
us, and carried over their enthusiasm into the project. Meanwhile the number of
transputers of our parallel machine grew from one, to four, to forty, to four hundred.

I sincerely thank my colleagues for the many stimulating interactions during those
exciting years. Special thanks go to Ben Sijtsma for his help with PostScript. Our
managers Theo Verheggen and Arie Langeveld are gratefully acknowledged for pro­
viding me with the freedom to work on this thesis.

My main PhD adviser Martin Rem kept me focussed on the subject. It was a pleasure
to work under his guidance. Thanks go also to the other members of the "kleine
commissie": Roland Backhouse, Jan van Leeuwen and Bob Mattheij. Last but not
least I thank Maria da Conceic;ao Fernandez Ferreira for her support and love.

Preface

Characteristic of today's scientific research is the use of digital computers as a mod­
elling tool. For example, the effect of changing plant operations on the refinery process
can be evaluated without on-site experiments. Another example is the simulation of
fluid dynamics in a reactor.

A common characteristic of complex models is their huge demand on computational
resources. Many problems are time and memory bound, and therefore require pow­
erful computer systems. A diverse range of uni-processor systems is available, but
it is generally felt that these uni-processor systems obstruct the realisation of larger
models or faster solution times. Indeed, multi-processor systems are already used for
many scientific computations.

Processing elements are more and more integrated on a single piece of silicon and
allow for building system boards containing several processors. These system boards
can be assembled to form a large multi-processor system. From a programming point
of view, it desirable that such a system consists of well-balanced processing elements
such as transputers.

The interactions between processors of such a system are carried out exclusively on
the basis of message exchanging. The alternative is to have shared memory among
the processors, but then the multi-processor system's size is bounded by the size of
the shared memory. Distributed-memory systems overcome this barrier, since each
processor has it own memory and interaction is via message passing. On the other
hand, this kind of interaction can be very complex.

The use of multi-processor systems with a large distributed memory raises an impor­
tant and practical question: "How do we program them?".

Perhaps this can be done by designing a compiler capable of extracting parallelism
from a program. In our opinion, this is a tremendous task with many pitfalls. A
more natural answer to this question is to design a para.Ile! program for the target
system. Such a program is difficult to design, since many complex program concerns
have to be taken into account. Nevertheless, a strict design discipline like the one
proposed in this thesis can be used to overcome this barrier. Our goal is to provide
a formal method, which facilitates the design of parallel programs by seperating
communication from computation issues.

II

Contents

Preface

0 Introduction

1 Design Methodology

1.0 Aspects of parallel program construction

1.0.0 Functional specifications

1.0.1 Invariants .

1.0.2 Correctness

1.1 Program notation

1.2 Proof rules

1.3 Communication processes

1.3.0 Some simple communication networks .

1.4 Time complexity of parallel programs

1.5 Combines and partial combines

1.6 The parseq rule

1.7 Summary

2 Distributions

2.0 Introduction

2.1 One-dimensional distributions

2.2 Composition of distributions

2.3 Cartesian distributions ..

2.4 Counting communications

2.5 Final remarks

lll

1

7

7

7

8

10

11

13

17

17

18

24

28

30

33

33

34

38

40

41

44

3 Parallel Segment Computations

3.0 Introduction

3.1 The functional specification

3.2 Divide-and-conquer rules .

3.3 The parallel program scheme .

3.4 Complexity

3.5 All-prefixes problem

3.6 Final remarks

4 Parallel Symmetric-System Solving

4.0 Introduction

4.1 Parallel Cholesky factorisation

4.1.0 A derivation

4.1.1 The communication processes

4.1.2 Candidate distributions.

4.1.3 Experiments

4.2 Parallel triangular system solving

4.2.0 A derivation

4.2.1 Complexity of the triangular solver

4.3 Final remarks

5 Parallel Sparse Cholesky Factorisation

5.0 Introduction .

5.1 Background

5.2 Review ...

5.3 A parallel algorithm based on rank-1 updates

5.3.0 Why grid?

5.3.1 A parallel sparse submatrix-Cholesky algorithm

5.3.2 Complexity analysis

5.3.3 Experiments

5.4 A parallel multiple-rank update algorithm

5.4.0 Elimination trees

5.4.l Layered-defoliation strategy

5.4.2 Using layered defoliation .

47

47

48

49

52

53

55

57

59

59

61

62

65

66

68

71

71

77

79

81

81

82

85

86

87

88

90

93

95

96

97

98

5.4.3 The parallel multiple-rank update algorithm

5.4.4 More experiments .

5.5 Final remarks

6 Epilogue

6.0 Retrospect .

6.1 Applications and future work

Bibliography

Index

Samenvatting

Curricum vitae

v

100

101

102

103

103

104

107

113

115

117

Chapter 0

Introduction

The word parallelism originates from the Greek word 7rap6),).Tf>.oc;. It is a contraction
of 7rapa, meaning side by side, and a>.>.T/>.oc;, meaning one another. The spirit of this
ancient Greek word breathes harmony (side by side) and similarity (one another).

A parallel program can be considered as a number of harmoniously cooperating pro­
cesses with similar structures. The processes work towards a common goal and they
usually interact with each other by exchanging messages. The processes we have in
mind are imperative programs - prescriptions of statement sequences in some formal
language.

A parallel program may involve many processes with complex interactions. It is
generally felt that the high degree of complexity of a parallel program obstructs its
development.

In this thesis, we discuss a design method for parallel programs. Our aim is to give
some basic guidelines that enable us to master the complexity of parallel programs.
This results in a parallel-programming method that is built on top of the formal
methods for sequential program construction, which have been shown to be very suc­
cesful. Formal methods and sound engineering principles, like separation of concerns,
are indispensable in parallel program construction. In the following, we informally
explain our method.

Central in this thesis is the notion of a parameterised process. A parameterised
process is much like a procedure or a subroutine in sequential programming. The
difference is that, instead of having only one instantiation in a sequential program
(a single call), we have many instantiations in a parallel program. Indeed, the par­
allel program is obtained by instantiating p processes from one single parameterised
process. In this way, processes with similar structures are obtained.

There are more analogies with sequential programming. The design of a parame­
terised process closely resembles the design of a sequential program. A parallel pro­
gram is specified using functional specifications just as in sequential programming.
Such a specification forms the starting point for a parallel program derivation, i.e.,
a formal construction of parameterised processes constituting a parallel program. In

order to achieve this, we use parameterised invariants and other formal methods in
the spirit of [13].

A parameterised process is further refined into a sequence of ordinary sequential
programs0 and communication processes. In this way, a parallel program is decom­
posed into layers of process instances.

Example 0.0

s.o :: S.l :: S.2 ::

Lo So.O So.1 So.2
L1 Co.O ; Co.l ; Co.2
Lz S1.0 ; S1.l

'
S1.2

L3 ; C1.0 ; C1.l ; C1.2

Figure 0.0: Schematic of a parallel program decomposed into layers

In Figure 0.0, a parallel program consisting of 3 instances of parameterised process
S is shown. Each process S.q, 0 ::::; q < 3, is vertically decomposed into a sequence
of 4 processes, namely S0 .q, C0 .q, S1 .q, and C1.q. Parameterised processes So and
S1 are sequential programs. Parameterised processes C0 and C1 are communication
processes.

Another way to look at the parallel program is by its decomposition into the layers:
Lo ; L1 ; L2 ; • Each layer consists of instances of the same parameterised process.
Communication can only take place between communication processes in the same
layer, for example, between the processes C0 .0, C0 .1 and Co.2 in layer L1 • D

Each layer consists of either communicating processes or cooperating programs, which
are obtained from a parameterised process again.

This strict separation of concerns in the design of a parallel program has several
advantages:

• A clear specification of each individual parameterised process can be given.

• The type of interaction between processes is limited, since a parameterised
process is either an ordinary sequential program or a communication process.
This facilitates the correctness proof of the parallel program.

The design of a communication process benefits from this approach, because its sep­
arate role becomes much clearer. For instance, it is relatively easy to analyse the

0We prefer to speak of sequential programs instead of sequential processes. since a process has
always an interaction with its outside world. For the same reason, we prefer the word communication
process above communication program. The entity that combines both a sequential program and a
communication process is a process again.

3

influence of communication networks on the parallel program's complexity, and to
consider alternative implementations for the communication processes.

Interaction between processes is either by message passing, which always takes place
between processes within the same layer, or via local variables. The latter form
of 'communication' crosses the boundary of the layers, and is similar to parameter
passing in sequential programming. Each column in Figure 0.0 should be considered
as one unit. An implementation of a parallel program on a multi-processor system
simply means assigning each unit to a processor.

An efficient parallel program is guaranteed if we distribute the work and the number
of communications evenly across the layers. A sequence of layers, 1 0 ; 1 1 ; L 2 ; ••• ,

consisting of only sequential programs form a 'thick' computational layer. The work
in such a layer should be distributed evenly across the parameterised processes of
the parallel program. Cooperation, which addresses exchange or computations of
global data, takes place in a communication layer. Preferably, such a layer should
be 'thin', which can be achieved by avoiding communications as much as possible. If
it is impossible to avoid communication we strive for spreading the communications
across the instances in a communication layer. This clearly depends on the chosen
communication network.

In this thesis several examples are given of parallel programs that are structured
by their decomposition into layers. Included are non-trivial examples for segment
problems, dense symmetric-system solving and sparse Cholesky factorisation. In each
of the derivations we indicate the influence of the chosen communication network and
the data distribution.

From our experience with parallel program construction on a medium-sized multi­
processor system (400 transputers), we have found that the proposed method yields
practical parallel programs, which can have high efficiencies [4].

Outline of the thesis

This thesis consists of seven chapters, which are numbered consecutively. The rec­
ommended order of reading is the sequence:

0 ; 1 ; 2 ; par 3 , 4 rap ; 5 ; 6 ,

where everything between par and rap can be read in arbitrary order.

Chapter 1 discusses several aspects of parallel programs. We state the skeleton of
our design method, which is based on the use of parameterised invariants and our
knowledge of sequential programming. Small examples are given to clarify our point
of view. At the end of this chapter we give a derivation of a parallel program.

Chapter 2 discusses simple distributions of arrays and matrices together with two
examples of making new distributions. The properties of distributions largely deter­
mine the efficiency of a parallel program. We study the properties of distributions in

order to obtain a better understanding of their role in parallel programs.

In Chapter 3, the proposed parallel programming techniques are applied to a class of
segment problems. In this model problem, all ingredients of parallel program design
are encountered. We start with deriving decomposition rules, and this eventually
leads to the formulation of a parallel program scheme. The resulting techniques can
also be applied to problems which closely resemble the model problem.

In Chapter 4, we derive a parallel program for the solution of a special class of
symmetric systems. Parallel programs are given for the Cholesky factorisation and
triangular system solving of a dense matrix. The parallel programs use a Cartesian
distribution, which are very useful in matrix computations. It is demonstrated that
it is feasible to strive for a separation between load balance and communication
requirements. Some experimental comparison results are given as well.

Chapter 5 has a different character than the preceding chapters. A sparse parallel
Cholesky factorisation program is obtained on the basis of the work of Chapter 4.
The resulting algorithms are believed to be new, and can be used as building blocks
for many algorithms that need the solution of a sparse symmetric positive-definite
system. Timing~results for the parallel programs are also given.

Chapter 6 is the closing chapter of this thesis.

Notation

The notation for quantifications slightly differs from what is used in mathematics.
The general format is:

(Gk:Q:E),

where 8 is a quantifier, for instance, I:, max,';/, etc., k is a list of bound variables, Q
is a predicate describing the domain of the bound variables, and E is an expression.
The base type of the bound variables is usually the set of integers.

Sets are denoted in a similar way as quantifications. The notation

V {i,j: i 2 + j 2 = a2
: (i,j)}

specifies the set V of all integer pairs which lie on a circle around the origin with
radius a. The cardinality of a set V is denoted by I V I ·
Function application is denoted by a dot (.) . It has the highest binding power and
associates from right to left. Whenever confusion is possible a pair of parentheses has
been added. The integer operations division and remainder use the symbols/ and \,
respectively.

The program derivations and proofs are recorded in the following notational style due
to W.F.H. Feijen:

EO
= {hint why EO El}

El
> { hint why El ;:::: E2 }

E2

where 0 ~ i < 3, are expressions. In this way, a derivation of EO ;:::: E2 is recorded
via an intermediate expression El. A hint of the form EO = El is an indication of
how to obtain in a small number of steps the equality between expression EO and
El. The hint "calculus" refers to common arithmetical rules.

Chapter 1

Design Methodology

The aim of this chapter is to describe in a nutshell a number of important concerns
with respect to parallel programs. We briefly discuss in order of appearance: aspects
of parallel program construction, program notation, proof rules, communication pro­
cesses, time complexity, and the parseq rule. The discussion is tailored to our needs.
Here, the main purpose is to set out the lines of thought for playing the game called
parallel programming. To exemplify this game we give a derivation of a parallel
program computing all partial combines.

1.0 Aspects of parallel program construction

1.0.0 Functional specifications

It is quite common in sequential programming to use the Hoare-triple [40]

{Q} S {R}

to denote a formal specification. This notation expresses that if program S starts in
a state described by predicate Q and the program terminates, then upon completion
predicate R is satisfied. Hoare-triples have been adequate in sequential program
construction, and they can be extended to specify parallel programs as follows. Both
pre- and postcondition, Q and R, are split up as the conjunction of p, p > 0, local
pre- and postconditions, and a process is associated with each such pair. Specifically,
the triple

{Q.q} S.q {R.q}

is the functional specification of process S.q, 0 ~ q < p, where S is a parameterised
process. In this way, only one single parameterisecl specification is given instead of p
specifications.

7

A parameterised specification usually contains some local variables representing a
part of a distributed data object, for example, an array or a graph. The processes
of the parallel program perform operations on such a data object. Therefore, the
parameters of a specification are q, p and a data distribution D. Many choices are
possible for D, each of them having an impact on the complexity of the parallel
program. It is assumed that variables representing distributed data are partitioned
across the p processes. There is no shared memory.

For manipulating a parameterised specification, it is necessary to have the data dis­
tribution be parameterised as well. In Chapter 2 some data distributions arc studied
in more detail. An example of a parameterised specification is given next.

Example 1.0 (sum, specification) Given are p processes and an array f of length n
distributed across all processes. The problem is to determine a parameterised process
S that records in each process the sum of all array elements of f. The functional
specification reads:

I[p, n: int:
f(i: 0::; i < n): array of int:
{O < p:::; n}
par q : 0 :::; q < p :

rap
JI .

I[w: int;
{Q.q:O<n}
S.q
{R.q: w = (I;i: O::; i < n: f(i))}

JI

The parallel program is formed by p instances of S, namely all 8.q, 0 ::; q < p. In the
notation, parallel composition is expressed by par rap. The brackets "I[" and ".II" are
scope brackets and are used to delimit the extent (or scope) of a variable-declaration.
Note that for p = 1 we have a specification of a sequential program. D

1.0.1 Invariants

The approach we follow to obtain a parameterised process S from a functional spec­
ification is similar to the methods used in sequential programming [13, 33]. These
methods obtain from a specification an invariant in a ca.lculational style. Several
standard techniques are applicable to finding a suitable invariant. The programs are
derived by calculating the necessary conditions to maintain the invariant. In a deriva­
tion, one often identifies subproblems that are easier to deal with than the original
problem. This process of refinement is repeated until it becomes trivial to design a
program text that meets its specification.

ASPECTS OF PARALLEL PROGRAM CONSTRUCTION 9

Our approach differs from others [9, 10, 70] in that the invariants are also parame­
terised as in [75]. This is a natural consequence of introducing parameterised speci­
fications. There is no need to define a theory about parallel programs. Indeed, the
main advantage of this approach is that we reuse sequential programming techniques.

In our approach, a programmer has to concentrate on a parameterised specification
and has to obtain a parameterised invariant. This can be done, for example, by taking
the data distribution into account. The aim is to rewrite the pre- and postcondition in
such a way that one can identify local and global specifications. A local specification,
referring to data that is local to a process, can be satisfied by a sequential program.
A global specification requires some form of coordination between the processes,
i.e., several processes have to interact with each other via message exchanging in
order to satisfy the specification. It is exactly the latter concern that makes parallel
programming difficult.

Example 1.1 (sum, outline) Take the specification of the previous example. Let
O.q be the set of indices of array elements of f that are assigned to process q. As
a first step towards an invariant, two subproblems are identified: recording the sum
of all array elements locally in a variable v, and summing these accumulated values
globally. This can be derived by rewriting the global sum in R.q as:

(2: i: 0 Si< n: f(i))
{ rewrite range }

(l: q: 0 $ q < p: (l:i: i E 0.q: f(i)))
= { introduction lsum }

(l: q : 0 :S q < p : lsum.q) ,

where
lsum.q (l: i: i E 0.q: f(i)) , for all q: 0 :$ q < p.

In this way, two subproblems SO.q and Sl.q, with local postconditions RO.q and Rl.q
respectively, are identified (cf. Figure 1.0).

S.q ::
I[v: int;

11

SO.q
{RO.q: v lsum.q}
; Sl.q
{ Rl.q : w q : 0 S q < p : lsmn.q)}

Figure 1.0: Outline of parameterised process S for the sum problem

For process SO.q it is easy to obtain an invariant. Process Sl.q requires a global
communication process, which will be discussed in Section 1.4. 0

1.0.2 Correctness

The programs we intend to make should be correct by construction. So, correctness
of parallel programs addresses correctness of applying the construction rules.

In non-communicating parts of a parameterised process we have only assertions and
statement lists. The correctness can be proven by using assertions and proof rules
based on the wp calculus [13, 15]. For instance, termination of loops, is proven in the
usual way by a variant function which decreases in every iteration of the loop and is
bounded from below.

Unfortunately, parallel programs interact with each other, thus complicating correct­
ness rules considerably. The only interaction we allow is communication based on
message passing. Processes send and receive values (messages) along channels. The
part of a process instance that contains these communication statements is called a
communication (sub) process.

Proof rules for communication statements are given in Section 1.2. An explicit as­
sertion is made before the sending of a value, and an explicit assertion is made after
the receipt of a value. The assertions about the communicated values are expressed
in terms of global (constant) expressions. In this way interference of proofs, as en­
countered in the Owicki-Gries theory [64, 65], is avoided. This leaves us with the
obligation to prove the correctness of a communication process using the proof rules.
Such a proof in its full length can be quite cumbersome.

Usually the functionality of a communication process is a very simple one. It is
sufficient, therefore, to study some frequently used communication processes and
their implementation on communication networks (see Section 1.3). In this way,
problems like deadlock and starvation are avoided, since it is assumed that correct
implementations of communication processes can be given.

The communication processes are parameterised as well, and they can be specified
in isolation. This not only facilitates the conectness proof, but also allows for a
single correctness proof. In addition to this, a strong restriction is posed on the pro­
cess instances of a para.meterised communication process. All communications occur
between instances of the same parameterised process. Such a process is called commu­
nication closed. Therefore, one can think of a parallel program as being decomposed
into layers. Each layer either is a sequential statement list or contains communication
statements. Layers can be syntactically separated by semicolons, and are specified
by pre- and postconditions.

Example 1.2 A parameterised process S might be decomposed into

S.q ::
SO.q

; CO.q
; Sl.q

where SO.q and Sl.q are sequential programs a.nd CO.q 1s a communication pro-

cess. SO.q may be a complex program; the process instances of SO form a layer and
have parameterised preconditions and postconditions. The communicating processes
instances CO.q also form a layer. It is possible that each process Sl.q is further
decomposed into, for example:

Sl.q ::
do B.q
__, S2.q

; Cl.q
; S3.q

od

where B.q is a guard (a boolean expression in terms of local variables of process q),
S2.q and S3.q are sequential programs, and Cl.q is a communication process. In
the do-loop the layers formed by the processes S2.q, Cl.q, and S3.q, are identified.
It is possible that each process instance Sl.q is executing in a different layer, but
logically SI is decomposed into layers whose correctness proofs are given separately.
The correctness of the loop in Sl is partially proven by:

{P.q A B.q} S2.q; Cl.q; S3.q {P.q}

for an invariant P.q of Sl .q . D

The term layer in the context of parallel programs was first introduced in [20]. In their
terminology a layer of mutually communicating processes is called a communication­
closed layer. In [20] the layers were only used to verify correctness of parallel pro­
grams. In this monograph we use the layer concept as part of the design methodology.
The programmer is, of course, responsible for the formulation of logical layers.

So much for the design aspects of parallel programs. In the sequel we shall omit the
parameters p and 1) in parameterised formulas (specifications, invariants), and the
range 0 S. q < p for process numbers.

1.1 Program notation

The program notation used is based on Dijkstra's guarded command language and
is described in [13, 15]. Examples of sequential programs written in the guarded
command language can be found in [14, 46].

In the programs we have declarations of variables in a Pascal-like style, extended with
local scope rules. The symbols I[x ... II delimits the scope of variable x. Variables
have usually type 'int' or 'real'. An array f of length n with base type 'real' is declared
as "f (i : 0 :::; i < n): array of real". The programs have the following constructs:

abort

skip

x := e

SO ; SI

if BO --t SO ~ Bl --t SI fi

do BO --t SO 11 Bl --t SI od

stop forever

do nothing

assignment

sequential composition

alternative construct

repetition.

The if and do-statements use boolean expressions BO and Bl, called guards. If
any guard in an if-statement evaluates to true the corresponding alternative is cho­
sen; if all evaluate to false the statement is equivalent to skip. In a do-statement
guards evaluating to true and their corresponding alternatives are chosen repeatedly;
if all evaluate to false the statement is equivalent to skip. We allow more than two
alternatives.

As an extension to Dijkstra's notation we introduce the for all-statement:

for all i : i E set : S.i Ila rof arbitrary order.

This statement denotes sequential composition in some arbitrary order of statements
S.i, one for each value i in the set. If the set is empty the for all-statement is
equivalent to skip. Note that the variable i in the range of for all is a bound variable.
Sometimes more than one bound variable appears in a range, thus specifying a nested
repetition.

Example 1.3 (sum, SO.q) The statement list

assigns to v the sum of all array elements f that are local in process q. (0 .q gives
for each process q the set of local array indices off.) This statement list implements
process SO.q of Example 1.1. D

Parallel composition is denoted by

par q : 0 :5 q < p : S.q rap parallel composition.

We allow different ranges in the par-statement and different process identifications.
The par-statement terminates if all of its constituent processes terminate.

Example 1.4 The statement list

par s, t : 0 :5 s < M /\ 0 ::::; t < N : S.s.t rap ,

with p = M * N, specifies the parallel composition of p processes S.s.t each identified
by an ordered pair (s, t), 0 s < M and 0 :5 t < N. D

The notation
par SO , SI rap

denotes the parallel composition of two processes SO and SI, and is used in commu­
nication processes to express simultaneous execution.

Communication is expressed by the statements:

rle output to process r the value of expression e

s?x input from process s of a value, which is assigned to x.

Since all processes are identified by process numbers, two processes 1· and s performing
s :: r! and r :: s? define a channel in the CSP meaning [42], namely from process s to
process r. Such a channel is shared between two processes, and its direction is from
sender to receiver. Every output statement is matched by a unique input statement
and vice versa. We have not used names to denote channels between processes, since
it is always clear in the programs which process is sending (outputting) and which
process is receiving (inputting). Process numbers can be used in expressions in order
to identify a channel.

Example 1.5 The statement

(q + 1)!10 , for a process q,

denotes that process q sends the value 10 to process q + 1. The expression (q + 1) is
called a channel expression. D

The underlying communication mechanism can be synchronous (like in CSP) or asyn­
chronous. For the latter it is required that messages (values) sent by a process always
arrive, in arbitrary time, at the receiving process, without duplication, and in the
same order they were sent.

The parallel programs presented in this monograph do not use communication chan­
nels, like a probe [6I] or the ALT construct of occam [4:J], in guards. Such a construct
is difficult to capture in a simple proof rule for communication.

1.2 Proof rules

A weak correctness proof of a parallel program, i.e., in the absence of deadlock, relies
on the annotated program and the use of proof rules. An annotated program uses as­
sertions before and after the program (corresponding to the functional specification),
and between its statements. Such an assertion, or Hoare-triple,

{Q}S{R},

is valid if it is either an axiom, or it is obtained by applying an inference rule.

An example of an axiom is the assignment axiom:

{R (x := e)} x := e {R} ,

The notation R (x e) refers to predicate R with all free occurrences of x replaced
by expression e.

An inference rule of the form:

B

where A, B, and Care predicates, states that if A and Bare proved then C may be
concluded. An example of an inference rule is the rule of consequence from sequential
programming:

Q:::;. Q', {Q'} S {R'}, R':::;. R
{Q} S {R}

stating that a precondition may always be strengthened and a postcondition may be
weakened.

The axioms and inference rules form the set of proof rules. The parallel programs
we consider all terminate, and consist of sequential statements taken from Dijkstra's
language and statements for expressing parallelism and communication. For the
sequential statements the proof rules from [i:J, :3:3] are used. It is assumed that the
corresponding axioms and inference rules for the program constructs like ; , x e,
etc., are known.

Additionally, we have the following proof rule for the par-statement [41, 65]:

Definition 1.6 (par rule)

(V i : 0 ::; i < p : { Q. i} S. i { R. i})
{(Vi: 0::; i < p: Q.i)} par q: 0::; q < Jl: S.q rap {(Vi: 0::; i < p: R.i)}

0

The precondition of the par-statement is the conjunction of all preconditions of each
process S.q. A similar remark holds for the postcondition. The state spaces of the
processes are disjoint, since each process has its own set of local variables. Execution
of one process, therefore, cannot alter the state of another process, except when
communication occurs. Communication is done by message passing; proof rules are
given elsewhere.

The par rule states that if we manage to design a parameterised process S.q, with
corresponding pre- and postcondition, then we lrnve designed the parallel program.

A derivation of a parallel program can be started in two different ways. The most
natural way is to start from a local postcondition and closing the gap between pre­
and postcondition by refinement. Sequentia1 programming techniques can be used for

PROOF RULES 15

refining. Another way is the formulation of global invariants, i.e., an invariant about
the distributed data object as a whole. Global iuvariants serve as an intermediate
step towards local invariants. We will see an example of the latter in Section 1.5.

The input statement uses the following axiom:

Definition 1. 7 (input axiom)

r :: {true} s?x {M.x},

where Af.x is a predicate in terms of local variable x of process r and its process
number. s is the process number of the sending process. D

The axiom is adapted from [51] and states that anything can be concluded after
the receipt of a value. At first sight, this may be a rather strong conclusion, but
if we consider the input axiom in isolation then, with only one process running, an
input statement deadlocks and any predicate M.x may be assumed to be true upon
termination.

The next inference rule is similar to the rule of satisfaction in [51]. It relates the
postcondition of an input statement in a process r to the precondition of the matching
output statement in process s.

Definition 1.8 (?!-rule)

r :: {true} s?:r {M.x}
s :: {M.x (x := e)} r!e {M.x (x := e)}

where M.x is a predicate in terms of the local variable x of process r and its process
number, and e is a local expression of process s. Furthermore, the communication
statements in s and r match. D

The motivation for the ?!-rule is the following. In the design of a communication
process we have available the postcondition of a receiving process r, and in particular,
an assertion lvf.x about the, to be, communicated value x. The precondition of the
matching sending process s is easily obtained by substitution. The sending of a value
does not change the state space of the sending process s. Unlike in [51], no assertions
are made about the global state space. Indeed, the proof rule presented here is rather
weak, since it makes only assertions about the communicated value. For our purposes,
however, it suffices, and it is also applicable to asynchronous communication.

