341 research outputs found

    Parallel Five-Cycle Counting Algorithms

    Get PDF
    Counting the frequency of subgraphs in large networks is a classic research question that reveals the underlying substructures of these networks for important applications. However, subgraph counting is a challenging problem, even for subgraph sizes as small as five, due to the combinatorial explosion in the number of possible occurrences. This paper focuses on the five-cycle, which is an important special case of five-vertex subgraph counting and one of the most difficult to count efficiently. We design two new parallel five-cycle counting algorithms and prove that they are work-efficient and achieve polylogarithmic span. Both algorithms are based on computing low out-degree orientations, which enables the efficient computation of directed two-paths and three-paths, and the algorithms differ in the ways in which they use this orientation to eliminate double-counting. We develop fast multicore implementations of the algorithms and propose a work scheduling optimization to improve their performance. Our experiments on a variety of real-world graphs using a 36-core machine with two-way hyper-threading show that our algorithms achieves 10-46x self-relative speed-up, outperform our serial benchmarks by 10-32x, and outperform the previous state-of-the-art serial algorithm by up to 818x

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    Algorithms for Extracting Frequent Episodes in the Process of Temporal Data Mining

    Get PDF
    An important aspect in the data mining process is the discovery of patterns having a great influence on the studied problem. The purpose of this paper is to study the frequent episodes data mining through the use of parallel pattern discovery algorithms. Parallel pattern discovery algorithms offer better performance and scalability, so they are of a great interest for the data mining research community. In the following, there will be highlighted some parallel and distributed frequent pattern mining algorithms on various platforms and it will also be presented a comparative study of their main features. The study takes into account the new possibilities that arise along with the emerging novel Compute Unified Device Architecture from the latest generation of graphics processing units. Based on their high performance, low cost and the increasing number of features offered, GPU processors are viable solutions for an optimal implementation of frequent pattern mining algorithmsFrequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, Temporal Data Mining, CUDA, GPU, Fermi, Thread

    Quickly Finding a Truss in a Haystack

    Get PDF
    The k-truss of a graph is a subgraph such that each edge is tightly connected to the remaining elements in the k-truss. The k-truss of a graph can also represent an important community in the graph. Finding the k-truss of a graph can be done in a polynomial amount of time, in contrast finding other subgraphs such as cliques. While there are numerous formulations and algorithms for finding the maximal k-truss of a graph, many of these tend to be computationally expensive and do not scale well. Many algorithms are iterative and use static graph triangle counting in each iteration of the graph. In this work we present a novel algorithm for finding both the k- truss of the graph (for a given k), as well as the maximal k-truss using a dynamic graph formulation. Our algorithm has two main benefits. 1) Unlike many algorithms that rerun the static graph triangle counting after the removal of nonconforming edges, we use a new dynamic graph formulation that only requires updating the edges affected by the removal. As our updates are local, we only do a fraction of the work compared to the other algorithms. 2) Our algorithm is extremely scalable and is able to concurrently detect deleted triangles in contrast to past sequential approaches. While our algorithm is architecture independent, we show a CUDA based implementation for NVIDIA GPUs. In numerous instances, our new algorithm is anywhere from 100X-10000X faster than the Graph Challenge benchmark. Furthermore, our algorithm shows significant speedups, in some cases over 70X, over a recently developed sequential and highly optimized algorithm

    High Performance Large Graph Analytics by Enhancing Locality

    Get PDF
    Graphs are widely used in a variety of domains for representing entities and their relationship to each other. Graph analytics helps to understand, detect, extract and visualize insightful relationships between different entities. Graph analytics has a wide range of applications in various domains including computational biology, commerce, intelligence, health care and transportation. The breadth of problems that require large graph analytics is growing rapidly resulting in a need for fast and efficient graph processing. One of the major challenges in graph processing is poor locality of reference. Locality of reference refers to the phenomenon of frequently accessing the same memory location or adjacent memory locations. Applications with poor data locality reduce the effectiveness of the cache memory. They result in large number of cache misses, requiring access to high latency main memory. Therefore, it is essential to have good locality for good performance. Most graph processing applications have highly random memory access patterns. Coupled with the current large sizes of the graphs, they result in poor cache utilization. Additionally, the computation to data access ratio in many graph processing applications is very low, making it difficult to cover the memory latency using computation. It is also challenging to efficiently parallelize most graph applications. Many graphs in real world have unbalanced degree distribution. It is difficult to achieve a balanced workload for such graphs. The parallelism in graph applications is generally fine-grained in nature. This calls for efficient synchronization and communication between the processing units. Techniques for enhancing locality have been well studied in the context of regular applications like linear algebra. Those techniques are in most cases not applicable to the graph problems. In this dissertation, we propose two techniques for enhancing locality in graph algorithms: access transformation and task-set reduction. Access transformation can be applied to algorithms to improve the spatial locality by changing the random access pattern to sequential access. It is applicable to iterative algorithms that process random vertices/edges in each iteration. The task-set reduction technique can be applied to enhance the temporal locality. It is applicable to algorithms which repeatedly access the same data to perform certain task. Using the two techniques, we propose novel algorithms for three graph problems: k-core decomposition, maximal clique enumeration and triangle listing. We have implemented the algorithms. The results show that these algorithms provide significant improvement in performance and also scale well

    Parallel Index-Based Structural Graph Clustering and Its Approximation

    Full text link
    SCAN (Structural Clustering Algorithm for Networks) is a well-studied, widely used graph clustering algorithm. For large graphs, however, sequential SCAN variants are prohibitively slow, and parallel SCAN variants do not effectively share work among queries with different SCAN parameter settings. Since users of SCAN often explore many parameter settings to find good clusterings, it is worthwhile to precompute an index that speeds up queries. This paper presents a practical and provably efficient parallel index-based SCAN algorithm based on GS*-Index, a recent sequential algorithm. Our parallel algorithm improves upon the asymptotic work of the sequential algorithm by using integer sorting. It is also highly parallel, achieving logarithmic span (parallel time) for both index construction and clustering queries. Furthermore, we apply locality-sensitive hashing (LSH) to design a novel approximate SCAN algorithm and prove guarantees for its clustering behavior. We present an experimental evaluation of our algorithms on large real-world graphs. On a 48-core machine with two-way hyper-threading, our parallel index construction achieves 50--151×\times speedup over the construction of GS*-Index. In fact, even on a single thread, our index construction algorithm is faster than GS*-Index. Our parallel index query implementation achieves 5--32×\times speedup over GS*-Index queries across a range of SCAN parameter values, and our implementation is always faster than ppSCAN, a state-of-the-art parallel SCAN algorithm. Moreover, our experiments show that applying LSH results in faster index construction while maintaining good clustering quality
    corecore