Example 1.9 An application of the ?!-rule is given next. Take M.x = odd.x and
e = y + 1 in Definition 1.8. The precondition of the sending process becomes:

M.x (x := e)
{ definitions M.x, e }

odd.x (x y + 1)
{ substitution }

odd.(y + 1)
{ calculus}

even.y.

From this example we see that communication is like a distributed assignment x := e.
The right-hand side of x e is evaluated by process s, and the result is communicated
to process r. Process r assigns the received message to variable x. Note that x is a
local variable of process r. D

It is allowed to have process numbers in the expressions e and A1.x .

Example 1.10 Consider a parallel program with two parameterised processes S.q,
0 :Sq< 2, i.e., par S.O, S.1 rap, and

{ 0 :5 q < 2 /\ B.q}
par {B.q} (1 q)!q {B.q}, {B.q} (1- q)?x {M.x.q} rap
{B.q /\ M.x.q}

JI .

Figure 1.1: Outline of two parallel processes with q = 0 or q = 1

In the assertions, predicate M.x.q equals x = 1 q. To use the communication
rules we have to identify the matching communications. In this case, there are two
matching communications, namely

l -q ::

q ::

{B.(1 - q)} q?x {i\Lr.(1 - q)}
{B.q} (1 q)!q {B.q}.

Applying the ?!-rule for r = 1 - q and s = q, 0 :S q < 2, we obtain for B.q the
following parameterised proof:

M.x.(1 - q) (x e)
{ definitions M.x.(1 q), e }

x q(x q)
{ substitution }

true

B.q.

Hence, the precondition is true. D

The communication rules are not applied as strictly as suggested. In general, we
indicate their use in the correctness proof of a communication process. The assertions
in communication processes are annotated according to the ?!-rule. This means that
a postcondition is given for the receiving process after an input statement (?), and a
precondition is given for the sending process just before its output statement (!).

1.3 Communication processes

Consider the following specification of a parameterised communication process.

Example 1.11 (broadcast) Lets be a process number and X be a value.

{qfsVx=X}
C.q
{x = X}

In C, a value X from process s is sent to all other processes. Such a functionality is
called a broadcast. Variations are multiple senders {multi broadcast) or only a subset
of the processes as receivers. D

The specification of a communication process like a broadcast is relatively simple, its
implementation is not. The reason is that additional assumptions have to be made
about the channels that are used during the broadcast. This restriction stems from
the physical limitations a processor network has. In an implementation, processes
are assigned to processors, and channels to paths of communication wires connecting
processors. Needless to say that this burdens the programmer, and complicates the
task of algorithm design, since size and processor topology have to be taken into
account.

A parallel program can be considered [60] as an undirected graph with processes
as nodes. Each edge represents two communication channels of opposite direction
(an edge indicates the possibility to communicate directly between two processes).
Additionally, it is often required that such a "computation graph" is connected and
may vary in structure during the computation. On the other hand, a processor
network can be considered as a fixed "implementation graph" representing a multi­
processor system. Mappings between these graphs have been studied by others [7,
39], and in this monograph we do not consider the mapping problem. Instead, we
briefly discuss some simple communication networks [77], and forget about processor
networks.

It is possible to write communication processes independent of any process topology
by using spanning trees as demonstrated in [58]. Still, it is desirable to consider
different kinds of communication networks, since they have a certain impact on the
time complexity of the parallel program. Isolated specifications for communication
processes allow for alternative realisations. In this way, it is possible to analyse the
influence of communication networks on the communication processes.

1.3.0 Some simple communication networks

The simplest connected communication network one can think of is a tree of p nodes.
The degree of a node in a network (graph) is the number of neighbours of the node.
Trees with nodes of degree at most 2 can be obtained be arranging nodes as a chain,

also called linear array. In a chain network of p processes, two processes s and t,
0 ~ s, t < p, are neighbours iff I s - t L

An important measure for the number of communication steps is the length of a
longest path, i.e., the maximal number of edges on a path. A chain has a longest
path of length p - L A tree with shortest-possible longest path is the star network
of p nodes. The path length is at most 2: one node has degree p 1 and the other
nodes 0 (if present) have degree 1 .

A balanced binary tree (every non-leaf ha.<; two neighbours) consists of 2k 1 nodes,
k > 0, of which 2k-t are leaves. A balanced binary tree has a longest path to the
root of length k - 1.

A simple cyclic communication network is the ring of p nodes, which can be obtained
by adding an edge between nodes 0 and p - 1 in the chain network. The length of a
longest path in a ring is p/2.

New communication networks can be obtained by taking the Cartesian product of
graphs [36]. For example, an M by N mesh, M, N > 0, is the Cartesian product of
two chains of length M and N. A torus or toroid is the Cartesian product of two
ring networks.

A binary hypercube of dimension n has 2n vertices and is obtained by the Cartesian
product of n chains of length 2. In general, the k-ary n-cube (the case k 2 is
usually called hypercube), is characterised by l.:n vertices, each vertex having an n­
digit radix-k address and an edge iff two vertices differ in their addresses by 1 in only
one digit.

Many of the simple communication networks mentioned before can be emulated on
a binary hypercube [7].

Finally, we have the complete network in which every two processes can communicate
directly by their channel.

1.4 Time complexity of parallel programs

The time complexity of a parallel program is an estimate of the time it takes to
execution the program's computation. It is desirable to quantify the time complexity
of a parallel program in a mathematical formula. Sucl1 a formula relates the execution
time of a parallel program to the size of the input n and the number of processes p.

A process can compute, can communicate, or, in the absence of these main activities,
can be idle. Each activity contributes to the time complexity of a parallel program.
We introduce two measures: the computation complexity and the communication
complexity, each including (a part of) idling. The role of each of these complexities
will be discussed in turn. We start with the latter.

0 A node of degree 1 in a tree is called a leaf.

TIME COMPLEXITY OF PARALLEL PROGRAMS 19

The communication complexity, denoted by Tc.p.n, is determined by counting the
number of communication steps needed to complete the communication process. A
communication step is the communication of a value to a neighbouring process. The
communication network can allow for a number of communication steps to take place
in parallel. This means that Tc.p.n is at most the total number of communications.

The communication complexity is also determined by the number of values (messages)
to communicate and the size of a message. We assume that all messages have uniform
size.

Example 1.12 (broadcast) A broadcast can be implemented on a chain according
to Figure 1.2.

C.q ::
{O:Ss<p}
{q:/:sVx=X}

if q < s -> (q + 1)? x ~ s < q -> (q - 1) ? x f i { x x}
;par ifO<q'.Ss->(q l)!xfi

'ifs:::: q < p - 1-> (q + l)b' fi

Figure 1.2: Implementation of a broadcast on a chain

The correctness of this communication process can be proven by induction on the
number of processes p and using proof rules.

The number of communication steps needed to complete the broadcast for a chain
is at most p - 1, since the longest path has length p - 1 for s 0. Clearly, this is a
worst-case scenario; the average path length is:

1 * (I: s : 0 :::: s < p : s max (p - 1 - s)) ,
p

which is approximately (3*p)/4, and this can also be achieved without the parallelism
in the sending process s = q. Note that in a broadcast process where a value is
sent from one process to only one other process the average path length becomes
approximately p/3. A broadcast process on a hypercube takes logp steps. 0

Example 1.13 (sum, Sl.q) Consider the specification of communication process
Sl.q for the sum problem (see Example 1.1). It is necessary to add all local lsum
values. This can be done by using a tree in which these values are collected and added
from the leaves towards the root. The root, process 0, will broadcast the global sum
to all processes. We use a tree with minimal longest-path length.

For each process q we define the functions f ather.q and children.q by:

f ather.q

children.q

(q - 1)/2 if q > 0 otherwise 0,

{i:(i 2*q+1Vi=2q+2)/\i<p:i}.

Process 0 is the root, i.e., f ather.q q holds for q = 0. The program text for Sl.q is
given in Figure 1.3. In the assertions we use function Tree. Tree.r gives the set of
all processes in the subtree rooted at process r. A formal definition is:

Tree.r = { r} V (U k : k E children.r : Tree.k) .

For simplicity reasons, an array x is declared in every process recording intermediate
results. (In a actual implementation each process needs at most two variables.)

The communication complexity Tc.p.n of this process is O(logp), since we use a tree
with minimal longest-path length llog2 pj. Had we chosen to implement process Sl.q
on a chain network then the complexity would become O(p). D

Sl.q ::
I[x(O ::; i < p - 1): array of int;

par r: r E children.q:
r?x(r)

JI

{x(r) O::: k: k E Tree.r: lsum.k)}
rap

; w :=v
{w = lsum.q}
; for all r: r E children.q: w := w + ;i:(r) Ila rof
{w = (L: k: k E Tree.q: lsum.k)}
; if f ather.q -::f:. q-+ father.q ! w

; f ather.q '? w
{w = (L: q: 0 $ q < p: l.mm.q)}

fi
{ w = (L: q : 0 $ q < p : lsum.q)}
; for all r : r E children.q : r ! w Ila rof

Figure 1.3: Outline of each communication process 81.q for the sum problem. The
communication network used is a tree.

From the last two examples we learn that the chosen communication network heavily
influences the time complexity of communication processes, and hence the overall time
complexity. This is not always the case, since it can happen that the communication
complexity is entirely determined by the number of messages, or is dominated by the
amount of work per process.

Example 1.14 (pipe-lining) Given is a broadcast process that instead of one value
broadcasts n values. Such a situation happens when it is necessary to broadcast an
array of n elements. We assume that n is much larger than p (n ~ p > 1). The
time complexity of such a broadcast process on a chain network is

Tc-p.n = n + p 2

using a technique called pipe-lining.

TIME COMPLEXITY OF PARALLEL PROGRAMS 21

The program is obtained by repeatedly performing, for each array element, the broad­
cast program C (cf. Figure 1.2).

The time complexity consists of two terms. The first term indicates the number
of communications n. The second term is recovered for n = 1 and indicates the
length p - 1 of the pipe, which is at most the length of the longest path in the
communication network. This is usually called the start-up time of the pipe, since it
equals the number of steps to send a message along the pipe. For large n ~ p, Tc.p.n
is approximately n on any communication network.

The communication complexity of this problem is entirely determined by the number
of values to communicate, and not by the communication network. 0

Example 1.15 The communication complexity becomes less important when so­
called surface/volume effects play a role. Imagine a computation on the pixels of a
two-dimensional picture [21], where each pixel uses information from all its nearest­
neighbour pixels.

The picture can be represented by an n by n matrix of values, one for each pixel. A
natural way of distributing a square matrix is by using a JP by >JP mesh of processes
(assuming pis square). Each process in the mesh is responsible for a pixel submatrix.

This leads to a parallel program with communication complexity 0(,fl), since it is
determined by number of the pixels on the borders of each submatrix. The amount of
work per process is O(~), since computations are done for all pixels in a submatrix.

It is clear that for n large compared to >JP the amount of work per process dominates
the communication complexity. The network hardly influences the total program's
complexity. 0

The computation complexity of a sequential program is usually determined by count­
ing the number of elementary operations (assuming every elementary operation takes
the same amount of time and ignoring overhead). In the parallel case this is not an
adequate model, since operations can overlap.

As previously motivated, we construct our programs in logical layers and each layer is
either a sequential program or a communication process. Synchronisation is enforced
naturally between a sequential program and a communication process if we assume
synchronous communication.

The time complexity of a sequential program layer is determined by the slowest
process instance in that layer. Usually, the slowest process has to perform most
operations. Therefore, it is meaningful to count operations and to compare the
minimum number of operations in a process with the maximal number. The time
complexity of a communicating layer is determined by the communication complexity.

The time complexity of the parallel program is obtained by summing the time com­
plexities of each layer. In this way, we obtain an upper bound on the time complexity
of the parallel program. If we ensure (and we will!) that the program layers are well
balanced then this upper bound is a good estimate for the actual time complexity.

There is, however, a problem with asynchronous communication which allows for
overlapping of computations and communications within a process. This combination
is difficult to capture in complexity results. For this reason, the complexity results
are only valid for synchronously communicating processes.

We wish to relate the communication and the computation complexity, and express
the time complexity of a parallel program in formulas. For that purpose we define
the quantity a.

Definition 1.16 (a, tc, tr) The communication-to-computation ratio a is defined by:

fc
a-­

- tr'

where tr is the time required to do a single elementary operation (an addition or
multiplication), and tc is the time required to communicate a single value of fixed
size (an integer or a real). D

The values for a range from 0.5 for VLSI [2], about 4.5 for transputers [4], to about
150-750 for the current generation hypercube machines [18]. The time complexity of
a parallel program is given by T.p.n.

Summarising:

Definition 1.17 (T.p.n, Tr.p.n, Tc.p.n)

T.p.n Tr.p.n +a* Tc.p.n,

Tr.p.n the computation complexity

1~.p.n = the communication complexity

The communication complexity is obtained assuming synchronous communication.
0

Note that the actual time spent by the parallel program is at most T.p.n *tr. Some­
times we say that the time complexity is 0(;1:) meaning T.p.n = O(x) where 0
denotes Landau's 0 symbol.

Example 1.18 (sum, complexity) In the sum problem, two layers are identified.
The first layer is formed by all process instances S.q, which are sequential programs.
The second layer is formed by the communicating instances 81.q.

The time .complexity of SO.q is:

Tr.p.n =(max q: 0 ::Sq < p: I O.q I -1) .

This suggests to distribute the n array elements evenly across p processes, and hence

Tr,p.n = (n + p 1)/p - 1 .

The communication complexity of Sl.q is:

where l is the length of the longest path (to the root) in the tree, i.e., l l log2 p J.
Explanation: each non-leaf performs at most two additions (its local lsum plus two
received values) and communication takes two a time units (for simplicity, we charge
a time units for a parallel communication).

The time complexity of the parallel program for the sum problem on a balanced tree
with longest path l becomes:

T.p.n = (n + p- I)/p + 2 *(a+ 1) * l - 1 .

Note that this formula is correct for p 1 (l 0). D

Two other important notions in parallel time complexity are speed-up and efficiency.

Definition 1.19 (speed-up) The speed-up S.p.n of a parnllel program on a problem
X of size n is defined by

S.p.n
T.p.n'

where Tseq·n denotes the complexity of the best known sequential algorithm for prob­
lem X on the same platform. 0

Speed-up is a measure for comparing the solution time of a certain problem with a
fixed size solved in two different ways (as opposed to [3.5]). The aim is to be able
to state how a parallel algorithm performs compared to its sequential brother. It
is not always an easy task to obtain complexity formulas for parallel and sequential
algorithms. Therefore, it is sometimes necessary to verify the parallel time complexity
and speed-ups experimentally.

A fair comparison requires that both the sequential and the parallel algorithm use the
same platform, i.e., identical software and hardware. Such experiments are in practice
often impossible due to the absence of efficient sequential and parallel compilers.
Instead the sequential program obtained from the parallel program for the case p = 1
is used, and Tseq·n is approximated by 1}.l.n. Therefore, speed-up results should
always be interpreted with a critical eye.

Related to speed-up is efficiency E.p.n, a measure for the degree of utilisation of the
processes of a parallel program.

Definition 1.20 (efficiency) The efficiency E.p.n is defined by:

E.p.n

0

S.p.n

p

Efficiency is a number between 0 and 1 if we admit that the speed-up S.p.n is at most
p.

Example 1.21 (sum, efficiency) From the time complexity T.p.n for the sum
problem, and the sequential time complexity TseqJ< = n - 1, we can compute the
efficiency of the parallel program.

E.p.n (l + 2 * , for n > l ,

where l = llog2 p J.
From the last formula we learn that an efficiency of at least 50 % is guaranteed when
the problem size per process (~ ;) is greater than 2 * (a + 1) * l. D

It is, in general, difficult to obtain high efficiencies for a large range of values for
p. Usually, the lower order terms in the complexity results cannot be neglected for
small values of p. Blowing up the problem size while fixing the number of processes
often yields high efficiencies, but this approach is not always feasible for practical
problems.

1.5 Combines and partial combines

As a first example of the use of parameterised invariants we give a derivation of a
combine process. It often happens that in a parallel program a global sum or a global
maximum of p values has to be computed. Such an operation is called a combine.
By grouping the different values in a tree-like fashion (recursive doubling) one can
efficiently compute such a combine [49]. Sometimes it is required to compute all
partial combines1, for example, all begin sums [12]. A specification of the latter is
as follows:

where

I[k, p: int;
f(i : 0 :5 i < p): array of int;

{O :5 k !\ p = 2k}
par q : 0 :5 q < p :

rap

JI .

I[m: int;
S.q
{R.q : m = M.O.(q + l)}

JI

M.a.b = (0 i: a :5 i < b: .f(i)).

We assume that integer array f is distributed by assigning element f (q) to process
q (the identity distribution). The operator 0 is associative, so any term in M.a.b,
a < b, may be split off. Examples of 0 are:

x0y=x+y

x 0y x max y

global sum

global maximum .

A variation of this problem is, for example, all partial end combines lYJ.q.p. Note that
value M.O.p is the global combine.

1This problem is also known as the parallel prefix problem [50].

COMBINES AND PARTIAL COMBINES 25

Our aim is to give a derivation of a partial combine process which has logarithmic
time complexity. We start the derivation by first obtaining a global postcondition R'
from the local ones.

R': (\lq:O::;q<p:mg=M.0.(q+l)).

The notation mg refers to variable m of process q. The hidden constant k in p = 2k
suggests an induction, and by replacing k by a variable t we obtain a global invariant
P'.

P' : (V q: 0::::; q < 21
: mg= M.0.(q + 1)) /\ 0::::; t::::; k.

Here, we assume that t is global for all processes.

Note that P' is easily satisfied if we set m of process 0 to f (0) and t = 0. Furthermore,
P' implies the postcondition if t = k. Progress is made by increasing t, and t can be
seen as a global clock. From P' we get the local invariants P.q .

P.q PO.q /\ Pl.q

PO.q 0::::; t::::; k

Pl.q 0::::; q < 21
:::;. m = 1\11.0.(q + 1).

Via a global postcondition we ended with a. local invariant. We also could have
obtained the local invariant P.q directly by introducing variable t immediately as
a local variable. Nevertheless, a choice is made here in the derivation. It depends
on the problem at hand whether the derivation is started with a global or with a
local postcondition. Often one starts with a specification for a sequential program.
Therefore, it is natural to massage the postcondition in such a way that one easily
obtains local invariants from it. This can be done by ta.king the data distribution
into account.

We continue with the partial combine problem. Consider Pl.q (t := t + 1), i.e., Pl
with t replaced by t + 1.

Pl.q(t:=t+l)
{definition Pl.q (t := t + 1) }

0::::; q < 21+1
:::;. m = M.O.(q + 1)

{ definition Pl, range splitting}
Pl.q /\ (21

::::; q < 21+1 :::;. m = M.0.(q + 1)).

Pl.q (t := t + 1) equals Pl.q for 0::::; q < 21
; only processes q in the range 21

::::; q <
21+1 have to compute M.0.(q + 1). For a process q, with 21

::::; q < 21+1
, we have

m = M.0.(q + 1)
{ definition M }

m = (8 i: 0::::; i < q + 1: J(i))
{ 21

::::; q < 21+1
, range splitting }

m = (8 i: 0::::; i < q- 21 +1: J(i)) 8 (8 i: q- 21 +1::::; i < q + 1: J(i))
{ definition M }

m = M.O.(q - 21 + 1) 8 M.(q - 21 +l).(q+1).

Here, we used the property

(*) M.a.c M.a.b('.) M.b.c, 0 $a< b < c $ p,

for the particular choice a 0, b = q-2t+ 1, and c = q+ 1. The value of M.O.(q-2t+ 1)
is, on account of PO, known in process (q - 21

). The value of M.(q 2t + l).(q + 1)
is, however, unknown. This suggests to strengthen P with invariant P2 in which the
value of M.(q - 2t + 1).(q + 1) is recorded in m for all processes q with q ?'. 2t.

P.q PO.q A Pl.q A P2.q

P2.q : 2t <;, q =? m M.(q - 21 +l).(q+1).

Upon initialisation m M.(q-2°+1).(q+l) = f(q) for q > 0, and m M.0.l f(O)
for q 0 needs to hold. Consider P2.q (t := t + 1).

P2.q (t t + 1)
{ definition P2.q (t := t + 1) }

2t+i $ q =? m = M.(q - 2t+1 +l).(q+1)
{ definition M, range splitting }

21+1 $ q =? m M.(q - 2t+1 + l).(q - 21 + 1) M.(q - 21 + l).(q + 1).

Again we used property(*) but with different a, b, and c. Term M.(q-21 +l).(q+1)
is known on account of P2. Term M.(q - 21+1 + l).(q - 21 +1) is known in process
(q - 21). Note that for Pl the range 21 $ q < 21+1 in P2 is sufficient, but when
maintaining P2 one needs to enlarge the range to 21 $ q < p. We used in this
derivation a splitting rule expressed by property (*).

It is now clear what needs to be done. There are three kind of processes: each process
q with 0 $ q < 2t has trivially restored Pl and P2, each process q with 21 $ q < 21+ 1

has to restore Pl with a proper value of process (q - 21
), and finally each process q

with 21+1 $ q < 2k has to restore P2 with a proper value of process (q-21
). Therefore,

in iteration t, process q should engage in the receiving from process (q 2t) and in
the sending to process (q + 21

) if they exist. The resulting communication process is
given in Figure 1.4.

In the annotated program Af.q.t is shorthand for Af.(q - 21 +1).(q+1) if q?: 21
, and

for M.O.(q + 1) otherwise.

The time complexity of the combine program is O(k) O(logp), because in each
iteration at most two communications and at most one C'.:l operation take place in a
process. The total number of communications is:

since there are 2k - 21 senders (and hence, receivers) in iteration t.

The program can be generalised to arbitrary p, not necessarily a power of two. The
efficiency of the program is low,

E.p.n = 0(10~P) ,

COMBINES AND PARTIAL COMBINES

S.q ::
![m, t, x: int:

JI

t := 0 ; m := f(q)
{P.q}
; dot# k--+

if q < 2t--+ {m = Al.q.t} (q + 2t)!m
~ 2t ::; q < 2k 2t -.--+

{m = M.q.t}
par (q - 21)?x , (q + 21)!m rap

{x = M.(q - 21).t}
; m :=mGx

2k - 2t :::;: q < 2k -.--+

(q-21)?x
• . t •

{x = Af.(q- 2).t /\ m = M.q.t}
; m :=mGx

fi
;t:=t+l{P.q}

od

Figure 1.4: Outline of each process S.q for the partial combine problem

and can be improved to 0(1) using the techniques of [49].

27

The communication network used for the combine problem is a graph consisting of p

nodes; node q is connected by an edge to nodes q + 21 for all t for which they exist.
For n = 16, k = 3, the communication network is given in Figure 1.5. This network
can be mapped on a binary hypercube as follows [48].

Figure 1.5: Communication network for partial combines using 16 processes

Let [q] denote the binary representation of natural number q, #[q] is the number of
l's in [q], and* is taking bitwise exclusive-or, for example [3] * (6] = 011*110 101.
Define the map g by g.q [q] * [q/2], then the following holds (without proof):

#(g.q*g.(q+ 21)) = { 21 if ht 0. for all q,t: 0:::;: q+2t < 2k.
ot erw1se

This means that g maps two neighbouring nodes q and q + 21 in the communication
network on two binary nodes in the hypercube which differ only in one position if
t = 0 and in two positions if t > 0. Hence, in the terminology of [39] each edge of the
communication network is mapped onto a path of length 1 or 2 in the hypercube. An
example mapping is given in Figure 1.6.

0 1 2 3

7 6 5 4

8 9 10 11

5 14 13 12

Figure 1.6: Mapping of the graph of Figure 1.5 onto a hypercube of 16 processes.
The numbers are integer representation of the images g.q. Each edge in the original
graph is mapped onto a path of length at most 2.

In conclusion, all partial combines can be effectively computed on a hypercube by a
communication process with a time complexity of O(logp).

1.6 The parseq rule

In this section we discuss a rule that lies at the heart of our design method; it
stems from distributed protocol construction and verification. The observation made
is that the logical structure of a protocol can often be described as a sequential
composition of a number of parallel tasks each corresponding to a phase from the
protocol. Examples are the PIF protocol described by [74], the distributed weighted­
spanning-tree algorithm of Gallager, Humblet and Spira [22], and the shortest-path
algorithm of [8].

This observation equally applies to parallel program construction and verification, and
was as such first recognised by Elrad and Francez in [20]. They demonstrated that a
parallel program can be decomposed into so-called communication-closed layers, i.e.,
communication between processes belonging to different layers does not occur. They
considered a parallel program S (casting their definitions in our notation)

S :: par q : 0 ::;'. q < p: S'.q rap

in which every process S.q can be represented as

S.q :: So.q ; ... ; Sr1-1.q.

THE parseq RlJLE 29

The S;.q's consist of simple statements: skip, assignment, and communication. Intro­
duction of redundant skip statements allows for d, the depth of the decomposition,
to be uniform over all processes S.q.

A layer of S, denoted by Lh 0 :5 j < d, consists of

Lj :: par q: 0 :5 q < p: Si.q rap .

A layer is called communication closed iff communication actions taking place in that
layer do not cross the boundary of the layer. Stated differently: any ! in a layer
matches with a ? in the same layer and vice versa.. The decomposition of S into
layers is

S ·· Lo ; 11 ; ... ; Ld-1 .

The decomposition is called safe iff all layers are communication closed.

Elrad and Francez's main result is:

A distributed program is equivalent to any of its safe decompositions into
layers.

This is proven by induction on d, the depth of the decomposition, but unfortunately
the step

Ld-l ; Ld "is equivalent to" par q : 0 :5 q < p:

is unproven. For p = 2 this boils done to:

Definition 1.22 (parseq rule) Given are four terminating processes S;.j, 0 :5 i,j <
2, which have as only interactions:

Each Si.O can interact via communication with Si.I.

Each 50 .i can interact via shared variables with

it holds that

0

par 50 .0 , 50 . I rap ; par S1 .0 , 51 . I rap
"is equivalent to"
par 50 .0; S1.0, So.I ; 5 1.l rap.

This rule is called the parseq rule. The rule mentions the equivalence between two
program fragments, which are called the left-hand composition and the right-hand
composition. Two programs are considered equivalent if their pre- and postconditions
are the same. In the parseq rule there are four processes that play a role; all four
are composed in two different ways.

From the point of view of a single process S;.j both the left-hand side composi­
tion and the right-hand composition in the parseq rule define the same sequence
of computations in S; .j. A similar remark holds for the processes 80 .0 ; 8 1 .0 and
80 .l ; S1.1. Hence "is equivalent to" means that each program 8;.j and 80.j ; 81.j
when started in a state described by the precondition, reaches a state described by
the postcondition. The sequence of possible computations is the same, but the order
in which they happen may differ. For example, in the right-hand composition process
S1.0 can already start after termination of process S0 .0. In the left-hand composition
process S1 .0 can only start after termination of both S0 .0 and S0 .1. This behaviour
can be observed only by an external observer; it cannot be observed by process 81 .0
itself, since there is no interaction via communications between process 80 .0 and S0 .l.
Operationally speaking, the parseq rule states that global synchronisation can be
removed at the expense of strict interaction rules. The order of computations in the
processes can be expressed formally in trace theory [69]. Trace theory also allows the
parseq rule to be restated and proved, as has been shown by J .J. Lukkien. Other
proofs of the parseq rule are based on temporal logic [7 4].

Our interest in this rule is that we believe to reflect the way we construct parallel
programs. Our parallel programs consist of p instances of a single parameterised
process. Such a process is designed by refining it into a sequence of sequential pro­
grams or communication processes. All instances of a parameterised process in this
sequence form a layer, and the layers are syntactically separated by semicolons. The
parameterised processes b,elonging to each layer are specified by preconditions and
postconditions, and can be studied in isolation. This strict design principle still al­
lows us to design efficient parallel programs, since the parseq rule shows a way out
from a strict synchronisation between layers.

Example 1.23 (PIF) In the PIF protocol there is a tree of processes, and the root
(process) informs all other processes about a message m. The root has to be informed
that all other processes have received m. We can identify two phases in the program.
In the first phase, a global broadcast of message m from the root to all the other
processes takes place, in the same way as in the communication process for the sum
problem (see Figure 1.3). In the second phase, a communication process is started
which informs the root about global receipt of m. By designing two parameterised
communication processes for each phase we can implement the PIF protocol in a
sequential programming style. We thus obtain a layered parallel program. In the
execution of the parallel program it might well happen that a process starts with
the second phase while other processes are still in the first phase. Nevertheless, each
process will interact only with processes executing in the same phase. D

1.7 Summary

We described in this chapter the main ingredients of parallel program design. Our
method can be roughly summarised as follows.

• Functional specification.
Aim: Formulation of a parameterised functional specification from an ordinary
sequential specification. Introduction of p processes, each process is assigned a
part of the work involved.

=.>=== How to split up the specification into p loca.l ones. Is a data distribu­
tion given, or part of the problem? Can we postpone the choice of distribution?

• Invariants.
Obtain from a local specification of a parameterised process a param­

eterised invariant. Introduce subproblems by using the layer concept. Give
parameterised specifications of each layer. Design sequential programs for the
non-communicating parts of a layer using standard techniques.

=.>=== Can we discriminate easily the functionality of communication pro­
cesses? Avoidance of communication processes.

• Communication processes.
Obtain a local specification of a communication process. Formulate the

communication requirements in a communication-network independent way.

~""""""""'"'""""How can we realise the communication processes on different com­
munication networks? What is the impact of the communication networks on
the total time complexity?

• Distribution of data or work.
Minimise the number of steps to complete the parallel program. For

example, balance the load as best as possible across the p processes.

-""'-"=~=Are alternative distributions possible? Can we determine the commu­
nication complexity, and the influence of the distribution on the communication
requirements? Is it possible to avoid structural load imbalances?

• Complexity
To determine a complexity formula in the size of the input and the number

of processes used.

Concerns: Are we able to give the complexity of alternative solutions? Are the
final algorithms scalable, can high speed-up results be obtained and is there
experimental evidence?

In the remainder of this monograph we will follow this method. It is our primary
concern to obtain a correct parallel program by using a decomposition of the program
into layers of parameterised processes. By studying possible data distributions for
the problem involved, we can analyse the work load distribution with the aim of
obtaining efficient programs. Data distributions are the topic of the next chapter.

Chapter 2

Distributions

In this chapter, we consider simple distributions of arrays and matrices. The purpose
of this study is to focus on the work-load properties of these distributions. Further­
more, the impact of distributions on the number of communications is discussed.

2.0 Introduction

The parallel programs we consider use distributed data objects, like arrays or graphs.
Each part of a data object is assigned to a unique process. In a parallel program,
processes can independently perform operations on their local data until global infor­
mation is needed such as, for instance, the valne of a global sum. The communication
processes are responsible for combining and collecting global information via message
passing. Processes send messages along channels, and a message can only be deliv­
ered when the receiving process is ready. This causes synchronisation points in the
parallel program, which usually lead to waiting times. As a consequence, the parallel
program will have a lower efficiency.

One of the targets of parallel programming is to obtain programs with a high speed­
up. In other words: the more processes there are, each executing on a different
processor, the faster the parallel program should run for a certain input. The impact
of distributions on the time complexity of a parallel program is therefore an important
issue.

In this chapter we primarily want to focus on simple static distributions and their
properties. The general mapping problem is not considered.

A static distribution assigns parts of a data object (an element) to a process; the as­
signment does not change during the execution of the program. Important properties
of static distributions are: the number of elements that are assigned to a process and
the distribution of elements across the processes. On the basis of these properties,
we can compare distributions and quantify the influence of distributions on the work
load in a parallel program.

33

(Representation details of distributed data will not be addressed. An efficient repre­
sentation depends on the operations to be performed; this is not the issue here.)

From simple distributions we can make new distributions by composition and Carte­
sian product (see Sections 2.2 and 2.3). It turns out that both kinds of distribution
have similar properties.

Distributions also determine which values have to be communicated in a process. It
is desirable to count the number of communications for a given distribution. For
that purpose a counting technique is presented in Section 2.4. The advantage of
this technique is that alternative distributions can be judged on their communication
overhead. In an actual parallel program, we strive for spreading the communications
across the processes, since in this way we can reduce the communication complexity.

To end this section we want to stress the double role of distributions in parallel
programs. The main role is to distribute the work across the processes in such a way
that the completion time of the parallel program is minimised. This can be done,
for example, by avoiding structural load imbalances. The other role of distributions
is their influence on the number of communications in a parallel program. This
double role can be more easily identified when there is a clear distinction between
communication processes and non-communicating programs, as is the case in all our
parallel programs.

2.1 One-dimensional distributions

This section discusses a number of frequently used distributions of arrays together
with their properties. In the following, the notation K is used to denote the set
{O ... I< 1}, I< 2'. 0.

Definition 2.0 (distribution) V = (8, A, B) is called a distribution if A and B a:re
finite sets, and 8 is a mapping from A to B. D

The domain A and range B of 8 are mentioned explicitly. Set A specifies the set
of data objects of interest; set B specifies the set of processes, which is usually p.
Since the distributions are static, it is possible that there are more processes than
data objects to perform work on. Such a situation often occurs at the end of a
computation, when some processes have already terminated.

The distribution of an array f of length n across p processes can be specified by the
triple (8, n, p). The data object of interest is an array of which the array elements
are identified by their index set n. The function 8 assigns each array index i E n
(and its corresponding array element J(i)) to a process number from set p.

Well-known ways of distributing an array are: every element to one unique process
(identity), assigning p equally-sized consecutive array segments (linear, consecutive
storage) and assigning elements cyclically (wrap, cyclic storage) [44].

0NE-DIMENSIONAJ, DISTRIBUTIONS

Example 2.1 (identity, linear, wrap)

identity

linear

wrap

((,\i ·i),p,p)'

((.\i · i/(n/p)),n,p), provided that pin,

((.\i · i\p), n, p) .

The lambda notation is used in the definition of a distribution function. D

35

We have the freedom to permute the process numbers. This is not essential for our
purposes, since properties of distributions, like the maximal number of data objects
assigned to a process, are invariant under such a permutation.

Definition 2.2 (equality of distributions)

(80,n,p) = (81,n,p) 7r : r. a permutation on p : 80 = 7r o 81) ,

where o denotes composition. D

In the following example, it is shown that a permutation on the set of data objects
can cause two distributions to become equal.

Example 2.3 Consider the linear and wrazJ distribution of an array, and define
the permutation <T on n by:

<T (.\i · (i\m) * p + i/m), where m = n/p,

then

holds. D

Permuting the set of data objects before applying a distribution function effectively
means picking another distribution.

In the definition of linear distribution of Example 2.1, the restriction pin was im­
posed. A general linear function can be obtained as follows.

Example 2.4 (linear) For a linear distribution, the remaining n \p indices of an
array of length n can be distributed by assigning the first n \p processes one array
element extra. Formally, the distribution function becomes:

linear (8, n, p),
(.\i · i/(m + 1) max (i - n\p)/m), and m n/p.

Note that if pin then the distribution function for linear is recovered, since i/m ~
i/(m + 1) for all i ~ 0. The formula for this general linear distribution is very
compact. D

In the following definition, distributions are used in determining the sets of local
variables assigned to a process.

Definition 2.5 (owns) Given is a distribution (6, n, p). The set of elements n
assigned to process q, 0 :::; q < p, is given by O.q (pronounced "owns"):

O.q = {i: i En/\ 6.i = q: i}.

0

The notation 0 6.q refers to the set O.q with a specific function 6 in mind. Usually,
the sets O.q are used to define a distribution. The sets O.q form a partition of n.

Example 2.6 (£) Another characterisation of the general linear function is as
follows:

olinear.q = {i: i.q:::; i < £.(q + 1): i} '

where
i = (>.q · q * (n/p) + q min (n\p)} .

0

Each process has a number of array elements assigned to it. Each array element, or
part of a data object in general, has an associated number of operations to perform
on it. Counting the cardinalities of the sets O.q is therefore meaningful in time­
complexity analysis. In this way, a good indication of the amount of work per process
is obtained. Often, we are interested in the maximal number of data objects that is
assigned to a process, because it usually determines the time complexity of a parallel
program. (This assumption holds only if the amount of work per data object is
constant.)

Definition 2.7 (Ma) The maximum number of data objects assigned to a process
for a distribution (6, n, p) is defined by

Ma(8) =(max q: 0:::; q < p: I 0°.q I) .

0

Example 2.8 (Ma(linear) Ma(wrap)) For the array distributions linear and
wrap the following holds:

q)/p .

The cardinalities for linear can be obtained using the f function (Example 2.6). The
cardinalities for the wrap distribution are obtained from:

I owrap.q I
{ definition }

I {i: o:::; i < n A i\p = q: i} I
{ calculus, range splitting }

I {i: 0:::; i < (n/p) * p /\ i\p q: i} I+ I {i: (n/p) * p:::; i < n /\ i\p = q: i} I
= { calculus }

n Ip + I { i : 0 ~ i < n \p /\ i q : i} I
{ calculus }

(n+p-1-q)/p

The cardinalities of the O.q's are the same for the lfoear and wrap distributions.
Both distributions assign a maximal number of elements to process 0:

Ma(linear)= Ma(wrap)= (n + p 1)/p.

Hence, if the time complexity of a parallel program is determined entirely by the
cardinalities of one of these distributions, then there is no difference between linear
and wrap. D

A measure of the load imbalance is the difference between the maximum number of
elements assigned to a process and the minimum number of elements assigned to a
process. If this measure is bounded by a natural number w for a given distribution
then we call this distribution w-balanced. Of course, we are only interested in small
values of w.

Definition 2.9 (w-balanced) A distribution (8,n,p) is called w-balanced, w 2 0,
iff

where

D

Ma(8)

Mi(Ii)

Ma(8) Mi(8) :S w,

(max q: 0:Sq<p:108 .ql)
(min q: 0 :Sq< 11: 105.ql) .

A w-balanced distribution ensures that the differences in the work-load distribution
between processes are bounded by w. If this number is small then we have ensured
a good load balance. A distribution is called homogeneous if w = 1 [39] and perfect
if w = 0. A perfect distribution is also homogeneous. It is clear that a perfect
distribution is only achieved when pin, and this is iu general not the case. Examples of
homogeneous distributions are the already-mentioned linear and wrap distributions.

Example 2.10 (reflection) An example of a non-homogeneous distribution is

(8, n, p), with Ii (Ai. { i\p
p-1

if (i/p)\2 = 0
i\p otherwise) ·

This distribution is called reflection. It is w-balanced with w 2. D

For a certain class of computations the wrap distribution is a good candidate. To
demonstrate this consider the following example.

Example 2.11 Given is a parallel program consisting of n steps. In step k,
0 $; k < n, computations are done only for the first k elements of the program's
arrays (all arrays have length n and are distributed in the same way). Each array
element requires a constant number of elementary operations. The ma.ximal number
of computations in step k in a process for any array distribution (Ii, n, p) is bounded
from below by:

(max q : o :::: q < P : Io" .q n k D 2 (k: + P - 1) IP .

This follows from:

P* (max q: 0::; q < p: IO.qn k)I)
2:'. { calculus }

o:::: q : o ::; q < p : 10.q n kl)
{ 0 .q forms a partition of k }

j(u q: o ::; q < p: O.q n k)I
{ calculus}

k.

The lower bound is attained by the wrap distribution (see Example 2.8, with n
replaced by k). Hence, combining the results gives, for all 8:

(max q: 0:::; q < p: 105.q n kl) 2: (max q: 0::; (j < p: 1owrap.q n kl) .

Or in words: at any step in such a parallel program, the maximum number of com­
putations in a process for any distribution is at least the maximum number of com­
putations in a process when using the wrap distribution.

If all processes synchronise at every step then the maximum number of computations
performed by a process determines the computation time of a step. The work load is
homogeneously distributed in every step for a wrap distribution. Therefore, we can
conclude that for this class of computations the wrap distribution is a good candidate
(which does not exclude the existence of other distributions with similar properties).

If the computations can overlap in different steps, i.e., a process can start step k + 1
immediately after finishing step k, then the total load imbalance when using the wrap
distribution is O(n). This result can be obtained by comparing the minimum and
maximum over all q of the expressions:

(2:::: k: o:::; k < n: I owrap.q n k D
{ Example 2.8 (n k) }

(L: k : o ::; k < n : (k + P - i - q) IP)
{ calculus }

(n * (n - 1))/(2 * p) + O((n * (p - 1 - q))/p .)

The total amount of work is O(n2
) and (ideally) per process O(~) (assuming that

p ::; n). This means that for overlapping computations the wrap distribution has
good characteristics, since the load imbalance is at most the amount of work per
process.

Note that a similar argument holds for parallel programs that perform computations
on the last n k array elements. Or, even more general, for programs that perform
computations for different consecutive parts of arrays. D

2.2 Composition of distributions

Distribution functions can be composed to obtain new dist.ribut.ions.

COMPOSITION OF DISTRIBUTIONS 39

Example 2.12 A distribution called wrap-of-linear can be obtained as follows.
Take linear= (tJlinea•,n,m), min, and wrap (8wrap,m,p) then

wrapolinear=((,\i·(i/(n/m))\p),n,p).

For m = n the wrap distribution is obtained and for m = p the linear distribution.
For simplicity, we require min; a similar formula can be given for the generalised
linear distribution. 0

Definition 2.13 (composition of distributions) The composition of two distri­
butions VO= (80, m, M), VI = (8I, n, N), with M = n is defined by:

VI oVO = (81080,m.N).

0

Other examples of composition are the variations linear-of-wrap, or linear-of-linear.
Composition allows for making complex distributions. The properties of a composed
distribution can be obtained from the properties of its constituents.

Example 2.14 Consider wrap o linear of Example 2.12. The number of elements
assigned to a process q, I owrapolinea'.q 1, can be obtained by counting:

I { · · Q < · 8wrap · Q < · c/inear · · ·} I z,J: _z<m/\ .1=q/\ _J<n/\u .J=i:J

This expression can be rewritten to

i : 0 :S i < m /\ i\p q : + 1) - f.i) '

which is form In equal to~* (m + p - 1 - q)/p. This distribution is~ balanced if
m\p > 0, otherwise it is perfect. D

Composition of distributions does not always preserve homogeneity.

Example 2.15 Take the composition of two generalised linear functions, with n
12,M = m = 5,N 3, thus 80: {O .. . 11}--+ {0 ... 4} and 81: {0 ... 4}--+ {0 ... 3}.
Then the result of VO is:

and Vl o VO results in:

0 1 2 3 4 5 6 7 8 9 10 11 . "---""" '-.,.--' .._,.,_,, .._,.,_,, '--v--' '

01234567891011.
'----..----' ..._,__, '--v--'

Here 9 10 denotes the process that contains elements 9 and 10. D .._,_,
What can be said of 1081080.ql for two homogeneous distributions VO= (80,m,M),
VI = (81, n, N), with M n '! Clearly the maximum number of elements assigned
is at most Ma(80) * Ma(81) :

Ma(81o150) = 1\fo(i50) * Ma(81) = (m + M 1)/.M * (n + N -1)/N,

and the minimum number assigned is at least Mi(50) * Af i(51) :

Mi(5l o 50) = Mi(50) * Mi(5l) ni/Af * n/N.

Thus we arrive at the following result.

For homogeneous distributions DO = (50, m, M), Vl = (51, n, N), M = n:

Mi(5l) * Mi(50) :S: 1051060.ql :S: Ma(bl)* Ma(50).

The distribution V1 o DO is w-balanced with

w l.n.N * (m/M) + l.m.M * (n/JV) + (1.m.M) * (l.n.N),

where the function l.a.b yields 1 if a\b > 0 and 0 otherwise.

Practical applications of composed distributions are, for example, parallel programs
using different data distributions. By introducing a pa.rameter like m in wrap-of­
linear, it is possible to trade off the load bala.nce for each individual part and to
avoid expensive redistributions during a computation.

On the other hand, these distributions often yield complex expressions and are there­
fore not very well suited in program derivations. In thf' next section, we encounter
another way of making new distributions.

2.3 Cartesian distributions

Distributions of multi-dimensional arrays can be modeled by Cartesian distributions.
We will consider arrays of arrays, or matrices. Tn the following, it assumed that an
m by n matrix is distributed across p processes.

Definition 2.16 (Cartesian distribution) The Cartesian product of two array
distributions VO= (50,m,M), Vl = (51,n,N), is defined by:

VO x VI (50 x 51,m x n,M x N).

Where the function 50 x 51 assigns to every index pair a pair of process numbers.
Formally,

bO x bl (>..i,j · (50.i,51.j)).

0

The Cartesian product of two one-dimensional distributions uses a process pair as
identification for a process. In order to obtain a process number an additional map­
ping f3 : M x N ___., p, p M * N, must be applied. The function f3 is a bijection,
which identifies a pair of process numbers with a. process number in p. We often omit
a suitable /3 and use an integer pair as process identification in programs with matrix
distributions.

COUNTING COMMUNICATIONS 41

Cartesian distributions of matrices can be obtained by distributing the rows of the
matrix independently from the columns. The most commonly used matrix distri­
butions are Cartesian. The set of elements assigned to each process by a Cartesian
distribution 'DO x 'Dl of an m by n matrix can be defined in a similar as in Defini­
tion 2.5. It has the following property:

060x61.(s, t) = 060.s x on.t'

with 0 :::; s < M and 0 :::; t < N.

In our opinion, non-Cartesian distributions are often more difficult to program due
to the absence of a "splitting-rule" like the one above. Cartesian distributions give
us the freedom to consider the rows and columns as entire identities. Since pis fixed,
we can consider all decompositions of M and N such that p = M * N holds. This
gives an additional degree of freedom in the derivations.

Consider two homogeneous distributions 'DO and 'Dl. Similar results hold for the
Cartesian distribution 'DO x 'Dl as for composition, for instance,

Mi(80) * Mi(81) :S I060 x51 .(s, t)i :S Ma(80) * Ma(81) ,

with Mi and Ma as defined in the previous section.

Cartesian distributions are easier to handle in program derivations than composite
distributions. Their usage is discussed in Chapter 4. ln the following example we
give some frequently-used Cartesian distributions.

Example 2.17 (Cartesian distributions) Let p = M * N and consider the fol­
lowing Cartesian distributions:

linear2

row
col
wrap2

wrairrow
wraircol

= (81inear m M) X (olinear n N) with M = N
' ' ' ' . = linear2 with N = 1.

= linear2 with M = 1.
= (8wrap,m,M) X (8wrap,n,N) with J'vf = 1\T.
= wrap2 with N = 1.
= wrap2 with M = 1.

These six distributions are visualised in Figure 2.0. The wrap2 is introduced in [75]
as the grid distribution. The linear2 with M = N is called block distribution.

0

2.4 Counting communications

Another aspect of distributions is their impact on the number of communications.
During a computation processes need values which a.re not available locally, i.e., values
which have been assigned to different processes, and hence have to be communicated.
The distribution determines the total number of communications. Minimisation of

lliiilililli ••••••••

Figure 2.0: Six distributions: linear2 = bloc/..:, row, col (top), wrap2 grid,
wrap-row and wrap-col (bottom). The grey-shading of a matrix element denotes
the process to which the element has been assigned (11 = 4, rn n = 8).

this number may lead to a low communication overhead. It is also important that
the communications are spread evenly across the processes in such a way that many
communications take place in pa.railel. The latter can only be achieved if the commu­
nication network offers enough freedom to implement the communication processes
efficiently.

Given a program's postcondition and a distributioH we can count the total number
of communications. The program's postcondition is split in p local postconditions
according to the distribution used. With every loca.I postcondition a process is as­
sociated that will establish it. If it is assumed that every datum is assigned to one
unique process then the total number of postconditions that refer to a particular
datum is a measure of the number of communicatio1rn of that datum. However, it
may happen that a subexpression containing several data occurs in different post­
conditions. One process can compute such a. subexpression and store the result in a
variable, which is communicated to the other proce::;ses. In this way, communication
is reduced. In order to have a. meaningful interpretation of the counting technique
we present here, we exclude the previously mentioned case.

We introduce for every datum e the quantity Nocc. e,

Nocc.e = the number of local postconditions in which e occurs .

Since every e is assigned to a process it needs only to be communicated to Nace. e
other processes. By summing over all ewe obtain the total number of communications
1Vcom,

Ncom = (2:: e :: Nocc.e - 1) .

The value of Ncom is only determined by the way the program's postcondition is
split up and the distribution used. The communication complexity Tc.p.n is bounded
from below by (Ncom + p 1) / p if a process can perform only one communication
action at each moment.

This technique of counting communications allows us to compare distributions on
the basis of their communication overhead. It is not always possible to count Ncom
from a postcondition due to common subexpressions. For example, in computing all
partial sums of a given array there are several subexpressions, namely, the partial
sum of the first i elements is part of the partial sum of the first j, for 0 :S i < j. The
applicability of the technique clearly depends on the problem at hand. Nevertheless,
the results that can be obtained are independent of any communication network. To
illustrate this technique we give an example.

Example 2.18 Given two matrices a and b, of dimensions m x o, and o x n,
respectively. The problem is to compute matrix c, m x n, satisfying postcondition R,

R : c ab.

We use a Cartesian distribution DO x Dl for the matrix c, and introduce p M * N
processes; each process is identified by an ordered pair (s, t), 0 :S s < M, 0 :S: t < N.
The local postcondition R.s.t of process (s, t) becomes:

R.s.t: ('r:/i,j 0 :S: i < m /\ 0 :S j < n /\ bO.i s /\ fil.j t

c(i,j) = (L: k: 0 :S: k < o: a(i, k) * b(k,j))) .

Note that
('r:/ s, t: 0 :S: s < M /\ 0 :St< N: R.s.t):::} R.

In order to count the number of communications, we introduce quantities Nocc.a(i, k)
and Nocc.b(k,j).

Nocc.a(i, k)
=

I {s,t: 0 :S s < M /\ 0 :5 t < N /\ fiO.i = s /\ j :: 51.j = t): (s,t)} I .

Additionally, we require surjectivity of bl.

Hence,

Nocc.a(i, k)
= { definition Nocc, bl surjective }

I {s, t: 0 :S s < M /\ 0 :S: t < N /\ bO.i = s /\true: (s, t)} I
{ calculus }

N*l{s:O:Ss<M/\fiO.i s:s}I
{ bO is a function }

N.

And in a similar way we obtain:

Nocc.b(k,j) = 1Vf .

if 80 is surjective.

Summing over all a(i, k) and b(k,j) gives the total number of communications Ncom:

Ncom
{ definition Ncom }

(I: i, k: 0 Si< mt\ 0 S k < o: Nocc.a(i, k) l)+
(2: k,j: 0 S k < o t\ 0 S j < n: Nocc.b(k,j) - l)

{ calculus}
o*(m*(N-l)+n*(M-1)).

Hence, the total number of communications Ncom for a matrix multiplication is:

Ncom = o * (m * (N - 1) + n * (M - 1)) ,

using any surjective Cartesian distribution VO x Vl of the m x n matrix c.

A number of observations can be made. For M N = p = l, Ncom = 0 and
no communications are necessary. Furthermore, Ncom is independent of particular
choices for 80 and 81. Since for any problem m, n, o and pare fixed we can determine
Mand N, p M * N, such that Ncom is minima.l. Tliere are at lea.st two such pairs
namely (1,p) and (p, 1). Clearly all possible values (M, 1V) a.re integer points on the
hyperbola p = M * N, 1 S. M, N S. p, and the values of Ncom for fixed m, n, and
o, lie on the line with a slope dependent on ~· Hence. the minima.I value for Ncom
depends on the ratio '; and in particular for m = n, Ncom has a minimal value if p
is a square. The latter has also been observed in [21]. 0

2.5 Final remarks

In this chapter, we discussed static distributions of arrays and matrices. New complex
distributions can be obtained by composition and Cartesian product. The proper­
ties of these newly-formed distributions often ailow more freedom in exploiting the
properties of their constituents. For example, Cartesian distributions have the prop­
erty to consider rows and columns as entire units distributed across .M ensembles
of N processes, respectively. Additionally, M and N may vary under the constraint
p M * N. On the other hand, composite distributions usua.lly trade off its con­
stituent properties, as is the case in the wrap o linear distribution (Example 2.12).

Quantities like the sizes of the set elements assigned to a process allow for a com­
parison of the load-balancing properties of distributions. These counting techniques
are very powerful in complexity analysis of parallel programs. A demonstration of
these techniques has been given in Example 2.11, where it has been shown that the

wrap distribution is to be preferred over any other distribution for a class of par­
allel programs. The load-balancing properties of Cartesian distributions are easily
derived from their constituents. In this context, Cartesian distributions are easier to
deal with than composite distributions. Important measures of load balance are the
maximum and minimal number of elements assigned to a process, and the difference
between these two numbers (w-balancedness).

Distributions also have a certain impact on the total number of communications.
Counting communications (another counting technique), enables evaluation of dif­
ferent distributions. The results obtained are independent of any communication
network, and applying this technique usually results in a lower bound on the commu­
nication complexity. As discussed in Section 2A some requirements have to be met.
Counting the total number of communications in a parallel program gives insight
but it is not the only aspect. For instance, the of communications across the
processes also has to be taken into account.

Another aspect which has not been addressed is the problem of distributed data rep­
resentation. Since data is distributed across processes, each process has to represent
its local parts in a data structure. An efficient representation depends, of course, on
the operations to be performed. For the local parts of arrays and matrices simple pa­
rameterised data structures can be obtained in the form of local arrays and matrices.
In general, attention to representations should be given only at the implementation
level.

The role of distributions is an important one in parallel programming. Although our
primary concern is to obtain a correctly behaving parameterised parallel program,
we cannot ignore possible choices for the distribution of data. In practice, we often
obtain hints about candidate distributions in a parallel program derivation. Examples
of program derivations are given in the next two chapters.

Chapter 3

Parallel Segment Computations

A large example of the use of parameterised invariants is given. The target is to
obtain a parallel program for a class of segment problems. Suitable distributions for
the program are found during the derivations.

3.0 Introduction

We quote from [45]:

Segment problems were originally invented at tin Eindhoven University to
serve as exercises and exams in programming courses.

A segment problem usually refers to a computation of a function defined on consec­
utive parts of an array. Well-known segment problems are the longest plateau and
the maximal segment sum [33, 34].

In this chapter, a class of segment problems is considered that can be efficiently solved
in parallel. One could argue that segment problems are artificial, and that there is
little practical value in solving these problems in parallel. The derivation of parallel
segment problems, however, demonstrates nicely the kind of difficulties encountered
in parallel program design. Rather than just solving one or two segment problems,
we outline a general parallel program scheme for the problem class.

An essential step in the design is the explicit formulation of divide-and-conquer rules
that express the relation between the computation on segment [a, c) and the compu­
tation on segments [a, b) and [b, c), where b is any interior point. It turns out that
the application of the rules to the segments and the parnllel program scheme itself
are conveniently expressed by the same operator

The resulting parallel program scheme consists of a computation and a communi­
cation phase. This distinction yields a simple specification of the communication
requirements, thus allowing alternative designs for the communication processes to
be discussed.

47

48

The remainder of this chapter is organised as follows. In Section 3.1, the functional
specification of a class of segment problems is given and a running example is in­
troduced. Section 3.2 discusses a divide-and-conquer technique that is applicable to
this class. In Section 3.3, a general parallel program scheme based on the divide­
and-conquer rules is given. The complexity of the resulting programs is discussed
in Section 3.4, with special attention to the communication processes. Section 3.5
shows how a related problem can be solved with a similar time complexity. Some
final remarks are given in Section 3.6.

3.1 The functional specification

The class of segment problems of interest is specified by:

Where

I[p,n: int;
f(i: 0:::; i < n): array of int;

{O<p'.Sn}
par q : 0 :::; q < p :

rap

II·

I[m: int;
S.q
{R.q: q-:f-p-lVm=M.O.n}

II

M.a.b = (0 i,j: a:::; i:::; j:::; b: F.i.j).

@ is a binary, associative, commutative and idempotent operator on a set and F is
a function of the segments of f to that set. Segments of f are denoted by [i,j),
where 0 :::; i :::; j :::; n; F.i.j denotes F applied to [i,j); F.i.i refers to the empty
segment. Due to the commutativity and associativity of @, any term may be split
off from the quantification. The additional restriction that 0 is idempotent is made
only for the sake of simplicity: in the following similar formulas can be obtained for
a non-idempotent operator.

The parameterised process to be designed is S.q, and the parallel program consists of p
processes instances obtained from S. All possible choices for the number of processes
p between 1 and n are allowed. It has been left unspecified which distribution of the
array f to choose, but it is the intention to obtain an efficient parallel program by
ensuring a good load balance and low communication overhead.

In the functional specification, it is stated that process p - 1 should provide the final
answer, i.e., the value of M.0.n. This is not an essential restriction, as it is always
possible to communicate the final answer to other processes.

DIVIDE-AND-CONQUER RULES 49

Throughout this chapter the computation of the maximal segment sum is used as an
example ([34] discusses the variant minimum-sum section).

Example 3.0 Casting the maximal segment sum problem into our notation
® = max, and for F.i.j and M.a.b:

D

F.i.j

M.a.b

(L: h: is:; h < j : f(h))

(max i,j: a Si:::; j::; b: F.i.j) .

3.2 Divide-and-conquer rules

From the functional specification we obtain in three steps a set of divide-and-conquer
rules that form the base of a parallel program scheme. First we consider the expression
Af.a.c for a S c. It turns out that Af.a.c can be expressed in M.a.b, M.b.c, with ban
interior point, and a continuation part specified later. The second step is to obtain a
divide-and-conquer rule for this continuation part, which will he feasible if additional
requirements are met. The third step is the formulation of an operator 0 on four­
tuples, which expresses all the computations of conc<~rn. The latter formulation is
used in the next section to define a parallel program scheme.

From the definition of 1~1.a.c, for 0 S a S b S c S n, we derive the following rule:

M.a.c
{ definition Af }

(® i,j: as is j Sc: F.i.j)
{ rewrite the range }

(® i, j : a S i ::; j $ b V b 5:. i S j 5:. c Va S i S b 5:. j $ c : F.i.j)
{ range splitting, ® is idempotent, definition NI }

Af.a.b® (0 i,j: a$ i $ b S j Sc: F.i.j) M.b.c.

Now, the computation of .M.a.c referring to [a, c) is expressed in terms of
computations for the segments [a, b) and [b, c), with b an interior point satisfying
a S b $ c, and a so-called continuation part: a computation on segments which
crosses boundary b. Note that the expressions for M.a.b and M.b.c are local, in
the sense that they only refer to [a,b) and [b,c), respectively. For the continuation
part, the expression is still global, but it will appear feasible to divide it into local
subexpressions if some requirements are satisfied.

Requirements.

(0) F is decomposable, i.e., there is a binary associative operator EB such that

(V i,j, k: 0 $ i $ k S j $ n: F.i.j = F.i.k EB F.k.j).

(1) The following two distributivity laws hold:

for all x, y, z.

(zEBx)®(zEBy)

(xEBz)®(yEBz)

From the first requirement it is deduced that

zEB(x®y)

(x®y)EBz,

F.i.i =unit(EB) for all i: 0 S: i $ n.

Each distributivity law can be obtained from the other if operator EB is commutative.

Requirement (0) can be weakened by demanding a decomposability of the form
F.i.j = HO.i.k EB Hl.k.j instead.

Generally, it is necessary to have some form of decomposability together with dis­
tributivity laws in order to rewrite the expression for the continuation part into local
subexpressions. The precise conditions that allow such a rewriting, and classifications
of decomposability, is a subject on its own; it is not discussed here. Our interest is a
derivation of a parallel segment problem, and for convenience, we consider a model
problem based on only one form of decomposability.

For the continuation part the following divide-and-conquer rule is obtained:

i, j : a S: i S: b s; j S: c : F.i.j)
{ see requirement (0): F decomposable }

(® i,j: a S: i S: b S: j S: c: F.i.bEB F.b.j)
= { calculus }

i: a S: i $ b: (® j: b $ j S: c: F.i.bEB F.b.j))
{see requirement (1): distributivity, calculus}

(® i: a S: i S: b: F.i.b) EB(® j: b S: j :$ c: F.b.j)
{ definition Tl and Hd }

Tl.a.bEB Hd.b.c,

where

Tl.a.b

Hd.a.b

(® i: a:$ i :$ b: F.i.b)

(® i : a :$ i ::; b: F.a.i) .

Af.a.c can thus be computed from the local expressions M .. a.b, 1\4.b.c, Tl.a.b and
Hd.b.c, if the requirements above are met. Divide-and-conquer rules for Tl.a.c and
Hd.a.c can also be obtained:

Tl.a.c
{ definition Tl }

(® i: a S: i Sc: F.i.c)

DIVIDE-AND-CONQUER RULES

{ rewrite the range }
(0 i: a::::; i::::; bV b::::; i::::; c: F.i.c)

{ range splitting, 0 is idempotent, definition Tl }
(0 i: a::::; i :S: b: F.i.c) 0 Tl.b.c

{ requirement (0), F decomposable }
(0 i: a::::; i::::; b: F.i.b EB F.b.c) 0 Tl.b.c

{ requirement (1), distributivity, definition Tl }
(Tl.a.bEB F.b.c) 0 Tl.b.c.

A rule for Hd.a.c is obtained in the same way.

Summarising:

M.a.c

Tl.a.c

Hd.a.c

F.a.c

F.a.a

M.a.b0 (Tl.a.bEB Hd.b.c) 0 M.b.c

(Tl.a.bEB F.b.c) 0 Tl.b.c

Hd.a.b0 (F.a.bEB Hd.b.c)

F.a.b EB F.b.c

unit(EB) .

For all a, b, c : 0 ::::; a ::::; b ::::; c ::::; n.

An alternative formulation is as follows. Define V.a.b by:

V.a.b = (M.a.b, Tl.a.b, Hd.a.b, F.a.b) ,

then the divide-and-conquer rules can be restated as:

V.a.c = V.a.b 8 V.b.c ,

where operator 8 is defined by:

(sO, tO, uO, vO) 8 (sl, tl, ul, vl)

(sO 0 (tO EB ul) 0 sl, (tO EB vl) 0 tl, uO 0 (vO EB ul), vO EB vl) .

51

In this definition, M.O.n can be obtained by taking the first component of four-tuple
V.O.n.

In the next section, it will become clear that operator 1:;) allows for a simple for­
mulation of the parallel program scheme. We end this section by returning to the
example.

Example 3.1 In order to apply the divide-and-conquer rules to the maximal seg­
ment sum problem we only need to check if the requirements are met. Indeed, oper­
ator 0 =max is associative, commutative and idempotent, the function F.i.j:

F.i.j =(I: h: i::::; h < j: f(h))

is decomposable, because F.i.j = F.i.k + F.k.j, for i ::::; k ::::; j, and hence we can use
for EB = +. Furthermore, + distributes over max:

(x max y) + z = (x + z) max (y + z), for integer x,y,z.

D

3.3 The parallel program scheme

The divide-and-conquer rules suggest splitting array f into p segments and distribut­
ing these segments across p processes. Such a distribution can be modelled by a
function f satisfying£ : [O,p + 1) --> [O, n + 1), t'.O = 0, f.p n, and f increasing. For
convenience, we choose to assign segment [t'.q, f.(q+ 1)) off to process q. This is not
a severe restriction, since it is always possible to renumber the process identifications.

In the previous section, it is shown that V.O.n can be expressed using 8; this gives
the following quantification:

V.O.n = (8 q: 0'.Sq<p:V.t.q.€.(q+1)).

Process q can compute V.f.q .f.(q+ 1) without interactiou with olher processes, because
only values local to process q are involved. There are many orderings in which the
operator 8 can be applied to obtain V.O.n (and hence 111.0.n). For convenience,
we choose to evaluate V.O.n in order of increa.sing process number. An outline of
parameterised process S.q is given in Figure 3.0.

S.q ::
I[x, xs: (int,int,int,int);

JI

SO.q
{x = V.l.q.l.(q+ l)}
; Sl.q
{xs = V.O.t'.q}
; 52.q
{q f- p 1 V rn M.O.n}

Figure 3.0: Program text for S.q

We briefly sketch each process in turn.

SO.q is just a sequential process; its invariant PO.q is:

PO.q : x = V.t'.q.k /\ t'.q '.S k :S t.(q + 1).

The resulting program for SO.q is a loop, and application of the divide-and-conquer
rules with a = l.q, b k, and c = k + 1 gives:

V.a.(k + 1) = V.a.k V.k.(k + 1),

for all a,k,q, with a f.q,£.q :S k < f.(q + l).

An explicit formulation for V.a.(k + 1) (without can be obtained by using the
distributivity laws and the properties:

Il'1.k.(k + 1) Tl.k.(k + 1) = Hd.k.(k + 1) = F.k.(k + 1) e,

where e =unit(EB). For example,

COMPLEXITY

M.a.(k + 1)
{ definition }

M.a.k 0 (Tl.a.k EB Hd.k.(k + 1)) 0 M.k.(k + 1)
= {definition Hd.k.(k + 1), M.k.(k + 1), e =unit(EB) }

M.a.k 0 (Tl.a.k EB (F.k.(k + 1) 0 e)) 0 (e EB (F.k.(k + 1) 0 e))
= { distributivity laws }

M.a.k 0 ((Tl.a.k 0 e) EB (F.k.(k + 1) 0 e))
{ distributivity laws }

M.a.k 0 (Tl.a.k EB F.k.(k + 1)) 0 e.

In a similar way, the following formula for Tl.a.(k + 1) is obtained.

Tl.a.(k + 1) = (Tl.a.k EB F.k.(k + 1)) 0 e.

Combining the last two results gives:

M.a.(k + 1) = M.a.k 0 Tl.a.(k+ 1).

53

Establishing the postcondition of Sl .q is only possible via communication; hence,
assumptions have to be made about the communication network. One way is by
using a chain network. In a chain, each process q, 0 < q, receives from process
q - 1 the value of V.0.£.q and computes V.0.£.(q + 1) from the received value and
V.£.q.£.(q + 1).

The program for S2.q is a simple one: process p - 1 computes M.O.n by taking the
first component of four-tuple V.0.£.p = xs 8 x, the other processes perform skip.

In an actual implementation, operator 8 on four-tuples has to be worked out. Of
course, this can be done by introducing four additional variables.

Example 3.2 For the maximal segment sum problem we obtain the following pro­
gram based on a chain communication network (cf. Figure 3.1). The rules have been
further simplified by using f(k) = F.k.(k + 1).

As can be seen from the program, the values of Hd.O.e.q and F.o.e.q are not computed,
since they are not necessary for the computation of 111.a.c with a = 0, c = £.p = n in
process q = p - 1 (the boundary is b = £.q). This is caused by the fact that we have
chosen a specific order, namely in order of increasing process number, to evaluate
V.O.n (and hence M.O.n). The resulting program is slightly optimised by combining
the guards of SI .q and S2.q in one program.

Note that for p = 1 a sequential program is obtained, which resembles very much
the sequential solution for the maximal segment sum problem. It differs only in the
extra computations of c = Hd.£.q.£.(q + 1) and d = F.C.q.e.(q + 1). D

3.4 Complexity

The time complexity of the general parallel program is found by adding the time
complexities of the parts SO.q, Sl.q, and S2.q (cf. Figure 3.0). We assume that all

S.q ::
I[k, a, b, c, d, as, bs: int;

k, a, b, c, d := e.q, 0, 0, 0, 0
{PO.q: (a, b,c, d) = V.e.q.k /\ e.q :S k S l.(q + l)}
;do k:fl.(q+I)

od

-+ {PO.q /\ k < e.(q + l)}
b := (b + f(k)) max 0

; a:= a max b
; c := c max (d + (f(k) max 0))
; d d + f(k)
; k k + 1
{PO.q}

{(a,b,c,d) = (V.l.q.l.(q+ 1)}
; if q = 0 -+ as, bs := 0, 0

II q > 0-+ (q l)?as,bs
fi

{(as, bs) (M.0.l.q, Tl.O.l.q)}
; if q p - 1 -+ m :=as max (bs + c} max a

~ q<p-1-+

fi

as :=as max (bs + c) max a
; bs (bs + d) max b
{(as,bs) = (M.0.£.(q + 1), Tl.O.t.(q + l))}
; (q+ I)!as,bs

Figure 3.1: Program text for the maximal segment sum problem using a chain com­
munication network

processes synchronise on each semicolon separating the pa.rts, and that it takes 0(1)
time to evaluate F.k.(k+ 1) for any k.

Each process instance SO.q performs a loop with f.(q + 1) - f.q steps, and ev­
ery step takes 0(1) time. Hence, the time complexity of process instance SO.q is
O(l.(q + 1) l.q).

Parameterised process SO depends on the data distribution specified by l. A good
load balance is ensured if each process instance SO.q has the same amount of work
to do. This suggests taking the linear distribution function for l (see Chapter 2):

e =(.A q. q * (n/p) + q min (n\p)) .

This yields O(~) for the time complexity Tr.p.n of 80.q a.nd 0(1) for the load imbal­
ance.

The communication complexity Tc.p.n of communica.tion process Sl.q for a chain

ALL-PREFIXES PROBLEM 55

is O(p). Each process (except process 0) receives four values from its predecessor,
performs some operations, and sends four values to its successor (except process p-1).

The time complexity of S2.q is 0(1).

The resulting time complexity T.p.n of the parallel program scheme assuming a chain
communication network and a linear distribution is:

T.p.n Tr.p.n +a* Tc.p.n o(;) + O(p) .

Note that the first term is dominant if p 5 fo.

Reconsider the specification of communication process Sl.q:

{x V.f..q.£.(q + l)}
Sl.q
{ Rl.q : XS = lf.0.i.q}

This specification was introduced to compute V.O.n (and hence M.O.n) in process
p - 1, but the specification is too strong for computing m M.O.n. We can suffice
with a weaker postcondition Rl'.q specifying that only process p - 1 needs to have
V.O.n.

Rl' .q : q # p - 1 V xs = V.O.n .

Now, Rl'.q can be established by computing a global combine (see Chapter 1, Sec­
tion 1.5). The combine consists of p terms, ea.ch term of the form V.£.q.£.(q + 1).
The resulting communication process is easily implemented on a hypercube network
when pis a power of two, or on a tree, and has a. time complexity of O(logp).

The time complexity of the parallel program scheme assuming a. binary hypercube
communication network and a linear distribution is:

T.p.n O(;) + O(logp) .

Note that for 1' = n the time complexity T.p.n becomes O(log p).

3.5 All-prefixes problem

In previous sections, we have considered a general parallel program scheme that
computes the value A1.0.n. Here, a generalisation is made to record in an array g
for each i, with 0 5 i < n, the value of M.O.i (the arrays f and g use both the
linear distribution). We refer to this related problem as the all-prefixes problem. It
is shown that this problem can be solved with a small modification to the general
parallel program scheme.

The local postcondition R' .q becomes:

R'.q : ('v' i: £.q 5 i < £.(q + 1) : g(i) = Af.O.i) .

A divide-and-conquer rule is easily obtained; for all i. with e.q 5 i < £.(q + 1) :

M.O.i
= { l.q ~ i, property M}

M.O.l.q ® (Tl.O.l.q ffi Hd.l.q.i) ® M.l.q.i .

The all-prefixes problem can be solved if the values of M.O.l.q and Tl.O.l.q are com­
puted a priori. Fortunately, they can be obtained from V.O.l.q in process q itself!
This leads to the following solution S'.q for the all-prefixes problem (with the same
SO, Sl as in Figure 3.0):

S'.q ::
I[x, xs: (int,int,int,int);

:II

SO.q
{x = V.l.q.l.(q + l)}
; Sl.q
{XS = V.O.l.q}
; S2'.q
{R'.q}

Figure 3.2: Program text for S'.q

Process S2'.q replaces 82.q. In the program text (cf. Figure 3.3), the notation x[j] is
used to select the jlh component of four-tuple x.

S2'.q ::
I[k,y: int;

.II

k, y := l.q, (e, e, e, e) {y = v.e.q.k}
; do k =f l.(q + 1)

--+ {y = V.l.q.k}
{y[O] = M.l.q.k /\ y[2] = Hd.l.q.k}
{ xs[O] M.O.t.q /\ xs[l] = Tl .O.l.q}
; g(k) xs[O] ® (xsll] ffi y[2])@ y[O]
; y := y 8V.k.(k+1)
; k := k + 1

od

Figure 3.3: Program text of S2'.q for the all-prefixes problem

The time complexity of the parts SO.q and S2'.q is O(~). The time complexity of
part Sl.q again depends on the network used. For a chain network the resulting time
complexity of the all-prefixes problem is o(;) + O(p).

Process Sl.q computes a partial combine, and is in structure similar to computing
partial sums. It is possible to give a communication process for Sl.q (see Section 1.5),
with a time complexity of O(logp).

FIN AL REMARKS 57

3.6 Final remarks

In this chapter, we have presented a parallel program scheme for a class of segment
problems. An instance of this class is the maximal segment sum problem. Parallel
program schemes can be derived in a similar way for segment problems defined only
for non-empty segments, with non-idempotent operators, and with different decom­
positions of F.

The crux of these parallel programs is that global expressions defined on a segment
[a,c) can be rewritten in terms of local expressions defined on [a,b) and [b,c) for
a :S b :S c and an operator 0. The local expressions can be evaluated by a single
process if we assign consecutive segments to processes.

The general definition in Section 3.3 of£, LO 0, £.p = n, and£ is increasing, specifies
such a distribution. Here, we have used the general linear distribution because of its
load balancing property.

The divide-and-conquer rules specify how local expressions, each computed indepen­
dently by all processes, can be combined into a global expression. Some communi­
cation will be necessary to achieve this, and additional assumptions about a com­
munication network have to be made. This allows communication processes to be
designed in several ways depending on the assumed communication network, thereby
influencing the resulting time complexity.

For the problem class considered here, the time complexity on a chain network is
o(;;) + O(p) and on a binary hypercube network it is O(~) + O(logp). The re­
lated problem of all prefixes can be solved in a similar way and yields similar time
complexities.

The technique we outlined is not limited to the class of segment problems presented.
For example, it is also possible to consider segments which satisfy an additional
property. Formally, an additional predicate X in the range of M holds, and the
definition of Af reads:

M.a.b i,j: a :Sis j $bl\ X.i.j: F.i.j).

Again, the computation of Af.a.c can be expressed in terms of segments [a, b) and
[b, c), a :S b S c, and a continuation part. Further massaging of the expressions for
the continuation part is necessary in order to obtain local subexpressions. A general
program scheme is difficult to specify, since it depends very much on the form of
predicate X and operator ®·

Assume, for instance, that predicate X can be rewritten as:

X.i.j X.i.k /\ X.k.j /\ Y.k, for integer i $ k S j and predicate Y .

In this form, the expression for the continuation part. is given by:

i,j: a :Si :S b ~ j Sc/\ X.i.j : F.i.j) ,

and can be computed from:

(® i: a ::::; i ::::; b I\ X.i.b: F.i.b) ffi (® j : b::::; j ::::; c I\ X.b.j : F.b.j)

if Y.b holds.

Clearly, if Y.b does not hold there is no continuation part contributing to the com­
putation of M.a.c.

An example of a segment problem using predicates X and Y is the longest plateau
problem [33].

In general, massaging the continuation part is a cumbersome process. A non-trivial
problem is given in [56] where a parallel program is considered for the maximal length
of any rightmost segment.

We have tried to obtain parallel programs for many of these segment problems using
the same technique with slight modifications. Sometimes, it was necessary to rewrite
the specification in such a way that it falls in the desired problem class. For instance,
the maximal segment product (66] does not satisfy the requirements of the problem
class outlined here. For this problem, however, it is feasible to split the problem in
two subproblems, each satisfying the requirements.

The resulting parallel programs consist quite often of several computation and com­
munication phases. For the computation phase, it is relatively easy to obtain parame­
terised processes, since we can reuse the techniques from sequential programming. For
the communication phase, simple communication networks are sufficient. Essential
in all derivations is the formulation of parameterised invariants, and the separation
between the computation and communication phases.

Chapter 4

Parallel Symmetric-System
Solving

Parallel algorithms for dense Cholesky factorisation and triangular system solving are
developed here. The parallel Cholesky factorisation algorithm uses a Cartesian matrix
distribution. For this algorithm, an analysis of the communication requirements
and the work load is presented. It is shown that the grid distribution is a good
candidate distribution, which is confirmed by timing-experiments on a 400 multi­
processor system. The triangular system solver is based on the grid distribution as
well.

4.0 Introduction

The solution of linear systems of equa.tions is of fundamental importance in large­
scale scientific computations. The development of efficient computer algorithms for
this type of computations has become a major research topic since the beginning
of the age of electronic computing. Indeed, the Atanasoff-Berry computer [59, 62]
solved a linear system of up to 30 equations.

A special class of linear systems is that of the symmetric positive-definite systems
(s.p.d. systems). These systems arise in many areas such as: power-network problems,
discretisations of partial differential equations, a.nd linear programming.

Characteristic of this class of linear equations is that the corresponding matrix is
symmetric and positive-definite, which is equivalent to all eigenvalues of the matrix
being positive [32]. The symmetry can be exploited to halve the computational effort
to solve the equations.

The standard procedure to obtain a solution of a s.p.cl. system

Ax= b,

where A is a given n by n s.p.d. matrix, bis the given right.-11ilnd side vector of length
n, x is the unknown solution vector of length n, is as follows.

59

60

• Factorise A using Cholesky's method [76]:

A= LL1
,

where L is a lower triangular n by n matrix (L 1 is the transpose of L).

• Solve the two corresponding triangular systems:

The factorisation is unique if the diagonal elements of L are taken to be positive.
The Cholesky method uses numerically stable diagonal elements for pivoting; there
is no need for a pivot search like in LU decomposition [:32].

In this chapter, we are interested in the (formal) development of an efficient parallel
system solver implementing the solution procedure as outlined above. The construc­
tion of such a parallel solver will be based on parameterised invariants as discussed
in the previous chapters. Other symmetric-system solving methods [32], for example
iterative solvers, fall beyond the scope of this chapter and are not considered.

The Cholesky factorisation involves ~
3 + O(n2

) elementary operations. This is, com­
pared to 2 * n 2 + 0(n) elementary operations required for the solution of the resulting
triangular systems, the bulk of the work done. Parallelisation of only the Cholesky
factorisation, however, can cause the triangular system solving part to become a
bottleneck. To prevent this, parallel algorithms for both Cholesky factorisation and
triangular system solving have been developed.

Most parallel algorithms for symmetric-system solving a.re based on either a row or
column distribution of the matrix L [23, 27, 52]. Here, we derive a general parallel
program scheme for the Cholesky factorisation, which can be instantiated with, for
example, the block, row, col, wrap-row or wrap-col distribution. This scheme is
used to obtain a new grid-based parallel program for the Cholesky factorisation.
The resulting program has good load-balancing properties and a low communication
overhead.

An outline of this chapter is as follows. The parallel program scheme for Cholesky
factorisation uses a Cartesian distribution of the matrix L, and is obtained in Sec­
tion 4.1. The communication requirements and the load-balancing properties are
further analysed in Subsections 4.1.l and 4.1.2. It is argued that the grid distri­
bution is a good candidate distribution for the para.Ile! Cholesky factorisation (this
has been shown in the context of LU decomposition [.5]; see [7.5] for a derivation).
Timing-experiments on 400 transputers are given in Subsection 4.1.3. These exper­
iments compare three different parallel Cholesky factorisation programs based on
the grid, wrap-column and block distribution (Example 2.17), respectively. In Sec­
tion 4.2, a derivation is given of a triangular solver assuming the grid distribution
of L. In this way, a truly parallel symmetric-system solver is obtained that uses the
same distribution. In Section 4.3, we summarise what we have achieved.

PARALLEL CHOLESKY FACTORISATION 61

4.1 Parallel Cholesky factorisation

Given is an n by n s. p.d. matrix A. Our task is to design a parallel algorithm
consisting of p processes, which computes a lower triangular matrix L satisfying

From postcondition R and using the symmetry of A we find:

(V i, j : 0 :::; j :S i < n : A(i, j) 0::: h : 0 :S h < n : L(i, h) * L(j, h)) .

The contribution of the terms L(j, h) is 0 for h > j, because L is lower triangular.
Splitting all terms in the summation with h j and h > j gives, after some calculus,
a reformulated postcondition R:

R : (V i,j: 0 :S j :::_:: i < n: L(i,j) * L(j,j) sum.i.j.j),

where for all a, b, c, 0 :S a, b < n, 0 :::; c :::; n:

sum.a.b.c= A(a,b) O:: h: 0:::; h < c: L(a,h) * L(b,h)).

The value of sum.i.j.j is determined by the first j columns of L. This indicates a
sequential solution: compute the elements of L column-wise starting with the first
column.

We propose to distribute L across p = 1\1 * N processes using a Cartesian distribution
'DO x 'Dl, 'DO (60,n,M) and 'Dl = (61,n,N). Each process is identified by an
ordered pair (s, t), 0 :::; s < M and 0 :S t < N. One can think of the processes to be
arranged as NJ process row ensembles of N processes each. Or, alternatively, as N
process column ensembles of M processes each (cf. Figure 4.0). The distribution 'DO
specifies how the n rows of a matrix are assigned to Al process row ensembles; 'Dl
specifies how then columns of a matrix are assigned to N process column ensembles.

A Cartesian distribution may specify that a process gets a part of the zero upper
triangle of L. For example, the block distribution assigns zero matrix elements to
each process (s, t) with s < t. This is not a restriction, because a process that is
assigned only elements from the zero upper triangular of L is not performing any
useful computations and can be ignored.

In the following, we shall omit the ranges on s and t unless stated otherwise. The
notation local.i.j is shorthand for:

local.i.j (i,j) E 06oxs1.(s, t)

0 :::; i < n /\ 60.i = s /\ 0 :S j < n /\ 61.j = t .

Predicate local.i.j holds if index pair (i,j) and a correspond1ng matrix element are
assigned to process (s, t). A parameterised postc011dition R.s.t is:

R.8.t : (V i,j: local.i.j /\ i;::: j: L(i,j) * L(j,j) = 8urn.i.j.j).

62

(0, 0) (0, 1) (0, 2)

• • •
(1, 0) (1, 1) (1, 2)

• • •
(2, 0) (2, 1) (2, 2)

• • •
Figure 4.0: A Cartesian distribution of a 6 by 6 lower triangular matrix L across 9
processes is depicted. The fifth row of the matrix L is distributed across the second
process row (1, t), 0 ::::; t < 3. The grey-scales denote the assignments of matrix
elements to processes: L(4,0) is assigned to process (1,0); £(4,1) to process (1,1);
£(4,2) to process (1,2), and so forth.

This parameterised postcondition is the starting point for the derivation of a par­
allel Cholesky factorisation program scheme, which is given in the next subsection.
The communication behaviour and load-balancing properties of the resulting parallel
program scheme are discussed in the second and third subsection.

4.1.0 A derivation

We present a formal derivation of a parallel program scheme for the Cholesky factori­
sation. It turns out that it is possible to specify communication processes separately,
and to parameterise the resulting programs in the Cartesian distribution DO x 'Dl.
The derivation itself is rather smooth: after having formulated the parameterised
invariants, it is relatively easy to obtain the program text for the processes.

The local postcondition R.s.t is used to formulate a parameterised invariant P.s.t.
A local variable k is introduced in every process, and it is assumed that all processes
have the same value of k. Inspired by a. sequential solution (column-wise computation
order) we propose:

P.s.t

PO.s.t

Pl.s.t

PO.s.t /\ Pl.s.t

0::::; k::::; n

(V i,j: local.i.j /\ j < k /\ i :::0: j: L(i,j) * L(j,j) = sum.i.j.j).

Setting k to 0 establishes invariant P.s.t; the resulting program contains a loop with
k =f. n as guard. Invariant Pl expresses that the first k columns of L have been
computed.

PARALLEL CHOLESKY FACTORISATION 63

Progress is made by incrementing k; its effect on Pl is:

Pl.s.t (k := k + 1)
{ definition Pl, substitution }

(V i,j: local.i.j A j < k + 1 Ai~ j: L(i,j) * L(j,j) = sum.i.j.j)
{ range splitting j k, definition local.i.j, definition Pl }

Pl.s.t A (61.k =f. t V
(Vi : k :$ i < n A 60.i = s: L(i, k) * L(k, k) sum.i.k.k)).

From this little calculation we conclude that invariant Pl needs only to be restored
by the]t,.f processes (s,61.k). The values of L(k,k) and sum.i.k.k, k :$ i < n,
have to be computed before L(i, k), k < i < n, can be computed. The value of
L(k, k) is only available in process (60.k,61.k); therefore, some communications are
needed. The values of sum.i.k.k are recorded by variables in order to avoid excessive
communications of elements of L. This is not sufficient, because in step k + 1 the
values of sum.i.(k + l).(k + 1) are needed as well. Hence, an n by n matrix Xis
introduced, which stores in X(i,j) partial sum smn.i.j.k. This is expressed by P2:

P.s.l

P2.s.t

PO.s.t A Pl .s.t A P2.s.t

(V i,j: local.i.j A k :$ j Ai~ j: X(i,j) = sum.i.j.k).

P2 is initialised by setting k to zero and X to A (only for the lower triangular pant).
Consequently, A has the same distribution as L.

The parallel program is the parallel composition of p = M * N instances of parame­
terised process S, which is outlined in Figure 4.1.

S.s.t ::
I[X(i,j: 0 :$ i,j < n): array of real; I.·: int;

k := 0
; for all i,j: local.i.j Ai~ j: X(i,j) := A(i,j) Ila rof
{P.s.t}
; do k =f. n -;

Restore? 1. s. t
; RestoreP2.s.t

Figure 4.1: Outline of each parameterised process S

This leaves us with the obligation to design RestorePl and RestoreP2. We start with
the former (cf. Figure 4. 2). If P2 holds all processes (s, 61. k) can compute an L(i, k)
from the values L(k,k) and X(i,k) = surn.i.k.k. The value of L(k,k) is computed
by process (60.k,61.k) from X(k, k), and is communicated by the processes CO.s.
Communication process CO.s delivers to all processes 61.k) a copy of L(k, k).

RestorePl.s.t ::
I[h: real;

if 80.k s /\ 81.k = t
-t {X(k,k) = sum.k.k.k}

L(k, k) := jX(k, k:)
{L(k,k) 2 = sum.k.k.k}
; h L(k,k)
{h = L(k, k)}
; CO.s

IJ 80.k # s /\ 81.k = t -t CO.s {h = L(t.,, k)}
fi

; if 81.k = t

JI

Consider P2.s.t (k

P2.s.t (k := k + 1)

-t {h = L(k, k)}

fi

for all i : k + 1 :S i < n /\ 80.i = s :
{X(i,k) = sum.i.k.k}
L(i,k) X(i,k)/h
{L(i, k) * L(k, k) = swn.i.k.k}

Ila rof

Figure 4.2: Program text for RestoreP I

k + 1):

{ definition P2, substitution }
(V i,j: local.i.j /\ k + 1 $ j /\ i 2: j: X(i,j) sum.i.j.(k + 1))

{ definition sum, calculus }
(V i,j: local.i.j /\ k + 1:::;; j /\ i 2: j: .Y(i,j) smn.i.j.k ~ L(i, k) * L(j, k)) .

This calculation reveals that X(i,j) needs the values of L(i, A') and L(j, k) for appro­
priate i and j. Hence, the restoration procedure for P-2 is a simple one: communicate
the necessary values of L to each process (s, t) and update X (cf. Figure 4.3). The
communication of the appropriate values of L(i, k) a.ud L(j, k) is done by two commu­
nication processes Cl.s.t and C2.s.t, which use two arrays c and d to store received
values.

If the statement lists of the processes are combined several optimisations are feasible,
such as integration of guards and removal of matrix X. The latter can be replaced by
L, since partial sums are only maintained for matrix element1:1 X(i,j), k $ j :Si< n.
Besides the implementations of parameterised comrnuuication processes CO, CI, and
C2, we have obtained the complete structure of the parallel program.

The resulting program. is a dense parallel submatrix-Cholesky (an overview is given
in [37]). Submatrix-Cholesky uses two basic operations: cdiv and cmod. The cdiv.k

PARALLEL CHOLESKY FACTORISATION

RestoreP2.s.t ::
I[c, d(i: 0::; i < n): array of real;

if 81.k = t
~for all i: k+l::; i < nA80.i= s :c(i) :=L(i,k) Ila rof
fi

{ 81.k # t V (\ii: k + 1 ::; i < n A 80.i = s: c(i) = L(i, k))}
; Cl.s.t
{(\ii: k+ 1::; i < nA80.i = s: c(i) = L(i,k))}
; C2.s.t
{(\i j: k+l $.j < nA81.j =t :d(j) = L(j,k))}
; for all i,j : local.i.j A k + 1 $_ j Ai 2: j :

X(i,j) := X(i,j) - c(i) * d(j)

Figure 4.3: Program text for RestoreP2

65

operation scales the kth column of L by an appmpriate factor. The cmod.j.k opera­
tion modifies column j of L by adding a suitable multiple of column k to it (a saxp:y).
In the submatrix-Cholesky, each newly computed column A1 of L is used to modify 1all
columns j, with k < j. The parallel versions of cdiv.k and all cmod.j.k, with k <d,
correspond precisely with the parameterised processes RestorePl and RestoreP2.

4.1.1 The communication processes

Three communication processes have been specified in the derivation. Here, each
process is discussed in turn. Step k is fixed.

The specification of process CO.s.t reads:

{ 80.k # s v 81.k f::t v h L(k, k)}
CO.s.t
{81.k#tVh L(k,k)}

A broadcast is specified of value L(k, k) from process (SO.A~, 81.k) to the M 1 pro­
cesses (s,81.k), 0::; s <MA s # 80.k. For M = 1, no such broadcast process is
needed. Broadcasts can be easily implemented on many networks (see Section 1.3),
but are expensive and should be avoided whenever possible.

The specification of communication process Cl.s.t reads:

It is specified that each process should obtain certain matrix elements from column k
of L, which is distributed across M processes (s, 81.k). More specifically, each process
(s, t) needs exactly the values of array c that are available in process (s, 81.k). This
results in a communication process consisting of Af independent broadcasts of array
parts, each broadcast to an ensemble of N 1 processes.

The specification of C2.s.t reads:

{(Vi: k + 1 $ i < n /\ 80.i = s: c(i) = L(i, k))}
C2.s.t
{(V j: k+ 1 $ j < n /\81.j t: d(j) = L(j,k))}

Again, a communication process is needed using broadcasts. Process (s, t) needs ma­
trix elements of column k of L specified by 81 and k. Unfortunately, the distribution of
column k is specified by 80 and k. This means that a redistribution should take place.
In the worst case the time complexity of a redistribution in step k is O(n - k l),
for example, when M = 1 (a column distribution) or N = 1 (a row distribution).
The overall worst-case time complexity is then O(n2

). This is undesirable since it
equals the time complexity of a sequential triangular system solver.

A redistribution can be avoided if 80 = 81 and M N. In this case, communication
process C2 can be implemented efficiently by M independent broadcasts: each process
(t, t) broadcasts its local part of array c to the column processes (s, t), s -:ft. (This
is also the maximal parallelism we can expect, because column k of L is distributed
across Af processes.)

In conclusion, a candidate distribution should satisfy 80 = 81 and M N, otherwise
a redistribution is necessary.

4.1.2 Candidate distributions

In this subsection, an analysis is given of the work load distribution of a process
in step k. This gives an accurate expression, which is parameterised in the process
number, step k, and the Cartesian distribution 'DO x 'Dl. This expression is estimated
for the particular choice 'DO 'Dl, and it is argued that the grid distribution is a
good candidate. We now present the analysis.

The parallel program consists of n steps with in each step some computations and
communications. In step k, 0 $ k < n, the bulk of the computations are done by
all processes in the update part of RestoreP2; some extra computations are done by
processes (s, 81.k) in RestorePl. It is assumed that all elementary operations, like
subtraction, and multiplication (square roots are not counted), take the same amount
of time. The computational load in step k of process (s, t), W.s.t.k, is obtained by
counting the number of elementary operations.

W.s.t.k = 2 *(I: j: j E 0 51 .t n H.(k + 1): I 0 60 .s n H.j I)

PARALLEL CHOLESKY FACTORISATION 67

{
I O'°.s n H.(k + 1) I if Sl.k t

+ 0 otherwise

H.a denotes the set {i: a .:Si< n: i}, for 0 ::; a ::; n.

Explanation: The first term counts the number of subtractions and multiplications
in the update part of RestoreP2 (Figure 4.3). The second term is the number of
divisions in RestorePI (Figure 4.2) and counts only if Sl.k t.

Ideally, the computational load W.s.t.k should be same for every process, because
idle time is then 0 for every process. Good choices for VO and Vl minimise the idle
time as much as possible. Therefore, we consider the maximum number of operations
to be performed by any process in a step. This is not a strong restriction, since in
every step communication and synchronisation take place regardless of the chosen
distribution.

From W.s.t.k we can determine the computation complexity Tr.p.n (p M * N):

Tr.p.n = (2::; k: 0 :<;; k < n: (max .s, t :: vVs.U~)).

It is possible to evaluate the expression above for pa.rticular distributions, but a closed
formula for arbitrary distributions is unlikely to be obtained. In the following, we
analyse expression W.s.t.k for VO Vl. Previously, we showed that in this case
redistribution is avoided. It is assumed that n ;;;}:> p, and every process (s, t) has still
a part of the matrix to be factorised. This assumption is not vali<l at the end qf the
factorisation process.

One can obtain the next result:

W.s.t.k + W.t.s.k

2* I 0 80 .sn H.(k + 1) I* I 0 81 .tn H.(k + 1) I' for all VO= VI

The proof is tedious and can be obtained by changing the summation order in the
definition of W. The ~ in the formula means that equality holds for processes
(s, t) with s # t, s =f. SO.k, and t =f. fil.k, otherwise it. is a lower bound. The
0(1080 .s n H.(k + 1) I) and 0(1081 .t n H.(k + 1) IJ t.enns are neglected, because
n~ p.

Using this result, we derive: for all s, t, k, VO Vl, implying p = 114 2
:

2 * (max s, t :: W..s.t.k)
> { calculus }

W.s.t.k + W.t.s.k
~ { see above }

2* I 0 80 .s n H.(k + 1) I* I 0°t.t n H.(k + 1) I

Hence,

(max s, t :: W.s.t.k)
>

(max s, t :: I 0 50 .s n H.(k + 1) I* I 0 81 .t n H.(k +I) I) .

The last expression can be further reduced:

(max s, t :: I 0 50 .s n H.(k + 1) I* I 0 51 .t n H.(k + 1) I)
{ calculus, all counts are non-negative }

(max s :: I 0 80
·• n H.(k + 1) I)* (max t ::I oolt n H.(k + 1) I)

> { Example 2.11 }
(max s :: I ogrid.s n H.(k + 1) I)* (max t :: I ogrid.t n H.(k +I) I)

= { calculus }
((n-k-l+M l)/M)2

•

Thus, we arrive at the following result.

(max s,t :: W.s.t.k) ~ ((n k- l + M - I)j,~f)2 , for 'DO= 'DI.

The lower bound is attained for 'DO = 'DI =wrap. In words: in every step k, there is
a process involving at least ((n k - I+ M - I)/M) 2 operations on its local part of
then - k - 1 by n - k - I triangular submatrix X, for eve1'y Cartesian distribution
that assigns rows the same way as columns.

The time complexity of the grid-based submatrix-Cholesky is:

3
n 0(n2)

3*p + .fi5 .

The time complexity of the wrap-column-based submatrix-Cholesky is:

3 n 2 + O(n) .
3*p

These results can be obtained from a precise count of the expression W.s.t.k for each
distribution. Most parallel Cholesky factorisation algorithms use the wrap-column
distribution, see for example [27]. This distribution has two disadvantages: a non­
scalable quadratic term in both the communication and computation complexity.

From these arguments we conclude that the grid wrap2 distribution is a suitable
candidate for ensuring load balance and avoiding redistribution in the communication
processes.

4.1.3 Experiments

A number of experiments were performed on a 400 transputer network. Three im­
plementations based on the parallel Cholesky factorisation scheme were obtained by
using the distributions grid, wrap-column, and block. Each implementation was

recoded in order to make use of distribution specific properties. For example, no
communication processes CO and Cl are needed for the wrap-column distribution.

In the following, we give timing-results of two experiments. In both experiments, the
programs are called grid, wrap and block according to distribution used. The purpose
of these experiments is to compare the performance of the different programs. The
absolute performance, and related speed-up, is not investigated.

The programs execute on a square 20 by 20 mesh of transputers; process (s, t) is
mapped one-to-one to processor (transputer) (s, t) in the mesh. The programs are
implemented in transputer Pascal [57], and all computations are done in single pre­
cision (32-bit). The communication processes use directly the communication links
of each processor in the mesh.

In the first experiment, we measured the execution time of the different parallel
Cholesky factorisation programs on 400 processors using different matrices sizes. The
dimensions of the matrix A range from 400 up to 1200 with steps of 200. For ease
of comparison, the timings of block are corrected with a factor A~~,~-~f ~ (M =
20,p M 2

) in order to get a time estimate for the program on 400 processors. The
reason is that the block distribution of a lower triangular matrix assigns no matrix
elements to processes (.s, t) with .s < t. This results in a computation with effectively
only (M2 + M)/2 = 210 processors involved. The correction with a factor for the
block program blurs the comparison. Fair compa.rison of different implementations
is, indeed, a difficult task.

n grid wrap block
400 0.6 2.0 1.0
600 1.3 4.6 •) ~ -·'
800 2.6 8.4 5.6

. 1000 4.6 13.7 10.:3
I 1200 7.:3 20.4 16.9

Table 4.0: Execution times (in seconds) of three parallel Cholesky factorisation pro­
grams, grid, wrap and block, on a square mesh of 400 transputers

From Table 4.0 can be concluded that the grid program is superior to the wrap
and block program by at least a factor of two in speed. The differences between the
numbers can be understood by considering the time complexities of the programs
grid, wrap, and block:

n3 0("2) ~ 0(2) . n3 0("2)

3*p+ 'v'fi' 3*p+ n 'p+ v'f>'

respectively. The grid and wrap distribution yield the same first-order term in the
complexity results. Surprisingly, the first-order term in the complexity results for the
block distribution is three times larger, due to load imbalance. The block distribution

approximately square submatrices of L t,> processes. Until the end of the
Cholesky factorisation, there is a process that has to perform updates for its local

submatrix, thus causing a large load imbalance. In contrast to a grid-based program
in which each process performs updates for a triangular submatrix whose dimensions
decrease in every step.

There is at least a factor of two difference in the timing-results for grid and wrap.
This is mainly due to the dominance of the second-order term in the complexity
results for wrap. Another fact that contributes is the small number of columns (1-3)
assigned to each process in the wrap program. This limits the range of applicability
for the wrap program to p <t:: n.

The block program shows in these experiments a competitive behaviour with the
wrap program. This is only polish if we consider the results of second experiment in
which the size of matrix A is increased.

n grid wrap block

1500 13.6 34.6 :3:3.:3
2000 29.4 66.5 75.I
2500 54.3 111.7 141.2
3000 90.l 171.9 237.5

Table 4.1: Execution times (in seconds) of the three parallel Cholesky factorisation
programs for large matrix sizes

grid 0
'¥ ~

100 wrap+
q:i 0

block D 0
fE 0

i5 di 0
time (s) lO 5 0

+ 0
+ 0 0

0 0 l 0 j

0.1
400 1000 3000

matrix dimension (n)

Figure 4.4: Log-log plot of all timing-results on a squa.re mesh of 400 transputers

From Table 4.1 can be concluded that grid maintains its superiority. The differences
in the timings between grid and wrap are smaller with increasing matrix sizes. We
also find that, for n ~ 2000, block becomes slower than wrap. Asymptotically, it is
expected that timing-results for the grid and wrap converge, since they have same
first-order term in the complexity results; for the block it is expected that it will lie
a factor of three higher. This is indeed observed.

In Figure 4.4, the timing-results of both experiments are combined into one single
plot.

PARALLEL TRIANGULAR SYSTEM SOLVING 71

4.2 Parallel triangular system solving

The solution of the triangular system

Lx = b

is sequentially an easy task due to the triangularity of L. In the parallel case the
situation is different, because of the restriction that x(j) can only be solved if all x(i),
0 :::; i < j, are computed. In the past many efforts have been spent in developing
efficient parallel triangular system solvers based on either a row or a column distri­
bution of the matrix [19, 38, 52]. Here, we present a formal derivation of a parallel
grid-based triangular system solver, which is named the QWERTY algorithm. This
solver can be used in combination with a parallel grid-based Cholesky factorisation
algorithm to form a powerful symmetric-system solver.

The motivation for giving a derivation of the Q\VEHTY algorithm was to add a
formal correctness proof to the algorithm presented by R.H. Bisseling in 1988 at the
Shell Conference on Parallel Computing in Amsterdam. A detailed explanation of
this algorithm and timing-experiments on transputer meshes have been presented in
[6].

At the time, we felt that a formal derivation of the QWERTY algorithm would be a
challenging test-case for the use of parameterised invariants. This is essentially what
is presented in [55], and is here in adapted form.

An outline of this section is as follows. In the first subsection a derivation using
parameterised invariants is given. In the second subsection the complexity of the
triangular system solver on a complete network is discussed.

4.2.0 A derivation

The problem is:
R : Lx = b,

where Lis an n by n lower triangular matrix distributed across p M * N processes
with M N using the grid distribution. For the sake of simplicity we assume
n\lvf = 0. The vectors x and b of length n are distributed like the main diagonal of
L, process (s,s) is assigned all x(i) and b(i) with i\M = s.

As in the previous sections, postcondition R forms the starting point for obtaining
parameterised invariants.

The postcondition is rewritten using the lower triangularity of L:

R : (\:/ i: 0:::; i < n: L(i,i) * x(i) = b(i) - sum.i),

where
sum.i = (I: j : 0 :::; j < i :

For convenience, we assume that L(i, i) = 1, for all i : 0 :=:; i < n. This avoids
expressions L(i, i) * x(i) in the derivation. From postcondition R':

!(: (V i : 0 :=:; i < n : x(i) = b(i) - sum.i) ,

we can easily satisfy postcondition R by dividing each x(i) by L(i, i).

The derivation is continued from postcondition R'. The parameterised postcondition
R.s.t is (taking the distribution of x and b into account):

R.s.t ; s -:f. t V (Vi: 0 :=:; i < n /\ i\M = s: x(i) b(i) - sum.i).

Generalising the parameterised postcondition gives a parameterised invariant. We
propose two invariants: PO and Pl.

PO.s.t

Pl.s.t

0 ::; k ::; n /\ k\M = 0

s -:f. t V (V i : 0 ::; i < k /\ i\M = s : x(i) b(i) sum.i) .

Pl is derived from R by replacing constant n by variable k, which is local to process
(s, t). As a consequence of PO, process (s, t) contains a loop with initialisation k := 0,
guard k -:f. n, and increment k + M. The rabbit that pops up out of the hat is the
step size M instead of the usual increment by one. This is, indeed, a key point in the
construction of the parallel triangular solver, and can be understood if we carry the
derivation a bit further.

Consider Pl.s.t (k k + M) :

Pl.s.t (k k + M)
{ definition Pl, substitution }

s-:f.tV(Vi:O:=;i<k+iH/\i\M s:x(i) b(i)-sum.i)
{ range splitting, i = k + s, k\M 0 }

s -:f. t V ((Vi: 0 :$ i < k /\ i\M = s: x(i) = b(i) - sum.i) /\
x(k+s)=b(k+s) sum.(k+s))

{ calculus, definition Pl }
PI.s.t t\ (s -:f. t V x(k + s) = b(k + s) sum.(k + s)) .

The value x(k + s) has to be calculated by process (s, t) with s = t. The term
sum. (k + s) can be expressed as a sum of partial sums psum, such that each partial
sum contains only elements of L that are local to process (s, t); this obviates the need
to communicate elements of L during the computation of a partial sum. Of course,
each partial sum itself has to be added globally, i.e., via a communication process.
The construction of the algorithm is driven by avoiding communication of matrix
elements of L as much as possible.

Rewriting sum.(k + s) gives:

sum.(k+s)

PARALLEL TRIANGULAR SYSTEM SOLVING

{ definition }
(2:::; i: 0 :Si< k + s: L(k + s, i) * x(i))

{ calculus}
(I: t: 0 :S t < M : (I: j : 0 :S j < k + s A j\M = t: L(k + s,j) * x(j)))

{ range splitting t < s and t ;::: s }
(I: t: 0 :St< s: (I: j: 0 :S j < k + s A j\M = t: L(k + s,j) * x(j))) +
(I: t: s :St< M: j: 0 :S j < k + s A j\M t: L(k + s,j) * x(j)))

{ calculus, definition psum }
(I: t : 0 :S t < s : psum.k.t.(k + s) + L(k + s, k + t) * x(k + t)) +
(I: t: s :St< M: psum.k.t.(k + s)) ,

where for all a,r,i with 0 :Sa :S n, 0 :S i < n, and 0 :Sr < JV/ :

psum.a.r.i (I: j: 0 :S j <a A j\Af r: L(i,j) * x(j)) .

73

In this form, the sequential order between the values x(k + s) becomes clearly visible.
The value of x(k+s) can be computed from sum.(k+s) which itself can be computed
from a number of psum values and all x(k + t) with t < s. The idea is to compute
the values of psum locally by each process and combine them in a communication
process in order to compute sum.(k + s). The partial sum psum.k.t.(k + s) contains
matrix elements L(k + s, j), with 0 :S j < k A j\M = t, that are local in process
(s, t). In step k, the values of x(j), with j < k are known, and hence psum.k.t.(k + s)
can be computed. The products L(k + s,k + t) * x(k + t), t < s, in the summation
can only be computed if the values x(j), k :S j < k + s, are available, i.e., when all
invariants Pl .(j\M).(j\M) (k := k + M) hold. It is clear that Pl .s.s ca.n be restored
in the order s 0, 1, ... , M - 1. As we will see later, a.n ordering on the invariants
can be given formally using a ranking function.

The computation of psum can be kept invariant by introducing in each process a
variable w. Suggesting an invariant of the form:

P21.s.t : w = psum.k.t.(k + s).

It can be concluded from P2'.s.t (k := k+ M) that a single variable w is not sufficient.
Therefore, in each process an array of variables w is introduced, which maintains for
each row i, with i ?: k + s, a partial sum psum. This is expressed by P2 °:

P2.s.t : (Vi: k + s :Si < n A i\M s: w(i, t) = psum.k.t.i) .

For notational purposes we introduce an extra index t in w; this allows us to make
a distinction between the local variables w in different processes. As a consequence,
w can be seen as a large n by M matrix distributed according to (wrap, n, M) x
(identity, M,M).

An outline of the QWERTY algorithm is given in Figure 4.5. In the program text
array w is set to zero; a loop is shown calling the parameterised processes RestorePI
and RestoreP2.

P2 is weaker than presented in the original paper [55] and was suggested by [24].

4 .

S.s.t ::
I[w(i, t : 0 ::::: i < n, 0 ::::: t < M): m<1trix of real; k: int;

JI

k := 0
; for all i: 0 :':::'. i < n /\ i\M = s : w(i, t) := 0 Ila rof
{P.s.t: PO.s.t /\ Pl.s.t /\ P2.s.t}
; do k # n---+

RestorePl.s.t {Pl.s.t (k k + M)}
; RestoreP2.s.t {P2.s.t (k k + M)}
; k := k + M {P.s.t}

od

Figure 4.5: Outline of each parameterised process 8.s.t of QWERTY

Parameterised process RestorePl has the following specification:

{ PO.s.t /\ Pl.s.t /\ P2.s.t}
{w(k + s, t) = psum.k.t.(k + s)}
RestorePl.s.t
{s oJ t V x(k + s) = b(k + s) - smn.(k + s)}
{Pl.s.t (k := k + M)}

The program text for RestorePl is easily obtained by using the derived rule for
sum.(k + s):

sum.(k + s)

(I: t: 0::::: t < s: psum.k.t.(k + s) + L(k + s, k + t) * x(k + t)) +
(I: t: s::::: t < M: psum.k.t.(k + s)) .

The diagonal processes (s, s) will each compute x(k + s) from sum.(k + s) as follows.
The processes (s,t) withs< t communicate their psmn.k.t.(k+ s) to process (s,s).
The processes (s, t) withs> t have to obtain first the value of x(k + t) from process
(t, t) before they can communicate the value of psum.k.t.(k+s)+ L(k+s, k+t)*x(k+t)
to process (s, s). The program text for this complicated communication process is
given in Figure 4.6. It is assumed that all communication is done using a complete
communication network. In the program text an array a is used to store received
messages. Now, we focus on RestoreP2. Consider P2.s.t (k := k + M) :

P2.s.t (k := k + M)
= { substitution }

('Vi: k + s + M ::::: i < n /\ i\Af = s: w(i, t) = pswn.(k + M).t.i)
{ definition psum, calculus }

('Vi: k + s + M::::: i < n /\ i\M = s: w(i, t) = psmn.k.t.i + L(i, k + t) * x(k + t)).

PARALLEL TRIANGULAR SYSTEM SOLVING 75

P2 can easily be restored using the value of x(k + t). For processes (s, t) withs> t,
the value of x(k + t) is available in local variable y on account of RestorePl. For
processes (s,t) withs< t, the value of x(k + t) is communicated by process (t,t).
The resulting program is given in Figure 4. 7.

RestorePl::
I[a(i: 0 :S i < M): array of real; y: real;

ifs< t ~ {w(k + s, t) = psum.k.t.(k + s)} (s, s)!w(k + s, t)
~ s=t~ paru:t<u<M:

fi
JI

(s, u)?a(u)
{a(u) =psum.k.~L.(k+s)}

rap
; par u : 0 :S u < t :

(s,u)?a(u)
{a(u) psum.k.u.(k+s)+L(k+s,k+u)*x(k+u)}

rap
; a(t) := w(k + s, t)
{a(t) = psum.k.t.(k + s)}
;x(k+s):=b(k+s)
; for all u : 0 :S u < M : x(k + s) := x(A: + s) - a(u) Ila rof
{x(k + s) = b(k + s) sum.(k + s)}
; par u: s < u < M: (u,t)!x(k+ s) rap

s > t ~ (t, t)?y
{y = x(k + t) /\ w(k + s, t) psum.k.t.(k + s)}
; (s,s)!w(k+s,t)+L(k+s,k+t)*Y

Figure 4.6: Program text for RestorePl

RestoreP2::
ifs< t ~ (t,t)?y {y x(k+t)}
~ s=t~ y:=x(k+t)

{y=x(k+t)}
; par u: 0 :S. u < s: (tt,t)!y rap

fi
{y = x(k + t)}
; for all i : k + s + M :S. i < n /\ i\M = s :

w(i, t) := w(i, t) + L(i, k + t) * y
Ila rof

Figure 4.7: Program text for RestorcP2

The restoration procedures for invariants Pl.s.s and P2.s.t are based on the deriva­
tions of Pl.s.s (k k + M) and P2.s.t (k := k + M) (the invariants PO.s.t and
Pl.s.t, with s #- t, are trivially maintained). Since the restoration procedure of an
invariant assumes the validity of other invariants (with different s, t, and k), it is not
a priori clear that there exists an order in which the invariants can be established.
The situation in which there is no such order is called computational deadlock, to
be distinguished from communication deadlock, which may occur in an actual im­
plementation. In the following, we define a ranking function on the invariants; its
existence encapsulates the absence of computational deadlock. Before giving such a
ranking function, we define some notions.

Definition 4.0 (Inv) The finite set of invariants Inv is given by:

Inv= {s,k:O:Ss<M/\O:Sk:Sn/\k\M=O:(l,s,s,k)}U

{ s, t, k : 0 S s, t < M /\ 0 :S k :S n f\ k\1\f = 0 : (2, s, t, k)} .

There is an obvious one-to-one correspondence between the four-tuples of set Inv
and invariants Pl.s.s and P2.s.t in step k. D

Definition 4.1 (-<) We define a relation -< on Inv x Inv with the following
meaning:

IO -< Il := JO must hold before 11 can hold ,

for all JO #- Il E Inv.

The definition of the above relation is meaningful, because of the correspondence
between Inv and the parameterised invariants Pl and P2. D

Definition 4.2 (~) ~ is the transitive non-reflexive closure of -<. D

The elements of the relation -< are:

(l,s,s,k) -< (1,s,s,k+.M)

(2,s,t,k) -< (2, s, t, k + lvl)

(l,t,t,k) -< (2,s, t, k + M)

(2, s, t, k) -< (1,s,s,k+M)

(1, t, t, k + M) -< (1,s,s,k+kl) fort< s

for all s, t, k : 0 :S s, t < lvl f\ 0 :S k < n /\ k\M = 0.

This follows from the derivation. The first four definitions of the elements of -< are
fairly standard. The fifth one follows from the rewrite rule from sum.(k + s) (see
page 74).

Initially, all invariants Pl.s.t (k) and P2.s.t (k) with k 0 hold, i.e., are established.
If a path in Inv is followed, starting from the initial invariants, then we do not wish
to encounter cycles, since this implies that it is impossible to find an order in which
the invariants can be maintained. Computational deadlock occurs if such an order
does not exist.

PARALLEL TRIANGULAR SYSTEM SOLVING

Definition 4.3 (No computational deadlock)

D

No computational deadlock

(Inv, .:!<) is irreflexive
{ definition irreflexive }

+ ('r/ I: IE Inv: •(/-< /)).

77

One way to proof irreflexivity in a relational system (Inv, ~) is by showing the

existence of a so-called ranking function. Actually, we have to prove that (Inv, ~)
is a strict order (11], i.e., a relational system that is transitive and irreflexive.

Definition 4.4 (ranking function) A ranking function r is a function from Inv
to the natural numbers such that:

+ ('r/ IO, Il: IO, /1 E Inv/\ IO-< Il: r.JO < 1-.Il) .

D

For the QWERTY algorithm, the following ranking function r can be given.

r.(1,s,s,k) 2*k+2*s+l

r.(2,s,t,k) = 2*k+2*s+2.

It can easily be verified that r.IO < r.ll, for all IO, Il E Inv with IO-< Il. !!lliis
proves that r is indeed a ranking function.

The problem of computational deadlock has not been addressed before, since it has
been relatively easy to find an order in which the invariants can be restored. In the
QWERTY algorithm, the situation is different. In order to demonstrate absence of
computational deadlock, we used ranking functions. Of course, this technique can be
applied to other problems.

4.2.1 Complexity of the triangular solver

The QWERTY algorithm is derived under the assumption of a complete network for
the communication processes. It is assumed that communication takes a time units,
and communications within a par-statement are counted as a single communication.

The complexity of the parallel program is obtained by summing the complexities of
processes RestorePl and RestoreP2 in each step k.

We start with the latter. The bulk of the computational work in step k is in the
for all-statement of RestoreP2 (cf. Figure 4. 7):

2* I {i: k + s + M :5 i < n /\ i\M = s: i} I
{ calculus }

2* ((n - k)/M 1).

The resulting communication complexity is 1, since one single value is broadcasted
in parallel. The total complexity for RestoreP2 is:

Tp2.M.n.k 2 * ((n - k)/M 1) +a .

The time complexity of RestorePl is obtained by a careful analysis of the critical
path of the data flow. In order to obtain a low complexity, the program should be
transformed by rewriting the program text of RestorePl for processes (s, t) withs= t
(cf. Figure 4.6).

The resulting implementation of RestorePl consists of two phases:

In the first phase, all processes (s,t) withs:::; tare active. The processes (s,s)
perform the initialisation x(k + s) := b(k + s). The processes (s, t), with s < t, send
their value of w in parallel to process (s, s) in a time. These values and the local
value of w of process (s,s) are subtracted from x(k + s) in at most M time units.
The total complexity of the first phase of RestorePl in step k is M +a.

In the second phase, all processes (s, t) with s ;::: t are active. Each active process
column (s, t), withs > t, receives the value of x(k + t) in time a, which can be used
to compute w(k + s, t) + L(k + s, k + t) *yin two time units. The value of the last
expression is received in a(t) by process (s, s) in time a, which immediately subtracts
a(t) from x(k + s) in one time unit (instead of first collecting the values and then
subtracting, which would cause a delay along the critical path of the data flow).

The critical path of second phase is the data flow from process (0, 0), to (1, 0), to (1, 1),
... , to (J\1 -1,M - 1). A process (s,s) on this path receives a value from process
(s, s -1), subtracts it from the current value of x(k + s), and sends x(k + s) to process
(s + 1, s) (and to the other processes in the same active process column). This process
in turn uses the received value to compute w(k + s, s + 1) + L(k + s, k + s + 1) * y,
which is sent to process (s + 1, s + 1). The time of the critical path is at most
3 * (M - 1) + 2 * (M - 1) * a, and this is the complexity of the second phase of
RestorePl.

Adding the time complexities of the first and second phase in RestorePl gives:

TPI .M.n.k = 4 * M 3 + (2 * M 1) *a .

The total time complexity for the QWERTY algorithm is:

T.p.n
{ definition }

(2: k: 0 :S k < n /\ k\M = 0: Tp1 .M.n.k + Tp2.l'v1.n.k:)
{ definition 1'p1 and TP2, calculus }

(2: k: 0:::; k < n /\ k\M = 0: 2 * ((n - k)/M) + 4 * JVJ - 5 + 2 * ,i\:1* a)
= { calculus, p = M 2

}

~ - 4 * + (2 *a+ 4) * n.

The results are valid on a complete network (p > 1). Similar counts can be obtained
for a square mesh communication network; this has also been verified experimentally
[6].

4.3 Final remarks

In this chapter, we demonstrated the use of parameterised invariants on a non­
trivial problem: a parallel symmetric-system solver. The solver consists of two parts:
Cholesky factorisation and triangular system solving.

We showed that a parallel Cholesky factorisation algorithm can be derived formally
using a Cartesian matrix distribution. Communication and computation aspects are
easily separated in the derivation. This allows us to analyse work load distribution
and communication overhead.

It has been argued that the wrap2 grid distribution is a good candidate distribution
for the Cholesky factorisation. This is confirmed by experiments on a 400 multi­
processor system. The grid distribution is used in the precondition of the parallel
triangular system solver, which is named the QWERTY algorithm.

Some lessons have been learned from the QWERTY derivation:

• Avoidance of communication of matrix elements is the driving force behind
the derivation. In general, avoidance of communication is a basic principle in
parallel program construction.

• Typical distribution properties, like a step size of Af in a loop, are surprising
in a derivation. In that sense, derivations are a trial and error process. In a
presentation, like the one here, the trials are usually omitted.

• The standard way of constructing sequential algorithms is: introduce an in­
variant, some calculus, and then strengthen the invariant by new ones, etc. In
the parallel case, this may pose a problem, since invariants are parameterised.
Many more orderings between invariants play a role, thus complicating the
correctness concerns quite a bit. In the QWERTY derivation, the concept of
computational deadlock is encountered, and a non-standard ordering between
the parameterised invariants is needed. Ranking functions are necessary to
proof absence of computational deadlock.

The QWERTY derivation results in a parallel program with a low complexity and
an asymptotically maximal speed-up. Hence, triangular system solving is not the
bottleneck in a parallel symmetric-system solver. The complexity of such a solver is
dominated by the complexity of a parallel grid-based Cholesky factorisation program,
which is:

3

T.p.n = 3n + 0(n~) . * p vP

The grid distribution is the key to a highly efficient parallel symmetric-system solver.

80

Chapter 5

Parallel Sparse Cholesky
Factorisation

Two parallel algorithms are presented for the Cholesky factorisation of a sparse ma­
trix. Both algorithms are based on a submatrix-Cholesky algorithm using the grid
distribution for the non-zeros of the matrix. The fastest version uses multiple-rank
updates. In this way, natural parallelism is exploited, which can be obtained by pre­
permuting the matrix according to a layered-defoliation strategy of the corresponding
elimination tree.

5.0 Introduction

There are many definitions of a sparse matrix. One is [73]:

A matrix is called sparse if the overwhelming majority of matrix elements
are zero.

Another one is [16]:

Generally, we say that a matrix is sparse if there is an advantage in

exploiting its zeros.

Most practical problems involve sparse matrices, for instance, the calculation of stiff­
ness properties of buildings and the optimisation of refinery and scheduling opera­
tions. Sparse matrices do not only occur in numerical mathematics, but also in graph
theory [36] and many other fields.

A large class of sparse matrix problems requires the solution of a sparse linear system
of equations. Exploiting sparsity in such a system typically results in a considerable
reduction of memory requirements and computation time. Zero matrix elements
need not to be stored and floating-point operations involving them are usually made
redundant.

81

Here, we develop new parallel algorithm for the Cholesky factorisation of a sparse
symmetric positive-definite matrix A. The Cholesky factorisation A = L V, where
L is a lower n by n triangular matrix, forms a key component in a parallel linear
programming solver [3].

In our opinion, the parallelisation of sparse algorithms is a challenging activity. The
challenge lies in the conflicting nature of sparse algorithms that can be summarised
by the statement: 'a lot of little work'. Sparse algorithms try to avoid unnecessary
work, but the total amount of work can be high, thus making it worthwhile to speed
up the computation by parallelisation.

The remainder of this chapter is organised as follows. In Section 5.1, we give some
background on sparse Cholesky factorisation; for an extensive treatment see [16, 29].
In Section 5.2, we briefly review parallel Cholesky factorisation algorithms. In Sub­
section 5.3.0, the properties of the grid distribution with respect to sparse Cholesky
factorisation are discussed. Subsection 5.3.l presents a parallel sparse Cholesky al­
gorithm. A complexity analysis is given in Subsection 5.3.2. Timing results for the
parallel rank-1 algorithm are given in Subsection 5.3.3. Section 5.4 describes an im­
provement of this algorithm by performing multiple-rank updates, which are obtained
by a layered-defoliation strategy of the elimination tree. These subjects are discussed
in Subsections 5.4.0, 5.4.1, and 5.4.2. Timing results for the parallel multiple-rank
update algorithm are given in Subsection 5.4.4. Section 5 .. 5 summarises our contri­
bution.

A final remark is made about the presentation in this chapter. In contrast to the
previous chapters, the emphasis will not be on a formal derivation, but on the final
algorithms. However, the formally derived algorithm for parallel dense Cholesky
factorisation (see Chapter 4) is used as a basis for the sparse algorithms.

5.1 Background

An important difference between sparse and dense Cholesky factorisation algorithms
is the role of zero matrix elements, which are numerous in the sparse case. During a
sparse factorisation of A most zero matrix elements of A are also zero in the Cholesky
factor L, i.e., only some zero matrix elements in A become non-zero in L. The number
of non-zeros in the Cholesky factor, the fill, determines the computation complexity
[29]. The fill can be influenced by symmetrically permuting rows and columns of A.
Mathematically, the following systems are equivalent:

Ax
PAPty

b

Pb and P 1 y = x,

where P is an n by n permutation matrix. The non-zero patterns of the Cholesky
factors of A and PA Pt may differ considerably (cf. Figures 5.0 and 5.1). Often, P
can be chosen such that the Cholesky factor of P AP1 has less fill than the Cholesky

factor of A. Dense Cholesky factorisation algorithms lack this degree of freedom; the
computation complexity is independent of any choice for P.

0 x x
1 x x x x
2 x x x x
3 x x x x
4 x x x x
5 x x x x x x
6 x x x x x x
7 x x x x x
8 x x x x x x
9 x x x x
10 x x x x
11 x x x x
12 x x x x

Figure 5.0: The non-zero pattern of a 13 by 13 matrix A (left) and its Cholesky factor
L (right) are displayed (only the lower half of a symmetric matrix is shown). A x
indicates the presence of a non-zero; a · the presence of a created non-zero. In the
Cholesky factor 47 non-zeros are created.

0 x x
1 x x
2 x x
3 x x
4 x x
5 x x
6 x x
7 x x
8 x x x x x x x x
9 x x x x x x x x
10 x x x x
11 x x x x
12 x x x x x

Figure 5.1: The non-zero pattern of a 13 by 13 matrix A (left) and its Cholesky
factor L (right) are displayed. A is obtained by symmetrically permuting the rows
and columns of A (see Figure 5.0), i.e., A PA pt for a suitable permutation matrix
P. Observe that the fill is much less: only 5 non-zeros are created in the Cholesky
factor L

The problem of finding a permutation matrix P such that the number of non-zeros
in L is minimal is known as the minimum-fill reordering problem, and has been
proved to be NP-complete [78]. In the past decade, however, two heuristics, namely
the minimum degree algorithm and nested dissectiou [2fi] have be<~n shown to be
very effective in reducing the fill. Notably, the minimum degree algorithm and its

improvements (see [30] for a review) yield, in general, a 'good' ordering for a large
class of symmetric positive-definite matrices. The nested dissection ordering is less
general, but it is quite effective for the class of matrices arising from discretisations
of partial differential equations on rectangular grids and L-shaped domains. Pre­
ordering steps like the minimum degree algorithm take only a small fraction of the
time compared to the actual Cholesky factorisation.

The Cholesky factorisation can be modelled using graph theory.

Definition 5.0 (G(A)) The graph G(A) (V, E) belonging to a symmetric n by
n matrix A has the set l/ = { i : 0 :5 i < n : i} as vertices. The set of edges is
E = {i,j: i,j EV/\ A(i,j) -:f 0: {i,j} }. D

The following holds:

(Vi,j: 0 :5 i,j < n/\ {i,j} !/; E: A(i,j) = 0).

The set E identifies the non-zeros of A. For convenience, we shall use the notation
A(i,j) -:f 0 for {i,j} EE. An example is given in Figure 5.2.

6 2

...... 9~--3~--1•0~--1a-...;.--i•:o

s 7 --------
11

10

Figure 5.2: The graphs of A and A of Figures 5.0 and 5.1 are depicted (self-loops are
not drawn). They are the same except for the labeling of the vertices. The minimum­
fill reordering problem can be restated as: find a labeling of the vertices of A such
that its Cholesky factor has a minimal fill.

The sparsity pattern of the Cholesky factor L of a matrix A can be determined
entirely from the graph G(A). The basic equation is:

L(i,j) # 0 := A(i,j) -:f OV (3 k: 0 S k < j: L(i,k) -:f O/\L(j,k) -:f 0),

for all 0 S j S i < n.

This result can be obtained using postcondition R of Chapter 4 (page 61). The
equation above states that a matrix element L(i,j), i '2'.: j, is a non-zero if either
A(i,j) is a non-zero or L(i,j) is created by a pair of non-zeros L(i,k) and L(j,k)
with 0 S k < j. In terms of graph G(A), L(i,j) is a non-zero if there is a path in

REVIEW 85

G(A) from vertex i to vertex j with all internal vertices strictly less than i min j,
notation i,..., j. Note that by definition {i,j} E E implies i,..., j. A path of length t
in a graph (V:, E) is a sequence of vertices n1, 0 :::;: l :::;: t, such that: for all l, with
0 :::;: l < t, { n1, n1+1} E E holds. An internal vertex of a path n0 ... nt is a vertex n 1
with 0 < l < t.
Thus, the graph G(L) (V,EA) of the Cholesky factor L of A can be characterised
by:

EA = { i, j : 0 "5. j "5. i < n /\ i ,...,, j : { i, j}} .

Example 5.1 Consider the graph of A of Figure 5.2. The path 12, 2, 8, 4, 10, has
all internal vertices < 10, hence 12 ,._, 10 holds, and L(l2, 10) is a non-zero. D

The sparsity pattern of L can be computed efficiently in O(IEAI) [29]. In the remain­
der of this chapter, we assume that the matrix A is reordered using a fill-reducing
heuristic. Furthermore, the sparsity pattern of its Cholesky factor Lis known a priori.

5.2 Review

In this section, a short review is given of the literature on paraild sparse Cholesky
algorithms intended for distributed-memory machines. The major differences between
the various approaches are discussed (see .[37J for a general review on this subject).

Most sequential and parallel Cholesky factOJr:i:sabolll. algorithms are column-oriented
and can be classified [37] as either ooiumJJJ:-Ohoiesky or subma.trix-Cholesky. (Row­
Cholesky is rarely considered.) The differences between both types of algorithms
stem from the order in which computations are performed.

In a sequential dense column-Cholesky, columns are computed one by one, and each
newly computed column k, 0 $ k < n, is modified by all previous columns j, 0 :::;:
j < k. In a sparse column-Cholesky, each column k is only modified by columns j
such that L(k,j) =j:. 0.

The columns in a sequential submatrix-Cholesky are also computed one by one, but
each newly computed column k: is used to modify all columns j, 0 $ k < j < n. In a
sparse version, each column k modifies only columns j such that L(j, k) =j:. 0.

The terms left-looking algorithm and right-looking algorithm are sometimes used to
distinguish column-Cholesky and submatrix-Cholesky, respectively (cf. Figure 5.3).

Almost all known parallel algorithms for the Cholesky factorisation of a sparse matrix
are based on a column distribution° of the Cholesky factor. One of the first-published
parallel implementations was a sparse submatrix-Cholesky [28] on a distributed­
memory multi-processor system. This algorithm, known as the fan-out algorithm,
uses elimination trees [68] and an arbitrary mapping of the columns to processors.

0 A column distribution assigns entire columns to processors.

0
1
2
3
4
5
6
7
8

x

x

x
x

x
x x
x

x
x
x

i i

x
x

x
x x

x x

x
x x x
x x

x x
x x
x x x

i i i

Figure 5.3: Snapshot of sequential column-Cholesky (left) and submatrix-Cholesky
(right) for a 9 x 9 matrix. In both cases, the first 4 columns of the Cholesky factor
have been computed. In the column-Cholesky, column 4 needs to be modified by
the columns which are determined by the non-zeros of row 4, i.e., columns 1 and 3
as indicated by the arrows. As a consequence of this modifications, non-zeros are
created in column 4. In the submatrix-Cholesky, column 4 is used to modify the
columns which are determined by the non-zeros of column 4, i.e., columns 5, 7 and
8. Observe that, as a consequence of the modifications, non-zeros are created.

The fan-out algorithm and its improvements are inferior to the fan-in algorithm,
which is a parallel column-Cholesky [O, l]. The fan-in algorithms use either a pure
column-mapping or the so-called subtree-to-subcube mapping [31]. The latter map­
ping uses elimination trees and works well for matrices associated with the k x k
regular grid, but is difficult to generalise to more irregulaJ' problems [37].

Fan-in algorithms reduce communication overhead much better than fan-out algo­
rithms, for example, by combining several messages into one message. This does
not necessarily mean that fan-out algorithms using different data distributions, i.e.,
non-column distributions, are inferior too. In the following, we present a parallel
submatrix-Cholesky algorithm (fan-out) based on the grid distribution. In Subsec­
tion 5.3.2 we demonstrate that the grid distribution reduces the number of commu­
nications compared to a column-based distribution. Thus, a grid-based submatrix­
Cholesky can compete with column-based fan-in algorithms.

5.3 A parallel algorithm based on rank-1 updates

In the parallel program scheme of Chapter 4, the major source of parallelism comes
from the cmod operations (RestoreP2, page 65). We showed that the grid distribution
of a dense matrix L results in an even distribution of the cmod operations. Moreover,
the grid distribution avoids redistribution and consequently, the total number of
communications is reduced. It is natural to use a grid distribution for a sparse
matrix as well. From the previous review, it can be concluded that this is usually
not done. Therefore, the grid distribution for a parallel sparse submatrix-Cholesky
is discussed first.

A PARALLEL ALGORITHM BASED ON RANK-1 UPDATES 87

5.3.0 Why grid?

In order to answer this question, some general observations are made. One such
observation is: The minimum degree algorithm tends to produce blocks of non-zeros
in the Cholesky factor. This is in general true, since it has been observed that groups
of consecutive columns often share the same non-zero pattern ('supernodes') [63].

As discussed in Chapter 2, the two issues of distributions are load balancing and
communication overhead. In a submatrix-Cholesky, work is done for some non-zeros
from the active submatrix. The active submatrix in step k, 0 ':S k < n, is defined as
the square submatrix of size n k starting in diagonal element L(k, k).

In a parallel submatrix-Cholesky, the work-load per process is determined by the
distribution of the non-zeros in each active submatrix across the processes. The total
number of communications in the algorithm is determined by the number of non-zeros
a process has to send to another process during the computation.

The following observations are made.

• The grid distribution ensures an even distribution of the rows and columns
of each active submatrix. This does not guarantee that the number of non­
zeros in each active submatrix is evenly distributed across the processes, but
at least structural load imbalance is avoided. This is in contrast to the black
distribution, which causes a large load imbalance. Note that the column-wrap
distribution also ensures an even distribution of the rows and columns of each
active submatrix.

Often, at the end of a sparse factorisation algorithm, some large dense subma­
trices have to be factored. In Chapter 4, it has been demonstrated that the
grid distribution is preferred for a dense factorisation.

• The grid distribution scatters each rectangula1· block of non-zeros across the
processes. This scatter property has been observed by [73]. If the sizes of blocks
of non-zeros are large compared to M (M2 is the total number of processes),
then it is expected that the non-zeros in the rectangular block are distributed
evenly across the processes.

• The minimum degree algorithm tends to produce blocks of non-zeros in the
Cholesky factor. This means that the grid distribution is expected to achieve
a good load balance with pre-ordered matrices.

• If it is necessary to replicate a grid-distributed column then this can be im­
plemented efficiently. Each column is distributed across M processes, hence
replicating a column to all process columns can be done by M simultaneous
broadcasts.

If the non-zeros in a column are part of a rectangular non-zero block then it
is expected that the non-zeros are evenly distribut,ed across a process column,

thus spreading the communications across the processes. Similar arguments
hold for a grid-distributed row.

This is in contrast to a pure column-based distribution, which assigns an entire
column to a process. A replication of a column requires all the non-zeros of it
to be communicated from one process to all other processes. As a consequence,
the communications are not spread.

In Subsection 5.3.2, we obtain an upper bound for the number of communica­
tions when using a grid distribution for the Cholesky factor. It is shown that
the grid distribution reduces the number of communications with a factor of
..jP compared to column distributions.

5.3.l A parallel sparse submatrix-Cholesky algorithm

The non-zeros of L are assigned to processes according to grid distribution (cf. Fig­
ure 5.4):

(V i,j 0 "5 j "5 i < n /\ L(i,j) f 0
L(i,j) is assigned to process (i\M,j\M)) .

..... . ·-:m.J
~

' ".V •

Figure 5.4: The grid distribution of the non-zero pattern of a 25 by 25 sparse Cholesky
matrix across 4 processes is displayed. The processes are identified by different grey­
shadings. This matrix is obtained from the linear programming problem 'afiro', which
is in the NETLIB library [25, 3]. The matrix has been pre-ordered in order to limit
fill.

A PARALLEL ALGORITHM BASED ON RANK-1 UPDATES 89

The parallel program for sparse submatrix-Cholesky is obtained from the general
parallel program scheme for dense Cholesky (see Chapter 4) by instantiating it with
the grid distribution and exploiting sparsity.

The outline of each parameterised process (s, t) is similar as in the dense case (cf. Fig­
ure 4.1). The sparsity is exploited, for instance, in the initialisation, which sets L to
A for the non-zeros of A only. Each parameterised process (s, t) consists of a loop
in which RestorePl and RestoreP2 are called one after the other. An outline of the
sparse version for RestorePl is given in Figure 5.5.

In the annotations, predicate sum.a.b.c is used (see page 61 for its definition).

RestorePl.s.t ::
I[h: real;

II

if s = t /\ k\M
~ {L(k,k) sum.k.k.k}

L(k,k) := ~L(k,k)
{L(k,k) 2 = sum.k.k.k}
; h := L(k,k)
{h = L(k, k)}
; CO.s

~ s # t /\ k\kl = t ~ CO.s {h L(k,k)}
fi

; if k\M = t
~ {h = L(k, k)}

for all i: k + l S:: i < n /\ i\M .s /\ L(i, k) 10:
{L(i, k) sum.i.k.k}
L(i, k) := L(i, k)/h
{L(i,k)*L(k,k) sum.i.k.k}

Ila rof
fi

Figure 5.5: Program text for RestorePl in the grid-based submatrix-Cholesky. k is
the step counter.

The program text for a sparse version of RestoreP2 is sketched in Figure 5.6. Arrays
c and d are used to store communicated matrix elements, and they are implicitly
initialised by setting all local component of the arrays to zero. The nested for all­
statement uses the predicates c(i) 1 0 and d(j) 1 0. This is meaningful, since the
non-zero values in each array c in process (s, t) are copies of the non-zeros L(i, k)
with i\M = s. A similar remark holds for array d.

The resulting parallel Cholesky algorithm is called a single-rank update algorithm,
since in the inner loop a vector addition (saxpy) is performed.

The specifications of the communication processes CO, CI and C2 resemble their

RestoreP2.s.t ::
I[c,d(i: 0 S. i < n): array of real;

if k\M = t
___,. for all i: k + 1 S. i < n /\ i\M s /\ L(i, k) # 0:

c(i) := L(i, k)
Ila rof

fi
{ k \ M # t V (V i : k + 1 S. i < n /\ i \ M = s /\ c(i) # 0 : c(i) L (i, k))}
; Cl.s.t
{(Vi: k+ 1 S. i < n/\ i\M = s/\c(i) # 0: c(i) = L(i,k))}
; C2.s.t
{(Vj:k+lS.j<n/\j\M t/\d(j)-:f.O:d(j) L(j,k))}
; for all j : j\M = t /\ k + 1 S. j < n /\ d(j) # 0 :

for all i : i\M = s /\ j S. i < n /\ c(i) # 0 :
• L(i,j) := L(i,j) - c(i) * d(j)

I

Ila rof
Ila rof

JI

Figure 5.6: Program text for RestoreP2 in a grid-based submatrix-Cholesky

dense counterparts. For this reason, we omit the formal specifications and give only
an informal list of the communication requirements.

• CO.s.t: This communication process broadcasts the value of L(k, k) from pro­
cess (k\M, k\M) to each process (s, k\M), 0 S. s < M.

• Cl.s.t: This communication process replicates the non-zero values of L's kth
column across process columns. This can be done efficiently by letting each
process (s, k\M) broadcast its non-zeros L(i, k) to each process (s, t) in the
same process row.

• C2.s.t: This communication process replicates the non-zero values of L's kth
column across process rows. This can be done efficiently by letting each diagonal
process (t, t) broadcast the non-zero values of c, received by Cl.t.t, to each
process (s, t) in the same process column.

The communication processes can be slightly optimised at the end of the factorisation
process, but for simplicity we omit these optimisations.

5.3.2 Complexity analysis

In this subsection, a complexity analysis is given for the parallel sparse submatrix­
Cholesky. The complexity results are obtained under the following assumptions.

A PARALLEL ALGORITHM BASED ON RANK-1 UPDATES 91

• Every column has the same number of non-zeros CL, CL < n.

• Each process has cL/ M non-zeros of each column.

From these assumptions can be deduced that the non-zeros are distributed evenly over
the processes. Although these assumptions are somewhat unrealistic, the results are
still meaningful. Constant CL can be looked upon as the average number of non-zeros,
and an even spread is more or less guaranteed when M < CL.

First, the complexity Tp1 of RestorePl in step k is discussed. Process CO.s imple­
ments a broadcast of L(k, k) which takes at most M 1 communications. It takes
at most CL/ M divisions to complete RestorePl, since every column has the same
number of non-zeros. This gives a total complexity:

Tp1 .M.n.k = O(cL/M +a* M).

The complexity of RestoreP2 is obtained as follows. The two broadcasts of column
k by communication processes Cl.s.t and C2.s.t each have a complexity of cL/1\f +
lvf 2, since at most CL/ M elements have to be communicated to at most M 1
processes and pipe-lining can be used (see page 20). All communication streams can
operate simultaneously. The inner for all-statement consists of at most cL/ M update
operations L(i,j) := L(i,j) c(i) * d(j). Each process performs this inner loop at
most cL/M times, hence the complexity of RestoreP2 in step k becomes:

Tp2.M.n.k 0(2f +a* (cr,/M + llJ)) .

The total complexity of the parallel sparse submatrix-Cholesky is:

T.p.n
{ definition }

(I:; k: 0::::; k < n: .M.n.k + Tp2.M.n.k)
{ definitions Tp1 and Tp2, calculus, M = JP }

0(n * 2f +a* n * 7i; +a* n * JP) .

A number of observations can be made. If CL 2 is of the same order of magnitude asp
then the second and the third order terms become dominant. The lower order terms
merely represent communication cost, which can be quite high for large values of a.

In the following, an upper bound is obtained for the total number of communica­
tions Ncomgrid for the grid-based submatrix-Cholesky. Consider a column k of the
Cholesky factor. Let CJ,.k be the number of non-zeros in column k below the diag­
onal. Due to the grid distribution, column k is distributed across process column
k\1\1. Suppose, furthermore, that each process (s, k\Ivl) has local.k.s non-zeros from
column k below the diagonal. The following holds obviously:

CL.k =(I:; s: 0::; .s < M: local.k . .s).

The number of communications associated with column k is:

(L: s: 0:::; s < M: 2 * (M -1) * local.k.s) + M -1
{ calculus, definition C£.k }

(M-1)*(2*C£.k+l).

Explanation: diagonal element L(k, k) is sent to at most M 1 processes; each
process (s,k\M) broadcasts local.k.s non-zeros to at most M 1 other processes
using communication process Cl.s.t; each process (s, s) broadcasts local.k.s non­
zeros to at most M 1 other processes using C2.s.t.

Hence, the total number of communications Ncomgrid for the grid- based submatrix­
Cholesky is:

=

Ncomgrid

(L: k: 0:::; k < n: (M - 1) * (2 *CL.k + 1))
{ calculus, nzL = (L: k :: C£.k + 1) }

(M - 1) * (2* nzL - n) ,

where nzL gives the total number of non-zeros in the Cholesky factor L. Using the
relation p = M 2 gives:

Ncom9rid = (VP 1) * (2 * nzL - n) .

Theoretical results for the complexity of sparse pamllel algorithms are scarce. One
such a result is given in [31]. There, communication results are given for matrices
A of size k' x k' associated with regular grid of dimension s :? 2. The parallel
algorithms used are fan-in algorithms based on a wrap column-distribution (wrap­
around task assignment) and the subtree-to-subcube mapping. For convenience, we
restrict ourselves to s = 1.

Consider the matrix A belonging to the k x k regular grid that is pre-ordered by
nested dissection. The total number of communications to factor matrix A is [31]:

Ncomwrap = O(p * k2 * logk)

for the wrap column-distribution, and

Ncornsub = G(p * k2)

for the subtree-to-subcube mapping. Moreover, the result for the latter is asymptot­
ically optimal, and the each process has 0(k2) communications to perform.

It is well known that nzL is 0(k 2 *log k) [26], thus:

Ncom9 rid 0(VP * k2 * log k) .

A PARALLEL ALGORITHM BASED ON RANK-1 UPDATES 93

The grid distribution reduces the total number of communications by a factor of ,/P
compared to the wrap distribution. Furthermore, the grid distribution has an order
of magnitude fewer communications compared to the subtree-to-subcube mapping if

Only for values of k such that k » p the subtree-to-subcube mapping has fewer
communications, but then communication time is not dominant anymore (the number
of computations of the k x k regular grid is 0(k3

) [26], hence a well-balanced parallel
program has 0(~) computations to perform in each process).

p

The reduction in communication volume of the grid distribution has also been ob­
served by [67] and [73].

5.3.3 Experiments

In this subsection, we present timing results of an implementation of the parallel
sparse submatrix-Cholesky sketched previously. The input set of symmetric positive­
definite matrices is obtained from the Harwell-Boeing library [17]. The matrices
originate from different problem fields as indicated in Table 5.0. The problem sizes are
modest, ranging from symmetric systems with 1072 unknowns up to 10000 unknowns.

Name n nzA nzr, description
canl072 1072 6758 28307 airplane structure

bcspwr09 1723 4117 7252 power network
lshpl882 1882 7393 80859 L-shaped grid
lshp3466 3466 13681 183123 L-shaped grid

gr6464 4096 20098 102879 square grid

I bcspwrlO .5300 . 13571 28306 power network USA
grl00100 10000 ! 49402 298946 square grid :

Table 5.0: The test set of Harwell-Boeing matrices. The problems gr6464 and
gr! 00100 are not in the library; they represent the k x k regular grid for k = 64
and k = 100. n gives the dimension of the matrix, nzA and nzL give the number of
non-zeros in A and L, respectively.

The matrices are pre-ordered using a minimum degree algorithm in order to reduce
the fill. From Table .5.0 it can be seen that some problems have a large fill in the
Cholesky factor. For example, the matrix of problem grlOOlOO contains initially only
49402 non-zeros; its Cholesky factor contains 298946 non-zeros. The Cholesky factor
may still be considered sparse since only 0.6 % of the total number of matrix elements
are non-zero.

In Table 5.1, timing results are given for the sparse parallel submatrix-Cholesky
algorithm on 4~256 transputers. The multi-processor system is an FT400-Parsytec

Name 1 4 16 64 256 !

• canl072 15.81 5.62 2.45 1.31 0.88
bcspwr09 1.53 1.12 0.9.5 0.85 0.80
lshp1882 63.77 20.5 7.89 3.60 2.08
lshp3466 167.1 52.33 19.04 8.23 4.48

gr6464 55.64 19.34 8.47 4.52 3.15
I bcspwrlO 6.50 4.18 3.27 2.75 2.49 I

grlOOlOO 212.03 - 27.43 13.57 8.75

Table 5.1: Timing results for the Harwell-Boeing problems on 1, 4, 16, 64, and 256
transputers (time in seconds).

machine consisting of 400 transputers, each having 2 Mbyte memory, arranged in
a square-mesh communication network. Timing results for the p = 1 version are
obtained on a different transputer with a 16 Mbyte memory. All computations are
done in double-precision arithmetic (64 bits), and the program is coded in the parallel
language Occam 2 [43]. No results for p = 4 on the gr100100 problem could be
obtained due to memory limitations. As can be seen from the table, the execution
times decrease with the number of processors. In principle, an increase by a factor of
two in the number of processors can result in a similar speed-up of the computation.
In practice, the gains are much less. For the problems bcspwr09 and bcspwrlO the
execution times are only reduced by a small factor. The largest gains are obtained
with small numbers of processors. For example, gr6464 decreases from 55.64 seconds
on 1 processor to 4.52 on 64 processors. The highest speed-up is obtained for the
lshp3466 problem, namely 37 on 256 processors.

The problems taken for the Harwell-Boeing library are relatively small, which results
in the execution times for most problems being bounded by communication time (the
O(a * n * ~) term in the complexity results). This can clearly be seen in Table 5.2
where the number of transputers is further increased to 400. Saturation in the exe­
cution times occurs, and for most problems the execution times even increase, which
is caused by the third-order term 0(a * n * y'p) in the complexity formula.

Name 256 400 !
can1072 0.68 0.73

bcspwr09 0.25 0.27
lshpl882 1.76 I 1.79
lshp3466 3.89 i 3.68

gr6464 2.12 2.09
bcspwrlO 0.80 0.821
grlOOl 00 5.74 5.62

Table 5.2: Timing results for the Harwell-Boeing problems on 256 and 400 transputers
(time in seconds).

Timing results for some farger problems originating from linear programming prob-

A PARALLEL MULTIPLE-RANK UPDATE ALGORITHM 95

Imes have been given in [3]. There, it is shown that for these larger problems the
execution times are considerably reduced even on 400 transputers.

In conclusion, for a modest number of processors, say up to 64, a large decrease
in the execution times of the Harwell-Boeing problems is found for the grid-based
submatrix-Cholesky. Increasing the number of processors leads to a saturation in
the timing results or even an increase in time. This is mainly due to the dominance
of the number of communications. It is expected that the scaling behaviour of the
algorithm is much better for problems with a high number of average non-zeros per
row/ column (compared to JP).
As a comparison, we include in Table 5.3 timing results reported for the problem
gr6363 on an Intel iPSC multi-processor system (p = 16) [30].

Name wrap subtree llfcornwrap

gr6363 62.34 42.17 1219769

Table 5.3: Timing results taken from [30] on 16 processors of the Intel iPSC. In the
columns wrap and subtree, the execution times are reported for the two parallel fan­
in Cholesky programs using a wrap-column distribution and the subtree-to-subcube
mapping, respectively. In the columns Ncomwrap and Ncom'"'b the number of com­
munications are reported. The execution times can not be compared, since different
architectures and programming languages are used. The number of communications,
however, can be compared: for the similar problem gr64M we find Ncomgrid is at
most 604986 (using the upper bound for Ncomgrid on page 92).

5.4 A parallel multiple-rank update algorithm

The parallel sparse Gholesky factorisation algorithm of the previous section computes
columns one by one, in order of increasing column number. The parallelism comes
entirely from the distribution of data. In general, the Cholesky factorisation of a
sparse matrix may use an additional source of parallelism. Many columns of the
matrix L may be computed in parallel, these columns are independent, since the
matrix is sparse.

This can be used to combine several single-rank updates into one multiple-rank up­
date. Instead of computing columns one by one, a batch of columns can be computed
in a single step. Communications can be also combined in large batches, thereby de­
creasing various communication overheads. Communication is pipe-lined; an increase
in the number of values to be communicated along a pipe results in an improvement
of the overall efficiency, since the startup time of the pipe becomes less important.
Large batches of computations and communications also decrease the number of syn­
chronisations, and improve the load balance.

In the following, we indicate how the use 'natural' parallelism in the parallel sparse
submatrix-Cholesky. Before doing so, we discuss first elimination trees.

5.4.0 Elimination trees

The dependencies between the columns are captured by the directed elimination
graph T(A) = (V, E) associated with the Cholesky factor L of A, which is defined as
follows.

Definition 5.2 (Elimination graph) The elimination graph T(A) (V, EL) as­
sociated with the Cholesky factor L of A has the same vertex set as G(A). The set
of directed edges is

EL= {j, k: k (min i: j < i < n /\ L(i,j) =f. 0: i): (j, k)} .

By convention, min 0 = +oo. D

Clearly, if (j, k) E EL and (j, k1
) E EL then k k' holds. In general, graph T(A)

is a forest. For simplicity, we assume that the graph is a tree, the elimination tree
[53, 68]; it has a root n - 1 and all its edges are directed towards the root.

"
2l

21

Figure 5.7: The elimination tree T(A) of the NETLIB problem afiro (see Figure 5.4)
is given here. The edges are depicted undirected. The interpretation of an edge (j, k),
with j < k, in the elimination tree is that the computation of column j must precede
the computation of column k. Note that n l (=24 in this case) is the root.

The elimination tree T(A) can he computed efficiently as part of the pre-ordering of
A (and L), because it only depends upon the sparsity structure of L. An example of

A PARALLEL MULTIPLE-RANK UPDATE ALGORITHM 97

an elimination tree is given in Figure 5.7. For a review of the use of elimination trees
in Cholesky factorisation, see [54].

5.4.1 Layered-defoliation strategy

Two columns j and k, with j < k, are said to be independent if column j is not needed
to compute column k. This is equivalent to L(k,j) is a zero element. (Column k
needs only the columns which are determined by the non-zeros in row k.) Independent
columns can be computed in parallel, i.e., the order in which they are computed is
immaterial.

Consider two vertices j and k, j < k, in elimination tree T(A). Let T.k be the set of
vertices of the subtree rooted at vertex k. The following holds:

(*) L(k,j)-f:O'*jET.k.

This can be proved easily by induction to the 'distance' k: J.

If k - j = 1 then (j, k) E hence j E T.k. If k - j > 1 then let k' be the smallest
number such that j < k'::::; k and L(k',j)-/: 0 holds. If k' = k then again (j, k) E
hence j E T.k. In the other case, k' < k, L(k',j) -/: 0, and k' j < k - j holds,
and by applying the induction hypothesis we conclude that j E T.k'. Furthermore,
L(k, k')-/: 0 must hold, and by applying the induction hypothesis again, we conclude
k' E T.k. Combining j E T.k' and k' E T.k gives j E T.k.

The converse of (*) states that every vertex j that is not a member of the subtree
rooted at k is independent from k. Obviously, the leaves of the elimination tree
are mutually independent, so that all the corresponding columns can be computed
independently. (A generalisation is given in [54]).

This suggests the strategy of layered defoliation of the elimination tree: compute all
columns corresponding to the leaves of the tree, remove the leaves, and repeat this
until the tree is empty. The leaves that are removed in each round form a layer of
vertices in the elimination tree. Formally:

Definition 5.3 (layered defoliation) Let JI be the number of vertices on the
longest directed-path in elimination tree T(A) (V, EL)- The layers obtained by the
layered defoliation strategy are:

£.h {k:kEVl\O".k h:k},O<_S_h<ll,

where a.k gives the Strahler number of vertex k in a tree. D

Definition 5.4 (Strahler number) The Strahler number of a vertex kin a tree
T(A) is defined by:

O".k (max j: (j,k) EEL: a.j +I),

and by convention max 0 0, i.e., the Strahler number of a leaf is zero. D

98

Example 5.5 Using the layered-defoliation strategy, we find for the elimination tree
of Figure 5.7 the following 12 (H = 12) layers: {O, 1, 2, 3, 5, 9, 10, 11, 12, 17, 18,
19, 20}, {4, 14}, {6}, {7}, {8}, {13}, {15}, {16}, {21}, {22}, {23} and {24}. In this
example, a chain is obtained after removing the first two layers. No more parallelism
is available, and each column has to be computed one by one. D

Within a layer the order of computations are immaterial; it is only required that the
layers are processed starting from the leaves to the root. Hence, the columns within
each layer can be renumbered consecutively. This defines a permutation 7r, which can
be computed by the program of Figure 5.8.

I[s, h: int; 7r(i: 0 :Si< n): array of int;
s := 0 ; h := 0

ll

; doh =f. H--+

od

for all i: i E £.h: 7r(i) := s + l{k: k E £.h /\ k < i: k}l lla rof
; s := s + 1£.hl
; h := h + 1

Figure 5.8: Construction of a permutation vector 7r

Many permutations are possible that number the vertices within a layer. The chosen
permutation 7r has the property: if i < j then 7r(i) < 7r(j) for any two vertices i,j
from the same layer. In this way, the relative order between vertices in the same layer
is maintained.

Permutation 7r is used to symmetrically permute the columns and rows of L (and A)
such that the columns of each defoliation layer are numbered consecutively. In the
following, it is assumed that A has already been permuted symmetrically using 7r.

Actually, the layered-defoliation strategy defines a topological ordering on the elim­
ination tree. In a sequential algorithm, the fill and the corresponding number of
operations is invariant under such an ordering [54].

The Cholesky factor L of A has a special block structure: it consists of consecutive
blocks h, 0 :Sh< H, where block h contains the 1£.hl columns of layer £.h. Further­
more, the 1£.hl x 1£.hl submatrix on the main diagonal of L that falls in block h is
a diagonal matrix. (This can be seen as follows: the existence of a non-zero element
L(k,j) with j < kin the submatrix implies j E T.k, hence there is a path in the
elimination tree from j E £.h to k E £.h, which contradicts the fact that k and j are
in the same layer £.h.) An example of this block structure is given in Figure 5.9.

5.4.2 Using layered defoliation

Layered defoliation can be used to homogeneously distribute the independent com­
putations, and to combine computations and communications in batches. In the fol-

A PARALLEL MULTIPLE-RANK UPDATE ALGORITHM 99

lowing, we informally discuss the parallel submatrix-Cholesky based on multiple-rank
updates. The matrix A has the special block structure, and is distributed according
to the grid distribution.

Figure 5.9: The grid distribution of the non-zero pattern of the permuted Cholesky
factor of afiro (see Figure 5.4) across 4 processes is shown. The processes are identified
by different grey-scales. The matrix is permuted according to the layered-defoliation
strategy. The Cholesky factor has a special block structure: each block corresponds
to one layer from the elimination tree. Only the diagonal submatrices of the first
two layers are shown. The first layers consists of 13 columns, the second layer of 2
columns. The remaining layers have only one column.

The parallel multiple-rank update algorithm consists of a loop over the number of
layers. In each step of the algorithm, the columns belonging to one layer are com­
puted, and they are used to update the remaining submatrix. This is done in three
phases.

In the first phase, the independent columns are computed by all processes. The grid
distribution assigns each column to Al processes, and ensures that the non-zeros in
each block corresponding to a layer are distributed evenly.

In the second phase, all columns from one layer have to be replicated to all other
process columns and rows, thus giving a large batch of communications.

In the third phase, each process has a number of non-zeros belonging to all the
columns from a layer. These non-zeros are used to update the remaining submatrix
in one large batch of computations. This results in a multiple-rank update, instead
of the single-rank update in the algorithm of Subsection 5.3.l

5.4.3 The parallel multiple-rank update algorithm

The layers are non-decreasing in size. This property can be used to compactly repre­
sent the information about the block structure of L, namely by two arrays multi and
rank, each of length nrank. It is only necessary to record the different block sizes
together with multiplicity of their occurrence: there are multi(r) consecutive blocks
of rank(r) columns, for all r: 0 $ r < nrank. Clearly, the following relation holds:

(2::: r: 0 $ r < nrank: multi(r) * rank(r)) = n

Furthermore, rank is strictly decreasing, and rank(r) > 0, multi(r) > 0, 0 $ r <
nrank.

It is easy to show that:

n 2:: (I: r: 0 $ r < nrank: rank(r)) 2:: (nrank * (nrank - 1))/2.

Thus, nrank < V2'*n; so arrays rank and multi are not too large.

For reasons of simplicity, we assume that multi(r) l, all blocks of matrix L
have different sizes. The program text for the grid-based parallel submatrix-Cholesky
using multiple updates is given in Figure 5.10.

(s, t) ::
j[lo, r: int;

11

lo 0; T' := 0
; do r j nrank ~

od

{lo= (I: i: 0 $ i < r: rank(i)) /\ 0 :$ r :$ nrank}
for all k: lo :S k <lo+ rank(r) /\ k\M = t:

RestorePl.s.t (k)
Ila rof

{Qc.s.t}
; C.s.t
{Rc.s.t}
; for all k : 0 :S k < rank(r) :

for all j: j\lv! = t /\lo+ rank(r) :S j < n /\ d(j, k) j 0:
for all i: i\M s /\ j :S i < n /\ c(i, k) j 0 :

L(i,j) L(i,j) c(i, k) * d(j, k)
Ila rof

Ila rof
Ila rof

;lo lo+rank(r);r r+l

Figure 5.10: Program text for the sparse multiple-rank update submatrix-Cholesky

A PARALLEL MULTIPLE-RANK UPDATE ALGORITHM 101

The three phases of the program are clearly visible. The first phase consists of con­
secutive calls to RestorePl.s.t (k) of Figure 5.5. For clarity, the dependence on k is
expressed explicitly. The second phase consists of a large batch of communications
performed by communication process C.s.t with precondition Qc.s.t and postcondi­
tion Rc.s.t . This communication process uses two-dimensional arrays c and d, each
storing the necessary communicated values. In an implementation, a large buffer
is sufficient to represent c and d. The specification of C.s.t is not given formally,
since it simply is a generalisation of Cl.s.t and C2.s.t of the single update algorithm.
Precondition Qc.s.t states that locally the non-zero values of the columns k, with
lo~ k < lo+ rank(r) and k\M t are available. Postcondition Rc.s.t states that
each process (s, t) has in arrays c and d the appropriate non-zeros of the columns
k, lo ~ k < lo+ rank(r). The third phase uses the arrays c and d to update the
remaining submatrix in one large batch of computations.

The resulting program is a generalisation of the single-raJ1k update algorithm, which
can be recovered if we choose nrank 1, rank(O) 1, and multi(O) = n.

A complexity analysis of the algorithm is not given here, since it is similar to the one
given in Subsection 5.3.2.

5.4.4 More experiments

As in Subsection 5.3.3, the set of Harwell-Boeing matrices is taken for the timing
experiments. The results for the multiple-rank update algorithm are obtained on the
same hardware and software platform (cf. Table 5.4). The major difference between

Name 4 16 64
can1072 15.81 I 5.28 2.16 1.08 0.68

bcspwr09 1.53 0.72 0.49 0.33 0.25
lshp1882 63.77 20.0 7.20 3.19 1.76
lshp3466 167.1 52.27 18.64 7.67 I 3.89

gr6464 55.64 19.08 8.21 :3.89 2.12

1
bcspwrlO 6.50 2.97 1.87 1.20 0.80
grlOOlOO 212.03 25.87 11.64 5.74

Table 5A: Timing results for the Harwell-Boeing problems running the parallel
multiple-rank update submatrix-Cholesky on 4, 16, 64, 2.56 transputers (time in sec­
onds). The timing results for the p = 1 version are obtained from the rank-1 update
algorithm.

Table 5.1 and this table is that the the parallel multiple-rank update algorithm is
faster in all cases. The gains can be considerable, for example, bcspwrlO takes 2.49
seconds in the single-update algorithm and only 0.80 seconds in the multiple-update
version. This results in higher speed-up numbers: grl00100 increases its speed-up
from 14 to 37 on 256 processors. The highest speed-up is obtained for problem
lshp3466, namely 43 on 256 processors. It is remarkable that the gains increase rel-

atively more with the number of processors, for example, grlOOlOO decreases from
13.57 to 11.64 seconds on 64 processors, and from 8.75 to 5.74 seconds on 256 pro­
cessors. This is mainly caused by the fact that the improved version decreases the
term O{J.P * n) in the complexity results, which becomes more important with an
increasing number of processors. From the timing results can be concluded that it is
worthwhile to exploit 'natural' parallelism by using the layered-defoliation strategy.
The additional overhead in re-ordering the matrix and the arrays rank and multi to
record the block structure of L is small.

5.5 Final remarks

In this chapter, parallel algorithms for sparse Cholesky factorisation have been dis­
cussed. A parallel submatrix-Cholesky has been developed that uses the grid dis­
tribution of the non-zeros. It has been shown for a model problem that the grid
distribution reduces the total number of communications by a factor of JP compared
to any column-distribution. The resulting algorithm is obtained from the parallel
program scheme for dense Cholesky factorisation in Chapter 4. Characteristic of the
parallel algorithm is that it repeatedly performs rank-1 updates with newly computed
columns.

A generalisation of the rank-1 update algorithm is the multiple-rank update al­
gorithm, which combines several columns in each step of the computation. This
algorithm is obtained by exploiting 'natural' parallelism in the form of indepen­
dent columns. These columns are easily discovered from the elimination tree of
the Cholesky factor. A layered-defoliation strategy of this tree is used to define a
renumbering that allows the independent columns to be homogeneously distributed
across the processes. As a consequence of this strategy, the resulting matrix of the
Cholesky factor has a special block structure. The grid distribution of such a ma­
trix ensures an even distribution of independent columns, and results in a parallel
algorithm that combines communications and computat.ions in large batches. This
gives a considerable reduction in the execution time of the Cholesky factorisation for
problems taken from the Harwell-Boeing library.

The multiple-rank update still allows for many improvements. For example, columns
often have a similar non-zero structure and can be combined to form 'supernodes'.
Updates with these supernodes can be implemented more efficiently. Communications
of several columns combined in a supernode can be reduced by at most a factor of two,
since it is only necessary to communicate the numerical values of the different columns
and the non-zero structure (the row indices) of the supernode. Another improvement
would be the exploitation of the assignment of columns in the layered-defoliation
strategy. Columns in the same layer are now assigned to different process columns.
It is also possible to assign columns in the same layer in such a way that operations
can be performed entirely local. In this way, communication can be reduced.

Chapter 6

Epilogue

6.0 Retrospect

In this thesis we advocated a design method for parallel programs. The way we design
parallel programs closely resembles sequential This is mainly due to
the strict rules we force upon the 'structure' of a parallel program:

• A parallel program consists of p instances of a parameterised process S.

• S is further refined by using standard sequential programming techniques into
a sequence of ordinary sequential programs and communication processes, each
being a parameterised process again.

• Instances of a parameterised communication process form a communication­
closed layer: communication takes place only between the 'same' process in­
stances.

As a consequence of this structure, we can consider a parallel program to be de­
composed into layers. In the computation layer, work is distributed across the p
processes, and each process performs computations on its set of local data. In the
communication layer, the processes interact via message passing.

The decomposition into layers facilitates the correctness concerns. Each layer is
constructed by using parameterised invariants, and can be proven correct by applying
proof rules.

A communication layer has a separate specification usually with a simple function­
ality. Alternative implementations of the communication processes, which are based
on different communication networks, can be analysed easily.

Preferably, communication layers should be 'thin' and avoided whenever possible.
The efficiency of a parallel program is largely determined by the data distribution
used, which in tum determines the work-load distribution and the number of associ­
ated communications.

103

The role of distributions has been discussed in Chapter 2. There, we discussed static
distributions of arrays and matrices, and two examples of making new distributions
from old ones: composition and Cartesian product. In general, reducing the total
number of communications and spreading communications evenly across processes
results in the formation of 'thin' communication layers.

On the other hand, computation layers should be 'thick' and well-balanced, thus
reducing possible waiting times.

An example of a parallel program solving a class of segment problems was given in
Chapter 3. In the derivation, the postcondition was rewritten into local and global
expressions. The local expressions resulted in computation layers, and the global
expressions in communication layers. Divide-and-conquer rules were obtained that
combine the local and global expressions.

A larger example was given in Chapter 4, where parallel programs were obtained for
dense Cholesky factorisation and triangular syster::1 solving. The Cholesky factori­
sation program uses Cartesian distributions, and it has been argued that the grid
distribution has favourable properties. Timing-experiments confirm this claim. In
the derivation for the triangular system solver a non-trivial communication process
was obtained. Additionally, the concept of computational deadlock was discussed and
the order between parameterised invariants was formalised by the use of a ranking
function. Again, the resulting programs consist of a decomposition into layers.

In Chapter 5 two new parallel algorithms were obtained for the sparse Cholesky fac­
torisation of a matrix. Both algorithms use the grid distrihution for the non-zeros
of the matrix. The first algorithm is similar to dense submatrix-Cholesky: sparsity
is only exploited in a trivial sense. The second algorithm exploits independent com­
putations, which are easily identified if the sparse matrix is pre-permuted using a
layered-defoliation strategy of the elimination tree. This improved algorithm spreads
the independent computations evenly across process columns and combines compu­
tations and communications in batches. Timing-experiments on 1-256 transputers
have been given as well. The Harwell-Boeing matrices used in the experiments repre­
sent realistic problems. Although the programs have not been formally derived, the
structure of the parallel programs reflects a decomposiLiou into layers.

Our primary contribution has been to demonstrate that parallel programs can be
constructed in a way which does not much differ from sequential programming.

6.1 Applications and future work

Many of the ideas found in this thesis have been applied, formally or informally, to the
construction of KSLA's parallel linear algebra library. An example of a large parallel
program (6500 lines of code) using this library is a parallel linear programming solver
[3]. In [71] a parallel implementation of a direct fluid-flow simulator is reported,
which uses a decomposition into layers.

APPLICATIONS AND FUTURE WORK 105

Other examples of parallel program derivations based on parameterised invariants
include dynamic programming [47] and sparse LU decomposition [72].

In our opinion, efficient parallel algorithms can be made with our method. Here, we
restricted the presentation to only a few examples, but the limits of our method have
been explored to some extent. For example, the number of processes can be increased
until a so-called fine-grained parallel program is obtained. Of course, our method is
applicable to fine-grained programs but it is our experience that the borders between
the different kinds of layers then become fuzzier. Consequently, it is more difficult
to give a work-load analysis. Implementations of parallel programs constructed with
our method are targeted at powerful, multi-processor systems consisting of a modest
number of processors - say 2-1024.

In the future we are planning to enlarge the number of applications of our method.
The problem fields we will focus on are sparse matrix computations and graph algo­
rithms. These are interesting problems because of their more irregular communication
requirements and the challenges that lie in parallelising these problems.

106

Bibliography

[OJ C. Ashcraft, S.C. Eisenstat, and J.W.H. Liu. A fan-in algorithm for distributed
sparse numerical factorization. SIAM J. Sci. Stat. Comput., 11(3):593-99, 1990.

[l] C. Ashcraft, S.C. Eisenstat, J.W.H. Liu, B.W. Peyton, and A.H. Sherman.
A compute-ahead implementation of the fan-in sparse distributed factorization
scheme. Oak Ridge National Laboratory report ORNL/Tkl-11496, August, 1990.

[2] K. van Berkel, J. Kessels, R.W.J.J. Saeijs, and F. Schalij. The VLSI­
programming language Tangram and its translation into handshake circuits. In
Proc. of the European Desi.qn Automation Conference, 1991.

[3] R.H. Bisseling, T.M. Doup, and L.D.J.C. Loyens. A parallel interior point algo­
rithm for linear programming on a network of transputers. Annals of Operations
Research, 1992 (in press).

(4] R. H. Bisseling and L.D.J.C. Loyens. Towards peak parallel LINPACK perfor­
mance on 400 transputers. Supecomputer, 8(5):2027, 1991.

[5] R.H. Bisseling and J.G.G. van de Vorst. Parallel LU decomposition on a trans­
puter network. In LNCS, Parallel Computing 1988, number 384, pages 61-77,
1989.

[6] R.H. Bisseling and J.G.G. van de Vorst. Parallel triangular system solving on a
mesh network of transputers. SIAA1 J. Sci. Stat. Comput., 12(4):787-99, 1991.

[7] H.L. Bodlaender. Distributed Computing, Structure and Complexity. PhD thesis,
Utrecht University, 1986.

[8] K.M. Chandy and J. Misra. Distributed computation on graphs: Shortest path
algorithms. Communications of the ACM, 2.5(11):833-37, 1982.

[9] K.M. Chandy and J. Misra. Systolic algorithms as programs. Distributed Com­
puting, (1):177-83, 1986.

[10] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison­
Wesley, 1988.

[11] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

107

[12] E. Dekel and S. Sahni. Binary trees and parallel scheduling algorithms. IEEE
Transactions on Computers, (C32):307-15, 1983.

[13] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[14] E.W. Dijkstra and W.H.J. Feijen. Een methode van programmeren. Academic
Service, Den Haag, 1984.

[15] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, New York, 1990.

[16] LS. Duff, A.M. Erisman, and J.K. Reid. Direct Ivfethods for Sparse Matrices.
Oxford University Press, 1986.

[17] l.S. Duff, R.G. Grimes, and J.G. Lewis. Sparse matrix test problems. ACM
TOMS, 15(1):1-14, 1989.

[18] T.H. Dunigan. Performance of the Intel iPSC/860 and Ncube 6400 hypercubes.
Parallel Computing, (17):1285-1302, 1991.

[19] S.C. Eisenstat, M.T. Heath, C.S. Henkel, and C.H. Romine. Modified cyclic al­
gorithms for solving triangular systems on distributed-memory multiprocessors.
SIAM J. Sci. Stat. Comput., 9(3):.589-600, 1988.

[20] T. Elrad and N. Francez. Decomposition of distributed programs into
communication-closed layers. Science of Computer Programming, (2):155-73,
1982.

[21] G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon, and D.W.
Walker. Solving Problems On Concurrent Processors, Volume 1. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[22] R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages
and Systems, 5(1):66-77, 1983.

[23] K.A. Gallivan, R.J. Plemmons, and A.H. Sameh. Parallel algorithms for dense
linear algebra computations. SIAM Review, 32(1):54-135, 1990.

[24] N. van Gasteren. Private communication. 1989.

[25] D.M. Gay. Electronic mail distribution of linear programming test problems.
Math. Program. Soc. COAL Newsl., (13):10-2, 1985.

[26] A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal., 10(2):345-63, 1973.

[27] A. George, M.T. Heath, and J.W.H. Liu. Parallel Cholesky factorization on a
shared-memory multiprocessor. Lin. Alg. Appl., (77):165-87, 1986.

[28] A. George, M.T. Heath, J.W.H. Liu, and E. Ng. Sparse Cholesky factorization
on a local-memory multiprocessor. SIAM J. Sci. Stat. Comput., 9(2):327-40,
1988.

[29] A. George and J.W.H. Liu. Computer Solutions of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[30] A. George and J.W.H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review, 31(1):1-19, 1989.

[31] A. George, J.W.H. Liu, and E. Ng. Communication results for parallel sparse
Cholesky factorization on a hypercube. Parallel Computing, (10):287-98, 1989.

[32] G.H. Golub and C.F. Van Loan. Matrix Computations {2nd edition). The John
Hopkins University Press, 1989.

[33] D. Gries. The Science of Programming. Springer-Verlag New York, 1981.

[34] D. Gries. A note on a standard strategy for developing loop invariants and loops.
Science of Computer Programming, (2):207-14, 1982.

[35] J .L. Gustafson, G. R. Mon try, and R.E. Benner. Development of parallel methods
for a 1024-processor hypercube. SIAM J. Sci. Stat. Comput., 9(4):609-38, 1988.

[36] F. Harary. Graph Theory. Addison-Wesley, 1972.

[37] M.T. Heath, E. Ng, and B.W. Peyton. Parallel algorithms for sparse linear
systems. SIAM Review, 33(3):420-60, 1991.

[38] M.T. Heath and C.H. Romine. Parallel solution of triangular systems on
distributed-memory multiprocessors. SIAM J. Sci. Stat. Comput., 9(3):558-88,
1988.

[39] P.A.J. Hilbers. Mappings of Algorithms on Processor Networks. PhD thesis,
Groningen University, also as: Processor Networks and Aspects of the Mapping
Problem in Cambridge International Series on Parallel Computations 2, 1989.

[40] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-80, 1969.

[4l] C.A.R. Hoare. Parallel programming: an axiomatic approach. Computer Lan­
guages, 1(2):151-60, 1975.

[42] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
UK, Ltd., London, 1985.

[43] Inmos Ltd. Occam 2 Reference Manual. Prentice-Hall International, UK, Ltd.,
London, 1988.

[44] S.L. Johnsson. Communication efficient basic linear algebra computations on
hypercube architectures. J. Parallel Distrib. Comput., (4):133-72, 1987.

[45] A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice-Hall In­
ternational, UK, Ltd., London, 1990.

[46] A. Kaldewaij. Shortest and longest segments. In Beauty ls Our Business, pages
226-32. Springer-Verlag New York, 1990.

[47] J.M.F.M. van Kemenade. Parallel dynamic programming on a fixed processor
network. Master's Thesis, Eindhoven University of Technology, 1989.

[48] H.J. Kim and J.G. Lee. Partial sum problem mapping into a hypercube. Infor­
mation Processing Letters, (36):221-24, 1990.

[49] G.A.P. Kindervater and J.K. Lenstra. An introduction to parallelism in combi­
natorial optimization. Discrete Appl. Math., (14):135-56, 1986.

[50] R.E. Ladner and M.J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831-38, 1980.

[51] G.M. Levin and D. Gries. A proof technique for Communicating Sequential
Processes. Acta Informatica, (15):281-302, 1981.

[52] G. Li and T.F. Coleman. A parallel triangular solver for a distributed-memory
multiprocessor. SIAM J. Sci. Stat. Comput., 9(3):485-.502, 1988.

[53] J.W.H. Liu. A compact row storage scheme for Cholesky factors using elimina­
tion trees. ACM TOMS, 12:127-48, 1986.

[54] J.W.H. Liu. The role of elimination trees in sparse factorization. SIAM J.
Matrix. Anal. Appl., 11(1):134-72, 1990.

[55] L.D.J.C. Loyens and R.H. Bisseling. The formal construction of a parallel trian­
gular system solver. In LNCS, Mathematics of Program Construction, number
375, pages 325-34, 1989.

[56] L.D.J.C. Loyens and J.G.G. van de Vorst. Two small parallel programming
exercises. Science of Computer Programming, (1.5):V'l9-69, 1990.

[57] J.J. Lukkien. Transputer Pascal, a user manual. Technical Report CS8912,
Groningen University, 1989.

[58] J.J. Lukkien. Parallel Program Design and Generalized Weakest Preconditions.
PhD thesis, Groningen University, 1991.

[59] A.R. Mackintosh. Dr. Atanasoff's computer. Scientific American, (August):72-
78, 1988.

1

[60] A.J. Martin. A distributed implementation method for parallel programming.
In Proc. IFIP congress 80, pages 309-14, 1980.

[61] A.J. Martin. The probe: an addition to communication primitives. Information
Processing Letters, (20):125-30, 1985.

[62) C.R. Mollenhoff. AJanasoff: Forgotten Father of the Computer. Iowa State
University Press, Ames, 1988.

[63] E. Ng and B.W. Peyton. A supernodal Cholesky factorization algorithm
for shared-memory multiprocessors. Oak Ridge National Laboratory report
ORNL/TM-11814, April, 1991.

[64] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Cor­
nell University, 1975.

[65] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, (6):319-40, 1976.

[66] M. Rem. Small programming exercises 20. Science of Computer Programming,
(10):99-105, 1988.

[67] P. Sadayappan and S.K. Rao. Communication reduction for distributed sparse
matrix factorization on a processor mesh. In Proc. Supercomputing '89, ACM
Press, New York, pages 135-55, 1989.

[68] R. Schreiber. A new implementation of sparse Gaussian elimination. ACM
Trans. Math. Software, (8):256-76, 1982.

[69] .LL.A. van de Snepscheut. Trace Theory and VLSI Design. PhD thesis, Eind­
hoven University of Technology, also appeared as LNCS 200, 1983.

[70] J.L.A. van de Snepscheut. A derivation of a distributed implementation of War­
shall's algorithm. Science of Computer Programming, (7):55-60, 1986.

[71] J.A. Somers and P.C. Rem. A parallel cellular automata implementation on a
transputer network for the simulation of small scale fluid flow experiments. In
LNCS, Parallel Computing 1988, number 384, pages 116-126, 1989.

[72] A.F. van der Stappen. Distributed data structures for sparse linear algebra.
Master's Thesis, Eindhoven University of Technology, 1988.

[73] A.F. van der Stappen, R.H. Bisseling, and J.G.G. van de Vorst. Parallel sparse
LU decomposition on a mesh network of transputers. SIAM J. Matrix. Anal.
Appl., (14), 1993 (in press).

(74] F.A. Stomp. Design and Verification of Distributed Network Algorithms: Foun­
dations and ,4pplications. PhD thesis, Eindhoven University of Technology, 1989.

112 BIBLIOGRAPHY

[75] J.G.G. van de Vorst. The formal development of a parallel program performing
LU-decomposition. Acta Informatica, (26):1-17, 1988.

[76] J.H. Wilkinson and C. Reinsch. Linear Algebra. Springer-Verlag Berlin, 1971.

(77] L.D. Wittie. Communication structures for large networks of microcomputers.
IEEE Transactions on Computers, C-30(4) :264-73, 1981.

[78] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Meth., 2(1):77-79, 1981.

Index

E.p.n (efficiency), 23
G(A) = (V, E) (graph of A), 84
T(A) = (V, EL) (elimination tree), 96
T.p.n (complexity of a parallel program),

22
W (work load), 67
T0 .p.n (communication complexity), 22
a (communication cost), 22
; (div), 4
C (linear function), 52
\(mod), 4
i ,...,, j (path between i and j), 85
7r (permutation), 98
u (Strahler number), 97
nzA (total number of non-zeros of A),

93
p (number of instances), 7
V (distribution), 34
C (layer), 98
?!-rule, 15

all-prefixes problem, 55

block structure matrix, 98
broadcast, 17

Cartesian distribution, 40, 41, 44
cdiv, 65
Cholesky

factorisation, 60
cmod, 65
column-Cholesky, 85
combine, 24
communication closed, 10, 29
communication complexity, 21, 43
communication process, 10
composition (distributions), 39, 44
computational deadlock, 76

113

distributions
arbitrary linear, 52
block, 41, 70
col, 41
general linear, 35
grid, 41, 70
identity, 35
linear, 35-37
linear2

, 41
reflection, 37
row, 41
wrap, 35-37, 70
wrap2

, 41
wrap-of-linear, 39

distributivity laws, 50
divide-and-conquer rule, 47, 51

efficiency, 23
elimination graph/tree, 96

fan-in, fan-out, 86
fill, 82

graph of a symmetric matrix, 84
graph of the Cholesky factor, 85

Hoare-triple, 7
homogeneous distribution, 37, 40, 41
hypercube, 18

independent columns, 95
inference rule, 14
input axiom, 15

layered program, 2
layered-defoliation strategy, 97
load balance, 45
load imbalance, 37

Ncom, ,i3

Nocc, 43

owns
notation: 0, 36

par rule, 14
parameterised process, 8
parseq rule, 29
path in a graph, 85
perfect distribution, 37
positive-definite matrix, 59
process row /column, 61
program layers, 11, 29

quantifications, 4
QWERTY algorithm, 71

redistribution, 66

saxpy,65
segment

longest plateau, 47, 58
maximal rightmost segment, 58
maximal segment product, 58
maximal segment sum, 47, 49
notation: [i,j), 48
problem, 4 7

sparse matrix, 81
speed-up, 23
spread of communications, 34
static distribution, 33
Strahler number, 97
submatrix-Cholesky, 65, 85
supernodes, 87

w-balancedness, 37

Samenvatting

De tijdsduur van een computerberekening kan worden bekort door gebruik te maken
van een parallel computersysteem bestaande uit een vast aantal identieke processoren
elk met een eigen lokaal geheugen. Elke processor kan gelijktijdig een onafhankelijk
berekeningsdeel uitvoeren. Vaak is het noodzakelijk om deelberekeningen te com­
bineren, daarom worden er tussen de processoren berichten verstuurd via verbin­
dingskanalen. De zojuist geschetste parallelle computer beschikt dus over een groot
verkaveld geheugen dat toegankelijk is door een communicatienetwerk.

In dit proefschrift wordt een methode besproken om op gestructureerde wijze ef­
ficiente programma's te maken voor een parallelle computer met verkaveld geheugen.
In het eerste hoofdstuk van het proefschrift wordt ingegaan op allerlei aspecten van
de methode. Kort samengevat: een parallel programma bestaat uit p aanroepen
van een enkel geparametriseerd programma. Zo'n programma is verder verfijnd in
een concatenatie van gewone sequentiele programma's en communicerende processen,
d.w.z. programmadelen die berichten versturen. De sequentiele programma's worden
op formele wijze verkregen m.b.v. de invariantenmethode. De communicerende pro­
cessen bevatten communicatieacties en zijn verantwoordelijk voor de berekening en
verspreiding van globale informatie.

We eisen van een parallel programma dat het opgebouwd is uit afwisselende reken­
en communicatielagen. In een rekenlaag wordt door alle sequentiele programma's
een onafhankelijke berekening uitgevoerd. In een communicatielaag vindt interactie
plaats tussen de verschillende communicatieprocessen van het parallelle programma.
De communicatieacties behorende bij een communicatielaag zijn gesloten, d.w.z. geen
enkele communicatieactie geschiedt tussen twee verschillende communicatielagen. De
communicatieprocessen van een laag kunnen afzonderlijk gespecificeerd worden, waar­
door het mogelijk is om alternatieve verwezenlijkingen van deze progra.mmadelen te
bestuderen.

Een efficient parallel programma wordt verkregen door de beoogde berekening even­
wichtig over de sequentiele programma's te verdelen en het aantal communicatiela­
gen zo klein mogelijk te houden. De verdeling van de berekening wordt grotendeels
bepaald door de verdeling van de variabelen over het verkavelde geheugen. lmmers,
voor de eindwaarde van elke variabele client men een aantal bewerkingen uit te voe­
ren. In het tweede hoofdstuk worden enige eenvoudige verdelingsfuncties voor rijen
en matrices besproken.

115

In het derde hoofdstuk passen we de gepropageerde methode toe op een klasse van
berekeningen met rijen. De verkregen parallelle programma's vertonen duidelijk een
lagenstructuur; daardoor is het mogelijk om theoretische uitspraken te doen over de
doeltreffendheid van de programma's.

In het vierde hoofdstuk worden parallelle programma's behandeld die de oplossing
berekenen van een symmetrisch positief-definiet systeem. De matrix van zo'n sys­
teem is dicht en de coefficienten worden verdeeld m.b.v. een Cartesische distribu­
tiefunctie. Vervolgens wordt het systeem opgelost door een ontbinding a la Cholesky,
gevolgd door het oplossen van twee driehoeksstelsels. Er wordt een uitvoerige analyse
gegeven van de werklastverdeling en de communicatieverplichtingen van het parallelle
Cholesky factorisatie algoritme. De grid distributiefunctie, ook wel splinterafbeelding
genoemd, heeft verreweg de beste eigenschappen, wat ook aangetoond is door een
vergelijking met parallelle programma's die andere distributiefuncties gebruiken. De
driehoeksoplosser wordt, gegeven de splinterafbeelding van de matrix, op eenvoudige
wijze geconstrueerd volgens de spelregels van de programmeermethode.

In het vijfde hoofdstuk wordt gekeken naar ijle symmetrische systemen, die zich ken­
merken door de aanwezigheid van grote aantallen nulcoefficienten. Twee parallelle
Cholesky factorisatiealgoritmen worden behandeld, die elk de splinterafbeelding ge­
bruiken. De eerste algoritme is een rechtstreekse parallellisatie van een sequentieel
submatrixalgoritme. De tweede algoritme is een verbetering <lie gebruikt maakt van
onafhankelijke pivotelementen en van een snoeistrategie van <le eliminatieboom. De
executietijden van beide algoritmen worden met elkaar vergeleken; daartoe worden
er tijdswaarnemingen gedaan op problemen die afkomstig zijn uit de Harwell-Boeing
collectie.

De programmeermethode, zoals deze hier verdedigd wordt, is toegepast op voor­
beelden uit de praktijk. Gebleken is dat op deze wijze efficiente parallelle pro­
gramma's verkregen kunnen worden.

Curriculum vitae

De schrijver van <lit proefschrift werd geboren op 3 december 1963 te Maastricht. Op
4 juni 1982 slaagde hij met lof voor het examen Atheneum /3 aan het Stedelijk Lyceum
en Ravo te Maastricht. Daarna werd op 6 september 1982 een aanvang gemaakt met
de studie Informatica aan de indertijd geheten Technisch Hogeschool Eindhoven.

Na de voltooiing van een korte stage in de Discrete Wiskunde bij dr. ir. H.C.A. van
Tilburg begon op 1 september 1986 het afstudeerwerk "An Occam machine offering
full communication" onder begeleiding van prof. dr. M. Rem en ir. J.G.G. van de
Vorst. Dit werk werd uitgevoerd bij het Koninklijke/Shell-Laboratorium, Amster­
dam (KSLA) en resulteerde in een geparametriseerde 'pre-processor' die automatisch
routeringsprocessen toevoegde aan een parallel programma.

Op 14 mei 1987 werd het doctoraal examen in de studierichting der Informatica
gehaald aan de Technische Universiteit Eindhoven. Daags erna, om 8.30 's-ochtends,
volgde een aanstelling bij het KSLA als software research engineer.

Sedertdien werden er door de schrijver van <lit proefschrift werkzaamheden verricht
in het Parallel Computing project van de afdeling Mathematics and System Engi­
neering. Onder begeleiding van prof. dr. M. Rem werd, sinds 1988, tevens onderzoek
gedaan naar het gebruik van formele methoden voor de constructie van parallelle
programma's. Dit resulteerde uiteindelijk in de totstandkoming van <lit proefschrift.

117

Stellingen
bijbehorende bij het proefschrift

A Design Method
For

Parallel Programs

van

L.D.J.C. Loyens

0. Voor belangrijke lineaire algebra operaties zoals matrixvermenigvuldiging, LU­
decompositie, Cholesky factorisatie, QR-decompositie, en driehoekstelseloplos­
sen bestaan er efficiente parallelle algoritmen die gebruik maken van de grid
distributie [10, 4, 2, 7, 5].

1. In een Cartesische productgraaf G x H geldt <lat de gemiddelde padlengte gelijk
is aan de som van de gemiddelde padlengten in G en H respectievelijk. Met
<lit gegeven kan op inzichtelijke en eenvoudige wijze, in tegenstelling tot [11],
de gemiddelde padlengte in een binaire hyperkubus worden bepaald.

2. De niet-Cartesische distributiefunctie (zie [1] voor def. distributiefunctie)

(n2 ,M2
, (,\i,j. ((i + j/M)\M, (j + i/M)\M)))

van een n bij n matrix heeft de eigenschap <lat elke rij en kolom van de ma­
trix evenredig wordt verdeeld over alle 1112 processen. Met deze distributie
kan een parallel matrix-vector vermenigvuldigingsprogramma worden ontwor­
pen <lat een betere werklastverdeling heeft clan met een vierkante Cartesische
distributie.

3. Zij (V, <) een eindig transitief systeem. Dan geldt (zie [2] voor def. ranking
function):

(V, <)is irreflexief = (:Jr:: r is een ranking function op (V, <)) .

4. Zij A de matrix behorende bij het regulier vierkant rooster met in iedere richting
2k -1, k 2 1, roosterpunten die genummerd zijn volgens 'nested dissection' [6].
De snoeistrategie van de eliminatieboom van A kan op zeer compacte wijze
beschreven worden door middel van de rijen multi en ran/.~ elk van de lengte
nrank [3]. Er geldt:

nrank = 2 * k - 1,
rank(nrank - 1 - i) = 2i,
multi(nrank - 1 - i) = 2k-(i+i)/2 - 1, 0::::; i < nrank.

5. De parseq rege] [OJ vermijdt het gebruik van z.g. parallelle 'debuggers'. Boven­
dien is de p = 1 versie van een -met deze regel verkregen- parallel programma
geschikt om te worden uitgevoerd op een sequentiele computer.

6. De parallelle programmeertaal Occam [8] leent zich uitstekend tot het maken
van lange programma's, maar is ongeschikt voor grote programma's.

7. In de huidige ontwikkeling van processoren voor parallelle computersystemen
wordt teveel nadruk gelegd op de Megafloppen per seconde en neemt de ver­
houding tussen communicatie- en rekentijd toe. Dit achten wij, met oog op de
programmeerbaarheid, een ongewenste ontwikkeling.

8. In de Griekse mythologie volbrengt Heracles de twaalf werken, waaronder het
verslaan van de negenkoppige Hydra. Volgens [9] is, in het gevecht met de
Hydra, elke strategie een winnende, m.a.w. Heracles kon niet verliezen! Hieruit
concluderen wij <lat er hooguit elf echte werken waren.

9. In een organisatiestructuur zou het beoordelen van minderen door meerderen
ook omgekeerd moeten plaatsvinden. Zo wordt van alle beoordeelden de wijze
van functioneren beter vastgesteld.

10. Waar gehackt wordt vallen spaanders.

Referenties

[O] Hoofdstuk 1 van dit proefschrift.

[l] Hoofdstuk 2 van <lit proefschrift.

[2] Hoofdstuk 4 van <lit proefschrift.

[3] Hoofdstuk 5 van <lit proefschrift.

[4] R.H. Bisseling and J.G.G. van de Vorst. Parallel LU decomposition on a trans­
puter network. In LNCS, Parallel Computing 1988, number 384, pages 61-78,
1989.

[5] R.H. Bisseling and J.G.G. van de Vorst. Parallel triangular system solving on a
mesh network of transputers. SIAM J. Sci. Stat. Comp., 12(4):787-99, 1991.

[6] A. George. Nested dissection of a regular finite element mesh. SIAk! J. Numer.
Anal., 10(2):345-63, 1973.

[7] B. Hendrickson. Parallel QR factorization on a hypercube using the torus wrap
mapping. Sandia National Laboratories, Tech. Rep. SAND91-0874., 1991.

[8] Inmos Ltd. Occam 2 Reference ~Manual. Prentice-Hall International, l;K, Ltd.,
London, 1988.

(9] L. Kirby and J. Paris. Accessible independence results for Peano arithmetic.
Bulletin London Mathematical Society, (14):285-93, 1982.

(10] L.D.J.C. Loyens. Parallel programming techniques for linear algebra. In LNCS,
Parallel Computing 1988, number 384, pages 32-43, 1989.

[11] L.D. ·Wittie. Communication structures for large networks of microcomputers.
IEEE Transactions on Computers, C-30(4):264-73, 1981.

